1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC 0xcafe4a11
60 #endif
61
62 #define MAX_EVENT_NAME_LEN 64
63
64 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
65
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69 * compilation if user enables corresponding warning. Disable it explicitly.
70 */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72
73 #define __printf(a, b) __attribute__((format(printf, a, b)))
74
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
77 static int map_set_def_max_entries(struct bpf_map *map);
78
79 static const char * const attach_type_name[] = {
80 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
81 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
82 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
83 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
84 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
85 [BPF_CGROUP_DEVICE] = "cgroup_device",
86 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
87 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
88 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
89 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
90 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect",
91 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
92 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
93 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
94 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
95 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername",
96 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
97 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
98 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname",
99 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
100 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
101 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg",
102 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
103 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
104 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
105 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg",
106 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
107 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
108 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
109 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
110 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
111 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
112 [BPF_LIRC_MODE2] = "lirc_mode2",
113 [BPF_FLOW_DISSECTOR] = "flow_dissector",
114 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
115 [BPF_TRACE_FENTRY] = "trace_fentry",
116 [BPF_TRACE_FEXIT] = "trace_fexit",
117 [BPF_MODIFY_RETURN] = "modify_return",
118 [BPF_LSM_MAC] = "lsm_mac",
119 [BPF_LSM_CGROUP] = "lsm_cgroup",
120 [BPF_SK_LOOKUP] = "sk_lookup",
121 [BPF_TRACE_ITER] = "trace_iter",
122 [BPF_XDP_DEVMAP] = "xdp_devmap",
123 [BPF_XDP_CPUMAP] = "xdp_cpumap",
124 [BPF_XDP] = "xdp",
125 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
126 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
127 [BPF_PERF_EVENT] = "perf_event",
128 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
129 [BPF_STRUCT_OPS] = "struct_ops",
130 [BPF_NETFILTER] = "netfilter",
131 [BPF_TCX_INGRESS] = "tcx_ingress",
132 [BPF_TCX_EGRESS] = "tcx_egress",
133 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi",
134 [BPF_NETKIT_PRIMARY] = "netkit_primary",
135 [BPF_NETKIT_PEER] = "netkit_peer",
136 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session",
137 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session",
138 };
139
140 static const char * const link_type_name[] = {
141 [BPF_LINK_TYPE_UNSPEC] = "unspec",
142 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
143 [BPF_LINK_TYPE_TRACING] = "tracing",
144 [BPF_LINK_TYPE_CGROUP] = "cgroup",
145 [BPF_LINK_TYPE_ITER] = "iter",
146 [BPF_LINK_TYPE_NETNS] = "netns",
147 [BPF_LINK_TYPE_XDP] = "xdp",
148 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
149 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
150 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
151 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
152 [BPF_LINK_TYPE_TCX] = "tcx",
153 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi",
154 [BPF_LINK_TYPE_NETKIT] = "netkit",
155 [BPF_LINK_TYPE_SOCKMAP] = "sockmap",
156 };
157
158 static const char * const map_type_name[] = {
159 [BPF_MAP_TYPE_UNSPEC] = "unspec",
160 [BPF_MAP_TYPE_HASH] = "hash",
161 [BPF_MAP_TYPE_ARRAY] = "array",
162 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
163 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
164 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
165 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
166 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
167 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
168 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
169 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
170 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
171 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
172 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
173 [BPF_MAP_TYPE_DEVMAP] = "devmap",
174 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
175 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
176 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
177 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
178 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
179 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
180 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
181 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
182 [BPF_MAP_TYPE_QUEUE] = "queue",
183 [BPF_MAP_TYPE_STACK] = "stack",
184 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
185 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
186 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
187 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
188 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
189 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
190 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
191 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
192 [BPF_MAP_TYPE_ARENA] = "arena",
193 };
194
195 static const char * const prog_type_name[] = {
196 [BPF_PROG_TYPE_UNSPEC] = "unspec",
197 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
198 [BPF_PROG_TYPE_KPROBE] = "kprobe",
199 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
200 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
201 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
202 [BPF_PROG_TYPE_XDP] = "xdp",
203 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
204 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
205 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
206 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
207 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
208 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
209 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
210 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
211 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
212 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
213 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
214 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
215 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
216 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
217 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
218 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
219 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
220 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
221 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
222 [BPF_PROG_TYPE_TRACING] = "tracing",
223 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
224 [BPF_PROG_TYPE_EXT] = "ext",
225 [BPF_PROG_TYPE_LSM] = "lsm",
226 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
227 [BPF_PROG_TYPE_SYSCALL] = "syscall",
228 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
229 };
230
__base_pr(enum libbpf_print_level level,const char * format,va_list args)231 static int __base_pr(enum libbpf_print_level level, const char *format,
232 va_list args)
233 {
234 const char *env_var = "LIBBPF_LOG_LEVEL";
235 static enum libbpf_print_level min_level = LIBBPF_INFO;
236 static bool initialized;
237
238 if (!initialized) {
239 char *verbosity;
240
241 initialized = true;
242 verbosity = getenv(env_var);
243 if (verbosity) {
244 if (strcasecmp(verbosity, "warn") == 0)
245 min_level = LIBBPF_WARN;
246 else if (strcasecmp(verbosity, "debug") == 0)
247 min_level = LIBBPF_DEBUG;
248 else if (strcasecmp(verbosity, "info") == 0)
249 min_level = LIBBPF_INFO;
250 else
251 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n",
252 env_var, verbosity);
253 }
254 }
255
256 /* if too verbose, skip logging */
257 if (level > min_level)
258 return 0;
259
260 return vfprintf(stderr, format, args);
261 }
262
263 static libbpf_print_fn_t __libbpf_pr = __base_pr;
264
libbpf_set_print(libbpf_print_fn_t fn)265 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
266 {
267 libbpf_print_fn_t old_print_fn;
268
269 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
270
271 return old_print_fn;
272 }
273
274 __printf(2, 3)
libbpf_print(enum libbpf_print_level level,const char * format,...)275 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
276 {
277 va_list args;
278 int old_errno;
279 libbpf_print_fn_t print_fn;
280
281 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
282 if (!print_fn)
283 return;
284
285 old_errno = errno;
286
287 va_start(args, format);
288 print_fn(level, format, args);
289 va_end(args);
290
291 errno = old_errno;
292 }
293
pr_perm_msg(int err)294 static void pr_perm_msg(int err)
295 {
296 struct rlimit limit;
297 char buf[100];
298
299 if (err != -EPERM || geteuid() != 0)
300 return;
301
302 err = getrlimit(RLIMIT_MEMLOCK, &limit);
303 if (err)
304 return;
305
306 if (limit.rlim_cur == RLIM_INFINITY)
307 return;
308
309 if (limit.rlim_cur < 1024)
310 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
311 else if (limit.rlim_cur < 1024*1024)
312 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
313 else
314 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
315
316 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
317 buf);
318 }
319
320 /* Copied from tools/perf/util/util.h */
321 #ifndef zfree
322 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
323 #endif
324
325 #ifndef zclose
326 # define zclose(fd) ({ \
327 int ___err = 0; \
328 if ((fd) >= 0) \
329 ___err = close((fd)); \
330 fd = -1; \
331 ___err; })
332 #endif
333
ptr_to_u64(const void * ptr)334 static inline __u64 ptr_to_u64(const void *ptr)
335 {
336 return (__u64) (unsigned long) ptr;
337 }
338
libbpf_set_strict_mode(enum libbpf_strict_mode mode)339 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
340 {
341 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
342 return 0;
343 }
344
libbpf_major_version(void)345 __u32 libbpf_major_version(void)
346 {
347 return LIBBPF_MAJOR_VERSION;
348 }
349
libbpf_minor_version(void)350 __u32 libbpf_minor_version(void)
351 {
352 return LIBBPF_MINOR_VERSION;
353 }
354
libbpf_version_string(void)355 const char *libbpf_version_string(void)
356 {
357 #define __S(X) #X
358 #define _S(X) __S(X)
359 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
360 #undef _S
361 #undef __S
362 }
363
364 enum reloc_type {
365 RELO_LD64,
366 RELO_CALL,
367 RELO_DATA,
368 RELO_EXTERN_LD64,
369 RELO_EXTERN_CALL,
370 RELO_SUBPROG_ADDR,
371 RELO_CORE,
372 };
373
374 struct reloc_desc {
375 enum reloc_type type;
376 int insn_idx;
377 union {
378 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
379 struct {
380 int map_idx;
381 int sym_off;
382 int ext_idx;
383 };
384 };
385 };
386
387 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
388 enum sec_def_flags {
389 SEC_NONE = 0,
390 /* expected_attach_type is optional, if kernel doesn't support that */
391 SEC_EXP_ATTACH_OPT = 1,
392 /* legacy, only used by libbpf_get_type_names() and
393 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
394 * This used to be associated with cgroup (and few other) BPF programs
395 * that were attachable through BPF_PROG_ATTACH command. Pretty
396 * meaningless nowadays, though.
397 */
398 SEC_ATTACHABLE = 2,
399 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
400 /* attachment target is specified through BTF ID in either kernel or
401 * other BPF program's BTF object
402 */
403 SEC_ATTACH_BTF = 4,
404 /* BPF program type allows sleeping/blocking in kernel */
405 SEC_SLEEPABLE = 8,
406 /* BPF program support non-linear XDP buffer */
407 SEC_XDP_FRAGS = 16,
408 /* Setup proper attach type for usdt probes. */
409 SEC_USDT = 32,
410 };
411
412 struct bpf_sec_def {
413 char *sec;
414 enum bpf_prog_type prog_type;
415 enum bpf_attach_type expected_attach_type;
416 long cookie;
417 int handler_id;
418
419 libbpf_prog_setup_fn_t prog_setup_fn;
420 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
421 libbpf_prog_attach_fn_t prog_attach_fn;
422 };
423
424 /*
425 * bpf_prog should be a better name but it has been used in
426 * linux/filter.h.
427 */
428 struct bpf_program {
429 char *name;
430 char *sec_name;
431 size_t sec_idx;
432 const struct bpf_sec_def *sec_def;
433 /* this program's instruction offset (in number of instructions)
434 * within its containing ELF section
435 */
436 size_t sec_insn_off;
437 /* number of original instructions in ELF section belonging to this
438 * program, not taking into account subprogram instructions possible
439 * appended later during relocation
440 */
441 size_t sec_insn_cnt;
442 /* Offset (in number of instructions) of the start of instruction
443 * belonging to this BPF program within its containing main BPF
444 * program. For the entry-point (main) BPF program, this is always
445 * zero. For a sub-program, this gets reset before each of main BPF
446 * programs are processed and relocated and is used to determined
447 * whether sub-program was already appended to the main program, and
448 * if yes, at which instruction offset.
449 */
450 size_t sub_insn_off;
451
452 /* instructions that belong to BPF program; insns[0] is located at
453 * sec_insn_off instruction within its ELF section in ELF file, so
454 * when mapping ELF file instruction index to the local instruction,
455 * one needs to subtract sec_insn_off; and vice versa.
456 */
457 struct bpf_insn *insns;
458 /* actual number of instruction in this BPF program's image; for
459 * entry-point BPF programs this includes the size of main program
460 * itself plus all the used sub-programs, appended at the end
461 */
462 size_t insns_cnt;
463
464 struct reloc_desc *reloc_desc;
465 int nr_reloc;
466
467 /* BPF verifier log settings */
468 char *log_buf;
469 size_t log_size;
470 __u32 log_level;
471
472 struct bpf_object *obj;
473
474 int fd;
475 bool autoload;
476 bool autoattach;
477 bool sym_global;
478 bool mark_btf_static;
479 enum bpf_prog_type type;
480 enum bpf_attach_type expected_attach_type;
481 int exception_cb_idx;
482
483 int prog_ifindex;
484 __u32 attach_btf_obj_fd;
485 __u32 attach_btf_id;
486 __u32 attach_prog_fd;
487
488 void *func_info;
489 __u32 func_info_rec_size;
490 __u32 func_info_cnt;
491
492 void *line_info;
493 __u32 line_info_rec_size;
494 __u32 line_info_cnt;
495 __u32 prog_flags;
496 __u8 hash[SHA256_DIGEST_LENGTH];
497 };
498
499 struct bpf_struct_ops {
500 struct bpf_program **progs;
501 __u32 *kern_func_off;
502 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
503 void *data;
504 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
505 * btf_vmlinux's format.
506 * struct bpf_struct_ops_tcp_congestion_ops {
507 * [... some other kernel fields ...]
508 * struct tcp_congestion_ops data;
509 * }
510 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
511 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
512 * from "data".
513 */
514 void *kern_vdata;
515 __u32 type_id;
516 };
517
518 #define DATA_SEC ".data"
519 #define BSS_SEC ".bss"
520 #define RODATA_SEC ".rodata"
521 #define KCONFIG_SEC ".kconfig"
522 #define KSYMS_SEC ".ksyms"
523 #define STRUCT_OPS_SEC ".struct_ops"
524 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
525 #define ARENA_SEC ".addr_space.1"
526
527 enum libbpf_map_type {
528 LIBBPF_MAP_UNSPEC,
529 LIBBPF_MAP_DATA,
530 LIBBPF_MAP_BSS,
531 LIBBPF_MAP_RODATA,
532 LIBBPF_MAP_KCONFIG,
533 };
534
535 struct bpf_map_def {
536 unsigned int type;
537 unsigned int key_size;
538 unsigned int value_size;
539 unsigned int max_entries;
540 unsigned int map_flags;
541 };
542
543 struct bpf_map {
544 struct bpf_object *obj;
545 char *name;
546 /* real_name is defined for special internal maps (.rodata*,
547 * .data*, .bss, .kconfig) and preserves their original ELF section
548 * name. This is important to be able to find corresponding BTF
549 * DATASEC information.
550 */
551 char *real_name;
552 int fd;
553 int sec_idx;
554 size_t sec_offset;
555 int map_ifindex;
556 int inner_map_fd;
557 struct bpf_map_def def;
558 __u32 numa_node;
559 __u32 btf_var_idx;
560 int mod_btf_fd;
561 __u32 btf_key_type_id;
562 __u32 btf_value_type_id;
563 __u32 btf_vmlinux_value_type_id;
564 enum libbpf_map_type libbpf_type;
565 void *mmaped;
566 struct bpf_struct_ops *st_ops;
567 struct bpf_map *inner_map;
568 void **init_slots;
569 int init_slots_sz;
570 char *pin_path;
571 bool pinned;
572 bool reused;
573 bool autocreate;
574 bool autoattach;
575 __u64 map_extra;
576 struct bpf_program *excl_prog;
577 };
578
579 enum extern_type {
580 EXT_UNKNOWN,
581 EXT_KCFG,
582 EXT_KSYM,
583 };
584
585 enum kcfg_type {
586 KCFG_UNKNOWN,
587 KCFG_CHAR,
588 KCFG_BOOL,
589 KCFG_INT,
590 KCFG_TRISTATE,
591 KCFG_CHAR_ARR,
592 };
593
594 struct extern_desc {
595 enum extern_type type;
596 int sym_idx;
597 int btf_id;
598 int sec_btf_id;
599 char *name;
600 char *essent_name;
601 bool is_set;
602 bool is_weak;
603 union {
604 struct {
605 enum kcfg_type type;
606 int sz;
607 int align;
608 int data_off;
609 bool is_signed;
610 } kcfg;
611 struct {
612 unsigned long long addr;
613
614 /* target btf_id of the corresponding kernel var. */
615 int kernel_btf_obj_fd;
616 int kernel_btf_id;
617
618 /* local btf_id of the ksym extern's type. */
619 __u32 type_id;
620 /* BTF fd index to be patched in for insn->off, this is
621 * 0 for vmlinux BTF, index in obj->fd_array for module
622 * BTF
623 */
624 __s16 btf_fd_idx;
625 } ksym;
626 };
627 };
628
629 struct module_btf {
630 struct btf *btf;
631 char *name;
632 __u32 id;
633 int fd;
634 int fd_array_idx;
635 };
636
637 enum sec_type {
638 SEC_UNUSED = 0,
639 SEC_RELO,
640 SEC_BSS,
641 SEC_DATA,
642 SEC_RODATA,
643 SEC_ST_OPS,
644 };
645
646 struct elf_sec_desc {
647 enum sec_type sec_type;
648 Elf64_Shdr *shdr;
649 Elf_Data *data;
650 };
651
652 struct elf_state {
653 int fd;
654 const void *obj_buf;
655 size_t obj_buf_sz;
656 Elf *elf;
657 Elf64_Ehdr *ehdr;
658 Elf_Data *symbols;
659 Elf_Data *arena_data;
660 size_t shstrndx; /* section index for section name strings */
661 size_t strtabidx;
662 struct elf_sec_desc *secs;
663 size_t sec_cnt;
664 int btf_maps_shndx;
665 __u32 btf_maps_sec_btf_id;
666 int text_shndx;
667 int symbols_shndx;
668 bool has_st_ops;
669 int arena_data_shndx;
670 };
671
672 struct usdt_manager;
673
674 enum bpf_object_state {
675 OBJ_OPEN,
676 OBJ_PREPARED,
677 OBJ_LOADED,
678 };
679
680 struct bpf_object {
681 char name[BPF_OBJ_NAME_LEN];
682 char license[64];
683 __u32 kern_version;
684
685 enum bpf_object_state state;
686 struct bpf_program *programs;
687 size_t nr_programs;
688 struct bpf_map *maps;
689 size_t nr_maps;
690 size_t maps_cap;
691
692 char *kconfig;
693 struct extern_desc *externs;
694 int nr_extern;
695 int kconfig_map_idx;
696
697 bool has_subcalls;
698 bool has_rodata;
699
700 struct bpf_gen *gen_loader;
701
702 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
703 struct elf_state efile;
704
705 unsigned char byteorder;
706
707 struct btf *btf;
708 struct btf_ext *btf_ext;
709
710 /* Parse and load BTF vmlinux if any of the programs in the object need
711 * it at load time.
712 */
713 struct btf *btf_vmlinux;
714 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
715 * override for vmlinux BTF.
716 */
717 char *btf_custom_path;
718 /* vmlinux BTF override for CO-RE relocations */
719 struct btf *btf_vmlinux_override;
720 /* Lazily initialized kernel module BTFs */
721 struct module_btf *btf_modules;
722 bool btf_modules_loaded;
723 size_t btf_module_cnt;
724 size_t btf_module_cap;
725
726 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
727 char *log_buf;
728 size_t log_size;
729 __u32 log_level;
730
731 int *fd_array;
732 size_t fd_array_cap;
733 size_t fd_array_cnt;
734
735 struct usdt_manager *usdt_man;
736
737 int arena_map_idx;
738 void *arena_data;
739 size_t arena_data_sz;
740
741 struct kern_feature_cache *feat_cache;
742 char *token_path;
743 int token_fd;
744
745 char path[];
746 };
747
748 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
749 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
750 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
751 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
752 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
753 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
754 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
755 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
756 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
757
bpf_program__unload(struct bpf_program * prog)758 void bpf_program__unload(struct bpf_program *prog)
759 {
760 if (!prog)
761 return;
762
763 zclose(prog->fd);
764
765 zfree(&prog->func_info);
766 zfree(&prog->line_info);
767 }
768
bpf_program__exit(struct bpf_program * prog)769 static void bpf_program__exit(struct bpf_program *prog)
770 {
771 if (!prog)
772 return;
773
774 bpf_program__unload(prog);
775 zfree(&prog->name);
776 zfree(&prog->sec_name);
777 zfree(&prog->insns);
778 zfree(&prog->reloc_desc);
779
780 prog->nr_reloc = 0;
781 prog->insns_cnt = 0;
782 prog->sec_idx = -1;
783 }
784
insn_is_subprog_call(const struct bpf_insn * insn)785 static bool insn_is_subprog_call(const struct bpf_insn *insn)
786 {
787 return BPF_CLASS(insn->code) == BPF_JMP &&
788 BPF_OP(insn->code) == BPF_CALL &&
789 BPF_SRC(insn->code) == BPF_K &&
790 insn->src_reg == BPF_PSEUDO_CALL &&
791 insn->dst_reg == 0 &&
792 insn->off == 0;
793 }
794
is_call_insn(const struct bpf_insn * insn)795 static bool is_call_insn(const struct bpf_insn *insn)
796 {
797 return insn->code == (BPF_JMP | BPF_CALL);
798 }
799
insn_is_pseudo_func(struct bpf_insn * insn)800 static bool insn_is_pseudo_func(struct bpf_insn *insn)
801 {
802 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
803 }
804
805 static int
bpf_object__init_prog(struct bpf_object * obj,struct bpf_program * prog,const char * name,size_t sec_idx,const char * sec_name,size_t sec_off,void * insn_data,size_t insn_data_sz)806 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
807 const char *name, size_t sec_idx, const char *sec_name,
808 size_t sec_off, void *insn_data, size_t insn_data_sz)
809 {
810 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
811 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
812 sec_name, name, sec_off, insn_data_sz);
813 return -EINVAL;
814 }
815
816 memset(prog, 0, sizeof(*prog));
817 prog->obj = obj;
818
819 prog->sec_idx = sec_idx;
820 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
821 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
822 /* insns_cnt can later be increased by appending used subprograms */
823 prog->insns_cnt = prog->sec_insn_cnt;
824
825 prog->type = BPF_PROG_TYPE_UNSPEC;
826 prog->fd = -1;
827 prog->exception_cb_idx = -1;
828
829 /* libbpf's convention for SEC("?abc...") is that it's just like
830 * SEC("abc...") but the corresponding bpf_program starts out with
831 * autoload set to false.
832 */
833 if (sec_name[0] == '?') {
834 prog->autoload = false;
835 /* from now on forget there was ? in section name */
836 sec_name++;
837 } else {
838 prog->autoload = true;
839 }
840
841 prog->autoattach = true;
842
843 /* inherit object's log_level */
844 prog->log_level = obj->log_level;
845
846 prog->sec_name = strdup(sec_name);
847 if (!prog->sec_name)
848 goto errout;
849
850 prog->name = strdup(name);
851 if (!prog->name)
852 goto errout;
853
854 prog->insns = malloc(insn_data_sz);
855 if (!prog->insns)
856 goto errout;
857 memcpy(prog->insns, insn_data, insn_data_sz);
858
859 return 0;
860 errout:
861 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
862 bpf_program__exit(prog);
863 return -ENOMEM;
864 }
865
866 static int
bpf_object__add_programs(struct bpf_object * obj,Elf_Data * sec_data,const char * sec_name,int sec_idx)867 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
868 const char *sec_name, int sec_idx)
869 {
870 Elf_Data *symbols = obj->efile.symbols;
871 struct bpf_program *prog, *progs;
872 void *data = sec_data->d_buf;
873 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
874 int nr_progs, err, i;
875 const char *name;
876 Elf64_Sym *sym;
877
878 progs = obj->programs;
879 nr_progs = obj->nr_programs;
880 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
881
882 for (i = 0; i < nr_syms; i++) {
883 sym = elf_sym_by_idx(obj, i);
884
885 if (sym->st_shndx != sec_idx)
886 continue;
887 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
888 continue;
889
890 prog_sz = sym->st_size;
891 sec_off = sym->st_value;
892
893 name = elf_sym_str(obj, sym->st_name);
894 if (!name) {
895 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
896 sec_name, sec_off);
897 return -LIBBPF_ERRNO__FORMAT;
898 }
899
900 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) {
901 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
902 sec_name, sec_off);
903 return -LIBBPF_ERRNO__FORMAT;
904 }
905
906 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
907 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
908 return -ENOTSUP;
909 }
910
911 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
912 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
913
914 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
915 if (!progs) {
916 /*
917 * In this case the original obj->programs
918 * is still valid, so don't need special treat for
919 * bpf_close_object().
920 */
921 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
922 sec_name, name);
923 return -ENOMEM;
924 }
925 obj->programs = progs;
926
927 prog = &progs[nr_progs];
928
929 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
930 sec_off, data + sec_off, prog_sz);
931 if (err)
932 return err;
933
934 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
935 prog->sym_global = true;
936
937 /* if function is a global/weak symbol, but has restricted
938 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
939 * as static to enable more permissive BPF verification mode
940 * with more outside context available to BPF verifier
941 */
942 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
943 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
944 prog->mark_btf_static = true;
945
946 nr_progs++;
947 obj->nr_programs = nr_progs;
948 }
949
950 return 0;
951 }
952
bpf_object_bswap_progs(struct bpf_object * obj)953 static void bpf_object_bswap_progs(struct bpf_object *obj)
954 {
955 struct bpf_program *prog = obj->programs;
956 struct bpf_insn *insn;
957 int p, i;
958
959 for (p = 0; p < obj->nr_programs; p++, prog++) {
960 insn = prog->insns;
961 for (i = 0; i < prog->insns_cnt; i++, insn++)
962 bpf_insn_bswap(insn);
963 }
964 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs);
965 }
966
967 static const struct btf_member *
find_member_by_offset(const struct btf_type * t,__u32 bit_offset)968 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
969 {
970 struct btf_member *m;
971 int i;
972
973 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
974 if (btf_member_bit_offset(t, i) == bit_offset)
975 return m;
976 }
977
978 return NULL;
979 }
980
981 static const struct btf_member *
find_member_by_name(const struct btf * btf,const struct btf_type * t,const char * name)982 find_member_by_name(const struct btf *btf, const struct btf_type *t,
983 const char *name)
984 {
985 struct btf_member *m;
986 int i;
987
988 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
989 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
990 return m;
991 }
992
993 return NULL;
994 }
995
996 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
997 __u16 kind, struct btf **res_btf,
998 struct module_btf **res_mod_btf);
999
1000 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
1001 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
1002 const char *name, __u32 kind);
1003
1004 static int
find_struct_ops_kern_types(struct bpf_object * obj,const char * tname_raw,struct module_btf ** mod_btf,const struct btf_type ** type,__u32 * type_id,const struct btf_type ** vtype,__u32 * vtype_id,const struct btf_member ** data_member)1005 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
1006 struct module_btf **mod_btf,
1007 const struct btf_type **type, __u32 *type_id,
1008 const struct btf_type **vtype, __u32 *vtype_id,
1009 const struct btf_member **data_member)
1010 {
1011 const struct btf_type *kern_type, *kern_vtype;
1012 const struct btf_member *kern_data_member;
1013 struct btf *btf = NULL;
1014 __s32 kern_vtype_id, kern_type_id;
1015 char tname[192], stname[256];
1016 __u32 i;
1017
1018 snprintf(tname, sizeof(tname), "%.*s",
1019 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
1020
1021 snprintf(stname, sizeof(stname), "%s%s", STRUCT_OPS_VALUE_PREFIX, tname);
1022
1023 /* Look for the corresponding "map_value" type that will be used
1024 * in map_update(BPF_MAP_TYPE_STRUCT_OPS) first, figure out the btf
1025 * and the mod_btf.
1026 * For example, find "struct bpf_struct_ops_tcp_congestion_ops".
1027 */
1028 kern_vtype_id = find_ksym_btf_id(obj, stname, BTF_KIND_STRUCT, &btf, mod_btf);
1029 if (kern_vtype_id < 0) {
1030 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", stname);
1031 return kern_vtype_id;
1032 }
1033 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
1034
1035 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
1036 if (kern_type_id < 0) {
1037 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", tname);
1038 return kern_type_id;
1039 }
1040 kern_type = btf__type_by_id(btf, kern_type_id);
1041
1042 /* Find "struct tcp_congestion_ops" from
1043 * struct bpf_struct_ops_tcp_congestion_ops {
1044 * [ ... ]
1045 * struct tcp_congestion_ops data;
1046 * }
1047 */
1048 kern_data_member = btf_members(kern_vtype);
1049 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1050 if (kern_data_member->type == kern_type_id)
1051 break;
1052 }
1053 if (i == btf_vlen(kern_vtype)) {
1054 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s\n",
1055 tname, stname);
1056 return -EINVAL;
1057 }
1058
1059 *type = kern_type;
1060 *type_id = kern_type_id;
1061 *vtype = kern_vtype;
1062 *vtype_id = kern_vtype_id;
1063 *data_member = kern_data_member;
1064
1065 return 0;
1066 }
1067
bpf_map__is_struct_ops(const struct bpf_map * map)1068 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1069 {
1070 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1071 }
1072
is_valid_st_ops_program(struct bpf_object * obj,const struct bpf_program * prog)1073 static bool is_valid_st_ops_program(struct bpf_object *obj,
1074 const struct bpf_program *prog)
1075 {
1076 int i;
1077
1078 for (i = 0; i < obj->nr_programs; i++) {
1079 if (&obj->programs[i] == prog)
1080 return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1081 }
1082
1083 return false;
1084 }
1085
1086 /* For each struct_ops program P, referenced from some struct_ops map M,
1087 * enable P.autoload if there are Ms for which M.autocreate is true,
1088 * disable P.autoload if for all Ms M.autocreate is false.
1089 * Don't change P.autoload for programs that are not referenced from any maps.
1090 */
bpf_object_adjust_struct_ops_autoload(struct bpf_object * obj)1091 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1092 {
1093 struct bpf_program *prog, *slot_prog;
1094 struct bpf_map *map;
1095 int i, j, k, vlen;
1096
1097 for (i = 0; i < obj->nr_programs; ++i) {
1098 int should_load = false;
1099 int use_cnt = 0;
1100
1101 prog = &obj->programs[i];
1102 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1103 continue;
1104
1105 for (j = 0; j < obj->nr_maps; ++j) {
1106 const struct btf_type *type;
1107
1108 map = &obj->maps[j];
1109 if (!bpf_map__is_struct_ops(map))
1110 continue;
1111
1112 type = btf__type_by_id(obj->btf, map->st_ops->type_id);
1113 vlen = btf_vlen(type);
1114 for (k = 0; k < vlen; ++k) {
1115 slot_prog = map->st_ops->progs[k];
1116 if (prog != slot_prog)
1117 continue;
1118
1119 use_cnt++;
1120 if (map->autocreate)
1121 should_load = true;
1122 }
1123 }
1124 if (use_cnt)
1125 prog->autoload = should_load;
1126 }
1127
1128 return 0;
1129 }
1130
1131 /* Init the map's fields that depend on kern_btf */
bpf_map__init_kern_struct_ops(struct bpf_map * map)1132 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1133 {
1134 const struct btf_member *member, *kern_member, *kern_data_member;
1135 const struct btf_type *type, *kern_type, *kern_vtype;
1136 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1137 struct bpf_object *obj = map->obj;
1138 const struct btf *btf = obj->btf;
1139 struct bpf_struct_ops *st_ops;
1140 const struct btf *kern_btf;
1141 struct module_btf *mod_btf = NULL;
1142 void *data, *kern_data;
1143 const char *tname;
1144 int err;
1145
1146 st_ops = map->st_ops;
1147 type = btf__type_by_id(btf, st_ops->type_id);
1148 tname = btf__name_by_offset(btf, type->name_off);
1149 err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1150 &kern_type, &kern_type_id,
1151 &kern_vtype, &kern_vtype_id,
1152 &kern_data_member);
1153 if (err)
1154 return err;
1155
1156 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1157
1158 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1159 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1160
1161 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1162 map->def.value_size = kern_vtype->size;
1163 map->btf_vmlinux_value_type_id = kern_vtype_id;
1164
1165 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1166 if (!st_ops->kern_vdata)
1167 return -ENOMEM;
1168
1169 data = st_ops->data;
1170 kern_data_off = kern_data_member->offset / 8;
1171 kern_data = st_ops->kern_vdata + kern_data_off;
1172
1173 member = btf_members(type);
1174 for (i = 0; i < btf_vlen(type); i++, member++) {
1175 const struct btf_type *mtype, *kern_mtype;
1176 __u32 mtype_id, kern_mtype_id;
1177 void *mdata, *kern_mdata;
1178 struct bpf_program *prog;
1179 __s64 msize, kern_msize;
1180 __u32 moff, kern_moff;
1181 __u32 kern_member_idx;
1182 const char *mname;
1183
1184 mname = btf__name_by_offset(btf, member->name_off);
1185 moff = member->offset / 8;
1186 mdata = data + moff;
1187 msize = btf__resolve_size(btf, member->type);
1188 if (msize < 0) {
1189 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n",
1190 map->name, mname);
1191 return msize;
1192 }
1193
1194 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1195 if (!kern_member) {
1196 if (!libbpf_is_mem_zeroed(mdata, msize)) {
1197 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1198 map->name, mname);
1199 return -ENOTSUP;
1200 }
1201
1202 if (st_ops->progs[i]) {
1203 /* If we had declaratively set struct_ops callback, we need to
1204 * force its autoload to false, because it doesn't have
1205 * a chance of succeeding from POV of the current struct_ops map.
1206 * If this program is still referenced somewhere else, though,
1207 * then bpf_object_adjust_struct_ops_autoload() will update its
1208 * autoload accordingly.
1209 */
1210 st_ops->progs[i]->autoload = false;
1211 st_ops->progs[i] = NULL;
1212 }
1213
1214 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */
1215 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n",
1216 map->name, mname);
1217 continue;
1218 }
1219
1220 kern_member_idx = kern_member - btf_members(kern_type);
1221 if (btf_member_bitfield_size(type, i) ||
1222 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1223 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1224 map->name, mname);
1225 return -ENOTSUP;
1226 }
1227
1228 kern_moff = kern_member->offset / 8;
1229 kern_mdata = kern_data + kern_moff;
1230
1231 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1232 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1233 &kern_mtype_id);
1234 if (BTF_INFO_KIND(mtype->info) !=
1235 BTF_INFO_KIND(kern_mtype->info)) {
1236 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1237 map->name, mname, BTF_INFO_KIND(mtype->info),
1238 BTF_INFO_KIND(kern_mtype->info));
1239 return -ENOTSUP;
1240 }
1241
1242 if (btf_is_ptr(mtype)) {
1243 prog = *(void **)mdata;
1244 /* just like for !kern_member case above, reset declaratively
1245 * set (at compile time) program's autload to false,
1246 * if user replaced it with another program or NULL
1247 */
1248 if (st_ops->progs[i] && st_ops->progs[i] != prog)
1249 st_ops->progs[i]->autoload = false;
1250
1251 /* Update the value from the shadow type */
1252 st_ops->progs[i] = prog;
1253 if (!prog)
1254 continue;
1255
1256 if (!is_valid_st_ops_program(obj, prog)) {
1257 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1258 map->name, mname);
1259 return -ENOTSUP;
1260 }
1261
1262 kern_mtype = skip_mods_and_typedefs(kern_btf,
1263 kern_mtype->type,
1264 &kern_mtype_id);
1265
1266 /* mtype->type must be a func_proto which was
1267 * guaranteed in bpf_object__collect_st_ops_relos(),
1268 * so only check kern_mtype for func_proto here.
1269 */
1270 if (!btf_is_func_proto(kern_mtype)) {
1271 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1272 map->name, mname);
1273 return -ENOTSUP;
1274 }
1275
1276 if (mod_btf)
1277 prog->attach_btf_obj_fd = mod_btf->fd;
1278
1279 /* if we haven't yet processed this BPF program, record proper
1280 * attach_btf_id and member_idx
1281 */
1282 if (!prog->attach_btf_id) {
1283 prog->attach_btf_id = kern_type_id;
1284 prog->expected_attach_type = kern_member_idx;
1285 }
1286
1287 /* struct_ops BPF prog can be re-used between multiple
1288 * .struct_ops & .struct_ops.link as long as it's the
1289 * same struct_ops struct definition and the same
1290 * function pointer field
1291 */
1292 if (prog->attach_btf_id != kern_type_id) {
1293 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1294 map->name, mname, prog->name, prog->sec_name, prog->type,
1295 prog->attach_btf_id, kern_type_id);
1296 return -EINVAL;
1297 }
1298 if (prog->expected_attach_type != kern_member_idx) {
1299 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1300 map->name, mname, prog->name, prog->sec_name, prog->type,
1301 prog->expected_attach_type, kern_member_idx);
1302 return -EINVAL;
1303 }
1304
1305 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1306
1307 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1308 map->name, mname, prog->name, moff,
1309 kern_moff);
1310
1311 continue;
1312 }
1313
1314 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1315 if (kern_msize < 0 || msize != kern_msize) {
1316 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1317 map->name, mname, (ssize_t)msize,
1318 (ssize_t)kern_msize);
1319 return -ENOTSUP;
1320 }
1321
1322 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1323 map->name, mname, (unsigned int)msize,
1324 moff, kern_moff);
1325 memcpy(kern_mdata, mdata, msize);
1326 }
1327
1328 return 0;
1329 }
1330
bpf_object__init_kern_struct_ops_maps(struct bpf_object * obj)1331 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1332 {
1333 struct bpf_map *map;
1334 size_t i;
1335 int err;
1336
1337 for (i = 0; i < obj->nr_maps; i++) {
1338 map = &obj->maps[i];
1339
1340 if (!bpf_map__is_struct_ops(map))
1341 continue;
1342
1343 if (!map->autocreate)
1344 continue;
1345
1346 err = bpf_map__init_kern_struct_ops(map);
1347 if (err)
1348 return err;
1349 }
1350
1351 return 0;
1352 }
1353
init_struct_ops_maps(struct bpf_object * obj,const char * sec_name,int shndx,Elf_Data * data)1354 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1355 int shndx, Elf_Data *data)
1356 {
1357 const struct btf_type *type, *datasec;
1358 const struct btf_var_secinfo *vsi;
1359 struct bpf_struct_ops *st_ops;
1360 const char *tname, *var_name;
1361 __s32 type_id, datasec_id;
1362 const struct btf *btf;
1363 struct bpf_map *map;
1364 __u32 i;
1365
1366 if (shndx == -1)
1367 return 0;
1368
1369 btf = obj->btf;
1370 datasec_id = btf__find_by_name_kind(btf, sec_name,
1371 BTF_KIND_DATASEC);
1372 if (datasec_id < 0) {
1373 pr_warn("struct_ops init: DATASEC %s not found\n",
1374 sec_name);
1375 return -EINVAL;
1376 }
1377
1378 datasec = btf__type_by_id(btf, datasec_id);
1379 vsi = btf_var_secinfos(datasec);
1380 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1381 type = btf__type_by_id(obj->btf, vsi->type);
1382 var_name = btf__name_by_offset(obj->btf, type->name_off);
1383
1384 type_id = btf__resolve_type(obj->btf, vsi->type);
1385 if (type_id < 0) {
1386 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1387 vsi->type, sec_name);
1388 return -EINVAL;
1389 }
1390
1391 type = btf__type_by_id(obj->btf, type_id);
1392 tname = btf__name_by_offset(obj->btf, type->name_off);
1393 if (!tname[0]) {
1394 pr_warn("struct_ops init: anonymous type is not supported\n");
1395 return -ENOTSUP;
1396 }
1397 if (!btf_is_struct(type)) {
1398 pr_warn("struct_ops init: %s is not a struct\n", tname);
1399 return -EINVAL;
1400 }
1401
1402 map = bpf_object__add_map(obj);
1403 if (IS_ERR(map))
1404 return PTR_ERR(map);
1405
1406 map->sec_idx = shndx;
1407 map->sec_offset = vsi->offset;
1408 map->name = strdup(var_name);
1409 if (!map->name)
1410 return -ENOMEM;
1411 map->btf_value_type_id = type_id;
1412
1413 /* Follow same convention as for programs autoload:
1414 * SEC("?.struct_ops") means map is not created by default.
