1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
37 */
38 struct inode_defrag {
39 struct rb_node rb_node;
40 /* objectid */
41 u64 ino;
42 /*
43 * transid where the defrag was added, we search for
44 * extents newer than this
45 */
46 u64 transid;
47
48 /* root objectid */
49 u64 root;
50
51 /* last offset we were able to defrag */
52 u64 last_offset;
53
54 /* if we've wrapped around back to zero once already */
55 int cycled;
56 };
57
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
60 {
61 if (defrag1->root > defrag2->root)
62 return 1;
63 else if (defrag1->root < defrag2->root)
64 return -1;
65 else if (defrag1->ino > defrag2->ino)
66 return 1;
67 else if (defrag1->ino < defrag2->ino)
68 return -1;
69 else
70 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree. The lock
74 * must be held already
75 *
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
78 *
79 * If an existing record is found the defrag item you
80 * pass in is freed
81 */
__btrfs_add_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 struct inode_defrag *defrag)
84 {
85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 struct inode_defrag *entry;
87 struct rb_node **p;
88 struct rb_node *parent = NULL;
89 int ret;
90
91 p = &fs_info->defrag_inodes.rb_node;
92 while (*p) {
93 parent = *p;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96 ret = __compare_inode_defrag(defrag, entry);
97 if (ret < 0)
98 p = &parent->rb_left;
99 else if (ret > 0)
100 p = &parent->rb_right;
101 else {
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
105 */
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
110 return -EEXIST;
111 }
112 }
113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 rb_link_node(&defrag->rb_node, parent, p);
115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 return 0;
117 }
118
__need_auto_defrag(struct btrfs_fs_info * fs_info)119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 return 0;
123
124 if (btrfs_fs_closing(fs_info))
125 return 0;
126
127 return 1;
128 }
129
130 /*
131 * insert a defrag record for this inode if auto defrag is
132 * enabled
133 */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 struct btrfs_inode *inode)
136 {
137 struct btrfs_root *root = inode->root;
138 struct btrfs_fs_info *fs_info = root->fs_info;
139 struct inode_defrag *defrag;
140 u64 transid;
141 int ret;
142
143 if (!__need_auto_defrag(fs_info))
144 return 0;
145
146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 return 0;
148
149 if (trans)
150 transid = trans->transid;
151 else
152 transid = inode->root->last_trans;
153
154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 if (!defrag)
156 return -ENOMEM;
157
158 defrag->ino = btrfs_ino(inode);
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
161
162 spin_lock(&fs_info->defrag_inodes_lock);
163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 /*
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 */
169 ret = __btrfs_add_inode_defrag(inode, defrag);
170 if (ret)
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 } else {
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 }
175 spin_unlock(&fs_info->defrag_inodes_lock);
176 return 0;
177 }
178
179 /*
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183 */
btrfs_requeue_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 struct inode_defrag *defrag)
186 {
187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 int ret;
189
190 if (!__need_auto_defrag(fs_info))
191 goto out;
192
193 /*
194 * Here we don't check the IN_DEFRAG flag, because we need merge
195 * them together.
196 */
197 spin_lock(&fs_info->defrag_inodes_lock);
198 ret = __btrfs_add_inode_defrag(inode, defrag);
199 spin_unlock(&fs_info->defrag_inodes_lock);
200 if (ret)
201 goto out;
202 return;
203 out:
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208 * pick the defragable inode that we want, if it doesn't exist, we will get
209 * the next one.
210 */
211 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 struct inode_defrag *entry = NULL;
215 struct inode_defrag tmp;
216 struct rb_node *p;
217 struct rb_node *parent = NULL;
218 int ret;
219
220 tmp.ino = ino;
221 tmp.root = root;
222
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
225 while (p) {
226 parent = p;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229 ret = __compare_inode_defrag(&tmp, entry);
230 if (ret < 0)
231 p = parent->rb_left;
232 else if (ret > 0)
233 p = parent->rb_right;
234 else
235 goto out;
236 }
237
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
240 if (parent)
241 entry = rb_entry(parent, struct inode_defrag, rb_node);
242 else
243 entry = NULL;
244 }
245 out:
246 if (entry)
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
249 return entry;
250 }
251
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 struct inode_defrag *defrag;
255 struct rb_node *node;
256
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
259 while (node) {
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266 node = rb_first(&fs_info->defrag_inodes);
267 }
268 spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH 1024
272
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
275 {
276 struct btrfs_root *inode_root;
277 struct inode *inode;
278 struct btrfs_ioctl_defrag_range_args range;
279 int num_defrag;
280 int ret;
281
282 /* get the inode */
283 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
284 if (IS_ERR(inode_root)) {
285 ret = PTR_ERR(inode_root);
286 goto cleanup;
287 }
288
289 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
290 btrfs_put_root(inode_root);
291 if (IS_ERR(inode)) {
292 ret = PTR_ERR(inode);
293 goto cleanup;
294 }
295
296 /* do a chunk of defrag */
297 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
298 memset(&range, 0, sizeof(range));
299 range.len = (u64)-1;
300 range.start = defrag->last_offset;
301
302 sb_start_write(fs_info->sb);
303 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
304 BTRFS_DEFRAG_BATCH);
305 sb_end_write(fs_info->sb);
306 /*
307 * if we filled the whole defrag batch, there
308 * must be more work to do. Queue this defrag
309 * again
310 */
311 if (num_defrag == BTRFS_DEFRAG_BATCH) {
312 defrag->last_offset = range.start;
313 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
314 } else if (defrag->last_offset && !defrag->cycled) {
315 /*
316 * we didn't fill our defrag batch, but
317 * we didn't start at zero. Make sure we loop
318 * around to the start of the file.
319 */
320 defrag->last_offset = 0;
321 defrag->cycled = 1;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
323 } else {
324 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
325 }
326
327 iput(inode);
328 return 0;
329 cleanup:
330 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
331 return ret;
332 }
333
334 /*
335 * run through the list of inodes in the FS that need
336 * defragging
337 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)338 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
339 {
340 struct inode_defrag *defrag;
341 u64 first_ino = 0;
342 u64 root_objectid = 0;
343
344 atomic_inc(&fs_info->defrag_running);
345 while (1) {
346 /* Pause the auto defragger. */
347 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
348 &fs_info->fs_state))
349 break;
350
351 if (!__need_auto_defrag(fs_info))
352 break;
353
354 /* find an inode to defrag */
355 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
356 first_ino);
357 if (!defrag) {
358 if (root_objectid || first_ino) {
359 root_objectid = 0;
360 first_ino = 0;
361 continue;
362 } else {
363 break;
364 }
365 }
366
367 first_ino = defrag->ino + 1;
368 root_objectid = defrag->root;
369
370 __btrfs_run_defrag_inode(fs_info, defrag);
371 }
372 atomic_dec(&fs_info->defrag_running);
373
374 /*
375 * during unmount, we use the transaction_wait queue to
376 * wait for the defragger to stop
377 */
378 wake_up(&fs_info->transaction_wait);
379 return 0;
380 }
381
382 /* simple helper to fault in pages and copy. This should go away
383 * and be replaced with calls into generic code.
384 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)385 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
386 struct page **prepared_pages,
387 struct iov_iter *i)
388 {
389 size_t copied = 0;
390 size_t total_copied = 0;
391 int pg = 0;
392 int offset = offset_in_page(pos);
393
394 while (write_bytes > 0) {
395 size_t count = min_t(size_t,
396 PAGE_SIZE - offset, write_bytes);
397 struct page *page = prepared_pages[pg];
398 /*
399 * Copy data from userspace to the current page
400 */
401 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
402
403 /* Flush processor's dcache for this page */
404 flush_dcache_page(page);
405
406 /*
407 * if we get a partial write, we can end up with
408 * partially up to date pages. These add
409 * a lot of complexity, so make sure they don't
410 * happen by forcing this copy to be retried.
411 *
412 * The rest of the btrfs_file_write code will fall
413 * back to page at a time copies after we return 0.
414 */
415 if (!PageUptodate(page) && copied < count)
416 copied = 0;
417
418 iov_iter_advance(i, copied);
419 write_bytes -= copied;
420 total_copied += copied;
421
422 /* Return to btrfs_file_write_iter to fault page */
423 if (unlikely(copied == 0))
424 break;
425
426 if (copied < PAGE_SIZE - offset) {
427 offset += copied;
428 } else {
429 pg++;
430 offset = 0;
431 }
432 }
433 return total_copied;
434 }
435
436 /*
437 * unlocks pages after btrfs_file_write is done with them
438 */
btrfs_drop_pages(struct page ** pages,size_t num_pages)439 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
440 {
441 size_t i;
442 for (i = 0; i < num_pages; i++) {
443 /* page checked is some magic around finding pages that
444 * have been modified without going through btrfs_set_page_dirty
445 * clear it here. There should be no need to mark the pages
446 * accessed as prepare_pages should have marked them accessed
447 * in prepare_pages via find_or_create_page()
448 */
449 ClearPageChecked(pages[i]);
450 unlock_page(pages[i]);
451 put_page(pages[i]);
452 }
453 }
454
455 /*
456 * after copy_from_user, pages need to be dirtied and we need to make
457 * sure holes are created between the current EOF and the start of
458 * any next extents (if required).
459 *
460 * this also makes the decision about creating an inline extent vs
461 * doing real data extents, marking pages dirty and delalloc as required.
462 */
btrfs_dirty_pages(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached)463 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
464 size_t num_pages, loff_t pos, size_t write_bytes,
465 struct extent_state **cached)
466 {
467 struct btrfs_fs_info *fs_info = inode->root->fs_info;
468 int err = 0;
469 int i;
470 u64 num_bytes;
471 u64 start_pos;
472 u64 end_of_last_block;
473 u64 end_pos = pos + write_bytes;
474 loff_t isize = i_size_read(&inode->vfs_inode);
475 unsigned int extra_bits = 0;
476
477 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
478 num_bytes = round_up(write_bytes + pos - start_pos,
479 fs_info->sectorsize);
480
481 end_of_last_block = start_pos + num_bytes - 1;
482
483 /*
484 * The pages may have already been dirty, clear out old accounting so
485 * we can set things up properly
486 */
487 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
488 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
489 0, 0, cached);
490
491 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
492 extra_bits, cached);
493 if (err)
494 return err;
495
496 for (i = 0; i < num_pages; i++) {
497 struct page *p = pages[i];
498 SetPageUptodate(p);
499 ClearPageChecked(p);
500 set_page_dirty(p);
501 }
502
503 /*
504 * we've only changed i_size in ram, and we haven't updated
505 * the disk i_size. There is no need to log the inode
506 * at this time.
507 */
508 if (end_pos > isize)
509 i_size_write(&inode->vfs_inode, end_pos);
510 return 0;
511 }
512
513 /*
514 * this drops all the extents in the cache that intersect the range
515 * [start, end]. Existing extents are split as required.
516 */
btrfs_drop_extent_cache(struct btrfs_inode * inode,u64 start,u64 end,int skip_pinned)517 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
518 int skip_pinned)
519 {
520 struct extent_map *em;
521 struct extent_map *split = NULL;
522 struct extent_map *split2 = NULL;
523 struct extent_map_tree *em_tree = &inode->extent_tree;
524 u64 len = end - start + 1;
525 u64 gen;
526 int ret;
527 int testend = 1;
528 unsigned long flags;
529 int compressed = 0;
530 bool modified;
531
532 WARN_ON(end < start);
533 if (end == (u64)-1) {
534 len = (u64)-1;
535 testend = 0;
536 }
537 while (1) {
538 int no_splits = 0;
539
540 modified = false;
541 if (!split)
542 split = alloc_extent_map();
543 if (!split2)
544 split2 = alloc_extent_map();
545 if (!split || !split2)
546 no_splits = 1;
547
548 write_lock(&em_tree->lock);
549 em = lookup_extent_mapping(em_tree, start, len);
550 if (!em) {
551 write_unlock(&em_tree->lock);
552 break;
553 }
554 flags = em->flags;
555 gen = em->generation;
556 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
557 if (testend && em->start + em->len >= start + len) {
558 free_extent_map(em);
559 write_unlock(&em_tree->lock);
560 break;
561 }
562 start = em->start + em->len;
563 if (testend)
564 len = start + len - (em->start + em->len);
565 free_extent_map(em);
566 write_unlock(&em_tree->lock);
567 continue;
568 }
569 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
570 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
571 clear_bit(EXTENT_FLAG_LOGGING, &flags);
572 modified = !list_empty(&em->list);
573 if (no_splits)
574 goto next;
575
576 if (em->start < start) {
577 split->start = em->start;
578 split->len = start - em->start;
579
580 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
581 split->orig_start = em->orig_start;
582 split->block_start = em->block_start;
583
584 if (compressed)
585 split->block_len = em->block_len;
586 else
587 split->block_len = split->len;
588 split->orig_block_len = max(split->block_len,
589 em->orig_block_len);
590 split->ram_bytes = em->ram_bytes;
591 } else {
592 split->orig_start = split->start;
593 split->block_len = 0;
594 split->block_start = em->block_start;
595 split->orig_block_len = 0;
596 split->ram_bytes = split->len;
597 }
598
599 split->generation = gen;
600 split->flags = flags;
601 split->compress_type = em->compress_type;
602 replace_extent_mapping(em_tree, em, split, modified);
603 free_extent_map(split);
604 split = split2;
605 split2 = NULL;
606 }
607 if (testend && em->start + em->len > start + len) {
608 u64 diff = start + len - em->start;
609
610 split->start = start + len;
611 split->len = em->start + em->len - (start + len);
612 split->flags = flags;
613 split->compress_type = em->compress_type;
614 split->generation = gen;
615
616 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
617 split->orig_block_len = max(em->block_len,
618 em->orig_block_len);
619
620 split->ram_bytes = em->ram_bytes;
621 if (compressed) {
622 split->block_len = em->block_len;
623 split->block_start = em->block_start;
624 split->orig_start = em->orig_start;
625 } else {
626 split->block_len = split->len;
627 split->block_start = em->block_start
628 + diff;
629 split->orig_start = em->orig_start;
630 }
631 } else {
632 split->ram_bytes = split->len;
633 split->orig_start = split->start;
634 split->block_len = 0;
635 split->block_start = em->block_start;
636 split->orig_block_len = 0;
637 }
638
639 if (extent_map_in_tree(em)) {
640 replace_extent_mapping(em_tree, em, split,
641 modified);
642 } else {
643 ret = add_extent_mapping(em_tree, split,
644 modified);
645 ASSERT(ret == 0); /* Logic error */
646 }
647 free_extent_map(split);
648 split = NULL;
649 }
650 next:
651 if (extent_map_in_tree(em))
652 remove_extent_mapping(em_tree, em);
653 write_unlock(&em_tree->lock);
654
655 /* once for us */
656 free_extent_map(em);
657 /* once for the tree*/
658 free_extent_map(em);
659 }
660 if (split)
661 free_extent_map(split);
662 if (split2)
663 free_extent_map(split2);
664 }
665
666 /*
667 * this is very complex, but the basic idea is to drop all extents
668 * in the range start - end. hint_block is filled in with a block number
669 * that would be a good hint to the block allocator for this file.
