1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC 0xcafe4a11
61 #endif
62
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68 * compilation if user enables corresponding warning. Disable it explicitly.
69 */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71
72 #define __printf(a, b) __attribute__((format(printf, a, b)))
73
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77
78 static const char * const attach_type_name[] = {
79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
84 [BPF_CGROUP_DEVICE] = "cgroup_device",
85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
111 [BPF_LIRC_MODE2] = "lirc_mode2",
112 [BPF_FLOW_DISSECTOR] = "flow_dissector",
113 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
114 [BPF_TRACE_FENTRY] = "trace_fentry",
115 [BPF_TRACE_FEXIT] = "trace_fexit",
116 [BPF_MODIFY_RETURN] = "modify_return",
117 [BPF_LSM_MAC] = "lsm_mac",
118 [BPF_LSM_CGROUP] = "lsm_cgroup",
119 [BPF_SK_LOOKUP] = "sk_lookup",
120 [BPF_TRACE_ITER] = "trace_iter",
121 [BPF_XDP_DEVMAP] = "xdp_devmap",
122 [BPF_XDP_CPUMAP] = "xdp_cpumap",
123 [BPF_XDP] = "xdp",
124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
126 [BPF_PERF_EVENT] = "perf_event",
127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
128 [BPF_STRUCT_OPS] = "struct_ops",
129 [BPF_NETFILTER] = "netfilter",
130 [BPF_TCX_INGRESS] = "tcx_ingress",
131 [BPF_TCX_EGRESS] = "tcx_egress",
132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
133 [BPF_NETKIT_PRIMARY] = "netkit_primary",
134 [BPF_NETKIT_PEER] = "netkit_peer",
135 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session",
136 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session",
137 };
138
139 static const char * const link_type_name[] = {
140 [BPF_LINK_TYPE_UNSPEC] = "unspec",
141 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
142 [BPF_LINK_TYPE_TRACING] = "tracing",
143 [BPF_LINK_TYPE_CGROUP] = "cgroup",
144 [BPF_LINK_TYPE_ITER] = "iter",
145 [BPF_LINK_TYPE_NETNS] = "netns",
146 [BPF_LINK_TYPE_XDP] = "xdp",
147 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
148 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
149 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
150 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
151 [BPF_LINK_TYPE_TCX] = "tcx",
152 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
153 [BPF_LINK_TYPE_NETKIT] = "netkit",
154 [BPF_LINK_TYPE_SOCKMAP] = "sockmap",
155 };
156
157 static const char * const map_type_name[] = {
158 [BPF_MAP_TYPE_UNSPEC] = "unspec",
159 [BPF_MAP_TYPE_HASH] = "hash",
160 [BPF_MAP_TYPE_ARRAY] = "array",
161 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
162 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
163 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
164 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
165 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
166 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
167 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
168 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
169 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
170 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
171 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
172 [BPF_MAP_TYPE_DEVMAP] = "devmap",
173 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
174 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
175 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
176 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
177 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
178 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
179 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
180 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
181 [BPF_MAP_TYPE_QUEUE] = "queue",
182 [BPF_MAP_TYPE_STACK] = "stack",
183 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
184 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
185 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
186 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
187 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
188 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
189 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
190 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
191 [BPF_MAP_TYPE_ARENA] = "arena",
192 };
193
194 static const char * const prog_type_name[] = {
195 [BPF_PROG_TYPE_UNSPEC] = "unspec",
196 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
197 [BPF_PROG_TYPE_KPROBE] = "kprobe",
198 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
199 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
200 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
201 [BPF_PROG_TYPE_XDP] = "xdp",
202 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
203 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
204 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
205 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
206 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
207 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
208 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
209 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
210 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
211 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
212 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
213 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
214 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
215 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
216 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
217 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
218 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
219 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
220 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
221 [BPF_PROG_TYPE_TRACING] = "tracing",
222 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
223 [BPF_PROG_TYPE_EXT] = "ext",
224 [BPF_PROG_TYPE_LSM] = "lsm",
225 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
226 [BPF_PROG_TYPE_SYSCALL] = "syscall",
227 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
228 };
229
__base_pr(enum libbpf_print_level level,const char * format,va_list args)230 static int __base_pr(enum libbpf_print_level level, const char *format,
231 va_list args)
232 {
233 const char *env_var = "LIBBPF_LOG_LEVEL";
234 static enum libbpf_print_level min_level = LIBBPF_INFO;
235 static bool initialized;
236
237 if (!initialized) {
238 char *verbosity;
239
240 initialized = true;
241 verbosity = getenv(env_var);
242 if (verbosity) {
243 if (strcasecmp(verbosity, "warn") == 0)
244 min_level = LIBBPF_WARN;
245 else if (strcasecmp(verbosity, "debug") == 0)
246 min_level = LIBBPF_DEBUG;
247 else if (strcasecmp(verbosity, "info") == 0)
248 min_level = LIBBPF_INFO;
249 else
250 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
251 env_var, verbosity);
252 }
253 }
254
255 /* if too verbose, skip logging */
256 if (level > min_level)
257 return 0;
258
259 return vfprintf(stderr, format, args);
260 }
261
262 static libbpf_print_fn_t __libbpf_pr = __base_pr;
263
libbpf_set_print(libbpf_print_fn_t fn)264 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
265 {
266 libbpf_print_fn_t old_print_fn;
267
268 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
269
270 return old_print_fn;
271 }
272
273 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)274 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
275 {
276 va_list args;
277 int old_errno;
278 libbpf_print_fn_t print_fn;
279
280 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
281 if (!print_fn)
282 return;
283
284 old_errno = errno;
285
286 va_start(args, format);
287 __libbpf_pr(level, format, args);
288 va_end(args);
289
290 errno = old_errno;
291 }
292
pr_perm_msg(int err)293 static void pr_perm_msg(int err)
294 {
295 struct rlimit limit;
296 char buf[100];
297
298 if (err != -EPERM || geteuid() != 0)
299 return;
300
301 err = getrlimit(RLIMIT_MEMLOCK, &limit);
302 if (err)
303 return;
304
305 if (limit.rlim_cur == RLIM_INFINITY)
306 return;
307
308 if (limit.rlim_cur < 1024)
309 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
310 else if (limit.rlim_cur < 1024*1024)
311 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
312 else
313 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
314
315 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
316 buf);
317 }
318
319 #define STRERR_BUFSIZE 128
320
321 /* Copied from tools/perf/util/util.h */
322 #ifndef zfree
323 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
324 #endif
325
326 #ifndef zclose
327 # define zclose(fd) ({ \
328 int ___err = 0; \
329 if ((fd) >= 0) \
330 ___err = close((fd)); \
331 fd = -1; \
332 ___err; })
333 #endif
334
ptr_to_u64(const void * ptr)335 static inline __u64 ptr_to_u64(const void *ptr)
336 {
337 return (__u64) (unsigned long) ptr;
338 }
339
libbpf_set_strict_mode(enum libbpf_strict_mode mode)340 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
341 {
342 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
343 return 0;
344 }
345
libbpf_major_version(void)346 __u32 libbpf_major_version(void)
347 {
348 return LIBBPF_MAJOR_VERSION;
349 }
350
libbpf_minor_version(void)351 __u32 libbpf_minor_version(void)
352 {
353 return LIBBPF_MINOR_VERSION;
354 }
355
libbpf_version_string(void)356 const char *libbpf_version_string(void)
357 {
358 #define __S(X) #X
359 #define _S(X) __S(X)
360 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
361 #undef _S
362 #undef __S
363 }
364
365 enum reloc_type {
366 RELO_LD64,
367 RELO_CALL,
368 RELO_DATA,
369 RELO_EXTERN_LD64,
370 RELO_EXTERN_CALL,
371 RELO_SUBPROG_ADDR,
372 RELO_CORE,
373 };
374
375 struct reloc_desc {
376 enum reloc_type type;
377 int insn_idx;
378 union {
379 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
380 struct {
381 int map_idx;
382 int sym_off;
383 int ext_idx;
384 };
385 };
386 };
387
388 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
389 enum sec_def_flags {
390 SEC_NONE = 0,
391 /* expected_attach_type is optional, if kernel doesn't support that */
392 SEC_EXP_ATTACH_OPT = 1,
393 /* legacy, only used by libbpf_get_type_names() and
394 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
395 * This used to be associated with cgroup (and few other) BPF programs
396 * that were attachable through BPF_PROG_ATTACH command. Pretty
397 * meaningless nowadays, though.
398 */
399 SEC_ATTACHABLE = 2,
400 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
401 /* attachment target is specified through BTF ID in either kernel or
402 * other BPF program's BTF object
403 */
404 SEC_ATTACH_BTF = 4,
405 /* BPF program type allows sleeping/blocking in kernel */
406 SEC_SLEEPABLE = 8,
407 /* BPF program support non-linear XDP buffer */
408 SEC_XDP_FRAGS = 16,
409 /* Setup proper attach type for usdt probes. */
410 SEC_USDT = 32,
411 };
412
413 struct bpf_sec_def {
414 char *sec;
415 enum bpf_prog_type prog_type;
416 enum bpf_attach_type expected_attach_type;
417 long cookie;
418 int handler_id;
419
420 libbpf_prog_setup_fn_t prog_setup_fn;
421 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
422 libbpf_prog_attach_fn_t prog_attach_fn;
423 };
424
425 /*
426 * bpf_prog should be a better name but it has been used in
427 * linux/filter.h.
428 */
429 struct bpf_program {
430 char *name;
431 char *sec_name;
432 size_t sec_idx;
433 const struct bpf_sec_def *sec_def;
434 /* this program's instruction offset (in number of instructions)
435 * within its containing ELF section
436 */
437 size_t sec_insn_off;
438 /* number of original instructions in ELF section belonging to this
439 * program, not taking into account subprogram instructions possible
440 * appended later during relocation
441 */
442 size_t sec_insn_cnt;
443 /* Offset (in number of instructions) of the start of instruction
444 * belonging to this BPF program within its containing main BPF
445 * program. For the entry-point (main) BPF program, this is always
446 * zero. For a sub-program, this gets reset before each of main BPF
447 * programs are processed and relocated and is used to determined
448 * whether sub-program was already appended to the main program, and
449 * if yes, at which instruction offset.
450 */
451 size_t sub_insn_off;
452
453 /* instructions that belong to BPF program; insns[0] is located at
454 * sec_insn_off instruction within its ELF section in ELF file, so
455 * when mapping ELF file instruction index to the local instruction,
456 * one needs to subtract sec_insn_off; and vice versa.
457 */
458 struct bpf_insn *insns;
459 /* actual number of instruction in this BPF program's image; for
460 * entry-point BPF programs this includes the size of main program
461 * itself plus all the used sub-programs, appended at the end
462 */
463 size_t insns_cnt;
464
465 struct reloc_desc *reloc_desc;
466 int nr_reloc;
467
468 /* BPF verifier log settings */
469 char *log_buf;
470 size_t log_size;
471 __u32 log_level;
472
473 struct bpf_object *obj;
474
475 int fd;
476 bool autoload;
477 bool autoattach;
478 bool sym_global;
479 bool mark_btf_static;
480 enum bpf_prog_type type;
481 enum bpf_attach_type expected_attach_type;
482 int exception_cb_idx;
483
484 int prog_ifindex;
485 __u32 attach_btf_obj_fd;
486 __u32 attach_btf_id;
487 __u32 attach_prog_fd;
488
489 void *func_info;
490 __u32 func_info_rec_size;
491 __u32 func_info_cnt;
492
493 void *line_info;
494 __u32 line_info_rec_size;
495 __u32 line_info_cnt;
496 __u32 prog_flags;
497 };
498
499 struct bpf_struct_ops {
500 struct bpf_program **progs;
501 __u32 *kern_func_off;
502 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
503 void *data;
504 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
505 * btf_vmlinux's format.
506 * struct bpf_struct_ops_tcp_congestion_ops {
507 * [... some other kernel fields ...]
508 * struct tcp_congestion_ops data;
509 * }
510 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
511 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
512 * from "data".
513 */
514 void *kern_vdata;
515 __u32 type_id;
516 };
517
518 #define DATA_SEC ".data"
519 #define BSS_SEC ".bss"
520 #define RODATA_SEC ".rodata"
521 #define KCONFIG_SEC ".kconfig"
522 #define KSYMS_SEC ".ksyms"
523 #define STRUCT_OPS_SEC ".struct_ops"
524 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
525 #define ARENA_SEC ".addr_space.1"
526
527 enum libbpf_map_type {
528 LIBBPF_MAP_UNSPEC,
529 LIBBPF_MAP_DATA,
530 LIBBPF_MAP_BSS,
531 LIBBPF_MAP_RODATA,
532 LIBBPF_MAP_KCONFIG,
533 };
534
535 struct bpf_map_def {
536 unsigned int type;
537 unsigned int key_size;
538 unsigned int value_size;
539 unsigned int max_entries;
540 unsigned int map_flags;
541 };
542
543 struct bpf_map {
544 struct bpf_object *obj;
545 char *name;
546 /* real_name is defined for special internal maps (.rodata*,
547 * .data*, .bss, .kconfig) and preserves their original ELF section
548 * name. This is important to be able to find corresponding BTF
549 * DATASEC information.
550 */
551 char *real_name;
552 int fd;
553 int sec_idx;
554 size_t sec_offset;
555 int map_ifindex;
556 int inner_map_fd;
557 struct bpf_map_def def;
558 __u32 numa_node;
559 __u32 btf_var_idx;
560 int mod_btf_fd;
561 __u32 btf_key_type_id;
562 __u32 btf_value_type_id;
563 __u32 btf_vmlinux_value_type_id;
564 enum libbpf_map_type libbpf_type;
565 void *mmaped;
566 struct bpf_struct_ops *st_ops;
567 struct bpf_map *inner_map;
568 void **init_slots;
569 int init_slots_sz;
570 char *pin_path;
571 bool pinned;
572 bool reused;
573 bool autocreate;
574 bool autoattach;
575 __u64 map_extra;
576 };
577
578 enum extern_type {
579 EXT_UNKNOWN,
580 EXT_KCFG,
581 EXT_KSYM,
582 };
583
584 enum kcfg_type {
585 KCFG_UNKNOWN,
586 KCFG_CHAR,
587 KCFG_BOOL,
588 KCFG_INT,
589 KCFG_TRISTATE,
590 KCFG_CHAR_ARR,
591 };
592
593 struct extern_desc {
594 enum extern_type type;
595 int sym_idx;
596 int btf_id;
597 int sec_btf_id;
598 const char *name;
599 char *essent_name;
600 bool is_set;
601 bool is_weak;
602 union {
603 struct {
604 enum kcfg_type type;
605 int sz;
606 int align;
607 int data_off;
608 bool is_signed;
609 } kcfg;
610 struct {
611 unsigned long long addr;
612
613 /* target btf_id of the corresponding kernel var. */
614 int kernel_btf_obj_fd;
615 int kernel_btf_id;
616
617 /* local btf_id of the ksym extern's type. */
618 __u32 type_id;
619 /* BTF fd index to be patched in for insn->off, this is
620 * 0 for vmlinux BTF, index in obj->fd_array for module
621 * BTF
622 */
623 __s16 btf_fd_idx;
624 } ksym;
625 };
626 };
627
628 struct module_btf {
629 struct btf *btf;
630 char *name;
631 __u32 id;
632 int fd;
633 int fd_array_idx;
634 };
635
636 enum sec_type {
637 SEC_UNUSED = 0,
638 SEC_RELO,
639 SEC_BSS,
640 SEC_DATA,
641 SEC_RODATA,
642 SEC_ST_OPS,
643 };
644
645 struct elf_sec_desc {
646 enum sec_type sec_type;
647 Elf64_Shdr *shdr;
648 Elf_Data *data;
649 };
650
651 struct elf_state {
652 int fd;
653 const void *obj_buf;
654 size_t obj_buf_sz;
655 Elf *elf;
656 Elf64_Ehdr *ehdr;
657 Elf_Data *symbols;
658 Elf_Data *arena_data;
659 size_t shstrndx; /* section index for section name strings */
660 size_t strtabidx;
661 struct elf_sec_desc *secs;
662 size_t sec_cnt;
663 int btf_maps_shndx;
664 __u32 btf_maps_sec_btf_id;
665 int text_shndx;
666 int symbols_shndx;
667 bool has_st_ops;
668 int arena_data_shndx;
669 };
670
671 struct usdt_manager;
672
673 enum bpf_object_state {
674 OBJ_OPEN,
675 OBJ_PREPARED,
676 OBJ_LOADED,
677 };
678
679 struct bpf_object {
680 char name[BPF_OBJ_NAME_LEN];
681 char license[64];
682 __u32 kern_version;
683
684 enum bpf_object_state state;
685 struct bpf_program *programs;
686 size_t nr_programs;
687 struct bpf_map *maps;
688 size_t nr_maps;
689 size_t maps_cap;
690
691 char *kconfig;
692 struct extern_desc *externs;
693 int nr_extern;
694 int kconfig_map_idx;
695
696 bool has_subcalls;
697 bool has_rodata;
698
699 struct bpf_gen *gen_loader;
700
701 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
702 struct elf_state efile;
703
704 unsigned char byteorder;
705
706 struct btf *btf;
707 struct btf_ext *btf_ext;
708
709 /* Parse and load BTF vmlinux if any of the programs in the object need
710 * it at load time.
711 */
712 struct btf *btf_vmlinux;
713 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
714 * override for vmlinux BTF.
715 */
716 char *btf_custom_path;
717 /* vmlinux BTF override for CO-RE relocations */
718 struct btf *btf_vmlinux_override;
719 /* Lazily initialized kernel module BTFs */
720 struct module_btf *btf_modules;
721 bool btf_modules_loaded;
722 size_t btf_module_cnt;
723 size_t btf_module_cap;
724
725 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
726 char *log_buf;
727 size_t log_size;
728 __u32 log_level;
729
730 int *fd_array;
731 size_t fd_array_cap;
732 size_t fd_array_cnt;
733
734 struct usdt_manager *usdt_man;
735
736 struct bpf_map *arena_map;
737 void *arena_data;
738 size_t arena_data_sz;
739
740 struct kern_feature_cache *feat_cache;
741 char *token_path;
742 int token_fd;
743
744 char path[];
745 };
746
747 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
748 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
749 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
750 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
751 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
752 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
753 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
754 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
755 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
756
bpf_program__unload(struct bpf_program * prog)757 void bpf_program__unload(struct bpf_program *prog)
758 {
759 if (!prog)
760 return;
761
762 zclose(prog->fd);
763
764 zfree(&prog->func_info);
765 zfree(&prog->line_info);
766 }
767
bpf_program__exit(struct bpf_program * prog)768 static void bpf_program__exit(struct bpf_program *prog)
769 {
770 if (!prog)
771 return;
772
773 bpf_program__unload(prog);
774 zfree(&prog->name);
775 zfree(&prog->sec_name);
776 zfree(&prog->insns);
777 zfree(&prog->reloc_desc);
778
779 prog->nr_reloc = 0;
780 prog->insns_cnt = 0;
781 prog->sec_idx = -1;
782 }
783
insn_is_subprog_call(const struct bpf_insn * insn)784 static bool insn_is_subprog_call(const struct bpf_insn *insn)
785 {
786 return BPF_CLASS(insn->code) == BPF_JMP &&
787 BPF_OP(insn->code) == BPF_CALL &&
788 BPF_SRC(insn->code) == BPF_K &&
789 insn->src_reg == BPF_PSEUDO_CALL &&
790 insn->dst_reg == 0 &&
791 insn->off == 0;
792 }
793
is_call_insn(const struct bpf_insn * insn)794 static bool is_call_insn(const struct bpf_insn *insn)
795 {
796 return insn->code == (BPF_JMP | BPF_CALL);
797 }
798
insn_is_pseudo_func(struct bpf_insn * insn)799 static bool insn_is_pseudo_func(struct bpf_insn *insn)
800 {
801 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
802 }
803
804 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)805 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
806 const char *name, size_t sec_idx, const char *sec_name,
807 size_t sec_off, void *insn_data, size_t insn_data_sz)
808 {
809 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
810 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
811 sec_name, name, sec_off, insn_data_sz);
812 return -EINVAL;
813 }
814
815 memset(prog, 0, sizeof(*prog));
816 prog->obj = obj;
817
818 prog->sec_idx = sec_idx;
819 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
820 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
821 /* insns_cnt can later be increased by appending used subprograms */
822 prog->insns_cnt = prog->sec_insn_cnt;
823
824 prog->type = BPF_PROG_TYPE_UNSPEC;
825 prog->fd = -1;
826 prog->exception_cb_idx = -1;
827
828 /* libbpf's convention for SEC("?abc...") is that it's just like
829 * SEC("abc...") but the corresponding bpf_program starts out with
830 * autoload set to false.
831 */
832 if (sec_name[0] == '?') {
833 prog->autoload = false;
834 /* from now on forget there was ? in section name */
835 sec_name++;
836 } else {
837 prog->autoload = true;
838 }
839
840 prog->autoattach = true;
841
842 /* inherit object's log_level */
843 prog->log_level = obj->log_level;
844
845 prog->sec_name = strdup(sec_name);
846 if (!prog->sec_name)
847 goto errout;
848
849 prog->name = strdup(name);
850 if (!prog->name)
851 goto errout;
852
853 prog->insns = malloc(insn_data_sz);
854 if (!prog->insns)
855 goto errout;
856 memcpy(prog->insns, insn_data, insn_data_sz);
857
858 return 0;
859 errout:
860 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
861 bpf_program__exit(prog);
862 return -ENOMEM;
863 }
864
865 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)866 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
867 const char *sec_name, int sec_idx)
868 {
869 Elf_Data *symbols = obj->efile.symbols;
870 struct bpf_program *prog, *progs;
871 void *data = sec_data->d_buf;
872 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
873 int nr_progs, err, i;
874 const char *name;
875 Elf64_Sym *sym;
876
877 progs = obj->programs;
878 nr_progs = obj->nr_programs;
879 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
880
881 for (i = 0; i < nr_syms; i++) {
882 sym = elf_sym_by_idx(obj, i);
883
884 if (sym->st_shndx != sec_idx)
885 continue;
886 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
887 continue;
888
889 prog_sz = sym->st_size;
890 sec_off = sym->st_value;
891
892 name = elf_sym_str(obj, sym->st_name);
893 if (!name) {
894 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
895 sec_name, sec_off);
896 return -LIBBPF_ERRNO__FORMAT;
897 }
898
899 if (sec_off + prog_sz > sec_sz) {
900 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
901 sec_name, sec_off);
902 return -LIBBPF_ERRNO__FORMAT;
903 }
904
905 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
906 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
907 return -ENOTSUP;
908 }
909
910 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
911 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
912
913 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
914 if (!progs) {
915 /*
916 * In this case the original obj->programs
917 * is still valid, so don't need special treat for
918 * bpf_close_object().
919 */
920 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
921 sec_name, name);
922 return -ENOMEM;
923 }
924 obj->programs = progs;
925
926 prog = &progs[nr_progs];
927
928 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
929 sec_off, data + sec_off, prog_sz);
930 if (err)
931 return err;
932
933 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
934 prog->sym_global = true;
935
936 /* if function is a global/weak symbol, but has restricted
937 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
938 * as static to enable more permissive BPF verification mode
939 * with more outside context available to BPF verifier
940 */
941 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
942 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
943 prog->mark_btf_static = true;
944
945 nr_progs++;
946 obj->nr_programs = nr_progs;
947 }
948
949 return 0;
950 }
951
bpf_object_bswap_progs(struct bpf_object * obj)952 static void bpf_object_bswap_progs(struct bpf_object *obj)
953 {
954 struct bpf_program *prog = obj->programs;
955 struct bpf_insn *insn;
956 int p, i;
957
958 for (p = 0; p < obj->nr_programs; p++, prog++) {
959 insn = prog->insns;
960 for (i = 0; i < prog->insns_cnt; i++, insn++)
961 bpf_insn_bswap(insn);
962 }
963 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
964 }
965
966 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)967 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
968 {
969 struct btf_member *m;
970 int i;
971
972 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
973 if (btf_member_bit_offset(t, i) == bit_offset)
974 return m;
975 }
976
977 return NULL;
978 }
979
980 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)981 find_member_by_name(const struct btf *btf, const struct btf_type *t,
982 const char *name)
983 {
984 struct btf_member *m;
985 int i;
986
987 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
988 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
989 return m;
990 }
991
992 return NULL;
993 }
994
995 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
996 __u16 kind, struct btf **res_btf,
997 struct module_btf **res_mod_btf);
998
999 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1000 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1001 const char *name, __u32 kind);
1002
1003 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)1004 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1005 struct module_btf **mod_btf,
1006 const struct btf_type **type, __u32 *type_id,
1007 const struct btf_type **vtype, __u32 *vtype_id,
1008 const struct btf_member **data_member)
1009 {
1010 const struct btf_type *kern_type, *kern_vtype;
1011 const struct btf_member *kern_data_member;
1012 struct btf *btf = NULL;
1013 __s32 kern_vtype_id, kern_type_id;
1014 char tname[256];
1015 __u32 i;
1016
1017 snprintf(tname, sizeof(tname), "%.*s",
1018 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1019
1020 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
1021 &btf, mod_btf);
1022 if (kern_type_id < 0) {
1023 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
1024 tname);
1025 return kern_type_id;
1026 }
1027 kern_type = btf__type_by_id(btf, kern_type_id);
1028
1029 /* Find the corresponding "map_value" type that will be used
1030 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
1031 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
1032 * btf_vmlinux.
1033 */
1034 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
1035 tname, BTF_KIND_STRUCT);
1036 if (kern_vtype_id < 0) {
1037 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
1038 STRUCT_OPS_VALUE_PREFIX, tname);
1039 return kern_vtype_id;
1040 }
1041 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1042
1043 /* Find "struct tcp_congestion_ops" from
1044 * struct bpf_struct_ops_tcp_congestion_ops {
1045 * [ ... ]
1046 * struct tcp_congestion_ops data;
1047 * }
1048 */
1049 kern_data_member = btf_members(kern_vtype);
1050 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1051 if (kern_data_member->type == kern_type_id)
1052 break;
1053 }
1054 if (i == btf_vlen(kern_vtype)) {
1055 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1056 tname, STRUCT_OPS_VALUE_PREFIX, tname);
1057 return -EINVAL;
1058 }
1059
1060 *type = kern_type;
1061 *type_id = kern_type_id;
1062 *vtype = kern_vtype;
1063 *vtype_id = kern_vtype_id;
1064 *data_member = kern_data_member;
1065
1066 return 0;
1067 }
1068
bpf_map__is_struct_ops(const struct bpf_map * map)1069 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1070 {
1071 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1072 }
1073
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1074 static bool is_valid_st_ops_program(struct bpf_object *obj,
1075 const struct bpf_program *prog)
1076 {
1077 int i;
1078
1079 for (i = 0; i < obj->nr_programs; i++) {
1080 if (&obj->programs[i] == prog)
1081 return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1082 }
1083
1084 return false;
1085 }
1086
1087 /* For each struct_ops program P, referenced from some struct_ops map M,
1088 * enable P.autoload if there are Ms for which M.autocreate is true,
1089 * disable P.autoload if for all Ms M.autocreate is false.
1090 * Don't change P.autoload for programs that are not referenced from any maps.
1091 */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1092 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1093 {
1094 struct bpf_program *prog, *slot_prog;
1095 struct bpf_map *map;
1096 int i, j, k, vlen;
1097
1098 for (i = 0; i < obj->nr_programs; ++i) {
1099 int should_load = false;
1100 int use_cnt = 0;
1101
1102 prog = &obj->programs[i];
1103 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1104 continue;
1105
1106 for (j = 0; j < obj->nr_maps; ++j) {
1107 const struct btf_type *type;
1108
1109 map = &obj->maps[j];
1110 if (!bpf_map__is_struct_ops(map))
1111 continue;
1112
1113 type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1114 vlen = btf_vlen(type);
1115 for (k = 0; k < vlen; ++k) {
1116 slot_prog = map->st_ops->progs[k];
1117 if (prog != slot_prog)
1118 continue;
1119
1120 use_cnt++;
1121 if (map->autocreate)
1122 should_load = true;
1123 }
1124 }
1125 if (use_cnt)
1126 prog->autoload = should_load;
1127 }
1128
1129 return 0;
1130 }
1131
1132 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1133 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1134 {
1135 const struct btf_member *member, *kern_member, *kern_data_member;
1136 const struct btf_type *type, *kern_type, *kern_vtype;
1137 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1138 struct bpf_object *obj = map->obj;
1139 const struct btf *btf = obj->btf;
1140 struct bpf_struct_ops *st_ops;
1141 const struct btf *kern_btf;
1142 struct module_btf *mod_btf = NULL;
1143 void *data, *kern_data;
1144 const char *tname;
1145 int err;
1146
1147 st_ops = map->st_ops;
1148 type = btf__type_by_id(btf, st_ops->type_id);
1149 tname = btf__name_by_offset(btf, type->name_off);
1150 err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1151 &kern_type, &kern_type_id,
1152 &kern_vtype, &kern_vtype_id,
1153 &kern_data_member);
1154 if (err)
1155 return err;
1156
1157 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1158
1159 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1160 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1161
1162 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1163 map->def.value_size = kern_vtype->size;
1164 map->btf_vmlinux_value_type_id = kern_vtype_id;
1165
1166 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1167 if (!st_ops->kern_vdata)
1168 return -ENOMEM;
1169
1170 data = st_ops->data;
1171 kern_data_off = kern_data_member->offset / 8;
1172 kern_data = st_ops->kern_vdata + kern_data_off;
1173
1174 member = btf_members(type);
1175 for (i = 0; i < btf_vlen(type); i++, member++) {
1176 const struct btf_type *mtype, *kern_mtype;
1177 __u32 mtype_id, kern_mtype_id;
1178 void *mdata, *kern_mdata;
1179 struct bpf_program *prog;
1180 __s64 msize, kern_msize;
1181 __u32 moff, kern_moff;
1182 __u32 kern_member_idx;
1183 const char *mname;
1184
1185 mname = btf__name_by_offset(btf, member->name_off);
1186 moff = member->offset / 8;
1187 mdata = data + moff;
1188 msize = btf__resolve_size(btf, member->type);
1189 if (msize < 0) {
1190 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1191 map->name, mname);
1192 return msize;
1193 }
1194
1195 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1196 if (!kern_member) {
1197 if (!libbpf_is_mem_zeroed(mdata, msize)) {
1198 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1199 map->name, mname);
1200 return -ENOTSUP;
1201 }
1202
1203 if (st_ops->progs[i]) {
1204 /* If we had declaratively set struct_ops callback, we need to
1205 * force its autoload to false, because it doesn't have
1206 * a chance of succeeding from POV of the current struct_ops map.
1207 * If this program is still referenced somewhere else, though,
1208 * then bpf_object_adjust_struct_ops_autoload() will update its
1209 * autoload accordingly.
1210 */
1211 st_ops->progs[i]->autoload = false;
1212 st_ops->progs[i] = NULL;
1213 }
1214
1215 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1216 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1217 map->name, mname);
1218 continue;
1219 }
1220
1221 kern_member_idx = kern_member - btf_members(kern_type);
1222 if (btf_member_bitfield_size(type, i) ||
1223 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1224 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1225 map->name, mname);
1226 return -ENOTSUP;
1227 }
1228
1229 kern_moff = kern_member->offset / 8;
1230 kern_mdata = kern_data + kern_moff;
1231
1232 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1233 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1234 &kern_mtype_id);
1235 if (BTF_INFO_KIND(mtype->info) !=
1236 BTF_INFO_KIND(kern_mtype->info)) {
1237 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1238 map->name, mname, BTF_INFO_KIND(mtype->info),
1239 BTF_INFO_KIND(kern_mtype->info));
1240 return -ENOTSUP;
1241 }
1242
1243 if (btf_is_ptr(mtype)) {
1244 prog = *(void **)mdata;
1245 /* just like for !kern_member case above, reset declaratively
1246 * set (at compile time) program's autload to false,
1247 * if user replaced it with another program or NULL
1248 */
1249 if (st_ops->progs[i] && st_ops->progs[i] != prog)
1250 st_ops->progs[i]->autoload = false;
1251
1252 /* Update the value from the shadow type */
1253 st_ops->progs[i] = prog;
1254 if (!prog)
1255 continue;
1256
1257 if (!is_valid_st_ops_program(obj, prog)) {
1258 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1259 map->name, mname);
1260 return -ENOTSUP;
1261 }
1262
1263 kern_mtype = skip_mods_and_typedefs(kern_btf,
1264 kern_mtype->type,
1265 &kern_mtype_id);
1266
1267 /* mtype->type must be a func_proto which was
1268 * guaranteed in bpf_object__collect_st_ops_relos(),
1269 * so only check kern_mtype for func_proto here.
1270 */
1271 if (!btf_is_func_proto(kern_mtype)) {
1272 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1273 map->name, mname);
1274 return -ENOTSUP;
1275 }
1276
1277 if (mod_btf)
1278 prog->attach_btf_obj_fd = mod_btf->fd;
1279
1280 /* if we haven't yet processed this BPF program, record proper
1281 * attach_btf_id and member_idx
1282 */
1283 if (!prog->attach_btf_id) {
1284 prog->attach_btf_id = kern_type_id;
1285 prog->expected_attach_type = kern_member_idx;
1286 }
1287
1288 /* struct_ops BPF prog can be re-used between multiple
1289 * .struct_ops & .struct_ops.link as long as it's the
1290 * same struct_ops struct definition and the same
1291 * function pointer field
1292 */
1293 if (prog->attach_btf_id != kern_type_id) {
1294 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1295 map->name, mname, prog->name, prog->sec_name, prog->type,
1296 prog->attach_btf_id, kern_type_id);
1297 return -EINVAL;
1298 }
1299 if (prog->expected_attach_type != kern_member_idx) {
1300 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1301 map->name, mname, prog->name, prog->sec_name, prog->type,
1302 prog->expected_attach_type, kern_member_idx);
1303 return -EINVAL;
1304 }
1305
1306 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1307
1308 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1309 map->name, mname, prog->name, moff,
1310 kern_moff);
1311
1312 continue;
1313 }
1314
1315 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1316 if (kern_msize < 0 || msize != kern_msize) {
1317 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1318 map->name, mname, (ssize_t)msize,
1319 (ssize_t)kern_msize);
1320 return -ENOTSUP;
1321 }
1322
1323 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1324 map->name, mname, (unsigned int)msize,
1325 moff, kern_moff);
1326 memcpy(kern_mdata, mdata, msize);
1327 }
1328
1329 return 0;
1330 }
1331
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1332 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1333 {
1334 struct bpf_map *map;
1335 size_t i;
1336 int err;
1337
1338 for (i = 0; i < obj->nr_maps; i++) {
1339 map = &obj->maps[i];
1340
1341 if (!bpf_map__is_struct_ops(map))
1342 continue;
1343
1344 if (!map->autocreate)
1345 continue;
1346
1347 err = bpf_map__init_kern_struct_ops(map);
1348 if (err)
1349 return err;
1350 }
1351
1352 return 0;
1353 }
1354
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1355 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1356 int shndx, Elf_Data *data)
1357 {
1358 const struct btf_type *type, *datasec;
1359 const struct btf_var_secinfo *vsi;
1360 struct bpf_struct_ops *st_ops;
1361 const char *tname, *var_name;
1362 __s32 type_id, datasec_id;
1363 const struct btf *btf;
1364 struct bpf_map *map;
1365 __u32 i;
1366
1367 if (shndx == -1)
1368 return 0;
1369
1370 btf = obj->btf;
1371 datasec_id = btf__find_by_name_kind(btf, sec_name,
1372 BTF_KIND_DATASEC);
1373 if (datasec_id < 0) {
1374 pr_warn("struct_ops init: DATASEC %s not found\n",
1375 sec_name);
1376 return -EINVAL;
1377 }
1378
1379 datasec = btf__type_by_id(btf, datasec_id);
1380 vsi = btf_var_secinfos(datasec);
1381 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1382 type = btf__type_by_id(obj->btf, vsi->type);
1383 var_name = btf__name_by_offset(obj->btf, type->name_off);
1384
1385 type_id = btf__resolve_type(obj->btf, vsi->type);
1386 if (type_id < 0) {
1387 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1388 vsi->type, sec_name);
1389 return -EINVAL;
1390 }
1391
1392 type = btf__type_by_id(obj->btf, type_id);
1393 tname = btf__name_by_offset(obj->btf, type->name_off);
1394 if (!tname[0]) {
1395 pr_warn("struct_ops init: anonymous type is not supported\n");
1396 return -ENOTSUP;
1397 }
1398 if (!btf_is_struct(type)) {
1399 pr_warn("struct_ops init: %s is not a struct\n", tname);
1400 return -EINVAL;
1401 }
1402
1403 map = bpf_object__add_map(obj);
1404 if (IS_ERR(map))
1405 return PTR_ERR(map);
1406
1407 map->sec_idx = shndx;
1408 map->sec_offset = vsi->offset;
1409 map->name = strdup(var_name);
1410 if (!map->name)
1411 return -ENOMEM;
1412 map->btf_value_type_id = type_id;
1413
1414 /* Follow same convention as for programs autoload:
1415 * SEC("?.struct_ops") means map is not created by default.
1416 */
1417 if (sec_name[0] == '?') {
1418 map->autocreate = false;
1419 /* from now on forget there was ? in section name */
1420 sec_name++;
1421 }
1422
1423 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1424 map->def.key_size = sizeof(int);
1425 map->def.value_size = type->size;
1426 map->def.max_entries = 1;
1427 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1428 map->autoattach = true;
1429
1430 map->st_ops = calloc(1, sizeof(*map->st_ops));
1431 if (!map->st_ops)
1432 return -ENOMEM;
1433 st_ops = map->st_ops;
1434 st_ops->data = malloc(type->size);
1435 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1436 st_ops->kern_func_off = malloc(btf_vlen(type) *
1437 sizeof(*st_ops->kern_func_off));
1438 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1439 return -ENOMEM;
1440
1441 if (vsi->offset + type->size > data->d_size) {
1442 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1443 var_name, sec_name);
1444 return -EINVAL;
1445 }
1446
1447 memcpy(st_ops->data,
1448 data->d_buf + vsi->offset,
1449 type->size);
1450 st_ops->type_id = type_id;
1451
1452 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1453 tname, type_id, var_name, vsi->offset);
1454 }
1455
1456 return 0;
1457 }
1458
bpf_object_init_struct_ops(struct bpf_object * obj)1459 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1460 {
1461 const char *sec_name;
1462 int sec_idx, err;
1463
1464 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1465 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1466
1467 if (desc->sec_type != SEC_ST_OPS)
1468 continue;
1469
1470 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1471 if (!sec_name)
1472 return -LIBBPF_ERRNO__FORMAT;
1473
1474 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1475 if (err)
1476 return err;
1477 }
1478
1479 return 0;
1480 }
1481
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1482 static struct bpf_object *bpf_object__new(const char *path,
1483 const void *obj_buf,
1484 size_t obj_buf_sz,
1485 const char *obj_name)
1486 {
1487 struct bpf_object *obj;
1488 char *end;
1489
1490 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1491 if (!obj) {
1492 pr_warn("alloc memory failed for %s\n", path);
1493 return ERR_PTR(-ENOMEM);
1494 }
1495
1496 strcpy(obj->path, path);
1497 if (obj_name) {
1498 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1499 } else {
1500 /* Using basename() GNU version which doesn't modify arg. */
1501 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1502 end = strchr(obj->name, '.');
1503 if (end)
1504 *end = 0;
1505 }
1506
1507 obj->efile.fd = -1;
1508 /*
1509 * Caller of this function should also call
1510 * bpf_object__elf_finish() after data collection to return
1511 * obj_buf to user. If not, we should duplicate the buffer to
1512 * avoid user freeing them before elf finish.
1513 */
1514 obj->efile.obj_buf = obj_buf;
1515 obj->efile.obj_buf_sz = obj_buf_sz;
1516 obj->efile.btf_maps_shndx = -1;
1517 obj->kconfig_map_idx = -1;
1518
1519 obj->kern_version = get_kernel_version();
1520 obj->state = OBJ_OPEN;
1521
1522 return obj;
1523 }
1524
bpf_object__elf_finish(struct bpf_object * obj)1525 static void bpf_object__elf_finish(struct bpf_object *obj)
1526 {
1527 if (!obj->efile.elf)
1528 return;
1529
1530 elf_end(obj->efile.elf);
1531 obj->efile.elf = NULL;
1532 obj->efile.ehdr = NULL;
1533 obj->efile.symbols = NULL;
1534 obj->efile.arena_data = NULL;
1535
1536 zfree(&obj->efile.secs);
1537 obj->efile.sec_cnt = 0;
1538 zclose(obj->efile.fd);
1539 obj->efile.obj_buf = NULL;
1540 obj->efile.obj_buf_sz = 0;
1541 }
1542
bpf_object__elf_init(struct bpf_object * obj)1543 static int bpf_object__elf_init(struct bpf_object *obj)
1544 {
1545 Elf64_Ehdr *ehdr;
1546 int err = 0;
1547 Elf *elf;
1548
1549 if (obj->efile.elf) {
1550 pr_warn("elf: init internal error\n");
1551 return -LIBBPF_ERRNO__LIBELF;
1552 }
1553
1554 if (obj->efile.obj_buf_sz > 0) {
1555 /* obj_buf should have been validated by bpf_object__open_mem(). */
1556 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1557 } else {
1558 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1559 if (obj->efile.fd < 0) {
1560 err = -errno;
1561 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1562 return err;
1563 }
1564
1565 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1566 }
1567
1568 if (!elf) {
1569 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1570 err = -LIBBPF_ERRNO__LIBELF;
1571 goto errout;
1572 }
1573
1574 obj->efile.elf = elf;
1575
1576 if (elf_kind(elf) != ELF_K_ELF) {
1577 err = -LIBBPF_ERRNO__FORMAT;
1578 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1579 goto errout;
1580 }
1581
1582 if (gelf_getclass(elf) != ELFCLASS64) {
1583 err = -LIBBPF_ERRNO__FORMAT;
1584 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1585 goto errout;
1586 }
1587
1588 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1589 if (!obj->efile.ehdr) {
1590 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1591 err = -LIBBPF_ERRNO__FORMAT;
1592 goto errout;
1593 }
1594
1595 /* Validate ELF object endianness... */
1596 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1597 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1598 err = -LIBBPF_ERRNO__ENDIAN;
1599 pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1600 goto errout;
1601 }
1602 /* and save after bpf_object_open() frees ELF data */
1603 obj->byteorder = ehdr->e_ident[EI_DATA];
1604
1605 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1606 pr_warn("elf: failed to get section names section index for %s: %s\n",
1607 obj->path, elf_errmsg(-1));
1608 err = -LIBBPF_ERRNO__FORMAT;
1609 goto errout;
1610 }
1611
1612 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1613 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1614 pr_warn("elf: failed to get section names strings from %s: %s\n",
1615 obj->path, elf_errmsg(-1));
1616 err = -LIBBPF_ERRNO__FORMAT;
1617 goto errout;
1618 }
1619
1620 /* Old LLVM set e_machine to EM_NONE */
1621 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1622 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1623 err = -LIBBPF_ERRNO__FORMAT;
1624 goto errout;
1625 }
1626
1627 return 0;
1628 errout:
1629 bpf_object__elf_finish(obj);
1630 return err;
1631 }
1632
is_native_endianness(struct bpf_object * obj)1633 static bool is_native_endianness(struct bpf_object *obj)
1634 {
1635 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1636 return obj->byteorder == ELFDATA2LSB;
1637 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1638 return obj->byteorder == ELFDATA2MSB;
1639 #else
1640 # error "Unrecognized __BYTE_ORDER__"
1641 #endif
1642 }
1643
1644 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1645 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1646 {
1647 if (!data) {
1648 pr_warn("invalid license section in %s\n", obj->path);
1649 return -LIBBPF_ERRNO__FORMAT;
1650 }
1651 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1652 * go over allowed ELF data section buffer
1653 */
1654 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1655 pr_debug("license of %s is %s\n", obj->path, obj->license);
1656 return 0;
1657 }
1658
1659 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1660 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1661 {
1662 __u32 kver;
1663
1664 if (!data || size != sizeof(kver)) {
1665 pr_warn("invalid kver section in %s\n", obj->path);
1666 return -LIBBPF_ERRNO__FORMAT;
1667 }
1668 memcpy(&kver, data, sizeof(kver));
1669 obj->kern_version = kver;
1670 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1671 return 0;
1672 }
1673
bpf_map_type__is_map_in_map(enum bpf_map_type type)1674 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1675 {
1676 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1677 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1678 return true;
1679 return false;
1680 }
1681
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1682 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1683 {
1684 Elf_Data *data;
1685 Elf_Scn *scn;
1686
1687 if (!name)
1688 return -EINVAL;
1689
1690 scn = elf_sec_by_name(obj, name);
1691 data = elf_sec_data(obj, scn);
1692 if (data) {
1693 *size = data->d_size;
1694 return 0; /* found it */
1695 }
1696
1697 return -ENOENT;
1698 }
1699
find_elf_var_sym(const struct bpf_object * obj,const char * name)1700 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1701 {
1702 Elf_Data *symbols = obj->efile.symbols;
1703 const char *sname;
1704 size_t si;
1705
1706 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1707 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1708
1709 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1710 continue;
1711
1712 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1713 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1714 continue;
1715
1716 sname = elf_sym_str(obj, sym->st_name);
1717 if (!sname) {
1718 pr_warn("failed to get sym name string for var %s\n", name);
1719 return ERR_PTR(-EIO);
1720 }
1721 if (strcmp(name, sname) == 0)
1722 return sym;
1723 }
1724
1725 return ERR_PTR(-ENOENT);
1726 }
1727
1728 /* Some versions of Android don't provide memfd_create() in their libc
1729 * implementation, so avoid complications and just go straight to Linux
1730 * syscall.
1731 */
sys_memfd_create(const char * name,unsigned flags)1732 static int sys_memfd_create(const char *name, unsigned flags)
1733 {
1734 return syscall(__NR_memfd_create, name, flags);
1735 }
1736
1737 #ifndef MFD_CLOEXEC
1738 #define MFD_CLOEXEC 0x0001U
1739 #endif
1740 #ifndef MFD_NOEXEC_SEAL
1741 #define MFD_NOEXEC_SEAL 0x0008U
1742 #endif
1743
create_placeholder_fd(void)1744 static int create_placeholder_fd(void)
1745 {
1746 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1747 const char *name = "libbpf-placeholder-fd";
1748 int fd;
1749
1750 fd = ensure_good_fd(sys_memfd_create(name, flags));
1751 if (fd >= 0)
1752 return fd;
1753 else if (errno != EINVAL)
1754 return -errno;
1755
1756 /* Possibly running on kernel without MFD_NOEXEC_SEAL */
1757 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1758 if (fd < 0)
1759 return -errno;
1760 return fd;
1761 }
1762
bpf_object__add_map(struct bpf_object * obj)1763 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1764 {
1765 struct bpf_map *map;
1766 int err;
1767
1768 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1769 sizeof(*obj->maps), obj->nr_maps + 1);
1770 if (err)
1771 return ERR_PTR(err);
1772
1773 map = &obj->maps[obj->nr_maps++];
1774 map->obj = obj;
1775 /* Preallocate map FD without actually creating BPF map just yet.
1776 * These map FD "placeholders" will be reused later without changing
1777 * FD value when map is actually created in the kernel.
1778 *
1779 * This is useful to be able to perform BPF program relocations
1780 * without having to create BPF maps before that step. This allows us
1781 * to finalize and load BTF very late in BPF object's loading phase,
1782 * right before BPF maps have to be created and BPF programs have to
1783 * be loaded. By having these map FD placeholders we can perform all
1784 * the sanitizations, relocations, and any other adjustments before we
1785 * start creating actual BPF kernel objects (BTF, maps, progs).
1786 */
1787 map->fd = create_placeholder_fd();
1788 if (map->fd < 0)
1789 return ERR_PTR(map->fd);
1790 map->inner_map_fd = -1;
1791 map->autocreate = true;
1792
1793 return map;
1794 }
1795
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1796 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1797 {
1798 const long page_sz = sysconf(_SC_PAGE_SIZE);
1799 size_t map_sz;
1800
1801 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1802 map_sz = roundup(map_sz, page_sz);
1803 return map_sz;
1804 }
1805
bpf_map_mmap_sz(const struct bpf_map * map)1806 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1807 {
1808 const long page_sz = sysconf(_SC_PAGE_SIZE);
1809
1810 switch (map->def.type) {
1811 case BPF_MAP_TYPE_ARRAY:
1812 return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1813 case BPF_MAP_TYPE_ARENA:
1814 return page_sz * map->def.max_entries;
1815 default:
1816 return 0; /* not supported */
1817 }
1818 }
1819
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1820 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1821 {
1822 void *mmaped;
1823
1824 if (!map->mmaped)
1825 return -EINVAL;
1826
1827 if (old_sz == new_sz)
1828 return 0;
1829
1830 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1831 if (mmaped == MAP_FAILED)
1832 return -errno;
1833
1834 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1835 munmap(map->mmaped, old_sz);
1836 map->mmaped = mmaped;
1837 return 0;
1838 }
1839
internal_map_name(struct bpf_object * obj,const char * real_name)1840 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1841 {
1842 char map_name[BPF_OBJ_NAME_LEN], *p;
1843 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1844
1845 /* This is one of the more confusing parts of libbpf for various
1846 * reasons, some of which are historical. The original idea for naming
1847 * internal names was to include as much of BPF object name prefix as
1848 * possible, so that it can be distinguished from similar internal
1849 * maps of a different BPF object.
1850 * As an example, let's say we have bpf_object named 'my_object_name'
1851 * and internal map corresponding to '.rodata' ELF section. The final
1852 * map name advertised to user and to the kernel will be
1853 * 'my_objec.rodata', taking first 8 characters of object name and
1854 * entire 7 characters of '.rodata'.
1855 * Somewhat confusingly, if internal map ELF section name is shorter
1856 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1857 * for the suffix, even though we only have 4 actual characters, and
1858 * resulting map will be called 'my_objec.bss', not even using all 15
1859 * characters allowed by the kernel. Oh well, at least the truncated
1860 * object name is somewhat consistent in this case. But if the map
1861 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1862 * (8 chars) and thus will be left with only first 7 characters of the
1863 * object name ('my_obje'). Happy guessing, user, that the final map
1864 * name will be "my_obje.kconfig".