1415 */
1416 if (sec_name[0] == '?') {
1417 map->autocreate = false;
1418 /* from now on forget there was ? in section name */
1419 sec_name++;
1420 }
1421
1422 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1423 map->def.key_size = sizeof(int);
1424 map->def.value_size = type->size;
1425 map->def.max_entries = 1;
1426 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1427 map->autoattach = true;
1428
1429 map->st_ops = calloc(1, sizeof(*map->st_ops));
1430 if (!map->st_ops)
1431 return -ENOMEM;
1432 st_ops = map->st_ops;
1433 st_ops->data = malloc(type->size);
1434 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1435 st_ops->kern_func_off = malloc(btf_vlen(type) *
1436 sizeof(*st_ops->kern_func_off));
1437 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1438 return -ENOMEM;
1439
1440 if (vsi->offset + type->size > data->d_size) {
1441 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1442 var_name, sec_name);
1443 return -EINVAL;
1444 }
1445
1446 memcpy(st_ops->data,
1447 data->d_buf + vsi->offset,
1448 type->size);
1449 st_ops->type_id = type_id;
1450
1451 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1452 tname, type_id, var_name, vsi->offset);
1453 }
1454
1455 return 0;
1456 }
1457
bpf_object_init_struct_ops(struct bpf_object * obj)1458 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1459 {
1460 const char *sec_name;
1461 int sec_idx, err;
1462
1463 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1464 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1465
1466 if (desc->sec_type != SEC_ST_OPS)
1467 continue;
1468
1469 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1470 if (!sec_name)
1471 return -LIBBPF_ERRNO__FORMAT;
1472
1473 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1474 if (err)
1475 return err;
1476 }
1477
1478 return 0;
1479 }
1480
bpf_object__new(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name)1481 static struct bpf_object *bpf_object__new(const char *path,
1482 const void *obj_buf,
1483 size_t obj_buf_sz,
1484 const char *obj_name)
1485 {
1486 struct bpf_object *obj;
1487 char *end;
1488
1489 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1490 if (!obj) {
1491 pr_warn("alloc memory failed for %s\n", path);
1492 return ERR_PTR(-ENOMEM);
1493 }
1494
1495 strcpy(obj->path, path);
1496 if (obj_name) {
1497 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1498 } else {
1499 /* Using basename() GNU version which doesn't modify arg. */
1500 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1501 end = strchr(obj->name, '.');
1502 if (end)
1503 *end = 0;
1504 }
1505
1506 obj->efile.fd = -1;
1507 /*
1508 * Caller of this function should also call
1509 * bpf_object__elf_finish() after data collection to return
1510 * obj_buf to user. If not, we should duplicate the buffer to
1511 * avoid user freeing them before elf finish.
1512 */
1513 obj->efile.obj_buf = obj_buf;
1514 obj->efile.obj_buf_sz = obj_buf_sz;
1515 obj->efile.btf_maps_shndx = -1;
1516 obj->kconfig_map_idx = -1;
1517 obj->arena_map_idx = -1;
1518
1519 obj->kern_version = get_kernel_version();
1520 obj->state = OBJ_OPEN;
1521
1522 return obj;
1523 }
1524
bpf_object__elf_finish(struct bpf_object * obj)1525 static void bpf_object__elf_finish(struct bpf_object *obj)
1526 {
1527 if (!obj->efile.elf)
1528 return;
1529
1530 elf_end(obj->efile.elf);
1531 obj->efile.elf = NULL;
1532 obj->efile.ehdr = NULL;
1533 obj->efile.symbols = NULL;
1534 obj->efile.arena_data = NULL;
1535
1536 zfree(&obj->efile.secs);
1537 obj->efile.sec_cnt = 0;
1538 zclose(obj->efile.fd);
1539 obj->efile.obj_buf = NULL;
1540 obj->efile.obj_buf_sz = 0;
1541 }
1542
bpf_object__elf_init(struct bpf_object * obj)1543 static int bpf_object__elf_init(struct bpf_object *obj)
1544 {
1545 Elf64_Ehdr *ehdr;
1546 int err = 0;
1547 Elf *elf;
1548
1549 if (obj->efile.elf) {
1550 pr_warn("elf: init internal error\n");
1551 return -LIBBPF_ERRNO__LIBELF;
1552 }
1553
1554 if (obj->efile.obj_buf_sz > 0) {
1555 /* obj_buf should have been validated by bpf_object__open_mem(). */
1556 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1557 } else {
1558 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1559 if (obj->efile.fd < 0) {
1560 err = -errno;
1561 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err));
1562 return err;
1563 }
1564
1565 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1566 }
1567
1568 if (!elf) {
1569 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1570 err = -LIBBPF_ERRNO__LIBELF;
1571 goto errout;
1572 }
1573
1574 obj->efile.elf = elf;
1575
1576 if (elf_kind(elf) != ELF_K_ELF) {
1577 err = -LIBBPF_ERRNO__FORMAT;
1578 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1579 goto errout;
1580 }
1581
1582 if (gelf_getclass(elf) != ELFCLASS64) {
1583 err = -LIBBPF_ERRNO__FORMAT;
1584 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1585 goto errout;
1586 }
1587
1588 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1589 if (!obj->efile.ehdr) {
1590 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1591 err = -LIBBPF_ERRNO__FORMAT;
1592 goto errout;
1593 }
1594
1595 /* Validate ELF object endianness... */
1596 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
1597 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
1598 err = -LIBBPF_ERRNO__ENDIAN;
1599 pr_warn("elf: '%s' has unknown byte order\n", obj->path);
1600 goto errout;
1601 }
1602 /* and save after bpf_object_open() frees ELF data */
1603 obj->byteorder = ehdr->e_ident[EI_DATA];
1604
1605 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1606 pr_warn("elf: failed to get section names section index for %s: %s\n",
1607 obj->path, elf_errmsg(-1));
1608 err = -LIBBPF_ERRNO__FORMAT;
1609 goto errout;
1610 }
1611
1612 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1613 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1614 pr_warn("elf: failed to get section names strings from %s: %s\n",
1615 obj->path, elf_errmsg(-1));
1616 err = -LIBBPF_ERRNO__FORMAT;
1617 goto errout;
1618 }
1619
1620 /* Old LLVM set e_machine to EM_NONE */
1621 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1622 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1623 err = -LIBBPF_ERRNO__FORMAT;
1624 goto errout;
1625 }
1626
1627 return 0;
1628 errout:
1629 bpf_object__elf_finish(obj);
1630 return err;
1631 }
1632
is_native_endianness(struct bpf_object * obj)1633 static bool is_native_endianness(struct bpf_object *obj)
1634 {
1635 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1636 return obj->byteorder == ELFDATA2LSB;
1637 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1638 return obj->byteorder == ELFDATA2MSB;
1639 #else
1640 # error "Unrecognized __BYTE_ORDER__"
1641 #endif
1642 }
1643
1644 static int
bpf_object__init_license(struct bpf_object * obj,void * data,size_t size)1645 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1646 {
1647 if (!data) {
1648 pr_warn("invalid license section in %s\n", obj->path);
1649 return -LIBBPF_ERRNO__FORMAT;
1650 }
1651 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1652 * go over allowed ELF data section buffer
1653 */
1654 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1655 pr_debug("license of %s is %s\n", obj->path, obj->license);
1656 return 0;
1657 }
1658
1659 static int
bpf_object__init_kversion(struct bpf_object * obj,void * data,size_t size)1660 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1661 {
1662 __u32 kver;
1663
1664 if (!data || size != sizeof(kver)) {
1665 pr_warn("invalid kver section in %s\n", obj->path);
1666 return -LIBBPF_ERRNO__FORMAT;
1667 }
1668 memcpy(&kver, data, sizeof(kver));
1669 obj->kern_version = kver;
1670 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1671 return 0;
1672 }
1673
bpf_map_type__is_map_in_map(enum bpf_map_type type)1674 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1675 {
1676 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1677 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1678 return true;
1679 return false;
1680 }
1681
find_elf_sec_sz(const struct bpf_object * obj,const char * name,__u32 * size)1682 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1683 {
1684 Elf_Data *data;
1685 Elf_Scn *scn;
1686
1687 if (!name)
1688 return -EINVAL;
1689
1690 scn = elf_sec_by_name(obj, name);
1691 data = elf_sec_data(obj, scn);
1692 if (data) {
1693 *size = data->d_size;
1694 return 0; /* found it */
1695 }
1696
1697 return -ENOENT;
1698 }
1699
find_elf_var_sym(const struct bpf_object * obj,const char * name)1700 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1701 {
1702 Elf_Data *symbols = obj->efile.symbols;
1703 const char *sname;
1704 size_t si;
1705
1706 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1707 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1708
1709 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1710 continue;
1711
1712 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1713 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1714 continue;
1715
1716 sname = elf_sym_str(obj, sym->st_name);
1717 if (!sname) {
1718 pr_warn("failed to get sym name string for var %s\n", name);
1719 return ERR_PTR(-EIO);
1720 }
1721 if (strcmp(name, sname) == 0)
1722 return sym;
1723 }
1724
1725 return ERR_PTR(-ENOENT);
1726 }
1727
1728 #ifndef MFD_CLOEXEC
1729 #define MFD_CLOEXEC 0x0001U
1730 #endif
1731 #ifndef MFD_NOEXEC_SEAL
1732 #define MFD_NOEXEC_SEAL 0x0008U
1733 #endif
1734
create_placeholder_fd(void)1735 static int create_placeholder_fd(void)
1736 {
1737 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL;
1738 const char *name = "libbpf-placeholder-fd";
1739 int fd;
1740
1741 fd = ensure_good_fd(sys_memfd_create(name, flags));
1742 if (fd >= 0)
1743 return fd;
1744 else if (errno != EINVAL)
1745 return -errno;
1746
1747 /* Possibly running on kernel without MFD_NOEXEC_SEAL */
1748 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL));
1749 if (fd < 0)
1750 return -errno;
1751 return fd;
1752 }
1753
bpf_object__add_map(struct bpf_object * obj)1754 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1755 {
1756 struct bpf_map *map;
1757 int err;
1758
1759 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1760 sizeof(*obj->maps), obj->nr_maps + 1);
1761 if (err)
1762 return ERR_PTR(err);
1763
1764 map = &obj->maps[obj->nr_maps++];
1765 map->obj = obj;
1766 /* Preallocate map FD without actually creating BPF map just yet.
1767 * These map FD "placeholders" will be reused later without changing
1768 * FD value when map is actually created in the kernel.
1769 *
1770 * This is useful to be able to perform BPF program relocations
1771 * without having to create BPF maps before that step. This allows us
1772 * to finalize and load BTF very late in BPF object's loading phase,
1773 * right before BPF maps have to be created and BPF programs have to
1774 * be loaded. By having these map FD placeholders we can perform all
1775 * the sanitizations, relocations, and any other adjustments before we
1776 * start creating actual BPF kernel objects (BTF, maps, progs).
1777 */
1778 map->fd = create_placeholder_fd();
1779 if (map->fd < 0)
1780 return ERR_PTR(map->fd);
1781 map->inner_map_fd = -1;
1782 map->autocreate = true;
1783
1784 return map;
1785 }
1786
array_map_mmap_sz(unsigned int value_sz,unsigned int max_entries)1787 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1788 {
1789 const long page_sz = sysconf(_SC_PAGE_SIZE);
1790 size_t map_sz;
1791
1792 map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1793 map_sz = roundup(map_sz, page_sz);
1794 return map_sz;
1795 }
1796
bpf_map_mmap_sz(const struct bpf_map * map)1797 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1798 {
1799 const long page_sz = sysconf(_SC_PAGE_SIZE);
1800
1801 switch (map->def.type) {
1802 case BPF_MAP_TYPE_ARRAY:
1803 return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1804 case BPF_MAP_TYPE_ARENA:
1805 return page_sz * map->def.max_entries;
1806 default:
1807 return 0; /* not supported */
1808 }
1809 }
1810
bpf_map_mmap_resize(struct bpf_map * map,size_t old_sz,size_t new_sz)1811 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1812 {
1813 void *mmaped;
1814
1815 if (!map->mmaped)
1816 return -EINVAL;
1817
1818 if (old_sz == new_sz)
1819 return 0;
1820
1821 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1822 if (mmaped == MAP_FAILED)
1823 return -errno;
1824
1825 memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1826 munmap(map->mmaped, old_sz);
1827 map->mmaped = mmaped;
1828 return 0;
1829 }
1830
internal_map_name(struct bpf_object * obj,const char * real_name)1831 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1832 {
1833 char map_name[BPF_OBJ_NAME_LEN], *p;
1834 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1835
1836 /* This is one of the more confusing parts of libbpf for various
1837 * reasons, some of which are historical. The original idea for naming
1838 * internal names was to include as much of BPF object name prefix as
1839 * possible, so that it can be distinguished from similar internal
1840 * maps of a different BPF object.
1841 * As an example, let's say we have bpf_object named 'my_object_name'
1842 * and internal map corresponding to '.rodata' ELF section. The final
1843 * map name advertised to user and to the kernel will be
1844 * 'my_objec.rodata', taking first 8 characters of object name and
1845 * entire 7 characters of '.rodata'.
1846 * Somewhat confusingly, if internal map ELF section name is shorter
1847 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1848 * for the suffix, even though we only have 4 actual characters, and
1849 * resulting map will be called 'my_objec.bss', not even using all 15
1850 * characters allowed by the kernel. Oh well, at least the truncated
1851 * object name is somewhat consistent in this case. But if the map
1852 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1853 * (8 chars) and thus will be left with only first 7 characters of the
1854 * object name ('my_obje'). Happy guessing, user, that the final map
1855 * name will be "my_obje.kconfig".
1856 * Now, with libbpf starting to support arbitrarily named .rodata.*
1857 * and .data.* data sections, it's possible that ELF section name is
1858 * longer than allowed 15 chars, so we now need to be careful to take
1859 * only up to 15 first characters of ELF name, taking no BPF object
1860 * name characters at all. So '.rodata.abracadabra' will result in
1861 * '.rodata.abracad' kernel and user-visible name.
1862 * We need to keep this convoluted logic intact for .data, .bss and
1863 * .rodata maps, but for new custom .data.custom and .rodata.custom
1864 * maps we use their ELF names as is, not prepending bpf_object name
1865 * in front. We still need to truncate them to 15 characters for the
1866 * kernel. Full name can be recovered for such maps by using DATASEC
1867 * BTF type associated with such map's value type, though.
1868 */
1869 if (sfx_len >= BPF_OBJ_NAME_LEN)
1870 sfx_len = BPF_OBJ_NAME_LEN - 1;
1871
1872 /* if there are two or more dots in map name, it's a custom dot map */
1873 if (strchr(real_name + 1, '.') != NULL)
1874 pfx_len = 0;
1875 else
1876 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1877
1878 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1879 sfx_len, real_name);
1880
1881 /* sanities map name to characters allowed by kernel */
1882 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1883 if (!isalnum(*p) && *p != '_' && *p != '.')
1884 *p = '_';
1885
1886 return strdup(map_name);
1887 }
1888
1889 static int
1890 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1891
1892 /* Internal BPF map is mmap()'able only if at least one of corresponding
1893 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1894 * variable and it's not marked as __hidden (which turns it into, effectively,
1895 * a STATIC variable).
1896 */
map_is_mmapable(struct bpf_object * obj,struct bpf_map * map)1897 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1898 {
1899 const struct btf_type *t, *vt;
1900 struct btf_var_secinfo *vsi;
1901 int i, n;
1902
1903 if (!map->btf_value_type_id)
1904 return false;
1905
1906 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1907 if (!btf_is_datasec(t))
1908 return false;
1909
1910 vsi = btf_var_secinfos(t);
1911 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1912 vt = btf__type_by_id(obj->btf, vsi->type);
1913 if (!btf_is_var(vt))
1914 continue;
1915
1916 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1917 return true;
1918 }
1919
1920 return false;
1921 }
1922
1923 static int
bpf_object__init_internal_map(struct bpf_object * obj,enum libbpf_map_type type,const char * real_name,int sec_idx,void * data,size_t data_sz)1924 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1925 const char *real_name, int sec_idx, void *data, size_t data_sz)
1926 {
1927 struct bpf_map_def *def;
1928 struct bpf_map *map;
1929 size_t mmap_sz;
1930 int err;
1931
1932 map = bpf_object__add_map(obj);
1933 if (IS_ERR(map))
1934 return PTR_ERR(map);
1935
1936 map->libbpf_type = type;
1937 map->sec_idx = sec_idx;
1938 map->sec_offset = 0;
1939 map->real_name = strdup(real_name);
1940 map->name = internal_map_name(obj, real_name);
1941 if (!map->real_name || !map->name) {
1942 zfree(&map->real_name);
1943 zfree(&map->name);
1944 return -ENOMEM;
1945 }
1946
1947 def = &map->def;
1948 def->type = BPF_MAP_TYPE_ARRAY;
1949 def->key_size = sizeof(int);
1950 def->value_size = data_sz;
1951 def->max_entries = 1;
1952 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1953 ? BPF_F_RDONLY_PROG : 0;
1954
1955 /* failures are fine because of maps like .rodata.str1.1 */
1956 (void) map_fill_btf_type_info(obj, map);
1957
1958 if (map_is_mmapable(obj, map))
1959 def->map_flags |= BPF_F_MMAPABLE;
1960
1961 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1962 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1963
1964 mmap_sz = bpf_map_mmap_sz(map);
1965 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1966 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1967 if (map->mmaped == MAP_FAILED) {
1968 err = -errno;
1969 map->mmaped = NULL;
1970 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err));
1971 zfree(&map->real_name);
1972 zfree(&map->name);
1973 return err;
1974 }
1975
1976 if (data)
1977 memcpy(map->mmaped, data, data_sz);
1978
1979 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1980 return 0;
1981 }
1982
bpf_object__init_global_data_maps(struct bpf_object * obj)1983 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1984 {
1985 struct elf_sec_desc *sec_desc;
1986 const char *sec_name;
1987 int err = 0, sec_idx;
1988
1989 /*
1990 * Populate obj->maps with libbpf internal maps.
1991 */
1992 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1993 sec_desc = &obj->efile.secs[sec_idx];
1994
1995 /* Skip recognized sections with size 0. */
1996 if (!sec_desc->data || sec_desc->data->d_size == 0)
1997 continue;
1998
1999 switch (sec_desc->sec_type) {
2000 case SEC_DATA:
2001 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2002 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
2003 sec_name, sec_idx,
2004 sec_desc->data->d_buf,
2005 sec_desc->data->d_size);
2006 break;
2007 case SEC_RODATA:
2008 obj->has_rodata = true;
2009 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2010 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
2011 sec_name, sec_idx,
2012 sec_desc->data->d_buf,
2013 sec_desc->data->d_size);
2014 break;
2015 case SEC_BSS:
2016 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
2017 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
2018 sec_name, sec_idx,
2019 NULL,
2020 sec_desc->data->d_size);
2021 break;
2022 default:
2023 /* skip */
2024 break;
2025 }
2026 if (err)
2027 return err;
2028 }
2029 return 0;
2030 }
2031
2032
find_extern_by_name(const struct bpf_object * obj,const void * name)2033 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
2034 const void *name)
2035 {
2036 int i;
2037
2038 for (i = 0; i < obj->nr_extern; i++) {
2039 if (strcmp(obj->externs[i].name, name) == 0)
2040 return &obj->externs[i];
2041 }
2042 return NULL;
2043 }
2044
find_extern_by_name_with_len(const struct bpf_object * obj,const void * name,int len)2045 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj,
2046 const void *name, int len)
2047 {
2048 const char *ext_name;
2049 int i;
2050
2051 for (i = 0; i < obj->nr_extern; i++) {
2052 ext_name = obj->externs[i].name;
2053 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0)
2054 return &obj->externs[i];
2055 }
2056 return NULL;
2057 }
2058
set_kcfg_value_tri(struct extern_desc * ext,void * ext_val,char value)2059 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
2060 char value)
2061 {
2062 switch (ext->kcfg.type) {
2063 case KCFG_BOOL:
2064 if (value == 'm') {
2065 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
2066 ext->name, value);
2067 return -EINVAL;
2068 }
2069 *(bool *)ext_val = value == 'y' ? true : false;
2070 break;
2071 case KCFG_TRISTATE:
2072 if (value == 'y')
2073 *(enum libbpf_tristate *)ext_val = TRI_YES;
2074 else if (value == 'm')
2075 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
2076 else /* value == 'n' */
2077 *(enum libbpf_tristate *)ext_val = TRI_NO;
2078 break;
2079 case KCFG_CHAR:
2080 *(char *)ext_val = value;
2081 break;
2082 case KCFG_UNKNOWN:
2083 case KCFG_INT:
2084 case KCFG_CHAR_ARR:
2085 default:
2086 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
2087 ext->name, value);
2088 return -EINVAL;
2089 }
2090 ext->is_set = true;
2091 return 0;
2092 }
2093
set_kcfg_value_str(struct extern_desc * ext,char * ext_val,const char * value)2094 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
2095 const char *value)
2096 {
2097 size_t len;
2098
2099 if (ext->kcfg.type != KCFG_CHAR_ARR) {
2100 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
2101 ext->name, value);
2102 return -EINVAL;
2103 }
2104
2105 len = strlen(value);
2106 if (len < 2 || value[len - 1] != '"') {
2107 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2108 ext->name, value);
2109 return -EINVAL;
2110 }
2111
2112 /* strip quotes */
2113 len -= 2;
2114 if (len >= ext->kcfg.sz) {
2115 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2116 ext->name, value, len, ext->kcfg.sz - 1);
2117 len = ext->kcfg.sz - 1;
2118 }
2119 memcpy(ext_val, value + 1, len);
2120 ext_val[len] = '\0';
2121 ext->is_set = true;
2122 return 0;
2123 }
2124
parse_u64(const char * value,__u64 * res)2125 static int parse_u64(const char *value, __u64 *res)
2126 {
2127 char *value_end;
2128 int err;
2129
2130 errno = 0;
2131 *res = strtoull(value, &value_end, 0);
2132 if (errno) {
2133 err = -errno;
2134 pr_warn("failed to parse '%s': %s\n", value, errstr(err));
2135 return err;
2136 }
2137 if (*value_end) {
2138 pr_warn("failed to parse '%s' as integer completely\n", value);
2139 return -EINVAL;
2140 }
2141 return 0;
2142 }
2143
is_kcfg_value_in_range(const struct extern_desc * ext,__u64 v)2144 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2145 {
2146 int bit_sz = ext->kcfg.sz * 8;
2147
2148 if (ext->kcfg.sz == 8)
2149 return true;
2150
2151 /* Validate that value stored in u64 fits in integer of `ext->sz`
2152 * bytes size without any loss of information. If the target integer
2153 * is signed, we rely on the following limits of integer type of
2154 * Y bits and subsequent transformation:
2155 *
2156 * -2^(Y-1) <= X <= 2^(Y-1) - 1
2157 * 0 <= X + 2^(Y-1) <= 2^Y - 1
2158 * 0 <= X + 2^(Y-1) < 2^Y
2159 *
2160 * For unsigned target integer, check that all the (64 - Y) bits are
2161 * zero.
2162 */
2163 if (ext->kcfg.is_signed)
2164 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2165 else
2166 return (v >> bit_sz) == 0;
2167 }
2168
set_kcfg_value_num(struct extern_desc * ext,void * ext_val,__u64 value)2169 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2170 __u64 value)
2171 {
2172 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2173 ext->kcfg.type != KCFG_BOOL) {
2174 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2175 ext->name, (unsigned long long)value);
2176 return -EINVAL;
2177 }
2178 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2179 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2180 ext->name, (unsigned long long)value);
2181 return -EINVAL;
2182
2183 }
2184 if (!is_kcfg_value_in_range(ext, value)) {
2185 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2186 ext->name, (unsigned long long)value, ext->kcfg.sz);
2187 return -ERANGE;
2188 }
2189 switch (ext->kcfg.sz) {
2190 case 1:
2191 *(__u8 *)ext_val = value;
2192 break;
2193 case 2:
2194 *(__u16 *)ext_val = value;
2195 break;
2196 case 4:
2197 *(__u32 *)ext_val = value;
2198 break;
2199 case 8:
2200 *(__u64 *)ext_val = value;
2201 break;
2202 default:
2203 return -EINVAL;
2204 }
2205 ext->is_set = true;
2206 return 0;
2207 }
2208
bpf_object__process_kconfig_line(struct bpf_object * obj,char * buf,void * data)2209 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2210 char *buf, void *data)
2211 {
2212 struct extern_desc *ext;
2213 char *sep, *value;
2214 int len, err = 0;
2215 void *ext_val;
2216 __u64 num;
2217
2218 if (!str_has_pfx(buf, "CONFIG_"))
2219 return 0;
2220
2221 sep = strchr(buf, '=');
2222 if (!sep) {
2223 pr_warn("failed to parse '%s': no separator\n", buf);
2224 return -EINVAL;
2225 }
2226
2227 /* Trim ending '\n' */
2228 len = strlen(buf);
2229 if (buf[len - 1] == '\n')
2230 buf[len - 1] = '\0';
2231 /* Split on '=' and ensure that a value is present. */
2232 *sep = '\0';
2233 if (!sep[1]) {
2234 *sep = '=';
2235 pr_warn("failed to parse '%s': no value\n", buf);
2236 return -EINVAL;
2237 }
2238
2239 ext = find_extern_by_name(obj, buf);
2240 if (!ext || ext->is_set)
2241 return 0;
2242
2243 ext_val = data + ext->kcfg.data_off;
2244 value = sep + 1;
2245
2246 switch (*value) {
2247 case 'y': case 'n': case 'm':
2248 err = set_kcfg_value_tri(ext, ext_val, *value);
2249 break;
2250 case '"':
2251 err = set_kcfg_value_str(ext, ext_val, value);
2252 break;
2253 default:
2254 /* assume integer */
2255 err = parse_u64(value, &num);
2256 if (err) {
2257 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2258 return err;
2259 }
2260 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2261 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2262 return -EINVAL;
2263 }
2264 err = set_kcfg_value_num(ext, ext_val, num);
2265 break;
2266 }
2267 if (err)
2268 return err;
2269 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2270 return 0;
2271 }
2272
bpf_object__read_kconfig_file(struct bpf_object * obj,void * data)2273 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2274 {
2275 char buf[PATH_MAX];
2276 struct utsname uts;
2277 int len, err = 0;
2278 gzFile file;
2279
2280 uname(&uts);
2281 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2282 if (len < 0)
2283 return -EINVAL;
2284 else if (len >= PATH_MAX)
2285 return -ENAMETOOLONG;
2286
2287 /* gzopen also accepts uncompressed files. */
2288 file = gzopen(buf, "re");
2289 if (!file)
2290 file = gzopen("/proc/config.gz", "re");
2291
2292 if (!file) {
2293 pr_warn("failed to open system Kconfig\n");
2294 return -ENOENT;
2295 }
2296
2297 while (gzgets(file, buf, sizeof(buf))) {
2298 err = bpf_object__process_kconfig_line(obj, buf, data);
2299 if (err) {
2300 pr_warn("error parsing system Kconfig line '%s': %s\n",
2301 buf, errstr(err));
2302 goto out;
2303 }
2304 }
2305
2306 out:
2307 gzclose(file);
2308 return err;
2309 }
2310
bpf_object__read_kconfig_mem(struct bpf_object * obj,const char * config,void * data)2311 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2312 const char *config, void *data)
2313 {
2314 char buf[PATH_MAX];
2315 int err = 0;
2316 FILE *file;
2317
2318 file = fmemopen((void *)config, strlen(config), "r");
2319 if (!file) {
2320 err = -errno;
2321 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err));
2322 return err;
2323 }
2324
2325 while (fgets(buf, sizeof(buf), file)) {
2326 err = bpf_object__process_kconfig_line(obj, buf, data);
2327 if (err) {
2328 pr_warn("error parsing in-memory Kconfig line '%s': %s\n",
2329 buf, errstr(err));
2330 break;
2331 }
2332 }
2333
2334 fclose(file);
2335 return err;
2336 }
2337
bpf_object__init_kconfig_map(struct bpf_object * obj)2338 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2339 {
2340 struct extern_desc *last_ext = NULL, *ext;
2341 size_t map_sz;
2342 int i, err;
2343
2344 for (i = 0; i < obj->nr_extern; i++) {
2345 ext = &obj->externs[i];
2346 if (ext->type == EXT_KCFG)
2347 last_ext = ext;
2348 }
2349
2350 if (!last_ext)
2351 return 0;
2352
2353 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2354 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2355 ".kconfig", obj->efile.symbols_shndx,
2356 NULL, map_sz);
2357 if (err)
2358 return err;
2359
2360 obj->kconfig_map_idx = obj->nr_maps - 1;
2361
2362 return 0;
2363 }
2364
2365 const struct btf_type *
skip_mods_and_typedefs(const struct btf * btf,__u32 id,__u32 * res_id)2366 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2367 {
2368 const struct btf_type *t = btf__type_by_id(btf, id);
2369
2370 if (res_id)
2371 *res_id = id;
2372
2373 while (btf_is_mod(t) || btf_is_typedef(t)) {
2374 if (res_id)
2375 *res_id = t->type;
2376 t = btf__type_by_id(btf, t->type);
2377 }
2378
2379 return t;
2380 }
2381
2382 static const struct btf_type *
resolve_func_ptr(const struct btf * btf,__u32 id,__u32 * res_id)2383 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2384 {
2385 const struct btf_type *t;
2386
2387 t = skip_mods_and_typedefs(btf, id, NULL);
2388 if (!btf_is_ptr(t))
2389 return NULL;
2390
2391 t = skip_mods_and_typedefs(btf, t->type, res_id);
2392
2393 return btf_is_func_proto(t) ? t : NULL;
2394 }
2395
__btf_kind_str(__u16 kind)2396 static const char *__btf_kind_str(__u16 kind)
2397 {
2398 switch (kind) {
2399 case BTF_KIND_UNKN: return "void";
2400 case BTF_KIND_INT: return "int";
2401 case BTF_KIND_PTR: return "ptr";
2402 case BTF_KIND_ARRAY: return "array";
2403 case BTF_KIND_STRUCT: return "struct";
2404 case BTF_KIND_UNION: return "union";
2405 case BTF_KIND_ENUM: return "enum";
2406 case BTF_KIND_FWD: return "fwd";
2407 case BTF_KIND_TYPEDEF: return "typedef";
2408 case BTF_KIND_VOLATILE: return "volatile";
2409 case BTF_KIND_CONST: return "const";
2410 case BTF_KIND_RESTRICT: return "restrict";
2411 case BTF_KIND_FUNC: return "func";
2412 case BTF_KIND_FUNC_PROTO: return "func_proto";
2413 case BTF_KIND_VAR: return "var";
2414 case BTF_KIND_DATASEC: return "datasec";
2415 case BTF_KIND_FLOAT: return "float";
2416 case BTF_KIND_DECL_TAG: return "decl_tag";
2417 case BTF_KIND_TYPE_TAG: return "type_tag";
2418 case BTF_KIND_ENUM64: return "enum64";
2419 default: return "unknown";
2420 }
2421 }
2422
btf_kind_str(const struct btf_type * t)2423 const char *btf_kind_str(const struct btf_type *t)
2424 {
2425 return __btf_kind_str(btf_kind(t));
2426 }
2427
2428 /*
2429 * Fetch integer attribute of BTF map definition. Such attributes are
2430 * represented using a pointer to an array, in which dimensionality of array
2431 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2432 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2433 * type definition, while using only sizeof(void *) space in ELF data section.