670 *
671 * If an extent intersects the range but is not entirely inside the range
672 * it is either truncated or split. Anything entirely inside the range
673 * is deleted from the tree.
674 */
__btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_path * path,u64 start,u64 end,u64 * drop_end,int drop_cache,int replace_extent,u32 extent_item_size,int * key_inserted)675 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root, struct btrfs_inode *inode,
677 struct btrfs_path *path, u64 start, u64 end,
678 u64 *drop_end, int drop_cache,
679 int replace_extent,
680 u32 extent_item_size,
681 int *key_inserted)
682 {
683 struct btrfs_fs_info *fs_info = root->fs_info;
684 struct extent_buffer *leaf;
685 struct btrfs_file_extent_item *fi;
686 struct btrfs_ref ref = { 0 };
687 struct btrfs_key key;
688 struct btrfs_key new_key;
689 struct inode *vfs_inode = &inode->vfs_inode;
690 u64 ino = btrfs_ino(inode);
691 u64 search_start = start;
692 u64 disk_bytenr = 0;
693 u64 num_bytes = 0;
694 u64 extent_offset = 0;
695 u64 extent_end = 0;
696 u64 last_end = start;
697 int del_nr = 0;
698 int del_slot = 0;
699 int extent_type;
700 int recow;
701 int ret;
702 int modify_tree = -1;
703 int update_refs;
704 int found = 0;
705 int leafs_visited = 0;
706
707 if (drop_cache)
708 btrfs_drop_extent_cache(inode, start, end - 1, 0);
709
710 if (start >= inode->disk_i_size && !replace_extent)
711 modify_tree = 0;
712
713 update_refs = (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
714 root == fs_info->tree_root);
715 while (1) {
716 recow = 0;
717 ret = btrfs_lookup_file_extent(trans, root, path, ino,
718 search_start, modify_tree);
719 if (ret < 0)
720 break;
721 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
722 leaf = path->nodes[0];
723 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
724 if (key.objectid == ino &&
725 key.type == BTRFS_EXTENT_DATA_KEY)
726 path->slots[0]--;
727 }
728 ret = 0;
729 leafs_visited++;
730 next_slot:
731 leaf = path->nodes[0];
732 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
733 BUG_ON(del_nr > 0);
734 ret = btrfs_next_leaf(root, path);
735 if (ret < 0)
736 break;
737 if (ret > 0) {
738 ret = 0;
739 break;
740 }
741 leafs_visited++;
742 leaf = path->nodes[0];
743 recow = 1;
744 }
745
746 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
747
748 if (key.objectid > ino)
749 break;
750 if (WARN_ON_ONCE(key.objectid < ino) ||
751 key.type < BTRFS_EXTENT_DATA_KEY) {
752 ASSERT(del_nr == 0);
753 path->slots[0]++;
754 goto next_slot;
755 }
756 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
757 break;
758
759 fi = btrfs_item_ptr(leaf, path->slots[0],
760 struct btrfs_file_extent_item);
761 extent_type = btrfs_file_extent_type(leaf, fi);
762
763 if (extent_type == BTRFS_FILE_EXTENT_REG ||
764 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
765 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
766 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
767 extent_offset = btrfs_file_extent_offset(leaf, fi);
768 extent_end = key.offset +
769 btrfs_file_extent_num_bytes(leaf, fi);
770 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
771 extent_end = key.offset +
772 btrfs_file_extent_ram_bytes(leaf, fi);
773 } else {
774 /* can't happen */
775 BUG();
776 }
777
778 /*
779 * Don't skip extent items representing 0 byte lengths. They
780 * used to be created (bug) if while punching holes we hit
781 * -ENOSPC condition. So if we find one here, just ensure we
782 * delete it, otherwise we would insert a new file extent item
783 * with the same key (offset) as that 0 bytes length file
784 * extent item in the call to setup_items_for_insert() later
785 * in this function.
786 */
787 if (extent_end == key.offset && extent_end >= search_start) {
788 last_end = extent_end;
789 goto delete_extent_item;
790 }
791
792 if (extent_end <= search_start) {
793 path->slots[0]++;
794 goto next_slot;
795 }
796
797 found = 1;
798 search_start = max(key.offset, start);
799 if (recow || !modify_tree) {
800 modify_tree = -1;
801 btrfs_release_path(path);
802 continue;
803 }
804
805 /*
806 * | - range to drop - |
807 * | -------- extent -------- |
808 */
809 if (start > key.offset && end < extent_end) {
810 BUG_ON(del_nr > 0);
811 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
812 ret = -EOPNOTSUPP;
813 break;
814 }
815
816 memcpy(&new_key, &key, sizeof(new_key));
817 new_key.offset = start;
818 ret = btrfs_duplicate_item(trans, root, path,
819 &new_key);
820 if (ret == -EAGAIN) {
821 btrfs_release_path(path);
822 continue;
823 }
824 if (ret < 0)
825 break;
826
827 leaf = path->nodes[0];
828 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
829 struct btrfs_file_extent_item);
830 btrfs_set_file_extent_num_bytes(leaf, fi,
831 start - key.offset);
832
833 fi = btrfs_item_ptr(leaf, path->slots[0],
834 struct btrfs_file_extent_item);
835
836 extent_offset += start - key.offset;
837 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
838 btrfs_set_file_extent_num_bytes(leaf, fi,
839 extent_end - start);
840 btrfs_mark_buffer_dirty(leaf);
841
842 if (update_refs && disk_bytenr > 0) {
843 btrfs_init_generic_ref(&ref,
844 BTRFS_ADD_DELAYED_REF,
845 disk_bytenr, num_bytes, 0);
846 btrfs_init_data_ref(&ref,
847 root->root_key.objectid,
848 new_key.objectid,
849 start - extent_offset);
850 ret = btrfs_inc_extent_ref(trans, &ref);
851 BUG_ON(ret); /* -ENOMEM */
852 }
853 key.offset = start;
854 }
855 /*
856 * From here on out we will have actually dropped something, so
857 * last_end can be updated.
858 */
859 last_end = extent_end;
860
861 /*
862 * | ---- range to drop ----- |
863 * | -------- extent -------- |
864 */
865 if (start <= key.offset && end < extent_end) {
866 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
867 ret = -EOPNOTSUPP;
868 break;
869 }
870
871 memcpy(&new_key, &key, sizeof(new_key));
872 new_key.offset = end;
873 btrfs_set_item_key_safe(fs_info, path, &new_key);
874
875 extent_offset += end - key.offset;
876 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
877 btrfs_set_file_extent_num_bytes(leaf, fi,
878 extent_end - end);
879 btrfs_mark_buffer_dirty(leaf);
880 if (update_refs && disk_bytenr > 0)
881 inode_sub_bytes(vfs_inode, end - key.offset);
882 break;
883 }
884
885 search_start = extent_end;
886 /*
887 * | ---- range to drop ----- |
888 * | -------- extent -------- |
889 */
890 if (start > key.offset && end >= extent_end) {
891 BUG_ON(del_nr > 0);
892 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
893 ret = -EOPNOTSUPP;
894 break;
895 }
896
897 btrfs_set_file_extent_num_bytes(leaf, fi,
898 start - key.offset);
899 btrfs_mark_buffer_dirty(leaf);
900 if (update_refs && disk_bytenr > 0)
901 inode_sub_bytes(vfs_inode, extent_end - start);
902 if (end == extent_end)
903 break;
904
905 path->slots[0]++;
906 goto next_slot;
907 }
908
909 /*
910 * | ---- range to drop ----- |
911 * | ------ extent ------ |
912 */
913 if (start <= key.offset && end >= extent_end) {
914 delete_extent_item:
915 if (del_nr == 0) {
916 del_slot = path->slots[0];
917 del_nr = 1;
918 } else {
919 BUG_ON(del_slot + del_nr != path->slots[0]);
920 del_nr++;
921 }
922
923 if (update_refs &&
924 extent_type == BTRFS_FILE_EXTENT_INLINE) {
925 inode_sub_bytes(vfs_inode,
926 extent_end - key.offset);
927 extent_end = ALIGN(extent_end,
928 fs_info->sectorsize);
929 } else if (update_refs && disk_bytenr > 0) {
930 btrfs_init_generic_ref(&ref,
931 BTRFS_DROP_DELAYED_REF,
932 disk_bytenr, num_bytes, 0);
933 btrfs_init_data_ref(&ref,
934 root->root_key.objectid,
935 key.objectid,
936 key.offset - extent_offset);
937 ret = btrfs_free_extent(trans, &ref);
938 BUG_ON(ret); /* -ENOMEM */
939 inode_sub_bytes(vfs_inode,
940 extent_end - key.offset);
941 }
942
943 if (end == extent_end)
944 break;
945
946 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
947 path->slots[0]++;
948 goto next_slot;
949 }
950
951 ret = btrfs_del_items(trans, root, path, del_slot,
952 del_nr);
953 if (ret) {
954 btrfs_abort_transaction(trans, ret);
955 break;
956 }
957
958 del_nr = 0;
959 del_slot = 0;
960
961 btrfs_release_path(path);
962 continue;
963 }
964
965 BUG();
966 }
967
968 if (!ret && del_nr > 0) {
969 /*
970 * Set path->slots[0] to first slot, so that after the delete
971 * if items are move off from our leaf to its immediate left or
972 * right neighbor leafs, we end up with a correct and adjusted
973 * path->slots[0] for our insertion (if replace_extent != 0).
974 */
975 path->slots[0] = del_slot;
976 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
977 if (ret)
978 btrfs_abort_transaction(trans, ret);
979 }
980
981 leaf = path->nodes[0];
982 /*
983 * If btrfs_del_items() was called, it might have deleted a leaf, in
984 * which case it unlocked our path, so check path->locks[0] matches a
985 * write lock.
986 */
987 if (!ret && replace_extent && leafs_visited == 1 &&
988 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
989 path->locks[0] == BTRFS_WRITE_LOCK) &&
990 btrfs_leaf_free_space(leaf) >=
991 sizeof(struct btrfs_item) + extent_item_size) {
992
993 key.objectid = ino;
994 key.type = BTRFS_EXTENT_DATA_KEY;
995 key.offset = start;
996 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
997 struct btrfs_key slot_key;
998
999 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1000 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1001 path->slots[0]++;
1002 }
1003 setup_items_for_insert(root, path, &key, &extent_item_size, 1);
1004 *key_inserted = 1;
1005 }
1006
1007 if (!replace_extent || !(*key_inserted))
1008 btrfs_release_path(path);
1009 if (drop_end)
1010 *drop_end = found ? min(end, last_end) : end;
1011 return ret;
1012 }
1013
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,int drop_cache)1014 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root, struct inode *inode, u64 start,
1016 u64 end, int drop_cache)
1017 {
1018 struct btrfs_path *path;
1019 int ret;
1020
1021 path = btrfs_alloc_path();
1022 if (!path)
1023 return -ENOMEM;
1024 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path, start,
1025 end, NULL, drop_cache, 0, 0, NULL);
1026 btrfs_free_path(path);
1027 return ret;
1028 }
1029
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1030 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1031 u64 objectid, u64 bytenr, u64 orig_offset,
1032 u64 *start, u64 *end)
1033 {
1034 struct btrfs_file_extent_item *fi;
1035 struct btrfs_key key;
1036 u64 extent_end;
1037
1038 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1039 return 0;
1040
1041 btrfs_item_key_to_cpu(leaf, &key, slot);
1042 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1043 return 0;
1044
1045 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1046 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1047 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1048 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1049 btrfs_file_extent_compression(leaf, fi) ||
1050 btrfs_file_extent_encryption(leaf, fi) ||
1051 btrfs_file_extent_other_encoding(leaf, fi))
1052 return 0;
1053
1054 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1055 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1056 return 0;
1057
1058 *start = key.offset;
1059 *end = extent_end;
1060 return 1;
1061 }
1062
1063 /*
1064 * Mark extent in the range start - end as written.
1065 *
1066 * This changes extent type from 'pre-allocated' to 'regular'. If only
1067 * part of extent is marked as written, the extent will be split into
1068 * two or three.