1865 * Now, with libbpf starting to support arbitrarily named .rodata.*
1866 * and .data.* data sections, it's possible that ELF section name is
1867 * longer than allowed 15 chars, so we now need to be careful to take
1868 * only up to 15 first characters of ELF name, taking no BPF object
1869 * name characters at all. So '.rodata.abracadabra' will result in
1870 * '.rodata.abracad' kernel and user-visible name.
1871 * We need to keep this convoluted logic intact for .data, .bss and
1872 * .rodata maps, but for new custom .data.custom and .rodata.custom
1873 * maps we use their ELF names as is, not prepending bpf_object name
1874 * in front. We still need to truncate them to 15 characters for the
1875 * kernel. Full name can be recovered for such maps by using DATASEC
1876 * BTF type associated with such map's value type, though.
1877 */
1878 if (sfx_len >= BPF_OBJ_NAME_LEN)
1879 sfx_len = BPF_OBJ_NAME_LEN - 1;
1880
1881 /* if there are two or more dots in map name, it's a custom dot map */
1882 if (strchr(real_name + 1, '.') != NULL)
1883 pfx_len = 0;
1884 else
1885 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1886
1887 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1888 sfx_len, real_name);
1889
1890 /* sanities map name to characters allowed by kernel */
1891 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1892 if (!isalnum(*p) && *p != '_' && *p != '.')
1893 *p = '_';
1894
1895 return strdup(map_name);
1896 }
1897
1898 static int
1899 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1900
1901 /* Internal BPF map is mmap()'able only if at least one of corresponding
1902 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1903 * variable and it's not marked as __hidden (which turns it into, effectively,
1904 * a STATIC variable).
1905 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1906 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1907 {
1908 const struct btf_type *t, *vt;
1909 struct btf_var_secinfo *vsi;
1910 int i, n;
1911
1912 if (!map->btf_value_type_id)
1913 return false;
1914
1915 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1916 if (!btf_is_datasec(t))
1917 return false;
1918
1919 vsi = btf_var_secinfos(t);
1920 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1921 vt = btf__type_by_id(obj->btf, vsi->type);
1922 if (!btf_is_var(vt))
1923 continue;
1924
1925 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1926 return true;
1927 }
1928
1929 return false;
1930 }
1931
1932 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1933 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1934 const char *real_name, int sec_idx, void *data, size_t data_sz)
1935 {
1936 struct bpf_map_def *def;
1937 struct bpf_map *map;
1938 size_t mmap_sz;
1939 int err;
1940
1941 map = bpf_object__add_map(obj);
1942 if (IS_ERR(map))
1943 return PTR_ERR(map);
1944
1945 map->libbpf_type = type;
1946 map->sec_idx = sec_idx;
1947 map->sec_offset = 0;
1948 map->real_name = strdup(real_name);
1949 map->name = internal_map_name(obj, real_name);
1950 if (!map->real_name || !map->name) {
1951 zfree(&map->real_name);
1952 zfree(&map->name);
1953 return -ENOMEM;
1954 }
1955
1956 def = &map->def;
1957 def->type = BPF_MAP_TYPE_ARRAY;
1958 def->key_size = sizeof(int);
1959 def->value_size = data_sz;
1960 def->max_entries = 1;
1961 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1962 ? BPF_F_RDONLY_PROG : 0;
1963
1964 /* failures are fine because of maps like .rodata.str1.1 */
1965 (void) map_fill_btf_type_info(obj, map);
1966
1967 if (map_is_mmapable(obj, map))
1968 def->map_flags |= BPF_F_MMAPABLE;
1969
1970 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1971 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1972
1973 mmap_sz = bpf_map_mmap_sz(map);
1974 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1975 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1976 if (map->mmaped == MAP_FAILED) {
1977 err = -errno;
1978 map->mmaped = NULL;
1979 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1980 zfree(&map->real_name);
1981 zfree(&map->name);
1982 return err;
1983 }
1984
1985 if (data)
1986 memcpy(map->mmaped, data, data_sz);
1987
1988 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1989 return 0;
1990 }
1991
bpf_object__init_global_data_maps(struct bpf_object * obj)1992 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1993 {
1994 struct elf_sec_desc *sec_desc;
1995 const char *sec_name;
1996 int err = 0, sec_idx;
1997
1998 /*
1999 * Populate obj->maps with libbpf internal maps.
2000 */
2001 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
2002 sec_desc = &obj->efile.secs[sec_idx];
2003
2004 /* Skip recognized sections with size 0. */
2005 if (!sec_desc->data || sec_desc->data->d_size == 0)
2006 continue;
2007
2008 switch (sec_desc->sec_type) {
2009 case SEC_DATA:
2010 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2011 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2012 sec_name, sec_idx,
2013 sec_desc->data->d_buf,
2014 sec_desc->data->d_size);
2015 break;
2016 case SEC_RODATA:
2017 obj->has_rodata = true;
2018 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2019 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2020 sec_name, sec_idx,
2021 sec_desc->data->d_buf,
2022 sec_desc->data->d_size);
2023 break;
2024 case SEC_BSS:
2025 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2026 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2027 sec_name, sec_idx,
2028 NULL,
2029 sec_desc->data->d_size);
2030 break;
2031 default:
2032 /* skip */
2033 break;
2034 }
2035 if (err)
2036 return err;
2037 }
2038 return 0;
2039 }
2040
2041
find_extern_by_name(const struct bpf_object * obj,const void * name)2042 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2043 const void *name)
2044 {
2045 int i;
2046
2047 for (i = 0; i < obj->nr_extern; i++) {
2048 if (strcmp(obj->externs[i].name, name) == 0)
2049 return &obj->externs[i];
2050 }
2051 return NULL;
2052 }
2053
find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2054 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2055 const void *name, int len)
2056 {
2057 const char *ext_name;
2058 int i;
2059
2060 for (i = 0; i < obj->nr_extern; i++) {
2061 ext_name = obj->externs[i].name;
2062 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2063 return &obj->externs[i];
2064 }
2065 return NULL;
2066 }
2067
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2068 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2069 char value)
2070 {
2071 switch (ext->kcfg.type) {
2072 case KCFG_BOOL:
2073 if (value == 'm') {
2074 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2075 ext->name, value);
2076 return -EINVAL;
2077 }
2078 *(bool *)ext_val = value == 'y' ? true : false;
2079 break;
2080 case KCFG_TRISTATE:
2081 if (value == 'y')
2082 *(enum libbpf_tristate *)ext_val = TRI_YES;
2083 else if (value == 'm')
2084 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
2085 else /* value == 'n' */
2086 *(enum libbpf_tristate *)ext_val = TRI_NO;
2087 break;
2088 case KCFG_CHAR:
2089 *(char *)ext_val = value;
2090 break;
2091 case KCFG_UNKNOWN:
2092 case KCFG_INT:
2093 case KCFG_CHAR_ARR:
2094 default:
2095 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2096 ext->name, value);
2097 return -EINVAL;
2098 }
2099 ext->is_set = true;
2100 return 0;
2101 }
2102
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2103 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2104 const char *value)
2105 {
2106 size_t len;
2107
2108 if (ext->kcfg.type != KCFG_CHAR_ARR) {
2109 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2110 ext->name, value);
2111 return -EINVAL;
2112 }
2113
2114 len = strlen(value);
2115 if (len < 2 || value[len - 1] != '"') {
2116 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2117 ext->name, value);
2118 return -EINVAL;
2119 }
2120
2121 /* strip quotes */
2122 len -= 2;
2123 if (len >= ext->kcfg.sz) {
2124 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2125 ext->name, value, len, ext->kcfg.sz - 1);
2126 len = ext->kcfg.sz - 1;
2127 }
2128 memcpy(ext_val, value + 1, len);
2129 ext_val[len] = '\0';
2130 ext->is_set = true;
2131 return 0;
2132 }
2133
parse_u64(const char * value,__u64 * res)2134 static int parse_u64(const char *value, __u64 *res)
2135 {
2136 char *value_end;
2137 int err;
2138
2139 errno = 0;
2140 *res = strtoull(value, &value_end, 0);
2141 if (errno) {
2142 err = -errno;
2143 pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2144 return err;
2145 }
2146 if (*value_end) {
2147 pr_warn("failed to parse '%s' as integer completely\n", value);
2148 return -EINVAL;
2149 }
2150 return 0;
2151 }
2152
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2153 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2154 {
2155 int bit_sz = ext->kcfg.sz * 8;
2156
2157 if (ext->kcfg.sz == 8)
2158 return true;
2159
2160 /* Validate that value stored in u64 fits in integer of `ext->sz`
2161 * bytes size without any loss of information. If the target integer
2162 * is signed, we rely on the following limits of integer type of
2163 * Y bits and subsequent transformation:
2164 *
2165 * -2^(Y-1) <= X <= 2^(Y-1) - 1
2166 * 0 <= X + 2^(Y-1) <= 2^Y - 1
2167 * 0 <= X + 2^(Y-1) < 2^Y
2168 *
2169 * For unsigned target integer, check that all the (64 - Y) bits are
2170 * zero.
2171 */
2172 if (ext->kcfg.is_signed)
2173 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2174 else
2175 return (v >> bit_sz) == 0;
2176 }
2177
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2178 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2179 __u64 value)
2180 {
2181 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2182 ext->kcfg.type != KCFG_BOOL) {
2183 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2184 ext->name, (unsigned long long)value);
2185 return -EINVAL;
2186 }
2187 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2188 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2189 ext->name, (unsigned long long)value);
2190 return -EINVAL;
2191
2192 }
2193 if (!is_kcfg_value_in_range(ext, value)) {
2194 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2195 ext->name, (unsigned long long)value, ext->kcfg.sz);
2196 return -ERANGE;
2197 }
2198 switch (ext->kcfg.sz) {
2199 case 1:
2200 *(__u8 *)ext_val = value;
2201 break;
2202 case 2:
2203 *(__u16 *)ext_val = value;
2204 break;
2205 case 4:
2206 *(__u32 *)ext_val = value;
2207 break;
2208 case 8:
2209 *(__u64 *)ext_val = value;
2210 break;
2211 default:
2212 return -EINVAL;
2213 }
2214 ext->is_set = true;
2215 return 0;
2216 }
2217
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2218 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2219 char *buf, void *data)
2220 {
2221 struct extern_desc *ext;
2222 char *sep, *value;
2223 int len, err = 0;
2224 void *ext_val;
2225 __u64 num;
2226
2227 if (!str_has_pfx(buf, "CONFIG_"))
2228 return 0;
2229
2230 sep = strchr(buf, '=');
2231 if (!sep) {
2232 pr_warn("failed to parse '%s': no separator\n", buf);
2233 return -EINVAL;
2234 }
2235
2236 /* Trim ending '\n' */
2237 len = strlen(buf);
2238 if (buf[len - 1] == '\n')
2239 buf[len - 1] = '\0';
2240 /* Split on '=' and ensure that a value is present. */
2241 *sep = '\0';
2242 if (!sep[1]) {
2243 *sep = '=';
2244 pr_warn("failed to parse '%s': no value\n", buf);
2245 return -EINVAL;
2246 }
2247
2248 ext = find_extern_by_name(obj, buf);
2249 if (!ext || ext->is_set)
2250 return 0;
2251
2252 ext_val = data + ext->kcfg.data_off;
2253 value = sep + 1;
2254
2255 switch (*value) {
2256 case 'y': case 'n': case 'm':
2257 err = set_kcfg_value_tri(ext, ext_val, *value);
2258 break;
2259 case '"':
2260 err = set_kcfg_value_str(ext, ext_val, value);
2261 break;
2262 default:
2263 /* assume integer */
2264 err = parse_u64(value, &num);
2265 if (err) {
2266 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2267 return err;
2268 }
2269 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2270 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2271 return -EINVAL;
2272 }
2273 err = set_kcfg_value_num(ext, ext_val, num);
2274 break;
2275 }
2276 if (err)
2277 return err;
2278 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2279 return 0;
2280 }
2281
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2282 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2283 {
2284 char buf[PATH_MAX];
2285 struct utsname uts;
2286 int len, err = 0;
2287 gzFile file;
2288
2289 uname(&uts);
2290 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2291 if (len < 0)
2292 return -EINVAL;
2293 else if (len >= PATH_MAX)
2294 return -ENAMETOOLONG;
2295
2296 /* gzopen also accepts uncompressed files. */
2297 file = gzopen(buf, "re");
2298 if (!file)
2299 file = gzopen("/proc/config.gz", "re");
2300
2301 if (!file) {
2302 pr_warn("failed to open system Kconfig\n");
2303 return -ENOENT;
2304 }
2305
2306 while (gzgets(file, buf, sizeof(buf))) {
2307 err = bpf_object__process_kconfig_line(obj, buf, data);
2308 if (err) {
2309 pr_warn("error parsing system Kconfig line '%s': %s\n",
2310 buf, errstr(err));
2311 goto out;
2312 }
2313 }
2314
2315 out:
2316 gzclose(file);
2317 return err;
2318 }
2319
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2320 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2321 const char *config, void *data)
2322 {
2323 char buf[PATH_MAX];
2324 int err = 0;
2325 FILE *file;
2326
2327 file = fmemopen((void *)config, strlen(config), "r");
2328 if (!file) {
2329 err = -errno;
2330 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2331 return err;
2332 }
2333
2334 while (fgets(buf, sizeof(buf), file)) {
2335 err = bpf_object__process_kconfig_line(obj, buf, data);
2336 if (err) {
2337 pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2338 buf, errstr(err));
2339 break;
2340 }
2341 }
2342
2343 fclose(file);
2344 return err;
2345 }
2346
bpf_object__init_kconfig_map(struct bpf_object * obj)2347 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2348 {
2349 struct extern_desc *last_ext = NULL, *ext;
2350 size_t map_sz;
2351 int i, err;
2352
2353 for (i = 0; i < obj->nr_extern; i++) {
2354 ext = &obj->externs[i];
2355 if (ext->type == EXT_KCFG)
2356 last_ext = ext;
2357 }
2358
2359 if (!last_ext)
2360 return 0;
2361
2362 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2363 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2364 ".kconfig", obj->efile.symbols_shndx,
2365 NULL, map_sz);
2366 if (err)
2367 return err;
2368
2369 obj->kconfig_map_idx = obj->nr_maps - 1;
2370
2371 return 0;
2372 }
2373
2374 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2375 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2376 {
2377 const struct btf_type *t = btf__type_by_id(btf, id);
2378
2379 if (res_id)
2380 *res_id = id;
2381
2382 while (btf_is_mod(t) || btf_is_typedef(t)) {
2383 if (res_id)
2384 *res_id = t->type;
2385 t = btf__type_by_id(btf, t->type);
2386 }
2387
2388 return t;
2389 }
2390
2391 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2392 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2393 {
2394 const struct btf_type *t;
2395
2396 t = skip_mods_and_typedefs(btf, id, NULL);
2397 if (!btf_is_ptr(t))
2398 return NULL;
2399
2400 t = skip_mods_and_typedefs(btf, t->type, res_id);
2401
2402 return btf_is_func_proto(t) ? t : NULL;
2403 }
2404
__btf_kind_str(__u16 kind)2405 static const char *__btf_kind_str(__u16 kind)
2406 {
2407 switch (kind) {
2408 case BTF_KIND_UNKN: return "void";
2409 case BTF_KIND_INT: return "int";
2410 case BTF_KIND_PTR: return "ptr";
2411 case BTF_KIND_ARRAY: return "array";
2412 case BTF_KIND_STRUCT: return "struct";
2413 case BTF_KIND_UNION: return "union";
2414 case BTF_KIND_ENUM: return "enum";
2415 case BTF_KIND_FWD: return "fwd";
2416 case BTF_KIND_TYPEDEF: return "typedef";
2417 case BTF_KIND_VOLATILE: return "volatile";
2418 case BTF_KIND_CONST: return "const";
2419 case BTF_KIND_RESTRICT: return "restrict";
2420 case BTF_KIND_FUNC: return "func";
2421 case BTF_KIND_FUNC_PROTO: return "func_proto";
2422 case BTF_KIND_VAR: return "var";
2423 case BTF_KIND_DATASEC: return "datasec";
2424 case BTF_KIND_FLOAT: return "float";
2425 case BTF_KIND_DECL_TAG: return "decl_tag";
2426 case BTF_KIND_TYPE_TAG: return "type_tag";
2427 case BTF_KIND_ENUM64: return "enum64";
2428 default: return "unknown";
2429 }
2430 }
2431
btf_kind_str(const struct btf_type * t)2432 const char *btf_kind_str(const struct btf_type *t)
2433 {
2434 return __btf_kind_str(btf_kind(t));
2435 }
2436
2437 /*
2438 * Fetch integer attribute of BTF map definition. Such attributes are
2439 * represented using a pointer to an array, in which dimensionality of array
2440 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2441 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2442 * type definition, while using only sizeof(void *) space in ELF data section.
2443 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2444 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2445 const struct btf_member *m, __u32 *res)
2446 {
2447 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2448 const char *name = btf__name_by_offset(btf, m->name_off);
2449 const struct btf_array *arr_info;
2450 const struct btf_type *arr_t;
2451
2452 if (!btf_is_ptr(t)) {
2453 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2454 map_name, name, btf_kind_str(t));
2455 return false;
2456 }
2457
2458 arr_t = btf__type_by_id(btf, t->type);
2459 if (!arr_t) {
2460 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2461 map_name, name, t->type);
2462 return false;
2463 }
2464 if (!btf_is_array(arr_t)) {
2465 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2466 map_name, name, btf_kind_str(arr_t));
2467 return false;
2468 }
2469 arr_info = btf_array(arr_t);
2470 *res = arr_info->nelems;
2471 return true;
2472 }
2473
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2474 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2475 const struct btf_member *m, __u64 *res)
2476 {
2477 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2478 const char *name = btf__name_by_offset(btf, m->name_off);
2479
2480 if (btf_is_ptr(t)) {
2481 __u32 res32;
2482 bool ret;
2483
2484 ret = get_map_field_int(map_name, btf, m, &res32);
2485 if (ret)
2486 *res = (__u64)res32;
2487 return ret;
2488 }
2489
2490 if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2491 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2492 map_name, name, btf_kind_str(t));
2493 return false;
2494 }
2495
2496 if (btf_vlen(t) != 1) {
2497 pr_warn("map '%s': attr '%s': invalid __ulong\n",
2498 map_name, name);
2499 return false;
2500 }
2501
2502 if (btf_is_enum(t)) {
2503 const struct btf_enum *e = btf_enum(t);
2504
2505 *res = e->val;
2506 } else {
2507 const struct btf_enum64 *e = btf_enum64(t);
2508
2509 *res = btf_enum64_value(e);
2510 }
2511 return true;
2512 }
2513
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2514 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2515 {
2516 int len;
2517
2518 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2519 if (len < 0)
2520 return -EINVAL;
2521 if (len >= buf_sz)
2522 return -ENAMETOOLONG;
2523
2524 return 0;
2525 }
2526
build_map_pin_path(struct bpf_map * map,const char * path)2527 static int build_map_pin_path(struct bpf_map *map, const char *path)
2528 {
2529 char buf[PATH_MAX];
2530 int err;
2531
2532 if (!path)
2533 path = BPF_FS_DEFAULT_PATH;
2534
2535 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2536 if (err)
2537 return err;
2538
2539 return bpf_map__set_pin_path(map, buf);
2540 }
2541
2542 /* should match definition in bpf_helpers.h */
2543 enum libbpf_pin_type {
2544 LIBBPF_PIN_NONE,
2545 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2546 LIBBPF_PIN_BY_NAME,
2547 };
2548
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2549 int parse_btf_map_def(const char *map_name, struct btf *btf,
2550 const struct btf_type *def_t, bool strict,
2551 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2552 {
2553 const struct btf_type *t;
2554 const struct btf_member *m;
2555 bool is_inner = inner_def == NULL;
2556 int vlen, i;
2557
2558 vlen = btf_vlen(def_t);
2559 m = btf_members(def_t);
2560 for (i = 0; i < vlen; i++, m++) {
2561 const char *name = btf__name_by_offset(btf, m->name_off);
2562
2563 if (!name) {
2564 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2565 return -EINVAL;
2566 }
2567 if (strcmp(name, "type") == 0) {
2568 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2569 return -EINVAL;
2570 map_def->parts |= MAP_DEF_MAP_TYPE;
2571 } else if (strcmp(name, "max_entries") == 0) {
2572 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2573 return -EINVAL;
2574 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2575 } else if (strcmp(name, "map_flags") == 0) {
2576 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2577 return -EINVAL;
2578 map_def->parts |= MAP_DEF_MAP_FLAGS;
2579 } else if (strcmp(name, "numa_node") == 0) {
2580 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2581 return -EINVAL;
2582 map_def->parts |= MAP_DEF_NUMA_NODE;
2583 } else if (strcmp(name, "key_size") == 0) {
2584 __u32 sz;
2585
2586 if (!get_map_field_int(map_name, btf, m, &sz))
2587 return -EINVAL;
2588 if (map_def->key_size && map_def->key_size != sz) {
2589 pr_warn("map '%s': conflicting key size %u != %u.\n",
2590 map_name, map_def->key_size, sz);
2591 return -EINVAL;
2592 }
2593 map_def->key_size = sz;
2594 map_def->parts |= MAP_DEF_KEY_SIZE;
2595 } else if (strcmp(name, "key") == 0) {
2596 __s64 sz;
2597
2598 t = btf__type_by_id(btf, m->type);
2599 if (!t) {
2600 pr_warn("map '%s': key type [%d] not found.\n",
2601 map_name, m->type);
2602 return -EINVAL;
2603 }
2604 if (!btf_is_ptr(t)) {
2605 pr_warn("map '%s': key spec is not PTR: %s.\n",
2606 map_name, btf_kind_str(t));
2607 return -EINVAL;
2608 }
2609 sz = btf__resolve_size(btf, t->type);
2610 if (sz < 0) {
2611 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2612 map_name, t->type, (ssize_t)sz);
2613 return sz;
2614 }
2615 if (map_def->key_size && map_def->key_size != sz) {
2616 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2617 map_name, map_def->key_size, (ssize_t)sz);
2618 return -EINVAL;
2619 }
2620 map_def->key_size = sz;
2621 map_def->key_type_id = t->type;
2622 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2623 } else if (strcmp(name, "value_size") == 0) {
2624 __u32 sz;
2625
2626 if (!get_map_field_int(map_name, btf, m, &sz))
2627 return -EINVAL;
2628 if (map_def->value_size && map_def->value_size != sz) {
2629 pr_warn("map '%s': conflicting value size %u != %u.\n",
2630 map_name, map_def->value_size, sz);
2631 return -EINVAL;
2632 }
2633 map_def->value_size = sz;
2634 map_def->parts |= MAP_DEF_VALUE_SIZE;
2635 } else if (strcmp(name, "value") == 0) {
2636 __s64 sz;
2637
2638 t = btf__type_by_id(btf, m->type);
2639 if (!t) {
2640 pr_warn("map '%s': value type [%d] not found.\n",
2641 map_name, m->type);
2642 return -EINVAL;
2643 }
2644 if (!btf_is_ptr(t)) {
2645 pr_warn("map '%s': value spec is not PTR: %s.\n",
2646 map_name, btf_kind_str(t));
2647 return -EINVAL;
2648 }
2649 sz = btf__resolve_size(btf, t->type);
2650 if (sz < 0) {
2651 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2652 map_name, t->type, (ssize_t)sz);
2653 return sz;
2654 }
2655 if (map_def->value_size && map_def->value_size != sz) {
2656 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2657 map_name, map_def->value_size, (ssize_t)sz);
2658 return -EINVAL;
2659 }
2660 map_def->value_size = sz;
2661 map_def->value_type_id = t->type;
2662 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2663 }
2664 else if (strcmp(name, "values") == 0) {
2665 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2666 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2667 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2668 char inner_map_name[128];
2669 int err;
2670
2671 if (is_inner) {
2672 pr_warn("map '%s': multi-level inner maps not supported.\n",
2673 map_name);
2674 return -ENOTSUP;
2675 }
2676 if (i != vlen - 1) {
2677 pr_warn("map '%s': '%s' member should be last.\n",
2678 map_name, name);
2679 return -EINVAL;
2680 }
2681 if (!is_map_in_map && !is_prog_array) {
2682 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2683 map_name);
2684 return -ENOTSUP;
2685 }
2686 if (map_def->value_size && map_def->value_size != 4) {
2687 pr_warn("map '%s': conflicting value size %u != 4.\n",
2688 map_name, map_def->value_size);
2689 return -EINVAL;
2690 }
2691 map_def->value_size = 4;
2692 t = btf__type_by_id(btf, m->type);
2693 if (!t) {
2694 pr_warn("map '%s': %s type [%d] not found.\n",
2695 map_name, desc, m->type);
2696 return -EINVAL;
2697 }
2698 if (!btf_is_array(t) || btf_array(t)->nelems) {
2699 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2700 map_name, desc);
2701 return -EINVAL;
2702 }
2703 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2704 if (!btf_is_ptr(t)) {
2705 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2706 map_name, desc, btf_kind_str(t));
2707 return -EINVAL;
2708 }
2709 t = skip_mods_and_typedefs(btf, t->type, NULL);
2710 if (is_prog_array) {
2711 if (!btf_is_func_proto(t)) {
2712 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2713 map_name, btf_kind_str(t));
2714 return -EINVAL;
2715 }
2716 continue;
2717 }
2718 if (!btf_is_struct(t)) {
2719 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2720 map_name, btf_kind_str(t));
2721 return -EINVAL;
2722 }
2723
2724 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2725 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2726 if (err)
2727 return err;
2728
2729 map_def->parts |= MAP_DEF_INNER_MAP;
2730 } else if (strcmp(name, "pinning") == 0) {
2731 __u32 val;
2732
2733 if (is_inner) {
2734 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2735 return -EINVAL;
2736 }
2737 if (!get_map_field_int(map_name, btf, m, &val))
2738 return -EINVAL;
2739 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2740 pr_warn("map '%s': invalid pinning value %u.\n",
2741 map_name, val);
2742 return -EINVAL;
2743 }
2744 map_def->pinning = val;
2745 map_def->parts |= MAP_DEF_PINNING;
2746 } else if (strcmp(name, "map_extra") == 0) {
2747 __u64 map_extra;
2748
2749 if (!get_map_field_long(map_name, btf, m, &map_extra))
2750 return -EINVAL;
2751 map_def->map_extra = map_extra;
2752 map_def->parts |= MAP_DEF_MAP_EXTRA;
2753 } else {
2754 if (strict) {
2755 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2756 return -ENOTSUP;
2757 }
2758 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2759 }
2760 }
2761
2762 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2763 pr_warn("map '%s': map type isn't specified.\n", map_name);
2764 return -EINVAL;
2765 }
2766
2767 return 0;
2768 }
2769
adjust_ringbuf_sz(size_t sz)2770 static size_t adjust_ringbuf_sz(size_t sz)
2771 {
2772 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2773 __u32 mul;
2774
2775 /* if user forgot to set any size, make sure they see error */
2776 if (sz == 0)
2777 return 0;
2778 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2779 * a power-of-2 multiple of kernel's page size. If user diligently
2780 * satisified these conditions, pass the size through.
2781 */
2782 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2783 return sz;
2784
2785 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2786 * user-set size to satisfy both user size request and kernel
2787 * requirements and substitute correct max_entries for map creation.
2788 */
2789 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2790 if (mul * page_sz > sz)
2791 return mul * page_sz;
2792 }
2793
2794 /* if it's impossible to satisfy the conditions (i.e., user size is
2795 * very close to UINT_MAX but is not a power-of-2 multiple of
2796 * page_size) then just return original size and let kernel reject it
2797 */
2798 return sz;
2799 }
2800
map_is_ringbuf(const struct bpf_map * map)2801 static bool map_is_ringbuf(const struct bpf_map *map)
2802 {
2803 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2804 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2805 }
2806
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2807 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2808 {
2809 map->def.type = def->map_type;
2810 map->def.key_size = def->key_size;
2811 map->def.value_size = def->value_size;
2812 map->def.max_entries = def->max_entries;
2813 map->def.map_flags = def->map_flags;
2814 map->map_extra = def->map_extra;
2815
2816 map->numa_node = def->numa_node;
2817 map->btf_key_type_id = def->key_type_id;
2818 map->btf_value_type_id = def->value_type_id;
2819
2820 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2821 if (map_is_ringbuf(map))
2822 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2823
2824 if (def->parts & MAP_DEF_MAP_TYPE)
2825 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2826
2827 if (def->parts & MAP_DEF_KEY_TYPE)
2828 pr_debug("map '%s': found key [%u], sz = %u.\n",
2829 map->name, def->key_type_id, def->key_size);
2830 else if (def->parts & MAP_DEF_KEY_SIZE)
2831 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2832
2833 if (def->parts & MAP_DEF_VALUE_TYPE)
2834 pr_debug("map '%s': found value [%u], sz = %u.\n",
2835 map->name, def->value_type_id, def->value_size);
2836 else if (def->parts & MAP_DEF_VALUE_SIZE)
2837 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2838
2839 if (def->parts & MAP_DEF_MAX_ENTRIES)
2840 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2841 if (def->parts & MAP_DEF_MAP_FLAGS)
2842 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2843 if (def->parts & MAP_DEF_MAP_EXTRA)
2844 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2845 (unsigned long long)def->map_extra);
2846 if (def->parts & MAP_DEF_PINNING)
2847 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2848 if (def->parts & MAP_DEF_NUMA_NODE)
2849 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2850
2851 if (def->parts & MAP_DEF_INNER_MAP)
2852 pr_debug("map '%s': found inner map definition.\n", map->name);
2853 }
2854
btf_var_linkage_str(__u32 linkage)2855 static const char *btf_var_linkage_str(__u32 linkage)
2856 {
2857 switch (linkage) {
2858 case BTF_VAR_STATIC: return "static";
2859 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2860 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2861 default: return "unknown";
2862 }
2863 }
2864
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2865 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2866 const struct btf_type *sec,
2867 int var_idx, int sec_idx,
2868 const Elf_Data *data, bool strict,
2869 const char *pin_root_path)
2870 {
2871 struct btf_map_def map_def = {}, inner_def = {};
2872 const struct btf_type *var, *def;
2873 const struct btf_var_secinfo *vi;
2874 const struct btf_var *var_extra;
2875 const char *map_name;
2876 struct bpf_map *map;
2877 int err;
2878
2879 vi = btf_var_secinfos(sec) + var_idx;
2880 var = btf__type_by_id(obj->btf, vi->type);
2881 var_extra = btf_var(var);
2882 map_name = btf__name_by_offset(obj->btf, var->name_off);
2883
2884 if (map_name == NULL || map_name[0] == '\0') {
2885 pr_warn("map #%d: empty name.\n", var_idx);
2886 return -EINVAL;
2887 }
2888 if ((__u64)vi->offset + vi->size > data->d_size) {
2889 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2890 return -EINVAL;
2891 }
2892 if (!btf_is_var(var)) {
2893 pr_warn("map '%s': unexpected var kind %s.\n",
2894 map_name, btf_kind_str(var));
2895 return -EINVAL;
2896 }
2897 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2898 pr_warn("map '%s': unsupported map linkage %s.\n",
2899 map_name, btf_var_linkage_str(var_extra->linkage));
2900 return -EOPNOTSUPP;
2901 }
2902
2903 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2904 if (!btf_is_struct(def)) {
2905 pr_warn("map '%s': unexpected def kind %s.\n",
2906 map_name, btf_kind_str(var));
2907 return -EINVAL;
2908 }
2909 if (def->size > vi->size) {
2910 pr_warn("map '%s': invalid def size.\n", map_name);
2911 return -EINVAL;
2912 }
2913
2914 map = bpf_object__add_map(obj);
2915 if (IS_ERR(map))
2916 return PTR_ERR(map);
2917 map->name = strdup(map_name);
2918 if (!map->name) {
2919 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2920 return -ENOMEM;
2921 }
2922 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2923 map->def.type = BPF_MAP_TYPE_UNSPEC;
2924 map->sec_idx = sec_idx;
2925 map->sec_offset = vi->offset;
2926 map->btf_var_idx = var_idx;
2927 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2928 map_name, map->sec_idx, map->sec_offset);
2929
2930 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2931 if (err)
2932 return err;
2933
2934 fill_map_from_def(map, &map_def);
2935
2936 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2937 err = build_map_pin_path(map, pin_root_path);
2938 if (err) {
2939 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2940 return err;
2941 }
2942 }
2943
2944 if (map_def.parts & MAP_DEF_INNER_MAP) {
2945 map->inner_map = calloc(1, sizeof(*map->inner_map));
2946 if (!map->inner_map)
2947 return -ENOMEM;
2948 map->inner_map->fd = create_placeholder_fd();
2949 if (map->inner_map->fd < 0)
2950 return map->inner_map->fd;
2951 map->inner_map->sec_idx = sec_idx;
2952 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2953 if (!map->inner_map->name)
2954 return -ENOMEM;
2955 sprintf(map->inner_map->name, "%s.inner", map_name);
2956
2957 fill_map_from_def(map->inner_map, &inner_def);
2958 }
2959
2960 err = map_fill_btf_type_info(obj, map);
2961 if (err)
2962 return err;
2963
2964 return 0;
2965 }
2966
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2967 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2968 const char *sec_name, int sec_idx,
2969 void *data, size_t data_sz)
2970 {
2971 const long page_sz = sysconf(_SC_PAGE_SIZE);
2972 size_t mmap_sz;
2973
2974 mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2975 if (roundup(data_sz, page_sz) > mmap_sz) {
2976 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2977 sec_name, mmap_sz, data_sz);
2978 return -E2BIG;
2979 }
2980
2981 obj->arena_data = malloc(data_sz);
2982 if (!obj->arena_data)
2983 return -ENOMEM;
2984 memcpy(obj->arena_data, data, data_sz);
2985 obj->arena_data_sz = data_sz;
2986
2987 /* make bpf_map__init_value() work for ARENA maps */
2988 map->mmaped = obj->arena_data;
2989
2990 return 0;
2991 }
2992
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2993 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2994 const char *pin_root_path)
2995 {
2996 const struct btf_type *sec = NULL;
2997 int nr_types, i, vlen, err;
2998 const struct btf_type *t;
2999 const char *name;
3000 Elf_Data *data;
3001 Elf_Scn *scn;
3002
3003 if (obj->efile.btf_maps_shndx < 0)
3004 return 0;
3005
3006 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
3007 data = elf_sec_data(obj, scn);
3008 if (!scn || !data) {
3009 pr_warn("elf: failed to get %s map definitions for %s\n",
3010 MAPS_ELF_SEC, obj->path);
3011 return -EINVAL;
3012 }
3013
3014 nr_types = btf__type_cnt(obj->btf);
3015 for (i = 1; i < nr_types; i++) {
3016 t = btf__type_by_id(obj->btf, i);
3017 if (!btf_is_datasec(t))
3018 continue;
3019 name = btf__name_by_offset(obj->btf, t->name_off);
3020 if (strcmp(name, MAPS_ELF_SEC) == 0) {
3021 sec = t;
3022 obj->efile.btf_maps_sec_btf_id = i;
3023 break;
3024 }
3025 }
3026
3027 if (!sec) {
3028 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3029 return -ENOENT;
3030 }
3031
3032 vlen = btf_vlen(sec);
3033 for (i = 0; i < vlen; i++) {
3034 err = bpf_object__init_user_btf_map(obj, sec, i,
3035 obj->efile.btf_maps_shndx,
3036 data, strict,
3037 pin_root_path);
3038 if (err)
3039 return err;
3040 }
3041
3042 for (i = 0; i < obj->nr_maps; i++) {
3043 struct bpf_map *map = &obj->maps[i];
3044
3045 if (map->def.type != BPF_MAP_TYPE_ARENA)
3046 continue;
3047
3048 if (obj->arena_map) {
3049 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3050 map->name, obj->arena_map->name);
3051 return -EINVAL;
3052 }
3053 obj->arena_map = map;
3054
3055 if (obj->efile.arena_data) {
3056 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3057 obj->efile.arena_data->d_buf,
3058 obj->efile.arena_data->d_size);
3059 if (err)
3060 return err;
3061 }
3062 }
3063 if (obj->efile.arena_data && !obj->arena_map) {
3064 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3065 ARENA_SEC);
3066 return -ENOENT;
3067 }
3068
3069 return 0;
3070 }
3071
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3072 static int bpf_object__init_maps(struct bpf_object *obj,
3073 const struct bpf_object_open_opts *opts)
3074 {
3075 const char *pin_root_path;
3076 bool strict;
3077 int err = 0;
3078
3079 strict = !OPTS_GET(opts, relaxed_maps, false);
3080 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3081
3082 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3083 err = err ?: bpf_object__init_global_data_maps(obj);
3084 err = err ?: bpf_object__init_kconfig_map(obj);
3085 err = err ?: bpf_object_init_struct_ops(obj);
3086
3087 return err;
3088 }
3089
section_have_execinstr(struct bpf_object * obj,int idx)3090 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3091 {
3092 Elf64_Shdr *sh;
3093
3094 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3095 if (!sh)
3096 return false;
3097
3098 return sh->sh_flags & SHF_EXECINSTR;
3099 }
3100
starts_with_qmark(const char * s)3101 static bool starts_with_qmark(const char *s)
3102 {
3103 return s && s[0] == '?';
3104 }
3105
btf_needs_sanitization(struct bpf_object * obj)3106 static bool btf_needs_sanitization(struct bpf_object *obj)
3107 {
3108 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3109 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3110 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3111 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3112 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3113 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3114 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3115 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3116
3117 return !has_func || !has_datasec || !has_func_global || !has_float ||
3118 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3119 }
3120
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3121 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3122 {
3123 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3124 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3125 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3126 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3127 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3128 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3129 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3130 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3131 int enum64_placeholder_id = 0;
3132 struct btf_type *t;
3133 int i, j, vlen;
3134
3135 for (i = 1; i < btf__type_cnt(btf); i++) {
3136 t = (struct btf_type *)btf__type_by_id(btf, i);
3137
3138 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3139 /* replace VAR/DECL_TAG with INT */
3140 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3141 /*
3142 * using size = 1 is the safest choice, 4 will be too
3143 * big and cause kernel BTF validation failure if
3144 * original variable took less than 4 bytes
3145 */
3146 t->size = 1;
3147 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3148 } else if (!has_datasec && btf_is_datasec(t)) {
3149 /* replace DATASEC with STRUCT */
3150 const struct btf_var_secinfo *v = btf_var_secinfos(t);
3151 struct btf_member *m = btf_members(t);
3152 struct btf_type *vt;
3153 char *name;
3154
3155 name = (char *)btf__name_by_offset(btf, t->name_off);
3156 while (*name) {
3157 if (*name == '.' || *name == '?')
3158 *name = '_';
3159 name++;
3160 }
3161
3162 vlen = btf_vlen(t);
3163 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3164 for (j = 0; j < vlen; j++, v++, m++) {
3165 /* order of field assignments is important */
3166 m->offset = v->offset * 8;
3167 m->type = v->type;
3168 /* preserve variable name as member name */
3169 vt = (void *)btf__type_by_id(btf, v->type);
3170 m->name_off = vt->name_off;
3171 }
3172 } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3173 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3174 /* replace '?' prefix with '_' for DATASEC names */
3175 char *name;
3176
3177 name = (char *)btf__name_by_offset(btf, t->name_off);
3178 if (name[0] == '?')
3179 name[0] = '_';
3180 } else if (!has_func && btf_is_func_proto(t)) {
3181 /* replace FUNC_PROTO with ENUM */
3182 vlen = btf_vlen(t);
3183 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3184 t->size = sizeof(__u32); /* kernel enforced */
3185 } else if (!has_func && btf_is_func(t)) {
3186 /* replace FUNC with TYPEDEF */
3187 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3188 } else if (!has_func_global && btf_is_func(t)) {
3189 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3190 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3191 } else if (!has_float && btf_is_float(t)) {
3192 /* replace FLOAT with an equally-sized empty STRUCT;
3193 * since C compilers do not accept e.g. "float" as a
3194 * valid struct name, make it anonymous
3195 */
3196 t->name_off = 0;
3197 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3198 } else if (!has_type_tag && btf_is_type_tag(t)) {
3199 /* replace TYPE_TAG with a CONST */
3200 t->name_off = 0;
3201 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3202 } else if (!has_enum64 && btf_is_enum(t)) {
3203 /* clear the kflag */
3204 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3205 } else if (!has_enum64 && btf_is_enum64(t)) {
3206 /* replace ENUM64 with a union */
3207 struct btf_member *m;
3208
3209 if (enum64_placeholder_id == 0) {
3210 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3211 if (enum64_placeholder_id < 0)
3212 return enum64_placeholder_id;
3213
3214 t = (struct btf_type *)btf__type_by_id(btf, i);
3215 }
3216
3217 m = btf_members(t);
3218 vlen = btf_vlen(t);
3219 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3220 for (j = 0; j < vlen; j++, m++) {
3221 m->type = enum64_placeholder_id;
3222 m->offset = 0;
3223 }
3224 }
3225 }
3226
3227 return 0;
3228 }
3229
libbpf_needs_btf(const struct bpf_object * obj)3230 static bool libbpf_needs_btf(const struct bpf_object *obj)
3231 {
3232 return obj->efile.btf_maps_shndx >= 0 ||
3233 obj->efile.has_st_ops ||
3234 obj->nr_extern > 0;
3235 }
3236
kernel_needs_btf(const struct bpf_object * obj)3237 static bool kernel_needs_btf(const struct bpf_object *obj)
3238 {
3239 return obj->efile.has_st_ops;
3240 }
3241
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3242 static int bpf_object__init_btf(struct bpf_object *obj,
3243 Elf_Data *btf_data,
3244 Elf_Data *btf_ext_data)
3245 {
3246 int err = -ENOENT;
3247
3248 if (btf_data) {
3249 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3250 err = libbpf_get_error(obj->btf);
3251 if (err) {
3252 obj->btf = NULL;
3253 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3254 goto out;
3255 }
3256 /* enforce 8-byte pointers for BPF-targeted BTFs */
3257 btf__set_pointer_size(obj->btf, 8);
3258 }
3259 if (btf_ext_data) {
3260 struct btf_ext_info *ext_segs[3];
3261 int seg_num, sec_num;
3262
3263 if (!obj->btf) {
3264 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3265 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3266 goto out;
3267 }
3268 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3269 err = libbpf_get_error(obj->btf_ext);
3270 if (err) {
3271 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3272 BTF_EXT_ELF_SEC, errstr(err));
3273 obj->btf_ext = NULL;
3274 goto out;
3275 }
3276
3277 /* setup .BTF.ext to ELF section mapping */
3278 ext_segs[0] = &obj->btf_ext->func_info;
3279 ext_segs[1] = &obj->btf_ext->line_info;
3280 ext_segs[2] = &obj->btf_ext->core_relo_info;
3281 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3282 struct btf_ext_info *seg = ext_segs[seg_num];
3283 const struct btf_ext_info_sec *sec;
3284 const char *sec_name;
3285 Elf_Scn *scn;
3286
3287 if (seg->sec_cnt == 0)
3288 continue;
3289
3290 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3291 if (!seg->sec_idxs) {
3292 err = -ENOMEM;
3293 goto out;
3294 }
3295
3296 sec_num = 0;
3297 for_each_btf_ext_sec(seg, sec) {
3298 /* preventively increment index to avoid doing
3299 * this before every continue below
3300 */
3301 sec_num++;
3302
3303 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3304 if (str_is_empty(sec_name))
3305 continue;
3306 scn = elf_sec_by_name(obj, sec_name);
3307 if (!scn)
3308 continue;
3309
3310 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3311 }
3312 }
3313 }
3314 out:
3315 if (err && libbpf_needs_btf(obj)) {
3316 pr_warn("BTF is required, but is missing or corrupted.\n");
3317 return err;
3318 }
3319 return 0;
3320 }
3321
compare_vsi_off(const void * _a,const void * _b)3322 static int compare_vsi_off(const void *_a, const void *_b)
3323 {
3324 const struct btf_var_secinfo *a = _a;
3325 const struct btf_var_secinfo *b = _b;
3326
3327 return a->offset - b->offset;
3328 }
3329
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3330 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3331 struct btf_type *t)
3332 {
3333 __u32 size = 0, i, vars = btf_vlen(t);
3334 const char *sec_name = btf__name_by_offset(btf, t->name_off);
3335 struct btf_var_secinfo *vsi;
3336 bool fixup_offsets = false;
3337 int err;
3338
3339 if (!sec_name) {
3340 pr_debug("No name found in string section for DATASEC kind.\n");
3341 return -ENOENT;
3342 }
3343
3344 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3345 * variable offsets set at the previous step. Further, not every
3346 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3347 * all fixups altogether for such sections and go straight to sorting
3348 * VARs within their DATASEC.
3349 */
3350 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3351 goto sort_vars;
3352
3353 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3354 * fix this up. But BPF static linker already fixes this up and fills
3355 * all the sizes and offsets during static linking. So this step has
3356 * to be optional. But the STV_HIDDEN handling is non-optional for any
3357 * non-extern DATASEC, so the variable fixup loop below handles both
3358 * functions at the same time, paying the cost of BTF VAR <-> ELF
3359 * symbol matching just once.
3360 */
3361 if (t->size == 0) {
3362 err = find_elf_sec_sz(obj, sec_name, &size);
3363 if (err || !size) {
3364 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3365 sec_name, size, errstr(err));
3366 return -ENOENT;
3367 }
3368
3369 t->size = size;
3370 fixup_offsets = true;
3371 }
3372
3373 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3374 const struct btf_type *t_var;
3375 struct btf_var *var;
3376 const char *var_name;
3377 Elf64_Sym *sym;
3378
3379 t_var = btf__type_by_id(btf, vsi->type);
3380 if (!t_var || !btf_is_var(t_var)) {
3381 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3382 return -EINVAL;
3383 }
3384
3385 var = btf_var(t_var);
3386 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3387 continue;
3388
3389 var_name = btf__name_by_offset(btf, t_var->name_off);
3390 if (!var_name) {
3391 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3392 sec_name, i);
3393 return -ENOENT;
3394 }
3395
3396 sym = find_elf_var_sym(obj, var_name);
3397 if (IS_ERR(sym)) {
3398 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3399 sec_name, var_name);
3400 return -ENOENT;
3401 }
3402
3403 if (fixup_offsets)
3404 vsi->offset = sym->st_value;
3405
3406 /* if variable is a global/weak symbol, but has restricted
3407 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3408 * as static. This follows similar logic for functions (BPF
3409 * subprogs) and influences libbpf's further decisions about
3410 * whether to make global data BPF array maps as
3411 * BPF_F_MMAPABLE.
3412 */
3413 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3414 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3415 var->linkage = BTF_VAR_STATIC;
3416 }
3417
3418 sort_vars:
3419 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3420 return 0;
3421 }
3422
bpf_object_fixup_btf(struct bpf_object * obj)3423 static int bpf_object_fixup_btf(struct bpf_object *obj)
3424 {
3425 int i, n, err = 0;
3426
3427 if (!obj->btf)
3428 return 0;
3429
3430 n = btf__type_cnt(obj->btf);
3431 for (i = 1; i < n; i++) {
3432 struct btf_type *t = btf_type_by_id(obj->btf, i);
3433
3434 /* Loader needs to fix up some of the things compiler
3435 * couldn't get its hands on while emitting BTF. This
3436 * is section size and global variable offset. We use
3437 * the info from the ELF itself for this purpose.
3438 */
3439 if (btf_is_datasec(t)) {
3440 err = btf_fixup_datasec(obj, obj->btf, t);
3441 if (err)
3442 return err;
3443 }
3444 }
3445
3446 return 0;
3447 }
3448
prog_needs_vmlinux_btf(struct bpf_program * prog)3449 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3450 {
3451 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3452 prog->type == BPF_PROG_TYPE_LSM)
3453 return true;
3454
3455 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3456 * also need vmlinux BTF
3457 */
3458 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3459 return true;
3460
3461 return false;
3462 }
3463
map_needs_vmlinux_btf(struct bpf_map * map)3464 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3465 {
3466 return bpf_map__is_struct_ops(map);
3467 }
3468
obj_needs_vmlinux_btf(const struct bpf_object * obj)3469 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3470 {
3471 struct bpf_program *prog;
3472 struct bpf_map *map;
3473 int i;
3474
3475 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3476 * is not specified
3477 */
3478 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3479 return true;
3480
3481 /* Support for typed ksyms needs kernel BTF */
3482 for (i = 0; i < obj->nr_extern; i++) {
3483 const struct extern_desc *ext;
3484
3485 ext = &obj->externs[i];
3486 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3487 return true;
3488 }
3489
3490 bpf_object__for_each_program(prog, obj) {
3491 if (!prog->autoload)
3492 continue;
3493 if (prog_needs_vmlinux_btf(prog))
3494 return true;
3495 }
3496
3497 bpf_object__for_each_map(map, obj) {
3498 if (map_needs_vmlinux_btf(map))
3499 return true;
3500 }
3501
3502 return false;
3503 }
3504
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3505 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3506 {
3507 int err;
3508
3509 /* btf_vmlinux could be loaded earlier */
3510 if (obj->btf_vmlinux || obj->gen_loader)
3511 return 0;
3512
3513 if (!force && !obj_needs_vmlinux_btf(obj))
3514 return 0;
3515
3516 obj->btf_vmlinux = btf__load_vmlinux_btf();
3517 err = libbpf_get_error(obj->btf_vmlinux);
3518 if (err) {
3519 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3520 obj->btf_vmlinux = NULL;
3521 return err;
3522 }
3523 return 0;
3524 }
3525
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3526 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3527 {
3528 struct btf *kern_btf = obj->btf;
3529 bool btf_mandatory, sanitize;
3530 int i, err = 0;
3531
3532 if (!obj->btf)
3533 return 0;
3534
3535 if (!kernel_supports(obj, FEAT_BTF)) {
3536 if (kernel_needs_btf(obj)) {
3537 err = -EOPNOTSUPP;
3538 goto report;
3539 }
3540 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3541 return 0;
3542 }
3543
3544 /* Even though some subprogs are global/weak, user might prefer more
3545 * permissive BPF verification process that BPF verifier performs for
3546 * static functions, taking into account more context from the caller
3547 * functions. In such case, they need to mark such subprogs with
3548 * __attribute__((visibility("hidden"))) and libbpf will adjust
3549 * corresponding FUNC BTF type to be marked as static and trigger more
3550 * involved BPF verification process.