2434 */
get_map_field_int(const char * map_name,const struct btf * btf,const struct btf_member * m,__u32 * res)2435 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2436 const struct btf_member *m, __u32 *res)
2437 {
2438 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2439 const char *name = btf__name_by_offset(btf, m->name_off);
2440 const struct btf_array *arr_info;
2441 const struct btf_type *arr_t;
2442
2443 if (!btf_is_ptr(t)) {
2444 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2445 map_name, name, btf_kind_str(t));
2446 return false;
2447 }
2448
2449 arr_t = btf__type_by_id(btf, t->type);
2450 if (!arr_t) {
2451 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2452 map_name, name, t->type);
2453 return false;
2454 }
2455 if (!btf_is_array(arr_t)) {
2456 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2457 map_name, name, btf_kind_str(arr_t));
2458 return false;
2459 }
2460 arr_info = btf_array(arr_t);
2461 *res = arr_info->nelems;
2462 return true;
2463 }
2464
get_map_field_long(const char * map_name,const struct btf * btf,const struct btf_member * m,__u64 * res)2465 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2466 const struct btf_member *m, __u64 *res)
2467 {
2468 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2469 const char *name = btf__name_by_offset(btf, m->name_off);
2470
2471 if (btf_is_ptr(t)) {
2472 __u32 res32;
2473 bool ret;
2474
2475 ret = get_map_field_int(map_name, btf, m, &res32);
2476 if (ret)
2477 *res = (__u64)res32;
2478 return ret;
2479 }
2480
2481 if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2482 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2483 map_name, name, btf_kind_str(t));
2484 return false;
2485 }
2486
2487 if (btf_vlen(t) != 1) {
2488 pr_warn("map '%s': attr '%s': invalid __ulong\n",
2489 map_name, name);
2490 return false;
2491 }
2492
2493 if (btf_is_enum(t)) {
2494 const struct btf_enum *e = btf_enum(t);
2495
2496 *res = e->val;
2497 } else {
2498 const struct btf_enum64 *e = btf_enum64(t);
2499
2500 *res = btf_enum64_value(e);
2501 }
2502 return true;
2503 }
2504
pathname_concat(char * buf,size_t buf_sz,const char * path,const char * name)2505 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2506 {
2507 int len;
2508
2509 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2510 if (len < 0)
2511 return -EINVAL;
2512 if (len >= buf_sz)
2513 return -ENAMETOOLONG;
2514
2515 return 0;
2516 }
2517
build_map_pin_path(struct bpf_map * map,const char * path)2518 static int build_map_pin_path(struct bpf_map *map, const char *path)
2519 {
2520 char buf[PATH_MAX];
2521 int err;
2522
2523 if (!path)
2524 path = BPF_FS_DEFAULT_PATH;
2525
2526 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2527 if (err)
2528 return err;
2529
2530 return bpf_map__set_pin_path(map, buf);
2531 }
2532
2533 /* should match definition in bpf_helpers.h */
2534 enum libbpf_pin_type {
2535 LIBBPF_PIN_NONE,
2536 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2537 LIBBPF_PIN_BY_NAME,
2538 };
2539
parse_btf_map_def(const char * map_name,struct btf * btf,const struct btf_type * def_t,bool strict,struct btf_map_def * map_def,struct btf_map_def * inner_def)2540 int parse_btf_map_def(const char *map_name, struct btf *btf,
2541 const struct btf_type *def_t, bool strict,
2542 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2543 {
2544 const struct btf_type *t;
2545 const struct btf_member *m;
2546 bool is_inner = inner_def == NULL;
2547 int vlen, i;
2548
2549 vlen = btf_vlen(def_t);
2550 m = btf_members(def_t);
2551 for (i = 0; i < vlen; i++, m++) {
2552 const char *name = btf__name_by_offset(btf, m->name_off);
2553
2554 if (!name) {
2555 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2556 return -EINVAL;
2557 }
2558 if (strcmp(name, "type") == 0) {
2559 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2560 return -EINVAL;
2561 map_def->parts |= MAP_DEF_MAP_TYPE;
2562 } else if (strcmp(name, "max_entries") == 0) {
2563 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2564 return -EINVAL;
2565 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2566 } else if (strcmp(name, "map_flags") == 0) {
2567 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2568 return -EINVAL;
2569 map_def->parts |= MAP_DEF_MAP_FLAGS;
2570 } else if (strcmp(name, "numa_node") == 0) {
2571 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2572 return -EINVAL;
2573 map_def->parts |= MAP_DEF_NUMA_NODE;
2574 } else if (strcmp(name, "key_size") == 0) {
2575 __u32 sz;
2576
2577 if (!get_map_field_int(map_name, btf, m, &sz))
2578 return -EINVAL;
2579 if (map_def->key_size && map_def->key_size != sz) {
2580 pr_warn("map '%s': conflicting key size %u != %u.\n",
2581 map_name, map_def->key_size, sz);
2582 return -EINVAL;
2583 }
2584 map_def->key_size = sz;
2585 map_def->parts |= MAP_DEF_KEY_SIZE;
2586 } else if (strcmp(name, "key") == 0) {
2587 __s64 sz;
2588
2589 t = btf__type_by_id(btf, m->type);
2590 if (!t) {
2591 pr_warn("map '%s': key type [%d] not found.\n",
2592 map_name, m->type);
2593 return -EINVAL;
2594 }
2595 if (!btf_is_ptr(t)) {
2596 pr_warn("map '%s': key spec is not PTR: %s.\n",
2597 map_name, btf_kind_str(t));
2598 return -EINVAL;
2599 }
2600 sz = btf__resolve_size(btf, t->type);
2601 if (sz < 0) {
2602 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2603 map_name, t->type, (ssize_t)sz);
2604 return sz;
2605 }
2606 if (map_def->key_size && map_def->key_size != sz) {
2607 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2608 map_name, map_def->key_size, (ssize_t)sz);
2609 return -EINVAL;
2610 }
2611 map_def->key_size = sz;
2612 map_def->key_type_id = t->type;
2613 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2614 } else if (strcmp(name, "value_size") == 0) {
2615 __u32 sz;
2616
2617 if (!get_map_field_int(map_name, btf, m, &sz))
2618 return -EINVAL;
2619 if (map_def->value_size && map_def->value_size != sz) {
2620 pr_warn("map '%s': conflicting value size %u != %u.\n",
2621 map_name, map_def->value_size, sz);
2622 return -EINVAL;
2623 }
2624 map_def->value_size = sz;
2625 map_def->parts |= MAP_DEF_VALUE_SIZE;
2626 } else if (strcmp(name, "value") == 0) {
2627 __s64 sz;
2628
2629 t = btf__type_by_id(btf, m->type);
2630 if (!t) {
2631 pr_warn("map '%s': value type [%d] not found.\n",
2632 map_name, m->type);
2633 return -EINVAL;
2634 }
2635 if (!btf_is_ptr(t)) {
2636 pr_warn("map '%s': value spec is not PTR: %s.\n",
2637 map_name, btf_kind_str(t));
2638 return -EINVAL;
2639 }
2640 sz = btf__resolve_size(btf, t->type);
2641 if (sz < 0) {
2642 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2643 map_name, t->type, (ssize_t)sz);
2644 return sz;
2645 }
2646 if (map_def->value_size && map_def->value_size != sz) {
2647 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2648 map_name, map_def->value_size, (ssize_t)sz);
2649 return -EINVAL;
2650 }
2651 map_def->value_size = sz;
2652 map_def->value_type_id = t->type;
2653 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2654 }
2655 else if (strcmp(name, "values") == 0) {
2656 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2657 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2658 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2659 char inner_map_name[128];
2660 int err;
2661
2662 if (is_inner) {
2663 pr_warn("map '%s': multi-level inner maps not supported.\n",
2664 map_name);
2665 return -ENOTSUP;
2666 }
2667 if (i != vlen - 1) {
2668 pr_warn("map '%s': '%s' member should be last.\n",
2669 map_name, name);
2670 return -EINVAL;
2671 }
2672 if (!is_map_in_map && !is_prog_array) {
2673 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2674 map_name);
2675 return -ENOTSUP;
2676 }
2677 if (map_def->value_size && map_def->value_size != 4) {
2678 pr_warn("map '%s': conflicting value size %u != 4.\n",
2679 map_name, map_def->value_size);
2680 return -EINVAL;
2681 }
2682 map_def->value_size = 4;
2683 t = btf__type_by_id(btf, m->type);
2684 if (!t) {
2685 pr_warn("map '%s': %s type [%d] not found.\n",
2686 map_name, desc, m->type);
2687 return -EINVAL;
2688 }
2689 if (!btf_is_array(t) || btf_array(t)->nelems) {
2690 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2691 map_name, desc);
2692 return -EINVAL;
2693 }
2694 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2695 if (!btf_is_ptr(t)) {
2696 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2697 map_name, desc, btf_kind_str(t));
2698 return -EINVAL;
2699 }
2700 t = skip_mods_and_typedefs(btf, t->type, NULL);
2701 if (is_prog_array) {
2702 if (!btf_is_func_proto(t)) {
2703 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2704 map_name, btf_kind_str(t));
2705 return -EINVAL;
2706 }
2707 continue;
2708 }
2709 if (!btf_is_struct(t)) {
2710 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2711 map_name, btf_kind_str(t));
2712 return -EINVAL;
2713 }
2714
2715 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2716 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2717 if (err)
2718 return err;
2719
2720 map_def->parts |= MAP_DEF_INNER_MAP;
2721 } else if (strcmp(name, "pinning") == 0) {
2722 __u32 val;
2723
2724 if (is_inner) {
2725 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2726 return -EINVAL;
2727 }
2728 if (!get_map_field_int(map_name, btf, m, &val))
2729 return -EINVAL;
2730 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2731 pr_warn("map '%s': invalid pinning value %u.\n",
2732 map_name, val);
2733 return -EINVAL;
2734 }
2735 map_def->pinning = val;
2736 map_def->parts |= MAP_DEF_PINNING;
2737 } else if (strcmp(name, "map_extra") == 0) {
2738 __u64 map_extra;
2739
2740 if (!get_map_field_long(map_name, btf, m, &map_extra))
2741 return -EINVAL;
2742 map_def->map_extra = map_extra;
2743 map_def->parts |= MAP_DEF_MAP_EXTRA;
2744 } else {
2745 if (strict) {
2746 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2747 return -ENOTSUP;
2748 }
2749 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2750 }
2751 }
2752
2753 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2754 pr_warn("map '%s': map type isn't specified.\n", map_name);
2755 return -EINVAL;
2756 }
2757
2758 return 0;
2759 }
2760
adjust_ringbuf_sz(size_t sz)2761 static size_t adjust_ringbuf_sz(size_t sz)
2762 {
2763 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2764 __u32 mul;
2765
2766 /* if user forgot to set any size, make sure they see error */
2767 if (sz == 0)
2768 return 0;
2769 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2770 * a power-of-2 multiple of kernel's page size. If user diligently
2771 * satisified these conditions, pass the size through.
2772 */
2773 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2774 return sz;
2775
2776 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2777 * user-set size to satisfy both user size request and kernel
2778 * requirements and substitute correct max_entries for map creation.
2779 */
2780 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2781 if (mul * page_sz > sz)
2782 return mul * page_sz;
2783 }
2784
2785 /* if it's impossible to satisfy the conditions (i.e., user size is
2786 * very close to UINT_MAX but is not a power-of-2 multiple of
2787 * page_size) then just return original size and let kernel reject it
2788 */
2789 return sz;
2790 }
2791
map_is_ringbuf(const struct bpf_map * map)2792 static bool map_is_ringbuf(const struct bpf_map *map)
2793 {
2794 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2795 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2796 }
2797
fill_map_from_def(struct bpf_map * map,const struct btf_map_def * def)2798 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2799 {
2800 map->def.type = def->map_type;
2801 map->def.key_size = def->key_size;
2802 map->def.value_size = def->value_size;
2803 map->def.max_entries = def->max_entries;
2804 map->def.map_flags = def->map_flags;
2805 map->map_extra = def->map_extra;
2806
2807 map->numa_node = def->numa_node;
2808 map->btf_key_type_id = def->key_type_id;
2809 map->btf_value_type_id = def->value_type_id;
2810
2811 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2812 if (map_is_ringbuf(map))
2813 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2814
2815 if (def->parts & MAP_DEF_MAP_TYPE)
2816 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2817
2818 if (def->parts & MAP_DEF_KEY_TYPE)
2819 pr_debug("map '%s': found key [%u], sz = %u.\n",
2820 map->name, def->key_type_id, def->key_size);
2821 else if (def->parts & MAP_DEF_KEY_SIZE)
2822 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2823
2824 if (def->parts & MAP_DEF_VALUE_TYPE)
2825 pr_debug("map '%s': found value [%u], sz = %u.\n",
2826 map->name, def->value_type_id, def->value_size);
2827 else if (def->parts & MAP_DEF_VALUE_SIZE)
2828 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2829
2830 if (def->parts & MAP_DEF_MAX_ENTRIES)
2831 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2832 if (def->parts & MAP_DEF_MAP_FLAGS)
2833 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2834 if (def->parts & MAP_DEF_MAP_EXTRA)
2835 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2836 (unsigned long long)def->map_extra);
2837 if (def->parts & MAP_DEF_PINNING)
2838 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2839 if (def->parts & MAP_DEF_NUMA_NODE)
2840 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2841
2842 if (def->parts & MAP_DEF_INNER_MAP)
2843 pr_debug("map '%s': found inner map definition.\n", map->name);
2844 }
2845
btf_var_linkage_str(__u32 linkage)2846 static const char *btf_var_linkage_str(__u32 linkage)
2847 {
2848 switch (linkage) {
2849 case BTF_VAR_STATIC: return "static";
2850 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2851 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2852 default: return "unknown";
2853 }
2854 }
2855
bpf_object__init_user_btf_map(struct bpf_object * obj,const struct btf_type * sec,int var_idx,int sec_idx,const Elf_Data * data,bool strict,const char * pin_root_path)2856 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2857 const struct btf_type *sec,
2858 int var_idx, int sec_idx,
2859 const Elf_Data *data, bool strict,
2860 const char *pin_root_path)
2861 {
2862 struct btf_map_def map_def = {}, inner_def = {};
2863 const struct btf_type *var, *def;
2864 const struct btf_var_secinfo *vi;
2865 const struct btf_var *var_extra;
2866 const char *map_name;
2867 struct bpf_map *map;
2868 int err;
2869
2870 vi = btf_var_secinfos(sec) + var_idx;
2871 var = btf__type_by_id(obj->btf, vi->type);
2872 var_extra = btf_var(var);
2873 map_name = btf__name_by_offset(obj->btf, var->name_off);
2874
2875 if (map_name == NULL || map_name[0] == '\0') {
2876 pr_warn("map #%d: empty name.\n", var_idx);
2877 return -EINVAL;
2878 }
2879 if ((__u64)vi->offset + vi->size > data->d_size) {
2880 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2881 return -EINVAL;
2882 }
2883 if (!btf_is_var(var)) {
2884 pr_warn("map '%s': unexpected var kind %s.\n",
2885 map_name, btf_kind_str(var));
2886 return -EINVAL;
2887 }
2888 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2889 pr_warn("map '%s': unsupported map linkage %s.\n",
2890 map_name, btf_var_linkage_str(var_extra->linkage));
2891 return -EOPNOTSUPP;
2892 }
2893
2894 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2895 if (!btf_is_struct(def)) {
2896 pr_warn("map '%s': unexpected def kind %s.\n",
2897 map_name, btf_kind_str(var));
2898 return -EINVAL;
2899 }
2900 if (def->size > vi->size) {
2901 pr_warn("map '%s': invalid def size.\n", map_name);
2902 return -EINVAL;
2903 }
2904
2905 map = bpf_object__add_map(obj);
2906 if (IS_ERR(map))
2907 return PTR_ERR(map);
2908 map->name = strdup(map_name);
2909 if (!map->name) {
2910 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2911 return -ENOMEM;
2912 }
2913 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2914 map->def.type = BPF_MAP_TYPE_UNSPEC;
2915 map->sec_idx = sec_idx;
2916 map->sec_offset = vi->offset;
2917 map->btf_var_idx = var_idx;
2918 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2919 map_name, map->sec_idx, map->sec_offset);
2920
2921 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2922 if (err)
2923 return err;
2924
2925 fill_map_from_def(map, &map_def);
2926
2927 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2928 err = build_map_pin_path(map, pin_root_path);
2929 if (err) {
2930 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2931 return err;
2932 }
2933 }
2934
2935 if (map_def.parts & MAP_DEF_INNER_MAP) {
2936 map->inner_map = calloc(1, sizeof(*map->inner_map));
2937 if (!map->inner_map)
2938 return -ENOMEM;
2939 map->inner_map->fd = create_placeholder_fd();
2940 if (map->inner_map->fd < 0)
2941 return map->inner_map->fd;
2942 map->inner_map->sec_idx = sec_idx;
2943 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2944 if (!map->inner_map->name)
2945 return -ENOMEM;
2946 sprintf(map->inner_map->name, "%s.inner", map_name);
2947
2948 fill_map_from_def(map->inner_map, &inner_def);
2949 }
2950
2951 err = map_fill_btf_type_info(obj, map);
2952 if (err)
2953 return err;
2954
2955 return 0;
2956 }
2957
init_arena_map_data(struct bpf_object * obj,struct bpf_map * map,const char * sec_name,int sec_idx,void * data,size_t data_sz)2958 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2959 const char *sec_name, int sec_idx,
2960 void *data, size_t data_sz)
2961 {
2962 const long page_sz = sysconf(_SC_PAGE_SIZE);
2963 size_t mmap_sz;
2964
2965 mmap_sz = bpf_map_mmap_sz(map);
2966 if (roundup(data_sz, page_sz) > mmap_sz) {
2967 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2968 sec_name, mmap_sz, data_sz);
2969 return -E2BIG;
2970 }
2971
2972 obj->arena_data = malloc(data_sz);
2973 if (!obj->arena_data)
2974 return -ENOMEM;
2975 memcpy(obj->arena_data, data, data_sz);
2976 obj->arena_data_sz = data_sz;
2977
2978 /* make bpf_map__init_value() work for ARENA maps */
2979 map->mmaped = obj->arena_data;
2980
2981 return 0;
2982 }
2983
bpf_object__init_user_btf_maps(struct bpf_object * obj,bool strict,const char * pin_root_path)2984 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2985 const char *pin_root_path)
2986 {
2987 const struct btf_type *sec = NULL;
2988 int nr_types, i, vlen, err;
2989 const struct btf_type *t;
2990 const char *name;
2991 Elf_Data *data;
2992 Elf_Scn *scn;
2993
2994 if (obj->efile.btf_maps_shndx < 0)
2995 return 0;
2996
2997 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2998 data = elf_sec_data(obj, scn);
2999 if (!scn || !data) {
3000 pr_warn("elf: failed to get %s map definitions for %s\n",
3001 MAPS_ELF_SEC, obj->path);
3002 return -EINVAL;
3003 }
3004
3005 nr_types = btf__type_cnt(obj->btf);
3006 for (i = 1; i < nr_types; i++) {
3007 t = btf__type_by_id(obj->btf, i);
3008 if (!btf_is_datasec(t))
3009 continue;
3010 name = btf__name_by_offset(obj->btf, t->name_off);
3011 if (strcmp(name, MAPS_ELF_SEC) == 0) {
3012 sec = t;
3013 obj->efile.btf_maps_sec_btf_id = i;
3014 break;
3015 }
3016 }
3017
3018 if (!sec) {
3019 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
3020 return -ENOENT;
3021 }
3022
3023 vlen = btf_vlen(sec);
3024 for (i = 0; i < vlen; i++) {
3025 err = bpf_object__init_user_btf_map(obj, sec, i,
3026 obj->efile.btf_maps_shndx,
3027 data, strict,
3028 pin_root_path);
3029 if (err)
3030 return err;
3031 }
3032
3033 for (i = 0; i < obj->nr_maps; i++) {
3034 struct bpf_map *map = &obj->maps[i];
3035
3036 if (map->def.type != BPF_MAP_TYPE_ARENA)
3037 continue;
3038
3039 if (obj->arena_map_idx >= 0) {
3040 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
3041 map->name, obj->maps[obj->arena_map_idx].name);
3042 return -EINVAL;
3043 }
3044 obj->arena_map_idx = i;
3045
3046 if (obj->efile.arena_data) {
3047 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
3048 obj->efile.arena_data->d_buf,
3049 obj->efile.arena_data->d_size);
3050 if (err)
3051 return err;
3052 }
3053 }
3054 if (obj->efile.arena_data && obj->arena_map_idx < 0) {
3055 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
3056 ARENA_SEC);
3057 return -ENOENT;
3058 }
3059
3060 return 0;
3061 }
3062
bpf_object__init_maps(struct bpf_object * obj,const struct bpf_object_open_opts * opts)3063 static int bpf_object__init_maps(struct bpf_object *obj,
3064 const struct bpf_object_open_opts *opts)
3065 {
3066 const char *pin_root_path;
3067 bool strict;
3068 int err = 0;
3069
3070 strict = !OPTS_GET(opts, relaxed_maps, false);
3071 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
3072
3073 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
3074 err = err ?: bpf_object__init_global_data_maps(obj);
3075 err = err ?: bpf_object__init_kconfig_map(obj);
3076 err = err ?: bpf_object_init_struct_ops(obj);
3077
3078 return err;
3079 }
3080
section_have_execinstr(struct bpf_object * obj,int idx)3081 static bool section_have_execinstr(struct bpf_object *obj, int idx)
3082 {
3083 Elf64_Shdr *sh;
3084
3085 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
3086 if (!sh)
3087 return false;
3088
3089 return sh->sh_flags & SHF_EXECINSTR;
3090 }
3091
starts_with_qmark(const char * s)3092 static bool starts_with_qmark(const char *s)
3093 {
3094 return s && s[0] == '?';
3095 }
3096
btf_needs_sanitization(struct bpf_object * obj)3097 static bool btf_needs_sanitization(struct bpf_object *obj)
3098 {
3099 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3100 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3101 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3102 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3103 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3104 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3105 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3106 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3107
3108 return !has_func || !has_datasec || !has_func_global || !has_float ||
3109 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3110 }
3111
bpf_object__sanitize_btf(struct bpf_object * obj,struct btf * btf)3112 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3113 {
3114 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3115 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3116 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3117 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3118 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3119 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3120 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3121 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3122 int enum64_placeholder_id = 0;
3123 struct btf_type *t;
3124 int i, j, vlen;
3125
3126 for (i = 1; i < btf__type_cnt(btf); i++) {
3127 t = (struct btf_type *)btf__type_by_id(btf, i);
3128
3129 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3130 /* replace VAR/DECL_TAG with INT */
3131 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3132 /*
3133 * using size = 1 is the safest choice, 4 will be too
3134 * big and cause kernel BTF validation failure if
3135 * original variable took less than 4 bytes
3136 */
3137 t->size = 1;
3138 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3139 } else if (!has_datasec && btf_is_datasec(t)) {
3140 /* replace DATASEC with STRUCT */
3141 const struct btf_var_secinfo *v = btf_var_secinfos(t);
3142 struct btf_member *m = btf_members(t);
3143 struct btf_type *vt;
3144 char *name;
3145
3146 name = (char *)btf__name_by_offset(btf, t->name_off);
3147 while (*name) {
3148 if (*name == '.' || *name == '?')
3149 *name = '_';
3150 name++;
3151 }
3152
3153 vlen = btf_vlen(t);
3154 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3155 for (j = 0; j < vlen; j++, v++, m++) {
3156 /* order of field assignments is important */
3157 m->offset = v->offset * 8;
3158 m->type = v->type;
3159 /* preserve variable name as member name */
3160 vt = (void *)btf__type_by_id(btf, v->type);
3161 m->name_off = vt->name_off;
3162 }
3163 } else if (!has_qmark_datasec && btf_is_datasec(t) &&
3164 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3165 /* replace '?' prefix with '_' for DATASEC names */
3166 char *name;
3167
3168 name = (char *)btf__name_by_offset(btf, t->name_off);
3169 if (name[0] == '?')
3170 name[0] = '_';
3171 } else if (!has_func && btf_is_func_proto(t)) {
3172 /* replace FUNC_PROTO with ENUM */
3173 vlen = btf_vlen(t);
3174 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3175 t->size = sizeof(__u32); /* kernel enforced */
3176 } else if (!has_func && btf_is_func(t)) {
3177 /* replace FUNC with TYPEDEF */
3178 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3179 } else if (!has_func_global && btf_is_func(t)) {
3180 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3181 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3182 } else if (!has_float && btf_is_float(t)) {
3183 /* replace FLOAT with an equally-sized empty STRUCT;
3184 * since C compilers do not accept e.g. "float" as a
3185 * valid struct name, make it anonymous
3186 */
3187 t->name_off = 0;
3188 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3189 } else if (!has_type_tag && btf_is_type_tag(t)) {
3190 /* replace TYPE_TAG with a CONST */
3191 t->name_off = 0;
3192 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3193 } else if (!has_enum64 && btf_is_enum(t)) {
3194 /* clear the kflag */
3195 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3196 } else if (!has_enum64 && btf_is_enum64(t)) {
3197 /* replace ENUM64 with a union */
3198 struct btf_member *m;
3199
3200 if (enum64_placeholder_id == 0) {
3201 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3202 if (enum64_placeholder_id < 0)
3203 return enum64_placeholder_id;
3204
3205 t = (struct btf_type *)btf__type_by_id(btf, i);
3206 }
3207
3208 m = btf_members(t);
3209 vlen = btf_vlen(t);
3210 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3211 for (j = 0; j < vlen; j++, m++) {
3212 m->type = enum64_placeholder_id;
3213 m->offset = 0;
3214 }
3215 }
3216 }
3217
3218 return 0;
3219 }
3220
libbpf_needs_btf(const struct bpf_object * obj)3221 static bool libbpf_needs_btf(const struct bpf_object *obj)
3222 {
3223 return obj->efile.btf_maps_shndx >= 0 ||
3224 obj->efile.has_st_ops ||
3225 obj->nr_extern > 0;
3226 }
3227
kernel_needs_btf(const struct bpf_object * obj)3228 static bool kernel_needs_btf(const struct bpf_object *obj)
3229 {
3230 return obj->efile.has_st_ops;
3231 }
3232
bpf_object__init_btf(struct bpf_object * obj,Elf_Data * btf_data,Elf_Data * btf_ext_data)3233 static int bpf_object__init_btf(struct bpf_object *obj,
3234 Elf_Data *btf_data,
3235 Elf_Data *btf_ext_data)
3236 {
3237 int err = -ENOENT;
3238
3239 if (btf_data) {
3240 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3241 err = libbpf_get_error(obj->btf);
3242 if (err) {
3243 obj->btf = NULL;
3244 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err));
3245 goto out;
3246 }
3247 /* enforce 8-byte pointers for BPF-targeted BTFs */
3248 btf__set_pointer_size(obj->btf, 8);
3249 }
3250 if (btf_ext_data) {
3251 struct btf_ext_info *ext_segs[3];
3252 int seg_num, sec_num;
3253
3254 if (!obj->btf) {
3255 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3256 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3257 goto out;
3258 }
3259 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3260 err = libbpf_get_error(obj->btf_ext);
3261 if (err) {
3262 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n",
3263 BTF_EXT_ELF_SEC, errstr(err));
3264 obj->btf_ext = NULL;
3265 goto out;
3266 }
3267
3268 /* setup .BTF.ext to ELF section mapping */
3269 ext_segs[0] = &obj->btf_ext->func_info;
3270 ext_segs[1] = &obj->btf_ext->line_info;
3271 ext_segs[2] = &obj->btf_ext->core_relo_info;
3272 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3273 struct btf_ext_info *seg = ext_segs[seg_num];
3274 const struct btf_ext_info_sec *sec;
3275 const char *sec_name;
3276 Elf_Scn *scn;
3277
3278 if (seg->sec_cnt == 0)
3279 continue;
3280
3281 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3282 if (!seg->sec_idxs) {
3283 err = -ENOMEM;
3284 goto out;
3285 }
3286
3287 sec_num = 0;
3288 for_each_btf_ext_sec(seg, sec) {
3289 /* preventively increment index to avoid doing
3290 * this before every continue below
3291 */
3292 sec_num++;
3293
3294 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3295 if (str_is_empty(sec_name))
3296 continue;
3297 scn = elf_sec_by_name(obj, sec_name);
3298 if (!scn)
3299 continue;
3300
3301 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3302 }
3303 }
3304 }
3305 out:
3306 if (err && libbpf_needs_btf(obj)) {
3307 pr_warn("BTF is required, but is missing or corrupted.\n");
3308 return err;
3309 }
3310 return 0;
3311 }
3312
compare_vsi_off(const void * _a,const void * _b)3313 static int compare_vsi_off(const void *_a, const void *_b)
3314 {
3315 const struct btf_var_secinfo *a = _a;
3316 const struct btf_var_secinfo *b = _b;
3317
3318 return a->offset - b->offset;
3319 }
3320
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)3321 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3322 struct btf_type *t)
3323 {
3324 __u32 size = 0, i, vars = btf_vlen(t);
3325 const char *sec_name = btf__name_by_offset(btf, t->name_off);
3326 struct btf_var_secinfo *vsi;
3327 bool fixup_offsets = false;
3328 int err;
3329
3330 if (!sec_name) {
3331 pr_debug("No name found in string section for DATASEC kind.\n");
3332 return -ENOENT;
3333 }
3334
3335 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3336 * variable offsets set at the previous step. Further, not every
3337 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3338 * all fixups altogether for such sections and go straight to sorting
3339 * VARs within their DATASEC.
3340 */
3341 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3342 goto sort_vars;
3343
3344 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3345 * fix this up. But BPF static linker already fixes this up and fills
3346 * all the sizes and offsets during static linking. So this step has
3347 * to be optional. But the STV_HIDDEN handling is non-optional for any
3348 * non-extern DATASEC, so the variable fixup loop below handles both
3349 * functions at the same time, paying the cost of BTF VAR <-> ELF
3350 * symbol matching just once.
3351 */
3352 if (t->size == 0) {
3353 err = find_elf_sec_sz(obj, sec_name, &size);
3354 if (err || !size) {
3355 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n",
3356 sec_name, size, errstr(err));
3357 return -ENOENT;
3358 }
3359
3360 t->size = size;
3361 fixup_offsets = true;
3362 }
3363
3364 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3365 const struct btf_type *t_var;
3366 struct btf_var *var;
3367 const char *var_name;
3368 Elf64_Sym *sym;
3369
3370 t_var = btf__type_by_id(btf, vsi->type);
3371 if (!t_var || !btf_is_var(t_var)) {
3372 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3373 return -EINVAL;
3374 }
3375
3376 var = btf_var(t_var);
3377 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3378 continue;
3379
3380 var_name = btf__name_by_offset(btf, t_var->name_off);
3381 if (!var_name) {
3382 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3383 sec_name, i);
3384 return -ENOENT;
3385 }
3386
3387 sym = find_elf_var_sym(obj, var_name);
3388 if (IS_ERR(sym)) {
3389 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3390 sec_name, var_name);
3391 return -ENOENT;
3392 }
3393
3394 if (fixup_offsets)
3395 vsi->offset = sym->st_value;
3396
3397 /* if variable is a global/weak symbol, but has restricted
3398 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3399 * as static. This follows similar logic for functions (BPF
3400 * subprogs) and influences libbpf's further decisions about
3401 * whether to make global data BPF array maps as
3402 * BPF_F_MMAPABLE.
3403 */
3404 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3405 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3406 var->linkage = BTF_VAR_STATIC;
3407 }
3408
3409 sort_vars:
3410 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3411 return 0;
3412 }
3413
bpf_object_fixup_btf(struct bpf_object * obj)3414 static int bpf_object_fixup_btf(struct bpf_object *obj)
3415 {
3416 int i, n, err = 0;
3417
3418 if (!obj->btf)
3419 return 0;
3420
3421 n = btf__type_cnt(obj->btf);
3422 for (i = 1; i < n; i++) {
3423 struct btf_type *t = btf_type_by_id(obj->btf, i);
3424
3425 /* Loader needs to fix up some of the things compiler
3426 * couldn't get its hands on while emitting BTF. This
3427 * is section size and global variable offset. We use
3428 * the info from the ELF itself for this purpose.
3429 */
3430 if (btf_is_datasec(t)) {
3431 err = btf_fixup_datasec(obj, obj->btf, t);
3432 if (err)
3433 return err;
3434 }
3435 }
3436
3437 return 0;
3438 }
3439
prog_needs_vmlinux_btf(struct bpf_program * prog)3440 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3441 {
3442 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3443 prog->type == BPF_PROG_TYPE_LSM)
3444 return true;
3445
3446 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3447 * also need vmlinux BTF
3448 */
3449 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3450 return true;
3451
3452 return false;
3453 }
3454
map_needs_vmlinux_btf(struct bpf_map * map)3455 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3456 {
3457 return bpf_map__is_struct_ops(map);
3458 }
3459
obj_needs_vmlinux_btf(const struct bpf_object * obj)3460 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3461 {
3462 struct bpf_program *prog;
3463 struct bpf_map *map;
3464 int i;
3465
3466 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3467 * is not specified
3468 */
3469 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3470 return true;
3471
3472 /* Support for typed ksyms needs kernel BTF */
3473 for (i = 0; i < obj->nr_extern; i++) {
3474 const struct extern_desc *ext;
3475
3476 ext = &obj->externs[i];
3477 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3478 return true;
3479 }
3480
3481 bpf_object__for_each_program(prog, obj) {
3482 if (!prog->autoload)
3483 continue;
3484 if (prog_needs_vmlinux_btf(prog))
3485 return true;
3486 }
3487
3488 bpf_object__for_each_map(map, obj) {
3489 if (map_needs_vmlinux_btf(map))
3490 return true;
3491 }
3492
3493 return false;
3494 }
3495
bpf_object__load_vmlinux_btf(struct bpf_object * obj,bool force)3496 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3497 {
3498 int err;
3499
3500 /* btf_vmlinux could be loaded earlier */
3501 if (obj->btf_vmlinux || obj->gen_loader)
3502 return 0;
3503
3504 if (!force && !obj_needs_vmlinux_btf(obj))
3505 return 0;
3506
3507 obj->btf_vmlinux = btf__load_vmlinux_btf();
3508 err = libbpf_get_error(obj->btf_vmlinux);
3509 if (err) {
3510 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err));
3511 obj->btf_vmlinux = NULL;
3512 return err;
3513 }
3514 return 0;
3515 }
3516
bpf_object__sanitize_and_load_btf(struct bpf_object * obj)3517 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3518 {
3519 struct btf *kern_btf = obj->btf;
3520 bool btf_mandatory, sanitize;
3521 int i, err = 0;
3522
3523 if (!obj->btf)
3524 return 0;
3525
3526 if (!kernel_supports(obj, FEAT_BTF)) {
3527 if (kernel_needs_btf(obj)) {
3528 err = -EOPNOTSUPP;
3529 goto report;
3530 }
3531 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3532 return 0;
3533 }
3534
3535 /* Even though some subprogs are global/weak, user might prefer more
3536 * permissive BPF verification process that BPF verifier performs for
3537 * static functions, taking into account more context from the caller
3538 * functions. In such case, they need to mark such subprogs with
3539 * __attribute__((visibility("hidden"))) and libbpf will adjust
3540 * corresponding FUNC BTF type to be marked as static and trigger more
3541 * involved BPF verification process.
3542 */
3543 for (i = 0; i < obj->nr_programs; i++) {
3544 struct bpf_program *prog = &obj->programs[i];
3545 struct btf_type *t;
3546 const char *name;
3547 int j, n;
3548
3549 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3550 continue;
3551
3552 n = btf__type_cnt(obj->btf);
3553 for (j = 1; j < n; j++) {
3554 t = btf_type_by_id(obj->btf, j);
3555 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3556 continue;
3557
3558 name = btf__str_by_offset(obj->btf, t->name_off);
3559 if (strcmp(name, prog->name) != 0)
3560 continue;
3561
3562 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3563 break;
3564 }
3565 }
3566
3567 sanitize = btf_needs_sanitization(obj);
3568 if (sanitize) {
3569 const void *raw_data;
3570 __u32 sz;
3571
3572 /* clone BTF to sanitize a copy and leave the original intact */
3573 raw_data = btf__raw_data(obj->btf, &sz);
3574 kern_btf = btf__new(raw_data, sz);
3575 err = libbpf_get_error(kern_btf);
3576 if (err)
3577 return err;
3578
3579 /* enforce 8-byte pointers for BPF-targeted BTFs */
3580 btf__set_pointer_size(obj->btf, 8);
3581 err = bpf_object__sanitize_btf(obj, kern_btf);
3582 if (err)
3583 return err;
3584 }
3585
3586 if (obj->gen_loader) {
3587 __u32 raw_size = 0;
3588 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3589
3590 if (!raw_data)
3591 return -ENOMEM;
3592 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3593 /* Pretend to have valid FD to pass various fd >= 0 checks.
3594 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3595 */
3596 btf__set_fd(kern_btf, 0);
3597 } else {
3598 /* currently BPF_BTF_LOAD only supports log_level 1 */
3599 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3600 obj->log_level ? 1 : 0, obj->token_fd);
3601 }
3602 if (sanitize) {
3603 if (!err) {
3604 /* move fd to libbpf's BTF */
3605 btf__set_fd(obj->btf, btf__fd(kern_btf));
3606 btf__set_fd(kern_btf, -1);
3607 }
3608 btf__free(kern_btf);
3609 }
3610 report:
3611 if (err) {
3612 btf_mandatory = kernel_needs_btf(obj);
3613 if (btf_mandatory) {
3614 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n",
3615 errstr(err));
3616 } else {
3617 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n",
3618 errstr(err));
3619 err = 0;
3620 }
3621 }
3622 return err;
3623 }
3624
elf_sym_str(const struct bpf_object * obj,size_t off)3625 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3626 {
3627 const char *name;
3628
3629 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3630 if (!name) {
3631 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3632 off, obj->path, elf_errmsg(-1));
3633 return NULL;
3634 }
3635
3636 return name;
3637 }
3638
elf_sec_str(const struct bpf_object * obj,size_t off)3639 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3640 {
3641 const char *name;
3642
3643 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3644 if (!name) {
3645 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3646 off, obj->path, elf_errmsg(-1));
3647 return NULL;
3648 }
3649
3650 return name;
3651 }
3652
elf_sec_by_idx(const struct bpf_object * obj,size_t idx)3653 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3654 {
3655 Elf_Scn *scn;
3656
3657 scn = elf_getscn(obj->efile.elf, idx);
3658 if (!scn) {
3659 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3660 idx, obj->path, elf_errmsg(-1));
3661 return NULL;
3662 }
3663 return scn;
3664 }
3665
elf_sec_by_name(const struct bpf_object * obj,const char * name)3666 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3667 {
3668 Elf_Scn *scn = NULL;
3669 Elf *elf = obj->efile.elf;
3670 const char *sec_name;
3671
3672 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3673 sec_name = elf_sec_name(obj, scn);
3674 if (!sec_name)
3675 return NULL;
3676
3677 if (strcmp(sec_name, name) != 0)
3678 continue;
3679
3680 return scn;
3681 }
3682 return NULL;
3683 }
3684
elf_sec_hdr(const struct bpf_object * obj,Elf_Scn * scn)3685 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3686 {
3687 Elf64_Shdr *shdr;
3688
3689 if (!scn)
3690 return NULL;
3691
3692 shdr = elf64_getshdr(scn);
3693 if (!shdr) {
3694 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3695 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3696 return NULL;
3697 }
3698
3699 return shdr;
3700 }
3701
elf_sec_name(const struct bpf_object * obj,Elf_Scn * scn)3702 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3703 {
3704 const char *name;
3705 Elf64_Shdr *sh;
3706
3707 if (!scn)
3708 return NULL;
3709
3710 sh = elf_sec_hdr(obj, scn);
3711 if (!sh)
3712 return NULL;
3713
3714 name = elf_sec_str(obj, sh->sh_name);
3715 if (!name) {
3716 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3717 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3718 return NULL;
3719 }
3720
3721 return name;
3722 }
3723
elf_sec_data(const struct bpf_object * obj,Elf_Scn * scn)3724 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3725 {
3726 Elf_Data *data;
3727
3728 if (!scn)
3729 return NULL;
3730
3731 data = elf_getdata(scn, 0);
3732 if (!data) {
3733 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3734 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3735 obj->path, elf_errmsg(-1));
3736 return NULL;
3737 }
3738
3739 return data;
3740 }
3741
elf_sym_by_idx(const struct bpf_object * obj,size_t idx)3742 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3743 {
3744 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3745 return NULL;
3746
3747 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3748 }
3749
elf_rel_by_idx(Elf_Data * data,size_t idx)3750 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3751 {
3752 if (idx >= data->d_size / sizeof(Elf64_Rel))
3753 return NULL;
3754
3755 return (Elf64_Rel *)data->d_buf + idx;
3756 }
3757
is_sec_name_dwarf(const char * name)3758 static bool is_sec_name_dwarf(const char *name)
3759 {
3760 /* approximation, but the actual list is too long */
3761 return str_has_pfx(name, ".debug_");
3762 }
3763
ignore_elf_section(Elf64_Shdr * hdr,const char * name)3764 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3765 {
3766 /* no special handling of .strtab */
3767 if (hdr->sh_type == SHT_STRTAB)
3768 return true;
3769
3770 /* ignore .llvm_addrsig section as well */
3771 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3772 return true;
3773
3774 /* no subprograms will lead to an empty .text section, ignore it */
3775 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3776 strcmp(name, ".text") == 0)
3777 return true;
3778
3779 /* DWARF sections */
3780 if (is_sec_name_dwarf(name))
3781 return true;
3782
3783 if (str_has_pfx(name, ".rel")) {
3784 name += sizeof(".rel") - 1;
3785 /* DWARF section relocations */
3786 if (is_sec_name_dwarf(name))
3787 return true;
3788
3789 /* .BTF and .BTF.ext don't need relocations */
3790 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3791 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3792 return true;
3793 }
3794
3795 return false;
3796 }
3797
cmp_progs(const void * _a,const void * _b)3798 static int cmp_progs(const void *_a, const void *_b)
3799 {
3800 const struct bpf_program *a = _a;
3801 const struct bpf_program *b = _b;
3802
3803 if (a->sec_idx != b->sec_idx)
3804 return a->sec_idx < b->sec_idx ? -1 : 1;
3805
3806 /* sec_insn_off can't be the same within the section */
3807 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3808 }
3809
bpf_object__elf_collect(struct bpf_object * obj)3810 static int bpf_object__elf_collect(struct bpf_object *obj)
3811 {
3812 struct elf_sec_desc *sec_desc;
3813 Elf *elf = obj->efile.elf;
3814 Elf_Data *btf_ext_data = NULL;
3815 Elf_Data *btf_data = NULL;
3816 int idx = 0, err = 0;
3817 const char *name;
3818 Elf_Data *data;
3819 Elf_Scn *scn;
3820 Elf64_Shdr *sh;
3821
3822 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3823 * section. Since section count retrieved by elf_getshdrnum() does
3824 * include sec #0, it is already the necessary size of an array to keep
3825 * all the sections.