1069 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,u64 start,u64 end)1070 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1071 struct btrfs_inode *inode, u64 start, u64 end)
1072 {
1073 struct btrfs_fs_info *fs_info = trans->fs_info;
1074 struct btrfs_root *root = inode->root;
1075 struct extent_buffer *leaf;
1076 struct btrfs_path *path;
1077 struct btrfs_file_extent_item *fi;
1078 struct btrfs_ref ref = { 0 };
1079 struct btrfs_key key;
1080 struct btrfs_key new_key;
1081 u64 bytenr;
1082 u64 num_bytes;
1083 u64 extent_end;
1084 u64 orig_offset;
1085 u64 other_start;
1086 u64 other_end;
1087 u64 split;
1088 int del_nr = 0;
1089 int del_slot = 0;
1090 int recow;
1091 int ret;
1092 u64 ino = btrfs_ino(inode);
1093
1094 path = btrfs_alloc_path();
1095 if (!path)
1096 return -ENOMEM;
1097 again:
1098 recow = 0;
1099 split = start;
1100 key.objectid = ino;
1101 key.type = BTRFS_EXTENT_DATA_KEY;
1102 key.offset = split;
1103
1104 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 if (ret < 0)
1106 goto out;
1107 if (ret > 0 && path->slots[0] > 0)
1108 path->slots[0]--;
1109
1110 leaf = path->nodes[0];
1111 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1112 if (key.objectid != ino ||
1113 key.type != BTRFS_EXTENT_DATA_KEY) {
1114 ret = -EINVAL;
1115 btrfs_abort_transaction(trans, ret);
1116 goto out;
1117 }
1118 fi = btrfs_item_ptr(leaf, path->slots[0],
1119 struct btrfs_file_extent_item);
1120 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1121 ret = -EINVAL;
1122 btrfs_abort_transaction(trans, ret);
1123 goto out;
1124 }
1125 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1126 if (key.offset > start || extent_end < end) {
1127 ret = -EINVAL;
1128 btrfs_abort_transaction(trans, ret);
1129 goto out;
1130 }
1131
1132 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1134 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1135 memcpy(&new_key, &key, sizeof(new_key));
1136
1137 if (start == key.offset && end < extent_end) {
1138 other_start = 0;
1139 other_end = start;
1140 if (extent_mergeable(leaf, path->slots[0] - 1,
1141 ino, bytenr, orig_offset,
1142 &other_start, &other_end)) {
1143 new_key.offset = end;
1144 btrfs_set_item_key_safe(fs_info, path, &new_key);
1145 fi = btrfs_item_ptr(leaf, path->slots[0],
1146 struct btrfs_file_extent_item);
1147 btrfs_set_file_extent_generation(leaf, fi,
1148 trans->transid);
1149 btrfs_set_file_extent_num_bytes(leaf, fi,
1150 extent_end - end);
1151 btrfs_set_file_extent_offset(leaf, fi,
1152 end - orig_offset);
1153 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1154 struct btrfs_file_extent_item);
1155 btrfs_set_file_extent_generation(leaf, fi,
1156 trans->transid);
1157 btrfs_set_file_extent_num_bytes(leaf, fi,
1158 end - other_start);
1159 btrfs_mark_buffer_dirty(leaf);
1160 goto out;
1161 }
1162 }
1163
1164 if (start > key.offset && end == extent_end) {
1165 other_start = end;
1166 other_end = 0;
1167 if (extent_mergeable(leaf, path->slots[0] + 1,
1168 ino, bytenr, orig_offset,
1169 &other_start, &other_end)) {
1170 fi = btrfs_item_ptr(leaf, path->slots[0],
1171 struct btrfs_file_extent_item);
1172 btrfs_set_file_extent_num_bytes(leaf, fi,
1173 start - key.offset);
1174 btrfs_set_file_extent_generation(leaf, fi,
1175 trans->transid);
1176 path->slots[0]++;
1177 new_key.offset = start;
1178 btrfs_set_item_key_safe(fs_info, path, &new_key);
1179
1180 fi = btrfs_item_ptr(leaf, path->slots[0],
1181 struct btrfs_file_extent_item);
1182 btrfs_set_file_extent_generation(leaf, fi,
1183 trans->transid);
1184 btrfs_set_file_extent_num_bytes(leaf, fi,
1185 other_end - start);
1186 btrfs_set_file_extent_offset(leaf, fi,
1187 start - orig_offset);
1188 btrfs_mark_buffer_dirty(leaf);
1189 goto out;
1190 }
1191 }
1192
1193 while (start > key.offset || end < extent_end) {
1194 if (key.offset == start)
1195 split = end;
1196
1197 new_key.offset = split;
1198 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1199 if (ret == -EAGAIN) {
1200 btrfs_release_path(path);
1201 goto again;
1202 }
1203 if (ret < 0) {
1204 btrfs_abort_transaction(trans, ret);
1205 goto out;
1206 }
1207
1208 leaf = path->nodes[0];
1209 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1210 struct btrfs_file_extent_item);
1211 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1212 btrfs_set_file_extent_num_bytes(leaf, fi,
1213 split - key.offset);
1214
1215 fi = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_file_extent_item);
1217
1218 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1219 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1220 btrfs_set_file_extent_num_bytes(leaf, fi,
1221 extent_end - split);
1222 btrfs_mark_buffer_dirty(leaf);
1223
1224 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1225 num_bytes, 0);
1226 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1227 orig_offset);
1228 ret = btrfs_inc_extent_ref(trans, &ref);
1229 if (ret) {
1230 btrfs_abort_transaction(trans, ret);
1231 goto out;
1232 }
1233
1234 if (split == start) {
1235 key.offset = start;
1236 } else {
1237 if (start != key.offset) {
1238 ret = -EINVAL;
1239 btrfs_abort_transaction(trans, ret);
1240 goto out;
1241 }
1242 path->slots[0]--;
1243 extent_end = end;
1244 }
1245 recow = 1;
1246 }
1247
1248 other_start = end;
1249 other_end = 0;
1250 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1251 num_bytes, 0);
1252 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1253 if (extent_mergeable(leaf, path->slots[0] + 1,
1254 ino, bytenr, orig_offset,
1255 &other_start, &other_end)) {
1256 if (recow) {
1257 btrfs_release_path(path);
1258 goto again;
1259 }
1260 extent_end = other_end;
1261 del_slot = path->slots[0] + 1;
1262 del_nr++;
1263 ret = btrfs_free_extent(trans, &ref);
1264 if (ret) {
1265 btrfs_abort_transaction(trans, ret);
1266 goto out;
1267 }
1268 }
1269 other_start = 0;
1270 other_end = start;
1271 if (extent_mergeable(leaf, path->slots[0] - 1,
1272 ino, bytenr, orig_offset,
1273 &other_start, &other_end)) {
1274 if (recow) {
1275 btrfs_release_path(path);
1276 goto again;
1277 }
1278 key.offset = other_start;
1279 del_slot = path->slots[0];
1280 del_nr++;
1281 ret = btrfs_free_extent(trans, &ref);
1282 if (ret) {
1283 btrfs_abort_transaction(trans, ret);
1284 goto out;
1285 }
1286 }
1287 if (del_nr == 0) {
1288 fi = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_file_extent_item);
1290 btrfs_set_file_extent_type(leaf, fi,
1291 BTRFS_FILE_EXTENT_REG);
1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 btrfs_mark_buffer_dirty(leaf);
1294 } else {
1295 fi = btrfs_item_ptr(leaf, del_slot - 1,
1296 struct btrfs_file_extent_item);
1297 btrfs_set_file_extent_type(leaf, fi,
1298 BTRFS_FILE_EXTENT_REG);
1299 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300 btrfs_set_file_extent_num_bytes(leaf, fi,
1301 extent_end - key.offset);
1302 btrfs_mark_buffer_dirty(leaf);
1303
1304 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305 if (ret < 0) {
1306 btrfs_abort_transaction(trans, ret);
1307 goto out;
1308 }
1309 }
1310 out:
1311 btrfs_free_path(path);
1312 return 0;
1313 }
1314
1315 /*
1316 * on error we return an unlocked page and the error value
1317 * on success we return a locked page and 0
1318 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1319 static int prepare_uptodate_page(struct inode *inode,
1320 struct page *page, u64 pos,
1321 bool force_uptodate)
1322 {
1323 int ret = 0;
1324
1325 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326 !PageUptodate(page)) {
1327 ret = btrfs_readpage(NULL, page);
1328 if (ret)
1329 return ret;
1330 lock_page(page);
1331 if (!PageUptodate(page)) {
1332 unlock_page(page);
1333 return -EIO;
1334 }
1335 if (page->mapping != inode->i_mapping) {
1336 unlock_page(page);
1337 return -EAGAIN;
1338 }
1339 }
1340 return 0;
1341 }
1342
1343 /*
1344 * this just gets pages into the page cache and locks them down.
1345 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1346 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347 size_t num_pages, loff_t pos,
1348 size_t write_bytes, bool force_uptodate)
1349 {
1350 int i;
1351 unsigned long index = pos >> PAGE_SHIFT;
1352 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353 int err = 0;
1354 int faili;
1355
1356 for (i = 0; i < num_pages; i++) {
1357 again:
1358 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359 mask | __GFP_WRITE);
1360 if (!pages[i]) {
1361 faili = i - 1;
1362 err = -ENOMEM;
1363 goto fail;
1364 }
1365
1366 if (i == 0)
1367 err = prepare_uptodate_page(inode, pages[i], pos,
1368 force_uptodate);
1369 if (!err && i == num_pages - 1)
1370 err = prepare_uptodate_page(inode, pages[i],
1371 pos + write_bytes, false);
1372 if (err) {
1373 put_page(pages[i]);
1374 if (err == -EAGAIN) {
1375 err = 0;
1376 goto again;
1377 }
1378 faili = i - 1;
1379 goto fail;
1380 }
1381 wait_on_page_writeback(pages[i]);
1382 }
1383
1384 return 0;
1385 fail:
1386 while (faili >= 0) {
1387 unlock_page(pages[faili]);
1388 put_page(pages[faili]);
1389 faili--;
1390 }
1391 return err;
1392
1393 }
1394
1395 /*
1396 * This function locks the extent and properly waits for data=ordered extents
1397 * to finish before allowing the pages to be modified if need.
1398 *
1399 * The return value:
1400 * 1 - the extent is locked
1401 * 0 - the extent is not locked, and everything is OK
1402 * -EAGAIN - need re-prepare the pages
1403 * the other < 0 number - Something wrong happens
1404 */
1405 static noinline int
lock_and_cleanup_extent_if_need(struct btrfs_inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1406 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1407 size_t num_pages, loff_t pos,
1408 size_t write_bytes,
1409 u64 *lockstart, u64 *lockend,
1410 struct extent_state **cached_state)
1411 {
1412 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1413 u64 start_pos;
1414 u64 last_pos;
1415 int i;
1416 int ret = 0;
1417
1418 start_pos = round_down(pos, fs_info->sectorsize);
1419 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
1420
1421 if (start_pos < inode->vfs_inode.i_size) {
1422 struct btrfs_ordered_extent *ordered;
1423
1424 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1425 cached_state);
1426 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427 last_pos - start_pos + 1);
1428 if (ordered &&
1429 ordered->file_offset + ordered->num_bytes > start_pos &&
1430 ordered->file_offset <= last_pos) {
1431 unlock_extent_cached(&inode->io_tree, start_pos,
1432 last_pos, cached_state);
1433 for (i = 0; i < num_pages; i++) {
1434 unlock_page(pages[i]);
1435 put_page(pages[i]);
1436 }
1437 btrfs_start_ordered_extent(ordered, 1);
1438 btrfs_put_ordered_extent(ordered);
1439 return -EAGAIN;
1440 }
1441 if (ordered)
1442 btrfs_put_ordered_extent(ordered);
1443
1444 *lockstart = start_pos;
1445 *lockend = last_pos;
1446 ret = 1;
1447 }
1448
1449 /*
1450 * It's possible the pages are dirty right now, but we don't want
1451 * to clean them yet because copy_from_user may catch a page fault
1452 * and we might have to fall back to one page at a time. If that
1453 * happens, we'll unlock these pages and we'd have a window where
1454 * reclaim could sneak in and drop the once-dirty page on the floor
1455 * without writing it.
1456 *
1457 * We have the pages locked and the extent range locked, so there's
1458 * no way someone can start IO on any dirty pages in this range.
1459 *
1460 * We'll call btrfs_dirty_pages() later on, and that will flip around
1461 * delalloc bits and dirty the pages as required.
1462 */
1463 for (i = 0; i < num_pages; i++) {
1464 set_page_extent_mapped(pages[i]);
1465 WARN_ON(!PageLocked(pages[i]));
1466 }
1467
1468 return ret;
1469 }
1470
check_can_nocow(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes,bool nowait)1471 static int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1472 size_t *write_bytes, bool nowait)
1473 {
1474 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1475 struct btrfs_root *root = inode->root;
1476 u64 lockstart, lockend;
1477 u64 num_bytes;
1478 int ret;
1479
1480 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1481 return 0;
1482
1483 if (!nowait && !btrfs_drew_try_write_lock(&root->snapshot_lock))
1484 return -EAGAIN;
1485
1486 lockstart = round_down(pos, fs_info->sectorsize);
1487 lockend = round_up(pos + *write_bytes,
1488 fs_info->sectorsize) - 1;
1489 num_bytes = lockend - lockstart + 1;
1490
1491 if (nowait) {
1492 struct btrfs_ordered_extent *ordered;
1493
1494 if (!try_lock_extent(&inode->io_tree, lockstart, lockend))
1495 return -EAGAIN;
1496
1497 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1498 num_bytes);
1499 if (ordered) {
1500 btrfs_put_ordered_extent(ordered);
1501 ret = -EAGAIN;
1502 goto out_unlock;
1503 }
1504 } else {
1505 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1506 lockend, NULL);
1507 }
1508
1509 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1510 NULL, NULL, NULL, false);
1511 if (ret <= 0) {
1512 ret = 0;
1513 if (!nowait)
1514 btrfs_drew_write_unlock(&root->snapshot_lock);
1515 } else {
1516 *write_bytes = min_t(size_t, *write_bytes ,
1517 num_bytes - pos + lockstart);
1518 }
1519 out_unlock:
1520 unlock_extent(&inode->io_tree, lockstart, lockend);
1521
1522 return ret;
1523 }
1524
check_nocow_nolock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1525 static int check_nocow_nolock(struct btrfs_inode *inode, loff_t pos,
1526 size_t *write_bytes)
1527 {
1528 return check_can_nocow(inode, pos, write_bytes, true);
1529 }
1530
1531 /*
1532 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1533 *
1534 * @pos: File offset
1535 * @write_bytes: The length to write, will be updated to the nocow writeable
1536 * range
1537 *
1538 * This function will flush ordered extents in the range to ensure proper
1539 * nocow checks.