3551 */
3552 for (i = 0; i < obj->nr_programs; i++) {
3553 struct bpf_program *prog = &obj->programs[i];
3554 struct btf_type *t;
3555 const char *name;
3556 int j, n;
3557
3558 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3559 continue;
3560
3561 n = btf__type_cnt(obj->btf);
3562 for (j = 1; j < n; j++) {
3563 t = btf_type_by_id(obj->btf, j);
3564 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3565 continue;
3566
3567 name = btf__str_by_offset(obj->btf, t->name_off);
3568 if (strcmp(name, prog->name) != 0)
3569 continue;
3570
3571 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3572 break;
3573 }
3574 }
3575
3576 sanitize = btf_needs_sanitization(obj);
3577 if (sanitize) {
3578 const void *raw_data;
3579 __u32 sz;
3580
3581 /* clone BTF to sanitize a copy and leave the original intact */
3582 raw_data = btf__raw_data(obj->btf, &sz);
3583 kern_btf = btf__new(raw_data, sz);
3584 err = libbpf_get_error(kern_btf);
3585 if (err)
3586 return err;
3587
3588 /* enforce 8-byte pointers for BPF-targeted BTFs */
3589 btf__set_pointer_size(obj->btf, 8);
3590 err = bpf_object__sanitize_btf(obj, kern_btf);
3591 if (err)
3592 return err;
3593 }
3594
3595 if (obj->gen_loader) {
3596 __u32 raw_size = 0;
3597 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3598
3599 if (!raw_data)
3600 return -ENOMEM;
3601 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3602 /* Pretend to have valid FD to pass various fd >= 0 checks.
3603 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3604 */
3605 btf__set_fd(kern_btf, 0);
3606 } else {
3607 /* currently BPF_BTF_LOAD only supports log_level 1 */
3608 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3609 obj->log_level ? 1 : 0, obj->token_fd);
3610 }
3611 if (sanitize) {
3612 if (!err) {
3613 /* move fd to libbpf's BTF */
3614 btf__set_fd(obj->btf, btf__fd(kern_btf));
3615 btf__set_fd(kern_btf, -1);
3616 }
3617 btf__free(kern_btf);
3618 }
3619 report:
3620 if (err) {
3621 btf_mandatory = kernel_needs_btf(obj);
3622 if (btf_mandatory) {
3623 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3624 errstr(err));
3625 } else {
3626 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3627 errstr(err));
3628 err = 0;
3629 }
3630 }
3631 return err;
3632 }
3633
elf_sym_str(const struct bpf_object * obj,size_t off)3634 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3635 {
3636 const char *name;
3637
3638 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3639 if (!name) {
3640 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3641 off, obj->path, elf_errmsg(-1));
3642 return NULL;
3643 }
3644
3645 return name;
3646 }
3647
elf_sec_str(const struct bpf_object * obj,size_t off)3648 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3649 {
3650 const char *name;
3651
3652 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3653 if (!name) {
3654 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3655 off, obj->path, elf_errmsg(-1));
3656 return NULL;
3657 }
3658
3659 return name;
3660 }
3661
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3662 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3663 {
3664 Elf_Scn *scn;
3665
3666 scn = elf_getscn(obj->efile.elf, idx);
3667 if (!scn) {
3668 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3669 idx, obj->path, elf_errmsg(-1));
3670 return NULL;
3671 }
3672 return scn;
3673 }
3674
elf_sec_by_name(const struct bpf_object * obj,const char * name)3675 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3676 {
3677 Elf_Scn *scn = NULL;
3678 Elf *elf = obj->efile.elf;
3679 const char *sec_name;
3680
3681 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3682 sec_name = elf_sec_name(obj, scn);
3683 if (!sec_name)
3684 return NULL;
3685
3686 if (strcmp(sec_name, name) != 0)
3687 continue;
3688
3689 return scn;
3690 }
3691 return NULL;
3692 }
3693
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3694 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3695 {
3696 Elf64_Shdr *shdr;
3697
3698 if (!scn)
3699 return NULL;
3700
3701 shdr = elf64_getshdr(scn);
3702 if (!shdr) {
3703 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3704 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3705 return NULL;
3706 }
3707
3708 return shdr;
3709 }
3710
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3711 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3712 {
3713 const char *name;
3714 Elf64_Shdr *sh;
3715
3716 if (!scn)
3717 return NULL;
3718
3719 sh = elf_sec_hdr(obj, scn);
3720 if (!sh)
3721 return NULL;
3722
3723 name = elf_sec_str(obj, sh->sh_name);
3724 if (!name) {
3725 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3726 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3727 return NULL;
3728 }
3729
3730 return name;
3731 }
3732
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3733 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3734 {
3735 Elf_Data *data;
3736
3737 if (!scn)
3738 return NULL;
3739
3740 data = elf_getdata(scn, 0);
3741 if (!data) {
3742 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3743 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3744 obj->path, elf_errmsg(-1));
3745 return NULL;
3746 }
3747
3748 return data;
3749 }
3750
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3751 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3752 {
3753 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3754 return NULL;
3755
3756 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3757 }
3758
elf_rel_by_idx(Elf_Data * data,size_t idx)3759 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3760 {
3761 if (idx >= data->d_size / sizeof(Elf64_Rel))
3762 return NULL;
3763
3764 return (Elf64_Rel *)data->d_buf + idx;
3765 }
3766
is_sec_name_dwarf(const char * name)3767 static bool is_sec_name_dwarf(const char *name)
3768 {
3769 /* approximation, but the actual list is too long */
3770 return str_has_pfx(name, ".debug_");
3771 }
3772
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3773 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3774 {
3775 /* no special handling of .strtab */
3776 if (hdr->sh_type == SHT_STRTAB)
3777 return true;
3778
3779 /* ignore .llvm_addrsig section as well */
3780 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3781 return true;
3782
3783 /* no subprograms will lead to an empty .text section, ignore it */
3784 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3785 strcmp(name, ".text") == 0)
3786 return true;
3787
3788 /* DWARF sections */
3789 if (is_sec_name_dwarf(name))
3790 return true;
3791
3792 if (str_has_pfx(name, ".rel")) {
3793 name += sizeof(".rel") - 1;
3794 /* DWARF section relocations */
3795 if (is_sec_name_dwarf(name))
3796 return true;
3797
3798 /* .BTF and .BTF.ext don't need relocations */
3799 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3800 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3801 return true;
3802 }
3803
3804 return false;
3805 }
3806
cmp_progs(const void * _a,const void * _b)3807 static int cmp_progs(const void *_a, const void *_b)
3808 {
3809 const struct bpf_program *a = _a;
3810 const struct bpf_program *b = _b;
3811
3812 if (a->sec_idx != b->sec_idx)
3813 return a->sec_idx < b->sec_idx ? -1 : 1;
3814
3815 /* sec_insn_off can't be the same within the section */
3816 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3817 }
3818
bpf_object__elf_collect(struct bpf_object * obj)3819 static int bpf_object__elf_collect(struct bpf_object *obj)
3820 {
3821 struct elf_sec_desc *sec_desc;
3822 Elf *elf = obj->efile.elf;
3823 Elf_Data *btf_ext_data = NULL;
3824 Elf_Data *btf_data = NULL;
3825 int idx = 0, err = 0;
3826 const char *name;
3827 Elf_Data *data;
3828 Elf_Scn *scn;
3829 Elf64_Shdr *sh;
3830
3831 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3832 * section. Since section count retrieved by elf_getshdrnum() does
3833 * include sec #0, it is already the necessary size of an array to keep
3834 * all the sections.
3835 */
3836 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3837 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3838 obj->path, elf_errmsg(-1));
3839 return -LIBBPF_ERRNO__FORMAT;
3840 }
3841 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3842 if (!obj->efile.secs)
3843 return -ENOMEM;
3844
3845 /* a bunch of ELF parsing functionality depends on processing symbols,
3846 * so do the first pass and find the symbol table
3847 */
3848 scn = NULL;
3849 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3850 sh = elf_sec_hdr(obj, scn);
3851 if (!sh)
3852 return -LIBBPF_ERRNO__FORMAT;
3853
3854 if (sh->sh_type == SHT_SYMTAB) {
3855 if (obj->efile.symbols) {
3856 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3857 return -LIBBPF_ERRNO__FORMAT;
3858 }
3859
3860 data = elf_sec_data(obj, scn);
3861 if (!data)
3862 return -LIBBPF_ERRNO__FORMAT;
3863
3864 idx = elf_ndxscn(scn);
3865
3866 obj->efile.symbols = data;
3867 obj->efile.symbols_shndx = idx;
3868 obj->efile.strtabidx = sh->sh_link;
3869 }
3870 }
3871
3872 if (!obj->efile.symbols) {
3873 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3874 obj->path);
3875 return -ENOENT;
3876 }
3877
3878 scn = NULL;
3879 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3880 idx = elf_ndxscn(scn);
3881 sec_desc = &obj->efile.secs[idx];
3882
3883 sh = elf_sec_hdr(obj, scn);
3884 if (!sh)
3885 return -LIBBPF_ERRNO__FORMAT;
3886
3887 name = elf_sec_str(obj, sh->sh_name);
3888 if (!name)
3889 return -LIBBPF_ERRNO__FORMAT;
3890
3891 if (ignore_elf_section(sh, name))
3892 continue;
3893
3894 data = elf_sec_data(obj, scn);
3895 if (!data)
3896 return -LIBBPF_ERRNO__FORMAT;
3897
3898 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3899 idx, name, (unsigned long)data->d_size,
3900 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3901 (int)sh->sh_type);
3902
3903 if (strcmp(name, "license") == 0) {
3904 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3905 if (err)
3906 return err;
3907 } else if (strcmp(name, "version") == 0) {
3908 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3909 if (err)
3910 return err;
3911 } else if (strcmp(name, "maps") == 0) {
3912 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3913 return -ENOTSUP;
3914 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3915 obj->efile.btf_maps_shndx = idx;
3916 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3917 if (sh->sh_type != SHT_PROGBITS)
3918 return -LIBBPF_ERRNO__FORMAT;
3919 btf_data = data;
3920 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3921 if (sh->sh_type != SHT_PROGBITS)
3922 return -LIBBPF_ERRNO__FORMAT;
3923 btf_ext_data = data;
3924 } else if (sh->sh_type == SHT_SYMTAB) {
3925 /* already processed during the first pass above */
3926 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3927 if (sh->sh_flags & SHF_EXECINSTR) {
3928 if (strcmp(name, ".text") == 0)
3929 obj->efile.text_shndx = idx;
3930 err = bpf_object__add_programs(obj, data, name, idx);
3931 if (err)
3932 return err;
3933 } else if (strcmp(name, DATA_SEC) == 0 ||
3934 str_has_pfx(name, DATA_SEC ".")) {
3935 sec_desc->sec_type = SEC_DATA;
3936 sec_desc->shdr = sh;
3937 sec_desc->data = data;
3938 } else if (strcmp(name, RODATA_SEC) == 0 ||
3939 str_has_pfx(name, RODATA_SEC ".")) {
3940 sec_desc->sec_type = SEC_RODATA;
3941 sec_desc->shdr = sh;
3942 sec_desc->data = data;
3943 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3944 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3945 strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3946 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3947 sec_desc->sec_type = SEC_ST_OPS;
3948 sec_desc->shdr = sh;
3949 sec_desc->data = data;
3950 obj->efile.has_st_ops = true;
3951 } else if (strcmp(name, ARENA_SEC) == 0) {
3952 obj->efile.arena_data = data;
3953 obj->efile.arena_data_shndx = idx;
3954 } else {
3955 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3956 idx, name);
3957 }
3958 } else if (sh->sh_type == SHT_REL) {
3959 int targ_sec_idx = sh->sh_info; /* points to other section */
3960
3961 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3962 targ_sec_idx >= obj->efile.sec_cnt)
3963 return -LIBBPF_ERRNO__FORMAT;
3964
3965 /* Only do relo for section with exec instructions */
3966 if (!section_have_execinstr(obj, targ_sec_idx) &&
3967 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3968 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3969 strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3970 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3971 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3972 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3973 idx, name, targ_sec_idx,
3974 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3975 continue;
3976 }
3977
3978 sec_desc->sec_type = SEC_RELO;
3979 sec_desc->shdr = sh;
3980 sec_desc->data = data;
3981 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3982 str_has_pfx(name, BSS_SEC "."))) {
3983 sec_desc->sec_type = SEC_BSS;
3984 sec_desc->shdr = sh;
3985 sec_desc->data = data;
3986 } else {
3987 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3988 (size_t)sh->sh_size);
3989 }
3990 }
3991
3992 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3993 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3994 return -LIBBPF_ERRNO__FORMAT;
3995 }
3996
3997 /* change BPF program insns to native endianness for introspection */
3998 if (!is_native_endianness(obj))
3999 bpf_object_bswap_progs(obj);
4000
4001 /* sort BPF programs by section name and in-section instruction offset
4002 * for faster search
4003 */
4004 if (obj->nr_programs)
4005 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
4006
4007 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
4008 }
4009
sym_is_extern(const Elf64_Sym * sym)4010 static bool sym_is_extern(const Elf64_Sym *sym)
4011 {
4012 int bind = ELF64_ST_BIND(sym->st_info);
4013 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4014 return sym->st_shndx == SHN_UNDEF &&
4015 (bind == STB_GLOBAL || bind == STB_WEAK) &&
4016 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4017 }
4018
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)4019 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4020 {
4021 int bind = ELF64_ST_BIND(sym->st_info);
4022 int type = ELF64_ST_TYPE(sym->st_info);
4023
4024 /* in .text section */
4025 if (sym->st_shndx != text_shndx)
4026 return false;
4027
4028 /* local function */
4029 if (bind == STB_LOCAL && type == STT_SECTION)
4030 return true;
4031
4032 /* global function */
4033 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4034 }
4035
find_extern_btf_id(const struct btf * btf,const char * ext_name)4036 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4037 {
4038 const struct btf_type *t;
4039 const char *tname;
4040 int i, n;
4041
4042 if (!btf)
4043 return -ESRCH;
4044
4045 n = btf__type_cnt(btf);
4046 for (i = 1; i < n; i++) {
4047 t = btf__type_by_id(btf, i);
4048
4049 if (!btf_is_var(t) && !btf_is_func(t))
4050 continue;
4051
4052 tname = btf__name_by_offset(btf, t->name_off);
4053 if (strcmp(tname, ext_name))
4054 continue;
4055
4056 if (btf_is_var(t) &&
4057 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4058 return -EINVAL;
4059
4060 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4061 return -EINVAL;
4062
4063 return i;
4064 }
4065
4066 return -ENOENT;
4067 }
4068
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4069 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4070 const struct btf_var_secinfo *vs;
4071 const struct btf_type *t;
4072 int i, j, n;
4073
4074 if (!btf)
4075 return -ESRCH;
4076
4077 n = btf__type_cnt(btf);
4078 for (i = 1; i < n; i++) {
4079 t = btf__type_by_id(btf, i);
4080
4081 if (!btf_is_datasec(t))
4082 continue;
4083
4084 vs = btf_var_secinfos(t);
4085 for (j = 0; j < btf_vlen(t); j++, vs++) {
4086 if (vs->type == ext_btf_id)
4087 return i;
4088 }
4089 }
4090
4091 return -ENOENT;
4092 }
4093
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4094 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4095 bool *is_signed)
4096 {
4097 const struct btf_type *t;
4098 const char *name;
4099
4100 t = skip_mods_and_typedefs(btf, id, NULL);
4101 name = btf__name_by_offset(btf, t->name_off);
4102
4103 if (is_signed)
4104 *is_signed = false;
4105 switch (btf_kind(t)) {
4106 case BTF_KIND_INT: {
4107 int enc = btf_int_encoding(t);
4108
4109 if (enc & BTF_INT_BOOL)
4110 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4111 if (is_signed)
4112 *is_signed = enc & BTF_INT_SIGNED;
4113 if (t->size == 1)
4114 return KCFG_CHAR;
4115 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4116 return KCFG_UNKNOWN;
4117 return KCFG_INT;
4118 }
4119 case BTF_KIND_ENUM:
4120 if (t->size != 4)
4121 return KCFG_UNKNOWN;
4122 if (strcmp(name, "libbpf_tristate"))
4123 return KCFG_UNKNOWN;
4124 return KCFG_TRISTATE;
4125 case BTF_KIND_ENUM64:
4126 if (strcmp(name, "libbpf_tristate"))
4127 return KCFG_UNKNOWN;
4128 return KCFG_TRISTATE;
4129 case BTF_KIND_ARRAY:
4130 if (btf_array(t)->nelems == 0)
4131 return KCFG_UNKNOWN;
4132 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4133 return KCFG_UNKNOWN;
4134 return KCFG_CHAR_ARR;
4135 default:
4136 return KCFG_UNKNOWN;
4137 }
4138 }
4139
cmp_externs(const void * _a,const void * _b)4140 static int cmp_externs(const void *_a, const void *_b)
4141 {
4142 const struct extern_desc *a = _a;
4143 const struct extern_desc *b = _b;
4144
4145 if (a->type != b->type)
4146 return a->type < b->type ? -1 : 1;
4147
4148 if (a->type == EXT_KCFG) {
4149 /* descending order by alignment requirements */
4150 if (a->kcfg.align != b->kcfg.align)
4151 return a->kcfg.align > b->kcfg.align ? -1 : 1;
4152 /* ascending order by size, within same alignment class */
4153 if (a->kcfg.sz != b->kcfg.sz)
4154 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4155 }
4156
4157 /* resolve ties by name */
4158 return strcmp(a->name, b->name);
4159 }
4160
find_int_btf_id(const struct btf * btf)4161 static int find_int_btf_id(const struct btf *btf)
4162 {
4163 const struct btf_type *t;
4164 int i, n;
4165
4166 n = btf__type_cnt(btf);
4167 for (i = 1; i < n; i++) {
4168 t = btf__type_by_id(btf, i);
4169
4170 if (btf_is_int(t) && btf_int_bits(t) == 32)
4171 return i;
4172 }
4173
4174 return 0;
4175 }
4176
add_dummy_ksym_var(struct btf * btf)4177 static int add_dummy_ksym_var(struct btf *btf)
4178 {
4179 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4180 const struct btf_var_secinfo *vs;
4181 const struct btf_type *sec;
4182
4183 if (!btf)
4184 return 0;
4185
4186 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4187 BTF_KIND_DATASEC);
4188 if (sec_btf_id < 0)
4189 return 0;
4190
4191 sec = btf__type_by_id(btf, sec_btf_id);
4192 vs = btf_var_secinfos(sec);
4193 for (i = 0; i < btf_vlen(sec); i++, vs++) {
4194 const struct btf_type *vt;
4195
4196 vt = btf__type_by_id(btf, vs->type);
4197 if (btf_is_func(vt))
4198 break;
4199 }
4200
4201 /* No func in ksyms sec. No need to add dummy var. */
4202 if (i == btf_vlen(sec))
4203 return 0;
4204
4205 int_btf_id = find_int_btf_id(btf);
4206 dummy_var_btf_id = btf__add_var(btf,
4207 "dummy_ksym",
4208 BTF_VAR_GLOBAL_ALLOCATED,
4209 int_btf_id);
4210 if (dummy_var_btf_id < 0)
4211 pr_warn("cannot create a dummy_ksym var\n");
4212
4213 return dummy_var_btf_id;
4214 }
4215
bpf_object__collect_externs(struct bpf_object * obj)4216 static int bpf_object__collect_externs(struct bpf_object *obj)
4217 {
4218 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4219 const struct btf_type *t;
4220 struct extern_desc *ext;
4221 int i, n, off, dummy_var_btf_id;
4222 const char *ext_name, *sec_name;
4223 size_t ext_essent_len;
4224 Elf_Scn *scn;
4225 Elf64_Shdr *sh;
4226
4227 if (!obj->efile.symbols)
4228 return 0;
4229
4230 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4231 sh = elf_sec_hdr(obj, scn);
4232 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4233 return -LIBBPF_ERRNO__FORMAT;
4234
4235 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4236 if (dummy_var_btf_id < 0)
4237 return dummy_var_btf_id;
4238
4239 n = sh->sh_size / sh->sh_entsize;
4240 pr_debug("looking for externs among %d symbols...\n", n);
4241
4242 for (i = 0; i < n; i++) {
4243 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4244
4245 if (!sym)
4246 return -LIBBPF_ERRNO__FORMAT;
4247 if (!sym_is_extern(sym))
4248 continue;
4249 ext_name = elf_sym_str(obj, sym->st_name);
4250 if (!ext_name || !ext_name[0])
4251 continue;
4252
4253 ext = obj->externs;
4254 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4255 if (!ext)
4256 return -ENOMEM;
4257 obj->externs = ext;
4258 ext = &ext[obj->nr_extern];
4259 memset(ext, 0, sizeof(*ext));
4260 obj->nr_extern++;
4261
4262 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4263 if (ext->btf_id <= 0) {
4264 pr_warn("failed to find BTF for extern '%s': %d\n",
4265 ext_name, ext->btf_id);
4266 return ext->btf_id;
4267 }
4268 t = btf__type_by_id(obj->btf, ext->btf_id);
4269 ext->name = btf__name_by_offset(obj->btf, t->name_off);
4270 ext->sym_idx = i;
4271 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4272
4273 ext_essent_len = bpf_core_essential_name_len(ext->name);
4274 ext->essent_name = NULL;
4275 if (ext_essent_len != strlen(ext->name)) {
4276 ext->essent_name = strndup(ext->name, ext_essent_len);
4277 if (!ext->essent_name)
4278 return -ENOMEM;
4279 }
4280
4281 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4282 if (ext->sec_btf_id <= 0) {
4283 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4284 ext_name, ext->btf_id, ext->sec_btf_id);
4285 return ext->sec_btf_id;
4286 }
4287 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4288 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4289
4290 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4291 if (btf_is_func(t)) {
4292 pr_warn("extern function %s is unsupported under %s section\n",
4293 ext->name, KCONFIG_SEC);
4294 return -ENOTSUP;
4295 }
4296 kcfg_sec = sec;
4297 ext->type = EXT_KCFG;
4298 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4299 if (ext->kcfg.sz <= 0) {
4300 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4301 ext_name, ext->kcfg.sz);
4302 return ext->kcfg.sz;
4303 }
4304 ext->kcfg.align = btf__align_of(obj->btf, t->type);
4305 if (ext->kcfg.align <= 0) {
4306 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4307 ext_name, ext->kcfg.align);
4308 return -EINVAL;
4309 }
4310 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4311 &ext->kcfg.is_signed);
4312 if (ext->kcfg.type == KCFG_UNKNOWN) {
4313 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4314 return -ENOTSUP;
4315 }
4316 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4317 ksym_sec = sec;
4318 ext->type = EXT_KSYM;
4319 skip_mods_and_typedefs(obj->btf, t->type,
4320 &ext->ksym.type_id);
4321 } else {
4322 pr_warn("unrecognized extern section '%s'\n", sec_name);
4323 return -ENOTSUP;
4324 }
4325 }
4326 pr_debug("collected %d externs total\n", obj->nr_extern);
4327
4328 if (!obj->nr_extern)
4329 return 0;
4330
4331 /* sort externs by type, for kcfg ones also by (align, size, name) */
4332 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4333
4334 /* for .ksyms section, we need to turn all externs into allocated
4335 * variables in BTF to pass kernel verification; we do this by
4336 * pretending that each extern is a 8-byte variable
4337 */
4338 if (ksym_sec) {
4339 /* find existing 4-byte integer type in BTF to use for fake
4340 * extern variables in DATASEC
4341 */
4342 int int_btf_id = find_int_btf_id(obj->btf);
4343 /* For extern function, a dummy_var added earlier
4344 * will be used to replace the vs->type and
4345 * its name string will be used to refill
4346 * the missing param's name.
4347 */
4348 const struct btf_type *dummy_var;
4349
4350 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4351 for (i = 0; i < obj->nr_extern; i++) {
4352 ext = &obj->externs[i];
4353 if (ext->type != EXT_KSYM)
4354 continue;
4355 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4356 i, ext->sym_idx, ext->name);
4357 }
4358
4359 sec = ksym_sec;
4360 n = btf_vlen(sec);
4361 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4362 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4363 struct btf_type *vt;
4364
4365 vt = (void *)btf__type_by_id(obj->btf, vs->type);
4366 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4367 ext = find_extern_by_name(obj, ext_name);
4368 if (!ext) {
4369 pr_warn("failed to find extern definition for BTF %s '%s'\n",
4370 btf_kind_str(vt), ext_name);
4371 return -ESRCH;
4372 }
4373 if (btf_is_func(vt)) {
4374 const struct btf_type *func_proto;
4375 struct btf_param *param;
4376 int j;
4377
4378 func_proto = btf__type_by_id(obj->btf,
4379 vt->type);
4380 param = btf_params(func_proto);
4381 /* Reuse the dummy_var string if the
4382 * func proto does not have param name.
4383 */
4384 for (j = 0; j < btf_vlen(func_proto); j++)
4385 if (param[j].type && !param[j].name_off)
4386 param[j].name_off =
4387 dummy_var->name_off;
4388 vs->type = dummy_var_btf_id;
4389 vt->info &= ~0xffff;
4390 vt->info |= BTF_FUNC_GLOBAL;
4391 } else {
4392 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4393 vt->type = int_btf_id;
4394 }
4395 vs->offset = off;
4396 vs->size = sizeof(int);
4397 }
4398 sec->size = off;
4399 }
4400
4401 if (kcfg_sec) {
4402 sec = kcfg_sec;
4403 /* for kcfg externs calculate their offsets within a .kconfig map */
4404 off = 0;
4405 for (i = 0; i < obj->nr_extern; i++) {
4406 ext = &obj->externs[i];
4407 if (ext->type != EXT_KCFG)
4408 continue;
4409
4410 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4411 off = ext->kcfg.data_off + ext->kcfg.sz;
4412 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4413 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4414 }
4415 sec->size = off;
4416 n = btf_vlen(sec);
4417 for (i = 0; i < n; i++) {
4418 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4419
4420 t = btf__type_by_id(obj->btf, vs->type);
4421 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4422 ext = find_extern_by_name(obj, ext_name);
4423 if (!ext) {
4424 pr_warn("failed to find extern definition for BTF var '%s'\n",
4425 ext_name);
4426 return -ESRCH;
4427 }
4428 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4429 vs->offset = ext->kcfg.data_off;
4430 }
4431 }
4432 return 0;
4433 }
4434
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4435 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4436 {
4437 return prog->sec_idx == obj->efile.text_shndx;
4438 }
4439
4440 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4441 bpf_object__find_program_by_name(const struct bpf_object *obj,
4442 const char *name)
4443 {
4444 struct bpf_program *prog;
4445
4446 bpf_object__for_each_program(prog, obj) {
4447 if (prog_is_subprog(obj, prog))
4448 continue;
4449 if (!strcmp(prog->name, name))
4450 return prog;
4451 }
4452 return errno = ENOENT, NULL;
4453 }
4454
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4455 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4456 int shndx)
4457 {
4458 switch (obj->efile.secs[shndx].sec_type) {
4459 case SEC_BSS:
4460 case SEC_DATA:
4461 case SEC_RODATA:
4462 return true;
4463 default:
4464 return false;
4465 }
4466 }
4467
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4468 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4469 int shndx)
4470 {
4471 return shndx == obj->efile.btf_maps_shndx;
4472 }
4473
4474 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4475 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4476 {
4477 if (shndx == obj->efile.symbols_shndx)
4478 return LIBBPF_MAP_KCONFIG;
4479
4480 switch (obj->efile.secs[shndx].sec_type) {
4481 case SEC_BSS:
4482 return LIBBPF_MAP_BSS;
4483 case SEC_DATA:
4484 return LIBBPF_MAP_DATA;
4485 case SEC_RODATA:
4486 return LIBBPF_MAP_RODATA;
4487 default:
4488 return LIBBPF_MAP_UNSPEC;
4489 }
4490 }
4491
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4492 static int bpf_program__record_reloc(struct bpf_program *prog,
4493 struct reloc_desc *reloc_desc,
4494 __u32 insn_idx, const char *sym_name,
4495 const Elf64_Sym *sym, const Elf64_Rel *rel)
4496 {
4497 struct bpf_insn *insn = &prog->insns[insn_idx];
4498 size_t map_idx, nr_maps = prog->obj->nr_maps;
4499 struct bpf_object *obj = prog->obj;
4500 __u32 shdr_idx = sym->st_shndx;
4501 enum libbpf_map_type type;
4502 const char *sym_sec_name;
4503 struct bpf_map *map;
4504
4505 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4506 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4507 prog->name, sym_name, insn_idx, insn->code);
4508 return -LIBBPF_ERRNO__RELOC;
4509 }
4510
4511 if (sym_is_extern(sym)) {
4512 int sym_idx = ELF64_R_SYM(rel->r_info);
4513 int i, n = obj->nr_extern;
4514 struct extern_desc *ext;
4515
4516 for (i = 0; i < n; i++) {
4517 ext = &obj->externs[i];
4518 if (ext->sym_idx == sym_idx)
4519 break;
4520 }
4521 if (i >= n) {
4522 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4523 prog->name, sym_name, sym_idx);
4524 return -LIBBPF_ERRNO__RELOC;
4525 }
4526 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4527 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4528 if (insn->code == (BPF_JMP | BPF_CALL))
4529 reloc_desc->type = RELO_EXTERN_CALL;
4530 else
4531 reloc_desc->type = RELO_EXTERN_LD64;
4532 reloc_desc->insn_idx = insn_idx;
4533 reloc_desc->ext_idx = i;
4534 return 0;
4535 }
4536
4537 /* sub-program call relocation */
4538 if (is_call_insn(insn)) {
4539 if (insn->src_reg != BPF_PSEUDO_CALL) {
4540 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4541 return -LIBBPF_ERRNO__RELOC;
4542 }
4543 /* text_shndx can be 0, if no default "main" program exists */
4544 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4545 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4546 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4547 prog->name, sym_name, sym_sec_name);
4548 return -LIBBPF_ERRNO__RELOC;
4549 }
4550 if (sym->st_value % BPF_INSN_SZ) {
4551 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4552 prog->name, sym_name, (size_t)sym->st_value);
4553 return -LIBBPF_ERRNO__RELOC;
4554 }
4555 reloc_desc->type = RELO_CALL;
4556 reloc_desc->insn_idx = insn_idx;
4557 reloc_desc->sym_off = sym->st_value;
4558 return 0;
4559 }
4560
4561 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4562 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4563 prog->name, sym_name, shdr_idx);
4564 return -LIBBPF_ERRNO__RELOC;
4565 }
4566
4567 /* loading subprog addresses */
4568 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4569 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4570 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4571 */
4572 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4573 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4574 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4575 return -LIBBPF_ERRNO__RELOC;
4576 }
4577
4578 reloc_desc->type = RELO_SUBPROG_ADDR;
4579 reloc_desc->insn_idx = insn_idx;
4580 reloc_desc->sym_off = sym->st_value;
4581 return 0;
4582 }
4583
4584 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4585 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4586
4587 /* arena data relocation */
4588 if (shdr_idx == obj->efile.arena_data_shndx) {
4589 reloc_desc->type = RELO_DATA;
4590 reloc_desc->insn_idx = insn_idx;
4591 reloc_desc->map_idx = obj->arena_map - obj->maps;
4592 reloc_desc->sym_off = sym->st_value;
4593 return 0;
4594 }
4595
4596 /* generic map reference relocation */
4597 if (type == LIBBPF_MAP_UNSPEC) {
4598 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4599 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4600 prog->name, sym_name, sym_sec_name);
4601 return -LIBBPF_ERRNO__RELOC;
4602 }
4603 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4604 map = &obj->maps[map_idx];
4605 if (map->libbpf_type != type ||
4606 map->sec_idx != sym->st_shndx ||
4607 map->sec_offset != sym->st_value)
4608 continue;
4609 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4610 prog->name, map_idx, map->name, map->sec_idx,
4611 map->sec_offset, insn_idx);
4612 break;
4613 }
4614 if (map_idx >= nr_maps) {
4615 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4616 prog->name, sym_sec_name, (size_t)sym->st_value);
4617 return -LIBBPF_ERRNO__RELOC;
4618 }
4619 reloc_desc->type = RELO_LD64;
4620 reloc_desc->insn_idx = insn_idx;
4621 reloc_desc->map_idx = map_idx;
4622 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4623 return 0;
4624 }
4625
4626 /* global data map relocation */
4627 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4628 pr_warn("prog '%s': bad data relo against section '%s'\n",
4629 prog->name, sym_sec_name);
4630 return -LIBBPF_ERRNO__RELOC;
4631 }
4632 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4633 map = &obj->maps[map_idx];
4634 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4635 continue;
4636 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4637 prog->name, map_idx, map->name, map->sec_idx,
4638 map->sec_offset, insn_idx);
4639 break;
4640 }
4641 if (map_idx >= nr_maps) {
4642 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4643 prog->name, sym_sec_name);
4644 return -LIBBPF_ERRNO__RELOC;
4645 }
4646
4647 reloc_desc->type = RELO_DATA;
4648 reloc_desc->insn_idx = insn_idx;
4649 reloc_desc->map_idx = map_idx;
4650 reloc_desc->sym_off = sym->st_value;
4651 return 0;
4652 }
4653
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4654 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4655 {
4656 return insn_idx >= prog->sec_insn_off &&
4657 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4658 }
4659
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4660 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4661 size_t sec_idx, size_t insn_idx)
4662 {
4663 int l = 0, r = obj->nr_programs - 1, m;
4664 struct bpf_program *prog;
4665
4666 if (!obj->nr_programs)
4667 return NULL;
4668
4669 while (l < r) {
4670 m = l + (r - l + 1) / 2;
4671 prog = &obj->programs[m];
4672
4673 if (prog->sec_idx < sec_idx ||
4674 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4675 l = m;
4676 else
4677 r = m - 1;
4678 }
4679 /* matching program could be at index l, but it still might be the
4680 * wrong one, so we need to double check conditions for the last time
4681 */
4682 prog = &obj->programs[l];
4683 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4684 return prog;
4685 return NULL;
4686 }
4687
4688 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4689 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4690 {
4691 const char *relo_sec_name, *sec_name;
4692 size_t sec_idx = shdr->sh_info, sym_idx;
4693 struct bpf_program *prog;
4694 struct reloc_desc *relos;
4695 int err, i, nrels;
4696 const char *sym_name;
4697 __u32 insn_idx;
4698 Elf_Scn *scn;
4699 Elf_Data *scn_data;
4700 Elf64_Sym *sym;
4701 Elf64_Rel *rel;
4702
4703 if (sec_idx >= obj->efile.sec_cnt)
4704 return -EINVAL;
4705
4706 scn = elf_sec_by_idx(obj, sec_idx);
4707 scn_data = elf_sec_data(obj, scn);
4708 if (!scn_data)
4709 return -LIBBPF_ERRNO__FORMAT;
4710
4711 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4712 sec_name = elf_sec_name(obj, scn);
4713 if (!relo_sec_name || !sec_name)
4714 return -EINVAL;
4715
4716 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4717 relo_sec_name, sec_idx, sec_name);
4718 nrels = shdr->sh_size / shdr->sh_entsize;
4719
4720 for (i = 0; i < nrels; i++) {
4721 rel = elf_rel_by_idx(data, i);
4722 if (!rel) {
4723 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4724 return -LIBBPF_ERRNO__FORMAT;
4725 }
4726
4727 sym_idx = ELF64_R_SYM(rel->r_info);
4728 sym = elf_sym_by_idx(obj, sym_idx);
4729 if (!sym) {
4730 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4731 relo_sec_name, sym_idx, i);
4732 return -LIBBPF_ERRNO__FORMAT;
4733 }
4734
4735 if (sym->st_shndx >= obj->efile.sec_cnt) {
4736 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4737 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4738 return -LIBBPF_ERRNO__FORMAT;
4739 }
4740
4741 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4742 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4743 relo_sec_name, (size_t)rel->r_offset, i);
4744 return -LIBBPF_ERRNO__FORMAT;
4745 }
4746
4747 insn_idx = rel->r_offset / BPF_INSN_SZ;
4748 /* relocations against static functions are recorded as
4749 * relocations against the section that contains a function;
4750 * in such case, symbol will be STT_SECTION and sym.st_name
4751 * will point to empty string (0), so fetch section name
4752 * instead
4753 */
4754 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4755 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4756 else
4757 sym_name = elf_sym_str(obj, sym->st_name);
4758 sym_name = sym_name ?: "<?";
4759
4760 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4761 relo_sec_name, i, insn_idx, sym_name);
4762
4763 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4764 if (!prog) {
4765 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4766 relo_sec_name, i, sec_name, insn_idx);
4767 continue;
4768 }
4769
4770 relos = libbpf_reallocarray(prog->reloc_desc,
4771 prog->nr_reloc + 1, sizeof(*relos));
4772 if (!relos)
4773 return -ENOMEM;
4774 prog->reloc_desc = relos;
4775
4776 /* adjust insn_idx to local BPF program frame of reference */
4777 insn_idx -= prog->sec_insn_off;
4778 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4779 insn_idx, sym_name, sym, rel);
4780 if (err)
4781 return err;
4782
4783 prog->nr_reloc++;
4784 }
4785 return 0;
4786 }
4787
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4788 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4789 {
4790 int id;
4791
4792 if (!obj->btf)
4793 return -ENOENT;
4794
4795 /* if it's BTF-defined map, we don't need to search for type IDs.
4796 * For struct_ops map, it does not need btf_key_type_id and
4797 * btf_value_type_id.
4798 */
4799 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4800 return 0;
4801
4802 /*
4803 * LLVM annotates global data differently in BTF, that is,
4804 * only as '.data', '.bss' or '.rodata'.
4805 */
4806 if (!bpf_map__is_internal(map))
4807 return -ENOENT;
4808
4809 id = btf__find_by_name(obj->btf, map->real_name);
4810 if (id < 0)
4811 return id;
4812
4813 map->btf_key_type_id = 0;
4814 map->btf_value_type_id = id;
4815 return 0;
4816 }
4817
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4818 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4819 {
4820 char file[PATH_MAX], buff[4096];
4821 FILE *fp;
4822 __u32 val;
4823 int err;
4824
4825 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4826 memset(info, 0, sizeof(*info));
4827
4828 fp = fopen(file, "re");
4829 if (!fp) {
4830 err = -errno;
4831 pr_warn("failed to open %s: %s. No procfs support?\n", file,
4832 errstr(err));
4833 return err;
4834 }
4835
4836 while (fgets(buff, sizeof(buff), fp)) {
4837 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4838 info->type = val;
4839 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4840 info->key_size = val;
4841 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4842 info->value_size = val;
4843 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4844 info->max_entries = val;
4845 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4846 info->map_flags = val;
4847 }
4848
4849 fclose(fp);
4850
4851 return 0;
4852 }
4853
map_is_created(const struct bpf_map * map)4854 static bool map_is_created(const struct bpf_map *map)
4855 {
4856 return map->obj->state >= OBJ_PREPARED || map->reused;
4857 }
4858
bpf_map__autocreate(const struct bpf_map * map)4859 bool bpf_map__autocreate(const struct bpf_map *map)
4860 {
4861 return map->autocreate;
4862 }
4863
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4864 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4865 {
4866 if (map_is_created(map))
4867 return libbpf_err(-EBUSY);
4868
4869 map->autocreate = autocreate;
4870 return 0;
4871 }
4872
bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4873 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4874 {
4875 if (!bpf_map__is_struct_ops(map))
4876 return libbpf_err(-EINVAL);
4877
4878 map->autoattach = autoattach;
4879 return 0;
4880 }
4881
bpf_map__autoattach(const struct bpf_map * map)4882 bool bpf_map__autoattach(const struct bpf_map *map)
4883 {
4884 return map->autoattach;
4885 }
4886
bpf_map__reuse_fd(struct bpf_map * map,int fd)4887 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4888 {
4889 struct bpf_map_info info;
4890 __u32 len = sizeof(info), name_len;
4891 int new_fd, err;
4892 char *new_name;
4893
4894 memset(&info, 0, len);
4895 err = bpf_map_get_info_by_fd(fd, &info, &len);
4896 if (err && errno == EINVAL)
4897 err = bpf_get_map_info_from_fdinfo(fd, &info);
4898 if (err)
4899 return libbpf_err(err);
4900
4901 name_len = strlen(info.name);
4902 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4903 new_name = strdup(map->name);
4904 else
4905 new_name = strdup(info.name);
4906
4907 if (!new_name)
4908 return libbpf_err(-errno);
4909
4910 /*
4911 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4912 * This is similar to what we do in ensure_good_fd(), but without
4913 * closing original FD.
4914 */
4915 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4916 if (new_fd < 0) {
4917 err = -errno;
4918 goto err_free_new_name;
4919 }
4920
4921 err = reuse_fd(map->fd, new_fd);
4922 if (err)
4923 goto err_free_new_name;
4924
4925 free(map->name);
4926
4927 map->name = new_name;
4928 map->def.type = info.type;
4929 map->def.key_size = info.key_size;
4930 map->def.value_size = info.value_size;
4931 map->def.max_entries = info.max_entries;
4932 map->def.map_flags = info.map_flags;
4933 map->btf_key_type_id = info.btf_key_type_id;
4934 map->btf_value_type_id = info.btf_value_type_id;
4935 map->reused = true;
4936 map->map_extra = info.map_extra;
4937
4938 return 0;
4939
4940 err_free_new_name:
4941 free(new_name);
4942 return libbpf_err(err);
4943 }
4944
bpf_map__max_entries(const struct bpf_map * map)4945 __u32 bpf_map__max_entries(const struct bpf_map *map)
4946 {
4947 return map->def.max_entries;
4948 }
4949
bpf_map__inner_map(struct bpf_map * map)4950 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4951 {
4952 if (!bpf_map_type__is_map_in_map(map->def.type))
4953 return errno = EINVAL, NULL;
4954
4955 return map->inner_map;
4956 }
4957
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4958 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4959 {
4960 if (map_is_created(map))
4961 return libbpf_err(-EBUSY);
4962
4963 map->def.max_entries = max_entries;
4964
4965 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4966 if (map_is_ringbuf(map))
4967 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4968
4969 return 0;
4970 }
4971
bpf_object_prepare_token(struct bpf_object * obj)4972 static int bpf_object_prepare_token(struct bpf_object *obj)
4973 {
4974 const char *bpffs_path;
4975 int bpffs_fd = -1, token_fd, err;
4976 bool mandatory;
4977 enum libbpf_print_level level;
4978
4979 /* token is explicitly prevented */
4980 if (obj->token_path && obj->token_path[0] == '\0') {
4981 pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4982 return 0;
4983 }
4984
4985 mandatory = obj->token_path != NULL;
4986 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4987
4988 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4989 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4990 if (bpffs_fd < 0) {
4991 err = -errno;
4992 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
4993 obj->name, errstr(err), bpffs_path,
4994 mandatory ? "" : ", skipping optional step...");
4995 return mandatory ? err : 0;
4996 }
4997
4998 token_fd = bpf_token_create(bpffs_fd, 0);
4999 close(bpffs_fd);
5000 if (token_fd < 0) {
5001 if (!mandatory && token_fd == -ENOENT) {
5002 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
5003 obj->name, bpffs_path);
5004 return 0;
5005 }
5006 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5007 obj->name, token_fd, bpffs_path,
5008 mandatory ? "" : ", skipping optional step...");
5009 return mandatory ? token_fd : 0;
5010 }
5011
5012 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5013 if (!obj->feat_cache) {
5014 close(token_fd);
5015 return -ENOMEM;
5016 }
5017
5018 obj->token_fd = token_fd;
5019 obj->feat_cache->token_fd = token_fd;
5020
5021 return 0;
5022 }
5023
5024 static int
bpf_object__probe_loading(struct bpf_object * obj)5025 bpf_object__probe_loading(struct bpf_object *obj)
5026 {
5027 struct bpf_insn insns[] = {
5028 BPF_MOV64_IMM(BPF_REG_0, 0),
5029 BPF_EXIT_INSN(),
5030 };
5031 int ret, insn_cnt = ARRAY_SIZE(insns);
5032 LIBBPF_OPTS(bpf_prog_load_opts, opts,
5033 .token_fd = obj->token_fd,
5034 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5035 );
5036
5037 if (obj->gen_loader)
5038 return 0;
5039
5040 ret = bump_rlimit_memlock();
5041 if (ret)
5042 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5043 errstr(ret));
5044
5045 /* make sure basic loading works */
5046 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5047 if (ret < 0)
5048 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5049 if (ret < 0) {
5050 ret = errno;
5051 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5052 __func__, errstr(ret));
5053 return -ret;
5054 }
5055 close(ret);
5056
5057 return 0;
5058 }
5059
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5060 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5061 {
5062 if (obj->gen_loader)
5063 /* To generate loader program assume the latest kernel
5064 * to avoid doing extra prog_load, map_create syscalls.
5065 */
5066 return true;
5067
5068 if (obj->token_fd)
5069 return feat_supported(obj->feat_cache, feat_id);
5070
5071 return feat_supported(NULL, feat_id);
5072 }
5073
map_is_reuse_compat(const struct bpf_map * map,int map_fd)5074 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5075 {
5076 struct bpf_map_info map_info;
5077 __u32 map_info_len = sizeof(map_info);
5078 int err;
5079
5080 memset(&map_info, 0, map_info_len);
5081 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5082 if (err && errno == EINVAL)
5083 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5084 if (err) {
5085 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5086 errstr(err));
5087 return false;
5088 }
5089
5090 return (map_info.type == map->def.type &&
5091 map_info.key_size == map->def.key_size &&
5092 map_info.value_size == map->def.value_size &&
5093 map_info.max_entries == map->def.max_entries &&
5094 map_info.map_flags == map->def.map_flags &&
5095 map_info.map_extra == map->map_extra);
5096 }
5097
5098 static int
bpf_object__reuse_map(struct bpf_map * map)5099 bpf_object__reuse_map(struct bpf_map *map)
5100 {
5101 int err, pin_fd;
5102
5103 pin_fd = bpf_obj_get(map->pin_path);
5104 if (pin_fd < 0) {
5105 err = -errno;
5106 if (err == -ENOENT) {
5107 pr_debug("found no pinned map to reuse at '%s'\n",
5108 map->pin_path);
5109 return 0;
5110 }
5111
5112 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5113 map->pin_path, errstr(err));
5114 return err;
5115 }
5116
5117 if (!map_is_reuse_compat(map, pin_fd)) {
5118 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5119 map->pin_path);
5120 close(pin_fd);
5121 return -EINVAL;
5122 }
5123
5124 err = bpf_map__reuse_fd(map, pin_fd);
5125 close(pin_fd);
5126 if (err)
5127 return err;
5128
5129 map->pinned = true;
5130 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5131
5132 return 0;
5133 }
5134
5135 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5136 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5137 {
5138 enum libbpf_map_type map_type = map->libbpf_type;
5139 int err, zero = 0;
5140 size_t mmap_sz;
5141
5142 if (obj->gen_loader) {
5143 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5144 map->mmaped, map->def.value_size);
5145 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5146 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5147 return 0;
5148 }
5149
5150 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5151 if (err) {
5152 err = -errno;
5153 pr_warn("map '%s': failed to set initial contents: %s\n",
5154 bpf_map__name(map), errstr(err));
5155 return err;
5156 }
5157
5158 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5159 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5160 err = bpf_map_freeze(map->fd);
5161 if (err) {
5162 err = -errno;
5163 pr_warn("map '%s': failed to freeze as read-only: %s\n",
5164 bpf_map__name(map), errstr(err));
5165 return err;
5166 }
5167 }
5168
5169 /* Remap anonymous mmap()-ed "map initialization image" as
5170 * a BPF map-backed mmap()-ed memory, but preserving the same
5171 * memory address. This will cause kernel to change process'
5172 * page table to point to a different piece of kernel memory,
5173 * but from userspace point of view memory address (and its
5174 * contents, being identical at this point) will stay the
5175 * same. This mapping will be released by bpf_object__close()
5176 * as per normal clean up procedure.