3826 */
3827 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3828 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3829 obj->path, elf_errmsg(-1));
3830 return -LIBBPF_ERRNO__FORMAT;
3831 }
3832 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3833 if (!obj->efile.secs)
3834 return -ENOMEM;
3835
3836 /* a bunch of ELF parsing functionality depends on processing symbols,
3837 * so do the first pass and find the symbol table
3838 */
3839 scn = NULL;
3840 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3841 sh = elf_sec_hdr(obj, scn);
3842 if (!sh)
3843 return -LIBBPF_ERRNO__FORMAT;
3844
3845 if (sh->sh_type == SHT_SYMTAB) {
3846 if (obj->efile.symbols) {
3847 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3848 return -LIBBPF_ERRNO__FORMAT;
3849 }
3850
3851 data = elf_sec_data(obj, scn);
3852 if (!data)
3853 return -LIBBPF_ERRNO__FORMAT;
3854
3855 idx = elf_ndxscn(scn);
3856
3857 obj->efile.symbols = data;
3858 obj->efile.symbols_shndx = idx;
3859 obj->efile.strtabidx = sh->sh_link;
3860 }
3861 }
3862
3863 if (!obj->efile.symbols) {
3864 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3865 obj->path);
3866 return -ENOENT;
3867 }
3868
3869 scn = NULL;
3870 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3871 idx = elf_ndxscn(scn);
3872 sec_desc = &obj->efile.secs[idx];
3873
3874 sh = elf_sec_hdr(obj, scn);
3875 if (!sh)
3876 return -LIBBPF_ERRNO__FORMAT;
3877
3878 name = elf_sec_str(obj, sh->sh_name);
3879 if (!name)
3880 return -LIBBPF_ERRNO__FORMAT;
3881
3882 if (ignore_elf_section(sh, name))
3883 continue;
3884
3885 data = elf_sec_data(obj, scn);
3886 if (!data)
3887 return -LIBBPF_ERRNO__FORMAT;
3888
3889 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3890 idx, name, (unsigned long)data->d_size,
3891 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3892 (int)sh->sh_type);
3893
3894 if (strcmp(name, "license") == 0) {
3895 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3896 if (err)
3897 return err;
3898 } else if (strcmp(name, "version") == 0) {
3899 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3900 if (err)
3901 return err;
3902 } else if (strcmp(name, "maps") == 0) {
3903 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3904 return -ENOTSUP;
3905 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3906 obj->efile.btf_maps_shndx = idx;
3907 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3908 if (sh->sh_type != SHT_PROGBITS)
3909 return -LIBBPF_ERRNO__FORMAT;
3910 btf_data = data;
3911 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3912 if (sh->sh_type != SHT_PROGBITS)
3913 return -LIBBPF_ERRNO__FORMAT;
3914 btf_ext_data = data;
3915 } else if (sh->sh_type == SHT_SYMTAB) {
3916 /* already processed during the first pass above */
3917 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3918 if (sh->sh_flags & SHF_EXECINSTR) {
3919 if (strcmp(name, ".text") == 0)
3920 obj->efile.text_shndx = idx;
3921 err = bpf_object__add_programs(obj, data, name, idx);
3922 if (err)
3923 return err;
3924 } else if (strcmp(name, DATA_SEC) == 0 ||
3925 str_has_pfx(name, DATA_SEC ".")) {
3926 sec_desc->sec_type = SEC_DATA;
3927 sec_desc->shdr = sh;
3928 sec_desc->data = data;
3929 } else if (strcmp(name, RODATA_SEC) == 0 ||
3930 str_has_pfx(name, RODATA_SEC ".")) {
3931 sec_desc->sec_type = SEC_RODATA;
3932 sec_desc->shdr = sh;
3933 sec_desc->data = data;
3934 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3935 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3936 strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3937 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3938 sec_desc->sec_type = SEC_ST_OPS;
3939 sec_desc->shdr = sh;
3940 sec_desc->data = data;
3941 obj->efile.has_st_ops = true;
3942 } else if (strcmp(name, ARENA_SEC) == 0) {
3943 obj->efile.arena_data = data;
3944 obj->efile.arena_data_shndx = idx;
3945 } else {
3946 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3947 idx, name);
3948 }
3949 } else if (sh->sh_type == SHT_REL) {
3950 int targ_sec_idx = sh->sh_info; /* points to other section */
3951
3952 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3953 targ_sec_idx >= obj->efile.sec_cnt)
3954 return -LIBBPF_ERRNO__FORMAT;
3955
3956 /* Only do relo for section with exec instructions */
3957 if (!section_have_execinstr(obj, targ_sec_idx) &&
3958 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3959 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3960 strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3961 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3962 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3963 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3964 idx, name, targ_sec_idx,
3965 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3966 continue;
3967 }
3968
3969 sec_desc->sec_type = SEC_RELO;
3970 sec_desc->shdr = sh;
3971 sec_desc->data = data;
3972 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3973 str_has_pfx(name, BSS_SEC "."))) {
3974 sec_desc->sec_type = SEC_BSS;
3975 sec_desc->shdr = sh;
3976 sec_desc->data = data;
3977 } else {
3978 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3979 (size_t)sh->sh_size);
3980 }
3981 }
3982
3983 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3984 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3985 return -LIBBPF_ERRNO__FORMAT;
3986 }
3987
3988 /* change BPF program insns to native endianness for introspection */
3989 if (!is_native_endianness(obj))
3990 bpf_object_bswap_progs(obj);
3991
3992 /* sort BPF programs by section name and in-section instruction offset
3993 * for faster search
3994 */
3995 if (obj->nr_programs)
3996 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3997
3998 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3999 }
4000
sym_is_extern(const Elf64_Sym * sym)4001 static bool sym_is_extern(const Elf64_Sym *sym)
4002 {
4003 int bind = ELF64_ST_BIND(sym->st_info);
4004 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
4005 return sym->st_shndx == SHN_UNDEF &&
4006 (bind == STB_GLOBAL || bind == STB_WEAK) &&
4007 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
4008 }
4009
sym_is_subprog(const Elf64_Sym * sym,int text_shndx)4010 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
4011 {
4012 int bind = ELF64_ST_BIND(sym->st_info);
4013 int type = ELF64_ST_TYPE(sym->st_info);
4014
4015 /* in .text section */
4016 if (sym->st_shndx != text_shndx)
4017 return false;
4018
4019 /* local function */
4020 if (bind == STB_LOCAL && type == STT_SECTION)
4021 return true;
4022
4023 /* global function */
4024 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC;
4025 }
4026
find_extern_btf_id(const struct btf * btf,const char * ext_name)4027 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
4028 {
4029 const struct btf_type *t;
4030 const char *tname;
4031 int i, n;
4032
4033 if (!btf)
4034 return -ESRCH;
4035
4036 n = btf__type_cnt(btf);
4037 for (i = 1; i < n; i++) {
4038 t = btf__type_by_id(btf, i);
4039
4040 if (!btf_is_var(t) && !btf_is_func(t))
4041 continue;
4042
4043 tname = btf__name_by_offset(btf, t->name_off);
4044 if (strcmp(tname, ext_name))
4045 continue;
4046
4047 if (btf_is_var(t) &&
4048 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
4049 return -EINVAL;
4050
4051 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
4052 return -EINVAL;
4053
4054 return i;
4055 }
4056
4057 return -ENOENT;
4058 }
4059
find_extern_sec_btf_id(struct btf * btf,int ext_btf_id)4060 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
4061 const struct btf_var_secinfo *vs;
4062 const struct btf_type *t;
4063 int i, j, n;
4064
4065 if (!btf)
4066 return -ESRCH;
4067
4068 n = btf__type_cnt(btf);
4069 for (i = 1; i < n; i++) {
4070 t = btf__type_by_id(btf, i);
4071
4072 if (!btf_is_datasec(t))
4073 continue;
4074
4075 vs = btf_var_secinfos(t);
4076 for (j = 0; j < btf_vlen(t); j++, vs++) {
4077 if (vs->type == ext_btf_id)
4078 return i;
4079 }
4080 }
4081
4082 return -ENOENT;
4083 }
4084
find_kcfg_type(const struct btf * btf,int id,bool * is_signed)4085 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
4086 bool *is_signed)
4087 {
4088 const struct btf_type *t;
4089 const char *name;
4090
4091 t = skip_mods_and_typedefs(btf, id, NULL);
4092 name = btf__name_by_offset(btf, t->name_off);
4093
4094 if (is_signed)
4095 *is_signed = false;
4096 switch (btf_kind(t)) {
4097 case BTF_KIND_INT: {
4098 int enc = btf_int_encoding(t);
4099
4100 if (enc & BTF_INT_BOOL)
4101 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
4102 if (is_signed)
4103 *is_signed = enc & BTF_INT_SIGNED;
4104 if (t->size == 1)
4105 return KCFG_CHAR;
4106 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
4107 return KCFG_UNKNOWN;
4108 return KCFG_INT;
4109 }
4110 case BTF_KIND_ENUM:
4111 if (t->size != 4)
4112 return KCFG_UNKNOWN;
4113 if (strcmp(name, "libbpf_tristate"))
4114 return KCFG_UNKNOWN;
4115 return KCFG_TRISTATE;
4116 case BTF_KIND_ENUM64:
4117 if (strcmp(name, "libbpf_tristate"))
4118 return KCFG_UNKNOWN;
4119 return KCFG_TRISTATE;
4120 case BTF_KIND_ARRAY:
4121 if (btf_array(t)->nelems == 0)
4122 return KCFG_UNKNOWN;
4123 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4124 return KCFG_UNKNOWN;
4125 return KCFG_CHAR_ARR;
4126 default:
4127 return KCFG_UNKNOWN;
4128 }
4129 }
4130
cmp_externs(const void * _a,const void * _b)4131 static int cmp_externs(const void *_a, const void *_b)
4132 {
4133 const struct extern_desc *a = _a;
4134 const struct extern_desc *b = _b;
4135
4136 if (a->type != b->type)
4137 return a->type < b->type ? -1 : 1;
4138
4139 if (a->type == EXT_KCFG) {
4140 /* descending order by alignment requirements */
4141 if (a->kcfg.align != b->kcfg.align)
4142 return a->kcfg.align > b->kcfg.align ? -1 : 1;
4143 /* ascending order by size, within same alignment class */
4144 if (a->kcfg.sz != b->kcfg.sz)
4145 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4146 }
4147
4148 /* resolve ties by name */
4149 return strcmp(a->name, b->name);
4150 }
4151
find_int_btf_id(const struct btf * btf)4152 static int find_int_btf_id(const struct btf *btf)
4153 {
4154 const struct btf_type *t;
4155 int i, n;
4156
4157 n = btf__type_cnt(btf);
4158 for (i = 1; i < n; i++) {
4159 t = btf__type_by_id(btf, i);
4160
4161 if (btf_is_int(t) && btf_int_bits(t) == 32)
4162 return i;
4163 }
4164
4165 return 0;
4166 }
4167
add_dummy_ksym_var(struct btf * btf)4168 static int add_dummy_ksym_var(struct btf *btf)
4169 {
4170 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4171 const struct btf_var_secinfo *vs;
4172 const struct btf_type *sec;
4173
4174 if (!btf)
4175 return 0;
4176
4177 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4178 BTF_KIND_DATASEC);
4179 if (sec_btf_id < 0)
4180 return 0;
4181
4182 sec = btf__type_by_id(btf, sec_btf_id);
4183 vs = btf_var_secinfos(sec);
4184 for (i = 0; i < btf_vlen(sec); i++, vs++) {
4185 const struct btf_type *vt;
4186
4187 vt = btf__type_by_id(btf, vs->type);
4188 if (btf_is_func(vt))
4189 break;
4190 }
4191
4192 /* No func in ksyms sec. No need to add dummy var. */
4193 if (i == btf_vlen(sec))
4194 return 0;
4195
4196 int_btf_id = find_int_btf_id(btf);
4197 dummy_var_btf_id = btf__add_var(btf,
4198 "dummy_ksym",
4199 BTF_VAR_GLOBAL_ALLOCATED,
4200 int_btf_id);
4201 if (dummy_var_btf_id < 0)
4202 pr_warn("cannot create a dummy_ksym var\n");
4203
4204 return dummy_var_btf_id;
4205 }
4206
bpf_object__collect_externs(struct bpf_object * obj)4207 static int bpf_object__collect_externs(struct bpf_object *obj)
4208 {
4209 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4210 const struct btf_type *t;
4211 struct extern_desc *ext;
4212 int i, n, off, dummy_var_btf_id;
4213 const char *ext_name, *sec_name;
4214 size_t ext_essent_len;
4215 Elf_Scn *scn;
4216 Elf64_Shdr *sh;
4217
4218 if (!obj->efile.symbols)
4219 return 0;
4220
4221 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4222 sh = elf_sec_hdr(obj, scn);
4223 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4224 return -LIBBPF_ERRNO__FORMAT;
4225
4226 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4227 if (dummy_var_btf_id < 0)
4228 return dummy_var_btf_id;
4229
4230 n = sh->sh_size / sh->sh_entsize;
4231 pr_debug("looking for externs among %d symbols...\n", n);
4232
4233 for (i = 0; i < n; i++) {
4234 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4235
4236 if (!sym)
4237 return -LIBBPF_ERRNO__FORMAT;
4238 if (!sym_is_extern(sym))
4239 continue;
4240 ext_name = elf_sym_str(obj, sym->st_name);
4241 if (!ext_name || !ext_name[0])
4242 continue;
4243
4244 ext = obj->externs;
4245 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4246 if (!ext)
4247 return -ENOMEM;
4248 obj->externs = ext;
4249 ext = &ext[obj->nr_extern];
4250 memset(ext, 0, sizeof(*ext));
4251 obj->nr_extern++;
4252
4253 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4254 if (ext->btf_id <= 0) {
4255 pr_warn("failed to find BTF for extern '%s': %d\n",
4256 ext_name, ext->btf_id);
4257 return ext->btf_id;
4258 }
4259 t = btf__type_by_id(obj->btf, ext->btf_id);
4260 ext->name = strdup(btf__name_by_offset(obj->btf, t->name_off));
4261 if (!ext->name)
4262 return -ENOMEM;
4263 ext->sym_idx = i;
4264 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4265
4266 ext_essent_len = bpf_core_essential_name_len(ext->name);
4267 ext->essent_name = NULL;
4268 if (ext_essent_len != strlen(ext->name)) {
4269 ext->essent_name = strndup(ext->name, ext_essent_len);
4270 if (!ext->essent_name)
4271 return -ENOMEM;
4272 }
4273
4274 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4275 if (ext->sec_btf_id <= 0) {
4276 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4277 ext_name, ext->btf_id, ext->sec_btf_id);
4278 return ext->sec_btf_id;
4279 }
4280 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4281 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4282
4283 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4284 if (btf_is_func(t)) {
4285 pr_warn("extern function %s is unsupported under %s section\n",
4286 ext->name, KCONFIG_SEC);
4287 return -ENOTSUP;
4288 }
4289 kcfg_sec = sec;
4290 ext->type = EXT_KCFG;
4291 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4292 if (ext->kcfg.sz <= 0) {
4293 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4294 ext_name, ext->kcfg.sz);
4295 return ext->kcfg.sz;
4296 }
4297 ext->kcfg.align = btf__align_of(obj->btf, t->type);
4298 if (ext->kcfg.align <= 0) {
4299 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4300 ext_name, ext->kcfg.align);
4301 return -EINVAL;
4302 }
4303 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4304 &ext->kcfg.is_signed);
4305 if (ext->kcfg.type == KCFG_UNKNOWN) {
4306 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4307 return -ENOTSUP;
4308 }
4309 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4310 ksym_sec = sec;
4311 ext->type = EXT_KSYM;
4312 skip_mods_and_typedefs(obj->btf, t->type,
4313 &ext->ksym.type_id);
4314 } else {
4315 pr_warn("unrecognized extern section '%s'\n", sec_name);
4316 return -ENOTSUP;
4317 }
4318 }
4319 pr_debug("collected %d externs total\n", obj->nr_extern);
4320
4321 if (!obj->nr_extern)
4322 return 0;
4323
4324 /* sort externs by type, for kcfg ones also by (align, size, name) */
4325 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4326
4327 /* for .ksyms section, we need to turn all externs into allocated
4328 * variables in BTF to pass kernel verification; we do this by
4329 * pretending that each extern is a 8-byte variable
4330 */
4331 if (ksym_sec) {
4332 /* find existing 4-byte integer type in BTF to use for fake
4333 * extern variables in DATASEC
4334 */
4335 int int_btf_id = find_int_btf_id(obj->btf);
4336 /* For extern function, a dummy_var added earlier
4337 * will be used to replace the vs->type and
4338 * its name string will be used to refill
4339 * the missing param's name.
4340 */
4341 const struct btf_type *dummy_var;
4342
4343 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4344 for (i = 0; i < obj->nr_extern; i++) {
4345 ext = &obj->externs[i];
4346 if (ext->type != EXT_KSYM)
4347 continue;
4348 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4349 i, ext->sym_idx, ext->name);
4350 }
4351
4352 sec = ksym_sec;
4353 n = btf_vlen(sec);
4354 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4355 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4356 struct btf_type *vt;
4357
4358 vt = (void *)btf__type_by_id(obj->btf, vs->type);
4359 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4360 ext = find_extern_by_name(obj, ext_name);
4361 if (!ext) {
4362 pr_warn("failed to find extern definition for BTF %s '%s'\n",
4363 btf_kind_str(vt), ext_name);
4364 return -ESRCH;
4365 }
4366 if (btf_is_func(vt)) {
4367 const struct btf_type *func_proto;
4368 struct btf_param *param;
4369 int j;
4370
4371 func_proto = btf__type_by_id(obj->btf,
4372 vt->type);
4373 param = btf_params(func_proto);
4374 /* Reuse the dummy_var string if the
4375 * func proto does not have param name.
4376 */
4377 for (j = 0; j < btf_vlen(func_proto); j++)
4378 if (param[j].type && !param[j].name_off)
4379 param[j].name_off =
4380 dummy_var->name_off;
4381 vs->type = dummy_var_btf_id;
4382 vt->info &= ~0xffff;
4383 vt->info |= BTF_FUNC_GLOBAL;
4384 } else {
4385 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4386 vt->type = int_btf_id;
4387 }
4388 vs->offset = off;
4389 vs->size = sizeof(int);
4390 }
4391 sec->size = off;
4392 }
4393
4394 if (kcfg_sec) {
4395 sec = kcfg_sec;
4396 /* for kcfg externs calculate their offsets within a .kconfig map */
4397 off = 0;
4398 for (i = 0; i < obj->nr_extern; i++) {
4399 ext = &obj->externs[i];
4400 if (ext->type != EXT_KCFG)
4401 continue;
4402
4403 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4404 off = ext->kcfg.data_off + ext->kcfg.sz;
4405 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4406 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4407 }
4408 sec->size = off;
4409 n = btf_vlen(sec);
4410 for (i = 0; i < n; i++) {
4411 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4412
4413 t = btf__type_by_id(obj->btf, vs->type);
4414 ext_name = btf__name_by_offset(obj->btf, t->name_off);
4415 ext = find_extern_by_name(obj, ext_name);
4416 if (!ext) {
4417 pr_warn("failed to find extern definition for BTF var '%s'\n",
4418 ext_name);
4419 return -ESRCH;
4420 }
4421 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4422 vs->offset = ext->kcfg.data_off;
4423 }
4424 }
4425 return 0;
4426 }
4427
prog_is_subprog(const struct bpf_object * obj,const struct bpf_program * prog)4428 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4429 {
4430 return prog->sec_idx == obj->efile.text_shndx;
4431 }
4432
4433 struct bpf_program *
bpf_object__find_program_by_name(const struct bpf_object * obj,const char * name)4434 bpf_object__find_program_by_name(const struct bpf_object *obj,
4435 const char *name)
4436 {
4437 struct bpf_program *prog;
4438
4439 bpf_object__for_each_program(prog, obj) {
4440 if (prog_is_subprog(obj, prog))
4441 continue;
4442 if (!strcmp(prog->name, name))
4443 return prog;
4444 }
4445 return errno = ENOENT, NULL;
4446 }
4447
bpf_object__shndx_is_data(const struct bpf_object * obj,int shndx)4448 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4449 int shndx)
4450 {
4451 switch (obj->efile.secs[shndx].sec_type) {
4452 case SEC_BSS:
4453 case SEC_DATA:
4454 case SEC_RODATA:
4455 return true;
4456 default:
4457 return false;
4458 }
4459 }
4460
bpf_object__shndx_is_maps(const struct bpf_object * obj,int shndx)4461 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4462 int shndx)
4463 {
4464 return shndx == obj->efile.btf_maps_shndx;
4465 }
4466
4467 static enum libbpf_map_type
bpf_object__section_to_libbpf_map_type(const struct bpf_object * obj,int shndx)4468 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4469 {
4470 if (shndx == obj->efile.symbols_shndx)
4471 return LIBBPF_MAP_KCONFIG;
4472
4473 switch (obj->efile.secs[shndx].sec_type) {
4474 case SEC_BSS:
4475 return LIBBPF_MAP_BSS;
4476 case SEC_DATA:
4477 return LIBBPF_MAP_DATA;
4478 case SEC_RODATA:
4479 return LIBBPF_MAP_RODATA;
4480 default:
4481 return LIBBPF_MAP_UNSPEC;
4482 }
4483 }
4484
bpf_prog_compute_hash(struct bpf_program * prog)4485 static int bpf_prog_compute_hash(struct bpf_program *prog)
4486 {
4487 struct bpf_insn *purged;
4488 int i, err = 0;
4489
4490 purged = calloc(prog->insns_cnt, BPF_INSN_SZ);
4491 if (!purged)
4492 return -ENOMEM;
4493
4494 /* If relocations have been done, the map_fd needs to be
4495 * discarded for the digest calculation.
4496 */
4497 for (i = 0; i < prog->insns_cnt; i++) {
4498 purged[i] = prog->insns[i];
4499 if (purged[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
4500 (purged[i].src_reg == BPF_PSEUDO_MAP_FD ||
4501 purged[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
4502 purged[i].imm = 0;
4503 i++;
4504 if (i >= prog->insns_cnt ||
4505 prog->insns[i].code != 0 ||
4506 prog->insns[i].dst_reg != 0 ||
4507 prog->insns[i].src_reg != 0 ||
4508 prog->insns[i].off != 0) {
4509 err = -EINVAL;
4510 goto out;
4511 }
4512 purged[i] = prog->insns[i];
4513 purged[i].imm = 0;
4514 }
4515 }
4516 libbpf_sha256(purged, prog->insns_cnt * sizeof(struct bpf_insn),
4517 prog->hash);
4518 out:
4519 free(purged);
4520 return err;
4521 }
4522
bpf_program__record_reloc(struct bpf_program * prog,struct reloc_desc * reloc_desc,__u32 insn_idx,const char * sym_name,const Elf64_Sym * sym,const Elf64_Rel * rel)4523 static int bpf_program__record_reloc(struct bpf_program *prog,
4524 struct reloc_desc *reloc_desc,
4525 __u32 insn_idx, const char *sym_name,
4526 const Elf64_Sym *sym, const Elf64_Rel *rel)
4527 {
4528 struct bpf_insn *insn = &prog->insns[insn_idx];
4529 size_t map_idx, nr_maps = prog->obj->nr_maps;
4530 struct bpf_object *obj = prog->obj;
4531 __u32 shdr_idx = sym->st_shndx;
4532 enum libbpf_map_type type;
4533 const char *sym_sec_name;
4534 struct bpf_map *map;
4535
4536 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4537 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4538 prog->name, sym_name, insn_idx, insn->code);
4539 return -LIBBPF_ERRNO__RELOC;
4540 }
4541
4542 if (sym_is_extern(sym)) {
4543 int sym_idx = ELF64_R_SYM(rel->r_info);
4544 int i, n = obj->nr_extern;
4545 struct extern_desc *ext;
4546
4547 for (i = 0; i < n; i++) {
4548 ext = &obj->externs[i];
4549 if (ext->sym_idx == sym_idx)
4550 break;
4551 }
4552 if (i >= n) {
4553 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4554 prog->name, sym_name, sym_idx);
4555 return -LIBBPF_ERRNO__RELOC;
4556 }
4557 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4558 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4559 if (insn->code == (BPF_JMP | BPF_CALL))
4560 reloc_desc->type = RELO_EXTERN_CALL;
4561 else
4562 reloc_desc->type = RELO_EXTERN_LD64;
4563 reloc_desc->insn_idx = insn_idx;
4564 reloc_desc->ext_idx = i;
4565 return 0;
4566 }
4567
4568 /* sub-program call relocation */
4569 if (is_call_insn(insn)) {
4570 if (insn->src_reg != BPF_PSEUDO_CALL) {
4571 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4572 return -LIBBPF_ERRNO__RELOC;
4573 }
4574 /* text_shndx can be 0, if no default "main" program exists */
4575 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4576 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4577 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4578 prog->name, sym_name, sym_sec_name);
4579 return -LIBBPF_ERRNO__RELOC;
4580 }
4581 if (sym->st_value % BPF_INSN_SZ) {
4582 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4583 prog->name, sym_name, (size_t)sym->st_value);
4584 return -LIBBPF_ERRNO__RELOC;
4585 }
4586 reloc_desc->type = RELO_CALL;
4587 reloc_desc->insn_idx = insn_idx;
4588 reloc_desc->sym_off = sym->st_value;
4589 return 0;
4590 }
4591
4592 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4593 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4594 prog->name, sym_name, shdr_idx);
4595 return -LIBBPF_ERRNO__RELOC;
4596 }
4597
4598 /* loading subprog addresses */
4599 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4600 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4601 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4602 */
4603 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4604 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4605 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4606 return -LIBBPF_ERRNO__RELOC;
4607 }
4608
4609 reloc_desc->type = RELO_SUBPROG_ADDR;
4610 reloc_desc->insn_idx = insn_idx;
4611 reloc_desc->sym_off = sym->st_value;
4612 return 0;
4613 }
4614
4615 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4616 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4617
4618 /* arena data relocation */
4619 if (shdr_idx == obj->efile.arena_data_shndx) {
4620 if (obj->arena_map_idx < 0) {
4621 pr_warn("prog '%s': bad arena data relocation at insn %u, no arena maps defined\n",
4622 prog->name, insn_idx);
4623 return -LIBBPF_ERRNO__RELOC;
4624 }
4625 reloc_desc->type = RELO_DATA;
4626 reloc_desc->insn_idx = insn_idx;
4627 reloc_desc->map_idx = obj->arena_map_idx;
4628 reloc_desc->sym_off = sym->st_value;
4629
4630 map = &obj->maps[obj->arena_map_idx];
4631 pr_debug("prog '%s': found arena map %d (%s, sec %d, off %zu) for insn %u\n",
4632 prog->name, obj->arena_map_idx, map->name, map->sec_idx,
4633 map->sec_offset, insn_idx);
4634 return 0;
4635 }
4636
4637 /* generic map reference relocation */
4638 if (type == LIBBPF_MAP_UNSPEC) {
4639 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4640 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4641 prog->name, sym_name, sym_sec_name);
4642 return -LIBBPF_ERRNO__RELOC;
4643 }
4644 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4645 map = &obj->maps[map_idx];
4646 if (map->libbpf_type != type ||
4647 map->sec_idx != sym->st_shndx ||
4648 map->sec_offset != sym->st_value)
4649 continue;
4650 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4651 prog->name, map_idx, map->name, map->sec_idx,
4652 map->sec_offset, insn_idx);
4653 break;
4654 }
4655 if (map_idx >= nr_maps) {
4656 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4657 prog->name, sym_sec_name, (size_t)sym->st_value);
4658 return -LIBBPF_ERRNO__RELOC;
4659 }
4660 reloc_desc->type = RELO_LD64;
4661 reloc_desc->insn_idx = insn_idx;
4662 reloc_desc->map_idx = map_idx;
4663 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4664 return 0;
4665 }
4666
4667 /* global data map relocation */
4668 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4669 pr_warn("prog '%s': bad data relo against section '%s'\n",
4670 prog->name, sym_sec_name);
4671 return -LIBBPF_ERRNO__RELOC;
4672 }
4673 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4674 map = &obj->maps[map_idx];
4675 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4676 continue;
4677 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4678 prog->name, map_idx, map->name, map->sec_idx,
4679 map->sec_offset, insn_idx);
4680 break;
4681 }
4682 if (map_idx >= nr_maps) {
4683 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4684 prog->name, sym_sec_name);
4685 return -LIBBPF_ERRNO__RELOC;
4686 }
4687
4688 reloc_desc->type = RELO_DATA;
4689 reloc_desc->insn_idx = insn_idx;
4690 reloc_desc->map_idx = map_idx;
4691 reloc_desc->sym_off = sym->st_value;
4692 return 0;
4693 }
4694
prog_contains_insn(const struct bpf_program * prog,size_t insn_idx)4695 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4696 {
4697 return insn_idx >= prog->sec_insn_off &&
4698 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4699 }
4700
find_prog_by_sec_insn(const struct bpf_object * obj,size_t sec_idx,size_t insn_idx)4701 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4702 size_t sec_idx, size_t insn_idx)
4703 {
4704 int l = 0, r = obj->nr_programs - 1, m;
4705 struct bpf_program *prog;
4706
4707 if (!obj->nr_programs)
4708 return NULL;
4709
4710 while (l < r) {
4711 m = l + (r - l + 1) / 2;
4712 prog = &obj->programs[m];
4713
4714 if (prog->sec_idx < sec_idx ||
4715 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4716 l = m;
4717 else
4718 r = m - 1;
4719 }
4720 /* matching program could be at index l, but it still might be the
4721 * wrong one, so we need to double check conditions for the last time
4722 */
4723 prog = &obj->programs[l];
4724 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4725 return prog;
4726 return NULL;
4727 }
4728
4729 static int
bpf_object__collect_prog_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)4730 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4731 {
4732 const char *relo_sec_name, *sec_name;
4733 size_t sec_idx = shdr->sh_info, sym_idx;
4734 struct bpf_program *prog;
4735 struct reloc_desc *relos;
4736 int err, i, nrels;
4737 const char *sym_name;
4738 __u32 insn_idx;
4739 Elf_Scn *scn;
4740 Elf_Data *scn_data;
4741 Elf64_Sym *sym;
4742 Elf64_Rel *rel;
4743
4744 if (sec_idx >= obj->efile.sec_cnt)
4745 return -EINVAL;
4746
4747 scn = elf_sec_by_idx(obj, sec_idx);
4748 scn_data = elf_sec_data(obj, scn);
4749 if (!scn_data)
4750 return -LIBBPF_ERRNO__FORMAT;
4751
4752 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4753 sec_name = elf_sec_name(obj, scn);
4754 if (!relo_sec_name || !sec_name)
4755 return -EINVAL;
4756
4757 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4758 relo_sec_name, sec_idx, sec_name);
4759 nrels = shdr->sh_size / shdr->sh_entsize;
4760
4761 for (i = 0; i < nrels; i++) {
4762 rel = elf_rel_by_idx(data, i);
4763 if (!rel) {
4764 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4765 return -LIBBPF_ERRNO__FORMAT;
4766 }
4767
4768 sym_idx = ELF64_R_SYM(rel->r_info);
4769 sym = elf_sym_by_idx(obj, sym_idx);
4770 if (!sym) {
4771 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4772 relo_sec_name, sym_idx, i);
4773 return -LIBBPF_ERRNO__FORMAT;
4774 }
4775
4776 if (sym->st_shndx >= obj->efile.sec_cnt) {
4777 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4778 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4779 return -LIBBPF_ERRNO__FORMAT;
4780 }
4781
4782 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4783 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4784 relo_sec_name, (size_t)rel->r_offset, i);
4785 return -LIBBPF_ERRNO__FORMAT;
4786 }
4787
4788 insn_idx = rel->r_offset / BPF_INSN_SZ;
4789 /* relocations against static functions are recorded as
4790 * relocations against the section that contains a function;
4791 * in such case, symbol will be STT_SECTION and sym.st_name
4792 * will point to empty string (0), so fetch section name
4793 * instead
4794 */
4795 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4796 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4797 else
4798 sym_name = elf_sym_str(obj, sym->st_name);
4799 sym_name = sym_name ?: "<?";
4800
4801 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4802 relo_sec_name, i, insn_idx, sym_name);
4803
4804 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4805 if (!prog) {
4806 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4807 relo_sec_name, i, sec_name, insn_idx);
4808 continue;
4809 }
4810
4811 relos = libbpf_reallocarray(prog->reloc_desc,
4812 prog->nr_reloc + 1, sizeof(*relos));
4813 if (!relos)
4814 return -ENOMEM;
4815 prog->reloc_desc = relos;
4816
4817 /* adjust insn_idx to local BPF program frame of reference */
4818 insn_idx -= prog->sec_insn_off;
4819 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4820 insn_idx, sym_name, sym, rel);
4821 if (err)
4822 return err;
4823
4824 prog->nr_reloc++;
4825 }
4826 return 0;
4827 }
4828
map_fill_btf_type_info(struct bpf_object * obj,struct bpf_map * map)4829 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4830 {
4831 int id;
4832
4833 if (!obj->btf)
4834 return -ENOENT;
4835
4836 /* if it's BTF-defined map, we don't need to search for type IDs.
4837 * For struct_ops map, it does not need btf_key_type_id and
4838 * btf_value_type_id.
4839 */
4840 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4841 return 0;
4842
4843 /*
4844 * LLVM annotates global data differently in BTF, that is,
4845 * only as '.data', '.bss' or '.rodata'.
4846 */
4847 if (!bpf_map__is_internal(map))
4848 return -ENOENT;
4849
4850 id = btf__find_by_name(obj->btf, map->real_name);
4851 if (id < 0)
4852 return id;
4853
4854 map->btf_key_type_id = 0;
4855 map->btf_value_type_id = id;
4856 return 0;
4857 }
4858
bpf_get_map_info_from_fdinfo(int fd,struct bpf_map_info * info)4859 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4860 {
4861 char file[PATH_MAX], buff[4096];
4862 FILE *fp;
4863 __u32 val;
4864 int err;
4865
4866 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4867 memset(info, 0, sizeof(*info));
4868
4869 fp = fopen(file, "re");
4870 if (!fp) {
4871 err = -errno;
4872 pr_warn("failed to open %s: %s. No procfs support?\n", file,
4873 errstr(err));
4874 return err;
4875 }
4876
4877 while (fgets(buff, sizeof(buff), fp)) {
4878 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4879 info->type = val;
4880 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4881 info->key_size = val;
4882 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4883 info->value_size = val;
4884 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4885 info->max_entries = val;
4886 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4887 info->map_flags = val;
4888 }
4889
4890 fclose(fp);
4891
4892 return 0;
4893 }
4894
map_is_created(const struct bpf_map * map)4895 static bool map_is_created(const struct bpf_map *map)
4896 {
4897 return map->obj->state >= OBJ_PREPARED || map->reused;
4898 }
4899
bpf_map__autocreate(const struct bpf_map * map)4900 bool bpf_map__autocreate(const struct bpf_map *map)
4901 {
4902 return map->autocreate;
4903 }
4904
bpf_map__set_autocreate(struct bpf_map * map,bool autocreate)4905 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4906 {
4907 if (map_is_created(map))
4908 return libbpf_err(-EBUSY);
4909
4910 map->autocreate = autocreate;
4911 return 0;
4912 }
4913
bpf_map__set_autoattach(struct bpf_map * map,bool autoattach)4914 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach)
4915 {
4916 if (!bpf_map__is_struct_ops(map))
4917 return libbpf_err(-EINVAL);
4918
4919 map->autoattach = autoattach;
4920 return 0;
4921 }
4922
bpf_map__autoattach(const struct bpf_map * map)4923 bool bpf_map__autoattach(const struct bpf_map *map)
4924 {
4925 return map->autoattach;
4926 }
4927
bpf_map__reuse_fd(struct bpf_map * map,int fd)4928 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4929 {
4930 struct bpf_map_info info;
4931 __u32 len = sizeof(info), name_len;
4932 int new_fd, err;
4933 char *new_name;
4934
4935 memset(&info, 0, len);
4936 err = bpf_map_get_info_by_fd(fd, &info, &len);
4937 if (err && errno == EINVAL)
4938 err = bpf_get_map_info_from_fdinfo(fd, &info);
4939 if (err)
4940 return libbpf_err(err);
4941
4942 name_len = strlen(info.name);
4943 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4944 new_name = strdup(map->name);
4945 else
4946 new_name = strdup(info.name);
4947
4948 if (!new_name)
4949 return libbpf_err(-errno);
4950
4951 /*
4952 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4953 * This is similar to what we do in ensure_good_fd(), but without
4954 * closing original FD.