1540 *
1541 * Return:
1542 * >0 and update @write_bytes if we can do nocow write
1543 * 0 if we can't do nocow write
1544 * -EAGAIN if we can't get the needed lock or there are ordered extents
1545 * for * (nowait == true) case
1546 * <0 if other error happened
1547 *
1548 * NOTE: Callers need to release the lock by btrfs_check_nocow_unlock().
1549 */
btrfs_check_nocow_lock(struct btrfs_inode * inode,loff_t pos,size_t * write_bytes)1550 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1551 size_t *write_bytes)
1552 {
1553 return check_can_nocow(inode, pos, write_bytes, false);
1554 }
1555
btrfs_check_nocow_unlock(struct btrfs_inode * inode)1556 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1557 {
1558 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1559 }
1560
btrfs_buffered_write(struct kiocb * iocb,struct iov_iter * i)1561 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1562 struct iov_iter *i)
1563 {
1564 struct file *file = iocb->ki_filp;
1565 loff_t pos = iocb->ki_pos;
1566 struct inode *inode = file_inode(file);
1567 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1568 struct page **pages = NULL;
1569 struct extent_changeset *data_reserved = NULL;
1570 u64 release_bytes = 0;
1571 u64 lockstart;
1572 u64 lockend;
1573 size_t num_written = 0;
1574 int nrptrs;
1575 int ret = 0;
1576 bool only_release_metadata = false;
1577 bool force_page_uptodate = false;
1578
1579 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1580 PAGE_SIZE / (sizeof(struct page *)));
1581 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1582 nrptrs = max(nrptrs, 8);
1583 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1584 if (!pages)
1585 return -ENOMEM;
1586
1587 while (iov_iter_count(i) > 0) {
1588 struct extent_state *cached_state = NULL;
1589 size_t offset = offset_in_page(pos);
1590 size_t sector_offset;
1591 size_t write_bytes = min(iov_iter_count(i),
1592 nrptrs * (size_t)PAGE_SIZE -
1593 offset);
1594 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1595 PAGE_SIZE);
1596 size_t reserve_bytes;
1597 size_t dirty_pages;
1598 size_t copied;
1599 size_t dirty_sectors;
1600 size_t num_sectors;
1601 int extents_locked;
1602
1603 WARN_ON(num_pages > nrptrs);
1604
1605 /*
1606 * Fault pages before locking them in prepare_pages
1607 * to avoid recursive lock
1608 */
1609 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1610 ret = -EFAULT;
1611 break;
1612 }
1613
1614 only_release_metadata = false;
1615 sector_offset = pos & (fs_info->sectorsize - 1);
1616 reserve_bytes = round_up(write_bytes + sector_offset,
1617 fs_info->sectorsize);
1618
1619 extent_changeset_release(data_reserved);
1620 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1621 &data_reserved, pos,
1622 write_bytes);
1623 if (ret < 0) {
1624 if (btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1625 &write_bytes) > 0) {
1626 /*
1627 * For nodata cow case, no need to reserve
1628 * data space.
1629 */
1630 only_release_metadata = true;
1631 /*
1632 * our prealloc extent may be smaller than
1633 * write_bytes, so scale down.
1634 */
1635 num_pages = DIV_ROUND_UP(write_bytes + offset,
1636 PAGE_SIZE);
1637 reserve_bytes = round_up(write_bytes +
1638 sector_offset,
1639 fs_info->sectorsize);
1640 } else {
1641 break;
1642 }
1643 }
1644
1645 WARN_ON(reserve_bytes == 0);
1646 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1647 reserve_bytes);
1648 if (ret) {
1649 if (!only_release_metadata)
1650 btrfs_free_reserved_data_space(BTRFS_I(inode),
1651 data_reserved, pos,
1652 write_bytes);
1653 else
1654 btrfs_check_nocow_unlock(BTRFS_I(inode));
1655 break;
1656 }
1657
1658 release_bytes = reserve_bytes;
1659 again:
1660 /*
1661 * This is going to setup the pages array with the number of
1662 * pages we want, so we don't really need to worry about the
1663 * contents of pages from loop to loop
1664 */
1665 ret = prepare_pages(inode, pages, num_pages,
1666 pos, write_bytes,
1667 force_page_uptodate);
1668 if (ret) {
1669 btrfs_delalloc_release_extents(BTRFS_I(inode),
1670 reserve_bytes);
1671 break;
1672 }
1673
1674 extents_locked = lock_and_cleanup_extent_if_need(
1675 BTRFS_I(inode), pages,
1676 num_pages, pos, write_bytes, &lockstart,
1677 &lockend, &cached_state);
1678 if (extents_locked < 0) {
1679 if (extents_locked == -EAGAIN)
1680 goto again;
1681 btrfs_delalloc_release_extents(BTRFS_I(inode),
1682 reserve_bytes);
1683 ret = extents_locked;
1684 break;
1685 }
1686
1687 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1688
1689 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1690 dirty_sectors = round_up(copied + sector_offset,
1691 fs_info->sectorsize);
1692 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1693
1694 /*
1695 * if we have trouble faulting in the pages, fall
1696 * back to one page at a time
1697 */
1698 if (copied < write_bytes)
1699 nrptrs = 1;
1700
1701 if (copied == 0) {
1702 force_page_uptodate = true;
1703 dirty_sectors = 0;
1704 dirty_pages = 0;
1705 } else {
1706 force_page_uptodate = false;
1707 dirty_pages = DIV_ROUND_UP(copied + offset,
1708 PAGE_SIZE);
1709 }
1710
1711 if (num_sectors > dirty_sectors) {
1712 /* release everything except the sectors we dirtied */
1713 release_bytes -= dirty_sectors <<
1714 fs_info->sb->s_blocksize_bits;
1715 if (only_release_metadata) {
1716 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1717 release_bytes, true);
1718 } else {
1719 u64 __pos;
1720
1721 __pos = round_down(pos,
1722 fs_info->sectorsize) +
1723 (dirty_pages << PAGE_SHIFT);
1724 btrfs_delalloc_release_space(BTRFS_I(inode),
1725 data_reserved, __pos,
1726 release_bytes, true);
1727 }
1728 }
1729
1730 release_bytes = round_up(copied + sector_offset,
1731 fs_info->sectorsize);
1732
1733 if (copied > 0)
1734 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1735 dirty_pages, pos, copied,
1736 &cached_state);
1737
1738 /*
1739 * If we have not locked the extent range, because the range's
1740 * start offset is >= i_size, we might still have a non-NULL
1741 * cached extent state, acquired while marking the extent range
1742 * as delalloc through btrfs_dirty_pages(). Therefore free any
1743 * possible cached extent state to avoid a memory leak.
1744 */
1745 if (extents_locked)
1746 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1747 lockstart, lockend, &cached_state);
1748 else
1749 free_extent_state(cached_state);
1750
1751 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1752 if (ret) {
1753 btrfs_drop_pages(pages, num_pages);
1754 break;
1755 }
1756
1757 release_bytes = 0;
1758 if (only_release_metadata)
1759 btrfs_check_nocow_unlock(BTRFS_I(inode));
1760
1761 if (only_release_metadata && copied > 0) {
1762 lockstart = round_down(pos,
1763 fs_info->sectorsize);
1764 lockend = round_up(pos + copied,
1765 fs_info->sectorsize) - 1;
1766
1767 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1768 lockend, EXTENT_NORESERVE, NULL,
1769 NULL, GFP_NOFS);
1770 }
1771
1772 btrfs_drop_pages(pages, num_pages);
1773
1774 cond_resched();
1775
1776 balance_dirty_pages_ratelimited(inode->i_mapping);
1777
1778 pos += copied;
1779 num_written += copied;
1780 }
1781
1782 kfree(pages);
1783
1784 if (release_bytes) {
1785 if (only_release_metadata) {
1786 btrfs_check_nocow_unlock(BTRFS_I(inode));
1787 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1788 release_bytes, true);
1789 } else {
1790 btrfs_delalloc_release_space(BTRFS_I(inode),
1791 data_reserved,
1792 round_down(pos, fs_info->sectorsize),
1793 release_bytes, true);
1794 }
1795 }
1796
1797 extent_changeset_free(data_reserved);
1798 return num_written ? num_written : ret;
1799 }
1800
__btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1801 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1802 {
1803 struct file *file = iocb->ki_filp;
1804 struct inode *inode = file_inode(file);
1805 loff_t pos;
1806 ssize_t written;
1807 ssize_t written_buffered;
1808 loff_t endbyte;
1809 int err;
1810
1811 written = btrfs_direct_IO(iocb, from);
1812
1813 if (written < 0 || !iov_iter_count(from))
1814 return written;
1815
1816 pos = iocb->ki_pos;
1817 written_buffered = btrfs_buffered_write(iocb, from);
1818 if (written_buffered < 0) {
1819 err = written_buffered;
1820 goto out;
1821 }
1822 /*
1823 * Ensure all data is persisted. We want the next direct IO read to be
1824 * able to read what was just written.
1825 */
1826 endbyte = pos + written_buffered - 1;
1827 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1828 if (err)
1829 goto out;
1830 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1831 if (err)
1832 goto out;
1833 written += written_buffered;
1834 iocb->ki_pos = pos + written_buffered;
1835 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1836 endbyte >> PAGE_SHIFT);
1837 out:
1838 return written ? written : err;
1839 }
1840
update_time_for_write(struct inode * inode)1841 static void update_time_for_write(struct inode *inode)
1842 {
1843 struct timespec64 now;
1844
1845 if (IS_NOCMTIME(inode))
1846 return;
1847
1848 now = current_time(inode);
1849 if (!timespec64_equal(&inode->i_mtime, &now))
1850 inode->i_mtime = now;
1851
1852 if (!timespec64_equal(&inode->i_ctime, &now))
1853 inode->i_ctime = now;
1854
1855 if (IS_I_VERSION(inode))
1856 inode_inc_iversion(inode);
1857 }
1858
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1859 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1860 struct iov_iter *from)
1861 {
1862 struct file *file = iocb->ki_filp;
1863 struct inode *inode = file_inode(file);
1864 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1865 struct btrfs_root *root = BTRFS_I(inode)->root;
1866 u64 start_pos;
1867 u64 end_pos;
1868 ssize_t num_written = 0;
1869 const bool sync = iocb->ki_flags & IOCB_DSYNC;
1870 ssize_t err;
1871 loff_t pos;
1872 size_t count;
1873 loff_t oldsize;
1874 int clean_page = 0;
1875
1876 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1877 (iocb->ki_flags & IOCB_NOWAIT))
1878 return -EOPNOTSUPP;
1879
1880 if (iocb->ki_flags & IOCB_NOWAIT) {
1881 if (!inode_trylock(inode))
1882 return -EAGAIN;
1883 } else {
1884 inode_lock(inode);
1885 }
1886
1887 err = generic_write_checks(iocb, from);
1888 if (err <= 0) {
1889 inode_unlock(inode);
1890 return err;
1891 }
1892
1893 pos = iocb->ki_pos;
1894 count = iov_iter_count(from);
1895 if (iocb->ki_flags & IOCB_NOWAIT) {
1896 size_t nocow_bytes = count;
1897
1898 /*
1899 * We will allocate space in case nodatacow is not set,
1900 * so bail
1901 */
1902 if (check_nocow_nolock(BTRFS_I(inode), pos, &nocow_bytes)
1903 <= 0) {
1904 inode_unlock(inode);
1905 return -EAGAIN;
1906 }
1907 /*
1908 * There are holes in the range or parts of the range that must
1909 * be COWed (shared extents, RO block groups, etc), so just bail
1910 * out.
1911 */
1912 if (nocow_bytes < count) {
1913 inode_unlock(inode);
1914 return -EAGAIN;
1915 }
1916 }
1917
1918 current->backing_dev_info = inode_to_bdi(inode);
1919 err = file_remove_privs(file);
1920 if (err) {
1921 inode_unlock(inode);
1922 goto out;
1923 }
1924
1925 /*
1926 * If BTRFS flips readonly due to some impossible error
1927 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1928 * although we have opened a file as writable, we have
1929 * to stop this write operation to ensure FS consistency.
1930 */
1931 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1932 inode_unlock(inode);
1933 err = -EROFS;
1934 goto out;
1935 }
1936
1937 /*
1938 * We reserve space for updating the inode when we reserve space for the
1939 * extent we are going to write, so we will enospc out there. We don't
1940 * need to start yet another transaction to update the inode as we will
1941 * update the inode when we finish writing whatever data we write.
1942 */
1943 update_time_for_write(inode);
1944
1945 start_pos = round_down(pos, fs_info->sectorsize);
1946 oldsize = i_size_read(inode);
1947 if (start_pos > oldsize) {
1948 /* Expand hole size to cover write data, preventing empty gap */
1949 end_pos = round_up(pos + count,
1950 fs_info->sectorsize);
1951 err = btrfs_cont_expand(inode, oldsize, end_pos);
1952 if (err) {
1953 inode_unlock(inode);
1954 goto out;
1955 }
1956 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1957 clean_page = 1;
1958 }
1959
1960 if (sync)
1961 atomic_inc(&BTRFS_I(inode)->sync_writers);
1962
1963 if (iocb->ki_flags & IOCB_DIRECT) {
1964 /*
1965 * 1. We must always clear IOCB_DSYNC in order to not deadlock
1966 * in iomap, as it calls generic_write_sync() in this case.