5177 */
5178 mmap_sz = bpf_map_mmap_sz(map);
5179 if (map->def.map_flags & BPF_F_MMAPABLE) {
5180 void *mmaped;
5181 int prot;
5182
5183 if (map->def.map_flags & BPF_F_RDONLY_PROG)
5184 prot = PROT_READ;
5185 else
5186 prot = PROT_READ | PROT_WRITE;
5187 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5188 if (mmaped == MAP_FAILED) {
5189 err = -errno;
5190 pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5191 bpf_map__name(map), errstr(err));
5192 return err;
5193 }
5194 map->mmaped = mmaped;
5195 } else if (map->mmaped) {
5196 munmap(map->mmaped, mmap_sz);
5197 map->mmaped = NULL;
5198 }
5199
5200 return 0;
5201 }
5202
5203 static void bpf_map__destroy(struct bpf_map *map);
5204
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5205 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5206 {
5207 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5208 struct bpf_map_def *def = &map->def;
5209 const char *map_name = NULL;
5210 int err = 0, map_fd;
5211
5212 if (kernel_supports(obj, FEAT_PROG_NAME))
5213 map_name = map->name;
5214 create_attr.map_ifindex = map->map_ifindex;
5215 create_attr.map_flags = def->map_flags;
5216 create_attr.numa_node = map->numa_node;
5217 create_attr.map_extra = map->map_extra;
5218 create_attr.token_fd = obj->token_fd;
5219 if (obj->token_fd)
5220 create_attr.map_flags |= BPF_F_TOKEN_FD;
5221
5222 if (bpf_map__is_struct_ops(map)) {
5223 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5224 if (map->mod_btf_fd >= 0) {
5225 create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5226 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5227 }
5228 }
5229
5230 if (obj->btf && btf__fd(obj->btf) >= 0) {
5231 create_attr.btf_fd = btf__fd(obj->btf);
5232 create_attr.btf_key_type_id = map->btf_key_type_id;
5233 create_attr.btf_value_type_id = map->btf_value_type_id;
5234 }
5235
5236 if (bpf_map_type__is_map_in_map(def->type)) {
5237 if (map->inner_map) {
5238 err = map_set_def_max_entries(map->inner_map);
5239 if (err)
5240 return err;
5241 err = bpf_object__create_map(obj, map->inner_map, true);
5242 if (err) {
5243 pr_warn("map '%s': failed to create inner map: %s\n",
5244 map->name, errstr(err));
5245 return err;
5246 }
5247 map->inner_map_fd = map->inner_map->fd;
5248 }
5249 if (map->inner_map_fd >= 0)
5250 create_attr.inner_map_fd = map->inner_map_fd;
5251 }
5252
5253 switch (def->type) {
5254 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5255 case BPF_MAP_TYPE_CGROUP_ARRAY:
5256 case BPF_MAP_TYPE_STACK_TRACE:
5257 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5258 case BPF_MAP_TYPE_HASH_OF_MAPS:
5259 case BPF_MAP_TYPE_DEVMAP:
5260 case BPF_MAP_TYPE_DEVMAP_HASH:
5261 case BPF_MAP_TYPE_CPUMAP:
5262 case BPF_MAP_TYPE_XSKMAP:
5263 case BPF_MAP_TYPE_SOCKMAP:
5264 case BPF_MAP_TYPE_SOCKHASH:
5265 case BPF_MAP_TYPE_QUEUE:
5266 case BPF_MAP_TYPE_STACK:
5267 case BPF_MAP_TYPE_ARENA:
5268 create_attr.btf_fd = 0;
5269 create_attr.btf_key_type_id = 0;
5270 create_attr.btf_value_type_id = 0;
5271 map->btf_key_type_id = 0;
5272 map->btf_value_type_id = 0;
5273 break;
5274 case BPF_MAP_TYPE_STRUCT_OPS:
5275 create_attr.btf_value_type_id = 0;
5276 break;
5277 default:
5278 break;
5279 }
5280
5281 if (obj->gen_loader) {
5282 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5283 def->key_size, def->value_size, def->max_entries,
5284 &create_attr, is_inner ? -1 : map - obj->maps);
5285 /* We keep pretenting we have valid FD to pass various fd >= 0
5286 * checks by just keeping original placeholder FDs in place.
5287 * See bpf_object__add_map() comment.
5288 * This placeholder fd will not be used with any syscall and
5289 * will be reset to -1 eventually.
5290 */
5291 map_fd = map->fd;
5292 } else {
5293 map_fd = bpf_map_create(def->type, map_name,
5294 def->key_size, def->value_size,
5295 def->max_entries, &create_attr);
5296 }
5297 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5298 err = -errno;
5299 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5300 map->name, errstr(err));
5301 create_attr.btf_fd = 0;
5302 create_attr.btf_key_type_id = 0;
5303 create_attr.btf_value_type_id = 0;
5304 map->btf_key_type_id = 0;
5305 map->btf_value_type_id = 0;
5306 map_fd = bpf_map_create(def->type, map_name,
5307 def->key_size, def->value_size,
5308 def->max_entries, &create_attr);
5309 }
5310
5311 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5312 if (obj->gen_loader)
5313 map->inner_map->fd = -1;
5314 bpf_map__destroy(map->inner_map);
5315 zfree(&map->inner_map);
5316 }
5317
5318 if (map_fd < 0)
5319 return map_fd;
5320
5321 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5322 if (map->fd == map_fd)
5323 return 0;
5324
5325 /* Keep placeholder FD value but now point it to the BPF map object.
5326 * This way everything that relied on this map's FD (e.g., relocated
5327 * ldimm64 instructions) will stay valid and won't need adjustments.
5328 * map->fd stays valid but now point to what map_fd points to.
5329 */
5330 return reuse_fd(map->fd, map_fd);
5331 }
5332
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5333 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5334 {
5335 const struct bpf_map *targ_map;
5336 unsigned int i;
5337 int fd, err = 0;
5338
5339 for (i = 0; i < map->init_slots_sz; i++) {
5340 if (!map->init_slots[i])
5341 continue;
5342
5343 targ_map = map->init_slots[i];
5344 fd = targ_map->fd;
5345
5346 if (obj->gen_loader) {
5347 bpf_gen__populate_outer_map(obj->gen_loader,
5348 map - obj->maps, i,
5349 targ_map - obj->maps);
5350 } else {
5351 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5352 }
5353 if (err) {
5354 err = -errno;
5355 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5356 map->name, i, targ_map->name, fd, errstr(err));
5357 return err;
5358 }
5359 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5360 map->name, i, targ_map->name, fd);
5361 }
5362
5363 zfree(&map->init_slots);
5364 map->init_slots_sz = 0;
5365
5366 return 0;
5367 }
5368
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5369 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5370 {
5371 const struct bpf_program *targ_prog;
5372 unsigned int i;
5373 int fd, err;
5374
5375 if (obj->gen_loader)
5376 return -ENOTSUP;
5377
5378 for (i = 0; i < map->init_slots_sz; i++) {
5379 if (!map->init_slots[i])
5380 continue;
5381
5382 targ_prog = map->init_slots[i];
5383 fd = bpf_program__fd(targ_prog);
5384
5385 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5386 if (err) {
5387 err = -errno;
5388 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5389 map->name, i, targ_prog->name, fd, errstr(err));
5390 return err;
5391 }
5392 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5393 map->name, i, targ_prog->name, fd);
5394 }
5395
5396 zfree(&map->init_slots);
5397 map->init_slots_sz = 0;
5398
5399 return 0;
5400 }
5401
bpf_object_init_prog_arrays(struct bpf_object * obj)5402 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5403 {
5404 struct bpf_map *map;
5405 int i, err;
5406
5407 for (i = 0; i < obj->nr_maps; i++) {
5408 map = &obj->maps[i];
5409
5410 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5411 continue;
5412
5413 err = init_prog_array_slots(obj, map);
5414 if (err < 0)
5415 return err;
5416 }
5417 return 0;
5418 }
5419
map_set_def_max_entries(struct bpf_map * map)5420 static int map_set_def_max_entries(struct bpf_map *map)
5421 {
5422 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5423 int nr_cpus;
5424
5425 nr_cpus = libbpf_num_possible_cpus();
5426 if (nr_cpus < 0) {
5427 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5428 map->name, nr_cpus);
5429 return nr_cpus;
5430 }
5431 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5432 map->def.max_entries = nr_cpus;
5433 }
5434
5435 return 0;
5436 }
5437
5438 static int
bpf_object__create_maps(struct bpf_object * obj)5439 bpf_object__create_maps(struct bpf_object *obj)
5440 {
5441 struct bpf_map *map;
5442 unsigned int i, j;
5443 int err;
5444 bool retried;
5445
5446 for (i = 0; i < obj->nr_maps; i++) {
5447 map = &obj->maps[i];
5448
5449 /* To support old kernels, we skip creating global data maps
5450 * (.rodata, .data, .kconfig, etc); later on, during program
5451 * loading, if we detect that at least one of the to-be-loaded
5452 * programs is referencing any global data map, we'll error
5453 * out with program name and relocation index logged.
5454 * This approach allows to accommodate Clang emitting
5455 * unnecessary .rodata.str1.1 sections for string literals,
5456 * but also it allows to have CO-RE applications that use
5457 * global variables in some of BPF programs, but not others.
5458 * If those global variable-using programs are not loaded at
5459 * runtime due to bpf_program__set_autoload(prog, false),
5460 * bpf_object loading will succeed just fine even on old
5461 * kernels.
5462 */
5463 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5464 map->autocreate = false;
5465
5466 if (!map->autocreate) {
5467 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5468 continue;
5469 }
5470
5471 err = map_set_def_max_entries(map);
5472 if (err)
5473 goto err_out;
5474
5475 retried = false;
5476 retry:
5477 if (map->pin_path) {
5478 err = bpf_object__reuse_map(map);
5479 if (err) {
5480 pr_warn("map '%s': error reusing pinned map\n",
5481 map->name);
5482 goto err_out;
5483 }
5484 if (retried && map->fd < 0) {
5485 pr_warn("map '%s': cannot find pinned map\n",
5486 map->name);
5487 err = -ENOENT;
5488 goto err_out;
5489 }
5490 }
5491
5492 if (map->reused) {
5493 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5494 map->name, map->fd);
5495 } else {
5496 err = bpf_object__create_map(obj, map, false);
5497 if (err)
5498 goto err_out;
5499
5500 pr_debug("map '%s': created successfully, fd=%d\n",
5501 map->name, map->fd);
5502
5503 if (bpf_map__is_internal(map)) {
5504 err = bpf_object__populate_internal_map(obj, map);
5505 if (err < 0)
5506 goto err_out;
5507 } else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5508 map->mmaped = mmap((void *)(long)map->map_extra,
5509 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5510 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5511 map->fd, 0);
5512 if (map->mmaped == MAP_FAILED) {
5513 err = -errno;
5514 map->mmaped = NULL;
5515 pr_warn("map '%s': failed to mmap arena: %s\n",
5516 map->name, errstr(err));
5517 return err;
5518 }
5519 if (obj->arena_data) {
5520 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5521 zfree(&obj->arena_data);
5522 }
5523 }
5524 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5525 err = init_map_in_map_slots(obj, map);
5526 if (err < 0)
5527 goto err_out;
5528 }
5529 }
5530
5531 if (map->pin_path && !map->pinned) {
5532 err = bpf_map__pin(map, NULL);
5533 if (err) {
5534 if (!retried && err == -EEXIST) {
5535 retried = true;
5536 goto retry;
5537 }
5538 pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5539 map->name, map->pin_path, errstr(err));
5540 goto err_out;
5541 }
5542 }
5543 }
5544
5545 return 0;
5546
5547 err_out:
5548 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5549 pr_perm_msg(err);
5550 for (j = 0; j < i; j++)
5551 zclose(obj->maps[j].fd);
5552 return err;
5553 }
5554
bpf_core_is_flavor_sep(const char * s)5555 static bool bpf_core_is_flavor_sep(const char *s)
5556 {
5557 /* check X___Y name pattern, where X and Y are not underscores */
5558 return s[0] != '_' && /* X */
5559 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5560 s[4] != '_'; /* Y */
5561 }
5562
5563 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5564 * before last triple underscore. Struct name part after last triple
5565 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5566 */
bpf_core_essential_name_len(const char * name)5567 size_t bpf_core_essential_name_len(const char *name)
5568 {
5569 size_t n = strlen(name);
5570 int i;
5571
5572 for (i = n - 5; i >= 0; i--) {
5573 if (bpf_core_is_flavor_sep(name + i))
5574 return i + 1;
5575 }
5576 return n;
5577 }
5578
bpf_core_free_cands(struct bpf_core_cand_list * cands)5579 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5580 {
5581 if (!cands)
5582 return;
5583
5584 free(cands->cands);
5585 free(cands);
5586 }
5587
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5588 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5589 size_t local_essent_len,
5590 const struct btf *targ_btf,
5591 const char *targ_btf_name,
5592 int targ_start_id,
5593 struct bpf_core_cand_list *cands)
5594 {
5595 struct bpf_core_cand *new_cands, *cand;
5596 const struct btf_type *t, *local_t;
5597 const char *targ_name, *local_name;
5598 size_t targ_essent_len;
5599 int n, i;
5600
5601 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5602 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5603
5604 n = btf__type_cnt(targ_btf);
5605 for (i = targ_start_id; i < n; i++) {
5606 t = btf__type_by_id(targ_btf, i);
5607 if (!btf_kind_core_compat(t, local_t))
5608 continue;
5609
5610 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5611 if (str_is_empty(targ_name))
5612 continue;
5613
5614 targ_essent_len = bpf_core_essential_name_len(targ_name);
5615 if (targ_essent_len != local_essent_len)
5616 continue;
5617
5618 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5619 continue;
5620
5621 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5622 local_cand->id, btf_kind_str(local_t),
5623 local_name, i, btf_kind_str(t), targ_name,
5624 targ_btf_name);
5625 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5626 sizeof(*cands->cands));
5627 if (!new_cands)
5628 return -ENOMEM;
5629
5630 cand = &new_cands[cands->len];
5631 cand->btf = targ_btf;
5632 cand->id = i;
5633
5634 cands->cands = new_cands;
5635 cands->len++;
5636 }
5637 return 0;
5638 }
5639
load_module_btfs(struct bpf_object * obj)5640 static int load_module_btfs(struct bpf_object *obj)
5641 {
5642 struct bpf_btf_info info;
5643 struct module_btf *mod_btf;
5644 struct btf *btf;
5645 char name[64];
5646 __u32 id = 0, len;
5647 int err, fd;
5648
5649 if (obj->btf_modules_loaded)
5650 return 0;
5651
5652 if (obj->gen_loader)
5653 return 0;
5654
5655 /* don't do this again, even if we find no module BTFs */
5656 obj->btf_modules_loaded = true;
5657
5658 /* kernel too old to support module BTFs */
5659 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5660 return 0;
5661
5662 while (true) {
5663 err = bpf_btf_get_next_id(id, &id);
5664 if (err && errno == ENOENT)
5665 return 0;
5666 if (err && errno == EPERM) {
5667 pr_debug("skipping module BTFs loading, missing privileges\n");
5668 return 0;
5669 }
5670 if (err) {
5671 err = -errno;
5672 pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5673 return err;
5674 }
5675
5676 fd = bpf_btf_get_fd_by_id(id);
5677 if (fd < 0) {
5678 if (errno == ENOENT)
5679 continue; /* expected race: BTF was unloaded */
5680 err = -errno;
5681 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5682 return err;
5683 }
5684
5685 len = sizeof(info);
5686 memset(&info, 0, sizeof(info));
5687 info.name = ptr_to_u64(name);
5688 info.name_len = sizeof(name);
5689
5690 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5691 if (err) {
5692 err = -errno;
5693 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5694 goto err_out;
5695 }
5696
5697 /* ignore non-module BTFs */
5698 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5699 close(fd);
5700 continue;
5701 }
5702
5703 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5704 err = libbpf_get_error(btf);
5705 if (err) {
5706 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5707 name, id, errstr(err));
5708 goto err_out;
5709 }
5710
5711 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5712 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5713 if (err)
5714 goto err_out;
5715
5716 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5717
5718 mod_btf->btf = btf;
5719 mod_btf->id = id;
5720 mod_btf->fd = fd;
5721 mod_btf->name = strdup(name);
5722 if (!mod_btf->name) {
5723 err = -ENOMEM;
5724 goto err_out;
5725 }
5726 continue;
5727
5728 err_out:
5729 close(fd);
5730 return err;
5731 }
5732
5733 return 0;
5734 }
5735
5736 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5737 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5738 {
5739 struct bpf_core_cand local_cand = {};
5740 struct bpf_core_cand_list *cands;
5741 const struct btf *main_btf;
5742 const struct btf_type *local_t;
5743 const char *local_name;
5744 size_t local_essent_len;
5745 int err, i;
5746
5747 local_cand.btf = local_btf;
5748 local_cand.id = local_type_id;
5749 local_t = btf__type_by_id(local_btf, local_type_id);
5750 if (!local_t)
5751 return ERR_PTR(-EINVAL);
5752
5753 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5754 if (str_is_empty(local_name))
5755 return ERR_PTR(-EINVAL);
5756 local_essent_len = bpf_core_essential_name_len(local_name);
5757
5758 cands = calloc(1, sizeof(*cands));
5759 if (!cands)
5760 return ERR_PTR(-ENOMEM);
5761
5762 /* Attempt to find target candidates in vmlinux BTF first */
5763 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5764 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5765 if (err)
5766 goto err_out;
5767
5768 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5769 if (cands->len)
5770 return cands;
5771
5772 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5773 if (obj->btf_vmlinux_override)
5774 return cands;
5775
5776 /* now look through module BTFs, trying to still find candidates */
5777 err = load_module_btfs(obj);
5778 if (err)
5779 goto err_out;
5780
5781 for (i = 0; i < obj->btf_module_cnt; i++) {
5782 err = bpf_core_add_cands(&local_cand, local_essent_len,
5783 obj->btf_modules[i].btf,
5784 obj->btf_modules[i].name,
5785 btf__type_cnt(obj->btf_vmlinux),
5786 cands);
5787 if (err)
5788 goto err_out;
5789 }
5790
5791 return cands;
5792 err_out:
5793 bpf_core_free_cands(cands);
5794 return ERR_PTR(err);
5795 }
5796
5797 /* Check local and target types for compatibility. This check is used for
5798 * type-based CO-RE relocations and follow slightly different rules than
5799 * field-based relocations. This function assumes that root types were already
5800 * checked for name match. Beyond that initial root-level name check, names
5801 * are completely ignored. Compatibility rules are as follows:
5802 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5803 * kind should match for local and target types (i.e., STRUCT is not
5804 * compatible with UNION);
5805 * - for ENUMs, the size is ignored;
5806 * - for INT, size and signedness are ignored;
5807 * - for ARRAY, dimensionality is ignored, element types are checked for
5808 * compatibility recursively;
5809 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5810 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5811 * - FUNC_PROTOs are compatible if they have compatible signature: same
5812 * number of input args and compatible return and argument types.
5813 * These rules are not set in stone and probably will be adjusted as we get
5814 * more experience with using BPF CO-RE relocations.
5815 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5816 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5817 const struct btf *targ_btf, __u32 targ_id)
5818 {
5819 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5820 }
5821
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5822 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5823 const struct btf *targ_btf, __u32 targ_id)
5824 {
5825 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5826 }
5827
bpf_core_hash_fn(const long key,void * ctx)5828 static size_t bpf_core_hash_fn(const long key, void *ctx)
5829 {
5830 return key;
5831 }
5832
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5833 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5834 {
5835 return k1 == k2;
5836 }
5837
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5838 static int record_relo_core(struct bpf_program *prog,
5839 const struct bpf_core_relo *core_relo, int insn_idx)
5840 {
5841 struct reloc_desc *relos, *relo;
5842
5843 relos = libbpf_reallocarray(prog->reloc_desc,
5844 prog->nr_reloc + 1, sizeof(*relos));
5845 if (!relos)
5846 return -ENOMEM;
5847 relo = &relos[prog->nr_reloc];
5848 relo->type = RELO_CORE;
5849 relo->insn_idx = insn_idx;
5850 relo->core_relo = core_relo;
5851 prog->reloc_desc = relos;
5852 prog->nr_reloc++;
5853 return 0;
5854 }
5855
find_relo_core(struct bpf_program * prog,int insn_idx)5856 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5857 {
5858 struct reloc_desc *relo;
5859 int i;
5860
5861 for (i = 0; i < prog->nr_reloc; i++) {
5862 relo = &prog->reloc_desc[i];
5863 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5864 continue;
5865
5866 return relo->core_relo;
5867 }
5868
5869 return NULL;
5870 }
5871
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5872 static int bpf_core_resolve_relo(struct bpf_program *prog,
5873 const struct bpf_core_relo *relo,
5874 int relo_idx,
5875 const struct btf *local_btf,
5876 struct hashmap *cand_cache,
5877 struct bpf_core_relo_res *targ_res)
5878 {
5879 struct bpf_core_spec specs_scratch[3] = {};
5880 struct bpf_core_cand_list *cands = NULL;
5881 const char *prog_name = prog->name;
5882 const struct btf_type *local_type;
5883 const char *local_name;
5884 __u32 local_id = relo->type_id;
5885 int err;
5886
5887 local_type = btf__type_by_id(local_btf, local_id);
5888 if (!local_type)
5889 return -EINVAL;
5890
5891 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5892 if (!local_name)
5893 return -EINVAL;
5894
5895 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5896 !hashmap__find(cand_cache, local_id, &cands)) {
5897 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5898 if (IS_ERR(cands)) {
5899 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5900 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5901 local_name, PTR_ERR(cands));
5902 return PTR_ERR(cands);
5903 }
5904 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5905 if (err) {
5906 bpf_core_free_cands(cands);
5907 return err;
5908 }
5909 }
5910
5911 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5912 targ_res);
5913 }
5914
5915 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5916 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5917 {
5918 const struct btf_ext_info_sec *sec;
5919 struct bpf_core_relo_res targ_res;
5920 const struct bpf_core_relo *rec;
5921 const struct btf_ext_info *seg;
5922 struct hashmap_entry *entry;
5923 struct hashmap *cand_cache = NULL;
5924 struct bpf_program *prog;
5925 struct bpf_insn *insn;
5926 const char *sec_name;
5927 int i, err = 0, insn_idx, sec_idx, sec_num;
5928
5929 if (obj->btf_ext->core_relo_info.len == 0)
5930 return 0;
5931
5932 if (targ_btf_path) {
5933 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5934 err = libbpf_get_error(obj->btf_vmlinux_override);
5935 if (err) {
5936 pr_warn("failed to parse target BTF: %s\n", errstr(err));
5937 return err;
5938 }
5939 }
5940
5941 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5942 if (IS_ERR(cand_cache)) {
5943 err = PTR_ERR(cand_cache);
5944 goto out;
5945 }
5946
5947 seg = &obj->btf_ext->core_relo_info;
5948 sec_num = 0;
5949 for_each_btf_ext_sec(seg, sec) {
5950 sec_idx = seg->sec_idxs[sec_num];
5951 sec_num++;
5952
5953 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5954 if (str_is_empty(sec_name)) {
5955 err = -EINVAL;
5956 goto out;
5957 }
5958
5959 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5960
5961 for_each_btf_ext_rec(seg, sec, i, rec) {
5962 if (rec->insn_off % BPF_INSN_SZ)
5963 return -EINVAL;
5964 insn_idx = rec->insn_off / BPF_INSN_SZ;
5965 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5966 if (!prog) {
5967 /* When __weak subprog is "overridden" by another instance
5968 * of the subprog from a different object file, linker still
5969 * appends all the .BTF.ext info that used to belong to that
5970 * eliminated subprogram.
5971 * This is similar to what x86-64 linker does for relocations.
5972 * So just ignore such relocations just like we ignore
5973 * subprog instructions when discovering subprograms.
5974 */
5975 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5976 sec_name, i, insn_idx);
5977 continue;
5978 }
5979 /* no need to apply CO-RE relocation if the program is
5980 * not going to be loaded
5981 */
5982 if (!prog->autoload)
5983 continue;
5984
5985 /* adjust insn_idx from section frame of reference to the local
5986 * program's frame of reference; (sub-)program code is not yet
5987 * relocated, so it's enough to just subtract in-section offset
5988 */
5989 insn_idx = insn_idx - prog->sec_insn_off;
5990 if (insn_idx >= prog->insns_cnt)
5991 return -EINVAL;
5992 insn = &prog->insns[insn_idx];
5993
5994 err = record_relo_core(prog, rec, insn_idx);
5995 if (err) {
5996 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
5997 prog->name, i, errstr(err));
5998 goto out;
5999 }
6000
6001 if (prog->obj->gen_loader)
6002 continue;
6003
6004 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6005 if (err) {
6006 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6007 prog->name, i, errstr(err));
6008 goto out;
6009 }
6010
6011 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6012 if (err) {
6013 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6014 prog->name, i, insn_idx, errstr(err));
6015 goto out;
6016 }
6017 }
6018 }
6019
6020 out:
6021 /* obj->btf_vmlinux and module BTFs are freed after object load */
6022 btf__free(obj->btf_vmlinux_override);
6023 obj->btf_vmlinux_override = NULL;
6024
6025 if (!IS_ERR_OR_NULL(cand_cache)) {
6026 hashmap__for_each_entry(cand_cache, entry, i) {
6027 bpf_core_free_cands(entry->pvalue);
6028 }
6029 hashmap__free(cand_cache);
6030 }
6031 return err;
6032 }
6033
6034 /* base map load ldimm64 special constant, used also for log fixup logic */
6035 #define POISON_LDIMM64_MAP_BASE 2001000000
6036 #define POISON_LDIMM64_MAP_PFX "200100"
6037
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6038 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6039 int insn_idx, struct bpf_insn *insn,
6040 int map_idx, const struct bpf_map *map)
6041 {
6042 int i;
6043
6044 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6045 prog->name, relo_idx, insn_idx, map_idx, map->name);
6046
6047 /* we turn single ldimm64 into two identical invalid calls */
6048 for (i = 0; i < 2; i++) {
6049 insn->code = BPF_JMP | BPF_CALL;
6050 insn->dst_reg = 0;
6051 insn->src_reg = 0;
6052 insn->off = 0;
6053 /* if this instruction is reachable (not a dead code),
6054 * verifier will complain with something like:
6055 * invalid func unknown#2001000123
6056 * where lower 123 is map index into obj->maps[] array
6057 */
6058 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6059
6060 insn++;
6061 }
6062 }
6063
6064 /* unresolved kfunc call special constant, used also for log fixup logic */
6065 #define POISON_CALL_KFUNC_BASE 2002000000
6066 #define POISON_CALL_KFUNC_PFX "2002"
6067
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6068 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6069 int insn_idx, struct bpf_insn *insn,
6070 int ext_idx, const struct extern_desc *ext)
6071 {
6072 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6073 prog->name, relo_idx, insn_idx, ext->name);
6074
6075 /* we turn kfunc call into invalid helper call with identifiable constant */
6076 insn->code = BPF_JMP | BPF_CALL;
6077 insn->dst_reg = 0;
6078 insn->src_reg = 0;
6079 insn->off = 0;
6080 /* if this instruction is reachable (not a dead code),
6081 * verifier will complain with something like:
6082 * invalid func unknown#2001000123
6083 * where lower 123 is extern index into obj->externs[] array
6084 */
6085 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6086 }
6087
6088 /* Relocate data references within program code:
6089 * - map references;
6090 * - global variable references;
6091 * - extern references.
6092 */
6093 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6094 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6095 {
6096 int i;
6097
6098 for (i = 0; i < prog->nr_reloc; i++) {
6099 struct reloc_desc *relo = &prog->reloc_desc[i];
6100 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6101 const struct bpf_map *map;
6102 struct extern_desc *ext;
6103
6104 switch (relo->type) {
6105 case RELO_LD64:
6106 map = &obj->maps[relo->map_idx];
6107 if (obj->gen_loader) {
6108 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6109 insn[0].imm = relo->map_idx;
6110 } else if (map->autocreate) {
6111 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6112 insn[0].imm = map->fd;
6113 } else {
6114 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6115 relo->map_idx, map);
6116 }
6117 break;
6118 case RELO_DATA:
6119 map = &obj->maps[relo->map_idx];
6120 insn[1].imm = insn[0].imm + relo->sym_off;
6121 if (obj->gen_loader) {
6122 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6123 insn[0].imm = relo->map_idx;
6124 } else if (map->autocreate) {
6125 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6126 insn[0].imm = map->fd;
6127 } else {
6128 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6129 relo->map_idx, map);
6130 }
6131 break;
6132 case RELO_EXTERN_LD64:
6133 ext = &obj->externs[relo->ext_idx];
6134 if (ext->type == EXT_KCFG) {
6135 if (obj->gen_loader) {
6136 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6137 insn[0].imm = obj->kconfig_map_idx;
6138 } else {
6139 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6140 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6141 }
6142 insn[1].imm = ext->kcfg.data_off;
6143 } else /* EXT_KSYM */ {
6144 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6145 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6146 insn[0].imm = ext->ksym.kernel_btf_id;
6147 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6148 } else { /* typeless ksyms or unresolved typed ksyms */
6149 insn[0].imm = (__u32)ext->ksym.addr;
6150 insn[1].imm = ext->ksym.addr >> 32;
6151 }
6152 }
6153 break;
6154 case RELO_EXTERN_CALL:
6155 ext = &obj->externs[relo->ext_idx];
6156 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6157 if (ext->is_set) {
6158 insn[0].imm = ext->ksym.kernel_btf_id;
6159 insn[0].off = ext->ksym.btf_fd_idx;
6160 } else { /* unresolved weak kfunc call */
6161 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6162 relo->ext_idx, ext);
6163 }
6164 break;
6165 case RELO_SUBPROG_ADDR:
6166 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6167 pr_warn("prog '%s': relo #%d: bad insn\n",
6168 prog->name, i);
6169 return -EINVAL;
6170 }
6171 /* handled already */
6172 break;
6173 case RELO_CALL:
6174 /* handled already */
6175 break;
6176 case RELO_CORE:
6177 /* will be handled by bpf_program_record_relos() */
6178 break;
6179 default:
6180 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6181 prog->name, i, relo->type);
6182 return -EINVAL;
6183 }
6184 }
6185
6186 return 0;
6187 }
6188
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6189 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6190 const struct bpf_program *prog,
6191 const struct btf_ext_info *ext_info,
6192 void **prog_info, __u32 *prog_rec_cnt,
6193 __u32 *prog_rec_sz)
6194 {
6195 void *copy_start = NULL, *copy_end = NULL;
6196 void *rec, *rec_end, *new_prog_info;
6197 const struct btf_ext_info_sec *sec;
6198 size_t old_sz, new_sz;
6199 int i, sec_num, sec_idx, off_adj;
6200
6201 sec_num = 0;
6202 for_each_btf_ext_sec(ext_info, sec) {
6203 sec_idx = ext_info->sec_idxs[sec_num];
6204 sec_num++;
6205 if (prog->sec_idx != sec_idx)
6206 continue;
6207
6208 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6209 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6210
6211 if (insn_off < prog->sec_insn_off)
6212 continue;
6213 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6214 break;
6215
6216 if (!copy_start)
6217 copy_start = rec;
6218 copy_end = rec + ext_info->rec_size;
6219 }
6220
6221 if (!copy_start)
6222 return -ENOENT;
6223
6224 /* append func/line info of a given (sub-)program to the main
6225 * program func/line info
6226 */
6227 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6228 new_sz = old_sz + (copy_end - copy_start);
6229 new_prog_info = realloc(*prog_info, new_sz);
6230 if (!new_prog_info)
6231 return -ENOMEM;
6232 *prog_info = new_prog_info;
6233 *prog_rec_cnt = new_sz / ext_info->rec_size;
6234 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6235
6236 /* Kernel instruction offsets are in units of 8-byte
6237 * instructions, while .BTF.ext instruction offsets generated
6238 * by Clang are in units of bytes. So convert Clang offsets
6239 * into kernel offsets and adjust offset according to program
6240 * relocated position.
6241 */
6242 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6243 rec = new_prog_info + old_sz;
6244 rec_end = new_prog_info + new_sz;
6245 for (; rec < rec_end; rec += ext_info->rec_size) {
6246 __u32 *insn_off = rec;
6247
6248 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6249 }
6250 *prog_rec_sz = ext_info->rec_size;
6251 return 0;
6252 }
6253
6254 return -ENOENT;
6255 }
6256
6257 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6258 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6259 struct bpf_program *main_prog,
6260 const struct bpf_program *prog)
6261 {
6262 int err;
6263
6264 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6265 * support func/line info
6266 */
6267 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6268 return 0;
6269
6270 /* only attempt func info relocation if main program's func_info
6271 * relocation was successful
6272 */
6273 if (main_prog != prog && !main_prog->func_info)
6274 goto line_info;
6275
6276 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6277 &main_prog->func_info,
6278 &main_prog->func_info_cnt,
6279 &main_prog->func_info_rec_size);
6280 if (err) {
6281 if (err != -ENOENT) {
6282 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6283 prog->name, errstr(err));
6284 return err;
6285 }
6286 if (main_prog->func_info) {
6287 /*
6288 * Some info has already been found but has problem
6289 * in the last btf_ext reloc. Must have to error out.
6290 */
6291 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6292 return err;
6293 }
6294 /* Have problem loading the very first info. Ignore the rest. */
6295 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6296 prog->name);
6297 }
6298
6299 line_info:
6300 /* don't relocate line info if main program's relocation failed */
6301 if (main_prog != prog && !main_prog->line_info)
6302 return 0;
6303
6304 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6305 &main_prog->line_info,
6306 &main_prog->line_info_cnt,
6307 &main_prog->line_info_rec_size);
6308 if (err) {
6309 if (err != -ENOENT) {
6310 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6311 prog->name, errstr(err));
6312 return err;
6313 }
6314 if (main_prog->line_info) {
6315 /*
6316 * Some info has already been found but has problem
6317 * in the last btf_ext reloc. Must have to error out.
6318 */
6319 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6320 return err;
6321 }
6322 /* Have problem loading the very first info. Ignore the rest. */
6323 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6324 prog->name);
6325 }
6326 return 0;
6327 }
6328
cmp_relo_by_insn_idx(const void * key,const void * elem)6329 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6330 {
6331 size_t insn_idx = *(const size_t *)key;
6332 const struct reloc_desc *relo = elem;
6333
6334 if (insn_idx == relo->insn_idx)
6335 return 0;
6336 return insn_idx < relo->insn_idx ? -1 : 1;
6337 }
6338
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6339 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6340 {
6341 if (!prog->nr_reloc)
6342 return NULL;
6343 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6344 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6345 }
6346
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6347 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6348 {
6349 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6350 struct reloc_desc *relos;
6351 int i;
6352
6353 if (main_prog == subprog)
6354 return 0;
6355 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6356 /* if new count is zero, reallocarray can return a valid NULL result;
6357 * in this case the previous pointer will be freed, so we *have to*
6358 * reassign old pointer to the new value (even if it's NULL)
6359 */
6360 if (!relos && new_cnt)
6361 return -ENOMEM;
6362 if (subprog->nr_reloc)
6363 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6364 sizeof(*relos) * subprog->nr_reloc);
6365
6366 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6367 relos[i].insn_idx += subprog->sub_insn_off;
6368 /* After insn_idx adjustment the 'relos' array is still sorted
6369 * by insn_idx and doesn't break bsearch.
6370 */
6371 main_prog->reloc_desc = relos;
6372 main_prog->nr_reloc = new_cnt;
6373 return 0;
6374 }
6375
6376 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6377 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6378 struct bpf_program *subprog)
6379 {
6380 struct bpf_insn *insns;
6381 size_t new_cnt;
6382 int err;
6383
6384 subprog->sub_insn_off = main_prog->insns_cnt;
6385
6386 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6387 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6388 if (!insns) {
6389 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6390 return -ENOMEM;
6391 }
6392 main_prog->insns = insns;
6393 main_prog->insns_cnt = new_cnt;
6394
6395 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6396 subprog->insns_cnt * sizeof(*insns));
6397
6398 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6399 main_prog->name, subprog->insns_cnt, subprog->name);
6400
6401 /* The subprog insns are now appended. Append its relos too. */
6402 err = append_subprog_relos(main_prog, subprog);
6403 if (err)
6404 return err;
6405 return 0;
6406 }
6407
6408 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6409 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6410 struct bpf_program *prog)
6411 {
6412 size_t sub_insn_idx, insn_idx;
6413 struct bpf_program *subprog;
6414 struct reloc_desc *relo;
6415 struct bpf_insn *insn;
6416 int err;
6417
6418 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6419 if (err)
6420 return err;
6421
6422 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6423 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6424 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6425 continue;
6426
6427 relo = find_prog_insn_relo(prog, insn_idx);
6428 if (relo && relo->type == RELO_EXTERN_CALL)
6429 /* kfunc relocations will be handled later
6430 * in bpf_object__relocate_data()
6431 */
6432 continue;
6433 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6434 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6435 prog->name, insn_idx, relo->type);
6436 return -LIBBPF_ERRNO__RELOC;
6437 }
6438 if (relo) {
6439 /* sub-program instruction index is a combination of
6440 * an offset of a symbol pointed to by relocation and
6441 * call instruction's imm field; for global functions,
6442 * call always has imm = -1, but for static functions
6443 * relocation is against STT_SECTION and insn->imm
6444 * points to a start of a static function
6445 *
6446 * for subprog addr relocation, the relo->sym_off + insn->imm is
6447 * the byte offset in the corresponding section.
6448 */
6449 if (relo->type == RELO_CALL)
6450 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6451 else
6452 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6453 } else if (insn_is_pseudo_func(insn)) {
6454 /*
6455 * RELO_SUBPROG_ADDR relo is always emitted even if both
6456 * functions are in the same section, so it shouldn't reach here.
6457 */
6458 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6459 prog->name, insn_idx);
6460 return -LIBBPF_ERRNO__RELOC;
6461 } else {
6462 /* if subprogram call is to a static function within
6463 * the same ELF section, there won't be any relocation
6464 * emitted, but it also means there is no additional
6465 * offset necessary, insns->imm is relative to
6466 * instruction's original position within the section
6467 */
6468 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6469 }
6470
6471 /* we enforce that sub-programs should be in .text section */
6472 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6473 if (!subprog) {
6474 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6475 prog->name);
6476 return -LIBBPF_ERRNO__RELOC;
6477 }
6478
6479 /* if it's the first call instruction calling into this
6480 * subprogram (meaning this subprog hasn't been processed
6481 * yet) within the context of current main program:
6482 * - append it at the end of main program's instructions blog;
6483 * - process is recursively, while current program is put on hold;
6484 * - if that subprogram calls some other not yet processes
6485 * subprogram, same thing will happen recursively until
6486 * there are no more unprocesses subprograms left to append
6487 * and relocate.
6488 */
6489 if (subprog->sub_insn_off == 0) {
6490 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6491 if (err)
6492 return err;
6493 err = bpf_object__reloc_code(obj, main_prog, subprog);
6494 if (err)
6495 return err;
6496 }
6497
6498 /* main_prog->insns memory could have been re-allocated, so
6499 * calculate pointer again
6500 */
6501 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6502 /* calculate correct instruction position within current main
6503 * prog; each main prog can have a different set of
6504 * subprograms appended (potentially in different order as
6505 * well), so position of any subprog can be different for
6506 * different main programs
6507 */
6508 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6509
6510 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6511 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6512 }
6513
6514 return 0;
6515 }
6516
6517 /*
6518 * Relocate sub-program calls.
6519 *
6520 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6521 * main prog) is processed separately. For each subprog (non-entry functions,
6522 * that can be called from either entry progs or other subprogs) gets their
6523 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6524 * hasn't been yet appended and relocated within current main prog. Once its
6525 * relocated, sub_insn_off will point at the position within current main prog
6526 * where given subprog was appended. This will further be used to relocate all
6527 * the call instructions jumping into this subprog.
6528 *
6529 * We start with main program and process all call instructions. If the call
6530 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6531 * is zero), subprog instructions are appended at the end of main program's
6532 * instruction array. Then main program is "put on hold" while we recursively
6533 * process newly appended subprogram. If that subprogram calls into another
6534 * subprogram that hasn't been appended, new subprogram is appended again to
6535 * the *main* prog's instructions (subprog's instructions are always left
6536 * untouched, as they need to be in unmodified state for subsequent main progs
6537 * and subprog instructions are always sent only as part of a main prog) and
6538 * the process continues recursively. Once all the subprogs called from a main
6539 * prog or any of its subprogs are appended (and relocated), all their
6540 * positions within finalized instructions array are known, so it's easy to
6541 * rewrite call instructions with correct relative offsets, corresponding to
6542 * desired target subprog.
6543 *
6544 * Its important to realize that some subprogs might not be called from some
6545 * main prog and any of its called/used subprogs. Those will keep their
6546 * subprog->sub_insn_off as zero at all times and won't be appended to current
6547 * main prog and won't be relocated within the context of current main prog.
6548 * They might still be used from other main progs later.
6549 *
6550 * Visually this process can be shown as below. Suppose we have two main
6551 * programs mainA and mainB and BPF object contains three subprogs: subA,
6552 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6553 * subC both call subB:
6554 *
6555 * +--------+ +-------+
6556 * | v v |
6557 * +--+---+ +--+-+-+ +---+--+
6558 * | subA | | subB | | subC |
6559 * +--+---+ +------+ +---+--+
6560 * ^ ^
6561 * | |
6562 * +---+-------+ +------+----+
6563 * | mainA | | mainB |
6564 * +-----------+ +-----------+
6565 *
6566 * We'll start relocating mainA, will find subA, append it and start
6567 * processing sub A recursively:
6568 *
6569 * +-----------+------+
6570 * | mainA | subA |
6571 * +-----------+------+
6572 *
6573 * At this point we notice that subB is used from subA, so we append it and
6574 * relocate (there are no further subcalls from subB):
6575 *
6576 * +-----------+------+------+
6577 * | mainA | subA | subB |
6578 * +-----------+------+------+
6579 *
6580 * At this point, we relocate subA calls, then go one level up and finish with
6581 * relocatin mainA calls. mainA is done.
6582 *
6583 * For mainB process is similar but results in different order. We start with
6584 * mainB and skip subA and subB, as mainB never calls them (at least
6585 * directly), but we see subC is needed, so we append and start processing it:
6586 *
6587 * +-----------+------+
6588 * | mainB | subC |
6589 * +-----------+------+
6590 * Now we see subC needs subB, so we go back to it, append and relocate it:
6591 *
6592 * +-----------+------+------+
6593 * | mainB | subC | subB |
6594 * +-----------+------+------+
6595 *
6596 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6597 */
6598 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6599 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6600 {
6601 struct bpf_program *subprog;
6602 int i, err;
6603
6604 /* mark all subprogs as not relocated (yet) within the context of
6605 * current main program
6606 */
6607 for (i = 0; i < obj->nr_programs; i++) {
6608 subprog = &obj->programs[i];
6609 if (!prog_is_subprog(obj, subprog))
6610 continue;
6611
6612 subprog->sub_insn_off = 0;
6613 }
6614
6615 err = bpf_object__reloc_code(obj, prog, prog);
6616 if (err)
6617 return err;
6618
6619 return 0;
6620 }
6621
6622 static void
bpf_object__free_relocs(struct bpf_object * obj)6623 bpf_object__free_relocs(struct bpf_object *obj)
6624 {
6625 struct bpf_program *prog;
6626 int i;
6627
6628 /* free up relocation descriptors */
6629 for (i = 0; i < obj->nr_programs; i++) {
6630 prog = &obj->programs[i];
6631 zfree(&prog->reloc_desc);
6632 prog->nr_reloc = 0;
6633 }
6634 }
6635
cmp_relocs(const void * _a,const void * _b)6636 static int cmp_relocs(const void *_a, const void *_b)
6637 {
6638 const struct reloc_desc *a = _a;
6639 const struct reloc_desc *b = _b;
6640
6641 if (a->insn_idx != b->insn_idx)
6642 return a->insn_idx < b->insn_idx ? -1 : 1;
6643
6644 /* no two relocations should have the same insn_idx, but ... */
6645 if (a->type != b->type)
6646 return a->type < b->type ? -1 : 1;
6647
6648 return 0;
6649 }
6650
bpf_object__sort_relos(struct bpf_object * obj)6651 static void bpf_object__sort_relos(struct bpf_object *obj)
6652 {
6653 int i;
6654
6655 for (i = 0; i < obj->nr_programs; i++) {
6656 struct bpf_program *p = &obj->programs[i];
6657
6658 if (!p->nr_reloc)
6659 continue;
6660
6661 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6662 }
6663 }
6664
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6665 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6666 {
6667 const char *str = "exception_callback:";
6668 size_t pfx_len = strlen(str);
6669 int i, j, n;
6670
6671 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6672 return 0;
6673
6674 n = btf__type_cnt(obj->btf);
6675 for (i = 1; i < n; i++) {
6676 const char *name;
6677 struct btf_type *t;
6678
6679 t = btf_type_by_id(obj->btf, i);
6680 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6681 continue;
6682
6683 name = btf__str_by_offset(obj->btf, t->name_off);
6684 if (strncmp(name, str, pfx_len) != 0)
6685 continue;
6686
6687 t = btf_type_by_id(obj->btf, t->type);
6688 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6689 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6690 prog->name);
6691 return -EINVAL;
6692 }
6693 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6694 continue;
6695 /* Multiple callbacks are specified for the same prog,
6696 * the verifier will eventually return an error for this
6697 * case, hence simply skip appending a subprog.
6698 */
6699 if (prog->exception_cb_idx >= 0) {
6700 prog->exception_cb_idx = -1;
6701 break;
6702 }
6703
6704 name += pfx_len;
6705 if (str_is_empty(name)) {
6706 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6707 prog->name);
6708 return -EINVAL;
6709 }
6710
6711 for (j = 0; j < obj->nr_programs; j++) {
6712 struct bpf_program *subprog = &obj->programs[j];
6713
6714 if (!prog_is_subprog(obj, subprog))
6715 continue;
6716 if (strcmp(name, subprog->name) != 0)
6717 continue;
6718 /* Enforce non-hidden, as from verifier point of
6719 * view it expects global functions, whereas the
6720 * mark_btf_static fixes up linkage as static.
6721 */
6722 if (!subprog->sym_global || subprog->mark_btf_static) {
6723 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6724 prog->name, subprog->name);
6725 return -EINVAL;
6726 }
6727 /* Let's see if we already saw a static exception callback with the same name */
6728 if (prog->exception_cb_idx >= 0) {
6729 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6730 prog->name, subprog->name);
6731 return -EINVAL;
6732 }
6733 prog->exception_cb_idx = j;
6734 break;
6735 }
6736
6737 if (prog->exception_cb_idx >= 0)
6738 continue;
6739
6740 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6741 return -ENOENT;
6742 }
6743
6744 return 0;
6745 }
6746
6747 static struct {
6748 enum bpf_prog_type prog_type;
6749 const char *ctx_name;
6750 } global_ctx_map[] = {
6751 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6752 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6753 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6754 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6755 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6756 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6757 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6758 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6759 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6760 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6761 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6762 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6763 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6764 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6765 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6766 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6767 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6768 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6769 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6770 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6771 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6772 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6773 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6774 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6775 { BPF_PROG_TYPE_XDP, "xdp_md" },
6776 /* all other program types don't have "named" context structs */
6777 };
6778
6779 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6780 * for below __builtin_types_compatible_p() checks;
6781 * with this approach we don't need any extra arch-specific #ifdef guards
6782 */
6783 struct pt_regs;
6784 struct user_pt_regs;
6785 struct user_regs_struct;
6786
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6787 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6788 const char *subprog_name, int arg_idx,
6789 int arg_type_id, const char *ctx_name)
6790 {
6791 const struct btf_type *t;
6792 const char *tname;
6793
6794 /* check if existing parameter already matches verifier expectations */
6795 t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6796 if (!btf_is_ptr(t))
6797 goto out_warn;
6798
6799 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6800 * and perf_event programs, so check this case early on and forget
6801 * about it for subsequent checks
6802 */
6803 while (btf_is_mod(t))
6804 t = btf__type_by_id(btf, t->type);
6805 if (btf_is_typedef(t) &&
6806 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6807 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6808 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6809 return false; /* canonical type for kprobe/perf_event */
6810 }
6811
6812 /* now we can ignore typedefs moving forward */
6813 t = skip_mods_and_typedefs(btf, t->type, NULL);
6814
6815 /* if it's `void *`, definitely fix up BTF info */
6816 if (btf_is_void(t))
6817 return true;
6818
6819 /* if it's already proper canonical type, no need to fix up */
6820 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6821 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6822 return false;
6823
6824 /* special cases */
6825 switch (prog->type) {
6826 case BPF_PROG_TYPE_KPROBE:
6827 /* `struct pt_regs *` is expected, but we need to fix up */
6828 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6829 return true;
6830 break;
6831 case BPF_PROG_TYPE_PERF_EVENT:
6832 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6833 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6834 return true;
6835 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6836 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6837 return true;
6838 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6839 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6840 return true;
6841 break;
6842 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6843 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6844 /* allow u64* as ctx */
6845 if (btf_is_int(t) && t->size == 8)
6846 return true;
6847 break;
6848 default:
6849 break;
6850 }
6851
6852 out_warn:
6853 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6854 prog->name, subprog_name, arg_idx, ctx_name);
6855 return false;
6856 }
6857
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6858 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6859 {
6860 int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6861 int i, err, arg_cnt, fn_name_off, linkage;
6862 struct btf_type *fn_t, *fn_proto_t, *t;
6863 struct btf_param *p;
6864
6865 /* caller already validated FUNC -> FUNC_PROTO validity */
6866 fn_t = btf_type_by_id(btf, orig_fn_id);
6867 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6868
6869 /* Note that each btf__add_xxx() operation invalidates
6870 * all btf_type and string pointers, so we need to be
6871 * very careful when cloning BTF types. BTF type
6872 * pointers have to be always refetched. And to avoid
6873 * problems with invalidated string pointers, we
6874 * add empty strings initially, then just fix up
6875 * name_off offsets in place. Offsets are stable for
6876 * existing strings, so that works out.
6877 */
6878 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6879 linkage = btf_func_linkage(fn_t);
6880 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6881 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6882 arg_cnt = btf_vlen(fn_proto_t);
6883
6884 /* clone FUNC_PROTO and its params */
6885 fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6886 if (fn_proto_id < 0)
6887 return -EINVAL;
6888
6889 for (i = 0; i < arg_cnt; i++) {
6890 int name_off;
6891
6892 /* copy original parameter data */
6893 t = btf_type_by_id(btf, orig_proto_id);
6894 p = &btf_params(t)[i];
6895 name_off = p->name_off;
6896
6897 err = btf__add_func_param(btf, "", p->type);
6898 if (err)
6899 return err;
6900
6901 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6902 p = &btf_params(fn_proto_t)[i];
6903 p->name_off = name_off; /* use remembered str offset */
6904 }
6905
6906 /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6907 * entry program's name as a placeholder, which we replace immediately
6908 * with original name_off
6909 */
6910 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6911 if (fn_id < 0)
6912 return -EINVAL;
6913
6914 fn_t = btf_type_by_id(btf, fn_id);
6915 fn_t->name_off = fn_name_off; /* reuse original string */
6916
6917 return fn_id;
6918 }
6919
6920 /* Check if main program or global subprog's function prototype has `arg:ctx`
6921 * argument tags, and, if necessary, substitute correct type to match what BPF
6922 * verifier would expect, taking into account specific program type. This
6923 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6924 * have a native support for it in the verifier, making user's life much
6925 * easier.