4955 */
4956 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4957 if (new_fd < 0) {
4958 err = -errno;
4959 goto err_free_new_name;
4960 }
4961
4962 err = reuse_fd(map->fd, new_fd);
4963 if (err)
4964 goto err_free_new_name;
4965
4966 free(map->name);
4967
4968 map->name = new_name;
4969 map->def.type = info.type;
4970 map->def.key_size = info.key_size;
4971 map->def.value_size = info.value_size;
4972 map->def.max_entries = info.max_entries;
4973 map->def.map_flags = info.map_flags;
4974 map->btf_key_type_id = info.btf_key_type_id;
4975 map->btf_value_type_id = info.btf_value_type_id;
4976 map->reused = true;
4977 map->map_extra = info.map_extra;
4978
4979 return 0;
4980
4981 err_free_new_name:
4982 free(new_name);
4983 return libbpf_err(err);
4984 }
4985
bpf_map__max_entries(const struct bpf_map * map)4986 __u32 bpf_map__max_entries(const struct bpf_map *map)
4987 {
4988 return map->def.max_entries;
4989 }
4990
bpf_map__inner_map(struct bpf_map * map)4991 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4992 {
4993 if (!bpf_map_type__is_map_in_map(map->def.type))
4994 return errno = EINVAL, NULL;
4995
4996 return map->inner_map;
4997 }
4998
bpf_map__set_max_entries(struct bpf_map * map,__u32 max_entries)4999 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
5000 {
5001 if (map_is_created(map))
5002 return libbpf_err(-EBUSY);
5003
5004 map->def.max_entries = max_entries;
5005
5006 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
5007 if (map_is_ringbuf(map))
5008 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
5009
5010 return 0;
5011 }
5012
bpf_object_prepare_token(struct bpf_object * obj)5013 static int bpf_object_prepare_token(struct bpf_object *obj)
5014 {
5015 const char *bpffs_path;
5016 int bpffs_fd = -1, token_fd, err;
5017 bool mandatory;
5018 enum libbpf_print_level level;
5019
5020 /* token is explicitly prevented */
5021 if (obj->token_path && obj->token_path[0] == '\0') {
5022 pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
5023 return 0;
5024 }
5025
5026 mandatory = obj->token_path != NULL;
5027 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
5028
5029 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
5030 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
5031 if (bpffs_fd < 0) {
5032 err = -errno;
5033 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n",
5034 obj->name, errstr(err), bpffs_path,
5035 mandatory ? "" : ", skipping optional step...");
5036 return mandatory ? err : 0;
5037 }
5038
5039 token_fd = bpf_token_create(bpffs_fd, 0);
5040 close(bpffs_fd);
5041 if (token_fd < 0) {
5042 if (!mandatory && token_fd == -ENOENT) {
5043 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
5044 obj->name, bpffs_path);
5045 return 0;
5046 }
5047 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
5048 obj->name, token_fd, bpffs_path,
5049 mandatory ? "" : ", skipping optional step...");
5050 return mandatory ? token_fd : 0;
5051 }
5052
5053 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
5054 if (!obj->feat_cache) {
5055 close(token_fd);
5056 return -ENOMEM;
5057 }
5058
5059 obj->token_fd = token_fd;
5060 obj->feat_cache->token_fd = token_fd;
5061
5062 return 0;
5063 }
5064
5065 static int
bpf_object__probe_loading(struct bpf_object * obj)5066 bpf_object__probe_loading(struct bpf_object *obj)
5067 {
5068 struct bpf_insn insns[] = {
5069 BPF_MOV64_IMM(BPF_REG_0, 0),
5070 BPF_EXIT_INSN(),
5071 };
5072 int ret, insn_cnt = ARRAY_SIZE(insns);
5073 LIBBPF_OPTS(bpf_prog_load_opts, opts,
5074 .token_fd = obj->token_fd,
5075 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
5076 );
5077
5078 if (obj->gen_loader)
5079 return 0;
5080
5081 ret = bump_rlimit_memlock();
5082 if (ret)
5083 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n",
5084 errstr(ret));
5085
5086 /* make sure basic loading works */
5087 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
5088 if (ret < 0)
5089 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
5090 if (ret < 0) {
5091 ret = errno;
5092 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n",
5093 __func__, errstr(ret));
5094 return -ret;
5095 }
5096 close(ret);
5097
5098 return 0;
5099 }
5100
kernel_supports(const struct bpf_object * obj,enum kern_feature_id feat_id)5101 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
5102 {
5103 if (obj->gen_loader)
5104 /* To generate loader program assume the latest kernel
5105 * to avoid doing extra prog_load, map_create syscalls.
5106 */
5107 return true;
5108
5109 if (obj->token_fd)
5110 return feat_supported(obj->feat_cache, feat_id);
5111
5112 return feat_supported(NULL, feat_id);
5113 }
5114
map_is_reuse_compat(const struct bpf_map * map,int map_fd)5115 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
5116 {
5117 struct bpf_map_info map_info;
5118 __u32 map_info_len = sizeof(map_info);
5119 int err;
5120
5121 memset(&map_info, 0, map_info_len);
5122 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5123 if (err && errno == EINVAL)
5124 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5125 if (err) {
5126 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5127 errstr(err));
5128 return false;
5129 }
5130
5131 /*
5132 * bpf_get_map_info_by_fd() for DEVMAP will always return flags with
5133 * BPF_F_RDONLY_PROG set, but it generally is not set at map creation time.
5134 * Thus, ignore the BPF_F_RDONLY_PROG flag in the flags returned from
5135 * bpf_get_map_info_by_fd() when checking for compatibility with an
5136 * existing DEVMAP.
5137 */
5138 if (map->def.type == BPF_MAP_TYPE_DEVMAP || map->def.type == BPF_MAP_TYPE_DEVMAP_HASH)
5139 map_info.map_flags &= ~BPF_F_RDONLY_PROG;
5140
5141 return (map_info.type == map->def.type &&
5142 map_info.key_size == map->def.key_size &&
5143 map_info.value_size == map->def.value_size &&
5144 map_info.max_entries == map->def.max_entries &&
5145 map_info.map_flags == map->def.map_flags &&
5146 map_info.map_extra == map->map_extra);
5147 }
5148
5149 static int
bpf_object__reuse_map(struct bpf_map * map)5150 bpf_object__reuse_map(struct bpf_map *map)
5151 {
5152 int err, pin_fd;
5153
5154 pin_fd = bpf_obj_get(map->pin_path);
5155 if (pin_fd < 0) {
5156 err = -errno;
5157 if (err == -ENOENT) {
5158 pr_debug("found no pinned map to reuse at '%s'\n",
5159 map->pin_path);
5160 return 0;
5161 }
5162
5163 pr_warn("couldn't retrieve pinned map '%s': %s\n",
5164 map->pin_path, errstr(err));
5165 return err;
5166 }
5167
5168 if (!map_is_reuse_compat(map, pin_fd)) {
5169 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5170 map->pin_path);
5171 close(pin_fd);
5172 return -EINVAL;
5173 }
5174
5175 err = bpf_map__reuse_fd(map, pin_fd);
5176 close(pin_fd);
5177 if (err)
5178 return err;
5179
5180 map->pinned = true;
5181 pr_debug("reused pinned map at '%s'\n", map->pin_path);
5182
5183 return 0;
5184 }
5185
5186 static int
bpf_object__populate_internal_map(struct bpf_object * obj,struct bpf_map * map)5187 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5188 {
5189 enum libbpf_map_type map_type = map->libbpf_type;
5190 int err, zero = 0;
5191 size_t mmap_sz;
5192
5193 if (obj->gen_loader) {
5194 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5195 map->mmaped, map->def.value_size);
5196 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5197 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5198 return 0;
5199 }
5200
5201 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5202 if (err) {
5203 err = -errno;
5204 pr_warn("map '%s': failed to set initial contents: %s\n",
5205 bpf_map__name(map), errstr(err));
5206 return err;
5207 }
5208
5209 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5210 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5211 err = bpf_map_freeze(map->fd);
5212 if (err) {
5213 err = -errno;
5214 pr_warn("map '%s': failed to freeze as read-only: %s\n",
5215 bpf_map__name(map), errstr(err));
5216 return err;
5217 }
5218 }
5219
5220 /* Remap anonymous mmap()-ed "map initialization image" as
5221 * a BPF map-backed mmap()-ed memory, but preserving the same
5222 * memory address. This will cause kernel to change process'
5223 * page table to point to a different piece of kernel memory,
5224 * but from userspace point of view memory address (and its
5225 * contents, being identical at this point) will stay the
5226 * same. This mapping will be released by bpf_object__close()
5227 * as per normal clean up procedure.
5228 */
5229 mmap_sz = bpf_map_mmap_sz(map);
5230 if (map->def.map_flags & BPF_F_MMAPABLE) {
5231 void *mmaped;
5232 int prot;
5233
5234 if (map->def.map_flags & BPF_F_RDONLY_PROG)
5235 prot = PROT_READ;
5236 else
5237 prot = PROT_READ | PROT_WRITE;
5238 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0);
5239 if (mmaped == MAP_FAILED) {
5240 err = -errno;
5241 pr_warn("map '%s': failed to re-mmap() contents: %s\n",
5242 bpf_map__name(map), errstr(err));
5243 return err;
5244 }
5245 map->mmaped = mmaped;
5246 } else if (map->mmaped) {
5247 munmap(map->mmaped, mmap_sz);
5248 map->mmaped = NULL;
5249 }
5250
5251 return 0;
5252 }
5253
5254 static void bpf_map__destroy(struct bpf_map *map);
5255
bpf_object__create_map(struct bpf_object * obj,struct bpf_map * map,bool is_inner)5256 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5257 {
5258 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5259 struct bpf_map_def *def = &map->def;
5260 const char *map_name = NULL;
5261 int err = 0, map_fd;
5262
5263 if (kernel_supports(obj, FEAT_PROG_NAME))
5264 map_name = map->name;
5265 create_attr.map_ifindex = map->map_ifindex;
5266 create_attr.map_flags = def->map_flags;
5267 create_attr.numa_node = map->numa_node;
5268 create_attr.map_extra = map->map_extra;
5269 create_attr.token_fd = obj->token_fd;
5270 if (obj->token_fd)
5271 create_attr.map_flags |= BPF_F_TOKEN_FD;
5272 if (map->excl_prog) {
5273 err = bpf_prog_compute_hash(map->excl_prog);
5274 if (err)
5275 return err;
5276
5277 create_attr.excl_prog_hash = map->excl_prog->hash;
5278 create_attr.excl_prog_hash_size = SHA256_DIGEST_LENGTH;
5279 }
5280
5281 if (bpf_map__is_struct_ops(map)) {
5282 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5283 if (map->mod_btf_fd >= 0) {
5284 create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5285 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5286 }
5287 }
5288
5289 if (obj->btf && btf__fd(obj->btf) >= 0) {
5290 create_attr.btf_fd = btf__fd(obj->btf);
5291 create_attr.btf_key_type_id = map->btf_key_type_id;
5292 create_attr.btf_value_type_id = map->btf_value_type_id;
5293 }
5294
5295 if (bpf_map_type__is_map_in_map(def->type)) {
5296 if (map->inner_map) {
5297 err = map_set_def_max_entries(map->inner_map);
5298 if (err)
5299 return err;
5300 err = bpf_object__create_map(obj, map->inner_map, true);
5301 if (err) {
5302 pr_warn("map '%s': failed to create inner map: %s\n",
5303 map->name, errstr(err));
5304 return err;
5305 }
5306 map->inner_map_fd = map->inner_map->fd;
5307 }
5308 if (map->inner_map_fd >= 0)
5309 create_attr.inner_map_fd = map->inner_map_fd;
5310 }
5311
5312 switch (def->type) {
5313 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5314 case BPF_MAP_TYPE_CGROUP_ARRAY:
5315 case BPF_MAP_TYPE_STACK_TRACE:
5316 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5317 case BPF_MAP_TYPE_HASH_OF_MAPS:
5318 case BPF_MAP_TYPE_DEVMAP:
5319 case BPF_MAP_TYPE_DEVMAP_HASH:
5320 case BPF_MAP_TYPE_CPUMAP:
5321 case BPF_MAP_TYPE_XSKMAP:
5322 case BPF_MAP_TYPE_SOCKMAP:
5323 case BPF_MAP_TYPE_SOCKHASH:
5324 case BPF_MAP_TYPE_QUEUE:
5325 case BPF_MAP_TYPE_STACK:
5326 case BPF_MAP_TYPE_ARENA:
5327 create_attr.btf_fd = 0;
5328 create_attr.btf_key_type_id = 0;
5329 create_attr.btf_value_type_id = 0;
5330 map->btf_key_type_id = 0;
5331 map->btf_value_type_id = 0;
5332 break;
5333 case BPF_MAP_TYPE_STRUCT_OPS:
5334 create_attr.btf_value_type_id = 0;
5335 break;
5336 default:
5337 break;
5338 }
5339
5340 if (obj->gen_loader) {
5341 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5342 def->key_size, def->value_size, def->max_entries,
5343 &create_attr, is_inner ? -1 : map - obj->maps);
5344 /* We keep pretenting we have valid FD to pass various fd >= 0
5345 * checks by just keeping original placeholder FDs in place.
5346 * See bpf_object__add_map() comment.
5347 * This placeholder fd will not be used with any syscall and
5348 * will be reset to -1 eventually.
5349 */
5350 map_fd = map->fd;
5351 } else {
5352 map_fd = bpf_map_create(def->type, map_name,
5353 def->key_size, def->value_size,
5354 def->max_entries, &create_attr);
5355 }
5356 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5357 err = -errno;
5358 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n",
5359 map->name, errstr(err));
5360 create_attr.btf_fd = 0;
5361 create_attr.btf_key_type_id = 0;
5362 create_attr.btf_value_type_id = 0;
5363 map->btf_key_type_id = 0;
5364 map->btf_value_type_id = 0;
5365 map_fd = bpf_map_create(def->type, map_name,
5366 def->key_size, def->value_size,
5367 def->max_entries, &create_attr);
5368 }
5369
5370 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5371 if (obj->gen_loader)
5372 map->inner_map->fd = -1;
5373 bpf_map__destroy(map->inner_map);
5374 zfree(&map->inner_map);
5375 }
5376
5377 if (map_fd < 0)
5378 return map_fd;
5379
5380 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5381 if (map->fd == map_fd)
5382 return 0;
5383
5384 /* Keep placeholder FD value but now point it to the BPF map object.
5385 * This way everything that relied on this map's FD (e.g., relocated
5386 * ldimm64 instructions) will stay valid and won't need adjustments.
5387 * map->fd stays valid but now point to what map_fd points to.
5388 */
5389 return reuse_fd(map->fd, map_fd);
5390 }
5391
init_map_in_map_slots(struct bpf_object * obj,struct bpf_map * map)5392 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5393 {
5394 const struct bpf_map *targ_map;
5395 unsigned int i;
5396 int fd, err = 0;
5397
5398 for (i = 0; i < map->init_slots_sz; i++) {
5399 if (!map->init_slots[i])
5400 continue;
5401
5402 targ_map = map->init_slots[i];
5403 fd = targ_map->fd;
5404
5405 if (obj->gen_loader) {
5406 bpf_gen__populate_outer_map(obj->gen_loader,
5407 map - obj->maps, i,
5408 targ_map - obj->maps);
5409 } else {
5410 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5411 }
5412 if (err) {
5413 err = -errno;
5414 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n",
5415 map->name, i, targ_map->name, fd, errstr(err));
5416 return err;
5417 }
5418 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5419 map->name, i, targ_map->name, fd);
5420 }
5421
5422 zfree(&map->init_slots);
5423 map->init_slots_sz = 0;
5424
5425 return 0;
5426 }
5427
init_prog_array_slots(struct bpf_object * obj,struct bpf_map * map)5428 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5429 {
5430 const struct bpf_program *targ_prog;
5431 unsigned int i;
5432 int fd, err;
5433
5434 if (obj->gen_loader)
5435 return -ENOTSUP;
5436
5437 for (i = 0; i < map->init_slots_sz; i++) {
5438 if (!map->init_slots[i])
5439 continue;
5440
5441 targ_prog = map->init_slots[i];
5442 fd = bpf_program__fd(targ_prog);
5443
5444 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5445 if (err) {
5446 err = -errno;
5447 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n",
5448 map->name, i, targ_prog->name, fd, errstr(err));
5449 return err;
5450 }
5451 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5452 map->name, i, targ_prog->name, fd);
5453 }
5454
5455 zfree(&map->init_slots);
5456 map->init_slots_sz = 0;
5457
5458 return 0;
5459 }
5460
bpf_object_init_prog_arrays(struct bpf_object * obj)5461 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5462 {
5463 struct bpf_map *map;
5464 int i, err;
5465
5466 for (i = 0; i < obj->nr_maps; i++) {
5467 map = &obj->maps[i];
5468
5469 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5470 continue;
5471
5472 err = init_prog_array_slots(obj, map);
5473 if (err < 0)
5474 return err;
5475 }
5476 return 0;
5477 }
5478
map_set_def_max_entries(struct bpf_map * map)5479 static int map_set_def_max_entries(struct bpf_map *map)
5480 {
5481 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5482 int nr_cpus;
5483
5484 nr_cpus = libbpf_num_possible_cpus();
5485 if (nr_cpus < 0) {
5486 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5487 map->name, nr_cpus);
5488 return nr_cpus;
5489 }
5490 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5491 map->def.max_entries = nr_cpus;
5492 }
5493
5494 return 0;
5495 }
5496
5497 static int
bpf_object__create_maps(struct bpf_object * obj)5498 bpf_object__create_maps(struct bpf_object *obj)
5499 {
5500 struct bpf_map *map;
5501 unsigned int i, j;
5502 int err;
5503 bool retried;
5504
5505 for (i = 0; i < obj->nr_maps; i++) {
5506 map = &obj->maps[i];
5507
5508 /* To support old kernels, we skip creating global data maps
5509 * (.rodata, .data, .kconfig, etc); later on, during program
5510 * loading, if we detect that at least one of the to-be-loaded
5511 * programs is referencing any global data map, we'll error
5512 * out with program name and relocation index logged.
5513 * This approach allows to accommodate Clang emitting
5514 * unnecessary .rodata.str1.1 sections for string literals,
5515 * but also it allows to have CO-RE applications that use
5516 * global variables in some of BPF programs, but not others.
5517 * If those global variable-using programs are not loaded at
5518 * runtime due to bpf_program__set_autoload(prog, false),
5519 * bpf_object loading will succeed just fine even on old
5520 * kernels.
5521 */
5522 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5523 map->autocreate = false;
5524
5525 if (!map->autocreate) {
5526 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5527 continue;
5528 }
5529
5530 err = map_set_def_max_entries(map);
5531 if (err)
5532 goto err_out;
5533
5534 retried = false;
5535 retry:
5536 if (map->pin_path) {
5537 err = bpf_object__reuse_map(map);
5538 if (err) {
5539 pr_warn("map '%s': error reusing pinned map\n",
5540 map->name);
5541 goto err_out;
5542 }
5543 if (retried && map->fd < 0) {
5544 pr_warn("map '%s': cannot find pinned map\n",
5545 map->name);
5546 err = -ENOENT;
5547 goto err_out;
5548 }
5549 }
5550
5551 if (map->reused) {
5552 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5553 map->name, map->fd);
5554 } else {
5555 err = bpf_object__create_map(obj, map, false);
5556 if (err)
5557 goto err_out;
5558
5559 pr_debug("map '%s': created successfully, fd=%d\n",
5560 map->name, map->fd);
5561
5562 if (bpf_map__is_internal(map)) {
5563 err = bpf_object__populate_internal_map(obj, map);
5564 if (err < 0)
5565 goto err_out;
5566 } else if (map->def.type == BPF_MAP_TYPE_ARENA) {
5567 map->mmaped = mmap((void *)(long)map->map_extra,
5568 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
5569 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5570 map->fd, 0);
5571 if (map->mmaped == MAP_FAILED) {
5572 err = -errno;
5573 map->mmaped = NULL;
5574 pr_warn("map '%s': failed to mmap arena: %s\n",
5575 map->name, errstr(err));
5576 return err;
5577 }
5578 if (obj->arena_data) {
5579 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5580 zfree(&obj->arena_data);
5581 }
5582 }
5583 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5584 err = init_map_in_map_slots(obj, map);
5585 if (err < 0)
5586 goto err_out;
5587 }
5588 }
5589
5590 if (map->pin_path && !map->pinned) {
5591 err = bpf_map__pin(map, NULL);
5592 if (err) {
5593 if (!retried && err == -EEXIST) {
5594 retried = true;
5595 goto retry;
5596 }
5597 pr_warn("map '%s': failed to auto-pin at '%s': %s\n",
5598 map->name, map->pin_path, errstr(err));
5599 goto err_out;
5600 }
5601 }
5602 }
5603
5604 return 0;
5605
5606 err_out:
5607 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err));
5608 pr_perm_msg(err);
5609 for (j = 0; j < i; j++)
5610 zclose(obj->maps[j].fd);
5611 return err;
5612 }
5613
bpf_core_is_flavor_sep(const char * s)5614 static bool bpf_core_is_flavor_sep(const char *s)
5615 {
5616 /* check X___Y name pattern, where X and Y are not underscores */
5617 return s[0] != '_' && /* X */
5618 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5619 s[4] != '_'; /* Y */
5620 }
5621
5622 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5623 * before last triple underscore. Struct name part after last triple
5624 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5625 */
bpf_core_essential_name_len(const char * name)5626 size_t bpf_core_essential_name_len(const char *name)
5627 {
5628 size_t n = strlen(name);
5629 int i;
5630
5631 for (i = n - 5; i >= 0; i--) {
5632 if (bpf_core_is_flavor_sep(name + i))
5633 return i + 1;
5634 }
5635 return n;
5636 }
5637
bpf_core_free_cands(struct bpf_core_cand_list * cands)5638 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5639 {
5640 if (!cands)
5641 return;
5642
5643 free(cands->cands);
5644 free(cands);
5645 }
5646
bpf_core_add_cands(struct bpf_core_cand * local_cand,size_t local_essent_len,const struct btf * targ_btf,const char * targ_btf_name,int targ_start_id,struct bpf_core_cand_list * cands)5647 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5648 size_t local_essent_len,
5649 const struct btf *targ_btf,
5650 const char *targ_btf_name,
5651 int targ_start_id,
5652 struct bpf_core_cand_list *cands)
5653 {
5654 struct bpf_core_cand *new_cands, *cand;
5655 const struct btf_type *t, *local_t;
5656 const char *targ_name, *local_name;
5657 size_t targ_essent_len;
5658 int n, i;
5659
5660 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5661 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5662
5663 n = btf__type_cnt(targ_btf);
5664 for (i = targ_start_id; i < n; i++) {
5665 t = btf__type_by_id(targ_btf, i);
5666 if (!btf_kind_core_compat(t, local_t))
5667 continue;
5668
5669 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5670 if (str_is_empty(targ_name))
5671 continue;
5672
5673 targ_essent_len = bpf_core_essential_name_len(targ_name);
5674 if (targ_essent_len != local_essent_len)
5675 continue;
5676
5677 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5678 continue;
5679
5680 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5681 local_cand->id, btf_kind_str(local_t),
5682 local_name, i, btf_kind_str(t), targ_name,
5683 targ_btf_name);
5684 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5685 sizeof(*cands->cands));
5686 if (!new_cands)
5687 return -ENOMEM;
5688
5689 cand = &new_cands[cands->len];
5690 cand->btf = targ_btf;
5691 cand->id = i;
5692
5693 cands->cands = new_cands;
5694 cands->len++;
5695 }
5696 return 0;
5697 }
5698
load_module_btfs(struct bpf_object * obj)5699 static int load_module_btfs(struct bpf_object *obj)
5700 {
5701 struct bpf_btf_info info;
5702 struct module_btf *mod_btf;
5703 struct btf *btf;
5704 char name[64];
5705 __u32 id = 0, len;
5706 int err, fd;
5707
5708 if (obj->btf_modules_loaded)
5709 return 0;
5710
5711 if (obj->gen_loader)
5712 return 0;
5713
5714 /* don't do this again, even if we find no module BTFs */
5715 obj->btf_modules_loaded = true;
5716
5717 /* kernel too old to support module BTFs */
5718 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5719 return 0;
5720
5721 while (true) {
5722 err = bpf_btf_get_next_id(id, &id);
5723 if (err && errno == ENOENT)
5724 return 0;
5725 if (err && errno == EPERM) {
5726 pr_debug("skipping module BTFs loading, missing privileges\n");
5727 return 0;
5728 }
5729 if (err) {
5730 err = -errno;
5731 pr_warn("failed to iterate BTF objects: %s\n", errstr(err));
5732 return err;
5733 }
5734
5735 fd = bpf_btf_get_fd_by_id(id);
5736 if (fd < 0) {
5737 if (errno == ENOENT)
5738 continue; /* expected race: BTF was unloaded */
5739 err = -errno;
5740 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err));
5741 return err;
5742 }
5743
5744 len = sizeof(info);
5745 memset(&info, 0, sizeof(info));
5746 info.name = ptr_to_u64(name);
5747 info.name_len = sizeof(name);
5748
5749 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5750 if (err) {
5751 err = -errno;
5752 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err));
5753 goto err_out;
5754 }
5755
5756 /* ignore non-module BTFs */
5757 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5758 close(fd);
5759 continue;
5760 }
5761
5762 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5763 err = libbpf_get_error(btf);
5764 if (err) {
5765 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n",
5766 name, id, errstr(err));
5767 goto err_out;
5768 }
5769
5770 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5771 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5772 if (err)
5773 goto err_out;
5774
5775 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5776
5777 mod_btf->btf = btf;
5778 mod_btf->id = id;
5779 mod_btf->fd = fd;
5780 mod_btf->name = strdup(name);
5781 if (!mod_btf->name) {
5782 err = -ENOMEM;
5783 goto err_out;
5784 }
5785 continue;
5786
5787 err_out:
5788 close(fd);
5789 return err;
5790 }
5791
5792 return 0;
5793 }
5794
5795 static struct bpf_core_cand_list *
bpf_core_find_cands(struct bpf_object * obj,const struct btf * local_btf,__u32 local_type_id)5796 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5797 {
5798 struct bpf_core_cand local_cand = {};
5799 struct bpf_core_cand_list *cands;
5800 const struct btf *main_btf;
5801 const struct btf_type *local_t;
5802 const char *local_name;
5803 size_t local_essent_len;
5804 int err, i;
5805
5806 local_cand.btf = local_btf;
5807 local_cand.id = local_type_id;
5808 local_t = btf__type_by_id(local_btf, local_type_id);
5809 if (!local_t)
5810 return ERR_PTR(-EINVAL);
5811
5812 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5813 if (str_is_empty(local_name))
5814 return ERR_PTR(-EINVAL);
5815 local_essent_len = bpf_core_essential_name_len(local_name);
5816
5817 cands = calloc(1, sizeof(*cands));
5818 if (!cands)
5819 return ERR_PTR(-ENOMEM);
5820
5821 /* Attempt to find target candidates in vmlinux BTF first */
5822 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5823 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5824 if (err)
5825 goto err_out;
5826
5827 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5828 if (cands->len)
5829 return cands;
5830
5831 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5832 if (obj->btf_vmlinux_override)
5833 return cands;
5834
5835 /* now look through module BTFs, trying to still find candidates */
5836 err = load_module_btfs(obj);
5837 if (err)
5838 goto err_out;
5839
5840 for (i = 0; i < obj->btf_module_cnt; i++) {
5841 err = bpf_core_add_cands(&local_cand, local_essent_len,
5842 obj->btf_modules[i].btf,
5843 obj->btf_modules[i].name,
5844 btf__type_cnt(obj->btf_vmlinux),
5845 cands);
5846 if (err)
5847 goto err_out;
5848 }
5849
5850 return cands;
5851 err_out:
5852 bpf_core_free_cands(cands);
5853 return ERR_PTR(err);
5854 }
5855
5856 /* Check local and target types for compatibility. This check is used for
5857 * type-based CO-RE relocations and follow slightly different rules than
5858 * field-based relocations. This function assumes that root types were already
5859 * checked for name match. Beyond that initial root-level name check, names
5860 * are completely ignored. Compatibility rules are as follows:
5861 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5862 * kind should match for local and target types (i.e., STRUCT is not
5863 * compatible with UNION);
5864 * - for ENUMs, the size is ignored;
5865 * - for INT, size and signedness are ignored;
5866 * - for ARRAY, dimensionality is ignored, element types are checked for
5867 * compatibility recursively;
5868 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5869 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5870 * - FUNC_PROTOs are compatible if they have compatible signature: same
5871 * number of input args and compatible return and argument types.
5872 * These rules are not set in stone and probably will be adjusted as we get
5873 * more experience with using BPF CO-RE relocations.
5874 */
bpf_core_types_are_compat(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5875 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5876 const struct btf *targ_btf, __u32 targ_id)
5877 {
5878 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5879 }
5880
bpf_core_types_match(const struct btf * local_btf,__u32 local_id,const struct btf * targ_btf,__u32 targ_id)5881 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5882 const struct btf *targ_btf, __u32 targ_id)
5883 {
5884 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5885 }
5886
bpf_core_hash_fn(const long key,void * ctx)5887 static size_t bpf_core_hash_fn(const long key, void *ctx)
5888 {
5889 return key;
5890 }
5891
bpf_core_equal_fn(const long k1,const long k2,void * ctx)5892 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5893 {
5894 return k1 == k2;
5895 }
5896
record_relo_core(struct bpf_program * prog,const struct bpf_core_relo * core_relo,int insn_idx)5897 static int record_relo_core(struct bpf_program *prog,
5898 const struct bpf_core_relo *core_relo, int insn_idx)
5899 {
5900 struct reloc_desc *relos, *relo;
5901
5902 relos = libbpf_reallocarray(prog->reloc_desc,
5903 prog->nr_reloc + 1, sizeof(*relos));
5904 if (!relos)
5905 return -ENOMEM;
5906 relo = &relos[prog->nr_reloc];
5907 relo->type = RELO_CORE;
5908 relo->insn_idx = insn_idx;
5909 relo->core_relo = core_relo;
5910 prog->reloc_desc = relos;
5911 prog->nr_reloc++;
5912 return 0;
5913 }
5914
find_relo_core(struct bpf_program * prog,int insn_idx)5915 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5916 {
5917 struct reloc_desc *relo;
5918 int i;
5919
5920 for (i = 0; i < prog->nr_reloc; i++) {
5921 relo = &prog->reloc_desc[i];
5922 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5923 continue;
5924
5925 return relo->core_relo;
5926 }
5927
5928 return NULL;
5929 }
5930
bpf_core_resolve_relo(struct bpf_program * prog,const struct bpf_core_relo * relo,int relo_idx,const struct btf * local_btf,struct hashmap * cand_cache,struct bpf_core_relo_res * targ_res)5931 static int bpf_core_resolve_relo(struct bpf_program *prog,
5932 const struct bpf_core_relo *relo,
5933 int relo_idx,
5934 const struct btf *local_btf,
5935 struct hashmap *cand_cache,
5936 struct bpf_core_relo_res *targ_res)
5937 {
5938 struct bpf_core_spec specs_scratch[3] = {};
5939 struct bpf_core_cand_list *cands = NULL;
5940 const char *prog_name = prog->name;
5941 const struct btf_type *local_type;
5942 const char *local_name;
5943 __u32 local_id = relo->type_id;
5944 int err;
5945
5946 local_type = btf__type_by_id(local_btf, local_id);
5947 if (!local_type)
5948 return -EINVAL;
5949
5950 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5951 if (!local_name)
5952 return -EINVAL;
5953
5954 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5955 !hashmap__find(cand_cache, local_id, &cands)) {
5956 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5957 if (IS_ERR(cands)) {
5958 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5959 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5960 local_name, PTR_ERR(cands));
5961 return PTR_ERR(cands);
5962 }
5963 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5964 if (err) {
5965 bpf_core_free_cands(cands);
5966 return err;
5967 }
5968 }
5969
5970 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5971 targ_res);
5972 }
5973
5974 static int
bpf_object__relocate_core(struct bpf_object * obj,const char * targ_btf_path)5975 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5976 {
5977 const struct btf_ext_info_sec *sec;
5978 struct bpf_core_relo_res targ_res;
5979 const struct bpf_core_relo *rec;
5980 const struct btf_ext_info *seg;
5981 struct hashmap_entry *entry;
5982 struct hashmap *cand_cache = NULL;
5983 struct bpf_program *prog;
5984 struct bpf_insn *insn;
5985 const char *sec_name;
5986 int i, err = 0, insn_idx, sec_idx, sec_num;
5987
5988 if (obj->btf_ext->core_relo_info.len == 0)
5989 return 0;
5990
5991 if (targ_btf_path) {
5992 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5993 err = libbpf_get_error(obj->btf_vmlinux_override);
5994 if (err) {
5995 pr_warn("failed to parse target BTF: %s\n", errstr(err));
5996 return err;
5997 }
5998 }
5999
6000 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6001 if (IS_ERR(cand_cache)) {
6002 err = PTR_ERR(cand_cache);
6003 goto out;
6004 }
6005
6006 seg = &obj->btf_ext->core_relo_info;
6007 sec_num = 0;
6008 for_each_btf_ext_sec(seg, sec) {
6009 sec_idx = seg->sec_idxs[sec_num];
6010 sec_num++;
6011
6012 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6013 if (str_is_empty(sec_name)) {
6014 err = -EINVAL;
6015 goto out;
6016 }
6017
6018 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
6019
6020 for_each_btf_ext_rec(seg, sec, i, rec) {
6021 if (rec->insn_off % BPF_INSN_SZ)
6022 return -EINVAL;
6023 insn_idx = rec->insn_off / BPF_INSN_SZ;
6024 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6025 if (!prog) {
6026 /* When __weak subprog is "overridden" by another instance
6027 * of the subprog from a different object file, linker still
6028 * appends all the .BTF.ext info that used to belong to that
6029 * eliminated subprogram.
6030 * This is similar to what x86-64 linker does for relocations.
6031 * So just ignore such relocations just like we ignore
6032 * subprog instructions when discovering subprograms.
6033 */
6034 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
6035 sec_name, i, insn_idx);
6036 continue;
6037 }
6038 /* no need to apply CO-RE relocation if the program is
6039 * not going to be loaded
6040 */
6041 if (!prog->autoload)
6042 continue;
6043
6044 /* adjust insn_idx from section frame of reference to the local
6045 * program's frame of reference; (sub-)program code is not yet
6046 * relocated, so it's enough to just subtract in-section offset
6047 */
6048 insn_idx = insn_idx - prog->sec_insn_off;
6049 if (insn_idx >= prog->insns_cnt)
6050 return -EINVAL;
6051 insn = &prog->insns[insn_idx];
6052
6053 err = record_relo_core(prog, rec, insn_idx);
6054 if (err) {
6055 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n",
6056 prog->name, i, errstr(err));
6057 goto out;
6058 }
6059
6060 if (prog->obj->gen_loader)
6061 continue;
6062
6063 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
6064 if (err) {
6065 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n",
6066 prog->name, i, errstr(err));
6067 goto out;
6068 }
6069
6070 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
6071 if (err) {
6072 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n",
6073 prog->name, i, insn_idx, errstr(err));
6074 goto out;
6075 }
6076 }
6077 }
6078
6079 out:
6080 /* obj->btf_vmlinux and module BTFs are freed after object load */
6081 btf__free(obj->btf_vmlinux_override);
6082 obj->btf_vmlinux_override = NULL;
6083
6084 if (!IS_ERR_OR_NULL(cand_cache)) {
6085 hashmap__for_each_entry(cand_cache, entry, i) {
6086 bpf_core_free_cands(entry->pvalue);
6087 }
6088 hashmap__free(cand_cache);
6089 }
6090 return err;
6091 }
6092
6093 /* base map load ldimm64 special constant, used also for log fixup logic */
6094 #define POISON_LDIMM64_MAP_BASE 2001000000
6095 #define POISON_LDIMM64_MAP_PFX "200100"
6096
poison_map_ldimm64(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int map_idx,const struct bpf_map * map)6097 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
6098 int insn_idx, struct bpf_insn *insn,
6099 int map_idx, const struct bpf_map *map)
6100 {
6101 int i;
6102
6103 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
6104 prog->name, relo_idx, insn_idx, map_idx, map->name);
6105
6106 /* we turn single ldimm64 into two identical invalid calls */
6107 for (i = 0; i < 2; i++) {
6108 insn->code = BPF_JMP | BPF_CALL;
6109 insn->dst_reg = 0;
6110 insn->src_reg = 0;
6111 insn->off = 0;
6112 /* if this instruction is reachable (not a dead code),
6113 * verifier will complain with something like:
6114 * invalid func unknown#2001000123
6115 * where lower 123 is map index into obj->maps[] array
6116 */
6117 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
6118
6119 insn++;
6120 }
6121 }
6122
6123 /* unresolved kfunc call special constant, used also for log fixup logic */
6124 #define POISON_CALL_KFUNC_BASE 2002000000
6125 #define POISON_CALL_KFUNC_PFX "2002"
6126
poison_kfunc_call(struct bpf_program * prog,int relo_idx,int insn_idx,struct bpf_insn * insn,int ext_idx,const struct extern_desc * ext)6127 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
6128 int insn_idx, struct bpf_insn *insn,
6129 int ext_idx, const struct extern_desc *ext)
6130 {
6131 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
6132 prog->name, relo_idx, insn_idx, ext->name);
6133
6134 /* we turn kfunc call into invalid helper call with identifiable constant */
6135 insn->code = BPF_JMP | BPF_CALL;
6136 insn->dst_reg = 0;
6137 insn->src_reg = 0;
6138 insn->off = 0;
6139 /* if this instruction is reachable (not a dead code),
6140 * verifier will complain with something like:
6141 * invalid func unknown#2001000123
6142 * where lower 123 is extern index into obj->externs[] array
6143 */
6144 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
6145 }
6146
6147 /* Relocate data references within program code:
6148 * - map references;
6149 * - global variable references;
6150 * - extern references.