1967 * 2. If we are async, we can call iomap_dio_complete() either
1968 * in
1969 *
1970 * 2.1. A worker thread from the last bio completed. In this
1971 * case we need to mark the btrfs_dio_data that it is
1972 * async in order to call generic_write_sync() properly.
1973 * This is handled by setting BTRFS_DIO_SYNC_STUB in the
1974 * current->journal_info.
1975 * 2.2 The submitter context, because all IO completed
1976 * before we exited iomap_dio_rw(). In this case we can
1977 * just re-set the IOCB_DSYNC on the iocb and we'll do
1978 * the sync below. If our ->end_io() gets called and
1979 * current->journal_info is set, then we know we're in
1980 * our current context and we will clear
1981 * current->journal_info to indicate that we need to
1982 * sync below.
1983 */
1984 if (sync) {
1985 ASSERT(current->journal_info == NULL);
1986 iocb->ki_flags &= ~IOCB_DSYNC;
1987 current->journal_info = BTRFS_DIO_SYNC_STUB;
1988 }
1989 num_written = __btrfs_direct_write(iocb, from);
1990
1991 /*
1992 * As stated above, we cleared journal_info, so we need to do
1993 * the sync ourselves.
1994 */
1995 if (sync && current->journal_info == NULL)
1996 iocb->ki_flags |= IOCB_DSYNC;
1997 current->journal_info = NULL;
1998 } else {
1999 num_written = btrfs_buffered_write(iocb, from);
2000 if (num_written > 0)
2001 iocb->ki_pos = pos + num_written;
2002 if (clean_page)
2003 pagecache_isize_extended(inode, oldsize,
2004 i_size_read(inode));
2005 }
2006
2007 inode_unlock(inode);
2008
2009 /*
2010 * We also have to set last_sub_trans to the current log transid,
2011 * otherwise subsequent syncs to a file that's been synced in this
2012 * transaction will appear to have already occurred.
2013 */
2014 spin_lock(&BTRFS_I(inode)->lock);
2015 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2016 spin_unlock(&BTRFS_I(inode)->lock);
2017 if (num_written > 0)
2018 num_written = generic_write_sync(iocb, num_written);
2019
2020 if (sync)
2021 atomic_dec(&BTRFS_I(inode)->sync_writers);
2022 out:
2023 current->backing_dev_info = NULL;
2024 return num_written ? num_written : err;
2025 }
2026
btrfs_release_file(struct inode * inode,struct file * filp)2027 int btrfs_release_file(struct inode *inode, struct file *filp)
2028 {
2029 struct btrfs_file_private *private = filp->private_data;
2030
2031 if (private && private->filldir_buf)
2032 kfree(private->filldir_buf);
2033 kfree(private);
2034 filp->private_data = NULL;
2035
2036 /*
2037 * Set by setattr when we are about to truncate a file from a non-zero
2038 * size to a zero size. This tries to flush down new bytes that may
2039 * have been written if the application were using truncate to replace
2040 * a file in place.
2041 */
2042 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
2043 &BTRFS_I(inode)->runtime_flags))
2044 filemap_flush(inode->i_mapping);
2045 return 0;
2046 }
2047
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)2048 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2049 {
2050 int ret;
2051 struct blk_plug plug;
2052
2053 /*
2054 * This is only called in fsync, which would do synchronous writes, so
2055 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2056 * multiple disks using raid profile, a large IO can be split to
2057 * several segments of stripe length (currently 64K).
2058 */
2059 blk_start_plug(&plug);
2060 atomic_inc(&BTRFS_I(inode)->sync_writers);
2061 ret = btrfs_fdatawrite_range(inode, start, end);
2062 atomic_dec(&BTRFS_I(inode)->sync_writers);
2063 blk_finish_plug(&plug);
2064
2065 return ret;
2066 }
2067
2068 /*
2069 * fsync call for both files and directories. This logs the inode into
2070 * the tree log instead of forcing full commits whenever possible.
2071 *
2072 * It needs to call filemap_fdatawait so that all ordered extent updates are
2073 * in the metadata btree are up to date for copying to the log.
2074 *
2075 * It drops the inode mutex before doing the tree log commit. This is an
2076 * important optimization for directories because holding the mutex prevents
2077 * new operations on the dir while we write to disk.
2078 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)2079 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2080 {
2081 struct dentry *dentry = file_dentry(file);
2082 struct inode *inode = d_inode(dentry);
2083 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2084 struct btrfs_root *root = BTRFS_I(inode)->root;
2085 struct btrfs_trans_handle *trans;
2086 struct btrfs_log_ctx ctx;
2087 int ret = 0, err;
2088 u64 len;
2089 bool full_sync;
2090
2091 trace_btrfs_sync_file(file, datasync);
2092
2093 btrfs_init_log_ctx(&ctx, inode);
2094
2095 /*
2096 * Always set the range to a full range, otherwise we can get into
2097 * several problems, from missing file extent items to represent holes
2098 * when not using the NO_HOLES feature, to log tree corruption due to
2099 * races between hole detection during logging and completion of ordered
2100 * extents outside the range, to missing checksums due to ordered extents
2101 * for which we flushed only a subset of their pages.
2102 */
2103 start = 0;
2104 end = LLONG_MAX;
2105 len = (u64)LLONG_MAX + 1;
2106
2107 /*
2108 * We write the dirty pages in the range and wait until they complete
2109 * out of the ->i_mutex. If so, we can flush the dirty pages by
2110 * multi-task, and make the performance up. See
2111 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2112 */
2113 ret = start_ordered_ops(inode, start, end);
2114 if (ret)
2115 goto out;
2116
2117 inode_lock(inode);
2118
2119 /*
2120 * We take the dio_sem here because the tree log stuff can race with
2121 * lockless dio writes and get an extent map logged for an extent we
2122 * never waited on. We need it this high up for lockdep reasons.
2123 */
2124 down_write(&BTRFS_I(inode)->dio_sem);
2125
2126 atomic_inc(&root->log_batch);
2127
2128 /*
2129 * Always check for the full sync flag while holding the inode's lock,
2130 * to avoid races with other tasks. The flag must be either set all the
2131 * time during logging or always off all the time while logging.
2132 */
2133 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2134 &BTRFS_I(inode)->runtime_flags);
2135
2136 /*
2137 * Before we acquired the inode's lock, someone may have dirtied more
2138 * pages in the target range. We need to make sure that writeback for
2139 * any such pages does not start while we are logging the inode, because
2140 * if it does, any of the following might happen when we are not doing a
2141 * full inode sync:
2142 *
2143 * 1) We log an extent after its writeback finishes but before its
2144 * checksums are added to the csum tree, leading to -EIO errors
2145 * when attempting to read the extent after a log replay.
2146 *
2147 * 2) We can end up logging an extent before its writeback finishes.
2148 * Therefore after the log replay we will have a file extent item
2149 * pointing to an unwritten extent (and no data checksums as well).
2150 *
2151 * So trigger writeback for any eventual new dirty pages and then we
2152 * wait for all ordered extents to complete below.
2153 */
2154 ret = start_ordered_ops(inode, start, end);
2155 if (ret) {
2156 up_write(&BTRFS_I(inode)->dio_sem);
2157 inode_unlock(inode);
2158 goto out;
2159 }
2160
2161 /*
2162 * We have to do this here to avoid the priority inversion of waiting on
2163 * IO of a lower priority task while holding a transaction open.
2164 *
2165 * For a full fsync we wait for the ordered extents to complete while
2166 * for a fast fsync we wait just for writeback to complete, and then
2167 * attach the ordered extents to the transaction so that a transaction
2168 * commit waits for their completion, to avoid data loss if we fsync,
2169 * the current transaction commits before the ordered extents complete
2170 * and a power failure happens right after that.
2171 */
2172 if (full_sync) {
2173 ret = btrfs_wait_ordered_range(inode, start, len);
2174 } else {
2175 /*
2176 * Get our ordered extents as soon as possible to avoid doing
2177 * checksum lookups in the csum tree, and use instead the
2178 * checksums attached to the ordered extents.
2179 */
2180 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
2181 &ctx.ordered_extents);
2182 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
2183 }
2184
2185 if (ret)
2186 goto out_release_extents;
2187
2188 atomic_inc(&root->log_batch);
2189
2190 /*
2191 * If we are doing a fast fsync we can not bail out if the inode's
2192 * last_trans is <= then the last committed transaction, because we only
2193 * update the last_trans of the inode during ordered extent completion,
2194 * and for a fast fsync we don't wait for that, we only wait for the
2195 * writeback to complete.
2196 */
2197 smp_mb();
2198 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2199 (BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed &&
2200 (full_sync || list_empty(&ctx.ordered_extents)))) {
2201 /*
2202 * We've had everything committed since the last time we were
2203 * modified so clear this flag in case it was set for whatever
2204 * reason, it's no longer relevant.
2205 */
2206 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2207 &BTRFS_I(inode)->runtime_flags);
2208 /*
2209 * An ordered extent might have started before and completed
2210 * already with io errors, in which case the inode was not
2211 * updated and we end up here. So check the inode's mapping
2212 * for any errors that might have happened since we last
2213 * checked called fsync.
2214 */
2215 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2216 goto out_release_extents;
2217 }
2218
2219 /*
2220 * We use start here because we will need to wait on the IO to complete
2221 * in btrfs_sync_log, which could require joining a transaction (for
2222 * example checking cross references in the nocow path). If we use join
2223 * here we could get into a situation where we're waiting on IO to
2224 * happen that is blocked on a transaction trying to commit. With start
2225 * we inc the extwriter counter, so we wait for all extwriters to exit
2226 * before we start blocking joiners. This comment is to keep somebody
2227 * from thinking they are super smart and changing this to
2228 * btrfs_join_transaction *cough*Josef*cough*.
2229 */
2230 trans = btrfs_start_transaction(root, 0);
2231 if (IS_ERR(trans)) {
2232 ret = PTR_ERR(trans);
2233 goto out_release_extents;
2234 }
2235
2236 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
2237 btrfs_release_log_ctx_extents(&ctx);
2238 if (ret < 0) {
2239 /* Fallthrough and commit/free transaction. */
2240 ret = 1;
2241 }
2242
2243 /* we've logged all the items and now have a consistent
2244 * version of the file in the log. It is possible that
2245 * someone will come in and modify the file, but that's
2246 * fine because the log is consistent on disk, and we
2247 * have references to all of the file's extents
2248 *
2249 * It is possible that someone will come in and log the
2250 * file again, but that will end up using the synchronization
2251 * inside btrfs_sync_log to keep things safe.
2252 */
2253 up_write(&BTRFS_I(inode)->dio_sem);
2254 inode_unlock(inode);
2255
2256 if (ret != BTRFS_NO_LOG_SYNC) {
2257 if (!ret) {
2258 ret = btrfs_sync_log(trans, root, &ctx);
2259 if (!ret) {
2260 ret = btrfs_end_transaction(trans);
2261 goto out;
2262 }
2263 }
2264 if (!full_sync) {
2265 ret = btrfs_wait_ordered_range(inode, start, len);
2266 if (ret) {
2267 btrfs_end_transaction(trans);
2268 goto out;
2269 }
2270 }
2271 ret = btrfs_commit_transaction(trans);
2272 } else {
2273 ret = btrfs_end_transaction(trans);
2274 }
2275 out:
2276 ASSERT(list_empty(&ctx.list));
2277 err = file_check_and_advance_wb_err(file);
2278 if (!ret)
2279 ret = err;
2280 return ret > 0 ? -EIO : ret;
2281
2282 out_release_extents:
2283 btrfs_release_log_ctx_extents(&ctx);
2284 up_write(&BTRFS_I(inode)->dio_sem);
2285 inode_unlock(inode);
2286 goto out;
2287 }
2288
2289 static const struct vm_operations_struct btrfs_file_vm_ops = {
2290 .fault = filemap_fault,
2291 .map_pages = filemap_map_pages,
2292 .page_mkwrite = btrfs_page_mkwrite,
2293 };
2294
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2295 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2296 {
2297 struct address_space *mapping = filp->f_mapping;
2298
2299 if (!mapping->a_ops->readpage)
2300 return -ENOEXEC;
2301
2302 file_accessed(filp);
2303 vma->vm_ops = &btrfs_file_vm_ops;
2304
2305 return 0;
2306 }
2307
hole_mergeable(struct btrfs_inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2308 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2309 int slot, u64 start, u64 end)
2310 {
2311 struct btrfs_file_extent_item *fi;
2312 struct btrfs_key key;
2313
2314 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2315 return 0;
2316
2317 btrfs_item_key_to_cpu(leaf, &key, slot);
2318 if (key.objectid != btrfs_ino(inode) ||
2319 key.type != BTRFS_EXTENT_DATA_KEY)
2320 return 0;
2321
2322 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2323
2324 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2325 return 0;
2326
2327 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2328 return 0;
2329
2330 if (key.offset == end)
2331 return 1;
2332 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2333 return 1;
2334 return 0;
2335 }
2336
fill_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,u64 offset,u64 end)2337 static int fill_holes(struct btrfs_trans_handle *trans,
2338 struct btrfs_inode *inode,
2339 struct btrfs_path *path, u64 offset, u64 end)
2340 {
2341 struct btrfs_fs_info *fs_info = trans->fs_info;
2342 struct btrfs_root *root = inode->root;
2343 struct extent_buffer *leaf;
2344 struct btrfs_file_extent_item *fi;
2345 struct extent_map *hole_em;
2346 struct extent_map_tree *em_tree = &inode->extent_tree;
2347 struct btrfs_key key;
2348 int ret;
2349
2350 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2351 goto out;
2352
2353 key.objectid = btrfs_ino(inode);
2354 key.type = BTRFS_EXTENT_DATA_KEY;
2355 key.offset = offset;
2356
2357 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2358 if (ret <= 0) {
2359 /*
2360 * We should have dropped this offset, so if we find it then
2361 * something has gone horribly wrong.