6926 */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6927 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6928 {
6929 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6930 struct bpf_func_info_min *func_rec;
6931 struct btf_type *fn_t, *fn_proto_t;
6932 struct btf *btf = obj->btf;
6933 const struct btf_type *t;
6934 struct btf_param *p;
6935 int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6936 int i, n, arg_idx, arg_cnt, err, rec_idx;
6937 int *orig_ids;
6938
6939 /* no .BTF.ext, no problem */
6940 if (!obj->btf_ext || !prog->func_info)
6941 return 0;
6942
6943 /* don't do any fix ups if kernel natively supports __arg_ctx */
6944 if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6945 return 0;
6946
6947 /* some BPF program types just don't have named context structs, so
6948 * this fallback mechanism doesn't work for them
6949 */
6950 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6951 if (global_ctx_map[i].prog_type != prog->type)
6952 continue;
6953 ctx_name = global_ctx_map[i].ctx_name;
6954 break;
6955 }
6956 if (!ctx_name)
6957 return 0;
6958
6959 /* remember original func BTF IDs to detect if we already cloned them */
6960 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6961 if (!orig_ids)
6962 return -ENOMEM;
6963 for (i = 0; i < prog->func_info_cnt; i++) {
6964 func_rec = prog->func_info + prog->func_info_rec_size * i;
6965 orig_ids[i] = func_rec->type_id;
6966 }
6967
6968 /* go through each DECL_TAG with "arg:ctx" and see if it points to one
6969 * of our subprogs; if yes and subprog is global and needs adjustment,
6970 * clone and adjust FUNC -> FUNC_PROTO combo
6971 */
6972 for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6973 /* only DECL_TAG with "arg:ctx" value are interesting */
6974 t = btf__type_by_id(btf, i);
6975 if (!btf_is_decl_tag(t))
6976 continue;
6977 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6978 continue;
6979
6980 /* only global funcs need adjustment, if at all */
6981 orig_fn_id = t->type;
6982 fn_t = btf_type_by_id(btf, orig_fn_id);
6983 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6984 continue;
6985
6986 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
6987 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6988 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6989 continue;
6990
6991 /* find corresponding func_info record */
6992 func_rec = NULL;
6993 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6994 if (orig_ids[rec_idx] == t->type) {
6995 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6996 break;
6997 }
6998 }
6999 /* current main program doesn't call into this subprog */
7000 if (!func_rec)
7001 continue;
7002
7003 /* some more sanity checking of DECL_TAG */
7004 arg_cnt = btf_vlen(fn_proto_t);
7005 arg_idx = btf_decl_tag(t)->component_idx;
7006 if (arg_idx < 0 || arg_idx >= arg_cnt)
7007 continue;
7008
7009 /* check if we should fix up argument type */
7010 p = &btf_params(fn_proto_t)[arg_idx];
7011 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7012 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7013 continue;
7014
7015 /* clone fn/fn_proto, unless we already did it for another arg */
7016 if (func_rec->type_id == orig_fn_id) {
7017 int fn_id;
7018
7019 fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7020 if (fn_id < 0) {
7021 err = fn_id;
7022 goto err_out;
7023 }
7024
7025 /* point func_info record to a cloned FUNC type */
7026 func_rec->type_id = fn_id;
7027 }
7028
7029 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7030 * we do it just once per main BPF program, as all global
7031 * funcs share the same program type, so need only PTR ->
7032 * STRUCT type chain
7033 */
7034 if (ptr_id == 0) {
7035 struct_id = btf__add_struct(btf, ctx_name, 0);
7036 ptr_id = btf__add_ptr(btf, struct_id);
7037 if (ptr_id < 0 || struct_id < 0) {
7038 err = -EINVAL;
7039 goto err_out;
7040 }
7041 }
7042
7043 /* for completeness, clone DECL_TAG and point it to cloned param */
7044 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7045 if (tag_id < 0) {
7046 err = -EINVAL;
7047 goto err_out;
7048 }
7049
7050 /* all the BTF manipulations invalidated pointers, refetch them */
7051 fn_t = btf_type_by_id(btf, func_rec->type_id);
7052 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7053
7054 /* fix up type ID pointed to by param */
7055 p = &btf_params(fn_proto_t)[arg_idx];
7056 p->type = ptr_id;
7057 }
7058
7059 free(orig_ids);
7060 return 0;
7061 err_out:
7062 free(orig_ids);
7063 return err;
7064 }
7065
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7066 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7067 {
7068 struct bpf_program *prog;
7069 size_t i, j;
7070 int err;
7071
7072 if (obj->btf_ext) {
7073 err = bpf_object__relocate_core(obj, targ_btf_path);
7074 if (err) {
7075 pr_warn("failed to perform CO-RE relocations: %s\n",
7076 errstr(err));
7077 return err;
7078 }
7079 bpf_object__sort_relos(obj);
7080 }
7081
7082 /* Before relocating calls pre-process relocations and mark
7083 * few ld_imm64 instructions that points to subprogs.
7084 * Otherwise bpf_object__reloc_code() later would have to consider
7085 * all ld_imm64 insns as relocation candidates. That would
7086 * reduce relocation speed, since amount of find_prog_insn_relo()
7087 * would increase and most of them will fail to find a relo.
7088 */
7089 for (i = 0; i < obj->nr_programs; i++) {
7090 prog = &obj->programs[i];
7091 for (j = 0; j < prog->nr_reloc; j++) {
7092 struct reloc_desc *relo = &prog->reloc_desc[j];
7093 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7094
7095 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7096 if (relo->type == RELO_SUBPROG_ADDR)
7097 insn[0].src_reg = BPF_PSEUDO_FUNC;
7098 }
7099 }
7100
7101 /* relocate subprogram calls and append used subprograms to main
7102 * programs; each copy of subprogram code needs to be relocated
7103 * differently for each main program, because its code location might
7104 * have changed.
7105 * Append subprog relos to main programs to allow data relos to be
7106 * processed after text is completely relocated.
7107 */
7108 for (i = 0; i < obj->nr_programs; i++) {
7109 prog = &obj->programs[i];
7110 /* sub-program's sub-calls are relocated within the context of
7111 * its main program only
7112 */
7113 if (prog_is_subprog(obj, prog))
7114 continue;
7115 if (!prog->autoload)
7116 continue;
7117
7118 err = bpf_object__relocate_calls(obj, prog);
7119 if (err) {
7120 pr_warn("prog '%s': failed to relocate calls: %s\n",
7121 prog->name, errstr(err));
7122 return err;
7123 }
7124
7125 err = bpf_prog_assign_exc_cb(obj, prog);
7126 if (err)
7127 return err;
7128 /* Now, also append exception callback if it has not been done already. */
7129 if (prog->exception_cb_idx >= 0) {
7130 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7131
7132 /* Calling exception callback directly is disallowed, which the
7133 * verifier will reject later. In case it was processed already,
7134 * we can skip this step, otherwise for all other valid cases we
7135 * have to append exception callback now.
7136 */
7137 if (subprog->sub_insn_off == 0) {
7138 err = bpf_object__append_subprog_code(obj, prog, subprog);
7139 if (err)
7140 return err;
7141 err = bpf_object__reloc_code(obj, prog, subprog);
7142 if (err)
7143 return err;
7144 }
7145 }
7146 }
7147 for (i = 0; i < obj->nr_programs; i++) {
7148 prog = &obj->programs[i];
7149 if (prog_is_subprog(obj, prog))
7150 continue;
7151 if (!prog->autoload)
7152 continue;
7153
7154 /* Process data relos for main programs */
7155 err = bpf_object__relocate_data(obj, prog);
7156 if (err) {
7157 pr_warn("prog '%s': failed to relocate data references: %s\n",
7158 prog->name, errstr(err));
7159 return err;
7160 }
7161
7162 /* Fix up .BTF.ext information, if necessary */
7163 err = bpf_program_fixup_func_info(obj, prog);
7164 if (err) {
7165 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7166 prog->name, errstr(err));
7167 return err;
7168 }
7169 }
7170
7171 return 0;
7172 }
7173
7174 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7175 Elf64_Shdr *shdr, Elf_Data *data);
7176
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7177 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7178 Elf64_Shdr *shdr, Elf_Data *data)
7179 {
7180 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7181 int i, j, nrels, new_sz;
7182 const struct btf_var_secinfo *vi = NULL;
7183 const struct btf_type *sec, *var, *def;
7184 struct bpf_map *map = NULL, *targ_map = NULL;
7185 struct bpf_program *targ_prog = NULL;
7186 bool is_prog_array, is_map_in_map;
7187 const struct btf_member *member;
7188 const char *name, *mname, *type;
7189 unsigned int moff;
7190 Elf64_Sym *sym;
7191 Elf64_Rel *rel;
7192 void *tmp;
7193
7194 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7195 return -EINVAL;
7196 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7197 if (!sec)
7198 return -EINVAL;
7199
7200 nrels = shdr->sh_size / shdr->sh_entsize;
7201 for (i = 0; i < nrels; i++) {
7202 rel = elf_rel_by_idx(data, i);
7203 if (!rel) {
7204 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7205 return -LIBBPF_ERRNO__FORMAT;
7206 }
7207
7208 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7209 if (!sym) {
7210 pr_warn(".maps relo #%d: symbol %zx not found\n",
7211 i, (size_t)ELF64_R_SYM(rel->r_info));
7212 return -LIBBPF_ERRNO__FORMAT;
7213 }
7214 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7215
7216 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7217 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7218 (size_t)rel->r_offset, sym->st_name, name);
7219
7220 for (j = 0; j < obj->nr_maps; j++) {
7221 map = &obj->maps[j];
7222 if (map->sec_idx != obj->efile.btf_maps_shndx)
7223 continue;
7224
7225 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7226 if (vi->offset <= rel->r_offset &&
7227 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7228 break;
7229 }
7230 if (j == obj->nr_maps) {
7231 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7232 i, name, (size_t)rel->r_offset);
7233 return -EINVAL;
7234 }
7235
7236 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7237 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7238 type = is_map_in_map ? "map" : "prog";
7239 if (is_map_in_map) {
7240 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7241 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7242 i, name);
7243 return -LIBBPF_ERRNO__RELOC;
7244 }
7245 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7246 map->def.key_size != sizeof(int)) {
7247 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7248 i, map->name, sizeof(int));
7249 return -EINVAL;
7250 }
7251 targ_map = bpf_object__find_map_by_name(obj, name);
7252 if (!targ_map) {
7253 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7254 i, name);
7255 return -ESRCH;
7256 }
7257 } else if (is_prog_array) {
7258 targ_prog = bpf_object__find_program_by_name(obj, name);
7259 if (!targ_prog) {
7260 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7261 i, name);
7262 return -ESRCH;
7263 }
7264 if (targ_prog->sec_idx != sym->st_shndx ||
7265 targ_prog->sec_insn_off * 8 != sym->st_value ||
7266 prog_is_subprog(obj, targ_prog)) {
7267 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7268 i, name);
7269 return -LIBBPF_ERRNO__RELOC;
7270 }
7271 } else {
7272 return -EINVAL;
7273 }
7274
7275 var = btf__type_by_id(obj->btf, vi->type);
7276 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7277 if (btf_vlen(def) == 0)
7278 return -EINVAL;
7279 member = btf_members(def) + btf_vlen(def) - 1;
7280 mname = btf__name_by_offset(obj->btf, member->name_off);
7281 if (strcmp(mname, "values"))
7282 return -EINVAL;
7283
7284 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7285 if (rel->r_offset - vi->offset < moff)
7286 return -EINVAL;
7287
7288 moff = rel->r_offset - vi->offset - moff;
7289 /* here we use BPF pointer size, which is always 64 bit, as we
7290 * are parsing ELF that was built for BPF target
7291 */
7292 if (moff % bpf_ptr_sz)
7293 return -EINVAL;
7294 moff /= bpf_ptr_sz;
7295 if (moff >= map->init_slots_sz) {
7296 new_sz = moff + 1;
7297 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7298 if (!tmp)
7299 return -ENOMEM;
7300 map->init_slots = tmp;
7301 memset(map->init_slots + map->init_slots_sz, 0,
7302 (new_sz - map->init_slots_sz) * host_ptr_sz);
7303 map->init_slots_sz = new_sz;
7304 }
7305 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7306
7307 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7308 i, map->name, moff, type, name);
7309 }
7310
7311 return 0;
7312 }
7313
bpf_object__collect_relos(struct bpf_object * obj)7314 static int bpf_object__collect_relos(struct bpf_object *obj)
7315 {
7316 int i, err;
7317
7318 for (i = 0; i < obj->efile.sec_cnt; i++) {
7319 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7320 Elf64_Shdr *shdr;
7321 Elf_Data *data;
7322 int idx;
7323
7324 if (sec_desc->sec_type != SEC_RELO)
7325 continue;
7326
7327 shdr = sec_desc->shdr;
7328 data = sec_desc->data;
7329 idx = shdr->sh_info;
7330
7331 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7332 pr_warn("internal error at %d\n", __LINE__);
7333 return -LIBBPF_ERRNO__INTERNAL;
7334 }
7335
7336 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7337 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7338 else if (idx == obj->efile.btf_maps_shndx)
7339 err = bpf_object__collect_map_relos(obj, shdr, data);
7340 else
7341 err = bpf_object__collect_prog_relos(obj, shdr, data);
7342 if (err)
7343 return err;
7344 }
7345
7346 bpf_object__sort_relos(obj);
7347 return 0;
7348 }
7349
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7350 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7351 {
7352 if (BPF_CLASS(insn->code) == BPF_JMP &&
7353 BPF_OP(insn->code) == BPF_CALL &&
7354 BPF_SRC(insn->code) == BPF_K &&
7355 insn->src_reg == 0 &&
7356 insn->dst_reg == 0) {
7357 *func_id = insn->imm;
7358 return true;
7359 }
7360 return false;
7361 }
7362
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7363 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7364 {
7365 struct bpf_insn *insn = prog->insns;
7366 enum bpf_func_id func_id;
7367 int i;
7368
7369 if (obj->gen_loader)
7370 return 0;
7371
7372 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7373 if (!insn_is_helper_call(insn, &func_id))
7374 continue;
7375
7376 /* on kernels that don't yet support
7377 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7378 * to bpf_probe_read() which works well for old kernels
7379 */
7380 switch (func_id) {
7381 case BPF_FUNC_probe_read_kernel:
7382 case BPF_FUNC_probe_read_user:
7383 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7384 insn->imm = BPF_FUNC_probe_read;
7385 break;
7386 case BPF_FUNC_probe_read_kernel_str:
7387 case BPF_FUNC_probe_read_user_str:
7388 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7389 insn->imm = BPF_FUNC_probe_read_str;
7390 break;
7391 default:
7392 break;
7393 }
7394 }
7395 return 0;
7396 }
7397
7398 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7399 int *btf_obj_fd, int *btf_type_id);
7400
7401 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7402 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7403 struct bpf_prog_load_opts *opts, long cookie)
7404 {
7405 enum sec_def_flags def = cookie;
7406
7407 /* old kernels might not support specifying expected_attach_type */
7408 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7409 opts->expected_attach_type = 0;
7410
7411 if (def & SEC_SLEEPABLE)
7412 opts->prog_flags |= BPF_F_SLEEPABLE;
7413
7414 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7415 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7416
7417 /* special check for usdt to use uprobe_multi link */
7418 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7419 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7420 * in prog, and expected_attach_type we set in kernel is from opts, so we
7421 * update both.
7422 */
7423 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7424 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7425 }
7426
7427 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7428 int btf_obj_fd = 0, btf_type_id = 0, err;
7429 const char *attach_name;
7430
7431 attach_name = strchr(prog->sec_name, '/');
7432 if (!attach_name) {
7433 /* if BPF program is annotated with just SEC("fentry")
7434 * (or similar) without declaratively specifying
7435 * target, then it is expected that target will be
7436 * specified with bpf_program__set_attach_target() at
7437 * runtime before BPF object load step. If not, then
7438 * there is nothing to load into the kernel as BPF
7439 * verifier won't be able to validate BPF program
7440 * correctness anyways.
7441 */
7442 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7443 prog->name);
7444 return -EINVAL;
7445 }
7446 attach_name++; /* skip over / */
7447
7448 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7449 if (err)
7450 return err;
7451
7452 /* cache resolved BTF FD and BTF type ID in the prog */
7453 prog->attach_btf_obj_fd = btf_obj_fd;
7454 prog->attach_btf_id = btf_type_id;
7455
7456 /* but by now libbpf common logic is not utilizing
7457 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7458 * this callback is called after opts were populated by
7459 * libbpf, so this callback has to update opts explicitly here
7460 */
7461 opts->attach_btf_obj_fd = btf_obj_fd;
7462 opts->attach_btf_id = btf_type_id;
7463 }
7464 return 0;
7465 }
7466
7467 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7468
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7469 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7470 struct bpf_insn *insns, int insns_cnt,
7471 const char *license, __u32 kern_version, int *prog_fd)
7472 {
7473 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7474 const char *prog_name = NULL;
7475 size_t log_buf_size = 0;
7476 char *log_buf = NULL, *tmp;
7477 bool own_log_buf = true;
7478 __u32 log_level = prog->log_level;
7479 int ret, err;
7480
7481 /* Be more helpful by rejecting programs that can't be validated early
7482 * with more meaningful and actionable error message.
7483 */
7484 switch (prog->type) {
7485 case BPF_PROG_TYPE_UNSPEC:
7486 /*
7487 * The program type must be set. Most likely we couldn't find a proper
7488 * section definition at load time, and thus we didn't infer the type.
7489 */
7490 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7491 prog->name, prog->sec_name);
7492 return -EINVAL;
7493 case BPF_PROG_TYPE_STRUCT_OPS:
7494 if (prog->attach_btf_id == 0) {
7495 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7496 prog->name);
7497 return -EINVAL;
7498 }
7499 break;
7500 default:
7501 break;
7502 }
7503
7504 if (!insns || !insns_cnt)
7505 return -EINVAL;
7506
7507 if (kernel_supports(obj, FEAT_PROG_NAME))
7508 prog_name = prog->name;
7509 load_attr.attach_prog_fd = prog->attach_prog_fd;
7510 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7511 load_attr.attach_btf_id = prog->attach_btf_id;
7512 load_attr.kern_version = kern_version;
7513 load_attr.prog_ifindex = prog->prog_ifindex;
7514 load_attr.expected_attach_type = prog->expected_attach_type;
7515
7516 /* specify func_info/line_info only if kernel supports them */
7517 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7518 load_attr.prog_btf_fd = btf__fd(obj->btf);
7519 load_attr.func_info = prog->func_info;
7520 load_attr.func_info_rec_size = prog->func_info_rec_size;
7521 load_attr.func_info_cnt = prog->func_info_cnt;
7522 load_attr.line_info = prog->line_info;
7523 load_attr.line_info_rec_size = prog->line_info_rec_size;
7524 load_attr.line_info_cnt = prog->line_info_cnt;
7525 }
7526 load_attr.log_level = log_level;
7527 load_attr.prog_flags = prog->prog_flags;
7528 load_attr.fd_array = obj->fd_array;
7529
7530 load_attr.token_fd = obj->token_fd;
7531 if (obj->token_fd)
7532 load_attr.prog_flags |= BPF_F_TOKEN_FD;
7533
7534 /* adjust load_attr if sec_def provides custom preload callback */
7535 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7536 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7537 if (err < 0) {
7538 pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7539 prog->name, errstr(err));
7540 return err;
7541 }
7542 insns = prog->insns;
7543 insns_cnt = prog->insns_cnt;
7544 }
7545
7546 if (obj->gen_loader) {
7547 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7548 license, insns, insns_cnt, &load_attr,
7549 prog - obj->programs);
7550 *prog_fd = -1;
7551 return 0;
7552 }
7553
7554 retry_load:
7555 /* if log_level is zero, we don't request logs initially even if
7556 * custom log_buf is specified; if the program load fails, then we'll
7557 * bump log_level to 1 and use either custom log_buf or we'll allocate
7558 * our own and retry the load to get details on what failed
7559 */
7560 if (log_level) {
7561 if (prog->log_buf) {
7562 log_buf = prog->log_buf;
7563 log_buf_size = prog->log_size;
7564 own_log_buf = false;
7565 } else if (obj->log_buf) {
7566 log_buf = obj->log_buf;
7567 log_buf_size = obj->log_size;
7568 own_log_buf = false;
7569 } else {
7570 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7571 tmp = realloc(log_buf, log_buf_size);
7572 if (!tmp) {
7573 ret = -ENOMEM;
7574 goto out;
7575 }
7576 log_buf = tmp;
7577 log_buf[0] = '\0';
7578 own_log_buf = true;
7579 }
7580 }
7581
7582 load_attr.log_buf = log_buf;
7583 load_attr.log_size = log_buf_size;
7584 load_attr.log_level = log_level;
7585
7586 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7587 if (ret >= 0) {
7588 if (log_level && own_log_buf) {
7589 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7590 prog->name, log_buf);
7591 }
7592
7593 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7594 struct bpf_map *map;
7595 int i;
7596
7597 for (i = 0; i < obj->nr_maps; i++) {
7598 map = &prog->obj->maps[i];
7599 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7600 continue;
7601
7602 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7603 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7604 prog->name, map->real_name, errstr(errno));
7605 /* Don't fail hard if can't bind rodata. */
7606 }
7607 }
7608 }
7609
7610 *prog_fd = ret;
7611 ret = 0;
7612 goto out;
7613 }
7614
7615 if (log_level == 0) {
7616 log_level = 1;
7617 goto retry_load;
7618 }
7619 /* On ENOSPC, increase log buffer size and retry, unless custom
7620 * log_buf is specified.
7621 * Be careful to not overflow u32, though. Kernel's log buf size limit
7622 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7623 * multiply by 2 unless we are sure we'll fit within 32 bits.
7624 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7625 */
7626 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7627 goto retry_load;
7628
7629 ret = -errno;
7630
7631 /* post-process verifier log to improve error descriptions */
7632 fixup_verifier_log(prog, log_buf, log_buf_size);
7633
7634 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7635 pr_perm_msg(ret);
7636
7637 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7638 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7639 prog->name, log_buf);
7640 }
7641
7642 out:
7643 if (own_log_buf)
7644 free(log_buf);
7645 return ret;
7646 }
7647
find_prev_line(char * buf,char * cur)7648 static char *find_prev_line(char *buf, char *cur)
7649 {
7650 char *p;
7651
7652 if (cur == buf) /* end of a log buf */
7653 return NULL;
7654
7655 p = cur - 1;
7656 while (p - 1 >= buf && *(p - 1) != '\n')
7657 p--;
7658
7659 return p;
7660 }
7661
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7662 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7663 char *orig, size_t orig_sz, const char *patch)
7664 {
7665 /* size of the remaining log content to the right from the to-be-replaced part */
7666 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7667 size_t patch_sz = strlen(patch);
7668
7669 if (patch_sz != orig_sz) {
7670 /* If patch line(s) are longer than original piece of verifier log,
7671 * shift log contents by (patch_sz - orig_sz) bytes to the right
7672 * starting from after to-be-replaced part of the log.
7673 *
7674 * If patch line(s) are shorter than original piece of verifier log,
7675 * shift log contents by (orig_sz - patch_sz) bytes to the left
7676 * starting from after to-be-replaced part of the log
7677 *
7678 * We need to be careful about not overflowing available
7679 * buf_sz capacity. If that's the case, we'll truncate the end
7680 * of the original log, as necessary.
7681 */
7682 if (patch_sz > orig_sz) {
7683 if (orig + patch_sz >= buf + buf_sz) {
7684 /* patch is big enough to cover remaining space completely */
7685 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7686 rem_sz = 0;
7687 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7688 /* patch causes part of remaining log to be truncated */
7689 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7690 }
7691 }
7692 /* shift remaining log to the right by calculated amount */
7693 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7694 }
7695
7696 memcpy(orig, patch, patch_sz);
7697 }
7698
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7699 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7700 char *buf, size_t buf_sz, size_t log_sz,
7701 char *line1, char *line2, char *line3)
7702 {
7703 /* Expected log for failed and not properly guarded CO-RE relocation:
7704 * line1 -> 123: (85) call unknown#195896080
7705 * line2 -> invalid func unknown#195896080
7706 * line3 -> <anything else or end of buffer>
7707 *
7708 * "123" is the index of the instruction that was poisoned. We extract
7709 * instruction index to find corresponding CO-RE relocation and
7710 * replace this part of the log with more relevant information about
7711 * failed CO-RE relocation.
7712 */
7713 const struct bpf_core_relo *relo;
7714 struct bpf_core_spec spec;
7715 char patch[512], spec_buf[256];
7716 int insn_idx, err, spec_len;
7717
7718 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7719 return;
7720
7721 relo = find_relo_core(prog, insn_idx);
7722 if (!relo)
7723 return;
7724
7725 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7726 if (err)
7727 return;
7728
7729 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7730 snprintf(patch, sizeof(patch),
7731 "%d: <invalid CO-RE relocation>\n"
7732 "failed to resolve CO-RE relocation %s%s\n",
7733 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7734
7735 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7736 }
7737
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7738 static void fixup_log_missing_map_load(struct bpf_program *prog,
7739 char *buf, size_t buf_sz, size_t log_sz,
7740 char *line1, char *line2, char *line3)
7741 {
7742 /* Expected log for failed and not properly guarded map reference:
7743 * line1 -> 123: (85) call unknown#2001000345
7744 * line2 -> invalid func unknown#2001000345
7745 * line3 -> <anything else or end of buffer>
7746 *
7747 * "123" is the index of the instruction that was poisoned.
7748 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7749 */
7750 struct bpf_object *obj = prog->obj;
7751 const struct bpf_map *map;
7752 int insn_idx, map_idx;
7753 char patch[128];
7754
7755 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7756 return;
7757
7758 map_idx -= POISON_LDIMM64_MAP_BASE;
7759 if (map_idx < 0 || map_idx >= obj->nr_maps)
7760 return;
7761 map = &obj->maps[map_idx];
7762
7763 snprintf(patch, sizeof(patch),
7764 "%d: <invalid BPF map reference>\n"
7765 "BPF map '%s' is referenced but wasn't created\n",
7766 insn_idx, map->name);
7767
7768 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7769 }
7770
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7771 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7772 char *buf, size_t buf_sz, size_t log_sz,
7773 char *line1, char *line2, char *line3)
7774 {
7775 /* Expected log for failed and not properly guarded kfunc call:
7776 * line1 -> 123: (85) call unknown#2002000345
7777 * line2 -> invalid func unknown#2002000345
7778 * line3 -> <anything else or end of buffer>
7779 *
7780 * "123" is the index of the instruction that was poisoned.
7781 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7782 */
7783 struct bpf_object *obj = prog->obj;
7784 const struct extern_desc *ext;
7785 int insn_idx, ext_idx;
7786 char patch[128];
7787
7788 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7789 return;
7790
7791 ext_idx -= POISON_CALL_KFUNC_BASE;
7792 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7793 return;
7794 ext = &obj->externs[ext_idx];
7795
7796 snprintf(patch, sizeof(patch),
7797 "%d: <invalid kfunc call>\n"
7798 "kfunc '%s' is referenced but wasn't resolved\n",
7799 insn_idx, ext->name);
7800
7801 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7802 }
7803
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7804 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7805 {
7806 /* look for familiar error patterns in last N lines of the log */
7807 const size_t max_last_line_cnt = 10;
7808 char *prev_line, *cur_line, *next_line;
7809 size_t log_sz;
7810 int i;
7811
7812 if (!buf)
7813 return;
7814
7815 log_sz = strlen(buf) + 1;
7816 next_line = buf + log_sz - 1;
7817
7818 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7819 cur_line = find_prev_line(buf, next_line);
7820 if (!cur_line)
7821 return;
7822
7823 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7824 prev_line = find_prev_line(buf, cur_line);
7825 if (!prev_line)
7826 continue;
7827
7828 /* failed CO-RE relocation case */
7829 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7830 prev_line, cur_line, next_line);
7831 return;
7832 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7833 prev_line = find_prev_line(buf, cur_line);
7834 if (!prev_line)
7835 continue;
7836
7837 /* reference to uncreated BPF map */
7838 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7839 prev_line, cur_line, next_line);
7840 return;
7841 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7842 prev_line = find_prev_line(buf, cur_line);
7843 if (!prev_line)
7844 continue;
7845
7846 /* reference to unresolved kfunc */
7847 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7848 prev_line, cur_line, next_line);
7849 return;
7850 }
7851 }
7852 }
7853
bpf_program_record_relos(struct bpf_program * prog)7854 static int bpf_program_record_relos(struct bpf_program *prog)
7855 {
7856 struct bpf_object *obj = prog->obj;
7857 int i;
7858
7859 for (i = 0; i < prog->nr_reloc; i++) {
7860 struct reloc_desc *relo = &prog->reloc_desc[i];
7861 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7862 int kind;
7863
7864 switch (relo->type) {
7865 case RELO_EXTERN_LD64:
7866 if (ext->type != EXT_KSYM)
7867 continue;
7868 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7869 BTF_KIND_VAR : BTF_KIND_FUNC;
7870 bpf_gen__record_extern(obj->gen_loader, ext->name,
7871 ext->is_weak, !ext->ksym.type_id,
7872 true, kind, relo->insn_idx);
7873 break;
7874 case RELO_EXTERN_CALL:
7875 bpf_gen__record_extern(obj->gen_loader, ext->name,
7876 ext->is_weak, false, false, BTF_KIND_FUNC,
7877 relo->insn_idx);
7878 break;
7879 case RELO_CORE: {
7880 struct bpf_core_relo cr = {
7881 .insn_off = relo->insn_idx * 8,
7882 .type_id = relo->core_relo->type_id,
7883 .access_str_off = relo->core_relo->access_str_off,
7884 .kind = relo->core_relo->kind,
7885 };
7886
7887 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7888 break;
7889 }
7890 default:
7891 continue;
7892 }
7893 }
7894 return 0;
7895 }
7896
7897 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7898 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7899 {
7900 struct bpf_program *prog;
7901 size_t i;
7902 int err;
7903
7904 for (i = 0; i < obj->nr_programs; i++) {
7905 prog = &obj->programs[i];
7906 if (prog_is_subprog(obj, prog))
7907 continue;
7908 if (!prog->autoload) {
7909 pr_debug("prog '%s': skipped loading\n", prog->name);
7910 continue;
7911 }
7912 prog->log_level |= log_level;
7913
7914 if (obj->gen_loader)
7915 bpf_program_record_relos(prog);
7916
7917 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7918 obj->license, obj->kern_version, &prog->fd);
7919 if (err) {
7920 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7921 return err;
7922 }
7923 }
7924
7925 bpf_object__free_relocs(obj);
7926 return 0;
7927 }
7928
bpf_object_prepare_progs(struct bpf_object * obj)7929 static int bpf_object_prepare_progs(struct bpf_object *obj)
7930 {
7931 struct bpf_program *prog;
7932 size_t i;
7933 int err;
7934
7935 for (i = 0; i < obj->nr_programs; i++) {
7936 prog = &obj->programs[i];
7937 err = bpf_object__sanitize_prog(obj, prog);
7938 if (err)
7939 return err;
7940 }
7941 return 0;
7942 }
7943
7944 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7945
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)7946 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7947 {
7948 struct bpf_program *prog;
7949 int err;
7950
7951 bpf_object__for_each_program(prog, obj) {
7952 prog->sec_def = find_sec_def(prog->sec_name);
7953 if (!prog->sec_def) {
7954 /* couldn't guess, but user might manually specify */
7955 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7956 prog->name, prog->sec_name);
7957 continue;
7958 }
7959
7960 prog->type = prog->sec_def->prog_type;
7961 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7962
7963 /* sec_def can have custom callback which should be called
7964 * after bpf_program is initialized to adjust its properties
7965 */
7966 if (prog->sec_def->prog_setup_fn) {
7967 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7968 if (err < 0) {
7969 pr_warn("prog '%s': failed to initialize: %s\n",
7970 prog->name, errstr(err));
7971 return err;
7972 }
7973 }
7974 }
7975
7976 return 0;
7977 }
7978
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)7979 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7980 const char *obj_name,
7981 const struct bpf_object_open_opts *opts)
7982 {
7983 const char *kconfig, *btf_tmp_path, *token_path;
7984 struct bpf_object *obj;
7985 int err;
7986 char *log_buf;
7987 size_t log_size;
7988 __u32 log_level;
7989
7990 if (obj_buf && !obj_name)
7991 return ERR_PTR(-EINVAL);
7992
7993 if (elf_version(EV_CURRENT) == EV_NONE) {
7994 pr_warn("failed to init libelf for %s\n",
7995 path ? : "(mem buf)");
7996 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7997 }
7998
7999 if (!OPTS_VALID(opts, bpf_object_open_opts))
8000 return ERR_PTR(-EINVAL);
8001
8002 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
8003 if (obj_buf) {
8004 path = obj_name;
8005 pr_debug("loading object '%s' from buffer\n", obj_name);
8006 } else {
8007 pr_debug("loading object from %s\n", path);
8008 }
8009
8010 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8011 log_size = OPTS_GET(opts, kernel_log_size, 0);
8012 log_level = OPTS_GET(opts, kernel_log_level, 0);
8013 if (log_size > UINT_MAX)
8014 return ERR_PTR(-EINVAL);
8015 if (log_size && !log_buf)
8016 return ERR_PTR(-EINVAL);
8017
8018 token_path = OPTS_GET(opts, bpf_token_path, NULL);
8019 /* if user didn't specify bpf_token_path explicitly, check if
8020 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8021 * option
8022 */
8023 if (!token_path)
8024 token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8025 if (token_path && strlen(token_path) >= PATH_MAX)
8026 return ERR_PTR(-ENAMETOOLONG);
8027
8028 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8029 if (IS_ERR(obj))
8030 return obj;
8031
8032 obj->log_buf = log_buf;
8033 obj->log_size = log_size;
8034 obj->log_level = log_level;
8035
8036 if (token_path) {
8037 obj->token_path = strdup(token_path);
8038 if (!obj->token_path) {
8039 err = -ENOMEM;
8040 goto out;
8041 }
8042 }
8043
8044 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8045 if (btf_tmp_path) {
8046 if (strlen(btf_tmp_path) >= PATH_MAX) {
8047 err = -ENAMETOOLONG;
8048 goto out;
8049 }
8050 obj->btf_custom_path = strdup(btf_tmp_path);
8051 if (!obj->btf_custom_path) {
8052 err = -ENOMEM;
8053 goto out;
8054 }
8055 }
8056
8057 kconfig = OPTS_GET(opts, kconfig, NULL);
8058 if (kconfig) {
8059 obj->kconfig = strdup(kconfig);
8060 if (!obj->kconfig) {
8061 err = -ENOMEM;
8062 goto out;
8063 }
8064 }
8065
8066 err = bpf_object__elf_init(obj);
8067 err = err ? : bpf_object__elf_collect(obj);
8068 err = err ? : bpf_object__collect_externs(obj);
8069 err = err ? : bpf_object_fixup_btf(obj);
8070 err = err ? : bpf_object__init_maps(obj, opts);
8071 err = err ? : bpf_object_init_progs(obj, opts);
8072 err = err ? : bpf_object__collect_relos(obj);
8073 if (err)
8074 goto out;
8075
8076 bpf_object__elf_finish(obj);
8077
8078 return obj;
8079 out:
8080 bpf_object__close(obj);
8081 return ERR_PTR(err);
8082 }
8083
8084 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8085 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8086 {
8087 if (!path)
8088 return libbpf_err_ptr(-EINVAL);
8089
8090 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8091 }
8092
bpf_object__open(const char * path)8093 struct bpf_object *bpf_object__open(const char *path)
8094 {
8095 return bpf_object__open_file(path, NULL);
8096 }
8097
8098 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8099 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8100 const struct bpf_object_open_opts *opts)
8101 {
8102 char tmp_name[64];
8103
8104 if (!obj_buf || obj_buf_sz == 0)
8105 return libbpf_err_ptr(-EINVAL);
8106
8107 /* create a (quite useless) default "name" for this memory buffer object */
8108 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8109
8110 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8111 }
8112
bpf_object_unload(struct bpf_object * obj)8113 static int bpf_object_unload(struct bpf_object *obj)
8114 {
8115 size_t i;
8116
8117 if (!obj)
8118 return libbpf_err(-EINVAL);
8119
8120 for (i = 0; i < obj->nr_maps; i++) {
8121 zclose(obj->maps[i].fd);
8122 if (obj->maps[i].st_ops)
8123 zfree(&obj->maps[i].st_ops->kern_vdata);
8124 }
8125
8126 for (i = 0; i < obj->nr_programs; i++)
8127 bpf_program__unload(&obj->programs[i]);
8128
8129 return 0;
8130 }
8131
bpf_object__sanitize_maps(struct bpf_object * obj)8132 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8133 {
8134 struct bpf_map *m;
8135
8136 bpf_object__for_each_map(m, obj) {
8137 if (!bpf_map__is_internal(m))
8138 continue;
8139 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8140 m->def.map_flags &= ~BPF_F_MMAPABLE;
8141 }
8142
8143 return 0;
8144 }
8145
8146 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8147 const char *sym_name, void *ctx);
8148
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8149 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8150 {
8151 char sym_type, sym_name[500];
8152 unsigned long long sym_addr;
8153 int ret, err = 0;
8154 FILE *f;
8155
8156 f = fopen("/proc/kallsyms", "re");
8157 if (!f) {
8158 err = -errno;
8159 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8160 return err;
8161 }
8162
8163 while (true) {
8164 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8165 &sym_addr, &sym_type, sym_name);
8166 if (ret == EOF && feof(f))
8167 break;
8168 if (ret != 3) {
8169 pr_warn("failed to read kallsyms entry: %d\n", ret);
8170 err = -EINVAL;
8171 break;
8172 }
8173
8174 err = cb(sym_addr, sym_type, sym_name, ctx);
8175 if (err)
8176 break;
8177 }
8178
8179 fclose(f);
8180 return err;
8181 }
8182
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8183 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8184 const char *sym_name, void *ctx)
8185 {
8186 struct bpf_object *obj = ctx;
8187 const struct btf_type *t;
8188 struct extern_desc *ext;
8189 char *res;
8190
8191 res = strstr(sym_name, ".llvm.");
8192 if (sym_type == 'd' && res)
8193 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8194 else
8195 ext = find_extern_by_name(obj, sym_name);
8196 if (!ext || ext->type != EXT_KSYM)
8197 return 0;
8198
8199 t = btf__type_by_id(obj->btf, ext->btf_id);
8200 if (!btf_is_var(t))
8201 return 0;
8202
8203 if (ext->is_set && ext->ksym.addr != sym_addr) {
8204 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8205 sym_name, ext->ksym.addr, sym_addr);
8206 return -EINVAL;
8207 }
8208 if (!ext->is_set) {
8209 ext->is_set = true;
8210 ext->ksym.addr = sym_addr;
8211 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8212 }
8213 return 0;
8214 }
8215
bpf_object__read_kallsyms_file(struct bpf_object * obj)8216 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8217 {
8218 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8219 }
8220
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8221 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8222 __u16 kind, struct btf **res_btf,
8223 struct module_btf **res_mod_btf)
8224 {
8225 struct module_btf *mod_btf;
8226 struct btf *btf;
8227 int i, id, err;
8228
8229 btf = obj->btf_vmlinux;
8230 mod_btf = NULL;
8231 id = btf__find_by_name_kind(btf, ksym_name, kind);
8232
8233 if (id == -ENOENT) {
8234 err = load_module_btfs(obj);
8235 if (err)
8236 return err;
8237
8238 for (i = 0; i < obj->btf_module_cnt; i++) {
8239 /* we assume module_btf's BTF FD is always >0 */
8240 mod_btf = &obj->btf_modules[i];
8241 btf = mod_btf->btf;
8242 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8243 if (id != -ENOENT)
8244 break;
8245 }
8246 }
8247 if (id <= 0)
8248 return -ESRCH;
8249
8250 *res_btf = btf;
8251 *res_mod_btf = mod_btf;
8252 return id;
8253 }
8254
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8255 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8256 struct extern_desc *ext)
8257 {
8258 const struct btf_type *targ_var, *targ_type;
8259 __u32 targ_type_id, local_type_id;
8260 struct module_btf *mod_btf = NULL;
8261 const char *targ_var_name;
8262 struct btf *btf = NULL;
8263 int id, err;
8264
8265 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8266 if (id < 0) {
8267 if (id == -ESRCH && ext->is_weak)
8268 return 0;
8269 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8270 ext->name);
8271 return id;
8272 }
8273
8274 /* find local type_id */
8275 local_type_id = ext->ksym.type_id;
8276
8277 /* find target type_id */
8278 targ_var = btf__type_by_id(btf, id);
8279 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8280 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8281
8282 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8283 btf, targ_type_id);
8284 if (err <= 0) {
8285 const struct btf_type *local_type;
8286 const char *targ_name, *local_name;
8287
8288 local_type = btf__type_by_id(obj->btf, local_type_id);
8289 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8290 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8291
8292 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8293 ext->name, local_type_id,
8294 btf_kind_str(local_type), local_name, targ_type_id,
8295 btf_kind_str(targ_type), targ_name);
8296 return -EINVAL;
8297 }
8298
8299 ext->is_set = true;
8300 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8301 ext->ksym.kernel_btf_id = id;
8302 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8303 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8304
8305 return 0;
8306 }
8307
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8308 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8309 struct extern_desc *ext)
8310 {
8311 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8312 struct module_btf *mod_btf = NULL;
8313 const struct btf_type *kern_func;
8314 struct btf *kern_btf = NULL;
8315 int ret;
8316
8317 local_func_proto_id = ext->ksym.type_id;
8318
8319 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8320 &mod_btf);
8321 if (kfunc_id < 0) {
8322 if (kfunc_id == -ESRCH && ext->is_weak)
8323 return 0;
8324 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8325 ext->name);
8326 return kfunc_id;
8327 }
8328
8329 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8330 kfunc_proto_id = kern_func->type;
8331
8332 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8333 kern_btf, kfunc_proto_id);
8334 if (ret <= 0) {
8335 if (ext->is_weak)
8336 return 0;
8337
8338 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8339 ext->name, local_func_proto_id,
8340 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8341 return -EINVAL;
8342 }
8343
8344 /* set index for module BTF fd in fd_array, if unset */
8345 if (mod_btf && !mod_btf->fd_array_idx) {
8346 /* insn->off is s16 */
8347 if (obj->fd_array_cnt == INT16_MAX) {
8348 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8349 ext->name, mod_btf->fd_array_idx);
8350 return -E2BIG;
8351 }
8352 /* Cannot use index 0 for module BTF fd */
8353 if (!obj->fd_array_cnt)
8354 obj->fd_array_cnt = 1;
8355
8356 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8357 obj->fd_array_cnt + 1);
8358 if (ret)
8359 return ret;
8360 mod_btf->fd_array_idx = obj->fd_array_cnt;
8361 /* we assume module BTF FD is always >0 */
8362 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8363 }
8364
8365 ext->is_set = true;
8366 ext->ksym.kernel_btf_id = kfunc_id;
8367 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8368 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8369 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8370 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8371 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8372 */
8373 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8374 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8375 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8376
8377 return 0;
8378 }
8379
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8380 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8381 {
8382 const struct btf_type *t;
8383 struct extern_desc *ext;
8384 int i, err;
8385
8386 for (i = 0; i < obj->nr_extern; i++) {
8387 ext = &obj->externs[i];
8388 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8389 continue;
8390
8391 if (obj->gen_loader) {
8392 ext->is_set = true;
8393 ext->ksym.kernel_btf_obj_fd = 0;
8394 ext->ksym.kernel_btf_id = 0;
8395 continue;
8396 }
8397 t = btf__type_by_id(obj->btf, ext->btf_id);
8398 if (btf_is_var(t))
8399 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8400 else
8401 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8402 if (err)
8403 return err;
8404 }
8405 return 0;
8406 }
8407
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8408 static int bpf_object__resolve_externs(struct bpf_object *obj,
8409 const char *extra_kconfig)
8410 {
8411 bool need_config = false, need_kallsyms = false;
8412 bool need_vmlinux_btf = false;
8413 struct extern_desc *ext;
8414 void *kcfg_data = NULL;
8415 int err, i;
8416
8417 if (obj->nr_extern == 0)
8418 return 0;
8419
8420 if (obj->kconfig_map_idx >= 0)
8421 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8422
8423 for (i = 0; i < obj->nr_extern; i++) {
8424 ext = &obj->externs[i];
8425
8426 if (ext->type == EXT_KSYM) {
8427 if (ext->ksym.type_id)
8428 need_vmlinux_btf = true;
8429 else
8430 need_kallsyms = true;
8431 continue;
8432 } else if (ext->type == EXT_KCFG) {
8433 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8434 __u64 value = 0;
8435
8436 /* Kconfig externs need actual /proc/config.gz */
8437 if (str_has_pfx(ext->name, "CONFIG_")) {
8438 need_config = true;
8439 continue;
8440 }
8441
8442 /* Virtual kcfg externs are customly handled by libbpf */
8443 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8444 value = get_kernel_version();
8445 if (!value) {
8446 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8447 return -EINVAL;
8448 }
8449 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8450 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8451 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8452 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8453 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8454 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8455 * __kconfig externs, where LINUX_ ones are virtual and filled out
8456 * customly by libbpf (their values don't come from Kconfig).
8457 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8458 * __weak, it defaults to zero value, just like for CONFIG_xxx
8459 * externs.
8460 */
8461 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8462 return -EINVAL;
8463 }
8464
8465 err = set_kcfg_value_num(ext, ext_ptr, value);
8466 if (err)
8467 return err;
8468 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8469 ext->name, (long long)value);
8470 } else {
8471 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8472 return -EINVAL;
8473 }
8474 }
8475 if (need_config && extra_kconfig) {
8476 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8477 if (err)
8478 return -EINVAL;
8479 need_config = false;
8480 for (i = 0; i < obj->nr_extern; i++) {
8481 ext = &obj->externs[i];
8482 if (ext->type == EXT_KCFG && !ext->is_set) {
8483 need_config = true;
8484 break;
8485 }
8486 }
8487 }
8488 if (need_config) {
8489 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8490 if (err)
8491 return -EINVAL;
8492 }
8493 if (need_kallsyms) {
8494 err = bpf_object__read_kallsyms_file(obj);
8495 if (err)
8496 return -EINVAL;
8497 }
8498 if (need_vmlinux_btf) {
8499 err = bpf_object__resolve_ksyms_btf_id(obj);
8500 if (err)
8501 return -EINVAL;
8502 }
8503 for (i = 0; i < obj->nr_extern; i++) {
8504 ext = &obj->externs[i];
8505
8506 if (!ext->is_set && !ext->is_weak) {
8507 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8508 return -ESRCH;
8509 } else if (!ext->is_set) {
8510 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8511 ext->name);
8512 }
8513 }
8514
8515 return 0;
8516 }
8517
bpf_map_prepare_vdata(const struct bpf_map * map)8518 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8519 {
8520 const struct btf_type *type;
8521 struct bpf_struct_ops *st_ops;
8522 __u32 i;
8523
8524 st_ops = map->st_ops;
8525 type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8526 for (i = 0; i < btf_vlen(type); i++) {
8527 struct bpf_program *prog = st_ops->progs[i];
8528 void *kern_data;
8529 int prog_fd;
8530
8531 if (!prog)
8532 continue;
8533
8534 prog_fd = bpf_program__fd(prog);
8535 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8536 *(unsigned long *)kern_data = prog_fd;
8537 }
8538 }
8539
bpf_object_prepare_struct_ops(struct bpf_object * obj)8540 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8541 {
8542 struct bpf_map *map;
8543 int i;
8544
8545 for (i = 0; i < obj->nr_maps; i++) {
8546 map = &obj->maps[i];
8547
8548 if (!bpf_map__is_struct_ops(map))
8549 continue;
8550
8551 if (!map->autocreate)
8552 continue;
8553
8554 bpf_map_prepare_vdata(map);
8555 }
8556
8557 return 0;
8558 }
8559
bpf_object_unpin(struct bpf_object * obj)8560 static void bpf_object_unpin(struct bpf_object *obj)
8561 {
8562 int i;
8563
8564 /* unpin any maps that were auto-pinned during load */
8565 for (i = 0; i < obj->nr_maps; i++)
8566 if (obj->maps[i].pinned && !obj->maps[i].reused)
8567 bpf_map__unpin(&obj->maps[i], NULL);
8568 }
8569
bpf_object_post_load_cleanup(struct bpf_object * obj)8570 static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8571 {
8572 int i;
8573
8574 /* clean up fd_array */
8575 zfree(&obj->fd_array);
8576
8577 /* clean up module BTFs */
8578 for (i = 0; i < obj->btf_module_cnt; i++) {
8579 close(obj->btf_modules[i].fd);
8580 btf__free(obj->btf_modules[i].btf);
8581 free(obj->btf_modules[i].name);
8582 }
8583 obj->btf_module_cnt = 0;
8584 zfree(&obj->btf_modules);
8585
8586 /* clean up vmlinux BTF */
8587 btf__free(obj->btf_vmlinux);
8588 obj->btf_vmlinux = NULL;
8589 }
8590
bpf_object_prepare(struct bpf_object * obj,const char * target_btf_path)8591 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8592 {
8593 int err;
8594
8595 if (obj->state >= OBJ_PREPARED) {
8596 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8597 return -EINVAL;
8598 }
8599
8600 err = bpf_object_prepare_token(obj);
8601 err = err ? : bpf_object__probe_loading(obj);
8602 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8603 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8604 err = err ? : bpf_object__sanitize_maps(obj);
8605 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8606 err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8607 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8608 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8609 err = err ? : bpf_object__create_maps(obj);
8610 err = err ? : bpf_object_prepare_progs(obj);
8611
8612 if (err) {
8613 bpf_object_unpin(obj);
8614 bpf_object_unload(obj);
8615 obj->state = OBJ_LOADED;
8616 return err;
8617 }
8618
8619 obj->state = OBJ_PREPARED;
8620 return 0;
8621 }
8622
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8623 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8624 {
8625 int err;
8626
8627 if (!obj)
8628 return libbpf_err(-EINVAL);
8629
8630 if (obj->state >= OBJ_LOADED) {
8631 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8632 return libbpf_err(-EINVAL);
8633 }
8634
8635 /* Disallow kernel loading programs of non-native endianness but
8636 * permit cross-endian creation of "light skeleton".