6151 */
6152 static int
bpf_object__relocate_data(struct bpf_object * obj,struct bpf_program * prog)6153 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6154 {
6155 int i;
6156
6157 for (i = 0; i < prog->nr_reloc; i++) {
6158 struct reloc_desc *relo = &prog->reloc_desc[i];
6159 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6160 const struct bpf_map *map;
6161 struct extern_desc *ext;
6162
6163 switch (relo->type) {
6164 case RELO_LD64:
6165 map = &obj->maps[relo->map_idx];
6166 if (obj->gen_loader) {
6167 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
6168 insn[0].imm = relo->map_idx;
6169 } else if (map->autocreate) {
6170 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6171 insn[0].imm = map->fd;
6172 } else {
6173 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6174 relo->map_idx, map);
6175 }
6176 break;
6177 case RELO_DATA:
6178 map = &obj->maps[relo->map_idx];
6179 insn[1].imm = insn[0].imm + relo->sym_off;
6180 if (obj->gen_loader) {
6181 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6182 insn[0].imm = relo->map_idx;
6183 } else if (map->autocreate) {
6184 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6185 insn[0].imm = map->fd;
6186 } else {
6187 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
6188 relo->map_idx, map);
6189 }
6190 break;
6191 case RELO_EXTERN_LD64:
6192 ext = &obj->externs[relo->ext_idx];
6193 if (ext->type == EXT_KCFG) {
6194 if (obj->gen_loader) {
6195 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6196 insn[0].imm = obj->kconfig_map_idx;
6197 } else {
6198 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6199 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6200 }
6201 insn[1].imm = ext->kcfg.data_off;
6202 } else /* EXT_KSYM */ {
6203 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6204 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6205 insn[0].imm = ext->ksym.kernel_btf_id;
6206 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6207 } else { /* typeless ksyms or unresolved typed ksyms */
6208 insn[0].imm = (__u32)ext->ksym.addr;
6209 insn[1].imm = ext->ksym.addr >> 32;
6210 }
6211 }
6212 break;
6213 case RELO_EXTERN_CALL:
6214 ext = &obj->externs[relo->ext_idx];
6215 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6216 if (ext->is_set) {
6217 insn[0].imm = ext->ksym.kernel_btf_id;
6218 insn[0].off = ext->ksym.btf_fd_idx;
6219 } else { /* unresolved weak kfunc call */
6220 poison_kfunc_call(prog, i, relo->insn_idx, insn,
6221 relo->ext_idx, ext);
6222 }
6223 break;
6224 case RELO_SUBPROG_ADDR:
6225 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6226 pr_warn("prog '%s': relo #%d: bad insn\n",
6227 prog->name, i);
6228 return -EINVAL;
6229 }
6230 /* handled already */
6231 break;
6232 case RELO_CALL:
6233 /* handled already */
6234 break;
6235 case RELO_CORE:
6236 /* will be handled by bpf_program_record_relos() */
6237 break;
6238 default:
6239 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6240 prog->name, i, relo->type);
6241 return -EINVAL;
6242 }
6243 }
6244
6245 return 0;
6246 }
6247
adjust_prog_btf_ext_info(const struct bpf_object * obj,const struct bpf_program * prog,const struct btf_ext_info * ext_info,void ** prog_info,__u32 * prog_rec_cnt,__u32 * prog_rec_sz)6248 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6249 const struct bpf_program *prog,
6250 const struct btf_ext_info *ext_info,
6251 void **prog_info, __u32 *prog_rec_cnt,
6252 __u32 *prog_rec_sz)
6253 {
6254 void *copy_start = NULL, *copy_end = NULL;
6255 void *rec, *rec_end, *new_prog_info;
6256 const struct btf_ext_info_sec *sec;
6257 size_t old_sz, new_sz;
6258 int i, sec_num, sec_idx, off_adj;
6259
6260 sec_num = 0;
6261 for_each_btf_ext_sec(ext_info, sec) {
6262 sec_idx = ext_info->sec_idxs[sec_num];
6263 sec_num++;
6264 if (prog->sec_idx != sec_idx)
6265 continue;
6266
6267 for_each_btf_ext_rec(ext_info, sec, i, rec) {
6268 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6269
6270 if (insn_off < prog->sec_insn_off)
6271 continue;
6272 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6273 break;
6274
6275 if (!copy_start)
6276 copy_start = rec;
6277 copy_end = rec + ext_info->rec_size;
6278 }
6279
6280 if (!copy_start)
6281 return -ENOENT;
6282
6283 /* append func/line info of a given (sub-)program to the main
6284 * program func/line info
6285 */
6286 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6287 new_sz = old_sz + (copy_end - copy_start);
6288 new_prog_info = realloc(*prog_info, new_sz);
6289 if (!new_prog_info)
6290 return -ENOMEM;
6291 *prog_info = new_prog_info;
6292 *prog_rec_cnt = new_sz / ext_info->rec_size;
6293 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6294
6295 /* Kernel instruction offsets are in units of 8-byte
6296 * instructions, while .BTF.ext instruction offsets generated
6297 * by Clang are in units of bytes. So convert Clang offsets
6298 * into kernel offsets and adjust offset according to program
6299 * relocated position.
6300 */
6301 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6302 rec = new_prog_info + old_sz;
6303 rec_end = new_prog_info + new_sz;
6304 for (; rec < rec_end; rec += ext_info->rec_size) {
6305 __u32 *insn_off = rec;
6306
6307 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6308 }
6309 *prog_rec_sz = ext_info->rec_size;
6310 return 0;
6311 }
6312
6313 return -ENOENT;
6314 }
6315
6316 static int
reloc_prog_func_and_line_info(const struct bpf_object * obj,struct bpf_program * main_prog,const struct bpf_program * prog)6317 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6318 struct bpf_program *main_prog,
6319 const struct bpf_program *prog)
6320 {
6321 int err;
6322
6323 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6324 * support func/line info
6325 */
6326 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6327 return 0;
6328
6329 /* only attempt func info relocation if main program's func_info
6330 * relocation was successful
6331 */
6332 if (main_prog != prog && !main_prog->func_info)
6333 goto line_info;
6334
6335 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6336 &main_prog->func_info,
6337 &main_prog->func_info_cnt,
6338 &main_prog->func_info_rec_size);
6339 if (err) {
6340 if (err != -ENOENT) {
6341 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n",
6342 prog->name, errstr(err));
6343 return err;
6344 }
6345 if (main_prog->func_info) {
6346 /*
6347 * Some info has already been found but has problem
6348 * in the last btf_ext reloc. Must have to error out.
6349 */
6350 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6351 return err;
6352 }
6353 /* Have problem loading the very first info. Ignore the rest. */
6354 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6355 prog->name);
6356 }
6357
6358 line_info:
6359 /* don't relocate line info if main program's relocation failed */
6360 if (main_prog != prog && !main_prog->line_info)
6361 return 0;
6362
6363 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6364 &main_prog->line_info,
6365 &main_prog->line_info_cnt,
6366 &main_prog->line_info_rec_size);
6367 if (err) {
6368 if (err != -ENOENT) {
6369 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n",
6370 prog->name, errstr(err));
6371 return err;
6372 }
6373 if (main_prog->line_info) {
6374 /*
6375 * Some info has already been found but has problem
6376 * in the last btf_ext reloc. Must have to error out.
6377 */
6378 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6379 return err;
6380 }
6381 /* Have problem loading the very first info. Ignore the rest. */
6382 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6383 prog->name);
6384 }
6385 return 0;
6386 }
6387
cmp_relo_by_insn_idx(const void * key,const void * elem)6388 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6389 {
6390 size_t insn_idx = *(const size_t *)key;
6391 const struct reloc_desc *relo = elem;
6392
6393 if (insn_idx == relo->insn_idx)
6394 return 0;
6395 return insn_idx < relo->insn_idx ? -1 : 1;
6396 }
6397
find_prog_insn_relo(const struct bpf_program * prog,size_t insn_idx)6398 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6399 {
6400 if (!prog->nr_reloc)
6401 return NULL;
6402 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6403 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6404 }
6405
append_subprog_relos(struct bpf_program * main_prog,struct bpf_program * subprog)6406 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6407 {
6408 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6409 struct reloc_desc *relos;
6410 int i;
6411
6412 if (main_prog == subprog)
6413 return 0;
6414 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6415 /* if new count is zero, reallocarray can return a valid NULL result;
6416 * in this case the previous pointer will be freed, so we *have to*
6417 * reassign old pointer to the new value (even if it's NULL)
6418 */
6419 if (!relos && new_cnt)
6420 return -ENOMEM;
6421 if (subprog->nr_reloc)
6422 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6423 sizeof(*relos) * subprog->nr_reloc);
6424
6425 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6426 relos[i].insn_idx += subprog->sub_insn_off;
6427 /* After insn_idx adjustment the 'relos' array is still sorted
6428 * by insn_idx and doesn't break bsearch.
6429 */
6430 main_prog->reloc_desc = relos;
6431 main_prog->nr_reloc = new_cnt;
6432 return 0;
6433 }
6434
6435 static int
bpf_object__append_subprog_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * subprog)6436 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6437 struct bpf_program *subprog)
6438 {
6439 struct bpf_insn *insns;
6440 size_t new_cnt;
6441 int err;
6442
6443 subprog->sub_insn_off = main_prog->insns_cnt;
6444
6445 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6446 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6447 if (!insns) {
6448 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6449 return -ENOMEM;
6450 }
6451 main_prog->insns = insns;
6452 main_prog->insns_cnt = new_cnt;
6453
6454 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6455 subprog->insns_cnt * sizeof(*insns));
6456
6457 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6458 main_prog->name, subprog->insns_cnt, subprog->name);
6459
6460 /* The subprog insns are now appended. Append its relos too. */
6461 err = append_subprog_relos(main_prog, subprog);
6462 if (err)
6463 return err;
6464 return 0;
6465 }
6466
6467 static int
bpf_object__reloc_code(struct bpf_object * obj,struct bpf_program * main_prog,struct bpf_program * prog)6468 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6469 struct bpf_program *prog)
6470 {
6471 size_t sub_insn_idx, insn_idx;
6472 struct bpf_program *subprog;
6473 struct reloc_desc *relo;
6474 struct bpf_insn *insn;
6475 int err;
6476
6477 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6478 if (err)
6479 return err;
6480
6481 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6482 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6483 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6484 continue;
6485
6486 relo = find_prog_insn_relo(prog, insn_idx);
6487 if (relo && relo->type == RELO_EXTERN_CALL)
6488 /* kfunc relocations will be handled later
6489 * in bpf_object__relocate_data()
6490 */
6491 continue;
6492 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6493 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6494 prog->name, insn_idx, relo->type);
6495 return -LIBBPF_ERRNO__RELOC;
6496 }
6497 if (relo) {
6498 /* sub-program instruction index is a combination of
6499 * an offset of a symbol pointed to by relocation and
6500 * call instruction's imm field; for global functions,
6501 * call always has imm = -1, but for static functions
6502 * relocation is against STT_SECTION and insn->imm
6503 * points to a start of a static function
6504 *
6505 * for subprog addr relocation, the relo->sym_off + insn->imm is
6506 * the byte offset in the corresponding section.
6507 */
6508 if (relo->type == RELO_CALL)
6509 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6510 else
6511 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6512 } else if (insn_is_pseudo_func(insn)) {
6513 /*
6514 * RELO_SUBPROG_ADDR relo is always emitted even if both
6515 * functions are in the same section, so it shouldn't reach here.
6516 */
6517 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6518 prog->name, insn_idx);
6519 return -LIBBPF_ERRNO__RELOC;
6520 } else {
6521 /* if subprogram call is to a static function within
6522 * the same ELF section, there won't be any relocation
6523 * emitted, but it also means there is no additional
6524 * offset necessary, insns->imm is relative to
6525 * instruction's original position within the section
6526 */
6527 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6528 }
6529
6530 /* we enforce that sub-programs should be in .text section */
6531 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6532 if (!subprog) {
6533 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6534 prog->name);
6535 return -LIBBPF_ERRNO__RELOC;
6536 }
6537
6538 /* if it's the first call instruction calling into this
6539 * subprogram (meaning this subprog hasn't been processed
6540 * yet) within the context of current main program:
6541 * - append it at the end of main program's instructions blog;
6542 * - process is recursively, while current program is put on hold;
6543 * - if that subprogram calls some other not yet processes
6544 * subprogram, same thing will happen recursively until
6545 * there are no more unprocesses subprograms left to append
6546 * and relocate.
6547 */
6548 if (subprog->sub_insn_off == 0) {
6549 err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6550 if (err)
6551 return err;
6552 err = bpf_object__reloc_code(obj, main_prog, subprog);
6553 if (err)
6554 return err;
6555 }
6556
6557 /* main_prog->insns memory could have been re-allocated, so
6558 * calculate pointer again
6559 */
6560 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6561 /* calculate correct instruction position within current main
6562 * prog; each main prog can have a different set of
6563 * subprograms appended (potentially in different order as
6564 * well), so position of any subprog can be different for
6565 * different main programs
6566 */
6567 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6568
6569 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6570 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6571 }
6572
6573 return 0;
6574 }
6575
6576 /*
6577 * Relocate sub-program calls.
6578 *
6579 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6580 * main prog) is processed separately. For each subprog (non-entry functions,
6581 * that can be called from either entry progs or other subprogs) gets their
6582 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6583 * hasn't been yet appended and relocated within current main prog. Once its
6584 * relocated, sub_insn_off will point at the position within current main prog
6585 * where given subprog was appended. This will further be used to relocate all
6586 * the call instructions jumping into this subprog.
6587 *
6588 * We start with main program and process all call instructions. If the call
6589 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6590 * is zero), subprog instructions are appended at the end of main program's
6591 * instruction array. Then main program is "put on hold" while we recursively
6592 * process newly appended subprogram. If that subprogram calls into another
6593 * subprogram that hasn't been appended, new subprogram is appended again to
6594 * the *main* prog's instructions (subprog's instructions are always left
6595 * untouched, as they need to be in unmodified state for subsequent main progs
6596 * and subprog instructions are always sent only as part of a main prog) and
6597 * the process continues recursively. Once all the subprogs called from a main
6598 * prog or any of its subprogs are appended (and relocated), all their
6599 * positions within finalized instructions array are known, so it's easy to
6600 * rewrite call instructions with correct relative offsets, corresponding to
6601 * desired target subprog.
6602 *
6603 * Its important to realize that some subprogs might not be called from some
6604 * main prog and any of its called/used subprogs. Those will keep their
6605 * subprog->sub_insn_off as zero at all times and won't be appended to current
6606 * main prog and won't be relocated within the context of current main prog.
6607 * They might still be used from other main progs later.
6608 *
6609 * Visually this process can be shown as below. Suppose we have two main
6610 * programs mainA and mainB and BPF object contains three subprogs: subA,
6611 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6612 * subC both call subB:
6613 *
6614 * +--------+ +-------+
6615 * | v v |
6616 * +--+---+ +--+-+-+ +---+--+
6617 * | subA | | subB | | subC |
6618 * +--+---+ +------+ +---+--+
6619 * ^ ^
6620 * | |
6621 * +---+-------+ +------+----+
6622 * | mainA | | mainB |
6623 * +-----------+ +-----------+
6624 *
6625 * We'll start relocating mainA, will find subA, append it and start
6626 * processing sub A recursively:
6627 *
6628 * +-----------+------+
6629 * | mainA | subA |
6630 * +-----------+------+
6631 *
6632 * At this point we notice that subB is used from subA, so we append it and
6633 * relocate (there are no further subcalls from subB):
6634 *
6635 * +-----------+------+------+
6636 * | mainA | subA | subB |
6637 * +-----------+------+------+
6638 *
6639 * At this point, we relocate subA calls, then go one level up and finish with
6640 * relocatin mainA calls. mainA is done.
6641 *
6642 * For mainB process is similar but results in different order. We start with
6643 * mainB and skip subA and subB, as mainB never calls them (at least
6644 * directly), but we see subC is needed, so we append and start processing it:
6645 *
6646 * +-----------+------+
6647 * | mainB | subC |
6648 * +-----------+------+
6649 * Now we see subC needs subB, so we go back to it, append and relocate it:
6650 *
6651 * +-----------+------+------+
6652 * | mainB | subC | subB |
6653 * +-----------+------+------+
6654 *
6655 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6656 */
6657 static int
bpf_object__relocate_calls(struct bpf_object * obj,struct bpf_program * prog)6658 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6659 {
6660 struct bpf_program *subprog;
6661 int i, err;
6662
6663 /* mark all subprogs as not relocated (yet) within the context of
6664 * current main program
6665 */
6666 for (i = 0; i < obj->nr_programs; i++) {
6667 subprog = &obj->programs[i];
6668 if (!prog_is_subprog(obj, subprog))
6669 continue;
6670
6671 subprog->sub_insn_off = 0;
6672 }
6673
6674 err = bpf_object__reloc_code(obj, prog, prog);
6675 if (err)
6676 return err;
6677
6678 return 0;
6679 }
6680
6681 static void
bpf_object__free_relocs(struct bpf_object * obj)6682 bpf_object__free_relocs(struct bpf_object *obj)
6683 {
6684 struct bpf_program *prog;
6685 int i;
6686
6687 /* free up relocation descriptors */
6688 for (i = 0; i < obj->nr_programs; i++) {
6689 prog = &obj->programs[i];
6690 zfree(&prog->reloc_desc);
6691 prog->nr_reloc = 0;
6692 }
6693 }
6694
cmp_relocs(const void * _a,const void * _b)6695 static int cmp_relocs(const void *_a, const void *_b)
6696 {
6697 const struct reloc_desc *a = _a;
6698 const struct reloc_desc *b = _b;
6699
6700 if (a->insn_idx != b->insn_idx)
6701 return a->insn_idx < b->insn_idx ? -1 : 1;
6702
6703 /* no two relocations should have the same insn_idx, but ... */
6704 if (a->type != b->type)
6705 return a->type < b->type ? -1 : 1;
6706
6707 return 0;
6708 }
6709
bpf_object__sort_relos(struct bpf_object * obj)6710 static void bpf_object__sort_relos(struct bpf_object *obj)
6711 {
6712 int i;
6713
6714 for (i = 0; i < obj->nr_programs; i++) {
6715 struct bpf_program *p = &obj->programs[i];
6716
6717 if (!p->nr_reloc)
6718 continue;
6719
6720 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6721 }
6722 }
6723
bpf_prog_assign_exc_cb(struct bpf_object * obj,struct bpf_program * prog)6724 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6725 {
6726 const char *str = "exception_callback:";
6727 size_t pfx_len = strlen(str);
6728 int i, j, n;
6729
6730 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6731 return 0;
6732
6733 n = btf__type_cnt(obj->btf);
6734 for (i = 1; i < n; i++) {
6735 const char *name;
6736 struct btf_type *t;
6737
6738 t = btf_type_by_id(obj->btf, i);
6739 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6740 continue;
6741
6742 name = btf__str_by_offset(obj->btf, t->name_off);
6743 if (strncmp(name, str, pfx_len) != 0)
6744 continue;
6745
6746 t = btf_type_by_id(obj->btf, t->type);
6747 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6748 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6749 prog->name);
6750 return -EINVAL;
6751 }
6752 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6753 continue;
6754 /* Multiple callbacks are specified for the same prog,
6755 * the verifier will eventually return an error for this
6756 * case, hence simply skip appending a subprog.
6757 */
6758 if (prog->exception_cb_idx >= 0) {
6759 prog->exception_cb_idx = -1;
6760 break;
6761 }
6762
6763 name += pfx_len;
6764 if (str_is_empty(name)) {
6765 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6766 prog->name);
6767 return -EINVAL;
6768 }
6769
6770 for (j = 0; j < obj->nr_programs; j++) {
6771 struct bpf_program *subprog = &obj->programs[j];
6772
6773 if (!prog_is_subprog(obj, subprog))
6774 continue;
6775 if (strcmp(name, subprog->name) != 0)
6776 continue;
6777 /* Enforce non-hidden, as from verifier point of
6778 * view it expects global functions, whereas the
6779 * mark_btf_static fixes up linkage as static.
6780 */
6781 if (!subprog->sym_global || subprog->mark_btf_static) {
6782 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6783 prog->name, subprog->name);
6784 return -EINVAL;
6785 }
6786 /* Let's see if we already saw a static exception callback with the same name */
6787 if (prog->exception_cb_idx >= 0) {
6788 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6789 prog->name, subprog->name);
6790 return -EINVAL;
6791 }
6792 prog->exception_cb_idx = j;
6793 break;
6794 }
6795
6796 if (prog->exception_cb_idx >= 0)
6797 continue;
6798
6799 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6800 return -ENOENT;
6801 }
6802
6803 return 0;
6804 }
6805
6806 static struct {
6807 enum bpf_prog_type prog_type;
6808 const char *ctx_name;
6809 } global_ctx_map[] = {
6810 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" },
6811 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" },
6812 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" },
6813 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" },
6814 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" },
6815 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" },
6816 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" },
6817 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" },
6818 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" },
6819 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" },
6820 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" },
6821 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" },
6822 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" },
6823 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" },
6824 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" },
6825 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6826 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" },
6827 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" },
6828 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" },
6829 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" },
6830 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" },
6831 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" },
6832 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" },
6833 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" },
6834 { BPF_PROG_TYPE_XDP, "xdp_md" },
6835 /* all other program types don't have "named" context structs */
6836 };
6837
6838 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6839 * for below __builtin_types_compatible_p() checks;
6840 * with this approach we don't need any extra arch-specific #ifdef guards
6841 */
6842 struct pt_regs;
6843 struct user_pt_regs;
6844 struct user_regs_struct;
6845
need_func_arg_type_fixup(const struct btf * btf,const struct bpf_program * prog,const char * subprog_name,int arg_idx,int arg_type_id,const char * ctx_name)6846 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6847 const char *subprog_name, int arg_idx,
6848 int arg_type_id, const char *ctx_name)
6849 {
6850 const struct btf_type *t;
6851 const char *tname;
6852
6853 /* check if existing parameter already matches verifier expectations */
6854 t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6855 if (!btf_is_ptr(t))
6856 goto out_warn;
6857
6858 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6859 * and perf_event programs, so check this case early on and forget
6860 * about it for subsequent checks
6861 */
6862 while (btf_is_mod(t))
6863 t = btf__type_by_id(btf, t->type);
6864 if (btf_is_typedef(t) &&
6865 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6866 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6867 if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6868 return false; /* canonical type for kprobe/perf_event */
6869 }
6870
6871 /* now we can ignore typedefs moving forward */
6872 t = skip_mods_and_typedefs(btf, t->type, NULL);
6873
6874 /* if it's `void *`, definitely fix up BTF info */
6875 if (btf_is_void(t))
6876 return true;
6877
6878 /* if it's already proper canonical type, no need to fix up */
6879 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6880 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6881 return false;
6882
6883 /* special cases */
6884 switch (prog->type) {
6885 case BPF_PROG_TYPE_KPROBE:
6886 /* `struct pt_regs *` is expected, but we need to fix up */
6887 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6888 return true;
6889 break;
6890 case BPF_PROG_TYPE_PERF_EVENT:
6891 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6892 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6893 return true;
6894 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6895 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6896 return true;
6897 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6898 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6899 return true;
6900 break;
6901 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6902 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6903 /* allow u64* as ctx */
6904 if (btf_is_int(t) && t->size == 8)
6905 return true;
6906 break;
6907 default:
6908 break;
6909 }
6910
6911 out_warn:
6912 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6913 prog->name, subprog_name, arg_idx, ctx_name);
6914 return false;
6915 }
6916
clone_func_btf_info(struct btf * btf,int orig_fn_id,struct bpf_program * prog)6917 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6918 {
6919 int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6920 int i, err, arg_cnt, fn_name_off, linkage;
6921 struct btf_type *fn_t, *fn_proto_t, *t;
6922 struct btf_param *p;
6923
6924 /* caller already validated FUNC -> FUNC_PROTO validity */
6925 fn_t = btf_type_by_id(btf, orig_fn_id);
6926 fn_proto_t = btf_type_by_id(btf, fn_t->type);
6927
6928 /* Note that each btf__add_xxx() operation invalidates
6929 * all btf_type and string pointers, so we need to be
6930 * very careful when cloning BTF types. BTF type
6931 * pointers have to be always refetched. And to avoid
6932 * problems with invalidated string pointers, we
6933 * add empty strings initially, then just fix up
6934 * name_off offsets in place. Offsets are stable for
6935 * existing strings, so that works out.
6936 */
6937 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6938 linkage = btf_func_linkage(fn_t);
6939 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6940 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6941 arg_cnt = btf_vlen(fn_proto_t);
6942
6943 /* clone FUNC_PROTO and its params */
6944 fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6945 if (fn_proto_id < 0)
6946 return -EINVAL;
6947
6948 for (i = 0; i < arg_cnt; i++) {
6949 int name_off;
6950
6951 /* copy original parameter data */
6952 t = btf_type_by_id(btf, orig_proto_id);
6953 p = &btf_params(t)[i];
6954 name_off = p->name_off;
6955
6956 err = btf__add_func_param(btf, "", p->type);
6957 if (err)
6958 return err;
6959
6960 fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6961 p = &btf_params(fn_proto_t)[i];
6962 p->name_off = name_off; /* use remembered str offset */
6963 }
6964
6965 /* clone FUNC now, btf__add_func() enforces non-empty name, so use
6966 * entry program's name as a placeholder, which we replace immediately
6967 * with original name_off
6968 */
6969 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6970 if (fn_id < 0)
6971 return -EINVAL;
6972
6973 fn_t = btf_type_by_id(btf, fn_id);
6974 fn_t->name_off = fn_name_off; /* reuse original string */
6975
6976 return fn_id;
6977 }
6978
6979 /* Check if main program or global subprog's function prototype has `arg:ctx`
6980 * argument tags, and, if necessary, substitute correct type to match what BPF
6981 * verifier would expect, taking into account specific program type. This
6982 * allows to support __arg_ctx tag transparently on old kernels that don't yet
6983 * have a native support for it in the verifier, making user's life much
6984 * easier.
6985 */
bpf_program_fixup_func_info(struct bpf_object * obj,struct bpf_program * prog)6986 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6987 {
6988 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6989 struct bpf_func_info_min *func_rec;
6990 struct btf_type *fn_t, *fn_proto_t;
6991 struct btf *btf = obj->btf;
6992 const struct btf_type *t;
6993 struct btf_param *p;
6994 int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6995 int i, n, arg_idx, arg_cnt, err, rec_idx;
6996 int *orig_ids;
6997
6998 /* no .BTF.ext, no problem */
6999 if (!obj->btf_ext || !prog->func_info)
7000 return 0;
7001
7002 /* don't do any fix ups if kernel natively supports __arg_ctx */
7003 if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
7004 return 0;
7005
7006 /* some BPF program types just don't have named context structs, so
7007 * this fallback mechanism doesn't work for them
7008 */
7009 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
7010 if (global_ctx_map[i].prog_type != prog->type)
7011 continue;
7012 ctx_name = global_ctx_map[i].ctx_name;
7013 break;
7014 }
7015 if (!ctx_name)
7016 return 0;
7017
7018 /* remember original func BTF IDs to detect if we already cloned them */
7019 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
7020 if (!orig_ids)
7021 return -ENOMEM;
7022 for (i = 0; i < prog->func_info_cnt; i++) {
7023 func_rec = prog->func_info + prog->func_info_rec_size * i;
7024 orig_ids[i] = func_rec->type_id;
7025 }
7026
7027 /* go through each DECL_TAG with "arg:ctx" and see if it points to one
7028 * of our subprogs; if yes and subprog is global and needs adjustment,
7029 * clone and adjust FUNC -> FUNC_PROTO combo
7030 */
7031 for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
7032 /* only DECL_TAG with "arg:ctx" value are interesting */
7033 t = btf__type_by_id(btf, i);
7034 if (!btf_is_decl_tag(t))
7035 continue;
7036 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
7037 continue;
7038
7039 /* only global funcs need adjustment, if at all */
7040 orig_fn_id = t->type;
7041 fn_t = btf_type_by_id(btf, orig_fn_id);
7042 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
7043 continue;
7044
7045 /* sanity check FUNC -> FUNC_PROTO chain, just in case */
7046 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7047 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
7048 continue;
7049
7050 /* find corresponding func_info record */
7051 func_rec = NULL;
7052 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
7053 if (orig_ids[rec_idx] == t->type) {
7054 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
7055 break;
7056 }
7057 }
7058 /* current main program doesn't call into this subprog */
7059 if (!func_rec)
7060 continue;
7061
7062 /* some more sanity checking of DECL_TAG */
7063 arg_cnt = btf_vlen(fn_proto_t);
7064 arg_idx = btf_decl_tag(t)->component_idx;
7065 if (arg_idx < 0 || arg_idx >= arg_cnt)
7066 continue;
7067
7068 /* check if we should fix up argument type */
7069 p = &btf_params(fn_proto_t)[arg_idx];
7070 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
7071 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
7072 continue;
7073
7074 /* clone fn/fn_proto, unless we already did it for another arg */
7075 if (func_rec->type_id == orig_fn_id) {
7076 int fn_id;
7077
7078 fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
7079 if (fn_id < 0) {
7080 err = fn_id;
7081 goto err_out;
7082 }
7083
7084 /* point func_info record to a cloned FUNC type */
7085 func_rec->type_id = fn_id;
7086 }
7087
7088 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
7089 * we do it just once per main BPF program, as all global
7090 * funcs share the same program type, so need only PTR ->
7091 * STRUCT type chain
7092 */
7093 if (ptr_id == 0) {
7094 struct_id = btf__add_struct(btf, ctx_name, 0);
7095 ptr_id = btf__add_ptr(btf, struct_id);
7096 if (ptr_id < 0 || struct_id < 0) {
7097 err = -EINVAL;
7098 goto err_out;
7099 }
7100 }
7101
7102 /* for completeness, clone DECL_TAG and point it to cloned param */
7103 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
7104 if (tag_id < 0) {
7105 err = -EINVAL;
7106 goto err_out;
7107 }
7108
7109 /* all the BTF manipulations invalidated pointers, refetch them */
7110 fn_t = btf_type_by_id(btf, func_rec->type_id);
7111 fn_proto_t = btf_type_by_id(btf, fn_t->type);
7112
7113 /* fix up type ID pointed to by param */
7114 p = &btf_params(fn_proto_t)[arg_idx];
7115 p->type = ptr_id;
7116 }
7117
7118 free(orig_ids);
7119 return 0;
7120 err_out:
7121 free(orig_ids);
7122 return err;
7123 }
7124
bpf_object__relocate(struct bpf_object * obj,const char * targ_btf_path)7125 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
7126 {
7127 struct bpf_program *prog;
7128 size_t i, j;
7129 int err;
7130
7131 if (obj->btf_ext) {
7132 err = bpf_object__relocate_core(obj, targ_btf_path);
7133 if (err) {
7134 pr_warn("failed to perform CO-RE relocations: %s\n",
7135 errstr(err));
7136 return err;
7137 }
7138 bpf_object__sort_relos(obj);
7139 }
7140
7141 /* Before relocating calls pre-process relocations and mark
7142 * few ld_imm64 instructions that points to subprogs.
7143 * Otherwise bpf_object__reloc_code() later would have to consider
7144 * all ld_imm64 insns as relocation candidates. That would
7145 * reduce relocation speed, since amount of find_prog_insn_relo()
7146 * would increase and most of them will fail to find a relo.
7147 */
7148 for (i = 0; i < obj->nr_programs; i++) {
7149 prog = &obj->programs[i];
7150 for (j = 0; j < prog->nr_reloc; j++) {
7151 struct reloc_desc *relo = &prog->reloc_desc[j];
7152 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
7153
7154 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
7155 if (relo->type == RELO_SUBPROG_ADDR)
7156 insn[0].src_reg = BPF_PSEUDO_FUNC;
7157 }
7158 }
7159
7160 /* relocate subprogram calls and append used subprograms to main
7161 * programs; each copy of subprogram code needs to be relocated
7162 * differently for each main program, because its code location might
7163 * have changed.
7164 * Append subprog relos to main programs to allow data relos to be
7165 * processed after text is completely relocated.
7166 */
7167 for (i = 0; i < obj->nr_programs; i++) {
7168 prog = &obj->programs[i];
7169 /* sub-program's sub-calls are relocated within the context of
7170 * its main program only
7171 */
7172 if (prog_is_subprog(obj, prog))
7173 continue;
7174 if (!prog->autoload)
7175 continue;
7176
7177 err = bpf_object__relocate_calls(obj, prog);
7178 if (err) {
7179 pr_warn("prog '%s': failed to relocate calls: %s\n",
7180 prog->name, errstr(err));
7181 return err;
7182 }
7183
7184 err = bpf_prog_assign_exc_cb(obj, prog);
7185 if (err)
7186 return err;
7187 /* Now, also append exception callback if it has not been done already. */
7188 if (prog->exception_cb_idx >= 0) {
7189 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
7190
7191 /* Calling exception callback directly is disallowed, which the
7192 * verifier will reject later. In case it was processed already,
7193 * we can skip this step, otherwise for all other valid cases we
7194 * have to append exception callback now.
7195 */
7196 if (subprog->sub_insn_off == 0) {
7197 err = bpf_object__append_subprog_code(obj, prog, subprog);
7198 if (err)
7199 return err;
7200 err = bpf_object__reloc_code(obj, prog, subprog);
7201 if (err)
7202 return err;
7203 }
7204 }
7205 }
7206 for (i = 0; i < obj->nr_programs; i++) {
7207 prog = &obj->programs[i];
7208 if (prog_is_subprog(obj, prog))
7209 continue;
7210 if (!prog->autoload)
7211 continue;
7212
7213 /* Process data relos for main programs */
7214 err = bpf_object__relocate_data(obj, prog);
7215 if (err) {
7216 pr_warn("prog '%s': failed to relocate data references: %s\n",
7217 prog->name, errstr(err));
7218 return err;
7219 }
7220
7221 /* Fix up .BTF.ext information, if necessary */
7222 err = bpf_program_fixup_func_info(obj, prog);
7223 if (err) {
7224 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n",
7225 prog->name, errstr(err));
7226 return err;
7227 }
7228 }
7229
7230 return 0;
7231 }
7232
7233 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7234 Elf64_Shdr *shdr, Elf_Data *data);
7235
bpf_object__collect_map_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)7236 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7237 Elf64_Shdr *shdr, Elf_Data *data)
7238 {
7239 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7240 int i, j, nrels, new_sz;
7241 const struct btf_var_secinfo *vi = NULL;
7242 const struct btf_type *sec, *var, *def;
7243 struct bpf_map *map = NULL, *targ_map = NULL;
7244 struct bpf_program *targ_prog = NULL;
7245 bool is_prog_array, is_map_in_map;
7246 const struct btf_member *member;
7247 const char *name, *mname, *type;
7248 unsigned int moff;
7249 Elf64_Sym *sym;
7250 Elf64_Rel *rel;
7251 void *tmp;
7252
7253 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7254 return -EINVAL;
7255 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7256 if (!sec)
7257 return -EINVAL;
7258
7259 nrels = shdr->sh_size / shdr->sh_entsize;
7260 for (i = 0; i < nrels; i++) {
7261 rel = elf_rel_by_idx(data, i);
7262 if (!rel) {
7263 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7264 return -LIBBPF_ERRNO__FORMAT;
7265 }
7266
7267 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7268 if (!sym) {
7269 pr_warn(".maps relo #%d: symbol %zx not found\n",
7270 i, (size_t)ELF64_R_SYM(rel->r_info));
7271 return -LIBBPF_ERRNO__FORMAT;
7272 }
7273 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7274
7275 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7276 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7277 (size_t)rel->r_offset, sym->st_name, name);
7278
7279 for (j = 0; j < obj->nr_maps; j++) {
7280 map = &obj->maps[j];
7281 if (map->sec_idx != obj->efile.btf_maps_shndx)
7282 continue;
7283
7284 vi = btf_var_secinfos(sec) + map->btf_var_idx;
7285 if (vi->offset <= rel->r_offset &&
7286 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7287 break;
7288 }
7289 if (j == obj->nr_maps) {
7290 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7291 i, name, (size_t)rel->r_offset);
7292 return -EINVAL;
7293 }
7294
7295 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7296 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7297 type = is_map_in_map ? "map" : "prog";
7298 if (is_map_in_map) {
7299 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7300 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7301 i, name);
7302 return -LIBBPF_ERRNO__RELOC;
7303 }
7304 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7305 map->def.key_size != sizeof(int)) {
7306 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7307 i, map->name, sizeof(int));
7308 return -EINVAL;
7309 }
7310 targ_map = bpf_object__find_map_by_name(obj, name);
7311 if (!targ_map) {
7312 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7313 i, name);
7314 return -ESRCH;
7315 }
7316 } else if (is_prog_array) {
7317 targ_prog = bpf_object__find_program_by_name(obj, name);
7318 if (!targ_prog) {
7319 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7320 i, name);
7321 return -ESRCH;
7322 }
7323 if (targ_prog->sec_idx != sym->st_shndx ||
7324 targ_prog->sec_insn_off * 8 != sym->st_value ||
7325 prog_is_subprog(obj, targ_prog)) {
7326 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7327 i, name);
7328 return -LIBBPF_ERRNO__RELOC;
7329 }
7330 } else {
7331 return -EINVAL;
7332 }
7333
7334 var = btf__type_by_id(obj->btf, vi->type);
7335 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7336 if (btf_vlen(def) == 0)
7337 return -EINVAL;
7338 member = btf_members(def) + btf_vlen(def) - 1;
7339 mname = btf__name_by_offset(obj->btf, member->name_off);
7340 if (strcmp(mname, "values"))
7341 return -EINVAL;
7342
7343 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7344 if (rel->r_offset - vi->offset < moff)
7345 return -EINVAL;
7346
7347 moff = rel->r_offset - vi->offset - moff;
7348 /* here we use BPF pointer size, which is always 64 bit, as we
7349 * are parsing ELF that was built for BPF target
7350 */
7351 if (moff % bpf_ptr_sz)
7352 return -EINVAL;
7353 moff /= bpf_ptr_sz;
7354 if (moff >= map->init_slots_sz) {
7355 new_sz = moff + 1;
7356 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7357 if (!tmp)
7358 return -ENOMEM;
7359 map->init_slots = tmp;
7360 memset(map->init_slots + map->init_slots_sz, 0,
7361 (new_sz - map->init_slots_sz) * host_ptr_sz);
7362 map->init_slots_sz = new_sz;
7363 }
7364 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7365
7366 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7367 i, map->name, moff, type, name);
7368 }
7369
7370 return 0;
7371 }
7372
bpf_object__collect_relos(struct bpf_object * obj)7373 static int bpf_object__collect_relos(struct bpf_object *obj)
7374 {
7375 int i, err;
7376
7377 for (i = 0; i < obj->efile.sec_cnt; i++) {
7378 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7379 Elf64_Shdr *shdr;
7380 Elf_Data *data;
7381 int idx;
7382
7383 if (sec_desc->sec_type != SEC_RELO)
7384 continue;
7385
7386 shdr = sec_desc->shdr;
7387 data = sec_desc->data;
7388 idx = shdr->sh_info;
7389
7390 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7391 pr_warn("internal error at %d\n", __LINE__);
7392 return -LIBBPF_ERRNO__INTERNAL;
7393 }
7394
7395 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7396 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7397 else if (idx == obj->efile.btf_maps_shndx)
7398 err = bpf_object__collect_map_relos(obj, shdr, data);
7399 else
7400 err = bpf_object__collect_prog_relos(obj, shdr, data);
7401 if (err)
7402 return err;
7403 }
7404
7405 bpf_object__sort_relos(obj);
7406 return 0;
7407 }
7408
insn_is_helper_call(struct bpf_insn * insn,enum bpf_func_id * func_id)7409 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7410 {
7411 if (BPF_CLASS(insn->code) == BPF_JMP &&
7412 BPF_OP(insn->code) == BPF_CALL &&
7413 BPF_SRC(insn->code) == BPF_K &&
7414 insn->src_reg == 0 &&
7415 insn->dst_reg == 0) {
7416 *func_id = insn->imm;
7417 return true;
7418 }
7419 return false;
7420 }
7421
bpf_object__sanitize_prog(struct bpf_object * obj,struct bpf_program * prog)7422 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7423 {
7424 struct bpf_insn *insn = prog->insns;
7425 enum bpf_func_id func_id;
7426 int i;
7427
7428 if (obj->gen_loader)
7429 return 0;
7430
7431 for (i = 0; i < prog->insns_cnt; i++, insn++) {
7432 if (!insn_is_helper_call(insn, &func_id))
7433 continue;
7434
7435 /* on kernels that don't yet support
7436 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7437 * to bpf_probe_read() which works well for old kernels
7438 */
7439 switch (func_id) {
7440 case BPF_FUNC_probe_read_kernel:
7441 case BPF_FUNC_probe_read_user:
7442 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7443 insn->imm = BPF_FUNC_probe_read;
7444 break;
7445 case BPF_FUNC_probe_read_kernel_str:
7446 case BPF_FUNC_probe_read_user_str:
7447 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7448 insn->imm = BPF_FUNC_probe_read_str;
7449 break;
7450 default:
7451 break;
7452 }
7453 }
7454 return 0;
7455 }
7456
7457 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7458 int *btf_obj_fd, int *btf_type_id);
7459
7460 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
libbpf_prepare_prog_load(struct bpf_program * prog,struct bpf_prog_load_opts * opts,long cookie)7461 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7462 struct bpf_prog_load_opts *opts, long cookie)
7463 {
7464 enum sec_def_flags def = cookie;
7465
7466 /* old kernels might not support specifying expected_attach_type */
7467 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7468 opts->expected_attach_type = 0;
7469
7470 if (def & SEC_SLEEPABLE)
7471 opts->prog_flags |= BPF_F_SLEEPABLE;
7472
7473 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7474 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7475
7476 /* special check for usdt to use uprobe_multi link */
7477 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) {
7478 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type
7479 * in prog, and expected_attach_type we set in kernel is from opts, so we
7480 * update both.