2362 */
2363 if (ret == 0)
2364 ret = -EINVAL;
2365 return ret;
2366 }
2367
2368 leaf = path->nodes[0];
2369 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2370 u64 num_bytes;
2371
2372 path->slots[0]--;
2373 fi = btrfs_item_ptr(leaf, path->slots[0],
2374 struct btrfs_file_extent_item);
2375 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2376 end - offset;
2377 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2378 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2379 btrfs_set_file_extent_offset(leaf, fi, 0);
2380 btrfs_mark_buffer_dirty(leaf);
2381 goto out;
2382 }
2383
2384 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2385 u64 num_bytes;
2386
2387 key.offset = offset;
2388 btrfs_set_item_key_safe(fs_info, path, &key);
2389 fi = btrfs_item_ptr(leaf, path->slots[0],
2390 struct btrfs_file_extent_item);
2391 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2392 offset;
2393 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2394 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2395 btrfs_set_file_extent_offset(leaf, fi, 0);
2396 btrfs_mark_buffer_dirty(leaf);
2397 goto out;
2398 }
2399 btrfs_release_path(path);
2400
2401 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2402 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2403 if (ret)
2404 return ret;
2405
2406 out:
2407 btrfs_release_path(path);
2408
2409 hole_em = alloc_extent_map();
2410 if (!hole_em) {
2411 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2412 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2413 } else {
2414 hole_em->start = offset;
2415 hole_em->len = end - offset;
2416 hole_em->ram_bytes = hole_em->len;
2417 hole_em->orig_start = offset;
2418
2419 hole_em->block_start = EXTENT_MAP_HOLE;
2420 hole_em->block_len = 0;
2421 hole_em->orig_block_len = 0;
2422 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2423 hole_em->generation = trans->transid;
2424
2425 do {
2426 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2427 write_lock(&em_tree->lock);
2428 ret = add_extent_mapping(em_tree, hole_em, 1);
2429 write_unlock(&em_tree->lock);
2430 } while (ret == -EEXIST);
2431 free_extent_map(hole_em);
2432 if (ret)
2433 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2434 &inode->runtime_flags);
2435 }
2436
2437 return 0;
2438 }
2439
2440 /*
2441 * Find a hole extent on given inode and change start/len to the end of hole
2442 * extent.(hole/vacuum extent whose em->start <= start &&
2443 * em->start + em->len > start)
2444 * When a hole extent is found, return 1 and modify start/len.
2445 */
find_first_non_hole(struct inode * inode,u64 * start,u64 * len)2446 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2447 {
2448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2449 struct extent_map *em;
2450 int ret = 0;
2451
2452 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2453 round_down(*start, fs_info->sectorsize),
2454 round_up(*len, fs_info->sectorsize));
2455 if (IS_ERR(em))
2456 return PTR_ERR(em);
2457
2458 /* Hole or vacuum extent(only exists in no-hole mode) */
2459 if (em->block_start == EXTENT_MAP_HOLE) {
2460 ret = 1;
2461 *len = em->start + em->len > *start + *len ?
2462 0 : *start + *len - em->start - em->len;
2463 *start = em->start + em->len;
2464 }
2465 free_extent_map(em);
2466 return ret;
2467 }
2468
btrfs_punch_hole_lock_range(struct inode * inode,const u64 lockstart,const u64 lockend,struct extent_state ** cached_state)2469 static int btrfs_punch_hole_lock_range(struct inode *inode,
2470 const u64 lockstart,
2471 const u64 lockend,
2472 struct extent_state **cached_state)
2473 {
2474 while (1) {
2475 struct btrfs_ordered_extent *ordered;
2476 int ret;
2477
2478 truncate_pagecache_range(inode, lockstart, lockend);
2479
2480 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2481 cached_state);
2482 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
2483 lockend);
2484
2485 /*
2486 * We need to make sure we have no ordered extents in this range
2487 * and nobody raced in and read a page in this range, if we did
2488 * we need to try again.
2489 */
2490 if ((!ordered ||
2491 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2492 ordered->file_offset > lockend)) &&
2493 !filemap_range_has_page(inode->i_mapping,
2494 lockstart, lockend)) {
2495 if (ordered)
2496 btrfs_put_ordered_extent(ordered);
2497 break;
2498 }
2499 if (ordered)
2500 btrfs_put_ordered_extent(ordered);
2501 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2502 lockend, cached_state);
2503 ret = btrfs_wait_ordered_range(inode, lockstart,
2504 lockend - lockstart + 1);
2505 if (ret)
2506 return ret;
2507 }
2508 return 0;
2509 }
2510
btrfs_insert_replace_extent(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * path,struct btrfs_replace_extent_info * extent_info,const u64 replace_len)2511 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2512 struct inode *inode,
2513 struct btrfs_path *path,
2514 struct btrfs_replace_extent_info *extent_info,
2515 const u64 replace_len)
2516 {
2517 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2518 struct btrfs_root *root = BTRFS_I(inode)->root;
2519 struct btrfs_file_extent_item *extent;
2520 struct extent_buffer *leaf;
2521 struct btrfs_key key;
2522 int slot;
2523 struct btrfs_ref ref = { 0 };
2524 int ret;
2525
2526 if (replace_len == 0)
2527 return 0;
2528
2529 if (extent_info->disk_offset == 0 &&
2530 btrfs_fs_incompat(fs_info, NO_HOLES))
2531 return 0;
2532
2533 key.objectid = btrfs_ino(BTRFS_I(inode));
2534 key.type = BTRFS_EXTENT_DATA_KEY;
2535 key.offset = extent_info->file_offset;
2536 ret = btrfs_insert_empty_item(trans, root, path, &key,
2537 sizeof(struct btrfs_file_extent_item));
2538 if (ret)
2539 return ret;
2540 leaf = path->nodes[0];
2541 slot = path->slots[0];
2542 write_extent_buffer(leaf, extent_info->extent_buf,
2543 btrfs_item_ptr_offset(leaf, slot),
2544 sizeof(struct btrfs_file_extent_item));
2545 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2546 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2547 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2548 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2549 if (extent_info->is_new_extent)
2550 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2551 btrfs_mark_buffer_dirty(leaf);
2552 btrfs_release_path(path);
2553
2554 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2555 extent_info->file_offset, replace_len);
2556 if (ret)
2557 return ret;
2558
2559 /* If it's a hole, nothing more needs to be done. */
2560 if (extent_info->disk_offset == 0)
2561 return 0;
2562
2563 inode_add_bytes(inode, replace_len);
2564
2565 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2566 key.objectid = extent_info->disk_offset;
2567 key.type = BTRFS_EXTENT_ITEM_KEY;
2568 key.offset = extent_info->disk_len;
2569 ret = btrfs_alloc_reserved_file_extent(trans, root,
2570 btrfs_ino(BTRFS_I(inode)),
2571 extent_info->file_offset,
2572 extent_info->qgroup_reserved,
2573 &key);
2574 } else {
2575 u64 ref_offset;
2576
2577 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2578 extent_info->disk_offset,
2579 extent_info->disk_len, 0);
2580 ref_offset = extent_info->file_offset - extent_info->data_offset;
2581 btrfs_init_data_ref(&ref, root->root_key.objectid,
2582 btrfs_ino(BTRFS_I(inode)), ref_offset);
2583 ret = btrfs_inc_extent_ref(trans, &ref);
2584 }
2585
2586 extent_info->insertions++;
2587
2588 return ret;
2589 }
2590
2591 /*
2592 * The respective range must have been previously locked, as well as the inode.
2593 * The end offset is inclusive (last byte of the range).
2594 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2595 * the file range with an extent.
2596 * When not punching a hole, we don't want to end up in a state where we dropped
2597 * extents without inserting a new one, so we must abort the transaction to avoid
2598 * a corruption.
2599 */
btrfs_replace_file_extents(struct inode * inode,struct btrfs_path * path,const u64 start,const u64 end,struct btrfs_replace_extent_info * extent_info,struct btrfs_trans_handle ** trans_out)2600 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path,
2601 const u64 start, const u64 end,
2602 struct btrfs_replace_extent_info *extent_info,
2603 struct btrfs_trans_handle **trans_out)
2604 {
2605 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2606 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2607 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2608 struct btrfs_root *root = BTRFS_I(inode)->root;
2609 struct btrfs_trans_handle *trans = NULL;
2610 struct btrfs_block_rsv *rsv;
2611 unsigned int rsv_count;
2612 u64 cur_offset;
2613 u64 drop_end;
2614 u64 len = end - start;
2615 int ret = 0;
2616
2617 if (end <= start)
2618 return -EINVAL;
2619
2620 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2621 if (!rsv) {
2622 ret = -ENOMEM;
2623 goto out;
2624 }
2625 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2626 rsv->failfast = 1;
2627
2628 /*
2629 * 1 - update the inode
2630 * 1 - removing the extents in the range
2631 * 1 - adding the hole extent if no_holes isn't set or if we are
2632 * replacing the range with a new extent
2633 */
2634 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2635 rsv_count = 3;
2636 else
2637 rsv_count = 2;
2638
2639 trans = btrfs_start_transaction(root, rsv_count);
2640 if (IS_ERR(trans)) {
2641 ret = PTR_ERR(trans);
2642 trans = NULL;
2643 goto out_free;
2644 }
2645
2646 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2647 min_size, false);
2648 BUG_ON(ret);
2649 trans->block_rsv = rsv;
2650
2651 cur_offset = start;
2652 while (cur_offset < end) {
2653 ret = __btrfs_drop_extents(trans, root, BTRFS_I(inode), path,
2654 cur_offset, end + 1, &drop_end,
2655 1, 0, 0, NULL);
2656 if (ret != -ENOSPC) {
2657 /*
2658 * When cloning we want to avoid transaction aborts when
2659 * nothing was done and we are attempting to clone parts
2660 * of inline extents, in such cases -EOPNOTSUPP is
2661 * returned by __btrfs_drop_extents() without having
2662 * changed anything in the file.
2663 */
2664 if (extent_info && !extent_info->is_new_extent &&
2665 ret && ret != -EOPNOTSUPP)
2666 btrfs_abort_transaction(trans, ret);
2667 break;
2668 }
2669
2670 trans->block_rsv = &fs_info->trans_block_rsv;
2671
2672 if (!extent_info && cur_offset < drop_end &&
2673 cur_offset < ino_size) {
2674 ret = fill_holes(trans, BTRFS_I(inode), path,
2675 cur_offset, drop_end);
2676 if (ret) {
2677 /*
2678 * If we failed then we didn't insert our hole
2679 * entries for the area we dropped, so now the
2680 * fs is corrupted, so we must abort the
2681 * transaction.
2682 */
2683 btrfs_abort_transaction(trans, ret);
2684 break;
2685 }
2686 } else if (!extent_info && cur_offset < drop_end) {
2687 /*
2688 * We are past the i_size here, but since we didn't
2689 * insert holes we need to clear the mapped area so we
2690 * know to not set disk_i_size in this area until a new
2691 * file extent is inserted here.
2692 */
2693 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2694 cur_offset, drop_end - cur_offset);
2695 if (ret) {
2696 /*
2697 * We couldn't clear our area, so we could
2698 * presumably adjust up and corrupt the fs, so
2699 * we need to abort.
2700 */
2701 btrfs_abort_transaction(trans, ret);
2702 break;
2703 }
2704 }
2705
2706 if (extent_info && drop_end > extent_info->file_offset) {
2707 u64 replace_len = drop_end - extent_info->file_offset;
2708
2709 ret = btrfs_insert_replace_extent(trans, inode, path,
2710 extent_info, replace_len);
2711 if (ret) {
2712 btrfs_abort_transaction(trans, ret);
2713 break;
2714 }
2715 extent_info->data_len -= replace_len;
2716 extent_info->data_offset += replace_len;
2717 extent_info->file_offset += replace_len;
2718 }
2719
2720 cur_offset = drop_end;
2721
2722 ret = btrfs_update_inode(trans, root, inode);
2723 if (ret)
2724 break;
2725
2726 btrfs_end_transaction(trans);
2727 btrfs_btree_balance_dirty(fs_info);
2728
2729 trans = btrfs_start_transaction(root, rsv_count);
2730 if (IS_ERR(trans)) {
2731 ret = PTR_ERR(trans);
2732 trans = NULL;
2733 break;
2734 }
2735
2736 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2737 rsv, min_size, false);
2738 BUG_ON(ret); /* shouldn't happen */
2739 trans->block_rsv = rsv;
2740
2741 if (!extent_info) {
2742 ret = find_first_non_hole(inode, &cur_offset, &len);
2743 if (unlikely(ret < 0))
2744 break;
2745 if (ret && !len) {
2746 ret = 0;
2747 break;
2748 }
2749 }
2750 }
2751
2752 /*
2753 * If we were cloning, force the next fsync to be a full one since we
2754 * we replaced (or just dropped in the case of cloning holes when
2755 * NO_HOLES is enabled) extents and extent maps.
2756 * This is for the sake of simplicity, and cloning into files larger
2757 * than 16Mb would force the full fsync any way (when
2758 * try_release_extent_mapping() is invoked during page cache truncation.