8637 */
8638 if (obj->gen_loader) {
8639 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8640 } else if (!is_native_endianness(obj)) {
8641 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8642 return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8643 }
8644
8645 if (obj->state < OBJ_PREPARED) {
8646 err = bpf_object_prepare(obj, target_btf_path);
8647 if (err)
8648 return libbpf_err(err);
8649 }
8650 err = bpf_object__load_progs(obj, extra_log_level);
8651 err = err ? : bpf_object_init_prog_arrays(obj);
8652 err = err ? : bpf_object_prepare_struct_ops(obj);
8653
8654 if (obj->gen_loader) {
8655 /* reset FDs */
8656 if (obj->btf)
8657 btf__set_fd(obj->btf, -1);
8658 if (!err)
8659 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8660 }
8661
8662 bpf_object_post_load_cleanup(obj);
8663 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8664
8665 if (err) {
8666 bpf_object_unpin(obj);
8667 bpf_object_unload(obj);
8668 pr_warn("failed to load object '%s'\n", obj->path);
8669 return libbpf_err(err);
8670 }
8671
8672 return 0;
8673 }
8674
bpf_object__prepare(struct bpf_object * obj)8675 int bpf_object__prepare(struct bpf_object *obj)
8676 {
8677 return libbpf_err(bpf_object_prepare(obj, NULL));
8678 }
8679
bpf_object__load(struct bpf_object * obj)8680 int bpf_object__load(struct bpf_object *obj)
8681 {
8682 return bpf_object_load(obj, 0, NULL);
8683 }
8684
make_parent_dir(const char * path)8685 static int make_parent_dir(const char *path)
8686 {
8687 char *dname, *dir;
8688 int err = 0;
8689
8690 dname = strdup(path);
8691 if (dname == NULL)
8692 return -ENOMEM;
8693
8694 dir = dirname(dname);
8695 if (mkdir(dir, 0700) && errno != EEXIST)
8696 err = -errno;
8697
8698 free(dname);
8699 if (err) {
8700 pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8701 }
8702 return err;
8703 }
8704
check_path(const char * path)8705 static int check_path(const char *path)
8706 {
8707 struct statfs st_fs;
8708 char *dname, *dir;
8709 int err = 0;
8710
8711 if (path == NULL)
8712 return -EINVAL;
8713
8714 dname = strdup(path);
8715 if (dname == NULL)
8716 return -ENOMEM;
8717
8718 dir = dirname(dname);
8719 if (statfs(dir, &st_fs)) {
8720 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8721 err = -errno;
8722 }
8723 free(dname);
8724
8725 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8726 pr_warn("specified path %s is not on BPF FS\n", path);
8727 err = -EINVAL;
8728 }
8729
8730 return err;
8731 }
8732
bpf_program__pin(struct bpf_program * prog,const char * path)8733 int bpf_program__pin(struct bpf_program *prog, const char *path)
8734 {
8735 int err;
8736
8737 if (prog->fd < 0) {
8738 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8739 return libbpf_err(-EINVAL);
8740 }
8741
8742 err = make_parent_dir(path);
8743 if (err)
8744 return libbpf_err(err);
8745
8746 err = check_path(path);
8747 if (err)
8748 return libbpf_err(err);
8749
8750 if (bpf_obj_pin(prog->fd, path)) {
8751 err = -errno;
8752 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8753 return libbpf_err(err);
8754 }
8755
8756 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8757 return 0;
8758 }
8759
bpf_program__unpin(struct bpf_program * prog,const char * path)8760 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8761 {
8762 int err;
8763
8764 if (prog->fd < 0) {
8765 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8766 return libbpf_err(-EINVAL);
8767 }
8768
8769 err = check_path(path);
8770 if (err)
8771 return libbpf_err(err);
8772
8773 err = unlink(path);
8774 if (err)
8775 return libbpf_err(-errno);
8776
8777 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8778 return 0;
8779 }
8780
bpf_map__pin(struct bpf_map * map,const char * path)8781 int bpf_map__pin(struct bpf_map *map, const char *path)
8782 {
8783 int err;
8784
8785 if (map == NULL) {
8786 pr_warn("invalid map pointer\n");
8787 return libbpf_err(-EINVAL);
8788 }
8789
8790 if (map->fd < 0) {
8791 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8792 return libbpf_err(-EINVAL);
8793 }
8794
8795 if (map->pin_path) {
8796 if (path && strcmp(path, map->pin_path)) {
8797 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8798 bpf_map__name(map), map->pin_path, path);
8799 return libbpf_err(-EINVAL);
8800 } else if (map->pinned) {
8801 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8802 bpf_map__name(map), map->pin_path);
8803 return 0;
8804 }
8805 } else {
8806 if (!path) {
8807 pr_warn("missing a path to pin map '%s' at\n",
8808 bpf_map__name(map));
8809 return libbpf_err(-EINVAL);
8810 } else if (map->pinned) {
8811 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8812 return libbpf_err(-EEXIST);
8813 }
8814
8815 map->pin_path = strdup(path);
8816 if (!map->pin_path) {
8817 err = -errno;
8818 goto out_err;
8819 }
8820 }
8821
8822 err = make_parent_dir(map->pin_path);
8823 if (err)
8824 return libbpf_err(err);
8825
8826 err = check_path(map->pin_path);
8827 if (err)
8828 return libbpf_err(err);
8829
8830 if (bpf_obj_pin(map->fd, map->pin_path)) {
8831 err = -errno;
8832 goto out_err;
8833 }
8834
8835 map->pinned = true;
8836 pr_debug("pinned map '%s'\n", map->pin_path);
8837
8838 return 0;
8839
8840 out_err:
8841 pr_warn("failed to pin map: %s\n", errstr(err));
8842 return libbpf_err(err);
8843 }
8844
bpf_map__unpin(struct bpf_map * map,const char * path)8845 int bpf_map__unpin(struct bpf_map *map, const char *path)
8846 {
8847 int err;
8848
8849 if (map == NULL) {
8850 pr_warn("invalid map pointer\n");
8851 return libbpf_err(-EINVAL);
8852 }
8853
8854 if (map->pin_path) {
8855 if (path && strcmp(path, map->pin_path)) {
8856 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8857 bpf_map__name(map), map->pin_path, path);
8858 return libbpf_err(-EINVAL);
8859 }
8860 path = map->pin_path;
8861 } else if (!path) {
8862 pr_warn("no path to unpin map '%s' from\n",
8863 bpf_map__name(map));
8864 return libbpf_err(-EINVAL);
8865 }
8866
8867 err = check_path(path);
8868 if (err)
8869 return libbpf_err(err);
8870
8871 err = unlink(path);
8872 if (err != 0)
8873 return libbpf_err(-errno);
8874
8875 map->pinned = false;
8876 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8877
8878 return 0;
8879 }
8880
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8881 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8882 {
8883 char *new = NULL;
8884
8885 if (path) {
8886 new = strdup(path);
8887 if (!new)
8888 return libbpf_err(-errno);
8889 }
8890
8891 free(map->pin_path);
8892 map->pin_path = new;
8893 return 0;
8894 }
8895
8896 __alias(bpf_map__pin_path)
8897 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8898
bpf_map__pin_path(const struct bpf_map * map)8899 const char *bpf_map__pin_path(const struct bpf_map *map)
8900 {
8901 return map->pin_path;
8902 }
8903
bpf_map__is_pinned(const struct bpf_map * map)8904 bool bpf_map__is_pinned(const struct bpf_map *map)
8905 {
8906 return map->pinned;
8907 }
8908
sanitize_pin_path(char * s)8909 static void sanitize_pin_path(char *s)
8910 {
8911 /* bpffs disallows periods in path names */
8912 while (*s) {
8913 if (*s == '.')
8914 *s = '_';
8915 s++;
8916 }
8917 }
8918
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8919 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8920 {
8921 struct bpf_map *map;
8922 int err;
8923
8924 if (!obj)
8925 return libbpf_err(-ENOENT);
8926
8927 if (obj->state < OBJ_PREPARED) {
8928 pr_warn("object not yet loaded; load it first\n");
8929 return libbpf_err(-ENOENT);
8930 }
8931
8932 bpf_object__for_each_map(map, obj) {
8933 char *pin_path = NULL;
8934 char buf[PATH_MAX];
8935
8936 if (!map->autocreate)
8937 continue;
8938
8939 if (path) {
8940 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8941 if (err)
8942 goto err_unpin_maps;
8943 sanitize_pin_path(buf);
8944 pin_path = buf;
8945 } else if (!map->pin_path) {
8946 continue;
8947 }
8948
8949 err = bpf_map__pin(map, pin_path);
8950 if (err)
8951 goto err_unpin_maps;
8952 }
8953
8954 return 0;
8955
8956 err_unpin_maps:
8957 while ((map = bpf_object__prev_map(obj, map))) {
8958 if (!map->pin_path)
8959 continue;
8960
8961 bpf_map__unpin(map, NULL);
8962 }
8963
8964 return libbpf_err(err);
8965 }
8966
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)8967 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8968 {
8969 struct bpf_map *map;
8970 int err;
8971
8972 if (!obj)
8973 return libbpf_err(-ENOENT);
8974
8975 bpf_object__for_each_map(map, obj) {
8976 char *pin_path = NULL;
8977 char buf[PATH_MAX];
8978
8979 if (path) {
8980 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8981 if (err)
8982 return libbpf_err(err);
8983 sanitize_pin_path(buf);
8984 pin_path = buf;
8985 } else if (!map->pin_path) {
8986 continue;
8987 }
8988
8989 err = bpf_map__unpin(map, pin_path);
8990 if (err)
8991 return libbpf_err(err);
8992 }
8993
8994 return 0;
8995 }
8996
bpf_object__pin_programs(struct bpf_object * obj,const char * path)8997 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8998 {
8999 struct bpf_program *prog;
9000 char buf[PATH_MAX];
9001 int err;
9002
9003 if (!obj)
9004 return libbpf_err(-ENOENT);
9005
9006 if (obj->state < OBJ_LOADED) {
9007 pr_warn("object not yet loaded; load it first\n");
9008 return libbpf_err(-ENOENT);
9009 }
9010
9011 bpf_object__for_each_program(prog, obj) {
9012 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9013 if (err)
9014 goto err_unpin_programs;
9015
9016 err = bpf_program__pin(prog, buf);
9017 if (err)
9018 goto err_unpin_programs;
9019 }
9020
9021 return 0;
9022
9023 err_unpin_programs:
9024 while ((prog = bpf_object__prev_program(obj, prog))) {
9025 if (pathname_concat(buf, sizeof(buf), path, prog->name))
9026 continue;
9027
9028 bpf_program__unpin(prog, buf);
9029 }
9030
9031 return libbpf_err(err);
9032 }
9033
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)9034 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9035 {
9036 struct bpf_program *prog;
9037 int err;
9038
9039 if (!obj)
9040 return libbpf_err(-ENOENT);
9041
9042 bpf_object__for_each_program(prog, obj) {
9043 char buf[PATH_MAX];
9044
9045 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9046 if (err)
9047 return libbpf_err(err);
9048
9049 err = bpf_program__unpin(prog, buf);
9050 if (err)
9051 return libbpf_err(err);
9052 }
9053
9054 return 0;
9055 }
9056
bpf_object__pin(struct bpf_object * obj,const char * path)9057 int bpf_object__pin(struct bpf_object *obj, const char *path)
9058 {
9059 int err;
9060
9061 err = bpf_object__pin_maps(obj, path);
9062 if (err)
9063 return libbpf_err(err);
9064
9065 err = bpf_object__pin_programs(obj, path);
9066 if (err) {
9067 bpf_object__unpin_maps(obj, path);
9068 return libbpf_err(err);
9069 }
9070
9071 return 0;
9072 }
9073
bpf_object__unpin(struct bpf_object * obj,const char * path)9074 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9075 {
9076 int err;
9077
9078 err = bpf_object__unpin_programs(obj, path);
9079 if (err)
9080 return libbpf_err(err);
9081
9082 err = bpf_object__unpin_maps(obj, path);
9083 if (err)
9084 return libbpf_err(err);
9085
9086 return 0;
9087 }
9088
bpf_map__destroy(struct bpf_map * map)9089 static void bpf_map__destroy(struct bpf_map *map)
9090 {
9091 if (map->inner_map) {
9092 bpf_map__destroy(map->inner_map);
9093 zfree(&map->inner_map);
9094 }
9095
9096 zfree(&map->init_slots);
9097 map->init_slots_sz = 0;
9098
9099 if (map->mmaped && map->mmaped != map->obj->arena_data)
9100 munmap(map->mmaped, bpf_map_mmap_sz(map));
9101 map->mmaped = NULL;
9102
9103 if (map->st_ops) {
9104 zfree(&map->st_ops->data);
9105 zfree(&map->st_ops->progs);
9106 zfree(&map->st_ops->kern_func_off);
9107 zfree(&map->st_ops);
9108 }
9109
9110 zfree(&map->name);
9111 zfree(&map->real_name);
9112 zfree(&map->pin_path);
9113
9114 if (map->fd >= 0)
9115 zclose(map->fd);
9116 }
9117
bpf_object__close(struct bpf_object * obj)9118 void bpf_object__close(struct bpf_object *obj)
9119 {
9120 size_t i;
9121
9122 if (IS_ERR_OR_NULL(obj))
9123 return;
9124
9125 /*
9126 * if user called bpf_object__prepare() without ever getting to
9127 * bpf_object__load(), we need to clean up stuff that is normally
9128 * cleaned up at the end of loading step
9129 */
9130 bpf_object_post_load_cleanup(obj);
9131
9132 usdt_manager_free(obj->usdt_man);
9133 obj->usdt_man = NULL;
9134
9135 bpf_gen__free(obj->gen_loader);
9136 bpf_object__elf_finish(obj);
9137 bpf_object_unload(obj);
9138 btf__free(obj->btf);
9139 btf__free(obj->btf_vmlinux);
9140 btf_ext__free(obj->btf_ext);
9141
9142 for (i = 0; i < obj->nr_maps; i++)
9143 bpf_map__destroy(&obj->maps[i]);
9144
9145 zfree(&obj->btf_custom_path);
9146 zfree(&obj->kconfig);
9147
9148 for (i = 0; i < obj->nr_extern; i++)
9149 zfree(&obj->externs[i].essent_name);
9150
9151 zfree(&obj->externs);
9152 obj->nr_extern = 0;
9153
9154 zfree(&obj->maps);
9155 obj->nr_maps = 0;
9156
9157 if (obj->programs && obj->nr_programs) {
9158 for (i = 0; i < obj->nr_programs; i++)
9159 bpf_program__exit(&obj->programs[i]);
9160 }
9161 zfree(&obj->programs);
9162
9163 zfree(&obj->feat_cache);
9164 zfree(&obj->token_path);
9165 if (obj->token_fd > 0)
9166 close(obj->token_fd);
9167
9168 zfree(&obj->arena_data);
9169
9170 free(obj);
9171 }
9172
bpf_object__name(const struct bpf_object * obj)9173 const char *bpf_object__name(const struct bpf_object *obj)
9174 {
9175 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9176 }
9177
bpf_object__kversion(const struct bpf_object * obj)9178 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9179 {
9180 return obj ? obj->kern_version : 0;
9181 }
9182
bpf_object__token_fd(const struct bpf_object * obj)9183 int bpf_object__token_fd(const struct bpf_object *obj)
9184 {
9185 return obj->token_fd ?: -1;
9186 }
9187
bpf_object__btf(const struct bpf_object * obj)9188 struct btf *bpf_object__btf(const struct bpf_object *obj)
9189 {
9190 return obj ? obj->btf : NULL;
9191 }
9192
bpf_object__btf_fd(const struct bpf_object * obj)9193 int bpf_object__btf_fd(const struct bpf_object *obj)
9194 {
9195 return obj->btf ? btf__fd(obj->btf) : -1;
9196 }
9197
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9198 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9199 {
9200 if (obj->state >= OBJ_LOADED)
9201 return libbpf_err(-EINVAL);
9202
9203 obj->kern_version = kern_version;
9204
9205 return 0;
9206 }
9207
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9208 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9209 {
9210 struct bpf_gen *gen;
9211
9212 if (!opts)
9213 return libbpf_err(-EFAULT);
9214 if (!OPTS_VALID(opts, gen_loader_opts))
9215 return libbpf_err(-EINVAL);
9216 gen = calloc(sizeof(*gen), 1);
9217 if (!gen)
9218 return libbpf_err(-ENOMEM);
9219 gen->opts = opts;
9220 gen->swapped_endian = !is_native_endianness(obj);
9221 obj->gen_loader = gen;
9222 return 0;
9223 }
9224
9225 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9226 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9227 bool forward)
9228 {
9229 size_t nr_programs = obj->nr_programs;
9230 ssize_t idx;
9231
9232 if (!nr_programs)
9233 return NULL;
9234
9235 if (!p)
9236 /* Iter from the beginning */
9237 return forward ? &obj->programs[0] :
9238 &obj->programs[nr_programs - 1];
9239
9240 if (p->obj != obj) {
9241 pr_warn("error: program handler doesn't match object\n");
9242 return errno = EINVAL, NULL;
9243 }
9244
9245 idx = (p - obj->programs) + (forward ? 1 : -1);
9246 if (idx >= obj->nr_programs || idx < 0)
9247 return NULL;
9248 return &obj->programs[idx];
9249 }
9250
9251 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9252 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9253 {
9254 struct bpf_program *prog = prev;
9255
9256 do {
9257 prog = __bpf_program__iter(prog, obj, true);
9258 } while (prog && prog_is_subprog(obj, prog));
9259
9260 return prog;
9261 }
9262
9263 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9264 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9265 {
9266 struct bpf_program *prog = next;
9267
9268 do {
9269 prog = __bpf_program__iter(prog, obj, false);
9270 } while (prog && prog_is_subprog(obj, prog));
9271
9272 return prog;
9273 }
9274
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9275 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9276 {
9277 prog->prog_ifindex = ifindex;
9278 }
9279
bpf_program__name(const struct bpf_program * prog)9280 const char *bpf_program__name(const struct bpf_program *prog)
9281 {
9282 return prog->name;
9283 }
9284
bpf_program__section_name(const struct bpf_program * prog)9285 const char *bpf_program__section_name(const struct bpf_program *prog)
9286 {
9287 return prog->sec_name;
9288 }
9289
bpf_program__autoload(const struct bpf_program * prog)9290 bool bpf_program__autoload(const struct bpf_program *prog)
9291 {
9292 return prog->autoload;
9293 }
9294
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9295 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9296 {
9297 if (prog->obj->state >= OBJ_LOADED)
9298 return libbpf_err(-EINVAL);
9299
9300 prog->autoload = autoload;
9301 return 0;
9302 }
9303
bpf_program__autoattach(const struct bpf_program * prog)9304 bool bpf_program__autoattach(const struct bpf_program *prog)
9305 {
9306 return prog->autoattach;
9307 }
9308
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9309 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9310 {
9311 prog->autoattach = autoattach;
9312 }
9313
bpf_program__insns(const struct bpf_program * prog)9314 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9315 {
9316 return prog->insns;
9317 }
9318
bpf_program__insn_cnt(const struct bpf_program * prog)9319 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9320 {
9321 return prog->insns_cnt;
9322 }
9323
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9324 int bpf_program__set_insns(struct bpf_program *prog,
9325 struct bpf_insn *new_insns, size_t new_insn_cnt)
9326 {
9327 struct bpf_insn *insns;
9328
9329 if (prog->obj->state >= OBJ_LOADED)
9330 return libbpf_err(-EBUSY);
9331
9332 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9333 /* NULL is a valid return from reallocarray if the new count is zero */
9334 if (!insns && new_insn_cnt) {
9335 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9336 return libbpf_err(-ENOMEM);
9337 }
9338 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9339
9340 prog->insns = insns;
9341 prog->insns_cnt = new_insn_cnt;
9342 return 0;
9343 }
9344
bpf_program__fd(const struct bpf_program * prog)9345 int bpf_program__fd(const struct bpf_program *prog)
9346 {
9347 if (!prog)
9348 return libbpf_err(-EINVAL);
9349
9350 if (prog->fd < 0)
9351 return libbpf_err(-ENOENT);
9352
9353 return prog->fd;
9354 }
9355
9356 __alias(bpf_program__type)
9357 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9358
bpf_program__type(const struct bpf_program * prog)9359 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9360 {
9361 return prog->type;
9362 }
9363
9364 static size_t custom_sec_def_cnt;
9365 static struct bpf_sec_def *custom_sec_defs;
9366 static struct bpf_sec_def custom_fallback_def;
9367 static bool has_custom_fallback_def;
9368 static int last_custom_sec_def_handler_id;
9369
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9370 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9371 {
9372 if (prog->obj->state >= OBJ_LOADED)
9373 return libbpf_err(-EBUSY);
9374
9375 /* if type is not changed, do nothing */
9376 if (prog->type == type)
9377 return 0;
9378
9379 prog->type = type;
9380
9381 /* If a program type was changed, we need to reset associated SEC()
9382 * handler, as it will be invalid now. The only exception is a generic
9383 * fallback handler, which by definition is program type-agnostic and
9384 * is a catch-all custom handler, optionally set by the application,
9385 * so should be able to handle any type of BPF program.
9386 */
9387 if (prog->sec_def != &custom_fallback_def)
9388 prog->sec_def = NULL;
9389 return 0;
9390 }
9391
9392 __alias(bpf_program__expected_attach_type)
9393 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9394
bpf_program__expected_attach_type(const struct bpf_program * prog)9395 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9396 {
9397 return prog->expected_attach_type;
9398 }
9399
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9400 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9401 enum bpf_attach_type type)
9402 {
9403 if (prog->obj->state >= OBJ_LOADED)
9404 return libbpf_err(-EBUSY);
9405
9406 prog->expected_attach_type = type;
9407 return 0;
9408 }
9409
bpf_program__flags(const struct bpf_program * prog)9410 __u32 bpf_program__flags(const struct bpf_program *prog)
9411 {
9412 return prog->prog_flags;
9413 }
9414
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9415 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9416 {
9417 if (prog->obj->state >= OBJ_LOADED)
9418 return libbpf_err(-EBUSY);
9419
9420 prog->prog_flags = flags;
9421 return 0;
9422 }
9423
bpf_program__log_level(const struct bpf_program * prog)9424 __u32 bpf_program__log_level(const struct bpf_program *prog)
9425 {
9426 return prog->log_level;
9427 }
9428
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9429 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9430 {
9431 if (prog->obj->state >= OBJ_LOADED)
9432 return libbpf_err(-EBUSY);
9433
9434 prog->log_level = log_level;
9435 return 0;
9436 }
9437
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9438 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9439 {
9440 *log_size = prog->log_size;
9441 return prog->log_buf;
9442 }
9443
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9444 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9445 {
9446 if (log_size && !log_buf)
9447 return libbpf_err(-EINVAL);
9448 if (prog->log_size > UINT_MAX)
9449 return libbpf_err(-EINVAL);
9450 if (prog->obj->state >= OBJ_LOADED)
9451 return libbpf_err(-EBUSY);
9452
9453 prog->log_buf = log_buf;
9454 prog->log_size = log_size;
9455 return 0;
9456 }
9457
9458 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9459 .sec = (char *)sec_pfx, \
9460 .prog_type = BPF_PROG_TYPE_##ptype, \
9461 .expected_attach_type = atype, \
9462 .cookie = (long)(flags), \
9463 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9464 __VA_ARGS__ \
9465 }
9466
9467 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9468 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9469 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9470 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9471 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9472 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9473 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9474 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9475 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9476 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9477 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9478 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9479
9480 static const struct bpf_sec_def section_defs[] = {
9481 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9482 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9483 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9484 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9485 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9486 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9487 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9488 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9489 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9490 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9491 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9492 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9493 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9494 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9495 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9496 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9497 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9498 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9499 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9500 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9501 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9502 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9503 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9504 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9505 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9506 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9507 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9508 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9509 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9510 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9511 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9512 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9513 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9514 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9515 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9516 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9517 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9518 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9519 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9520 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9521 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9522 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9523 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9524 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9525 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9526 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9527 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9528 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9529 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9530 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9531 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9532 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9533 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9534 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9535 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9536 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9537 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9538 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9539 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9540 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9541 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9542 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9543 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9544 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9545 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9546 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9547 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9548 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9549 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9550 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9551 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9552 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9553 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9554 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9555 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9556 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9557 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9558 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9559 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9560 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9561 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9562 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9563 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9564 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9565 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9566 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9567 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9568 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9569 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9570 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9571 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9572 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9573 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9574 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9575 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9576 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9577 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9578 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9579 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9580 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9581 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9582 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9583 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9584 };
9585
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9586 int libbpf_register_prog_handler(const char *sec,
9587 enum bpf_prog_type prog_type,
9588 enum bpf_attach_type exp_attach_type,
9589 const struct libbpf_prog_handler_opts *opts)
9590 {
9591 struct bpf_sec_def *sec_def;
9592
9593 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9594 return libbpf_err(-EINVAL);
9595
9596 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9597 return libbpf_err(-E2BIG);
9598
9599 if (sec) {
9600 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9601 sizeof(*sec_def));
9602 if (!sec_def)
9603 return libbpf_err(-ENOMEM);
9604
9605 custom_sec_defs = sec_def;
9606 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9607 } else {
9608 if (has_custom_fallback_def)
9609 return libbpf_err(-EBUSY);
9610
9611 sec_def = &custom_fallback_def;
9612 }
9613
9614 sec_def->sec = sec ? strdup(sec) : NULL;
9615 if (sec && !sec_def->sec)
9616 return libbpf_err(-ENOMEM);
9617
9618 sec_def->prog_type = prog_type;
9619 sec_def->expected_attach_type = exp_attach_type;
9620 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9621
9622 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9623 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9624 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9625
9626 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9627
9628 if (sec)
9629 custom_sec_def_cnt++;
9630 else
9631 has_custom_fallback_def = true;
9632
9633 return sec_def->handler_id;
9634 }
9635
libbpf_unregister_prog_handler(int handler_id)9636 int libbpf_unregister_prog_handler(int handler_id)
9637 {
9638 struct bpf_sec_def *sec_defs;
9639 int i;
9640
9641 if (handler_id <= 0)
9642 return libbpf_err(-EINVAL);
9643
9644 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9645 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9646 has_custom_fallback_def = false;
9647 return 0;
9648 }
9649
9650 for (i = 0; i < custom_sec_def_cnt; i++) {
9651 if (custom_sec_defs[i].handler_id == handler_id)
9652 break;
9653 }
9654
9655 if (i == custom_sec_def_cnt)
9656 return libbpf_err(-ENOENT);
9657
9658 free(custom_sec_defs[i].sec);
9659 for (i = i + 1; i < custom_sec_def_cnt; i++)
9660 custom_sec_defs[i - 1] = custom_sec_defs[i];
9661 custom_sec_def_cnt--;
9662
9663 /* try to shrink the array, but it's ok if we couldn't */
9664 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9665 /* if new count is zero, reallocarray can return a valid NULL result;
9666 * in this case the previous pointer will be freed, so we *have to*
9667 * reassign old pointer to the new value (even if it's NULL)
9668 */
9669 if (sec_defs || custom_sec_def_cnt == 0)
9670 custom_sec_defs = sec_defs;
9671
9672 return 0;
9673 }
9674
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9675 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9676 {
9677 size_t len = strlen(sec_def->sec);
9678
9679 /* "type/" always has to have proper SEC("type/extras") form */
9680 if (sec_def->sec[len - 1] == '/') {
9681 if (str_has_pfx(sec_name, sec_def->sec))
9682 return true;
9683 return false;
9684 }
9685
9686 /* "type+" means it can be either exact SEC("type") or
9687 * well-formed SEC("type/extras") with proper '/' separator
9688 */
9689 if (sec_def->sec[len - 1] == '+') {
9690 len--;
9691 /* not even a prefix */
9692 if (strncmp(sec_name, sec_def->sec, len) != 0)
9693 return false;
9694 /* exact match or has '/' separator */
9695 if (sec_name[len] == '\0' || sec_name[len] == '/')
9696 return true;
9697 return false;
9698 }
9699
9700 return strcmp(sec_name, sec_def->sec) == 0;
9701 }
9702
find_sec_def(const char * sec_name)9703 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9704 {
9705 const struct bpf_sec_def *sec_def;
9706 int i, n;
9707
9708 n = custom_sec_def_cnt;
9709 for (i = 0; i < n; i++) {
9710 sec_def = &custom_sec_defs[i];
9711 if (sec_def_matches(sec_def, sec_name))
9712 return sec_def;
9713 }
9714
9715 n = ARRAY_SIZE(section_defs);
9716 for (i = 0; i < n; i++) {
9717 sec_def = §ion_defs[i];
9718 if (sec_def_matches(sec_def, sec_name))
9719 return sec_def;
9720 }
9721
9722 if (has_custom_fallback_def)
9723 return &custom_fallback_def;
9724
9725 return NULL;
9726 }
9727
9728 #define MAX_TYPE_NAME_SIZE 32
9729
libbpf_get_type_names(bool attach_type)9730 static char *libbpf_get_type_names(bool attach_type)
9731 {
9732 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9733 char *buf;
9734
9735 buf = malloc(len);
9736 if (!buf)
9737 return NULL;
9738
9739 buf[0] = '\0';
9740 /* Forge string buf with all available names */
9741 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9742 const struct bpf_sec_def *sec_def = §ion_defs[i];
9743
9744 if (attach_type) {
9745 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9746 continue;
9747
9748 if (!(sec_def->cookie & SEC_ATTACHABLE))
9749 continue;
9750 }
9751
9752 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9753 free(buf);
9754 return NULL;
9755 }
9756 strcat(buf, " ");
9757 strcat(buf, section_defs[i].sec);
9758 }
9759
9760 return buf;
9761 }
9762
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9763 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9764 enum bpf_attach_type *expected_attach_type)
9765 {
9766 const struct bpf_sec_def *sec_def;
9767 char *type_names;
9768
9769 if (!name)
9770 return libbpf_err(-EINVAL);
9771
9772 sec_def = find_sec_def(name);
9773 if (sec_def) {
9774 *prog_type = sec_def->prog_type;
9775 *expected_attach_type = sec_def->expected_attach_type;
9776 return 0;
9777 }
9778
9779 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9780 type_names = libbpf_get_type_names(false);
9781 if (type_names != NULL) {
9782 pr_debug("supported section(type) names are:%s\n", type_names);
9783 free(type_names);
9784 }
9785
9786 return libbpf_err(-ESRCH);
9787 }
9788
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9789 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9790 {
9791 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9792 return NULL;
9793
9794 return attach_type_name[t];
9795 }
9796
libbpf_bpf_link_type_str(enum bpf_link_type t)9797 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9798 {
9799 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9800 return NULL;
9801
9802 return link_type_name[t];
9803 }
9804
libbpf_bpf_map_type_str(enum bpf_map_type t)9805 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9806 {
9807 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9808 return NULL;
9809
9810 return map_type_name[t];
9811 }
9812
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9813 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9814 {
9815 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9816 return NULL;
9817
9818 return prog_type_name[t];
9819 }
9820
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9821 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9822 int sec_idx,
9823 size_t offset)
9824 {
9825 struct bpf_map *map;
9826 size_t i;
9827
9828 for (i = 0; i < obj->nr_maps; i++) {
9829 map = &obj->maps[i];
9830 if (!bpf_map__is_struct_ops(map))
9831 continue;
9832 if (map->sec_idx == sec_idx &&
9833 map->sec_offset <= offset &&
9834 offset - map->sec_offset < map->def.value_size)
9835 return map;
9836 }
9837
9838 return NULL;
9839 }
9840
9841 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9842 * st_ops->data for shadow type.
9843 */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9844 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9845 Elf64_Shdr *shdr, Elf_Data *data)
9846 {
9847 const struct btf_type *type;
9848 const struct btf_member *member;
9849 struct bpf_struct_ops *st_ops;
9850 struct bpf_program *prog;
9851 unsigned int shdr_idx;
9852 const struct btf *btf;
9853 struct bpf_map *map;
9854 unsigned int moff, insn_idx;
9855 const char *name;
9856 __u32 member_idx;
9857 Elf64_Sym *sym;
9858 Elf64_Rel *rel;
9859 int i, nrels;
9860
9861 btf = obj->btf;
9862 nrels = shdr->sh_size / shdr->sh_entsize;
9863 for (i = 0; i < nrels; i++) {
9864 rel = elf_rel_by_idx(data, i);
9865 if (!rel) {
9866 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9867 return -LIBBPF_ERRNO__FORMAT;
9868 }
9869
9870 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9871 if (!sym) {
9872 pr_warn("struct_ops reloc: symbol %zx not found\n",
9873 (size_t)ELF64_R_SYM(rel->r_info));
9874 return -LIBBPF_ERRNO__FORMAT;
9875 }
9876
9877 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9878 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9879 if (!map) {
9880 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9881 (size_t)rel->r_offset);
9882 return -EINVAL;
9883 }
9884
9885 moff = rel->r_offset - map->sec_offset;
9886 shdr_idx = sym->st_shndx;
9887 st_ops = map->st_ops;
9888 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9889 map->name,
9890 (long long)(rel->r_info >> 32),
9891 (long long)sym->st_value,
9892 shdr_idx, (size_t)rel->r_offset,
9893 map->sec_offset, sym->st_name, name);
9894
9895 if (shdr_idx >= SHN_LORESERVE) {
9896 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9897 map->name, (size_t)rel->r_offset, shdr_idx);
9898 return -LIBBPF_ERRNO__RELOC;
9899 }
9900 if (sym->st_value % BPF_INSN_SZ) {
9901 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9902 map->name, (unsigned long long)sym->st_value);
9903 return -LIBBPF_ERRNO__FORMAT;
9904 }
9905 insn_idx = sym->st_value / BPF_INSN_SZ;
9906
9907 type = btf__type_by_id(btf, st_ops->type_id);
9908 member = find_member_by_offset(type, moff * 8);
9909 if (!member) {
9910 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9911 map->name, moff);
9912 return -EINVAL;
9913 }
9914 member_idx = member - btf_members(type);
9915 name = btf__name_by_offset(btf, member->name_off);
9916
9917 if (!resolve_func_ptr(btf, member->type, NULL)) {
9918 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9919 map->name, name);
9920 return -EINVAL;
9921 }
9922
9923 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9924 if (!prog) {
9925 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9926 map->name, shdr_idx, name);
9927 return -EINVAL;
9928 }
9929
9930 /* prevent the use of BPF prog with invalid type */
9931 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9932 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9933 map->name, prog->name);
9934 return -EINVAL;
9935 }
9936
9937 st_ops->progs[member_idx] = prog;
9938
9939 /* st_ops->data will be exposed to users, being returned by
9940 * bpf_map__initial_value() as a pointer to the shadow
9941 * type. All function pointers in the original struct type
9942 * should be converted to a pointer to struct bpf_program
9943 * in the shadow type.
9944 */
9945 *((struct bpf_program **)(st_ops->data + moff)) = prog;
9946 }
9947
9948 return 0;
9949 }
9950
9951 #define BTF_TRACE_PREFIX "btf_trace_"
9952 #define BTF_LSM_PREFIX "bpf_lsm_"
9953 #define BTF_ITER_PREFIX "bpf_iter_"
9954 #define BTF_MAX_NAME_SIZE 128
9955
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)9956 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9957 const char **prefix, int *kind)
9958 {
9959 switch (attach_type) {
9960 case BPF_TRACE_RAW_TP:
9961 *prefix = BTF_TRACE_PREFIX;
9962 *kind = BTF_KIND_TYPEDEF;
9963 break;
9964 case BPF_LSM_MAC:
9965 case BPF_LSM_CGROUP:
9966 *prefix = BTF_LSM_PREFIX;
9967 *kind = BTF_KIND_FUNC;
9968 break;
9969 case BPF_TRACE_ITER:
9970 *prefix = BTF_ITER_PREFIX;
9971 *kind = BTF_KIND_FUNC;
9972 break;
9973 default:
9974 *prefix = "";
9975 *kind = BTF_KIND_FUNC;
9976 }
9977 }
9978
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)9979 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9980 const char *name, __u32 kind)
9981 {
9982 char btf_type_name[BTF_MAX_NAME_SIZE];
9983 int ret;
9984
9985 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9986 "%s%s", prefix, name);
9987 /* snprintf returns the number of characters written excluding the
9988 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9989 * indicates truncation.
9990 */
9991 if (ret < 0 || ret >= sizeof(btf_type_name))
9992 return -ENAMETOOLONG;
9993 return btf__find_by_name_kind(btf, btf_type_name, kind);
9994 }
9995
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)9996 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9997 enum bpf_attach_type attach_type)
9998 {
9999 const char *prefix;
10000 int kind;
10001
10002 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10003 return find_btf_by_prefix_kind(btf, prefix, name, kind);
10004 }
10005
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)10006 int libbpf_find_vmlinux_btf_id(const char *name,
10007 enum bpf_attach_type attach_type)
10008 {
10009 struct btf *btf;
10010 int err;
10011
10012 btf = btf__load_vmlinux_btf();
10013 err = libbpf_get_error(btf);
10014 if (err) {
10015 pr_warn("vmlinux BTF is not found\n");
10016 return libbpf_err(err);
10017 }
10018
10019 err = find_attach_btf_id(btf, name, attach_type);
10020 if (err <= 0)
10021 pr_warn("%s is not found in vmlinux BTF\n", name);
10022
10023 btf__free(btf);
10024 return libbpf_err(err);
10025 }
10026
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd,int token_fd)10027 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10028 {
10029 struct bpf_prog_info info;
10030 __u32 info_len = sizeof(info);
10031 struct btf *btf;
10032 int err;
10033
10034 memset(&info, 0, info_len);
10035 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10036 if (err) {
10037 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10038 attach_prog_fd, errstr(err));
10039 return err;
10040 }
10041
10042 err = -EINVAL;
10043 if (!info.btf_id) {
10044 pr_warn("The target program doesn't have BTF\n");
10045 goto out;
10046 }
10047 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10048 err = libbpf_get_error(btf);
10049 if (err) {
10050 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10051 goto out;
10052 }
10053 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10054 btf__free(btf);
10055 if (err <= 0) {
10056 pr_warn("%s is not found in prog's BTF\n", name);
10057 goto out;
10058 }
10059 out:
10060 return err;
10061 }
10062
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)10063 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10064 enum bpf_attach_type attach_type,
10065 int *btf_obj_fd, int *btf_type_id)
10066 {
10067 int ret, i, mod_len;
10068 const char *fn_name, *mod_name = NULL;
10069
10070 fn_name = strchr(attach_name, ':');
10071 if (fn_name) {
10072 mod_name = attach_name;
10073 mod_len = fn_name - mod_name;
10074 fn_name++;
10075 }
10076
10077 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10078 ret = find_attach_btf_id(obj->btf_vmlinux,
10079 mod_name ? fn_name : attach_name,
10080 attach_type);
10081 if (ret > 0) {
10082 *btf_obj_fd = 0; /* vmlinux BTF */
10083 *btf_type_id = ret;
10084 return 0;
10085 }
10086 if (ret != -ENOENT)
10087 return ret;
10088 }
10089
10090 ret = load_module_btfs(obj);
10091 if (ret)
10092 return ret;
10093
10094 for (i = 0; i < obj->btf_module_cnt; i++) {
10095 const struct module_btf *mod = &obj->btf_modules[i];
10096
10097 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10098 continue;
10099
10100 ret = find_attach_btf_id(mod->btf,
10101 mod_name ? fn_name : attach_name,
10102 attach_type);
10103 if (ret > 0) {
10104 *btf_obj_fd = mod->fd;
10105 *btf_type_id = ret;
10106 return 0;
10107 }
10108 if (ret == -ENOENT)
10109 continue;
10110
10111 return ret;
10112 }
10113
10114 return -ESRCH;
10115 }
10116
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10117 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10118 int *btf_obj_fd, int *btf_type_id)
10119 {
10120 enum bpf_attach_type attach_type = prog->expected_attach_type;
10121 __u32 attach_prog_fd = prog->attach_prog_fd;
10122 int err = 0;
10123
10124 /* BPF program's BTF ID */
10125 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10126 if (!attach_prog_fd) {
10127 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10128 return -EINVAL;
10129 }
10130 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10131 if (err < 0) {
10132 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10133 prog->name, attach_prog_fd, attach_name, errstr(err));
10134 return err;
10135 }
10136 *btf_obj_fd = 0;
10137 *btf_type_id = err;
10138 return 0;
10139 }
10140
10141 /* kernel/module BTF ID */
10142 if (prog->obj->gen_loader) {
10143 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10144 *btf_obj_fd = 0;
10145 *btf_type_id = 1;
10146 } else {
10147 err = find_kernel_btf_id(prog->obj, attach_name,
10148 attach_type, btf_obj_fd,
10149 btf_type_id);
10150 }
10151 if (err) {
10152 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10153 prog->name, attach_name, errstr(err));
10154 return err;
10155 }
10156 return 0;
10157 }
10158
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10159 int libbpf_attach_type_by_name(const char *name,
10160 enum bpf_attach_type *attach_type)
10161 {
10162 char *type_names;
10163 const struct bpf_sec_def *sec_def;
10164
10165 if (!name)
10166 return libbpf_err(-EINVAL);
10167
10168 sec_def = find_sec_def(name);
10169 if (!sec_def) {
10170 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10171 type_names = libbpf_get_type_names(true);
10172 if (type_names != NULL) {
10173 pr_debug("attachable section(type) names are:%s\n", type_names);
10174 free(type_names);
10175 }
10176
10177 return libbpf_err(-EINVAL);
10178 }
10179
10180 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10181 return libbpf_err(-EINVAL);
10182 if (!(sec_def->cookie & SEC_ATTACHABLE))
10183 return libbpf_err(-EINVAL);
10184
10185 *attach_type = sec_def->expected_attach_type;
10186 return 0;
10187 }
10188
bpf_map__fd(const struct bpf_map * map)10189 int bpf_map__fd(const struct bpf_map *map)
10190 {
10191 if (!map)
10192 return libbpf_err(-EINVAL);
10193 if (!map_is_created(map))
10194 return -1;
10195 return map->fd;
10196 }
10197
map_uses_real_name(const struct bpf_map * map)10198 static bool map_uses_real_name(const struct bpf_map *map)
10199 {
10200 /* Since libbpf started to support custom .data.* and .rodata.* maps,
10201 * their user-visible name differs from kernel-visible name. Users see
10202 * such map's corresponding ELF section name as a map name.
10203 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10204 * maps to know which name has to be returned to the user.
10205 */
10206 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10207 return true;
10208 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10209 return true;
10210 return false;
10211 }
10212
bpf_map__name(const struct bpf_map * map)10213 const char *bpf_map__name(const struct bpf_map *map)
10214 {
10215 if (!map)
10216 return NULL;
10217
10218 if (map_uses_real_name(map))
10219 return map->real_name;
10220
10221 return map->name;
10222 }
10223
bpf_map__type(const struct bpf_map * map)10224 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10225 {
10226 return map->def.type;
10227 }
10228
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10229 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10230 {
10231 if (map_is_created(map))
10232 return libbpf_err(-EBUSY);
10233 map->def.type = type;
10234 return 0;
10235 }
10236
bpf_map__map_flags(const struct bpf_map * map)10237 __u32 bpf_map__map_flags(const struct bpf_map *map)
10238 {
10239 return map->def.map_flags;
10240 }
10241
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10242 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10243 {
10244 if (map_is_created(map))
10245 return libbpf_err(-EBUSY);
10246 map->def.map_flags = flags;
10247 return 0;
10248 }
10249
bpf_map__map_extra(const struct bpf_map * map)10250 __u64 bpf_map__map_extra(const struct bpf_map *map)
10251 {
10252 return map->map_extra;
10253 }
10254
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10255 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10256 {
10257 if (map_is_created(map))
10258 return libbpf_err(-EBUSY);
10259 map->map_extra = map_extra;
10260 return 0;
10261 }
10262
bpf_map__numa_node(const struct bpf_map * map)10263 __u32 bpf_map__numa_node(const struct bpf_map *map)
10264 {
10265 return map->numa_node;
10266 }
10267
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10268 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10269 {
10270 if (map_is_created(map))
10271 return libbpf_err(-EBUSY);
10272 map->numa_node = numa_node;
10273 return 0;
10274 }
10275
bpf_map__key_size(const struct bpf_map * map)10276 __u32 bpf_map__key_size(const struct bpf_map *map)
10277 {
10278 return map->def.key_size;
10279 }
10280
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10281 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10282 {
10283 if (map_is_created(map))
10284 return libbpf_err(-EBUSY);
10285 map->def.key_size = size;
10286 return 0;
10287 }
10288
bpf_map__value_size(const struct bpf_map * map)10289 __u32 bpf_map__value_size(const struct bpf_map *map)
10290 {
10291 return map->def.value_size;
10292 }
10293
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10294 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10295 {
10296 struct btf *btf;
10297 struct btf_type *datasec_type, *var_type;
10298 struct btf_var_secinfo *var;
10299 const struct btf_type *array_type;
10300 const struct btf_array *array;
10301 int vlen, element_sz, new_array_id;
10302 __u32 nr_elements;
10303
10304 /* check btf existence */
10305 btf = bpf_object__btf(map->obj);
10306 if (!btf)
10307 return -ENOENT;
10308
10309 /* verify map is datasec */
10310 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10311 if (!btf_is_datasec(datasec_type)) {
10312 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10313 bpf_map__name(map));
10314 return -EINVAL;
10315 }
10316
10317 /* verify datasec has at least one var */
10318 vlen = btf_vlen(datasec_type);
10319 if (vlen == 0) {
10320 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10321 bpf_map__name(map));
10322 return -EINVAL;
10323 }
10324
10325 /* verify last var in the datasec is an array */
10326 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10327 var_type = btf_type_by_id(btf, var->type);
10328 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10329 if (!btf_is_array(array_type)) {
10330 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10331 bpf_map__name(map));
10332 return -EINVAL;
10333 }
10334
10335 /* verify request size aligns with array */
10336 array = btf_array(array_type);
10337 element_sz = btf__resolve_size(btf, array->type);
10338 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10339 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10340 bpf_map__name(map), element_sz, size);
10341 return -EINVAL;
10342 }
10343
10344 /* create a new array based on the existing array, but with new length */
10345 nr_elements = (size - var->offset) / element_sz;
10346 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10347 if (new_array_id < 0)
10348 return new_array_id;
10349
10350 /* adding a new btf type invalidates existing pointers to btf objects,
10351 * so refresh pointers before proceeding
10352 */
10353 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10354 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10355 var_type = btf_type_by_id(btf, var->type);
10356
10357 /* finally update btf info */
10358 datasec_type->size = size;
10359 var->size = size - var->offset;
10360 var_type->type = new_array_id;
10361
10362 return 0;
10363 }
10364
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10365 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10366 {
10367 if (map_is_created(map))
10368 return libbpf_err(-EBUSY);
10369
10370 if (map->mmaped) {
10371 size_t mmap_old_sz, mmap_new_sz;
10372 int err;
10373
10374 if (map->def.type != BPF_MAP_TYPE_ARRAY)
10375 return libbpf_err(-EOPNOTSUPP);
10376
10377 mmap_old_sz = bpf_map_mmap_sz(map);
10378 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10379 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10380 if (err) {
10381 pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10382 bpf_map__name(map), errstr(err));
10383 return libbpf_err(err);
10384 }
10385 err = map_btf_datasec_resize(map, size);
10386 if (err && err != -ENOENT) {
10387 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10388 bpf_map__name(map), errstr(err));
10389 map->btf_value_type_id = 0;
10390 map->btf_key_type_id = 0;
10391 }
10392 }
10393
10394 map->def.value_size = size;
10395 return 0;
10396 }
10397
bpf_map__btf_key_type_id(const struct bpf_map * map)10398 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10399 {
10400 return map ? map->btf_key_type_id : 0;
10401 }
10402
bpf_map__btf_value_type_id(const struct bpf_map * map)10403 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10404 {
10405 return map ? map->btf_value_type_id : 0;
10406 }
10407
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10408 int bpf_map__set_initial_value(struct bpf_map *map,
10409 const void *data, size_t size)
10410 {
10411 size_t actual_sz;
10412
10413 if (map_is_created(map))
10414 return libbpf_err(-EBUSY);
10415
10416 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10417 return libbpf_err(-EINVAL);
10418
10419 if (map->def.type == BPF_MAP_TYPE_ARENA)
10420 actual_sz = map->obj->arena_data_sz;
10421 else
10422 actual_sz = map->def.value_size;
10423 if (size != actual_sz)
10424 return libbpf_err(-EINVAL);
10425
10426 memcpy(map->mmaped, data, size);
10427 return 0;
10428 }
10429
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10430 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10431 {
10432 if (bpf_map__is_struct_ops(map)) {
10433 if (psize)
10434 *psize = map->def.value_size;
10435 return map->st_ops->data;
10436 }
10437
10438 if (!map->mmaped)
10439 return NULL;
10440
10441 if (map->def.type == BPF_MAP_TYPE_ARENA)
10442 *psize = map->obj->arena_data_sz;
10443 else
10444 *psize = map->def.value_size;
10445
10446 return map->mmaped;
10447 }
10448
bpf_map__is_internal(const struct bpf_map * map)10449 bool bpf_map__is_internal(const struct bpf_map *map)
10450 {
10451 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10452 }
10453
bpf_map__ifindex(const struct bpf_map * map)10454 __u32 bpf_map__ifindex(const struct bpf_map *map)
10455 {
10456 return map->map_ifindex;
10457 }
10458
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10459 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10460 {
10461 if (map_is_created(map))
10462 return libbpf_err(-EBUSY);
10463 map->map_ifindex = ifindex;
10464 return 0;
10465 }
10466
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10467 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10468 {
10469 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10470 pr_warn("error: unsupported map type\n");
10471 return libbpf_err(-EINVAL);
10472 }
10473 if (map->inner_map_fd != -1) {
10474 pr_warn("error: inner_map_fd already specified\n");
10475 return libbpf_err(-EINVAL);
10476 }
10477 if (map->inner_map) {
10478 bpf_map__destroy(map->inner_map);
10479 zfree(&map->inner_map);
10480 }
10481 map->inner_map_fd = fd;
10482 return 0;
10483 }
10484
10485 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10486 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10487 {
10488 ssize_t idx;
10489 struct bpf_map *s, *e;
10490
10491 if (!obj || !obj->maps)
10492 return errno = EINVAL, NULL;
10493
10494 s = obj->maps;
10495 e = obj->maps + obj->nr_maps;
10496
10497 if ((m < s) || (m >= e)) {
10498 pr_warn("error in %s: map handler doesn't belong to object\n",
10499 __func__);
10500 return errno = EINVAL, NULL;
10501 }
10502
10503 idx = (m - obj->maps) + i;
10504 if (idx >= obj->nr_maps || idx < 0)
10505 return NULL;
10506 return &obj->maps[idx];
10507 }
10508
10509 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10510 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10511 {
10512 if (prev == NULL && obj != NULL)
10513 return obj->maps;
10514
10515 return __bpf_map__iter(prev, obj, 1);
10516 }
10517
10518 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10519 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10520 {
10521 if (next == NULL && obj != NULL) {
10522 if (!obj->nr_maps)
10523 return NULL;
10524 return obj->maps + obj->nr_maps - 1;
10525 }
10526
10527 return __bpf_map__iter(next, obj, -1);
10528 }
10529
10530 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10531 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10532 {
10533 struct bpf_map *pos;
10534
10535 bpf_object__for_each_map(pos, obj) {
10536 /* if it's a special internal map name (which always starts
10537 * with dot) then check if that special name matches the
10538 * real map name (ELF section name)
10539 */
10540 if (name[0] == '.') {
10541 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10542 return pos;
10543 continue;
10544 }
10545 /* otherwise map name has to be an exact match */
10546 if (map_uses_real_name(pos)) {
10547 if (strcmp(pos->real_name, name) == 0)
10548 return pos;
10549 continue;
10550 }
10551 if (strcmp(pos->name, name) == 0)
10552 return pos;
10553 }
10554 return errno = ENOENT, NULL;
10555 }
10556
10557 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10558 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10559 {
10560 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10561 }
10562
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10563 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10564 size_t value_sz, bool check_value_sz)
10565 {
10566 if (!map_is_created(map)) /* map is not yet created */
10567 return -ENOENT;
10568
10569 if (map->def.key_size != key_sz) {
10570 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10571 map->name, key_sz, map->def.key_size);
10572 return -EINVAL;
10573 }
10574
10575 if (map->fd < 0) {
10576 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10577 return -EINVAL;
10578 }
10579
10580 if (!check_value_sz)
10581 return 0;
10582
10583 switch (map->def.type) {
10584 case BPF_MAP_TYPE_PERCPU_ARRAY:
10585 case BPF_MAP_TYPE_PERCPU_HASH:
10586 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10587 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10588 int num_cpu = libbpf_num_possible_cpus();
10589 size_t elem_sz = roundup(map->def.value_size, 8);
10590
10591 if (value_sz != num_cpu * elem_sz) {
10592 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10593 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10594 return -EINVAL;
10595 }
10596 break;
10597 }
10598 default:
10599 if (map->def.value_size != value_sz) {
10600 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10601 map->name, value_sz, map->def.value_size);
10602 return -EINVAL;
10603 }
10604 break;
10605 }
10606 return 0;
10607 }
10608
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10609 int bpf_map__lookup_elem(const struct bpf_map *map,
10610 const void *key, size_t key_sz,
10611 void *value, size_t value_sz, __u64 flags)
10612 {
10613 int err;
10614
10615 err = validate_map_op(map, key_sz, value_sz, true);
10616 if (err)
10617 return libbpf_err(err);
10618
10619 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10620 }
10621
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10622 int bpf_map__update_elem(const struct bpf_map *map,
10623 const void *key, size_t key_sz,
10624 const void *value, size_t value_sz, __u64 flags)
10625 {
10626 int err;
10627
10628 err = validate_map_op(map, key_sz, value_sz, true);
10629 if (err)
10630 return libbpf_err(err);
10631
10632 return bpf_map_update_elem(map->fd, key, value, flags);
10633 }
10634
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10635 int bpf_map__delete_elem(const struct bpf_map *map,
10636 const void *key, size_t key_sz, __u64 flags)
10637 {
10638 int err;
10639
10640 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10641 if (err)
10642 return libbpf_err(err);
10643
10644 return bpf_map_delete_elem_flags(map->fd, key, flags);
10645 }
10646
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10647 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10648 const void *key, size_t key_sz,
10649 void *value, size_t value_sz, __u64 flags)
10650 {
10651 int err;
10652
10653 err = validate_map_op(map, key_sz, value_sz, true);
10654 if (err)
10655 return libbpf_err(err);
10656
10657 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10658 }
10659
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10660 int bpf_map__get_next_key(const struct bpf_map *map,
10661 const void *cur_key, void *next_key, size_t key_sz)
10662 {
10663 int err;
10664
10665 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10666 if (err)
10667 return libbpf_err(err);
10668
10669 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10670 }
10671
libbpf_get_error(const void * ptr)10672 long libbpf_get_error(const void *ptr)
10673 {
10674 if (!IS_ERR_OR_NULL(ptr))
10675 return 0;
10676
10677 if (IS_ERR(ptr))
10678 errno = -PTR_ERR(ptr);
10679
10680 /* If ptr == NULL, then errno should be already set by the failing
10681 * API, because libbpf never returns NULL on success and it now always
10682 * sets errno on error. So no extra errno handling for ptr == NULL
10683 * case.