7481 */
7482 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7483 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7484 }
7485
7486 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7487 int btf_obj_fd = 0, btf_type_id = 0, err;
7488 const char *attach_name;
7489
7490 attach_name = strchr(prog->sec_name, '/');
7491 if (!attach_name) {
7492 /* if BPF program is annotated with just SEC("fentry")
7493 * (or similar) without declaratively specifying
7494 * target, then it is expected that target will be
7495 * specified with bpf_program__set_attach_target() at
7496 * runtime before BPF object load step. If not, then
7497 * there is nothing to load into the kernel as BPF
7498 * verifier won't be able to validate BPF program
7499 * correctness anyways.
7500 */
7501 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7502 prog->name);
7503 return -EINVAL;
7504 }
7505 attach_name++; /* skip over / */
7506
7507 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7508 if (err)
7509 return err;
7510
7511 /* cache resolved BTF FD and BTF type ID in the prog */
7512 prog->attach_btf_obj_fd = btf_obj_fd;
7513 prog->attach_btf_id = btf_type_id;
7514
7515 /* but by now libbpf common logic is not utilizing
7516 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7517 * this callback is called after opts were populated by
7518 * libbpf, so this callback has to update opts explicitly here
7519 */
7520 opts->attach_btf_obj_fd = btf_obj_fd;
7521 opts->attach_btf_id = btf_type_id;
7522 }
7523 return 0;
7524 }
7525
7526 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7527
bpf_object_load_prog(struct bpf_object * obj,struct bpf_program * prog,struct bpf_insn * insns,int insns_cnt,const char * license,__u32 kern_version,int * prog_fd)7528 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7529 struct bpf_insn *insns, int insns_cnt,
7530 const char *license, __u32 kern_version, int *prog_fd)
7531 {
7532 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7533 const char *prog_name = NULL;
7534 size_t log_buf_size = 0;
7535 char *log_buf = NULL, *tmp;
7536 bool own_log_buf = true;
7537 __u32 log_level = prog->log_level;
7538 int ret, err;
7539
7540 /* Be more helpful by rejecting programs that can't be validated early
7541 * with more meaningful and actionable error message.
7542 */
7543 switch (prog->type) {
7544 case BPF_PROG_TYPE_UNSPEC:
7545 /*
7546 * The program type must be set. Most likely we couldn't find a proper
7547 * section definition at load time, and thus we didn't infer the type.
7548 */
7549 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7550 prog->name, prog->sec_name);
7551 return -EINVAL;
7552 case BPF_PROG_TYPE_STRUCT_OPS:
7553 if (prog->attach_btf_id == 0) {
7554 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n",
7555 prog->name);
7556 return -EINVAL;
7557 }
7558 break;
7559 default:
7560 break;
7561 }
7562
7563 if (!insns || !insns_cnt)
7564 return -EINVAL;
7565
7566 if (kernel_supports(obj, FEAT_PROG_NAME))
7567 prog_name = prog->name;
7568 load_attr.attach_prog_fd = prog->attach_prog_fd;
7569 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7570 load_attr.attach_btf_id = prog->attach_btf_id;
7571 load_attr.kern_version = kern_version;
7572 load_attr.prog_ifindex = prog->prog_ifindex;
7573 load_attr.expected_attach_type = prog->expected_attach_type;
7574
7575 /* specify func_info/line_info only if kernel supports them */
7576 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7577 load_attr.prog_btf_fd = btf__fd(obj->btf);
7578 load_attr.func_info = prog->func_info;
7579 load_attr.func_info_rec_size = prog->func_info_rec_size;
7580 load_attr.func_info_cnt = prog->func_info_cnt;
7581 load_attr.line_info = prog->line_info;
7582 load_attr.line_info_rec_size = prog->line_info_rec_size;
7583 load_attr.line_info_cnt = prog->line_info_cnt;
7584 }
7585 load_attr.log_level = log_level;
7586 load_attr.prog_flags = prog->prog_flags;
7587 load_attr.fd_array = obj->fd_array;
7588
7589 load_attr.token_fd = obj->token_fd;
7590 if (obj->token_fd)
7591 load_attr.prog_flags |= BPF_F_TOKEN_FD;
7592
7593 /* adjust load_attr if sec_def provides custom preload callback */
7594 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7595 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7596 if (err < 0) {
7597 pr_warn("prog '%s': failed to prepare load attributes: %s\n",
7598 prog->name, errstr(err));
7599 return err;
7600 }
7601 insns = prog->insns;
7602 insns_cnt = prog->insns_cnt;
7603 }
7604
7605 if (obj->gen_loader) {
7606 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7607 license, insns, insns_cnt, &load_attr,
7608 prog - obj->programs);
7609 *prog_fd = -1;
7610 return 0;
7611 }
7612
7613 retry_load:
7614 /* if log_level is zero, we don't request logs initially even if
7615 * custom log_buf is specified; if the program load fails, then we'll
7616 * bump log_level to 1 and use either custom log_buf or we'll allocate
7617 * our own and retry the load to get details on what failed
7618 */
7619 if (log_level) {
7620 if (prog->log_buf) {
7621 log_buf = prog->log_buf;
7622 log_buf_size = prog->log_size;
7623 own_log_buf = false;
7624 } else if (obj->log_buf) {
7625 log_buf = obj->log_buf;
7626 log_buf_size = obj->log_size;
7627 own_log_buf = false;
7628 } else {
7629 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7630 tmp = realloc(log_buf, log_buf_size);
7631 if (!tmp) {
7632 ret = -ENOMEM;
7633 goto out;
7634 }
7635 log_buf = tmp;
7636 log_buf[0] = '\0';
7637 own_log_buf = true;
7638 }
7639 }
7640
7641 load_attr.log_buf = log_buf;
7642 load_attr.log_size = log_buf_size;
7643 load_attr.log_level = log_level;
7644
7645 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7646 if (ret >= 0) {
7647 if (log_level && own_log_buf) {
7648 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7649 prog->name, log_buf);
7650 }
7651
7652 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7653 struct bpf_map *map;
7654 int i;
7655
7656 for (i = 0; i < obj->nr_maps; i++) {
7657 map = &prog->obj->maps[i];
7658 if (map->libbpf_type != LIBBPF_MAP_RODATA)
7659 continue;
7660
7661 if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7662 pr_warn("prog '%s': failed to bind map '%s': %s\n",
7663 prog->name, map->real_name, errstr(errno));
7664 /* Don't fail hard if can't bind rodata. */
7665 }
7666 }
7667 }
7668
7669 *prog_fd = ret;
7670 ret = 0;
7671 goto out;
7672 }
7673
7674 if (log_level == 0) {
7675 log_level = 1;
7676 goto retry_load;
7677 }
7678 /* On ENOSPC, increase log buffer size and retry, unless custom
7679 * log_buf is specified.
7680 * Be careful to not overflow u32, though. Kernel's log buf size limit
7681 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7682 * multiply by 2 unless we are sure we'll fit within 32 bits.
7683 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7684 */
7685 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7686 goto retry_load;
7687
7688 ret = -errno;
7689
7690 /* post-process verifier log to improve error descriptions */
7691 fixup_verifier_log(prog, log_buf, log_buf_size);
7692
7693 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno));
7694 pr_perm_msg(ret);
7695
7696 if (own_log_buf && log_buf && log_buf[0] != '\0') {
7697 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7698 prog->name, log_buf);
7699 }
7700
7701 out:
7702 if (own_log_buf)
7703 free(log_buf);
7704 return ret;
7705 }
7706
find_prev_line(char * buf,char * cur)7707 static char *find_prev_line(char *buf, char *cur)
7708 {
7709 char *p;
7710
7711 if (cur == buf) /* end of a log buf */
7712 return NULL;
7713
7714 p = cur - 1;
7715 while (p - 1 >= buf && *(p - 1) != '\n')
7716 p--;
7717
7718 return p;
7719 }
7720
patch_log(char * buf,size_t buf_sz,size_t log_sz,char * orig,size_t orig_sz,const char * patch)7721 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7722 char *orig, size_t orig_sz, const char *patch)
7723 {
7724 /* size of the remaining log content to the right from the to-be-replaced part */
7725 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7726 size_t patch_sz = strlen(patch);
7727
7728 if (patch_sz != orig_sz) {
7729 /* If patch line(s) are longer than original piece of verifier log,
7730 * shift log contents by (patch_sz - orig_sz) bytes to the right
7731 * starting from after to-be-replaced part of the log.
7732 *
7733 * If patch line(s) are shorter than original piece of verifier log,
7734 * shift log contents by (orig_sz - patch_sz) bytes to the left
7735 * starting from after to-be-replaced part of the log
7736 *
7737 * We need to be careful about not overflowing available
7738 * buf_sz capacity. If that's the case, we'll truncate the end
7739 * of the original log, as necessary.
7740 */
7741 if (patch_sz > orig_sz) {
7742 if (orig + patch_sz >= buf + buf_sz) {
7743 /* patch is big enough to cover remaining space completely */
7744 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7745 rem_sz = 0;
7746 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
7747 /* patch causes part of remaining log to be truncated */
7748 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7749 }
7750 }
7751 /* shift remaining log to the right by calculated amount */
7752 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7753 }
7754
7755 memcpy(orig, patch, patch_sz);
7756 }
7757
fixup_log_failed_core_relo(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7758 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7759 char *buf, size_t buf_sz, size_t log_sz,
7760 char *line1, char *line2, char *line3)
7761 {
7762 /* Expected log for failed and not properly guarded CO-RE relocation:
7763 * line1 -> 123: (85) call unknown#195896080
7764 * line2 -> invalid func unknown#195896080
7765 * line3 -> <anything else or end of buffer>
7766 *
7767 * "123" is the index of the instruction that was poisoned. We extract
7768 * instruction index to find corresponding CO-RE relocation and
7769 * replace this part of the log with more relevant information about
7770 * failed CO-RE relocation.
7771 */
7772 const struct bpf_core_relo *relo;
7773 struct bpf_core_spec spec;
7774 char patch[512], spec_buf[256];
7775 int insn_idx, err, spec_len;
7776
7777 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7778 return;
7779
7780 relo = find_relo_core(prog, insn_idx);
7781 if (!relo)
7782 return;
7783
7784 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7785 if (err)
7786 return;
7787
7788 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7789 snprintf(patch, sizeof(patch),
7790 "%d: <invalid CO-RE relocation>\n"
7791 "failed to resolve CO-RE relocation %s%s\n",
7792 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7793
7794 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7795 }
7796
fixup_log_missing_map_load(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7797 static void fixup_log_missing_map_load(struct bpf_program *prog,
7798 char *buf, size_t buf_sz, size_t log_sz,
7799 char *line1, char *line2, char *line3)
7800 {
7801 /* Expected log for failed and not properly guarded map reference:
7802 * line1 -> 123: (85) call unknown#2001000345
7803 * line2 -> invalid func unknown#2001000345
7804 * line3 -> <anything else or end of buffer>
7805 *
7806 * "123" is the index of the instruction that was poisoned.
7807 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7808 */
7809 struct bpf_object *obj = prog->obj;
7810 const struct bpf_map *map;
7811 int insn_idx, map_idx;
7812 char patch[128];
7813
7814 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7815 return;
7816
7817 map_idx -= POISON_LDIMM64_MAP_BASE;
7818 if (map_idx < 0 || map_idx >= obj->nr_maps)
7819 return;
7820 map = &obj->maps[map_idx];
7821
7822 snprintf(patch, sizeof(patch),
7823 "%d: <invalid BPF map reference>\n"
7824 "BPF map '%s' is referenced but wasn't created\n",
7825 insn_idx, map->name);
7826
7827 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7828 }
7829
fixup_log_missing_kfunc_call(struct bpf_program * prog,char * buf,size_t buf_sz,size_t log_sz,char * line1,char * line2,char * line3)7830 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7831 char *buf, size_t buf_sz, size_t log_sz,
7832 char *line1, char *line2, char *line3)
7833 {
7834 /* Expected log for failed and not properly guarded kfunc call:
7835 * line1 -> 123: (85) call unknown#2002000345
7836 * line2 -> invalid func unknown#2002000345
7837 * line3 -> <anything else or end of buffer>
7838 *
7839 * "123" is the index of the instruction that was poisoned.
7840 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7841 */
7842 struct bpf_object *obj = prog->obj;
7843 const struct extern_desc *ext;
7844 int insn_idx, ext_idx;
7845 char patch[128];
7846
7847 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7848 return;
7849
7850 ext_idx -= POISON_CALL_KFUNC_BASE;
7851 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7852 return;
7853 ext = &obj->externs[ext_idx];
7854
7855 snprintf(patch, sizeof(patch),
7856 "%d: <invalid kfunc call>\n"
7857 "kfunc '%s' is referenced but wasn't resolved\n",
7858 insn_idx, ext->name);
7859
7860 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7861 }
7862
fixup_verifier_log(struct bpf_program * prog,char * buf,size_t buf_sz)7863 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7864 {
7865 /* look for familiar error patterns in last N lines of the log */
7866 const size_t max_last_line_cnt = 10;
7867 char *prev_line, *cur_line, *next_line;
7868 size_t log_sz;
7869 int i;
7870
7871 if (!buf)
7872 return;
7873
7874 log_sz = strlen(buf) + 1;
7875 next_line = buf + log_sz - 1;
7876
7877 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7878 cur_line = find_prev_line(buf, next_line);
7879 if (!cur_line)
7880 return;
7881
7882 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7883 prev_line = find_prev_line(buf, cur_line);
7884 if (!prev_line)
7885 continue;
7886
7887 /* failed CO-RE relocation case */
7888 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7889 prev_line, cur_line, next_line);
7890 return;
7891 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7892 prev_line = find_prev_line(buf, cur_line);
7893 if (!prev_line)
7894 continue;
7895
7896 /* reference to uncreated BPF map */
7897 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7898 prev_line, cur_line, next_line);
7899 return;
7900 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7901 prev_line = find_prev_line(buf, cur_line);
7902 if (!prev_line)
7903 continue;
7904
7905 /* reference to unresolved kfunc */
7906 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7907 prev_line, cur_line, next_line);
7908 return;
7909 }
7910 }
7911 }
7912
bpf_program_record_relos(struct bpf_program * prog)7913 static int bpf_program_record_relos(struct bpf_program *prog)
7914 {
7915 struct bpf_object *obj = prog->obj;
7916 int i;
7917
7918 for (i = 0; i < prog->nr_reloc; i++) {
7919 struct reloc_desc *relo = &prog->reloc_desc[i];
7920 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7921 int kind;
7922
7923 switch (relo->type) {
7924 case RELO_EXTERN_LD64:
7925 if (ext->type != EXT_KSYM)
7926 continue;
7927 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7928 BTF_KIND_VAR : BTF_KIND_FUNC;
7929 bpf_gen__record_extern(obj->gen_loader, ext->name,
7930 ext->is_weak, !ext->ksym.type_id,
7931 true, kind, relo->insn_idx);
7932 break;
7933 case RELO_EXTERN_CALL:
7934 bpf_gen__record_extern(obj->gen_loader, ext->name,
7935 ext->is_weak, false, false, BTF_KIND_FUNC,
7936 relo->insn_idx);
7937 break;
7938 case RELO_CORE: {
7939 struct bpf_core_relo cr = {
7940 .insn_off = relo->insn_idx * 8,
7941 .type_id = relo->core_relo->type_id,
7942 .access_str_off = relo->core_relo->access_str_off,
7943 .kind = relo->core_relo->kind,
7944 };
7945
7946 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7947 break;
7948 }
7949 default:
7950 continue;
7951 }
7952 }
7953 return 0;
7954 }
7955
7956 static int
bpf_object__load_progs(struct bpf_object * obj,int log_level)7957 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7958 {
7959 struct bpf_program *prog;
7960 size_t i;
7961 int err;
7962
7963 for (i = 0; i < obj->nr_programs; i++) {
7964 prog = &obj->programs[i];
7965 if (prog_is_subprog(obj, prog))
7966 continue;
7967 if (!prog->autoload) {
7968 pr_debug("prog '%s': skipped loading\n", prog->name);
7969 continue;
7970 }
7971 prog->log_level |= log_level;
7972
7973 if (obj->gen_loader)
7974 bpf_program_record_relos(prog);
7975
7976 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7977 obj->license, obj->kern_version, &prog->fd);
7978 if (err) {
7979 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err));
7980 return err;
7981 }
7982 }
7983
7984 bpf_object__free_relocs(obj);
7985 return 0;
7986 }
7987
bpf_object_prepare_progs(struct bpf_object * obj)7988 static int bpf_object_prepare_progs(struct bpf_object *obj)
7989 {
7990 struct bpf_program *prog;
7991 size_t i;
7992 int err;
7993
7994 for (i = 0; i < obj->nr_programs; i++) {
7995 prog = &obj->programs[i];
7996 err = bpf_object__sanitize_prog(obj, prog);
7997 if (err)
7998 return err;
7999 }
8000 return 0;
8001 }
8002
8003 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
8004
bpf_object_init_progs(struct bpf_object * obj,const struct bpf_object_open_opts * opts)8005 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
8006 {
8007 struct bpf_program *prog;
8008 int err;
8009
8010 bpf_object__for_each_program(prog, obj) {
8011 prog->sec_def = find_sec_def(prog->sec_name);
8012 if (!prog->sec_def) {
8013 /* couldn't guess, but user might manually specify */
8014 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
8015 prog->name, prog->sec_name);
8016 continue;
8017 }
8018
8019 prog->type = prog->sec_def->prog_type;
8020 prog->expected_attach_type = prog->sec_def->expected_attach_type;
8021
8022 /* sec_def can have custom callback which should be called
8023 * after bpf_program is initialized to adjust its properties
8024 */
8025 if (prog->sec_def->prog_setup_fn) {
8026 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
8027 if (err < 0) {
8028 pr_warn("prog '%s': failed to initialize: %s\n",
8029 prog->name, errstr(err));
8030 return err;
8031 }
8032 }
8033 }
8034
8035 return 0;
8036 }
8037
bpf_object_open(const char * path,const void * obj_buf,size_t obj_buf_sz,const char * obj_name,const struct bpf_object_open_opts * opts)8038 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
8039 const char *obj_name,
8040 const struct bpf_object_open_opts *opts)
8041 {
8042 const char *kconfig, *btf_tmp_path, *token_path;
8043 struct bpf_object *obj;
8044 int err;
8045 char *log_buf;
8046 size_t log_size;
8047 __u32 log_level;
8048
8049 if (obj_buf && !obj_name)
8050 return ERR_PTR(-EINVAL);
8051
8052 if (elf_version(EV_CURRENT) == EV_NONE) {
8053 pr_warn("failed to init libelf for %s\n",
8054 path ? : "(mem buf)");
8055 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
8056 }
8057
8058 if (!OPTS_VALID(opts, bpf_object_open_opts))
8059 return ERR_PTR(-EINVAL);
8060
8061 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name;
8062 if (obj_buf) {
8063 path = obj_name;
8064 pr_debug("loading object '%s' from buffer\n", obj_name);
8065 } else {
8066 pr_debug("loading object from %s\n", path);
8067 }
8068
8069 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
8070 log_size = OPTS_GET(opts, kernel_log_size, 0);
8071 log_level = OPTS_GET(opts, kernel_log_level, 0);
8072 if (log_size > UINT_MAX)
8073 return ERR_PTR(-EINVAL);
8074 if (log_size && !log_buf)
8075 return ERR_PTR(-EINVAL);
8076
8077 token_path = OPTS_GET(opts, bpf_token_path, NULL);
8078 /* if user didn't specify bpf_token_path explicitly, check if
8079 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
8080 * option
8081 */
8082 if (!token_path)
8083 token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
8084 if (token_path && strlen(token_path) >= PATH_MAX)
8085 return ERR_PTR(-ENAMETOOLONG);
8086
8087 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
8088 if (IS_ERR(obj))
8089 return obj;
8090
8091 obj->log_buf = log_buf;
8092 obj->log_size = log_size;
8093 obj->log_level = log_level;
8094
8095 if (token_path) {
8096 obj->token_path = strdup(token_path);
8097 if (!obj->token_path) {
8098 err = -ENOMEM;
8099 goto out;
8100 }
8101 }
8102
8103 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
8104 if (btf_tmp_path) {
8105 if (strlen(btf_tmp_path) >= PATH_MAX) {
8106 err = -ENAMETOOLONG;
8107 goto out;
8108 }
8109 obj->btf_custom_path = strdup(btf_tmp_path);
8110 if (!obj->btf_custom_path) {
8111 err = -ENOMEM;
8112 goto out;
8113 }
8114 }
8115
8116 kconfig = OPTS_GET(opts, kconfig, NULL);
8117 if (kconfig) {
8118 obj->kconfig = strdup(kconfig);
8119 if (!obj->kconfig) {
8120 err = -ENOMEM;
8121 goto out;
8122 }
8123 }
8124
8125 err = bpf_object__elf_init(obj);
8126 err = err ? : bpf_object__elf_collect(obj);
8127 err = err ? : bpf_object__collect_externs(obj);
8128 err = err ? : bpf_object_fixup_btf(obj);
8129 err = err ? : bpf_object__init_maps(obj, opts);
8130 err = err ? : bpf_object_init_progs(obj, opts);
8131 err = err ? : bpf_object__collect_relos(obj);
8132 if (err)
8133 goto out;
8134
8135 bpf_object__elf_finish(obj);
8136
8137 return obj;
8138 out:
8139 bpf_object__close(obj);
8140 return ERR_PTR(err);
8141 }
8142
8143 struct bpf_object *
bpf_object__open_file(const char * path,const struct bpf_object_open_opts * opts)8144 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
8145 {
8146 if (!path)
8147 return libbpf_err_ptr(-EINVAL);
8148
8149 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts));
8150 }
8151
bpf_object__open(const char * path)8152 struct bpf_object *bpf_object__open(const char *path)
8153 {
8154 return bpf_object__open_file(path, NULL);
8155 }
8156
8157 struct bpf_object *
bpf_object__open_mem(const void * obj_buf,size_t obj_buf_sz,const struct bpf_object_open_opts * opts)8158 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
8159 const struct bpf_object_open_opts *opts)
8160 {
8161 char tmp_name[64];
8162
8163 if (!obj_buf || obj_buf_sz == 0)
8164 return libbpf_err_ptr(-EINVAL);
8165
8166 /* create a (quite useless) default "name" for this memory buffer object */
8167 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz);
8168
8169 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts));
8170 }
8171
bpf_object_unload(struct bpf_object * obj)8172 static int bpf_object_unload(struct bpf_object *obj)
8173 {
8174 size_t i;
8175
8176 if (!obj)
8177 return libbpf_err(-EINVAL);
8178
8179 for (i = 0; i < obj->nr_maps; i++) {
8180 zclose(obj->maps[i].fd);
8181 if (obj->maps[i].st_ops)
8182 zfree(&obj->maps[i].st_ops->kern_vdata);
8183 }
8184
8185 for (i = 0; i < obj->nr_programs; i++)
8186 bpf_program__unload(&obj->programs[i]);
8187
8188 return 0;
8189 }
8190
bpf_object__sanitize_maps(struct bpf_object * obj)8191 static int bpf_object__sanitize_maps(struct bpf_object *obj)
8192 {
8193 struct bpf_map *m;
8194
8195 bpf_object__for_each_map(m, obj) {
8196 if (!bpf_map__is_internal(m))
8197 continue;
8198 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
8199 m->def.map_flags &= ~BPF_F_MMAPABLE;
8200 }
8201
8202 return 0;
8203 }
8204
8205 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type,
8206 const char *sym_name, void *ctx);
8207
libbpf_kallsyms_parse(kallsyms_cb_t cb,void * ctx)8208 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
8209 {
8210 char sym_type, sym_name[500];
8211 unsigned long long sym_addr;
8212 int ret, err = 0;
8213 FILE *f;
8214
8215 f = fopen("/proc/kallsyms", "re");
8216 if (!f) {
8217 err = -errno;
8218 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err));
8219 return err;
8220 }
8221
8222 while (true) {
8223 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
8224 &sym_addr, &sym_type, sym_name);
8225 if (ret == EOF && feof(f))
8226 break;
8227 if (ret != 3) {
8228 pr_warn("failed to read kallsyms entry: %d\n", ret);
8229 err = -EINVAL;
8230 break;
8231 }
8232
8233 err = cb(sym_addr, sym_type, sym_name, ctx);
8234 if (err)
8235 break;
8236 }
8237
8238 fclose(f);
8239 return err;
8240 }
8241
kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)8242 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8243 const char *sym_name, void *ctx)
8244 {
8245 struct bpf_object *obj = ctx;
8246 const struct btf_type *t;
8247 struct extern_desc *ext;
8248 char *res;
8249
8250 res = strstr(sym_name, ".llvm.");
8251 if (sym_type == 'd' && res)
8252 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name);
8253 else
8254 ext = find_extern_by_name(obj, sym_name);
8255 if (!ext || ext->type != EXT_KSYM)
8256 return 0;
8257
8258 t = btf__type_by_id(obj->btf, ext->btf_id);
8259 if (!btf_is_var(t))
8260 return 0;
8261
8262 if (ext->is_set && ext->ksym.addr != sym_addr) {
8263 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8264 sym_name, ext->ksym.addr, sym_addr);
8265 return -EINVAL;
8266 }
8267 if (!ext->is_set) {
8268 ext->is_set = true;
8269 ext->ksym.addr = sym_addr;
8270 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8271 }
8272 return 0;
8273 }
8274
bpf_object__read_kallsyms_file(struct bpf_object * obj)8275 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8276 {
8277 return libbpf_kallsyms_parse(kallsyms_cb, obj);
8278 }
8279
find_ksym_btf_id(struct bpf_object * obj,const char * ksym_name,__u16 kind,struct btf ** res_btf,struct module_btf ** res_mod_btf)8280 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8281 __u16 kind, struct btf **res_btf,
8282 struct module_btf **res_mod_btf)
8283 {
8284 struct module_btf *mod_btf;
8285 struct btf *btf;
8286 int i, id, err;
8287
8288 btf = obj->btf_vmlinux;
8289 mod_btf = NULL;
8290 id = btf__find_by_name_kind(btf, ksym_name, kind);
8291
8292 if (id == -ENOENT) {
8293 err = load_module_btfs(obj);
8294 if (err)
8295 return err;
8296
8297 for (i = 0; i < obj->btf_module_cnt; i++) {
8298 /* we assume module_btf's BTF FD is always >0 */
8299 mod_btf = &obj->btf_modules[i];
8300 btf = mod_btf->btf;
8301 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8302 if (id != -ENOENT)
8303 break;
8304 }
8305 }
8306 if (id <= 0)
8307 return -ESRCH;
8308
8309 *res_btf = btf;
8310 *res_mod_btf = mod_btf;
8311 return id;
8312 }
8313
bpf_object__resolve_ksym_var_btf_id(struct bpf_object * obj,struct extern_desc * ext)8314 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8315 struct extern_desc *ext)
8316 {
8317 const struct btf_type *targ_var, *targ_type;
8318 __u32 targ_type_id, local_type_id;
8319 struct module_btf *mod_btf = NULL;
8320 const char *targ_var_name;
8321 struct btf *btf = NULL;
8322 int id, err;
8323
8324 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8325 if (id < 0) {
8326 if (id == -ESRCH && ext->is_weak)
8327 return 0;
8328 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8329 ext->name);
8330 return id;
8331 }
8332
8333 /* find local type_id */
8334 local_type_id = ext->ksym.type_id;
8335
8336 /* find target type_id */
8337 targ_var = btf__type_by_id(btf, id);
8338 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8339 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8340
8341 err = bpf_core_types_are_compat(obj->btf, local_type_id,
8342 btf, targ_type_id);
8343 if (err <= 0) {
8344 const struct btf_type *local_type;
8345 const char *targ_name, *local_name;
8346
8347 local_type = btf__type_by_id(obj->btf, local_type_id);
8348 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8349 targ_name = btf__name_by_offset(btf, targ_type->name_off);
8350
8351 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8352 ext->name, local_type_id,
8353 btf_kind_str(local_type), local_name, targ_type_id,
8354 btf_kind_str(targ_type), targ_name);
8355 return -EINVAL;
8356 }
8357
8358 ext->is_set = true;
8359 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8360 ext->ksym.kernel_btf_id = id;
8361 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8362 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8363
8364 return 0;
8365 }
8366
bpf_object__resolve_ksym_func_btf_id(struct bpf_object * obj,struct extern_desc * ext)8367 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8368 struct extern_desc *ext)
8369 {
8370 int local_func_proto_id, kfunc_proto_id, kfunc_id;
8371 struct module_btf *mod_btf = NULL;
8372 const struct btf_type *kern_func;
8373 struct btf *kern_btf = NULL;
8374 int ret;
8375
8376 local_func_proto_id = ext->ksym.type_id;
8377
8378 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8379 &mod_btf);
8380 if (kfunc_id < 0) {
8381 if (kfunc_id == -ESRCH && ext->is_weak)
8382 return 0;
8383 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8384 ext->name);
8385 return kfunc_id;
8386 }
8387
8388 kern_func = btf__type_by_id(kern_btf, kfunc_id);
8389 kfunc_proto_id = kern_func->type;
8390
8391 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8392 kern_btf, kfunc_proto_id);
8393 if (ret <= 0) {
8394 if (ext->is_weak)
8395 return 0;
8396
8397 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8398 ext->name, local_func_proto_id,
8399 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8400 return -EINVAL;
8401 }
8402
8403 /* set index for module BTF fd in fd_array, if unset */
8404 if (mod_btf && !mod_btf->fd_array_idx) {
8405 /* insn->off is s16 */
8406 if (obj->fd_array_cnt == INT16_MAX) {
8407 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8408 ext->name, mod_btf->fd_array_idx);
8409 return -E2BIG;
8410 }
8411 /* Cannot use index 0 for module BTF fd */
8412 if (!obj->fd_array_cnt)
8413 obj->fd_array_cnt = 1;
8414
8415 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8416 obj->fd_array_cnt + 1);
8417 if (ret)
8418 return ret;
8419 mod_btf->fd_array_idx = obj->fd_array_cnt;
8420 /* we assume module BTF FD is always >0 */
8421 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8422 }
8423
8424 ext->is_set = true;
8425 ext->ksym.kernel_btf_id = kfunc_id;
8426 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8427 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8428 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8429 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8430 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8431 */
8432 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8433 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8434 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8435
8436 return 0;
8437 }
8438
bpf_object__resolve_ksyms_btf_id(struct bpf_object * obj)8439 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8440 {
8441 const struct btf_type *t;
8442 struct extern_desc *ext;
8443 int i, err;
8444
8445 for (i = 0; i < obj->nr_extern; i++) {
8446 ext = &obj->externs[i];
8447 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8448 continue;
8449
8450 if (obj->gen_loader) {
8451 ext->is_set = true;
8452 ext->ksym.kernel_btf_obj_fd = 0;
8453 ext->ksym.kernel_btf_id = 0;
8454 continue;
8455 }
8456 t = btf__type_by_id(obj->btf, ext->btf_id);
8457 if (btf_is_var(t))
8458 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8459 else
8460 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8461 if (err)
8462 return err;
8463 }
8464 return 0;
8465 }
8466
bpf_object__resolve_externs(struct bpf_object * obj,const char * extra_kconfig)8467 static int bpf_object__resolve_externs(struct bpf_object *obj,
8468 const char *extra_kconfig)
8469 {
8470 bool need_config = false, need_kallsyms = false;
8471 bool need_vmlinux_btf = false;
8472 struct extern_desc *ext;
8473 void *kcfg_data = NULL;
8474 int err, i;
8475
8476 if (obj->nr_extern == 0)
8477 return 0;
8478
8479 if (obj->kconfig_map_idx >= 0)
8480 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8481
8482 for (i = 0; i < obj->nr_extern; i++) {
8483 ext = &obj->externs[i];
8484
8485 if (ext->type == EXT_KSYM) {
8486 if (ext->ksym.type_id)
8487 need_vmlinux_btf = true;
8488 else
8489 need_kallsyms = true;
8490 continue;
8491 } else if (ext->type == EXT_KCFG) {
8492 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8493 __u64 value = 0;
8494
8495 /* Kconfig externs need actual /proc/config.gz */
8496 if (str_has_pfx(ext->name, "CONFIG_")) {
8497 need_config = true;
8498 continue;
8499 }
8500
8501 /* Virtual kcfg externs are customly handled by libbpf */
8502 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8503 value = get_kernel_version();
8504 if (!value) {
8505 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8506 return -EINVAL;
8507 }
8508 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8509 value = kernel_supports(obj, FEAT_BPF_COOKIE);
8510 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8511 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8512 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8513 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8514 * __kconfig externs, where LINUX_ ones are virtual and filled out
8515 * customly by libbpf (their values don't come from Kconfig).
8516 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8517 * __weak, it defaults to zero value, just like for CONFIG_xxx
8518 * externs.