2759 */
2760 if (extent_info && !extent_info->is_new_extent)
2761 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2762 &BTRFS_I(inode)->runtime_flags);
2763
2764 if (ret)
2765 goto out_trans;
2766
2767 trans->block_rsv = &fs_info->trans_block_rsv;
2768 /*
2769 * If we are using the NO_HOLES feature we might have had already an
2770 * hole that overlaps a part of the region [lockstart, lockend] and
2771 * ends at (or beyond) lockend. Since we have no file extent items to
2772 * represent holes, drop_end can be less than lockend and so we must
2773 * make sure we have an extent map representing the existing hole (the
2774 * call to __btrfs_drop_extents() might have dropped the existing extent
2775 * map representing the existing hole), otherwise the fast fsync path
2776 * will not record the existence of the hole region
2777 * [existing_hole_start, lockend].
2778 */
2779 if (drop_end <= end)
2780 drop_end = end + 1;
2781 /*
2782 * Don't insert file hole extent item if it's for a range beyond eof
2783 * (because it's useless) or if it represents a 0 bytes range (when
2784 * cur_offset == drop_end).
2785 */
2786 if (!extent_info && cur_offset < ino_size && cur_offset < drop_end) {
2787 ret = fill_holes(trans, BTRFS_I(inode), path,
2788 cur_offset, drop_end);
2789 if (ret) {
2790 /* Same comment as above. */
2791 btrfs_abort_transaction(trans, ret);
2792 goto out_trans;
2793 }
2794 } else if (!extent_info && cur_offset < drop_end) {
2795 /* See the comment in the loop above for the reasoning here. */
2796 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2797 cur_offset, drop_end - cur_offset);
2798 if (ret) {
2799 btrfs_abort_transaction(trans, ret);
2800 goto out_trans;
2801 }
2802
2803 }
2804 if (extent_info) {
2805 ret = btrfs_insert_replace_extent(trans, inode, path, extent_info,
2806 extent_info->data_len);
2807 if (ret) {
2808 btrfs_abort_transaction(trans, ret);
2809 goto out_trans;
2810 }
2811 }
2812
2813 out_trans:
2814 if (!trans)
2815 goto out_free;
2816
2817 trans->block_rsv = &fs_info->trans_block_rsv;
2818 if (ret)
2819 btrfs_end_transaction(trans);
2820 else
2821 *trans_out = trans;
2822 out_free:
2823 btrfs_free_block_rsv(fs_info, rsv);
2824 out:
2825 return ret;
2826 }
2827
btrfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)2828 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2829 {
2830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2831 struct btrfs_root *root = BTRFS_I(inode)->root;
2832 struct extent_state *cached_state = NULL;
2833 struct btrfs_path *path;
2834 struct btrfs_trans_handle *trans = NULL;
2835 u64 lockstart;
2836 u64 lockend;
2837 u64 tail_start;
2838 u64 tail_len;
2839 u64 orig_start = offset;
2840 int ret = 0;
2841 bool same_block;
2842 u64 ino_size;
2843 bool truncated_block = false;
2844 bool updated_inode = false;
2845
2846 ret = btrfs_wait_ordered_range(inode, offset, len);
2847 if (ret)
2848 return ret;
2849
2850 inode_lock(inode);
2851 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2852 ret = find_first_non_hole(inode, &offset, &len);
2853 if (ret < 0)
2854 goto out_only_mutex;
2855 if (ret && !len) {
2856 /* Already in a large hole */
2857 ret = 0;
2858 goto out_only_mutex;
2859 }
2860
2861 lockstart = round_up(offset, btrfs_inode_sectorsize(BTRFS_I(inode)));
2862 lockend = round_down(offset + len,
2863 btrfs_inode_sectorsize(BTRFS_I(inode))) - 1;
2864 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2865 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2866 /*
2867 * We needn't truncate any block which is beyond the end of the file
2868 * because we are sure there is no data there.
2869 */
2870 /*
2871 * Only do this if we are in the same block and we aren't doing the
2872 * entire block.
2873 */
2874 if (same_block && len < fs_info->sectorsize) {
2875 if (offset < ino_size) {
2876 truncated_block = true;
2877 ret = btrfs_truncate_block(inode, offset, len, 0);
2878 } else {
2879 ret = 0;
2880 }
2881 goto out_only_mutex;
2882 }
2883
2884 /* zero back part of the first block */
2885 if (offset < ino_size) {
2886 truncated_block = true;
2887 ret = btrfs_truncate_block(inode, offset, 0, 0);
2888 if (ret) {
2889 inode_unlock(inode);
2890 return ret;
2891 }
2892 }
2893
2894 /* Check the aligned pages after the first unaligned page,
2895 * if offset != orig_start, which means the first unaligned page
2896 * including several following pages are already in holes,
2897 * the extra check can be skipped */
2898 if (offset == orig_start) {
2899 /* after truncate page, check hole again */
2900 len = offset + len - lockstart;
2901 offset = lockstart;
2902 ret = find_first_non_hole(inode, &offset, &len);
2903 if (ret < 0)
2904 goto out_only_mutex;
2905 if (ret && !len) {
2906 ret = 0;
2907 goto out_only_mutex;
2908 }
2909 lockstart = offset;
2910 }
2911
2912 /* Check the tail unaligned part is in a hole */
2913 tail_start = lockend + 1;
2914 tail_len = offset + len - tail_start;
2915 if (tail_len) {
2916 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2917 if (unlikely(ret < 0))
2918 goto out_only_mutex;
2919 if (!ret) {
2920 /* zero the front end of the last page */
2921 if (tail_start + tail_len < ino_size) {
2922 truncated_block = true;
2923 ret = btrfs_truncate_block(inode,
2924 tail_start + tail_len,
2925 0, 1);
2926 if (ret)
2927 goto out_only_mutex;
2928 }
2929 }
2930 }
2931
2932 if (lockend < lockstart) {
2933 ret = 0;
2934 goto out_only_mutex;
2935 }
2936
2937 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2938 &cached_state);
2939 if (ret)
2940 goto out_only_mutex;
2941
2942 path = btrfs_alloc_path();
2943 if (!path) {
2944 ret = -ENOMEM;
2945 goto out;
2946 }
2947
2948 ret = btrfs_replace_file_extents(inode, path, lockstart, lockend, NULL,
2949 &trans);
2950 btrfs_free_path(path);
2951 if (ret)
2952 goto out;
2953
2954 ASSERT(trans != NULL);
2955 inode_inc_iversion(inode);
2956 inode->i_mtime = inode->i_ctime = current_time(inode);
2957 ret = btrfs_update_inode(trans, root, inode);
2958 updated_inode = true;
2959 btrfs_end_transaction(trans);
2960 btrfs_btree_balance_dirty(fs_info);
2961 out:
2962 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2963 &cached_state);
2964 out_only_mutex:
2965 if (!updated_inode && truncated_block && !ret) {
2966 /*
2967 * If we only end up zeroing part of a page, we still need to
2968 * update the inode item, so that all the time fields are
2969 * updated as well as the necessary btrfs inode in memory fields
2970 * for detecting, at fsync time, if the inode isn't yet in the
2971 * log tree or it's there but not up to date.
2972 */
2973 struct timespec64 now = current_time(inode);
2974
2975 inode_inc_iversion(inode);
2976 inode->i_mtime = now;
2977 inode->i_ctime = now;
2978 trans = btrfs_start_transaction(root, 1);
2979 if (IS_ERR(trans)) {
2980 ret = PTR_ERR(trans);
2981 } else {
2982 int ret2;
2983
2984 ret = btrfs_update_inode(trans, root, inode);
2985 ret2 = btrfs_end_transaction(trans);
2986 if (!ret)
2987 ret = ret2;
2988 }
2989 }
2990 inode_unlock(inode);
2991 return ret;
2992 }
2993
2994 /* Helper structure to record which range is already reserved */
2995 struct falloc_range {
2996 struct list_head list;
2997 u64 start;
2998 u64 len;
2999 };
3000
3001 /*
3002 * Helper function to add falloc range
3003 *
3004 * Caller should have locked the larger range of extent containing
3005 * [start, len)
3006 */
add_falloc_range(struct list_head * head,u64 start,u64 len)3007 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
3008 {
3009 struct falloc_range *prev = NULL;
3010 struct falloc_range *range = NULL;
3011
3012 if (list_empty(head))
3013 goto insert;
3014
3015 /*
3016 * As fallocate iterate by bytenr order, we only need to check
3017 * the last range.
3018 */
3019 prev = list_entry(head->prev, struct falloc_range, list);
3020 if (prev->start + prev->len == start) {
3021 prev->len += len;
3022 return 0;
3023 }
3024 insert:
3025 range = kmalloc(sizeof(*range), GFP_KERNEL);
3026 if (!range)
3027 return -ENOMEM;
3028 range->start = start;
3029 range->len = len;
3030 list_add_tail(&range->list, head);
3031 return 0;
3032 }
3033
btrfs_fallocate_update_isize(struct inode * inode,const u64 end,const int mode)3034 static int btrfs_fallocate_update_isize(struct inode *inode,
3035 const u64 end,
3036 const int mode)
3037 {
3038 struct btrfs_trans_handle *trans;
3039 struct btrfs_root *root = BTRFS_I(inode)->root;
3040 int ret;
3041 int ret2;
3042
3043 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
3044 return 0;
3045
3046 trans = btrfs_start_transaction(root, 1);
3047 if (IS_ERR(trans))
3048 return PTR_ERR(trans);
3049
3050 inode->i_ctime = current_time(inode);
3051 i_size_write(inode, end);
3052 btrfs_inode_safe_disk_i_size_write(inode, 0);
3053 ret = btrfs_update_inode(trans, root, inode);
3054 ret2 = btrfs_end_transaction(trans);
3055
3056 return ret ? ret : ret2;
3057 }
3058
3059 enum {
3060 RANGE_BOUNDARY_WRITTEN_EXTENT,
3061 RANGE_BOUNDARY_PREALLOC_EXTENT,
3062 RANGE_BOUNDARY_HOLE,
3063 };
3064
btrfs_zero_range_check_range_boundary(struct btrfs_inode * inode,u64 offset)3065 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
3066 u64 offset)
3067 {
3068 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3069 struct extent_map *em;
3070 int ret;
3071
3072 offset = round_down(offset, sectorsize);
3073 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
3074 if (IS_ERR(em))
3075 return PTR_ERR(em);
3076
3077 if (em->block_start == EXTENT_MAP_HOLE)
3078 ret = RANGE_BOUNDARY_HOLE;
3079 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3080 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3081 else
3082 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3083
3084 free_extent_map(em);
3085 return ret;
3086 }
3087
btrfs_zero_range(struct inode * inode,loff_t offset,loff_t len,const int mode)3088 static int btrfs_zero_range(struct inode *inode,
3089 loff_t offset,
3090 loff_t len,
3091 const int mode)
3092 {
3093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3094 struct extent_map *em;
3095 struct extent_changeset *data_reserved = NULL;
3096 int ret;
3097 u64 alloc_hint = 0;
3098 const u64 sectorsize = btrfs_inode_sectorsize(BTRFS_I(inode));
3099 u64 alloc_start = round_down(offset, sectorsize);
3100 u64 alloc_end = round_up(offset + len, sectorsize);
3101 u64 bytes_to_reserve = 0;
3102 bool space_reserved = false;
3103
3104 inode_dio_wait(inode);
3105
3106 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3107 alloc_end - alloc_start);
3108 if (IS_ERR(em)) {
3109 ret = PTR_ERR(em);
3110 goto out;
3111 }
3112
3113 /*
3114 * Avoid hole punching and extent allocation for some cases. More cases
3115 * could be considered, but these are unlikely common and we keep things
3116 * as simple as possible for now. Also, intentionally, if the target
3117 * range contains one or more prealloc extents together with regular
3118 * extents and holes, we drop all the existing extents and allocate a
3119 * new prealloc extent, so that we get a larger contiguous disk extent.
3120 */
3121 if (em->start <= alloc_start &&
3122 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3123 const u64 em_end = em->start + em->len;
3124
3125 if (em_end >= offset + len) {
3126 /*
3127 * The whole range is already a prealloc extent,
3128 * do nothing except updating the inode's i_size if
3129 * needed.
3130 */
3131 free_extent_map(em);
3132 ret = btrfs_fallocate_update_isize(inode, offset + len,
3133 mode);
3134 goto out;
3135 }
3136 /*
3137 * Part of the range is already a prealloc extent, so operate
3138 * only on the remaining part of the range.
3139 */
3140 alloc_start = em_end;
3141 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3142 len = offset + len - alloc_start;
3143 offset = alloc_start;
3144 alloc_hint = em->block_start + em->len;
3145 }
3146 free_extent_map(em);
3147
3148 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3149 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3150 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3151 sectorsize);
3152 if (IS_ERR(em)) {
3153 ret = PTR_ERR(em);
3154 goto out;
3155 }
3156
3157 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3158 free_extent_map(em);
3159 ret = btrfs_fallocate_update_isize(inode, offset + len,
3160 mode);
3161 goto out;
3162 }
3163 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3164 free_extent_map(em);
3165 ret = btrfs_truncate_block(inode, offset, len, 0);
3166 if (!ret)
3167 ret = btrfs_fallocate_update_isize(inode,
3168 offset + len,
3169 mode);
3170 return ret;
3171 }
3172 free_extent_map(em);
3173 alloc_start = round_down(offset, sectorsize);
3174 alloc_end = alloc_start + sectorsize;
3175 goto reserve_space;
3176 }
3177
3178 alloc_start = round_up(offset, sectorsize);
3179 alloc_end = round_down(offset + len, sectorsize);
3180
3181 /*
3182 * For unaligned ranges, check the pages at the boundaries, they might
3183 * map to an extent, in which case we need to partially zero them, or
3184 * they might map to a hole, in which case we need our allocation range
3185 * to cover them.