10684 */
10685 return -errno;
10686 }
10687
10688 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10689 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10690 {
10691 int ret;
10692 int prog_fd = bpf_program__fd(prog);
10693
10694 if (prog_fd < 0) {
10695 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10696 prog->name);
10697 return libbpf_err(-EINVAL);
10698 }
10699
10700 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10701 return libbpf_err_errno(ret);
10702 }
10703
10704 /* Release "ownership" of underlying BPF resource (typically, BPF program
10705 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10706 * link, when destructed through bpf_link__destroy() call won't attempt to
10707 * detach/unregisted that BPF resource. This is useful in situations where,
10708 * say, attached BPF program has to outlive userspace program that attached it
10709 * in the system. Depending on type of BPF program, though, there might be
10710 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10711 * exit of userspace program doesn't trigger automatic detachment and clean up
10712 * inside the kernel.
10713 */
bpf_link__disconnect(struct bpf_link * link)10714 void bpf_link__disconnect(struct bpf_link *link)
10715 {
10716 link->disconnected = true;
10717 }
10718
bpf_link__destroy(struct bpf_link * link)10719 int bpf_link__destroy(struct bpf_link *link)
10720 {
10721 int err = 0;
10722
10723 if (IS_ERR_OR_NULL(link))
10724 return 0;
10725
10726 if (!link->disconnected && link->detach)
10727 err = link->detach(link);
10728 if (link->pin_path)
10729 free(link->pin_path);
10730 if (link->dealloc)
10731 link->dealloc(link);
10732 else
10733 free(link);
10734
10735 return libbpf_err(err);
10736 }
10737
bpf_link__fd(const struct bpf_link * link)10738 int bpf_link__fd(const struct bpf_link *link)
10739 {
10740 return link->fd;
10741 }
10742
bpf_link__pin_path(const struct bpf_link * link)10743 const char *bpf_link__pin_path(const struct bpf_link *link)
10744 {
10745 return link->pin_path;
10746 }
10747
bpf_link__detach_fd(struct bpf_link * link)10748 static int bpf_link__detach_fd(struct bpf_link *link)
10749 {
10750 return libbpf_err_errno(close(link->fd));
10751 }
10752
bpf_link__open(const char * path)10753 struct bpf_link *bpf_link__open(const char *path)
10754 {
10755 struct bpf_link *link;
10756 int fd;
10757
10758 fd = bpf_obj_get(path);
10759 if (fd < 0) {
10760 fd = -errno;
10761 pr_warn("failed to open link at %s: %d\n", path, fd);
10762 return libbpf_err_ptr(fd);
10763 }
10764
10765 link = calloc(1, sizeof(*link));
10766 if (!link) {
10767 close(fd);
10768 return libbpf_err_ptr(-ENOMEM);
10769 }
10770 link->detach = &bpf_link__detach_fd;
10771 link->fd = fd;
10772
10773 link->pin_path = strdup(path);
10774 if (!link->pin_path) {
10775 bpf_link__destroy(link);
10776 return libbpf_err_ptr(-ENOMEM);
10777 }
10778
10779 return link;
10780 }
10781
bpf_link__detach(struct bpf_link * link)10782 int bpf_link__detach(struct bpf_link *link)
10783 {
10784 return bpf_link_detach(link->fd) ? -errno : 0;
10785 }
10786
bpf_link__pin(struct bpf_link * link,const char * path)10787 int bpf_link__pin(struct bpf_link *link, const char *path)
10788 {
10789 int err;
10790
10791 if (link->pin_path)
10792 return libbpf_err(-EBUSY);
10793 err = make_parent_dir(path);
10794 if (err)
10795 return libbpf_err(err);
10796 err = check_path(path);
10797 if (err)
10798 return libbpf_err(err);
10799
10800 link->pin_path = strdup(path);
10801 if (!link->pin_path)
10802 return libbpf_err(-ENOMEM);
10803
10804 if (bpf_obj_pin(link->fd, link->pin_path)) {
10805 err = -errno;
10806 zfree(&link->pin_path);
10807 return libbpf_err(err);
10808 }
10809
10810 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10811 return 0;
10812 }
10813
bpf_link__unpin(struct bpf_link * link)10814 int bpf_link__unpin(struct bpf_link *link)
10815 {
10816 int err;
10817
10818 if (!link->pin_path)
10819 return libbpf_err(-EINVAL);
10820
10821 err = unlink(link->pin_path);
10822 if (err != 0)
10823 return -errno;
10824
10825 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10826 zfree(&link->pin_path);
10827 return 0;
10828 }
10829
10830 struct bpf_link_perf {
10831 struct bpf_link link;
10832 int perf_event_fd;
10833 /* legacy kprobe support: keep track of probe identifier and type */
10834 char *legacy_probe_name;
10835 bool legacy_is_kprobe;
10836 bool legacy_is_retprobe;
10837 };
10838
10839 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10840 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10841
bpf_link_perf_detach(struct bpf_link * link)10842 static int bpf_link_perf_detach(struct bpf_link *link)
10843 {
10844 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10845 int err = 0;
10846
10847 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10848 err = -errno;
10849
10850 if (perf_link->perf_event_fd != link->fd)
10851 close(perf_link->perf_event_fd);
10852 close(link->fd);
10853
10854 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10855 if (perf_link->legacy_probe_name) {
10856 if (perf_link->legacy_is_kprobe) {
10857 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10858 perf_link->legacy_is_retprobe);
10859 } else {
10860 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10861 perf_link->legacy_is_retprobe);
10862 }
10863 }
10864
10865 return err;
10866 }
10867
bpf_link_perf_dealloc(struct bpf_link * link)10868 static void bpf_link_perf_dealloc(struct bpf_link *link)
10869 {
10870 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10871
10872 free(perf_link->legacy_probe_name);
10873 free(perf_link);
10874 }
10875
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10876 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10877 const struct bpf_perf_event_opts *opts)
10878 {
10879 struct bpf_link_perf *link;
10880 int prog_fd, link_fd = -1, err;
10881 bool force_ioctl_attach;
10882
10883 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10884 return libbpf_err_ptr(-EINVAL);
10885
10886 if (pfd < 0) {
10887 pr_warn("prog '%s': invalid perf event FD %d\n",
10888 prog->name, pfd);
10889 return libbpf_err_ptr(-EINVAL);
10890 }
10891 prog_fd = bpf_program__fd(prog);
10892 if (prog_fd < 0) {
10893 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
10894 prog->name);
10895 return libbpf_err_ptr(-EINVAL);
10896 }
10897
10898 link = calloc(1, sizeof(*link));
10899 if (!link)
10900 return libbpf_err_ptr(-ENOMEM);
10901 link->link.detach = &bpf_link_perf_detach;
10902 link->link.dealloc = &bpf_link_perf_dealloc;
10903 link->perf_event_fd = pfd;
10904
10905 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10906 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10907 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10908 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10909
10910 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10911 if (link_fd < 0) {
10912 err = -errno;
10913 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
10914 prog->name, pfd, errstr(err));
10915 goto err_out;
10916 }
10917 link->link.fd = link_fd;
10918 } else {
10919 if (OPTS_GET(opts, bpf_cookie, 0)) {
10920 pr_warn("prog '%s': user context value is not supported\n", prog->name);
10921 err = -EOPNOTSUPP;
10922 goto err_out;
10923 }
10924
10925 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10926 err = -errno;
10927 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10928 prog->name, pfd, errstr(err));
10929 if (err == -EPROTO)
10930 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10931 prog->name, pfd);
10932 goto err_out;
10933 }
10934 link->link.fd = pfd;
10935 }
10936 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10937 err = -errno;
10938 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10939 prog->name, pfd, errstr(err));
10940 goto err_out;
10941 }
10942
10943 return &link->link;
10944 err_out:
10945 if (link_fd >= 0)
10946 close(link_fd);
10947 free(link);
10948 return libbpf_err_ptr(err);
10949 }
10950
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)10951 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10952 {
10953 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10954 }
10955
10956 /*
10957 * this function is expected to parse integer in the range of [0, 2^31-1] from
10958 * given file using scanf format string fmt. If actual parsed value is
10959 * negative, the result might be indistinguishable from error
10960 */
parse_uint_from_file(const char * file,const char * fmt)10961 static int parse_uint_from_file(const char *file, const char *fmt)
10962 {
10963 int err, ret;
10964 FILE *f;
10965
10966 f = fopen(file, "re");
10967 if (!f) {
10968 err = -errno;
10969 pr_debug("failed to open '%s': %s\n", file, errstr(err));
10970 return err;
10971 }
10972 err = fscanf(f, fmt, &ret);
10973 if (err != 1) {
10974 err = err == EOF ? -EIO : -errno;
10975 pr_debug("failed to parse '%s': %s\n", file, errstr(err));
10976 fclose(f);
10977 return err;
10978 }
10979 fclose(f);
10980 return ret;
10981 }
10982
determine_kprobe_perf_type(void)10983 static int determine_kprobe_perf_type(void)
10984 {
10985 const char *file = "/sys/bus/event_source/devices/kprobe/type";
10986
10987 return parse_uint_from_file(file, "%d\n");
10988 }
10989
determine_uprobe_perf_type(void)10990 static int determine_uprobe_perf_type(void)
10991 {
10992 const char *file = "/sys/bus/event_source/devices/uprobe/type";
10993
10994 return parse_uint_from_file(file, "%d\n");
10995 }
10996
determine_kprobe_retprobe_bit(void)10997 static int determine_kprobe_retprobe_bit(void)
10998 {
10999 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11000
11001 return parse_uint_from_file(file, "config:%d\n");
11002 }
11003
determine_uprobe_retprobe_bit(void)11004 static int determine_uprobe_retprobe_bit(void)
11005 {
11006 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11007
11008 return parse_uint_from_file(file, "config:%d\n");
11009 }
11010
11011 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11012 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11013
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)11014 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11015 uint64_t offset, int pid, size_t ref_ctr_off)
11016 {
11017 const size_t attr_sz = sizeof(struct perf_event_attr);
11018 struct perf_event_attr attr;
11019 int type, pfd;
11020
11021 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11022 return -EINVAL;
11023
11024 memset(&attr, 0, attr_sz);
11025
11026 type = uprobe ? determine_uprobe_perf_type()
11027 : determine_kprobe_perf_type();
11028 if (type < 0) {
11029 pr_warn("failed to determine %s perf type: %s\n",
11030 uprobe ? "uprobe" : "kprobe",
11031 errstr(type));
11032 return type;
11033 }
11034 if (retprobe) {
11035 int bit = uprobe ? determine_uprobe_retprobe_bit()
11036 : determine_kprobe_retprobe_bit();
11037
11038 if (bit < 0) {
11039 pr_warn("failed to determine %s retprobe bit: %s\n",
11040 uprobe ? "uprobe" : "kprobe",
11041 errstr(bit));
11042 return bit;
11043 }
11044 attr.config |= 1 << bit;
11045 }
11046 attr.size = attr_sz;
11047 attr.type = type;
11048 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11049 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11050 attr.config2 = offset; /* kprobe_addr or probe_offset */
11051
11052 /* pid filter is meaningful only for uprobes */
11053 pfd = syscall(__NR_perf_event_open, &attr,
11054 pid < 0 ? -1 : pid /* pid */,
11055 pid == -1 ? 0 : -1 /* cpu */,
11056 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11057 return pfd >= 0 ? pfd : -errno;
11058 }
11059
append_to_file(const char * file,const char * fmt,...)11060 static int append_to_file(const char *file, const char *fmt, ...)
11061 {
11062 int fd, n, err = 0;
11063 va_list ap;
11064 char buf[1024];
11065
11066 va_start(ap, fmt);
11067 n = vsnprintf(buf, sizeof(buf), fmt, ap);
11068 va_end(ap);
11069
11070 if (n < 0 || n >= sizeof(buf))
11071 return -EINVAL;
11072
11073 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11074 if (fd < 0)
11075 return -errno;
11076
11077 if (write(fd, buf, n) < 0)
11078 err = -errno;
11079
11080 close(fd);
11081 return err;
11082 }
11083
11084 #define DEBUGFS "/sys/kernel/debug/tracing"
11085 #define TRACEFS "/sys/kernel/tracing"
11086
use_debugfs(void)11087 static bool use_debugfs(void)
11088 {
11089 static int has_debugfs = -1;
11090
11091 if (has_debugfs < 0)
11092 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11093
11094 return has_debugfs == 1;
11095 }
11096
tracefs_path(void)11097 static const char *tracefs_path(void)
11098 {
11099 return use_debugfs() ? DEBUGFS : TRACEFS;
11100 }
11101
tracefs_kprobe_events(void)11102 static const char *tracefs_kprobe_events(void)
11103 {
11104 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11105 }
11106
tracefs_uprobe_events(void)11107 static const char *tracefs_uprobe_events(void)
11108 {
11109 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11110 }
11111
tracefs_available_filter_functions(void)11112 static const char *tracefs_available_filter_functions(void)
11113 {
11114 return use_debugfs() ? DEBUGFS"/available_filter_functions"
11115 : TRACEFS"/available_filter_functions";
11116 }
11117
tracefs_available_filter_functions_addrs(void)11118 static const char *tracefs_available_filter_functions_addrs(void)
11119 {
11120 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11121 : TRACEFS"/available_filter_functions_addrs";
11122 }
11123
gen_kprobe_legacy_event_name(char * buf,size_t buf_sz,const char * kfunc_name,size_t offset)11124 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
11125 const char *kfunc_name, size_t offset)
11126 {
11127 static int index = 0;
11128 int i;
11129
11130 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
11131 __sync_fetch_and_add(&index, 1));
11132
11133 /* sanitize binary_path in the probe name */
11134 for (i = 0; buf[i]; i++) {
11135 if (!isalnum(buf[i]))
11136 buf[i] = '_';
11137 }
11138 }
11139
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11140 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11141 const char *kfunc_name, size_t offset)
11142 {
11143 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11144 retprobe ? 'r' : 'p',
11145 retprobe ? "kretprobes" : "kprobes",
11146 probe_name, kfunc_name, offset);
11147 }
11148
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11149 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11150 {
11151 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11152 retprobe ? "kretprobes" : "kprobes", probe_name);
11153 }
11154
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11155 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11156 {
11157 char file[256];
11158
11159 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11160 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11161
11162 return parse_uint_from_file(file, "%d\n");
11163 }
11164
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11165 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11166 const char *kfunc_name, size_t offset, int pid)
11167 {
11168 const size_t attr_sz = sizeof(struct perf_event_attr);
11169 struct perf_event_attr attr;
11170 int type, pfd, err;
11171
11172 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11173 if (err < 0) {
11174 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11175 kfunc_name, offset,
11176 errstr(err));
11177 return err;
11178 }
11179 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11180 if (type < 0) {
11181 err = type;
11182 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11183 kfunc_name, offset,
11184 errstr(err));
11185 goto err_clean_legacy;
11186 }
11187
11188 memset(&attr, 0, attr_sz);
11189 attr.size = attr_sz;
11190 attr.config = type;
11191 attr.type = PERF_TYPE_TRACEPOINT;
11192
11193 pfd = syscall(__NR_perf_event_open, &attr,
11194 pid < 0 ? -1 : pid, /* pid */
11195 pid == -1 ? 0 : -1, /* cpu */
11196 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11197 if (pfd < 0) {
11198 err = -errno;
11199 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11200 errstr(err));
11201 goto err_clean_legacy;
11202 }
11203 return pfd;
11204
11205 err_clean_legacy:
11206 /* Clear the newly added legacy kprobe_event */
11207 remove_kprobe_event_legacy(probe_name, retprobe);
11208 return err;
11209 }
11210
arch_specific_syscall_pfx(void)11211 static const char *arch_specific_syscall_pfx(void)
11212 {
11213 #if defined(__x86_64__)
11214 return "x64";
11215 #elif defined(__i386__)
11216 return "ia32";
11217 #elif defined(__s390x__)
11218 return "s390x";
11219 #elif defined(__s390__)
11220 return "s390";
11221 #elif defined(__arm__)
11222 return "arm";
11223 #elif defined(__aarch64__)
11224 return "arm64";
11225 #elif defined(__mips__)
11226 return "mips";
11227 #elif defined(__riscv)
11228 return "riscv";
11229 #elif defined(__powerpc__)
11230 return "powerpc";
11231 #elif defined(__powerpc64__)
11232 return "powerpc64";
11233 #else
11234 return NULL;
11235 #endif
11236 }
11237
probe_kern_syscall_wrapper(int token_fd)11238 int probe_kern_syscall_wrapper(int token_fd)
11239 {
11240 char syscall_name[64];
11241 const char *ksys_pfx;
11242
11243 ksys_pfx = arch_specific_syscall_pfx();
11244 if (!ksys_pfx)
11245 return 0;
11246
11247 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11248
11249 if (determine_kprobe_perf_type() >= 0) {
11250 int pfd;
11251
11252 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11253 if (pfd >= 0)
11254 close(pfd);
11255
11256 return pfd >= 0 ? 1 : 0;
11257 } else { /* legacy mode */
11258 char probe_name[128];
11259
11260 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11261 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11262 return 0;
11263
11264 (void)remove_kprobe_event_legacy(probe_name, false);
11265 return 1;
11266 }
11267 }
11268
11269 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11270 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11271 const char *func_name,
11272 const struct bpf_kprobe_opts *opts)
11273 {
11274 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11275 enum probe_attach_mode attach_mode;
11276 char *legacy_probe = NULL;
11277 struct bpf_link *link;
11278 size_t offset;
11279 bool retprobe, legacy;
11280 int pfd, err;
11281
11282 if (!OPTS_VALID(opts, bpf_kprobe_opts))
11283 return libbpf_err_ptr(-EINVAL);
11284
11285 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11286 retprobe = OPTS_GET(opts, retprobe, false);
11287 offset = OPTS_GET(opts, offset, 0);
11288 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11289
11290 legacy = determine_kprobe_perf_type() < 0;
11291 switch (attach_mode) {
11292 case PROBE_ATTACH_MODE_LEGACY:
11293 legacy = true;
11294 pe_opts.force_ioctl_attach = true;
11295 break;
11296 case PROBE_ATTACH_MODE_PERF:
11297 if (legacy)
11298 return libbpf_err_ptr(-ENOTSUP);
11299 pe_opts.force_ioctl_attach = true;
11300 break;
11301 case PROBE_ATTACH_MODE_LINK:
11302 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11303 return libbpf_err_ptr(-ENOTSUP);
11304 break;
11305 case PROBE_ATTACH_MODE_DEFAULT:
11306 break;
11307 default:
11308 return libbpf_err_ptr(-EINVAL);
11309 }
11310
11311 if (!legacy) {
11312 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11313 func_name, offset,
11314 -1 /* pid */, 0 /* ref_ctr_off */);
11315 } else {
11316 char probe_name[256];
11317
11318 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11319 func_name, offset);
11320
11321 legacy_probe = strdup(probe_name);
11322 if (!legacy_probe)
11323 return libbpf_err_ptr(-ENOMEM);
11324
11325 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11326 offset, -1 /* pid */);
11327 }
11328 if (pfd < 0) {
11329 err = -errno;
11330 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11331 prog->name, retprobe ? "kretprobe" : "kprobe",
11332 func_name, offset,
11333 errstr(err));
11334 goto err_out;
11335 }
11336 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11337 err = libbpf_get_error(link);
11338 if (err) {
11339 close(pfd);
11340 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11341 prog->name, retprobe ? "kretprobe" : "kprobe",
11342 func_name, offset,
11343 errstr(err));
11344 goto err_clean_legacy;
11345 }
11346 if (legacy) {
11347 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11348
11349 perf_link->legacy_probe_name = legacy_probe;
11350 perf_link->legacy_is_kprobe = true;
11351 perf_link->legacy_is_retprobe = retprobe;
11352 }
11353
11354 return link;
11355
11356 err_clean_legacy:
11357 if (legacy)
11358 remove_kprobe_event_legacy(legacy_probe, retprobe);
11359 err_out:
11360 free(legacy_probe);
11361 return libbpf_err_ptr(err);
11362 }
11363
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11364 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11365 bool retprobe,
11366 const char *func_name)
11367 {
11368 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11369 .retprobe = retprobe,
11370 );
11371
11372 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11373 }
11374
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11375 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11376 const char *syscall_name,
11377 const struct bpf_ksyscall_opts *opts)
11378 {
11379 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11380 char func_name[128];
11381
11382 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11383 return libbpf_err_ptr(-EINVAL);
11384
11385 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11386 /* arch_specific_syscall_pfx() should never return NULL here
11387 * because it is guarded by kernel_supports(). However, since
11388 * compiler does not know that we have an explicit conditional
11389 * as well.
11390 */
11391 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11392 arch_specific_syscall_pfx() ? : "", syscall_name);
11393 } else {
11394 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11395 }
11396
11397 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11398 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11399
11400 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11401 }
11402
11403 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11404 bool glob_match(const char *str, const char *pat)
11405 {
11406 while (*str && *pat && *pat != '*') {
11407 if (*pat == '?') { /* Matches any single character */
11408 str++;
11409 pat++;
11410 continue;
11411 }
11412 if (*str != *pat)
11413 return false;
11414 str++;
11415 pat++;
11416 }
11417 /* Check wild card */
11418 if (*pat == '*') {
11419 while (*pat == '*')
11420 pat++;
11421 if (!*pat) /* Tail wild card matches all */
11422 return true;
11423 while (*str)
11424 if (glob_match(str++, pat))
11425 return true;
11426 }
11427 return !*str && !*pat;
11428 }
11429
11430 struct kprobe_multi_resolve {
11431 const char *pattern;
11432 unsigned long *addrs;
11433 size_t cap;
11434 size_t cnt;
11435 };
11436
11437 struct avail_kallsyms_data {
11438 char **syms;
11439 size_t cnt;
11440 struct kprobe_multi_resolve *res;
11441 };
11442
avail_func_cmp(const void * a,const void * b)11443 static int avail_func_cmp(const void *a, const void *b)
11444 {
11445 return strcmp(*(const char **)a, *(const char **)b);
11446 }
11447
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11448 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11449 const char *sym_name, void *ctx)
11450 {
11451 struct avail_kallsyms_data *data = ctx;
11452 struct kprobe_multi_resolve *res = data->res;
11453 int err;
11454
11455 if (!glob_match(sym_name, res->pattern))
11456 return 0;
11457
11458 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11459 /* Some versions of kernel strip out .llvm.<hash> suffix from
11460 * function names reported in available_filter_functions, but
11461 * don't do so for kallsyms. While this is clearly a kernel
11462 * bug (fixed by [0]) we try to accommodate that in libbpf to
11463 * make multi-kprobe usability a bit better: if no match is
11464 * found, we will strip .llvm. suffix and try one more time.
11465 *
11466 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11467 */
11468 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11469
11470 if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11471 return 0;
11472
11473 /* psym_trim vs sym_trim dance is done to avoid pointer vs array
11474 * coercion differences and get proper `const char **` pointer
11475 * which avail_func_cmp() expects
11476 */
11477 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11478 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11479 return 0;
11480 }
11481
11482 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11483 if (err)
11484 return err;
11485
11486 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11487 return 0;
11488 }
11489
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11490 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11491 {
11492 const char *available_functions_file = tracefs_available_filter_functions();
11493 struct avail_kallsyms_data data;
11494 char sym_name[500];
11495 FILE *f;
11496 int err = 0, ret, i;
11497 char **syms = NULL;
11498 size_t cap = 0, cnt = 0;
11499
11500 f = fopen(available_functions_file, "re");
11501 if (!f) {
11502 err = -errno;
11503 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11504 return err;
11505 }
11506
11507 while (true) {
11508 char *name;
11509
11510 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11511 if (ret == EOF && feof(f))
11512 break;
11513
11514 if (ret != 1) {
11515 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11516 err = -EINVAL;
11517 goto cleanup;
11518 }
11519
11520 if (!glob_match(sym_name, res->pattern))
11521 continue;
11522
11523 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11524 if (err)
11525 goto cleanup;
11526
11527 name = strdup(sym_name);
11528 if (!name) {
11529 err = -errno;
11530 goto cleanup;
11531 }
11532
11533 syms[cnt++] = name;
11534 }
11535
11536 /* no entries found, bail out */
11537 if (cnt == 0) {
11538 err = -ENOENT;
11539 goto cleanup;
11540 }
11541
11542 /* sort available functions */
11543 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11544
11545 data.syms = syms;
11546 data.res = res;
11547 data.cnt = cnt;
11548 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11549
11550 if (res->cnt == 0)
11551 err = -ENOENT;
11552
11553 cleanup:
11554 for (i = 0; i < cnt; i++)
11555 free((char *)syms[i]);
11556 free(syms);
11557
11558 fclose(f);
11559 return err;
11560 }
11561
has_available_filter_functions_addrs(void)11562 static bool has_available_filter_functions_addrs(void)
11563 {
11564 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11565 }
11566
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11567 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11568 {
11569 const char *available_path = tracefs_available_filter_functions_addrs();
11570 char sym_name[500];
11571 FILE *f;
11572 int ret, err = 0;
11573 unsigned long long sym_addr;
11574
11575 f = fopen(available_path, "re");
11576 if (!f) {
11577 err = -errno;
11578 pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11579 return err;
11580 }
11581
11582 while (true) {
11583 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11584 if (ret == EOF && feof(f))
11585 break;
11586
11587 if (ret != 2) {
11588 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11589 ret);
11590 err = -EINVAL;
11591 goto cleanup;
11592 }
11593
11594 if (!glob_match(sym_name, res->pattern))
11595 continue;
11596
11597 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11598 sizeof(*res->addrs), res->cnt + 1);
11599 if (err)
11600 goto cleanup;
11601
11602 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11603 }
11604
11605 if (res->cnt == 0)
11606 err = -ENOENT;
11607
11608 cleanup:
11609 fclose(f);
11610 return err;
11611 }
11612
11613 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11614 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11615 const char *pattern,
11616 const struct bpf_kprobe_multi_opts *opts)
11617 {
11618 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11619 struct kprobe_multi_resolve res = {
11620 .pattern = pattern,
11621 };
11622 enum bpf_attach_type attach_type;
11623 struct bpf_link *link = NULL;
11624 const unsigned long *addrs;
11625 int err, link_fd, prog_fd;
11626 bool retprobe, session, unique_match;
11627 const __u64 *cookies;
11628 const char **syms;
11629 size_t cnt;
11630
11631 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11632 return libbpf_err_ptr(-EINVAL);
11633
11634 prog_fd = bpf_program__fd(prog);
11635 if (prog_fd < 0) {
11636 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11637 prog->name);
11638 return libbpf_err_ptr(-EINVAL);
11639 }
11640
11641 syms = OPTS_GET(opts, syms, false);
11642 addrs = OPTS_GET(opts, addrs, false);
11643 cnt = OPTS_GET(opts, cnt, false);
11644 cookies = OPTS_GET(opts, cookies, false);
11645 unique_match = OPTS_GET(opts, unique_match, false);
11646
11647 if (!pattern && !addrs && !syms)
11648 return libbpf_err_ptr(-EINVAL);
11649 if (pattern && (addrs || syms || cookies || cnt))
11650 return libbpf_err_ptr(-EINVAL);
11651 if (!pattern && !cnt)
11652 return libbpf_err_ptr(-EINVAL);
11653 if (!pattern && unique_match)
11654 return libbpf_err_ptr(-EINVAL);
11655 if (addrs && syms)
11656 return libbpf_err_ptr(-EINVAL);
11657
11658 if (pattern) {
11659 if (has_available_filter_functions_addrs())
11660 err = libbpf_available_kprobes_parse(&res);
11661 else
11662 err = libbpf_available_kallsyms_parse(&res);
11663 if (err)
11664 goto error;
11665
11666 if (unique_match && res.cnt != 1) {
11667 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
11668 prog->name, pattern, res.cnt);
11669 err = -EINVAL;
11670 goto error;
11671 }
11672
11673 addrs = res.addrs;
11674 cnt = res.cnt;
11675 }
11676
11677 retprobe = OPTS_GET(opts, retprobe, false);
11678 session = OPTS_GET(opts, session, false);
11679
11680 if (retprobe && session)
11681 return libbpf_err_ptr(-EINVAL);
11682
11683 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11684
11685 lopts.kprobe_multi.syms = syms;
11686 lopts.kprobe_multi.addrs = addrs;
11687 lopts.kprobe_multi.cookies = cookies;
11688 lopts.kprobe_multi.cnt = cnt;
11689 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11690
11691 link = calloc(1, sizeof(*link));
11692 if (!link) {
11693 err = -ENOMEM;
11694 goto error;
11695 }
11696 link->detach = &bpf_link__detach_fd;
11697
11698 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11699 if (link_fd < 0) {
11700 err = -errno;
11701 pr_warn("prog '%s': failed to attach: %s\n",
11702 prog->name, errstr(err));
11703 goto error;
11704 }
11705 link->fd = link_fd;
11706 free(res.addrs);
11707 return link;
11708
11709 error:
11710 free(link);
11711 free(res.addrs);
11712 return libbpf_err_ptr(err);
11713 }
11714
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11715 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11716 {
11717 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11718 unsigned long offset = 0;
11719 const char *func_name;
11720 char *func;
11721 int n;
11722
11723 *link = NULL;
11724
11725 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11726 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11727 return 0;
11728
11729 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11730 if (opts.retprobe)
11731 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11732 else
11733 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11734
11735 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11736 if (n < 1) {
11737 pr_warn("kprobe name is invalid: %s\n", func_name);
11738 return -EINVAL;
11739 }
11740 if (opts.retprobe && offset != 0) {
11741 free(func);
11742 pr_warn("kretprobes do not support offset specification\n");
11743 return -EINVAL;
11744 }
11745
11746 opts.offset = offset;
11747 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11748 free(func);
11749 return libbpf_get_error(*link);
11750 }
11751
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11752 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11753 {
11754 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11755 const char *syscall_name;
11756
11757 *link = NULL;
11758
11759 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11760 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11761 return 0;
11762
11763 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11764 if (opts.retprobe)
11765 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11766 else
11767 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11768
11769 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11770 return *link ? 0 : -errno;
11771 }
11772
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11773 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11774 {
11775 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11776 const char *spec;
11777 char *pattern;
11778 int n;
11779
11780 *link = NULL;
11781
11782 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11783 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11784 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11785 return 0;
11786
11787 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11788 if (opts.retprobe)
11789 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11790 else
11791 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11792
11793 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11794 if (n < 1) {
11795 pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11796 return -EINVAL;
11797 }
11798
11799 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11800 free(pattern);
11801 return libbpf_get_error(*link);
11802 }
11803
attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11804 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11805 struct bpf_link **link)
11806 {
11807 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11808 const char *spec;
11809 char *pattern;
11810 int n;
11811
11812 *link = NULL;
11813
11814 /* no auto-attach for SEC("kprobe.session") */
11815 if (strcmp(prog->sec_name, "kprobe.session") == 0)
11816 return 0;
11817
11818 spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11819 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11820 if (n < 1) {
11821 pr_warn("kprobe session pattern is invalid: %s\n", spec);
11822 return -EINVAL;
11823 }
11824
11825 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11826 free(pattern);
11827 return *link ? 0 : -errno;
11828 }
11829
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11830 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11831 {
11832 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11833 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11834 int n, ret = -EINVAL;
11835
11836 *link = NULL;
11837
11838 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11839 &probe_type, &binary_path, &func_name);
11840 switch (n) {
11841 case 1:
11842 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11843 ret = 0;
11844 break;
11845 case 3:
11846 opts.session = str_has_pfx(probe_type, "uprobe.session");
11847 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11848
11849 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11850 ret = libbpf_get_error(*link);
11851 break;
11852 default:
11853 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11854 prog->sec_name);
11855 break;
11856 }
11857 free(probe_type);
11858 free(binary_path);
11859 free(func_name);
11860 return ret;
11861 }
11862
gen_uprobe_legacy_event_name(char * buf,size_t buf_sz,const char * binary_path,uint64_t offset)11863 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11864 const char *binary_path, uint64_t offset)
11865 {
11866 int i;
11867
11868 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11869
11870 /* sanitize binary_path in the probe name */
11871 for (i = 0; buf[i]; i++) {
11872 if (!isalnum(buf[i]))
11873 buf[i] = '_';
11874 }
11875 }
11876
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11877 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11878 const char *binary_path, size_t offset)
11879 {
11880 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11881 retprobe ? 'r' : 'p',
11882 retprobe ? "uretprobes" : "uprobes",
11883 probe_name, binary_path, offset);
11884 }
11885
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11886 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11887 {
11888 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11889 retprobe ? "uretprobes" : "uprobes", probe_name);
11890 }
11891
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11892 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11893 {
11894 char file[512];
11895
11896 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11897 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11898
11899 return parse_uint_from_file(file, "%d\n");
11900 }
11901
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11902 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11903 const char *binary_path, size_t offset, int pid)
11904 {
11905 const size_t attr_sz = sizeof(struct perf_event_attr);
11906 struct perf_event_attr attr;
11907 int type, pfd, err;
11908
11909 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11910 if (err < 0) {
11911 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
11912 binary_path, (size_t)offset, errstr(err));
11913 return err;
11914 }
11915 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11916 if (type < 0) {
11917 err = type;
11918 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
11919 binary_path, offset, errstr(err));
11920 goto err_clean_legacy;
11921 }
11922
11923 memset(&attr, 0, attr_sz);
11924 attr.size = attr_sz;
11925 attr.config = type;
11926 attr.type = PERF_TYPE_TRACEPOINT;
11927
11928 pfd = syscall(__NR_perf_event_open, &attr,
11929 pid < 0 ? -1 : pid, /* pid */
11930 pid == -1 ? 0 : -1, /* cpu */
11931 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11932 if (pfd < 0) {
11933 err = -errno;
11934 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
11935 goto err_clean_legacy;
11936 }
11937 return pfd;
11938
11939 err_clean_legacy:
11940 /* Clear the newly added legacy uprobe_event */
11941 remove_uprobe_event_legacy(probe_name, retprobe);
11942 return err;
11943 }
11944
11945 /* Find offset of function name in archive specified by path. Currently
11946 * supported are .zip files that do not compress their contents, as used on
11947 * Android in the form of APKs, for example. "file_name" is the name of the ELF
11948 * file inside the archive. "func_name" matches symbol name or name@@LIB for
11949 * library functions.
11950 *
11951 * An overview of the APK format specifically provided here:
11952 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11953 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)11954 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11955 const char *func_name)
11956 {
11957 struct zip_archive *archive;
11958 struct zip_entry entry;
11959 long ret;
11960 Elf *elf;
11961
11962 archive = zip_archive_open(archive_path);
11963 if (IS_ERR(archive)) {
11964 ret = PTR_ERR(archive);
11965 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11966 return ret;
11967 }
11968
11969 ret = zip_archive_find_entry(archive, file_name, &entry);
11970 if (ret) {
11971 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11972 archive_path, ret);
11973 goto out;
11974 }
11975 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11976 (unsigned long)entry.data_offset);
11977
11978 if (entry.compression) {
11979 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11980 archive_path);
11981 ret = -LIBBPF_ERRNO__FORMAT;
11982 goto out;
11983 }
11984
11985 elf = elf_memory((void *)entry.data, entry.data_length);
11986 if (!elf) {
11987 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11988 elf_errmsg(-1));
11989 ret = -LIBBPF_ERRNO__LIBELF;
11990 goto out;
11991 }
11992
11993 ret = elf_find_func_offset(elf, file_name, func_name);
11994 if (ret > 0) {
11995 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11996 func_name, file_name, archive_path, entry.data_offset, ret,
11997 ret + entry.data_offset);
11998 ret += entry.data_offset;
11999 }
12000 elf_end(elf);
12001
12002 out:
12003 zip_archive_close(archive);
12004 return ret;
12005 }
12006
arch_specific_lib_paths(void)12007 static const char *arch_specific_lib_paths(void)
12008 {
12009 /*
12010 * Based on https://packages.debian.org/sid/libc6.
12011 *
12012 * Assume that the traced program is built for the same architecture
12013 * as libbpf, which should cover the vast majority of cases.
12014 */
12015 #if defined(__x86_64__)
12016 return "/lib/x86_64-linux-gnu";
12017 #elif defined(__i386__)
12018 return "/lib/i386-linux-gnu";
12019 #elif defined(__s390x__)
12020 return "/lib/s390x-linux-gnu";
12021 #elif defined(__s390__)
12022 return "/lib/s390-linux-gnu";
12023 #elif defined(__arm__) && defined(__SOFTFP__)
12024 return "/lib/arm-linux-gnueabi";
12025 #elif defined(__arm__) && !defined(__SOFTFP__)
12026 return "/lib/arm-linux-gnueabihf";
12027 #elif defined(__aarch64__)
12028 return "/lib/aarch64-linux-gnu";
12029 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12030 return "/lib/mips64el-linux-gnuabi64";
12031 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12032 return "/lib/mipsel-linux-gnu";
12033 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12034 return "/lib/powerpc64le-linux-gnu";
12035 #elif defined(__sparc__) && defined(__arch64__)
12036 return "/lib/sparc64-linux-gnu";
12037 #elif defined(__riscv) && __riscv_xlen == 64
12038 return "/lib/riscv64-linux-gnu";
12039 #else
12040 return NULL;
12041 #endif
12042 }
12043
12044 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)12045 static int resolve_full_path(const char *file, char *result, size_t result_sz)
12046 {
12047 const char *search_paths[3] = {};
12048 int i, perm;
12049
12050 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12051 search_paths[0] = getenv("LD_LIBRARY_PATH");
12052 search_paths[1] = "/usr/lib64:/usr/lib";
12053 search_paths[2] = arch_specific_lib_paths();
12054 perm = R_OK;
12055 } else {
12056 search_paths[0] = getenv("PATH");
12057 search_paths[1] = "/usr/bin:/usr/sbin";
12058 perm = R_OK | X_OK;
12059 }
12060
12061 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12062 const char *s;
12063
12064 if (!search_paths[i])
12065 continue;
12066 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12067 char *next_path;
12068 int seg_len;
12069
12070 if (s[0] == ':')
12071 s++;
12072 next_path = strchr(s, ':');
12073 seg_len = next_path ? next_path - s : strlen(s);
12074 if (!seg_len)
12075 continue;
12076 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12077 /* ensure it has required permissions */
12078 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12079 continue;
12080 pr_debug("resolved '%s' to '%s'\n", file, result);
12081 return 0;
12082 }
12083 }
12084 return -ENOENT;
12085 }
12086
12087 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)12088 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12089 pid_t pid,
12090 const char *path,
12091 const char *func_pattern,
12092 const struct bpf_uprobe_multi_opts *opts)
12093 {
12094 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12095 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12096 unsigned long *resolved_offsets = NULL;
12097 enum bpf_attach_type attach_type;
12098 int err = 0, link_fd, prog_fd;
12099 struct bpf_link *link = NULL;
12100 char full_path[PATH_MAX];
12101 bool retprobe, session;
12102 const __u64 *cookies;
12103 const char **syms;
12104 size_t cnt;
12105
12106 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12107 return libbpf_err_ptr(-EINVAL);
12108
12109 prog_fd = bpf_program__fd(prog);
12110 if (prog_fd < 0) {
12111 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12112 prog->name);
12113 return libbpf_err_ptr(-EINVAL);
12114 }
12115
12116 syms = OPTS_GET(opts, syms, NULL);
12117 offsets = OPTS_GET(opts, offsets, NULL);
12118 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12119 cookies = OPTS_GET(opts, cookies, NULL);
12120 cnt = OPTS_GET(opts, cnt, 0);
12121 retprobe = OPTS_GET(opts, retprobe, false);
12122 session = OPTS_GET(opts, session, false);
12123
12124 /*
12125 * User can specify 2 mutually exclusive set of inputs:
12126 *
12127 * 1) use only path/func_pattern/pid arguments
12128 *
12129 * 2) use path/pid with allowed combinations of:
12130 * syms/offsets/ref_ctr_offsets/cookies/cnt
12131 *
12132 * - syms and offsets are mutually exclusive
12133 * - ref_ctr_offsets and cookies are optional
12134 *
12135 * Any other usage results in error.
12136 */
12137
12138 if (!path)
12139 return libbpf_err_ptr(-EINVAL);
12140 if (!func_pattern && cnt == 0)
12141 return libbpf_err_ptr(-EINVAL);
12142
12143 if (func_pattern) {
12144 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12145 return libbpf_err_ptr(-EINVAL);
12146 } else {
12147 if (!!syms == !!offsets)
12148 return libbpf_err_ptr(-EINVAL);
12149 }
12150
12151 if (retprobe && session)
12152 return libbpf_err_ptr(-EINVAL);
12153
12154 if (func_pattern) {
12155 if (!strchr(path, '/')) {
12156 err = resolve_full_path(path, full_path, sizeof(full_path));
12157 if (err) {
12158 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12159 prog->name, path, errstr(err));
12160 return libbpf_err_ptr(err);
12161 }
12162 path = full_path;
12163 }
12164
12165 err = elf_resolve_pattern_offsets(path, func_pattern,
12166 &resolved_offsets, &cnt);
12167 if (err < 0)
12168 return libbpf_err_ptr(err);
12169 offsets = resolved_offsets;
12170 } else if (syms) {
12171 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12172 if (err < 0)
12173 return libbpf_err_ptr(err);
12174 offsets = resolved_offsets;
12175 }
12176
12177 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12178
12179 lopts.uprobe_multi.path = path;
12180 lopts.uprobe_multi.offsets = offsets;
12181 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12182 lopts.uprobe_multi.cookies = cookies;
12183 lopts.uprobe_multi.cnt = cnt;
12184 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12185
12186 if (pid == 0)
12187 pid = getpid();
12188 if (pid > 0)
12189 lopts.uprobe_multi.pid = pid;
12190
12191 link = calloc(1, sizeof(*link));
12192 if (!link) {
12193 err = -ENOMEM;
12194 goto error;
12195 }
12196 link->detach = &bpf_link__detach_fd;
12197
12198 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12199 if (link_fd < 0) {
12200 err = -errno;
12201 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12202 prog->name, errstr(err));
12203 goto error;
12204 }
12205 link->fd = link_fd;
12206 free(resolved_offsets);
12207 return link;
12208
12209 error:
12210 free(resolved_offsets);
12211 free(link);
12212 return libbpf_err_ptr(err);
12213 }
12214
12215 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12216 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12217 const char *binary_path, size_t func_offset,
12218 const struct bpf_uprobe_opts *opts)
12219 {
12220 const char *archive_path = NULL, *archive_sep = NULL;
12221 char *legacy_probe = NULL;
12222 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12223 enum probe_attach_mode attach_mode;
12224 char full_path[PATH_MAX];
12225 struct bpf_link *link;
12226 size_t ref_ctr_off;
12227 int pfd, err;
12228 bool retprobe, legacy;
12229 const char *func_name;
12230
12231 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12232 return libbpf_err_ptr(-EINVAL);
12233
12234 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12235 retprobe = OPTS_GET(opts, retprobe, false);
12236 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12237 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12238
12239 if (!binary_path)
12240 return libbpf_err_ptr(-EINVAL);
12241
12242 /* Check if "binary_path" refers to an archive. */
12243 archive_sep = strstr(binary_path, "!/");
12244 if (archive_sep) {
12245 full_path[0] = '\0';
12246 libbpf_strlcpy(full_path, binary_path,
12247 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12248 archive_path = full_path;
12249 binary_path = archive_sep + 2;
12250 } else if (!strchr(binary_path, '/')) {
12251 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12252 if (err) {
12253 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12254 prog->name, binary_path, errstr(err));
12255 return libbpf_err_ptr(err);
12256 }
12257 binary_path = full_path;
12258 }
12259 func_name = OPTS_GET(opts, func_name, NULL);
12260 if (func_name) {
12261 long sym_off;
12262
12263 if (archive_path) {
12264 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12265 func_name);
12266 binary_path = archive_path;
12267 } else {
12268 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12269 }
12270 if (sym_off < 0)
12271 return libbpf_err_ptr(sym_off);
12272 func_offset += sym_off;
12273 }
12274
12275 legacy = determine_uprobe_perf_type() < 0;
12276 switch (attach_mode) {
12277 case PROBE_ATTACH_MODE_LEGACY:
12278 legacy = true;
12279 pe_opts.force_ioctl_attach = true;
12280 break;
12281 case PROBE_ATTACH_MODE_PERF:
12282 if (legacy)
12283 return libbpf_err_ptr(-ENOTSUP);
12284 pe_opts.force_ioctl_attach = true;
12285 break;
12286 case PROBE_ATTACH_MODE_LINK:
12287 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12288 return libbpf_err_ptr(-ENOTSUP);
12289 break;
12290 case PROBE_ATTACH_MODE_DEFAULT:
12291 break;
12292 default:
12293 return libbpf_err_ptr(-EINVAL);
12294 }
12295
12296 if (!legacy) {
12297 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12298 func_offset, pid, ref_ctr_off);
12299 } else {
12300 char probe_name[PATH_MAX + 64];
12301
12302 if (ref_ctr_off)
12303 return libbpf_err_ptr(-EINVAL);
12304
12305 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
12306 binary_path, func_offset);
12307
12308 legacy_probe = strdup(probe_name);
12309 if (!legacy_probe)
12310 return libbpf_err_ptr(-ENOMEM);
12311
12312 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12313 binary_path, func_offset, pid);
12314 }
12315 if (pfd < 0) {
12316 err = -errno;
12317 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12318 prog->name, retprobe ? "uretprobe" : "uprobe",
12319 binary_path, func_offset,
12320 errstr(err));
12321 goto err_out;
12322 }
12323
12324 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12325 err = libbpf_get_error(link);
12326 if (err) {
12327 close(pfd);
12328 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12329 prog->name, retprobe ? "uretprobe" : "uprobe",
12330 binary_path, func_offset,
12331 errstr(err));
12332 goto err_clean_legacy;
12333 }
12334 if (legacy) {
12335 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12336
12337 perf_link->legacy_probe_name = legacy_probe;
12338 perf_link->legacy_is_kprobe = false;
12339 perf_link->legacy_is_retprobe = retprobe;
12340 }
12341 return link;
12342
12343 err_clean_legacy:
12344 if (legacy)
12345 remove_uprobe_event_legacy(legacy_probe, retprobe);
12346 err_out:
12347 free(legacy_probe);
12348 return libbpf_err_ptr(err);
12349 }
12350
12351 /* Format of u[ret]probe section definition supporting auto-attach:
12352 * u[ret]probe/binary:function[+offset]
12353 *
12354 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12355 * full binary path via bpf_program__attach_uprobe_opts.