3186 */
3187 if (!IS_ALIGNED(offset, sectorsize)) {
3188 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3189 offset);
3190 if (ret < 0)
3191 goto out;
3192 if (ret == RANGE_BOUNDARY_HOLE) {
3193 alloc_start = round_down(offset, sectorsize);
3194 ret = 0;
3195 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3196 ret = btrfs_truncate_block(inode, offset, 0, 0);
3197 if (ret)
3198 goto out;
3199 } else {
3200 ret = 0;
3201 }
3202 }
3203
3204 if (!IS_ALIGNED(offset + len, sectorsize)) {
3205 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
3206 offset + len);
3207 if (ret < 0)
3208 goto out;
3209 if (ret == RANGE_BOUNDARY_HOLE) {
3210 alloc_end = round_up(offset + len, sectorsize);
3211 ret = 0;
3212 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3213 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3214 if (ret)
3215 goto out;
3216 } else {
3217 ret = 0;
3218 }
3219 }
3220
3221 reserve_space:
3222 if (alloc_start < alloc_end) {
3223 struct extent_state *cached_state = NULL;
3224 const u64 lockstart = alloc_start;
3225 const u64 lockend = alloc_end - 1;
3226
3227 bytes_to_reserve = alloc_end - alloc_start;
3228 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3229 bytes_to_reserve);
3230 if (ret < 0)
3231 goto out;
3232 space_reserved = true;
3233 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3234 &cached_state);
3235 if (ret)
3236 goto out;
3237 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
3238 alloc_start, bytes_to_reserve);
3239 if (ret)
3240 goto out;
3241 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3242 alloc_end - alloc_start,
3243 i_blocksize(inode),
3244 offset + len, &alloc_hint);
3245 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3246 lockend, &cached_state);
3247 /* btrfs_prealloc_file_range releases reserved space on error */
3248 if (ret) {
3249 space_reserved = false;
3250 goto out;
3251 }
3252 }
3253 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3254 out:
3255 if (ret && space_reserved)
3256 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3257 alloc_start, bytes_to_reserve);
3258 extent_changeset_free(data_reserved);
3259
3260 return ret;
3261 }
3262
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3263 static long btrfs_fallocate(struct file *file, int mode,
3264 loff_t offset, loff_t len)
3265 {
3266 struct inode *inode = file_inode(file);
3267 struct extent_state *cached_state = NULL;
3268 struct extent_changeset *data_reserved = NULL;
3269 struct falloc_range *range;
3270 struct falloc_range *tmp;
3271 struct list_head reserve_list;
3272 u64 cur_offset;
3273 u64 last_byte;
3274 u64 alloc_start;
3275 u64 alloc_end;
3276 u64 alloc_hint = 0;
3277 u64 locked_end;
3278 u64 actual_end = 0;
3279 struct extent_map *em;
3280 int blocksize = btrfs_inode_sectorsize(BTRFS_I(inode));
3281 int ret;
3282
3283 alloc_start = round_down(offset, blocksize);
3284 alloc_end = round_up(offset + len, blocksize);
3285 cur_offset = alloc_start;
3286
3287 /* Make sure we aren't being give some crap mode */
3288 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3289 FALLOC_FL_ZERO_RANGE))
3290 return -EOPNOTSUPP;
3291
3292 if (mode & FALLOC_FL_PUNCH_HOLE)
3293 return btrfs_punch_hole(inode, offset, len);
3294
3295 /*
3296 * Only trigger disk allocation, don't trigger qgroup reserve
3297 *
3298 * For qgroup space, it will be checked later.
3299 */
3300 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3301 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3302 alloc_end - alloc_start);
3303 if (ret < 0)
3304 return ret;
3305 }
3306
3307 inode_lock(inode);
3308
3309 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3310 ret = inode_newsize_ok(inode, offset + len);
3311 if (ret)
3312 goto out;
3313 }
3314
3315 /*
3316 * TODO: Move these two operations after we have checked
3317 * accurate reserved space, or fallocate can still fail but
3318 * with page truncated or size expanded.
3319 *
3320 * But that's a minor problem and won't do much harm BTW.
3321 */
3322 if (alloc_start > inode->i_size) {
3323 ret = btrfs_cont_expand(inode, i_size_read(inode),
3324 alloc_start);
3325 if (ret)
3326 goto out;
3327 } else if (offset + len > inode->i_size) {
3328 /*
3329 * If we are fallocating from the end of the file onward we
3330 * need to zero out the end of the block if i_size lands in the
3331 * middle of a block.
3332 */
3333 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3334 if (ret)
3335 goto out;
3336 }
3337
3338 /*
3339 * wait for ordered IO before we have any locks. We'll loop again
3340 * below with the locks held.
3341 */
3342 ret = btrfs_wait_ordered_range(inode, alloc_start,
3343 alloc_end - alloc_start);
3344 if (ret)
3345 goto out;
3346
3347 if (mode & FALLOC_FL_ZERO_RANGE) {
3348 ret = btrfs_zero_range(inode, offset, len, mode);
3349 inode_unlock(inode);
3350 return ret;
3351 }
3352
3353 locked_end = alloc_end - 1;
3354 while (1) {
3355 struct btrfs_ordered_extent *ordered;
3356
3357 /* the extent lock is ordered inside the running
3358 * transaction
3359 */
3360 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3361 locked_end, &cached_state);
3362 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode),
3363 locked_end);
3364
3365 if (ordered &&
3366 ordered->file_offset + ordered->num_bytes > alloc_start &&
3367 ordered->file_offset < alloc_end) {
3368 btrfs_put_ordered_extent(ordered);
3369 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3370 alloc_start, locked_end,
3371 &cached_state);
3372 /*
3373 * we can't wait on the range with the transaction
3374 * running or with the extent lock held
3375 */
3376 ret = btrfs_wait_ordered_range(inode, alloc_start,
3377 alloc_end - alloc_start);
3378 if (ret)
3379 goto out;
3380 } else {
3381 if (ordered)
3382 btrfs_put_ordered_extent(ordered);
3383 break;
3384 }
3385 }
3386
3387 /* First, check if we exceed the qgroup limit */
3388 INIT_LIST_HEAD(&reserve_list);
3389 while (cur_offset < alloc_end) {
3390 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3391 alloc_end - cur_offset);
3392 if (IS_ERR(em)) {
3393 ret = PTR_ERR(em);
3394 break;
3395 }
3396 last_byte = min(extent_map_end(em), alloc_end);
3397 actual_end = min_t(u64, extent_map_end(em), offset + len);
3398 last_byte = ALIGN(last_byte, blocksize);
3399 if (em->block_start == EXTENT_MAP_HOLE ||
3400 (cur_offset >= inode->i_size &&
3401 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3402 ret = add_falloc_range(&reserve_list, cur_offset,
3403 last_byte - cur_offset);
3404 if (ret < 0) {
3405 free_extent_map(em);
3406 break;
3407 }
3408 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3409 &data_reserved, cur_offset,
3410 last_byte - cur_offset);
3411 if (ret < 0) {
3412 cur_offset = last_byte;
3413 free_extent_map(em);
3414 break;
3415 }
3416 } else {
3417 /*
3418 * Do not need to reserve unwritten extent for this
3419 * range, free reserved data space first, otherwise
3420 * it'll result in false ENOSPC error.
3421 */
3422 btrfs_free_reserved_data_space(BTRFS_I(inode),
3423 data_reserved, cur_offset,
3424 last_byte - cur_offset);
3425 }
3426 free_extent_map(em);
3427 cur_offset = last_byte;
3428 }
3429
3430 /*
3431 * If ret is still 0, means we're OK to fallocate.
3432 * Or just cleanup the list and exit.
3433 */
3434 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3435 if (!ret)
3436 ret = btrfs_prealloc_file_range(inode, mode,
3437 range->start,
3438 range->len, i_blocksize(inode),
3439 offset + len, &alloc_hint);
3440 else
3441 btrfs_free_reserved_data_space(BTRFS_I(inode),
3442 data_reserved, range->start,
3443 range->len);
3444 list_del(&range->list);
3445 kfree(range);
3446 }
3447 if (ret < 0)
3448 goto out_unlock;
3449
3450 /*
3451 * We didn't need to allocate any more space, but we still extended the
3452 * size of the file so we need to update i_size and the inode item.
3453 */
3454 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3455 out_unlock:
3456 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3457 &cached_state);
3458 out:
3459 inode_unlock(inode);
3460 /* Let go of our reservation. */
3461 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3462 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3463 cur_offset, alloc_end - cur_offset);
3464 extent_changeset_free(data_reserved);
3465 return ret;
3466 }
3467
find_desired_extent(struct inode * inode,loff_t offset,int whence)3468 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3469 int whence)
3470 {
3471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3472 struct extent_map *em = NULL;
3473 struct extent_state *cached_state = NULL;
3474 loff_t i_size = inode->i_size;
3475 u64 lockstart;
3476 u64 lockend;
3477 u64 start;
3478 u64 len;
3479 int ret = 0;
3480
3481 if (i_size == 0 || offset >= i_size)
3482 return -ENXIO;
3483
3484 /*
3485 * offset can be negative, in this case we start finding DATA/HOLE from
3486 * the very start of the file.
3487 */
3488 start = max_t(loff_t, 0, offset);
3489
3490 lockstart = round_down(start, fs_info->sectorsize);
3491 lockend = round_up(i_size, fs_info->sectorsize);
3492 if (lockend <= lockstart)
3493 lockend = lockstart + fs_info->sectorsize;
3494 lockend--;
3495 len = lockend - lockstart + 1;
3496
3497 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3498 &cached_state);
3499
3500 while (start < i_size) {
3501 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3502 if (IS_ERR(em)) {
3503 ret = PTR_ERR(em);
3504 em = NULL;
3505 break;
3506 }
3507
3508 if (whence == SEEK_HOLE &&
3509 (em->block_start == EXTENT_MAP_HOLE ||
3510 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3511 break;
3512 else if (whence == SEEK_DATA &&
3513 (em->block_start != EXTENT_MAP_HOLE &&
3514 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3515 break;
3516
3517 start = em->start + em->len;
3518 free_extent_map(em);
3519 em = NULL;
3520 cond_resched();
3521 }
3522 free_extent_map(em);
3523 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3524 &cached_state);
3525 if (ret) {
3526 offset = ret;
3527 } else {
3528 if (whence == SEEK_DATA && start >= i_size)
3529 offset = -ENXIO;
3530 else
3531 offset = min_t(loff_t, start, i_size);
3532 }
3533
3534 return offset;
3535 }
3536
btrfs_file_llseek(struct file * file,loff_t offset,int whence)3537 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3538 {
3539 struct inode *inode = file->f_mapping->host;
3540
3541 switch (whence) {
3542 default:
3543 return generic_file_llseek(file, offset, whence);
3544 case SEEK_DATA:
3545 case SEEK_HOLE:
3546 inode_lock_shared(inode);
3547 offset = find_desired_extent(inode, offset, whence);
3548 inode_unlock_shared(inode);
3549 break;
3550 }
3551
3552 if (offset < 0)
3553 return offset;
3554
3555 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3556 }
3557
btrfs_file_open(struct inode * inode,struct file * filp)3558 static int btrfs_file_open(struct inode *inode, struct file *filp)
3559 {
3560 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
3561 return generic_file_open(inode, filp);
3562 }
3563
btrfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3564 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3565 {
3566 ssize_t ret = 0;
3567
3568 if (iocb->ki_flags & IOCB_DIRECT) {
3569 struct inode *inode = file_inode(iocb->ki_filp);
3570
3571 inode_lock_shared(inode);
3572 ret = btrfs_direct_IO(iocb, to);
3573 inode_unlock_shared(inode);
3574 if (ret < 0 || !iov_iter_count(to) ||
3575 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3576 return ret;
3577 }
3578
3579 return generic_file_buffered_read(iocb, to, ret);
3580 }
3581
3582 const struct file_operations btrfs_file_operations = {
3583 .llseek = btrfs_file_llseek,
3584 .read_iter = btrfs_file_read_iter,
3585 .splice_read = generic_file_splice_read,
3586 .write_iter = btrfs_file_write_iter,
3587 .splice_write = iter_file_splice_write,
3588 .mmap = btrfs_file_mmap,
3589 .open = btrfs_file_open,
3590 .release = btrfs_release_file,
3591 .fsync = btrfs_sync_file,
3592 .fallocate = btrfs_fallocate,
3593 .unlocked_ioctl = btrfs_ioctl,
3594 #ifdef CONFIG_COMPAT
3595 .compat_ioctl = btrfs_compat_ioctl,
3596 #endif
3597 .remap_file_range = btrfs_remap_file_range,
3598 };
3599
btrfs_auto_defrag_exit(void)3600 void __cold btrfs_auto_defrag_exit(void)
3601 {
3602 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3603 }
3604
btrfs_auto_defrag_init(void)3605 int __init btrfs_auto_defrag_init(void)
3606 {
3607 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3608 sizeof(struct inode_defrag), 0,
3609 SLAB_MEM_SPREAD,
3610 NULL);
3611 if (!btrfs_inode_defrag_cachep)
3612 return -ENOMEM;
3613
3614 return 0;
3615 }
3616
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3617 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3618 {
3619 int ret;
3620
3621 /*
3622 * So with compression we will find and lock a dirty page and clear the
3623 * first one as dirty, setup an async extent, and immediately return
3624 * with the entire range locked but with nobody actually marked with
3625 * writeback. So we can't just filemap_write_and_wait_range() and
3626 * expect it to work since it will just kick off a thread to do the
3627 * actual work. So we need to call filemap_fdatawrite_range _again_
3628 * since it will wait on the page lock, which won't be unlocked until
3629 * after the pages have been marked as writeback and so we're good to go
3630 * from there. We have to do this otherwise we'll miss the ordered
3631 * extents and that results in badness. Please Josef, do not think you
3632 * know better and pull this out at some point in the future, it is
3633 * right and you are wrong.
3634 */
3635 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3636 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3637 &BTRFS_I(inode)->runtime_flags))
3638 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3639
3640 return ret;
3641 }
3642