12356 *
12357 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12358 * specified (and auto-attach is not possible) or the above format is specified for
12359 * auto-attach.
12360 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12361 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12362 {
12363 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12364 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12365 int n, c, ret = -EINVAL;
12366 long offset = 0;
12367
12368 *link = NULL;
12369
12370 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12371 &probe_type, &binary_path, &func_name);
12372 switch (n) {
12373 case 1:
12374 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12375 ret = 0;
12376 break;
12377 case 2:
12378 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12379 prog->name, prog->sec_name);
12380 break;
12381 case 3:
12382 /* check if user specifies `+offset`, if yes, this should be
12383 * the last part of the string, make sure sscanf read to EOL
12384 */
12385 func_off = strrchr(func_name, '+');
12386 if (func_off) {
12387 n = sscanf(func_off, "+%li%n", &offset, &c);
12388 if (n == 1 && *(func_off + c) == '\0')
12389 func_off[0] = '\0';
12390 else
12391 offset = 0;
12392 }
12393 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12394 strcmp(probe_type, "uretprobe.s") == 0;
12395 if (opts.retprobe && offset != 0) {
12396 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12397 prog->name);
12398 break;
12399 }
12400 opts.func_name = func_name;
12401 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12402 ret = libbpf_get_error(*link);
12403 break;
12404 default:
12405 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12406 prog->sec_name);
12407 break;
12408 }
12409 free(probe_type);
12410 free(binary_path);
12411 free(func_name);
12412
12413 return ret;
12414 }
12415
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12416 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12417 bool retprobe, pid_t pid,
12418 const char *binary_path,
12419 size_t func_offset)
12420 {
12421 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12422
12423 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12424 }
12425
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12426 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12427 pid_t pid, const char *binary_path,
12428 const char *usdt_provider, const char *usdt_name,
12429 const struct bpf_usdt_opts *opts)
12430 {
12431 char resolved_path[512];
12432 struct bpf_object *obj = prog->obj;
12433 struct bpf_link *link;
12434 __u64 usdt_cookie;
12435 int err;
12436
12437 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12438 return libbpf_err_ptr(-EINVAL);
12439
12440 if (bpf_program__fd(prog) < 0) {
12441 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12442 prog->name);
12443 return libbpf_err_ptr(-EINVAL);
12444 }
12445
12446 if (!binary_path)
12447 return libbpf_err_ptr(-EINVAL);
12448
12449 if (!strchr(binary_path, '/')) {
12450 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12451 if (err) {
12452 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12453 prog->name, binary_path, errstr(err));
12454 return libbpf_err_ptr(err);
12455 }
12456 binary_path = resolved_path;
12457 }
12458
12459 /* USDT manager is instantiated lazily on first USDT attach. It will
12460 * be destroyed together with BPF object in bpf_object__close().
12461 */
12462 if (IS_ERR(obj->usdt_man))
12463 return libbpf_ptr(obj->usdt_man);
12464 if (!obj->usdt_man) {
12465 obj->usdt_man = usdt_manager_new(obj);
12466 if (IS_ERR(obj->usdt_man))
12467 return libbpf_ptr(obj->usdt_man);
12468 }
12469
12470 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12471 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12472 usdt_provider, usdt_name, usdt_cookie);
12473 err = libbpf_get_error(link);
12474 if (err)
12475 return libbpf_err_ptr(err);
12476 return link;
12477 }
12478
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12479 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12480 {
12481 char *path = NULL, *provider = NULL, *name = NULL;
12482 const char *sec_name;
12483 int n, err;
12484
12485 sec_name = bpf_program__section_name(prog);
12486 if (strcmp(sec_name, "usdt") == 0) {
12487 /* no auto-attach for just SEC("usdt") */
12488 *link = NULL;
12489 return 0;
12490 }
12491
12492 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12493 if (n != 3) {
12494 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12495 sec_name);
12496 err = -EINVAL;
12497 } else {
12498 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12499 provider, name, NULL);
12500 err = libbpf_get_error(*link);
12501 }
12502 free(path);
12503 free(provider);
12504 free(name);
12505 return err;
12506 }
12507
determine_tracepoint_id(const char * tp_category,const char * tp_name)12508 static int determine_tracepoint_id(const char *tp_category,
12509 const char *tp_name)
12510 {
12511 char file[PATH_MAX];
12512 int ret;
12513
12514 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12515 tracefs_path(), tp_category, tp_name);
12516 if (ret < 0)
12517 return -errno;
12518 if (ret >= sizeof(file)) {
12519 pr_debug("tracepoint %s/%s path is too long\n",
12520 tp_category, tp_name);
12521 return -E2BIG;
12522 }
12523 return parse_uint_from_file(file, "%d\n");
12524 }
12525
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12526 static int perf_event_open_tracepoint(const char *tp_category,
12527 const char *tp_name)
12528 {
12529 const size_t attr_sz = sizeof(struct perf_event_attr);
12530 struct perf_event_attr attr;
12531 int tp_id, pfd, err;
12532
12533 tp_id = determine_tracepoint_id(tp_category, tp_name);
12534 if (tp_id < 0) {
12535 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12536 tp_category, tp_name,
12537 errstr(tp_id));
12538 return tp_id;
12539 }
12540
12541 memset(&attr, 0, attr_sz);
12542 attr.type = PERF_TYPE_TRACEPOINT;
12543 attr.size = attr_sz;
12544 attr.config = tp_id;
12545
12546 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12547 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12548 if (pfd < 0) {
12549 err = -errno;
12550 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12551 tp_category, tp_name,
12552 errstr(err));
12553 return err;
12554 }
12555 return pfd;
12556 }
12557
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12558 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12559 const char *tp_category,
12560 const char *tp_name,
12561 const struct bpf_tracepoint_opts *opts)
12562 {
12563 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12564 struct bpf_link *link;
12565 int pfd, err;
12566
12567 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12568 return libbpf_err_ptr(-EINVAL);
12569
12570 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12571
12572 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12573 if (pfd < 0) {
12574 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12575 prog->name, tp_category, tp_name,
12576 errstr(pfd));
12577 return libbpf_err_ptr(pfd);
12578 }
12579 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12580 err = libbpf_get_error(link);
12581 if (err) {
12582 close(pfd);
12583 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12584 prog->name, tp_category, tp_name,
12585 errstr(err));
12586 return libbpf_err_ptr(err);
12587 }
12588 return link;
12589 }
12590
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12591 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12592 const char *tp_category,
12593 const char *tp_name)
12594 {
12595 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12596 }
12597
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12598 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12599 {
12600 char *sec_name, *tp_cat, *tp_name;
12601
12602 *link = NULL;
12603
12604 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12605 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12606 return 0;
12607
12608 sec_name = strdup(prog->sec_name);
12609 if (!sec_name)
12610 return -ENOMEM;
12611
12612 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12613 if (str_has_pfx(prog->sec_name, "tp/"))
12614 tp_cat = sec_name + sizeof("tp/") - 1;
12615 else
12616 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12617 tp_name = strchr(tp_cat, '/');
12618 if (!tp_name) {
12619 free(sec_name);
12620 return -EINVAL;
12621 }
12622 *tp_name = '\0';
12623 tp_name++;
12624
12625 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12626 free(sec_name);
12627 return libbpf_get_error(*link);
12628 }
12629
12630 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12631 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12632 const char *tp_name,
12633 struct bpf_raw_tracepoint_opts *opts)
12634 {
12635 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12636 struct bpf_link *link;
12637 int prog_fd, pfd;
12638
12639 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12640 return libbpf_err_ptr(-EINVAL);
12641
12642 prog_fd = bpf_program__fd(prog);
12643 if (prog_fd < 0) {
12644 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12645 return libbpf_err_ptr(-EINVAL);
12646 }
12647
12648 link = calloc(1, sizeof(*link));
12649 if (!link)
12650 return libbpf_err_ptr(-ENOMEM);
12651 link->detach = &bpf_link__detach_fd;
12652
12653 raw_opts.tp_name = tp_name;
12654 raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12655 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12656 if (pfd < 0) {
12657 pfd = -errno;
12658 free(link);
12659 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12660 prog->name, tp_name, errstr(pfd));
12661 return libbpf_err_ptr(pfd);
12662 }
12663 link->fd = pfd;
12664 return link;
12665 }
12666
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12667 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12668 const char *tp_name)
12669 {
12670 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12671 }
12672
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12673 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12674 {
12675 static const char *const prefixes[] = {
12676 "raw_tp",
12677 "raw_tracepoint",
12678 "raw_tp.w",
12679 "raw_tracepoint.w",
12680 };
12681 size_t i;
12682 const char *tp_name = NULL;
12683
12684 *link = NULL;
12685
12686 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12687 size_t pfx_len;
12688
12689 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12690 continue;
12691
12692 pfx_len = strlen(prefixes[i]);
12693 /* no auto-attach case of, e.g., SEC("raw_tp") */
12694 if (prog->sec_name[pfx_len] == '\0')
12695 return 0;
12696
12697 if (prog->sec_name[pfx_len] != '/')
12698 continue;
12699
12700 tp_name = prog->sec_name + pfx_len + 1;
12701 break;
12702 }
12703
12704 if (!tp_name) {
12705 pr_warn("prog '%s': invalid section name '%s'\n",
12706 prog->name, prog->sec_name);
12707 return -EINVAL;
12708 }
12709
12710 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12711 return libbpf_get_error(*link);
12712 }
12713
12714 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12715 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12716 const struct bpf_trace_opts *opts)
12717 {
12718 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12719 struct bpf_link *link;
12720 int prog_fd, pfd;
12721
12722 if (!OPTS_VALID(opts, bpf_trace_opts))
12723 return libbpf_err_ptr(-EINVAL);
12724
12725 prog_fd = bpf_program__fd(prog);
12726 if (prog_fd < 0) {
12727 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12728 return libbpf_err_ptr(-EINVAL);
12729 }
12730
12731 link = calloc(1, sizeof(*link));
12732 if (!link)
12733 return libbpf_err_ptr(-ENOMEM);
12734 link->detach = &bpf_link__detach_fd;
12735
12736 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12737 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12738 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12739 if (pfd < 0) {
12740 pfd = -errno;
12741 free(link);
12742 pr_warn("prog '%s': failed to attach: %s\n",
12743 prog->name, errstr(pfd));
12744 return libbpf_err_ptr(pfd);
12745 }
12746 link->fd = pfd;
12747 return link;
12748 }
12749
bpf_program__attach_trace(const struct bpf_program * prog)12750 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12751 {
12752 return bpf_program__attach_btf_id(prog, NULL);
12753 }
12754
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12755 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12756 const struct bpf_trace_opts *opts)
12757 {
12758 return bpf_program__attach_btf_id(prog, opts);
12759 }
12760
bpf_program__attach_lsm(const struct bpf_program * prog)12761 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12762 {
12763 return bpf_program__attach_btf_id(prog, NULL);
12764 }
12765
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12766 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12767 {
12768 *link = bpf_program__attach_trace(prog);
12769 return libbpf_get_error(*link);
12770 }
12771
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12772 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12773 {
12774 *link = bpf_program__attach_lsm(prog);
12775 return libbpf_get_error(*link);
12776 }
12777
12778 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12779 bpf_program_attach_fd(const struct bpf_program *prog,
12780 int target_fd, const char *target_name,
12781 const struct bpf_link_create_opts *opts)
12782 {
12783 enum bpf_attach_type attach_type;
12784 struct bpf_link *link;
12785 int prog_fd, link_fd;
12786
12787 prog_fd = bpf_program__fd(prog);
12788 if (prog_fd < 0) {
12789 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12790 return libbpf_err_ptr(-EINVAL);
12791 }
12792
12793 link = calloc(1, sizeof(*link));
12794 if (!link)
12795 return libbpf_err_ptr(-ENOMEM);
12796 link->detach = &bpf_link__detach_fd;
12797
12798 attach_type = bpf_program__expected_attach_type(prog);
12799 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12800 if (link_fd < 0) {
12801 link_fd = -errno;
12802 free(link);
12803 pr_warn("prog '%s': failed to attach to %s: %s\n",
12804 prog->name, target_name,
12805 errstr(link_fd));
12806 return libbpf_err_ptr(link_fd);
12807 }
12808 link->fd = link_fd;
12809 return link;
12810 }
12811
12812 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12813 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12814 {
12815 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12816 }
12817
12818 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12819 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12820 {
12821 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12822 }
12823
12824 struct bpf_link *
bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12825 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12826 {
12827 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12828 }
12829
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12830 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12831 {
12832 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12833 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12834 }
12835
12836 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12837 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12838 const struct bpf_tcx_opts *opts)
12839 {
12840 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12841 __u32 relative_id;
12842 int relative_fd;
12843
12844 if (!OPTS_VALID(opts, bpf_tcx_opts))
12845 return libbpf_err_ptr(-EINVAL);
12846
12847 relative_id = OPTS_GET(opts, relative_id, 0);
12848 relative_fd = OPTS_GET(opts, relative_fd, 0);
12849
12850 /* validate we don't have unexpected combinations of non-zero fields */
12851 if (!ifindex) {
12852 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12853 prog->name);
12854 return libbpf_err_ptr(-EINVAL);
12855 }
12856 if (relative_fd && relative_id) {
12857 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12858 prog->name);
12859 return libbpf_err_ptr(-EINVAL);
12860 }
12861
12862 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12863 link_create_opts.tcx.relative_fd = relative_fd;
12864 link_create_opts.tcx.relative_id = relative_id;
12865 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12866
12867 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12868 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12869 }
12870
12871 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12872 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12873 const struct bpf_netkit_opts *opts)
12874 {
12875 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12876 __u32 relative_id;
12877 int relative_fd;
12878
12879 if (!OPTS_VALID(opts, bpf_netkit_opts))
12880 return libbpf_err_ptr(-EINVAL);
12881
12882 relative_id = OPTS_GET(opts, relative_id, 0);
12883 relative_fd = OPTS_GET(opts, relative_fd, 0);
12884
12885 /* validate we don't have unexpected combinations of non-zero fields */
12886 if (!ifindex) {
12887 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12888 prog->name);
12889 return libbpf_err_ptr(-EINVAL);
12890 }
12891 if (relative_fd && relative_id) {
12892 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12893 prog->name);
12894 return libbpf_err_ptr(-EINVAL);
12895 }
12896
12897 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12898 link_create_opts.netkit.relative_fd = relative_fd;
12899 link_create_opts.netkit.relative_id = relative_id;
12900 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12901
12902 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12903 }
12904
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)12905 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12906 int target_fd,
12907 const char *attach_func_name)
12908 {
12909 int btf_id;
12910
12911 if (!!target_fd != !!attach_func_name) {
12912 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12913 prog->name);
12914 return libbpf_err_ptr(-EINVAL);
12915 }
12916
12917 if (prog->type != BPF_PROG_TYPE_EXT) {
12918 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
12919 prog->name);
12920 return libbpf_err_ptr(-EINVAL);
12921 }
12922
12923 if (target_fd) {
12924 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12925
12926 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
12927 if (btf_id < 0)
12928 return libbpf_err_ptr(btf_id);
12929
12930 target_opts.target_btf_id = btf_id;
12931
12932 return bpf_program_attach_fd(prog, target_fd, "freplace",
12933 &target_opts);
12934 } else {
12935 /* no target, so use raw_tracepoint_open for compatibility
12936 * with old kernels
12937 */
12938 return bpf_program__attach_trace(prog);
12939 }
12940 }
12941
12942 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)12943 bpf_program__attach_iter(const struct bpf_program *prog,
12944 const struct bpf_iter_attach_opts *opts)
12945 {
12946 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12947 struct bpf_link *link;
12948 int prog_fd, link_fd;
12949 __u32 target_fd = 0;
12950
12951 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12952 return libbpf_err_ptr(-EINVAL);
12953
12954 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12955 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12956
12957 prog_fd = bpf_program__fd(prog);
12958 if (prog_fd < 0) {
12959 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12960 return libbpf_err_ptr(-EINVAL);
12961 }
12962
12963 link = calloc(1, sizeof(*link));
12964 if (!link)
12965 return libbpf_err_ptr(-ENOMEM);
12966 link->detach = &bpf_link__detach_fd;
12967
12968 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12969 &link_create_opts);
12970 if (link_fd < 0) {
12971 link_fd = -errno;
12972 free(link);
12973 pr_warn("prog '%s': failed to attach to iterator: %s\n",
12974 prog->name, errstr(link_fd));
12975 return libbpf_err_ptr(link_fd);
12976 }
12977 link->fd = link_fd;
12978 return link;
12979 }
12980
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12981 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12982 {
12983 *link = bpf_program__attach_iter(prog, NULL);
12984 return libbpf_get_error(*link);
12985 }
12986
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)12987 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12988 const struct bpf_netfilter_opts *opts)
12989 {
12990 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12991 struct bpf_link *link;
12992 int prog_fd, link_fd;
12993
12994 if (!OPTS_VALID(opts, bpf_netfilter_opts))
12995 return libbpf_err_ptr(-EINVAL);
12996
12997 prog_fd = bpf_program__fd(prog);
12998 if (prog_fd < 0) {
12999 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13000 return libbpf_err_ptr(-EINVAL);
13001 }
13002
13003 link = calloc(1, sizeof(*link));
13004 if (!link)
13005 return libbpf_err_ptr(-ENOMEM);
13006
13007 link->detach = &bpf_link__detach_fd;
13008
13009 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13010 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13011 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13012 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13013
13014 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13015 if (link_fd < 0) {
13016 link_fd = -errno;
13017 free(link);
13018 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13019 prog->name, errstr(link_fd));
13020 return libbpf_err_ptr(link_fd);
13021 }
13022 link->fd = link_fd;
13023
13024 return link;
13025 }
13026
bpf_program__attach(const struct bpf_program * prog)13027 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13028 {
13029 struct bpf_link *link = NULL;
13030 int err;
13031
13032 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13033 return libbpf_err_ptr(-EOPNOTSUPP);
13034
13035 if (bpf_program__fd(prog) < 0) {
13036 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13037 prog->name);
13038 return libbpf_err_ptr(-EINVAL);
13039 }
13040
13041 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13042 if (err)
13043 return libbpf_err_ptr(err);
13044
13045 /* When calling bpf_program__attach() explicitly, auto-attach support
13046 * is expected to work, so NULL returned link is considered an error.
13047 * This is different for skeleton's attach, see comment in
13048 * bpf_object__attach_skeleton().
13049 */
13050 if (!link)
13051 return libbpf_err_ptr(-EOPNOTSUPP);
13052
13053 return link;
13054 }
13055
13056 struct bpf_link_struct_ops {
13057 struct bpf_link link;
13058 int map_fd;
13059 };
13060
bpf_link__detach_struct_ops(struct bpf_link * link)13061 static int bpf_link__detach_struct_ops(struct bpf_link *link)
13062 {
13063 struct bpf_link_struct_ops *st_link;
13064 __u32 zero = 0;
13065
13066 st_link = container_of(link, struct bpf_link_struct_ops, link);
13067
13068 if (st_link->map_fd < 0)
13069 /* w/o a real link */
13070 return bpf_map_delete_elem(link->fd, &zero);
13071
13072 return close(link->fd);
13073 }
13074
bpf_map__attach_struct_ops(const struct bpf_map * map)13075 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13076 {
13077 struct bpf_link_struct_ops *link;
13078 __u32 zero = 0;
13079 int err, fd;
13080
13081 if (!bpf_map__is_struct_ops(map)) {
13082 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13083 return libbpf_err_ptr(-EINVAL);
13084 }
13085
13086 if (map->fd < 0) {
13087 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13088 return libbpf_err_ptr(-EINVAL);
13089 }
13090
13091 link = calloc(1, sizeof(*link));
13092 if (!link)
13093 return libbpf_err_ptr(-EINVAL);
13094
13095 /* kern_vdata should be prepared during the loading phase. */
13096 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13097 /* It can be EBUSY if the map has been used to create or
13098 * update a link before. We don't allow updating the value of
13099 * a struct_ops once it is set. That ensures that the value
13100 * never changed. So, it is safe to skip EBUSY.
13101 */
13102 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13103 free(link);
13104 return libbpf_err_ptr(err);
13105 }
13106
13107 link->link.detach = bpf_link__detach_struct_ops;
13108
13109 if (!(map->def.map_flags & BPF_F_LINK)) {
13110 /* w/o a real link */
13111 link->link.fd = map->fd;
13112 link->map_fd = -1;
13113 return &link->link;
13114 }
13115
13116 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13117 if (fd < 0) {
13118 free(link);
13119 return libbpf_err_ptr(fd);
13120 }
13121
13122 link->link.fd = fd;
13123 link->map_fd = map->fd;
13124
13125 return &link->link;
13126 }
13127
13128 /*
13129 * Swap the back struct_ops of a link with a new struct_ops map.
13130 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13131 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13132 {
13133 struct bpf_link_struct_ops *st_ops_link;
13134 __u32 zero = 0;
13135 int err;
13136
13137 if (!bpf_map__is_struct_ops(map))
13138 return libbpf_err(-EINVAL);
13139
13140 if (map->fd < 0) {
13141 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13142 return libbpf_err(-EINVAL);
13143 }
13144
13145 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13146 /* Ensure the type of a link is correct */
13147 if (st_ops_link->map_fd < 0)
13148 return libbpf_err(-EINVAL);
13149
13150 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13151 /* It can be EBUSY if the map has been used to create or
13152 * update a link before. We don't allow updating the value of
13153 * a struct_ops once it is set. That ensures that the value
13154 * never changed. So, it is safe to skip EBUSY.
13155 */
13156 if (err && err != -EBUSY)
13157 return err;
13158
13159 err = bpf_link_update(link->fd, map->fd, NULL);
13160 if (err < 0)
13161 return err;
13162
13163 st_ops_link->map_fd = map->fd;
13164
13165 return 0;
13166 }
13167
13168 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13169 void *private_data);
13170
13171 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13172 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13173 void **copy_mem, size_t *copy_size,
13174 bpf_perf_event_print_t fn, void *private_data)
13175 {
13176 struct perf_event_mmap_page *header = mmap_mem;
13177 __u64 data_head = ring_buffer_read_head(header);
13178 __u64 data_tail = header->data_tail;
13179 void *base = ((__u8 *)header) + page_size;
13180 int ret = LIBBPF_PERF_EVENT_CONT;
13181 struct perf_event_header *ehdr;
13182 size_t ehdr_size;
13183
13184 while (data_head != data_tail) {
13185 ehdr = base + (data_tail & (mmap_size - 1));
13186 ehdr_size = ehdr->size;
13187
13188 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13189 void *copy_start = ehdr;
13190 size_t len_first = base + mmap_size - copy_start;
13191 size_t len_secnd = ehdr_size - len_first;
13192
13193 if (*copy_size < ehdr_size) {
13194 free(*copy_mem);
13195 *copy_mem = malloc(ehdr_size);
13196 if (!*copy_mem) {
13197 *copy_size = 0;
13198 ret = LIBBPF_PERF_EVENT_ERROR;
13199 break;
13200 }
13201 *copy_size = ehdr_size;
13202 }
13203
13204 memcpy(*copy_mem, copy_start, len_first);
13205 memcpy(*copy_mem + len_first, base, len_secnd);
13206 ehdr = *copy_mem;
13207 }
13208
13209 ret = fn(ehdr, private_data);
13210 data_tail += ehdr_size;
13211 if (ret != LIBBPF_PERF_EVENT_CONT)
13212 break;
13213 }
13214
13215 ring_buffer_write_tail(header, data_tail);
13216 return libbpf_err(ret);
13217 }
13218
13219 struct perf_buffer;
13220
13221 struct perf_buffer_params {
13222 struct perf_event_attr *attr;
13223 /* if event_cb is specified, it takes precendence */
13224 perf_buffer_event_fn event_cb;
13225 /* sample_cb and lost_cb are higher-level common-case callbacks */
13226 perf_buffer_sample_fn sample_cb;
13227 perf_buffer_lost_fn lost_cb;
13228 void *ctx;
13229 int cpu_cnt;
13230 int *cpus;
13231 int *map_keys;
13232 };
13233
13234 struct perf_cpu_buf {
13235 struct perf_buffer *pb;
13236 void *base; /* mmap()'ed memory */
13237 void *buf; /* for reconstructing segmented data */
13238 size_t buf_size;
13239 int fd;
13240 int cpu;
13241 int map_key;
13242 };
13243
13244 struct perf_buffer {
13245 perf_buffer_event_fn event_cb;
13246 perf_buffer_sample_fn sample_cb;
13247 perf_buffer_lost_fn lost_cb;
13248 void *ctx; /* passed into callbacks */
13249
13250 size_t page_size;
13251 size_t mmap_size;
13252 struct perf_cpu_buf **cpu_bufs;
13253 struct epoll_event *events;
13254 int cpu_cnt; /* number of allocated CPU buffers */
13255 int epoll_fd; /* perf event FD */
13256 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13257 };
13258
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13259 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13260 struct perf_cpu_buf *cpu_buf)
13261 {
13262 if (!cpu_buf)
13263 return;
13264 if (cpu_buf->base &&
13265 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13266 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13267 if (cpu_buf->fd >= 0) {
13268 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13269 close(cpu_buf->fd);
13270 }
13271 free(cpu_buf->buf);
13272 free(cpu_buf);
13273 }
13274
perf_buffer__free(struct perf_buffer * pb)13275 void perf_buffer__free(struct perf_buffer *pb)
13276 {
13277 int i;
13278
13279 if (IS_ERR_OR_NULL(pb))
13280 return;
13281 if (pb->cpu_bufs) {
13282 for (i = 0; i < pb->cpu_cnt; i++) {
13283 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13284
13285 if (!cpu_buf)
13286 continue;
13287
13288 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13289 perf_buffer__free_cpu_buf(pb, cpu_buf);
13290 }
13291 free(pb->cpu_bufs);
13292 }
13293 if (pb->epoll_fd >= 0)
13294 close(pb->epoll_fd);
13295 free(pb->events);
13296 free(pb);
13297 }
13298
13299 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13300 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13301 int cpu, int map_key)
13302 {
13303 struct perf_cpu_buf *cpu_buf;
13304 int err;
13305
13306 cpu_buf = calloc(1, sizeof(*cpu_buf));
13307 if (!cpu_buf)
13308 return ERR_PTR(-ENOMEM);
13309
13310 cpu_buf->pb = pb;
13311 cpu_buf->cpu = cpu;
13312 cpu_buf->map_key = map_key;
13313
13314 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13315 -1, PERF_FLAG_FD_CLOEXEC);
13316 if (cpu_buf->fd < 0) {
13317 err = -errno;
13318 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13319 cpu, errstr(err));
13320 goto error;
13321 }
13322
13323 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13324 PROT_READ | PROT_WRITE, MAP_SHARED,
13325 cpu_buf->fd, 0);
13326 if (cpu_buf->base == MAP_FAILED) {
13327 cpu_buf->base = NULL;
13328 err = -errno;
13329 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13330 cpu, errstr(err));
13331 goto error;
13332 }
13333
13334 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13335 err = -errno;
13336 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13337 cpu, errstr(err));
13338 goto error;
13339 }
13340
13341 return cpu_buf;
13342
13343 error:
13344 perf_buffer__free_cpu_buf(pb, cpu_buf);
13345 return (struct perf_cpu_buf *)ERR_PTR(err);
13346 }
13347
13348 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13349 struct perf_buffer_params *p);
13350
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13351 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13352 perf_buffer_sample_fn sample_cb,
13353 perf_buffer_lost_fn lost_cb,
13354 void *ctx,
13355 const struct perf_buffer_opts *opts)
13356 {
13357 const size_t attr_sz = sizeof(struct perf_event_attr);
13358 struct perf_buffer_params p = {};
13359 struct perf_event_attr attr;
13360 __u32 sample_period;
13361
13362 if (!OPTS_VALID(opts, perf_buffer_opts))
13363 return libbpf_err_ptr(-EINVAL);
13364
13365 sample_period = OPTS_GET(opts, sample_period, 1);
13366 if (!sample_period)
13367 sample_period = 1;
13368
13369 memset(&attr, 0, attr_sz);
13370 attr.size = attr_sz;
13371 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13372 attr.type = PERF_TYPE_SOFTWARE;
13373 attr.sample_type = PERF_SAMPLE_RAW;
13374 attr.sample_period = sample_period;
13375 attr.wakeup_events = sample_period;
13376
13377 p.attr = &attr;
13378 p.sample_cb = sample_cb;
13379 p.lost_cb = lost_cb;
13380 p.ctx = ctx;
13381
13382 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13383 }
13384
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13385 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13386 struct perf_event_attr *attr,
13387 perf_buffer_event_fn event_cb, void *ctx,
13388 const struct perf_buffer_raw_opts *opts)
13389 {
13390 struct perf_buffer_params p = {};
13391
13392 if (!attr)
13393 return libbpf_err_ptr(-EINVAL);
13394
13395 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13396 return libbpf_err_ptr(-EINVAL);
13397
13398 p.attr = attr;
13399 p.event_cb = event_cb;
13400 p.ctx = ctx;
13401 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13402 p.cpus = OPTS_GET(opts, cpus, NULL);
13403 p.map_keys = OPTS_GET(opts, map_keys, NULL);
13404
13405 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13406 }
13407
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13408 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13409 struct perf_buffer_params *p)
13410 {
13411 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13412 struct bpf_map_info map;
13413 struct perf_buffer *pb;
13414 bool *online = NULL;
13415 __u32 map_info_len;
13416 int err, i, j, n;
13417
13418 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13419 pr_warn("page count should be power of two, but is %zu\n",
13420 page_cnt);
13421 return ERR_PTR(-EINVAL);
13422 }
13423
13424 /* best-effort sanity checks */
13425 memset(&map, 0, sizeof(map));
13426 map_info_len = sizeof(map);
13427 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13428 if (err) {
13429 err = -errno;
13430 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13431 * -EBADFD, -EFAULT, or -E2BIG on real error
13432 */
13433 if (err != -EINVAL) {
13434 pr_warn("failed to get map info for map FD %d: %s\n",
13435 map_fd, errstr(err));
13436 return ERR_PTR(err);
13437 }
13438 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13439 map_fd);
13440 } else {
13441 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13442 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13443 map.name);
13444 return ERR_PTR(-EINVAL);
13445 }
13446 }
13447
13448 pb = calloc(1, sizeof(*pb));
13449 if (!pb)
13450 return ERR_PTR(-ENOMEM);
13451
13452 pb->event_cb = p->event_cb;
13453 pb->sample_cb = p->sample_cb;
13454 pb->lost_cb = p->lost_cb;
13455 pb->ctx = p->ctx;
13456
13457 pb->page_size = getpagesize();
13458 pb->mmap_size = pb->page_size * page_cnt;
13459 pb->map_fd = map_fd;
13460
13461 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13462 if (pb->epoll_fd < 0) {
13463 err = -errno;
13464 pr_warn("failed to create epoll instance: %s\n",
13465 errstr(err));
13466 goto error;
13467 }
13468
13469 if (p->cpu_cnt > 0) {
13470 pb->cpu_cnt = p->cpu_cnt;
13471 } else {
13472 pb->cpu_cnt = libbpf_num_possible_cpus();
13473 if (pb->cpu_cnt < 0) {
13474 err = pb->cpu_cnt;
13475 goto error;
13476 }
13477 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13478 pb->cpu_cnt = map.max_entries;
13479 }
13480
13481 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13482 if (!pb->events) {
13483 err = -ENOMEM;
13484 pr_warn("failed to allocate events: out of memory\n");
13485 goto error;
13486 }
13487 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13488 if (!pb->cpu_bufs) {
13489 err = -ENOMEM;
13490 pr_warn("failed to allocate buffers: out of memory\n");
13491 goto error;
13492 }
13493
13494 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13495 if (err) {
13496 pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13497 goto error;
13498 }
13499
13500 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13501 struct perf_cpu_buf *cpu_buf;
13502 int cpu, map_key;
13503
13504 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13505 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13506
13507 /* in case user didn't explicitly requested particular CPUs to
13508 * be attached to, skip offline/not present CPUs
13509 */
13510 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13511 continue;
13512
13513 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13514 if (IS_ERR(cpu_buf)) {
13515 err = PTR_ERR(cpu_buf);
13516 goto error;
13517 }
13518
13519 pb->cpu_bufs[j] = cpu_buf;
13520
13521 err = bpf_map_update_elem(pb->map_fd, &map_key,
13522 &cpu_buf->fd, 0);
13523 if (err) {
13524 err = -errno;
13525 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13526 cpu, map_key, cpu_buf->fd,
13527 errstr(err));
13528 goto error;
13529 }
13530
13531 pb->events[j].events = EPOLLIN;
13532 pb->events[j].data.ptr = cpu_buf;
13533 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13534 &pb->events[j]) < 0) {
13535 err = -errno;
13536 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13537 cpu, cpu_buf->fd,
13538 errstr(err));
13539 goto error;
13540 }
13541 j++;
13542 }
13543 pb->cpu_cnt = j;
13544 free(online);
13545
13546 return pb;
13547
13548 error:
13549 free(online);
13550 if (pb)
13551 perf_buffer__free(pb);
13552 return ERR_PTR(err);
13553 }
13554
13555 struct perf_sample_raw {
13556 struct perf_event_header header;
13557 uint32_t size;
13558 char data[];
13559 };
13560
13561 struct perf_sample_lost {
13562 struct perf_event_header header;
13563 uint64_t id;
13564 uint64_t lost;
13565 uint64_t sample_id;
13566 };
13567
13568 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13569 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13570 {
13571 struct perf_cpu_buf *cpu_buf = ctx;
13572 struct perf_buffer *pb = cpu_buf->pb;
13573 void *data = e;
13574
13575 /* user wants full control over parsing perf event */
13576 if (pb->event_cb)
13577 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13578
13579 switch (e->type) {
13580 case PERF_RECORD_SAMPLE: {
13581 struct perf_sample_raw *s = data;
13582
13583 if (pb->sample_cb)
13584 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13585 break;
13586 }
13587 case PERF_RECORD_LOST: {
13588 struct perf_sample_lost *s = data;
13589
13590 if (pb->lost_cb)
13591 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13592 break;
13593 }
13594 default:
13595 pr_warn("unknown perf sample type %d\n", e->type);
13596 return LIBBPF_PERF_EVENT_ERROR;
13597 }
13598 return LIBBPF_PERF_EVENT_CONT;
13599 }
13600
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13601 static int perf_buffer__process_records(struct perf_buffer *pb,
13602 struct perf_cpu_buf *cpu_buf)
13603 {
13604 enum bpf_perf_event_ret ret;
13605
13606 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13607 pb->page_size, &cpu_buf->buf,
13608 &cpu_buf->buf_size,
13609 perf_buffer__process_record, cpu_buf);
13610 if (ret != LIBBPF_PERF_EVENT_CONT)
13611 return ret;
13612 return 0;
13613 }
13614
perf_buffer__epoll_fd(const struct perf_buffer * pb)13615 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13616 {
13617 return pb->epoll_fd;
13618 }
13619
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13620 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13621 {
13622 int i, cnt, err;
13623
13624 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13625 if (cnt < 0)
13626 return -errno;
13627
13628 for (i = 0; i < cnt; i++) {
13629 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13630
13631 err = perf_buffer__process_records(pb, cpu_buf);
13632 if (err) {
13633 pr_warn("error while processing records: %s\n", errstr(err));
13634 return libbpf_err(err);
13635 }
13636 }
13637 return cnt;
13638 }
13639
13640 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13641 * manager.
13642 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13643 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13644 {
13645 return pb->cpu_cnt;
13646 }
13647
13648 /*
13649 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13650 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13651 * select()/poll()/epoll() Linux syscalls.
13652 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13653 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13654 {
13655 struct perf_cpu_buf *cpu_buf;
13656
13657 if (buf_idx >= pb->cpu_cnt)
13658 return libbpf_err(-EINVAL);
13659
13660 cpu_buf = pb->cpu_bufs[buf_idx];
13661 if (!cpu_buf)
13662 return libbpf_err(-ENOENT);
13663
13664 return cpu_buf->fd;
13665 }
13666
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13667 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13668 {
13669 struct perf_cpu_buf *cpu_buf;
13670
13671 if (buf_idx >= pb->cpu_cnt)
13672 return libbpf_err(-EINVAL);
13673
13674 cpu_buf = pb->cpu_bufs[buf_idx];
13675 if (!cpu_buf)
13676 return libbpf_err(-ENOENT);
13677
13678 *buf = cpu_buf->base;
13679 *buf_size = pb->mmap_size;
13680 return 0;
13681 }
13682
13683 /*
13684 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13685 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13686 * consume, do nothing and return success.
13687 * Returns:
13688 * - 0 on success;
13689 * - <0 on failure.
13690 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13691 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13692 {
13693 struct perf_cpu_buf *cpu_buf;
13694
13695 if (buf_idx >= pb->cpu_cnt)
13696 return libbpf_err(-EINVAL);
13697
13698 cpu_buf = pb->cpu_bufs[buf_idx];
13699 if (!cpu_buf)
13700 return libbpf_err(-ENOENT);
13701
13702 return perf_buffer__process_records(pb, cpu_buf);
13703 }
13704
perf_buffer__consume(struct perf_buffer * pb)13705 int perf_buffer__consume(struct perf_buffer *pb)
13706 {
13707 int i, err;
13708
13709 for (i = 0; i < pb->cpu_cnt; i++) {
13710 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13711
13712 if (!cpu_buf)
13713 continue;
13714
13715 err = perf_buffer__process_records(pb, cpu_buf);
13716 if (err) {
13717 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13718 i, errstr(err));
13719 return libbpf_err(err);
13720 }
13721 }
13722 return 0;
13723 }
13724
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13725 int bpf_program__set_attach_target(struct bpf_program *prog,
13726 int attach_prog_fd,
13727 const char *attach_func_name)
13728 {
13729 int btf_obj_fd = 0, btf_id = 0, err;
13730
13731 if (!prog || attach_prog_fd < 0)
13732 return libbpf_err(-EINVAL);
13733
13734 if (prog->obj->state >= OBJ_LOADED)
13735 return libbpf_err(-EINVAL);
13736
13737 if (attach_prog_fd && !attach_func_name) {
13738 /* remember attach_prog_fd and let bpf_program__load() find
13739 * BTF ID during the program load
13740 */
13741 prog->attach_prog_fd = attach_prog_fd;
13742 return 0;
13743 }
13744
13745 if (attach_prog_fd) {
13746 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13747 attach_prog_fd, prog->obj->token_fd);
13748 if (btf_id < 0)
13749 return libbpf_err(btf_id);
13750 } else {
13751 if (!attach_func_name)
13752 return libbpf_err(-EINVAL);
13753
13754 /* load btf_vmlinux, if not yet */
13755 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13756 if (err)
13757 return libbpf_err(err);
13758 err = find_kernel_btf_id(prog->obj, attach_func_name,
13759 prog->expected_attach_type,
13760 &btf_obj_fd, &btf_id);
13761 if (err)
13762 return libbpf_err(err);
13763 }
13764
13765 prog->attach_btf_id = btf_id;
13766 prog->attach_btf_obj_fd = btf_obj_fd;
13767 prog->attach_prog_fd = attach_prog_fd;
13768 return 0;
13769 }
13770
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13771 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13772 {
13773 int err = 0, n, len, start, end = -1;
13774 bool *tmp;
13775
13776 *mask = NULL;
13777 *mask_sz = 0;
13778
13779 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13780 while (*s) {
13781 if (*s == ',' || *s == '\n') {
13782 s++;
13783 continue;
13784 }
13785 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13786 if (n <= 0 || n > 2) {
13787 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13788 err = -EINVAL;
13789 goto cleanup;
13790 } else if (n == 1) {
13791 end = start;
13792 }
13793 if (start < 0 || start > end) {
13794 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13795 start, end, s);
13796 err = -EINVAL;
13797 goto cleanup;
13798 }
13799 tmp = realloc(*mask, end + 1);
13800 if (!tmp) {
13801 err = -ENOMEM;
13802 goto cleanup;
13803 }
13804 *mask = tmp;
13805 memset(tmp + *mask_sz, 0, start - *mask_sz);
13806 memset(tmp + start, 1, end - start + 1);
13807 *mask_sz = end + 1;
13808 s += len;
13809 }
13810 if (!*mask_sz) {
13811 pr_warn("Empty CPU range\n");
13812 return -EINVAL;
13813 }
13814 return 0;
13815 cleanup:
13816 free(*mask);
13817 *mask = NULL;
13818 return err;
13819 }
13820
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13821 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13822 {
13823 int fd, err = 0, len;
13824 char buf[128];
13825
13826 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13827 if (fd < 0) {
13828 err = -errno;
13829 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13830 return err;
13831 }
13832 len = read(fd, buf, sizeof(buf));
13833 close(fd);
13834 if (len <= 0) {
13835 err = len ? -errno : -EINVAL;
13836 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13837 return err;
13838 }
13839 if (len >= sizeof(buf)) {
13840 pr_warn("CPU mask is too big in file %s\n", fcpu);
13841 return -E2BIG;
13842 }
13843 buf[len] = '\0';
13844
13845 return parse_cpu_mask_str(buf, mask, mask_sz);
13846 }
13847
libbpf_num_possible_cpus(void)13848 int libbpf_num_possible_cpus(void)
13849 {
13850 static const char *fcpu = "/sys/devices/system/cpu/possible";
13851 static int cpus;
13852 int err, n, i, tmp_cpus;
13853 bool *mask;
13854
13855 tmp_cpus = READ_ONCE(cpus);
13856 if (tmp_cpus > 0)
13857 return tmp_cpus;
13858
13859 err = parse_cpu_mask_file(fcpu, &mask, &n);
13860 if (err)
13861 return libbpf_err(err);
13862
13863 tmp_cpus = 0;
13864 for (i = 0; i < n; i++) {
13865 if (mask[i])
13866 tmp_cpus++;
13867 }
13868 free(mask);
13869
13870 WRITE_ONCE(cpus, tmp_cpus);
13871 return tmp_cpus;
13872 }
13873
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13874 static int populate_skeleton_maps(const struct bpf_object *obj,
13875 struct bpf_map_skeleton *maps,
13876 size_t map_cnt, size_t map_skel_sz)
13877 {
13878 int i;
13879
13880 for (i = 0; i < map_cnt; i++) {
13881 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
13882 struct bpf_map **map = map_skel->map;
13883 const char *name = map_skel->name;
13884 void **mmaped = map_skel->mmaped;
13885
13886 *map = bpf_object__find_map_by_name(obj, name);
13887 if (!*map) {
13888 pr_warn("failed to find skeleton map '%s'\n", name);
13889 return -ESRCH;
13890 }
13891
13892 /* externs shouldn't be pre-setup from user code */
13893 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13894 *mmaped = (*map)->mmaped;
13895 }
13896 return 0;
13897 }
13898
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)13899 static int populate_skeleton_progs(const struct bpf_object *obj,
13900 struct bpf_prog_skeleton *progs,
13901 size_t prog_cnt, size_t prog_skel_sz)
13902 {
13903 int i;
13904
13905 for (i = 0; i < prog_cnt; i++) {
13906 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
13907 struct bpf_program **prog = prog_skel->prog;
13908 const char *name = prog_skel->name;
13909
13910 *prog = bpf_object__find_program_by_name(obj, name);
13911 if (!*prog) {
13912 pr_warn("failed to find skeleton program '%s'\n", name);
13913 return -ESRCH;
13914 }
13915 }
13916 return 0;
13917 }
13918
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)13919 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13920 const struct bpf_object_open_opts *opts)
13921 {
13922 struct bpf_object *obj;
13923 int err;
13924
13925 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
13926 if (IS_ERR(obj)) {
13927 err = PTR_ERR(obj);
13928 pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
13929 s->name, errstr(err));
13930 return libbpf_err(err);
13931 }
13932
13933 *s->obj = obj;
13934 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
13935 if (err) {
13936 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
13937 return libbpf_err(err);
13938 }
13939
13940 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13941 if (err) {
13942 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
13943 return libbpf_err(err);
13944 }
13945
13946 return 0;
13947 }
13948
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)13949 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13950 {
13951 int err, len, var_idx, i;
13952 const char *var_name;
13953 const struct bpf_map *map;
13954 struct btf *btf;
13955 __u32 map_type_id;
13956 const struct btf_type *map_type, *var_type;
13957 const struct bpf_var_skeleton *var_skel;
13958 struct btf_var_secinfo *var;
13959
13960 if (!s->obj)
13961 return libbpf_err(-EINVAL);
13962
13963 btf = bpf_object__btf(s->obj);
13964 if (!btf) {
13965 pr_warn("subskeletons require BTF at runtime (object %s)\n",
13966 bpf_object__name(s->obj));
13967 return libbpf_err(-errno);
13968 }
13969
13970 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
13971 if (err) {
13972 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
13973 return libbpf_err(err);
13974 }
13975
13976 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
13977 if (err) {
13978 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
13979 return libbpf_err(err);
13980 }
13981
13982 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13983 var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
13984 map = *var_skel->map;
13985 map_type_id = bpf_map__btf_value_type_id(map);
13986 map_type = btf__type_by_id(btf, map_type_id);
13987
13988 if (!btf_is_datasec(map_type)) {
13989 pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
13990 bpf_map__name(map),
13991 __btf_kind_str(btf_kind(map_type)));
13992 return libbpf_err(-EINVAL);
13993 }
13994
13995 len = btf_vlen(map_type);
13996 var = btf_var_secinfos(map_type);
13997 for (i = 0; i < len; i++, var++) {
13998 var_type = btf__type_by_id(btf, var->type);
13999 var_name = btf__name_by_offset(btf, var_type->name_off);
14000 if (strcmp(var_name, var_skel->name) == 0) {
14001 *var_skel->addr = map->mmaped + var->offset;
14002 break;
14003 }
14004 }
14005 }
14006 return 0;
14007 }
14008
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)14009 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14010 {
14011 if (!s)
14012 return;
14013 free(s->maps);
14014 free(s->progs);
14015 free(s->vars);
14016 free(s);
14017 }
14018
bpf_object__load_skeleton(struct bpf_object_skeleton * s)14019 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14020 {
14021 int i, err;
14022
14023 err = bpf_object__load(*s->obj);
14024 if (err) {
14025 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14026 return libbpf_err(err);
14027 }
14028
14029 for (i = 0; i < s->map_cnt; i++) {
14030 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14031 struct bpf_map *map = *map_skel->map;
14032
14033 if (!map_skel->mmaped)
14034 continue;
14035
14036 *map_skel->mmaped = map->mmaped;
14037 }
14038
14039 return 0;
14040 }
14041
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)14042 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14043 {
14044 int i, err;
14045
14046 for (i = 0; i < s->prog_cnt; i++) {
14047 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14048 struct bpf_program *prog = *prog_skel->prog;
14049 struct bpf_link **link = prog_skel->link;
14050
14051 if (!prog->autoload || !prog->autoattach)
14052 continue;
14053
14054 /* auto-attaching not supported for this program */
14055 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14056 continue;
14057
14058 /* if user already set the link manually, don't attempt auto-attach */
14059 if (*link)
14060 continue;
14061
14062 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14063 if (err) {
14064 pr_warn("prog '%s': failed to auto-attach: %s\n",
14065 bpf_program__name(prog), errstr(err));
14066 return libbpf_err(err);
14067 }
14068
14069 /* It's possible that for some SEC() definitions auto-attach
14070 * is supported in some cases (e.g., if definition completely
14071 * specifies target information), but is not in other cases.
14072 * SEC("uprobe") is one such case. If user specified target
14073 * binary and function name, such BPF program can be
14074 * auto-attached. But if not, it shouldn't trigger skeleton's
14075 * attach to fail. It should just be skipped.
14076 * attach_fn signals such case with returning 0 (no error) and
14077 * setting link to NULL.
14078 */
14079 }
14080
14081
14082 for (i = 0; i < s->map_cnt; i++) {
14083 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14084 struct bpf_map *map = *map_skel->map;
14085 struct bpf_link **link;
14086
14087 if (!map->autocreate || !map->autoattach)
14088 continue;
14089
14090 /* only struct_ops maps can be attached */
14091 if (!bpf_map__is_struct_ops(map))
14092 continue;
14093
14094 /* skeleton is created with earlier version of bpftool, notify user */
14095 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14096 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14097 bpf_map__name(map));
14098 continue;
14099 }
14100
14101 link = map_skel->link;
14102 if (*link)
14103 continue;
14104
14105 *link = bpf_map__attach_struct_ops(map);
14106 if (!*link) {
14107 err = -errno;
14108 pr_warn("map '%s': failed to auto-attach: %s\n",
14109 bpf_map__name(map), errstr(err));
14110 return libbpf_err(err);
14111 }
14112 }
14113
14114 return 0;
14115 }
14116
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14117 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14118 {
14119 int i;
14120
14121 for (i = 0; i < s->prog_cnt; i++) {
14122 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14123 struct bpf_link **link = prog_skel->link;
14124
14125 bpf_link__destroy(*link);
14126 *link = NULL;
14127 }
14128
14129 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14130 return;
14131
14132 for (i = 0; i < s->map_cnt; i++) {
14133 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14134 struct bpf_link **link = map_skel->link;
14135
14136 if (link) {
14137 bpf_link__destroy(*link);
14138 *link = NULL;
14139 }
14140 }
14141 }
14142
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14143 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14144 {
14145 if (!s)
14146 return;
14147
14148 bpf_object__detach_skeleton(s);
14149 if (s->obj)
14150 bpf_object__close(*s->obj);
14151 free(s->maps);
14152 free(s->progs);
14153 free(s);
14154 }
14155