8519 */
8520 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8521 return -EINVAL;
8522 }
8523
8524 err = set_kcfg_value_num(ext, ext_ptr, value);
8525 if (err)
8526 return err;
8527 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8528 ext->name, (long long)value);
8529 } else {
8530 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8531 return -EINVAL;
8532 }
8533 }
8534 if (need_config && extra_kconfig) {
8535 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8536 if (err)
8537 return -EINVAL;
8538 need_config = false;
8539 for (i = 0; i < obj->nr_extern; i++) {
8540 ext = &obj->externs[i];
8541 if (ext->type == EXT_KCFG && !ext->is_set) {
8542 need_config = true;
8543 break;
8544 }
8545 }
8546 }
8547 if (need_config) {
8548 err = bpf_object__read_kconfig_file(obj, kcfg_data);
8549 if (err)
8550 return -EINVAL;
8551 }
8552 if (need_kallsyms) {
8553 err = bpf_object__read_kallsyms_file(obj);
8554 if (err)
8555 return -EINVAL;
8556 }
8557 if (need_vmlinux_btf) {
8558 err = bpf_object__resolve_ksyms_btf_id(obj);
8559 if (err)
8560 return -EINVAL;
8561 }
8562 for (i = 0; i < obj->nr_extern; i++) {
8563 ext = &obj->externs[i];
8564
8565 if (!ext->is_set && !ext->is_weak) {
8566 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8567 return -ESRCH;
8568 } else if (!ext->is_set) {
8569 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8570 ext->name);
8571 }
8572 }
8573
8574 return 0;
8575 }
8576
bpf_map_prepare_vdata(const struct bpf_map * map)8577 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8578 {
8579 const struct btf_type *type;
8580 struct bpf_struct_ops *st_ops;
8581 __u32 i;
8582
8583 st_ops = map->st_ops;
8584 type = btf__type_by_id(map->obj->btf, st_ops->type_id);
8585 for (i = 0; i < btf_vlen(type); i++) {
8586 struct bpf_program *prog = st_ops->progs[i];
8587 void *kern_data;
8588 int prog_fd;
8589
8590 if (!prog)
8591 continue;
8592
8593 prog_fd = bpf_program__fd(prog);
8594 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8595 *(unsigned long *)kern_data = prog_fd;
8596 }
8597 }
8598
bpf_object_prepare_struct_ops(struct bpf_object * obj)8599 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8600 {
8601 struct bpf_map *map;
8602 int i;
8603
8604 for (i = 0; i < obj->nr_maps; i++) {
8605 map = &obj->maps[i];
8606
8607 if (!bpf_map__is_struct_ops(map))
8608 continue;
8609
8610 if (!map->autocreate)
8611 continue;
8612
8613 bpf_map_prepare_vdata(map);
8614 }
8615
8616 return 0;
8617 }
8618
bpf_object_unpin(struct bpf_object * obj)8619 static void bpf_object_unpin(struct bpf_object *obj)
8620 {
8621 int i;
8622
8623 /* unpin any maps that were auto-pinned during load */
8624 for (i = 0; i < obj->nr_maps; i++)
8625 if (obj->maps[i].pinned && !obj->maps[i].reused)
8626 bpf_map__unpin(&obj->maps[i], NULL);
8627 }
8628
bpf_object_post_load_cleanup(struct bpf_object * obj)8629 static void bpf_object_post_load_cleanup(struct bpf_object *obj)
8630 {
8631 int i;
8632
8633 /* clean up fd_array */
8634 zfree(&obj->fd_array);
8635
8636 /* clean up module BTFs */
8637 for (i = 0; i < obj->btf_module_cnt; i++) {
8638 close(obj->btf_modules[i].fd);
8639 btf__free(obj->btf_modules[i].btf);
8640 free(obj->btf_modules[i].name);
8641 }
8642 obj->btf_module_cnt = 0;
8643 zfree(&obj->btf_modules);
8644
8645 /* clean up vmlinux BTF */
8646 btf__free(obj->btf_vmlinux);
8647 obj->btf_vmlinux = NULL;
8648 }
8649
bpf_object_prepare(struct bpf_object * obj,const char * target_btf_path)8650 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path)
8651 {
8652 int err;
8653
8654 if (obj->state >= OBJ_PREPARED) {
8655 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name);
8656 return -EINVAL;
8657 }
8658
8659 err = bpf_object_prepare_token(obj);
8660 err = err ? : bpf_object__probe_loading(obj);
8661 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8662 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8663 err = err ? : bpf_object__sanitize_maps(obj);
8664 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8665 err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8666 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8667 err = err ? : bpf_object__sanitize_and_load_btf(obj);
8668 err = err ? : bpf_object__create_maps(obj);
8669 err = err ? : bpf_object_prepare_progs(obj);
8670
8671 if (err) {
8672 bpf_object_unpin(obj);
8673 bpf_object_unload(obj);
8674 obj->state = OBJ_LOADED;
8675 return err;
8676 }
8677
8678 obj->state = OBJ_PREPARED;
8679 return 0;
8680 }
8681
bpf_object_load(struct bpf_object * obj,int extra_log_level,const char * target_btf_path)8682 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8683 {
8684 int err;
8685
8686 if (!obj)
8687 return libbpf_err(-EINVAL);
8688
8689 if (obj->state >= OBJ_LOADED) {
8690 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8691 return libbpf_err(-EINVAL);
8692 }
8693
8694 /* Disallow kernel loading programs of non-native endianness but
8695 * permit cross-endian creation of "light skeleton".
8696 */
8697 if (obj->gen_loader) {
8698 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8699 } else if (!is_native_endianness(obj)) {
8700 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name);
8701 return libbpf_err(-LIBBPF_ERRNO__ENDIAN);
8702 }
8703
8704 if (obj->state < OBJ_PREPARED) {
8705 err = bpf_object_prepare(obj, target_btf_path);
8706 if (err)
8707 return libbpf_err(err);
8708 }
8709 err = bpf_object__load_progs(obj, extra_log_level);
8710 err = err ? : bpf_object_init_prog_arrays(obj);
8711 err = err ? : bpf_object_prepare_struct_ops(obj);
8712
8713 if (obj->gen_loader) {
8714 /* reset FDs */
8715 if (obj->btf)
8716 btf__set_fd(obj->btf, -1);
8717 if (!err)
8718 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8719 }
8720
8721 bpf_object_post_load_cleanup(obj);
8722 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */
8723
8724 if (err) {
8725 bpf_object_unpin(obj);
8726 bpf_object_unload(obj);
8727 pr_warn("failed to load object '%s'\n", obj->path);
8728 return libbpf_err(err);
8729 }
8730
8731 return 0;
8732 }
8733
bpf_object__prepare(struct bpf_object * obj)8734 int bpf_object__prepare(struct bpf_object *obj)
8735 {
8736 return libbpf_err(bpf_object_prepare(obj, NULL));
8737 }
8738
bpf_object__load(struct bpf_object * obj)8739 int bpf_object__load(struct bpf_object *obj)
8740 {
8741 return bpf_object_load(obj, 0, NULL);
8742 }
8743
make_parent_dir(const char * path)8744 static int make_parent_dir(const char *path)
8745 {
8746 char *dname, *dir;
8747 int err = 0;
8748
8749 dname = strdup(path);
8750 if (dname == NULL)
8751 return -ENOMEM;
8752
8753 dir = dirname(dname);
8754 if (mkdir(dir, 0700) && errno != EEXIST)
8755 err = -errno;
8756
8757 free(dname);
8758 if (err) {
8759 pr_warn("failed to mkdir %s: %s\n", path, errstr(err));
8760 }
8761 return err;
8762 }
8763
check_path(const char * path)8764 static int check_path(const char *path)
8765 {
8766 struct statfs st_fs;
8767 char *dname, *dir;
8768 int err = 0;
8769
8770 if (path == NULL)
8771 return -EINVAL;
8772
8773 dname = strdup(path);
8774 if (dname == NULL)
8775 return -ENOMEM;
8776
8777 dir = dirname(dname);
8778 if (statfs(dir, &st_fs)) {
8779 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno));
8780 err = -errno;
8781 }
8782 free(dname);
8783
8784 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8785 pr_warn("specified path %s is not on BPF FS\n", path);
8786 err = -EINVAL;
8787 }
8788
8789 return err;
8790 }
8791
bpf_program__pin(struct bpf_program * prog,const char * path)8792 int bpf_program__pin(struct bpf_program *prog, const char *path)
8793 {
8794 int err;
8795
8796 if (prog->fd < 0) {
8797 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8798 return libbpf_err(-EINVAL);
8799 }
8800
8801 err = make_parent_dir(path);
8802 if (err)
8803 return libbpf_err(err);
8804
8805 err = check_path(path);
8806 if (err)
8807 return libbpf_err(err);
8808
8809 if (bpf_obj_pin(prog->fd, path)) {
8810 err = -errno;
8811 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err));
8812 return libbpf_err(err);
8813 }
8814
8815 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8816 return 0;
8817 }
8818
bpf_program__unpin(struct bpf_program * prog,const char * path)8819 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8820 {
8821 int err;
8822
8823 if (prog->fd < 0) {
8824 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8825 return libbpf_err(-EINVAL);
8826 }
8827
8828 err = check_path(path);
8829 if (err)
8830 return libbpf_err(err);
8831
8832 err = unlink(path);
8833 if (err)
8834 return libbpf_err(-errno);
8835
8836 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8837 return 0;
8838 }
8839
bpf_map__pin(struct bpf_map * map,const char * path)8840 int bpf_map__pin(struct bpf_map *map, const char *path)
8841 {
8842 int err;
8843
8844 if (map == NULL) {
8845 pr_warn("invalid map pointer\n");
8846 return libbpf_err(-EINVAL);
8847 }
8848
8849 if (map->fd < 0) {
8850 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name);
8851 return libbpf_err(-EINVAL);
8852 }
8853
8854 if (map->pin_path) {
8855 if (path && strcmp(path, map->pin_path)) {
8856 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8857 bpf_map__name(map), map->pin_path, path);
8858 return libbpf_err(-EINVAL);
8859 } else if (map->pinned) {
8860 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8861 bpf_map__name(map), map->pin_path);
8862 return 0;
8863 }
8864 } else {
8865 if (!path) {
8866 pr_warn("missing a path to pin map '%s' at\n",
8867 bpf_map__name(map));
8868 return libbpf_err(-EINVAL);
8869 } else if (map->pinned) {
8870 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8871 return libbpf_err(-EEXIST);
8872 }
8873
8874 map->pin_path = strdup(path);
8875 if (!map->pin_path) {
8876 err = -errno;
8877 goto out_err;
8878 }
8879 }
8880
8881 err = make_parent_dir(map->pin_path);
8882 if (err)
8883 return libbpf_err(err);
8884
8885 err = check_path(map->pin_path);
8886 if (err)
8887 return libbpf_err(err);
8888
8889 if (bpf_obj_pin(map->fd, map->pin_path)) {
8890 err = -errno;
8891 goto out_err;
8892 }
8893
8894 map->pinned = true;
8895 pr_debug("pinned map '%s'\n", map->pin_path);
8896
8897 return 0;
8898
8899 out_err:
8900 pr_warn("failed to pin map: %s\n", errstr(err));
8901 return libbpf_err(err);
8902 }
8903
bpf_map__unpin(struct bpf_map * map,const char * path)8904 int bpf_map__unpin(struct bpf_map *map, const char *path)
8905 {
8906 int err;
8907
8908 if (map == NULL) {
8909 pr_warn("invalid map pointer\n");
8910 return libbpf_err(-EINVAL);
8911 }
8912
8913 if (map->pin_path) {
8914 if (path && strcmp(path, map->pin_path)) {
8915 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8916 bpf_map__name(map), map->pin_path, path);
8917 return libbpf_err(-EINVAL);
8918 }
8919 path = map->pin_path;
8920 } else if (!path) {
8921 pr_warn("no path to unpin map '%s' from\n",
8922 bpf_map__name(map));
8923 return libbpf_err(-EINVAL);
8924 }
8925
8926 err = check_path(path);
8927 if (err)
8928 return libbpf_err(err);
8929
8930 err = unlink(path);
8931 if (err != 0)
8932 return libbpf_err(-errno);
8933
8934 map->pinned = false;
8935 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8936
8937 return 0;
8938 }
8939
bpf_map__set_pin_path(struct bpf_map * map,const char * path)8940 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8941 {
8942 char *new = NULL;
8943
8944 if (path) {
8945 new = strdup(path);
8946 if (!new)
8947 return libbpf_err(-errno);
8948 }
8949
8950 free(map->pin_path);
8951 map->pin_path = new;
8952 return 0;
8953 }
8954
8955 __alias(bpf_map__pin_path)
8956 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8957
bpf_map__pin_path(const struct bpf_map * map)8958 const char *bpf_map__pin_path(const struct bpf_map *map)
8959 {
8960 return map->pin_path;
8961 }
8962
bpf_map__is_pinned(const struct bpf_map * map)8963 bool bpf_map__is_pinned(const struct bpf_map *map)
8964 {
8965 return map->pinned;
8966 }
8967
sanitize_pin_path(char * s)8968 static void sanitize_pin_path(char *s)
8969 {
8970 /* bpffs disallows periods in path names */
8971 while (*s) {
8972 if (*s == '.')
8973 *s = '_';
8974 s++;
8975 }
8976 }
8977
bpf_object__pin_maps(struct bpf_object * obj,const char * path)8978 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8979 {
8980 struct bpf_map *map;
8981 int err;
8982
8983 if (!obj)
8984 return libbpf_err(-ENOENT);
8985
8986 if (obj->state < OBJ_PREPARED) {
8987 pr_warn("object not yet loaded; load it first\n");
8988 return libbpf_err(-ENOENT);
8989 }
8990
8991 bpf_object__for_each_map(map, obj) {
8992 char *pin_path = NULL;
8993 char buf[PATH_MAX];
8994
8995 if (!map->autocreate)
8996 continue;
8997
8998 if (path) {
8999 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
9000 if (err)
9001 goto err_unpin_maps;
9002 sanitize_pin_path(buf);
9003 pin_path = buf;
9004 } else if (!map->pin_path) {
9005 continue;
9006 }
9007
9008 err = bpf_map__pin(map, pin_path);
9009 if (err)
9010 goto err_unpin_maps;
9011 }
9012
9013 return 0;
9014
9015 err_unpin_maps:
9016 while ((map = bpf_object__prev_map(obj, map))) {
9017 if (!map->pin_path)
9018 continue;
9019
9020 bpf_map__unpin(map, NULL);
9021 }
9022
9023 return libbpf_err(err);
9024 }
9025
bpf_object__unpin_maps(struct bpf_object * obj,const char * path)9026 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
9027 {
9028 struct bpf_map *map;
9029 int err;
9030
9031 if (!obj)
9032 return libbpf_err(-ENOENT);
9033
9034 bpf_object__for_each_map(map, obj) {
9035 char *pin_path = NULL;
9036 char buf[PATH_MAX];
9037
9038 if (path) {
9039 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
9040 if (err)
9041 return libbpf_err(err);
9042 sanitize_pin_path(buf);
9043 pin_path = buf;
9044 } else if (!map->pin_path) {
9045 continue;
9046 }
9047
9048 err = bpf_map__unpin(map, pin_path);
9049 if (err)
9050 return libbpf_err(err);
9051 }
9052
9053 return 0;
9054 }
9055
bpf_object__pin_programs(struct bpf_object * obj,const char * path)9056 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
9057 {
9058 struct bpf_program *prog;
9059 char buf[PATH_MAX];
9060 int err;
9061
9062 if (!obj)
9063 return libbpf_err(-ENOENT);
9064
9065 if (obj->state < OBJ_LOADED) {
9066 pr_warn("object not yet loaded; load it first\n");
9067 return libbpf_err(-ENOENT);
9068 }
9069
9070 bpf_object__for_each_program(prog, obj) {
9071 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9072 if (err)
9073 goto err_unpin_programs;
9074
9075 err = bpf_program__pin(prog, buf);
9076 if (err)
9077 goto err_unpin_programs;
9078 }
9079
9080 return 0;
9081
9082 err_unpin_programs:
9083 while ((prog = bpf_object__prev_program(obj, prog))) {
9084 if (pathname_concat(buf, sizeof(buf), path, prog->name))
9085 continue;
9086
9087 bpf_program__unpin(prog, buf);
9088 }
9089
9090 return libbpf_err(err);
9091 }
9092
bpf_object__unpin_programs(struct bpf_object * obj,const char * path)9093 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
9094 {
9095 struct bpf_program *prog;
9096 int err;
9097
9098 if (!obj)
9099 return libbpf_err(-ENOENT);
9100
9101 bpf_object__for_each_program(prog, obj) {
9102 char buf[PATH_MAX];
9103
9104 err = pathname_concat(buf, sizeof(buf), path, prog->name);
9105 if (err)
9106 return libbpf_err(err);
9107
9108 err = bpf_program__unpin(prog, buf);
9109 if (err)
9110 return libbpf_err(err);
9111 }
9112
9113 return 0;
9114 }
9115
bpf_object__pin(struct bpf_object * obj,const char * path)9116 int bpf_object__pin(struct bpf_object *obj, const char *path)
9117 {
9118 int err;
9119
9120 err = bpf_object__pin_maps(obj, path);
9121 if (err)
9122 return libbpf_err(err);
9123
9124 err = bpf_object__pin_programs(obj, path);
9125 if (err) {
9126 bpf_object__unpin_maps(obj, path);
9127 return libbpf_err(err);
9128 }
9129
9130 return 0;
9131 }
9132
bpf_object__unpin(struct bpf_object * obj,const char * path)9133 int bpf_object__unpin(struct bpf_object *obj, const char *path)
9134 {
9135 int err;
9136
9137 err = bpf_object__unpin_programs(obj, path);
9138 if (err)
9139 return libbpf_err(err);
9140
9141 err = bpf_object__unpin_maps(obj, path);
9142 if (err)
9143 return libbpf_err(err);
9144
9145 return 0;
9146 }
9147
bpf_map__destroy(struct bpf_map * map)9148 static void bpf_map__destroy(struct bpf_map *map)
9149 {
9150 if (map->inner_map) {
9151 bpf_map__destroy(map->inner_map);
9152 zfree(&map->inner_map);
9153 }
9154
9155 zfree(&map->init_slots);
9156 map->init_slots_sz = 0;
9157
9158 if (map->mmaped && map->mmaped != map->obj->arena_data)
9159 munmap(map->mmaped, bpf_map_mmap_sz(map));
9160 map->mmaped = NULL;
9161
9162 if (map->st_ops) {
9163 zfree(&map->st_ops->data);
9164 zfree(&map->st_ops->progs);
9165 zfree(&map->st_ops->kern_func_off);
9166 zfree(&map->st_ops);
9167 }
9168
9169 zfree(&map->name);
9170 zfree(&map->real_name);
9171 zfree(&map->pin_path);
9172
9173 if (map->fd >= 0)
9174 zclose(map->fd);
9175 }
9176
bpf_object__close(struct bpf_object * obj)9177 void bpf_object__close(struct bpf_object *obj)
9178 {
9179 size_t i;
9180
9181 if (IS_ERR_OR_NULL(obj))
9182 return;
9183
9184 /*
9185 * if user called bpf_object__prepare() without ever getting to
9186 * bpf_object__load(), we need to clean up stuff that is normally
9187 * cleaned up at the end of loading step
9188 */
9189 bpf_object_post_load_cleanup(obj);
9190
9191 usdt_manager_free(obj->usdt_man);
9192 obj->usdt_man = NULL;
9193
9194 bpf_gen__free(obj->gen_loader);
9195 bpf_object__elf_finish(obj);
9196 bpf_object_unload(obj);
9197 btf__free(obj->btf);
9198 btf__free(obj->btf_vmlinux);
9199 btf_ext__free(obj->btf_ext);
9200
9201 for (i = 0; i < obj->nr_maps; i++)
9202 bpf_map__destroy(&obj->maps[i]);
9203
9204 zfree(&obj->btf_custom_path);
9205 zfree(&obj->kconfig);
9206
9207 for (i = 0; i < obj->nr_extern; i++) {
9208 zfree(&obj->externs[i].name);
9209 zfree(&obj->externs[i].essent_name);
9210 }
9211
9212 zfree(&obj->externs);
9213 obj->nr_extern = 0;
9214
9215 zfree(&obj->maps);
9216 obj->nr_maps = 0;
9217
9218 if (obj->programs && obj->nr_programs) {
9219 for (i = 0; i < obj->nr_programs; i++)
9220 bpf_program__exit(&obj->programs[i]);
9221 }
9222 zfree(&obj->programs);
9223
9224 zfree(&obj->feat_cache);
9225 zfree(&obj->token_path);
9226 if (obj->token_fd > 0)
9227 close(obj->token_fd);
9228
9229 zfree(&obj->arena_data);
9230
9231 free(obj);
9232 }
9233
bpf_object__name(const struct bpf_object * obj)9234 const char *bpf_object__name(const struct bpf_object *obj)
9235 {
9236 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
9237 }
9238
bpf_object__kversion(const struct bpf_object * obj)9239 unsigned int bpf_object__kversion(const struct bpf_object *obj)
9240 {
9241 return obj ? obj->kern_version : 0;
9242 }
9243
bpf_object__token_fd(const struct bpf_object * obj)9244 int bpf_object__token_fd(const struct bpf_object *obj)
9245 {
9246 return obj->token_fd ?: -1;
9247 }
9248
bpf_object__btf(const struct bpf_object * obj)9249 struct btf *bpf_object__btf(const struct bpf_object *obj)
9250 {
9251 return obj ? obj->btf : NULL;
9252 }
9253
bpf_object__btf_fd(const struct bpf_object * obj)9254 int bpf_object__btf_fd(const struct bpf_object *obj)
9255 {
9256 return obj->btf ? btf__fd(obj->btf) : -1;
9257 }
9258
bpf_object__set_kversion(struct bpf_object * obj,__u32 kern_version)9259 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
9260 {
9261 if (obj->state >= OBJ_LOADED)
9262 return libbpf_err(-EINVAL);
9263
9264 obj->kern_version = kern_version;
9265
9266 return 0;
9267 }
9268
bpf_object__gen_loader(struct bpf_object * obj,struct gen_loader_opts * opts)9269 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
9270 {
9271 struct bpf_gen *gen;
9272
9273 if (!opts)
9274 return libbpf_err(-EFAULT);
9275 if (!OPTS_VALID(opts, gen_loader_opts))
9276 return libbpf_err(-EINVAL);
9277 gen = calloc(1, sizeof(*gen));
9278 if (!gen)
9279 return libbpf_err(-ENOMEM);
9280 gen->opts = opts;
9281 gen->swapped_endian = !is_native_endianness(obj);
9282 obj->gen_loader = gen;
9283 return 0;
9284 }
9285
9286 static struct bpf_program *
__bpf_program__iter(const struct bpf_program * p,const struct bpf_object * obj,bool forward)9287 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
9288 bool forward)
9289 {
9290 size_t nr_programs = obj->nr_programs;
9291 ssize_t idx;
9292
9293 if (!nr_programs)
9294 return NULL;
9295
9296 if (!p)
9297 /* Iter from the beginning */
9298 return forward ? &obj->programs[0] :
9299 &obj->programs[nr_programs - 1];
9300
9301 if (p->obj != obj) {
9302 pr_warn("error: program handler doesn't match object\n");
9303 return errno = EINVAL, NULL;
9304 }
9305
9306 idx = (p - obj->programs) + (forward ? 1 : -1);
9307 if (idx >= obj->nr_programs || idx < 0)
9308 return NULL;
9309 return &obj->programs[idx];
9310 }
9311
9312 struct bpf_program *
bpf_object__next_program(const struct bpf_object * obj,struct bpf_program * prev)9313 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9314 {
9315 struct bpf_program *prog = prev;
9316
9317 do {
9318 prog = __bpf_program__iter(prog, obj, true);
9319 } while (prog && prog_is_subprog(obj, prog));
9320
9321 return prog;
9322 }
9323
9324 struct bpf_program *
bpf_object__prev_program(const struct bpf_object * obj,struct bpf_program * next)9325 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9326 {
9327 struct bpf_program *prog = next;
9328
9329 do {
9330 prog = __bpf_program__iter(prog, obj, false);
9331 } while (prog && prog_is_subprog(obj, prog));
9332
9333 return prog;
9334 }
9335
bpf_program__set_ifindex(struct bpf_program * prog,__u32 ifindex)9336 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9337 {
9338 prog->prog_ifindex = ifindex;
9339 }
9340
bpf_program__name(const struct bpf_program * prog)9341 const char *bpf_program__name(const struct bpf_program *prog)
9342 {
9343 return prog->name;
9344 }
9345
bpf_program__section_name(const struct bpf_program * prog)9346 const char *bpf_program__section_name(const struct bpf_program *prog)
9347 {
9348 return prog->sec_name;
9349 }
9350
bpf_program__autoload(const struct bpf_program * prog)9351 bool bpf_program__autoload(const struct bpf_program *prog)
9352 {
9353 return prog->autoload;
9354 }
9355
bpf_program__set_autoload(struct bpf_program * prog,bool autoload)9356 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9357 {
9358 if (prog->obj->state >= OBJ_LOADED)
9359 return libbpf_err(-EINVAL);
9360
9361 prog->autoload = autoload;
9362 return 0;
9363 }
9364
bpf_program__autoattach(const struct bpf_program * prog)9365 bool bpf_program__autoattach(const struct bpf_program *prog)
9366 {
9367 return prog->autoattach;
9368 }
9369
bpf_program__set_autoattach(struct bpf_program * prog,bool autoattach)9370 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9371 {
9372 prog->autoattach = autoattach;
9373 }
9374
bpf_program__insns(const struct bpf_program * prog)9375 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9376 {
9377 return prog->insns;
9378 }
9379
bpf_program__insn_cnt(const struct bpf_program * prog)9380 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9381 {
9382 return prog->insns_cnt;
9383 }
9384
bpf_program__set_insns(struct bpf_program * prog,struct bpf_insn * new_insns,size_t new_insn_cnt)9385 int bpf_program__set_insns(struct bpf_program *prog,
9386 struct bpf_insn *new_insns, size_t new_insn_cnt)
9387 {
9388 struct bpf_insn *insns;
9389
9390 if (prog->obj->state >= OBJ_LOADED)
9391 return libbpf_err(-EBUSY);
9392
9393 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9394 /* NULL is a valid return from reallocarray if the new count is zero */
9395 if (!insns && new_insn_cnt) {
9396 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9397 return libbpf_err(-ENOMEM);
9398 }
9399 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9400
9401 prog->insns = insns;
9402 prog->insns_cnt = new_insn_cnt;
9403 return 0;
9404 }
9405
bpf_program__fd(const struct bpf_program * prog)9406 int bpf_program__fd(const struct bpf_program *prog)
9407 {
9408 if (!prog)
9409 return libbpf_err(-EINVAL);
9410
9411 if (prog->fd < 0)
9412 return libbpf_err(-ENOENT);
9413
9414 return prog->fd;
9415 }
9416
9417 __alias(bpf_program__type)
9418 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9419
bpf_program__type(const struct bpf_program * prog)9420 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9421 {
9422 return prog->type;
9423 }
9424
9425 static size_t custom_sec_def_cnt;
9426 static struct bpf_sec_def *custom_sec_defs;
9427 static struct bpf_sec_def custom_fallback_def;
9428 static bool has_custom_fallback_def;
9429 static int last_custom_sec_def_handler_id;
9430
bpf_program__set_type(struct bpf_program * prog,enum bpf_prog_type type)9431 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9432 {
9433 if (prog->obj->state >= OBJ_LOADED)
9434 return libbpf_err(-EBUSY);
9435
9436 /* if type is not changed, do nothing */
9437 if (prog->type == type)
9438 return 0;
9439
9440 prog->type = type;
9441
9442 /* If a program type was changed, we need to reset associated SEC()
9443 * handler, as it will be invalid now. The only exception is a generic
9444 * fallback handler, which by definition is program type-agnostic and
9445 * is a catch-all custom handler, optionally set by the application,
9446 * so should be able to handle any type of BPF program.
9447 */
9448 if (prog->sec_def != &custom_fallback_def)
9449 prog->sec_def = NULL;
9450 return 0;
9451 }
9452
9453 __alias(bpf_program__expected_attach_type)
9454 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9455
bpf_program__expected_attach_type(const struct bpf_program * prog)9456 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9457 {
9458 return prog->expected_attach_type;
9459 }
9460
bpf_program__set_expected_attach_type(struct bpf_program * prog,enum bpf_attach_type type)9461 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9462 enum bpf_attach_type type)
9463 {
9464 if (prog->obj->state >= OBJ_LOADED)
9465 return libbpf_err(-EBUSY);
9466
9467 prog->expected_attach_type = type;
9468 return 0;
9469 }
9470
bpf_program__flags(const struct bpf_program * prog)9471 __u32 bpf_program__flags(const struct bpf_program *prog)
9472 {
9473 return prog->prog_flags;
9474 }
9475
bpf_program__set_flags(struct bpf_program * prog,__u32 flags)9476 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9477 {
9478 if (prog->obj->state >= OBJ_LOADED)
9479 return libbpf_err(-EBUSY);
9480
9481 prog->prog_flags = flags;
9482 return 0;
9483 }
9484
bpf_program__log_level(const struct bpf_program * prog)9485 __u32 bpf_program__log_level(const struct bpf_program *prog)
9486 {
9487 return prog->log_level;
9488 }
9489
bpf_program__set_log_level(struct bpf_program * prog,__u32 log_level)9490 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9491 {
9492 if (prog->obj->state >= OBJ_LOADED)
9493 return libbpf_err(-EBUSY);
9494
9495 prog->log_level = log_level;
9496 return 0;
9497 }
9498
bpf_program__log_buf(const struct bpf_program * prog,size_t * log_size)9499 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9500 {
9501 *log_size = prog->log_size;
9502 return prog->log_buf;
9503 }
9504
bpf_program__set_log_buf(struct bpf_program * prog,char * log_buf,size_t log_size)9505 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9506 {
9507 if (log_size && !log_buf)
9508 return libbpf_err(-EINVAL);
9509 if (prog->log_size > UINT_MAX)
9510 return libbpf_err(-EINVAL);
9511 if (prog->obj->state >= OBJ_LOADED)
9512 return libbpf_err(-EBUSY);
9513
9514 prog->log_buf = log_buf;
9515 prog->log_size = log_size;
9516 return 0;
9517 }
9518
bpf_program__func_info(const struct bpf_program * prog)9519 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog)
9520 {
9521 if (prog->func_info_rec_size != sizeof(struct bpf_func_info))
9522 return libbpf_err_ptr(-EOPNOTSUPP);
9523 return prog->func_info;
9524 }
9525
bpf_program__func_info_cnt(const struct bpf_program * prog)9526 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog)
9527 {
9528 return prog->func_info_cnt;
9529 }
9530
bpf_program__line_info(const struct bpf_program * prog)9531 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog)
9532 {
9533 if (prog->line_info_rec_size != sizeof(struct bpf_line_info))
9534 return libbpf_err_ptr(-EOPNOTSUPP);
9535 return prog->line_info;
9536 }
9537
bpf_program__line_info_cnt(const struct bpf_program * prog)9538 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog)
9539 {
9540 return prog->line_info_cnt;
9541 }
9542
9543 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
9544 .sec = (char *)sec_pfx, \
9545 .prog_type = BPF_PROG_TYPE_##ptype, \
9546 .expected_attach_type = atype, \
9547 .cookie = (long)(flags), \
9548 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
9549 __VA_ARGS__ \
9550 }
9551
9552 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9553 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9554 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9555 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9556 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9557 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9558 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9559 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9560 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9561 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9562 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9563 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9564
9565 static const struct bpf_sec_def section_defs[] = {
9566 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
9567 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9568 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9569 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9570 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9571 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9572 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
9573 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
9574 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9575 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9576 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9577 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session),
9578 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9579 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9580 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi),
9581 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9582 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9583 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi),
9584 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9585 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
9586 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt),
9587 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9588 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9589 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */
9590 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9591 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9592 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9593 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9594 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9595 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9596 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9597 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9598 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
9599 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9600 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9601 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9602 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9603 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9604 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9605 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9606 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9607 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9608 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9609 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9610 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
9611 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9612 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9613 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9614 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9615 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9616 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
9617 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9618 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9619 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9620 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9621 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
9622 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9623 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
9624 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
9625 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
9626 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
9627 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
9628 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9629 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9630 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9631 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT),
9632 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
9633 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9634 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9635 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9636 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9637 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9638 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
9639 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9640 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9641 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9642 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9643 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9644 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9645 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9646 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9647 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9648 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9649 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9650 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9651 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9652 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9653 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9654 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9655 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9656 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9657 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9658 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9659 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9660 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9661 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9662 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9663 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9664 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9665 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
9666 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
9667 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9668 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE),
9669 };
9670
libbpf_register_prog_handler(const char * sec,enum bpf_prog_type prog_type,enum bpf_attach_type exp_attach_type,const struct libbpf_prog_handler_opts * opts)9671 int libbpf_register_prog_handler(const char *sec,
9672 enum bpf_prog_type prog_type,
9673 enum bpf_attach_type exp_attach_type,
9674 const struct libbpf_prog_handler_opts *opts)
9675 {
9676 struct bpf_sec_def *sec_def;
9677
9678 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9679 return libbpf_err(-EINVAL);
9680
9681 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9682 return libbpf_err(-E2BIG);
9683
9684 if (sec) {
9685 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9686 sizeof(*sec_def));
9687 if (!sec_def)
9688 return libbpf_err(-ENOMEM);
9689
9690 custom_sec_defs = sec_def;
9691 sec_def = &custom_sec_defs[custom_sec_def_cnt];
9692 } else {
9693 if (has_custom_fallback_def)
9694 return libbpf_err(-EBUSY);
9695
9696 sec_def = &custom_fallback_def;
9697 }
9698
9699 sec_def->sec = sec ? strdup(sec) : NULL;
9700 if (sec && !sec_def->sec)
9701 return libbpf_err(-ENOMEM);
9702
9703 sec_def->prog_type = prog_type;
9704 sec_def->expected_attach_type = exp_attach_type;
9705 sec_def->cookie = OPTS_GET(opts, cookie, 0);
9706
9707 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9708 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9709 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9710
9711 sec_def->handler_id = ++last_custom_sec_def_handler_id;
9712
9713 if (sec)
9714 custom_sec_def_cnt++;
9715 else
9716 has_custom_fallback_def = true;
9717
9718 return sec_def->handler_id;
9719 }
9720
libbpf_unregister_prog_handler(int handler_id)9721 int libbpf_unregister_prog_handler(int handler_id)
9722 {
9723 struct bpf_sec_def *sec_defs;
9724 int i;
9725
9726 if (handler_id <= 0)
9727 return libbpf_err(-EINVAL);
9728
9729 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9730 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9731 has_custom_fallback_def = false;
9732 return 0;
9733 }
9734
9735 for (i = 0; i < custom_sec_def_cnt; i++) {
9736 if (custom_sec_defs[i].handler_id == handler_id)
9737 break;
9738 }
9739
9740 if (i == custom_sec_def_cnt)
9741 return libbpf_err(-ENOENT);
9742
9743 free(custom_sec_defs[i].sec);
9744 for (i = i + 1; i < custom_sec_def_cnt; i++)
9745 custom_sec_defs[i - 1] = custom_sec_defs[i];
9746 custom_sec_def_cnt--;
9747
9748 /* try to shrink the array, but it's ok if we couldn't */
9749 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9750 /* if new count is zero, reallocarray can return a valid NULL result;
9751 * in this case the previous pointer will be freed, so we *have to*
9752 * reassign old pointer to the new value (even if it's NULL)
9753 */
9754 if (sec_defs || custom_sec_def_cnt == 0)
9755 custom_sec_defs = sec_defs;
9756
9757 return 0;
9758 }
9759
sec_def_matches(const struct bpf_sec_def * sec_def,const char * sec_name)9760 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9761 {
9762 size_t len = strlen(sec_def->sec);
9763
9764 /* "type/" always has to have proper SEC("type/extras") form */
9765 if (sec_def->sec[len - 1] == '/') {
9766 if (str_has_pfx(sec_name, sec_def->sec))
9767 return true;
9768 return false;
9769 }
9770
9771 /* "type+" means it can be either exact SEC("type") or
9772 * well-formed SEC("type/extras") with proper '/' separator
9773 */
9774 if (sec_def->sec[len - 1] == '+') {
9775 len--;
9776 /* not even a prefix */
9777 if (strncmp(sec_name, sec_def->sec, len) != 0)
9778 return false;
9779 /* exact match or has '/' separator */
9780 if (sec_name[len] == '\0' || sec_name[len] == '/')
9781 return true;
9782 return false;
9783 }
9784
9785 return strcmp(sec_name, sec_def->sec) == 0;
9786 }
9787
find_sec_def(const char * sec_name)9788 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9789 {
9790 const struct bpf_sec_def *sec_def;
9791 int i, n;
9792
9793 n = custom_sec_def_cnt;
9794 for (i = 0; i < n; i++) {
9795 sec_def = &custom_sec_defs[i];
9796 if (sec_def_matches(sec_def, sec_name))
9797 return sec_def;
9798 }
9799
9800 n = ARRAY_SIZE(section_defs);
9801 for (i = 0; i < n; i++) {
9802 sec_def = §ion_defs[i];
9803 if (sec_def_matches(sec_def, sec_name))
9804 return sec_def;
9805 }
9806
9807 if (has_custom_fallback_def)
9808 return &custom_fallback_def;
9809
9810 return NULL;
9811 }
9812
9813 #define MAX_TYPE_NAME_SIZE 32
9814
libbpf_get_type_names(bool attach_type)9815 static char *libbpf_get_type_names(bool attach_type)
9816 {
9817 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9818 char *buf;
9819
9820 buf = malloc(len);
9821 if (!buf)
9822 return NULL;
9823
9824 buf[0] = '\0';
9825 /* Forge string buf with all available names */
9826 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9827 const struct bpf_sec_def *sec_def = §ion_defs[i];
9828
9829 if (attach_type) {
9830 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9831 continue;
9832
9833 if (!(sec_def->cookie & SEC_ATTACHABLE))
9834 continue;
9835 }
9836
9837 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9838 free(buf);
9839 return NULL;
9840 }
9841 strcat(buf, " ");
9842 strcat(buf, section_defs[i].sec);
9843 }
9844
9845 return buf;
9846 }
9847
libbpf_prog_type_by_name(const char * name,enum bpf_prog_type * prog_type,enum bpf_attach_type * expected_attach_type)9848 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9849 enum bpf_attach_type *expected_attach_type)
9850 {
9851 const struct bpf_sec_def *sec_def;
9852 char *type_names;
9853
9854 if (!name)
9855 return libbpf_err(-EINVAL);
9856
9857 sec_def = find_sec_def(name);
9858 if (sec_def) {
9859 *prog_type = sec_def->prog_type;
9860 *expected_attach_type = sec_def->expected_attach_type;
9861 return 0;
9862 }
9863
9864 pr_debug("failed to guess program type from ELF section '%s'\n", name);
9865 type_names = libbpf_get_type_names(false);
9866 if (type_names != NULL) {
9867 pr_debug("supported section(type) names are:%s\n", type_names);
9868 free(type_names);
9869 }
9870
9871 return libbpf_err(-ESRCH);
9872 }
9873
libbpf_bpf_attach_type_str(enum bpf_attach_type t)9874 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9875 {
9876 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9877 return NULL;
9878
9879 return attach_type_name[t];
9880 }
9881
libbpf_bpf_link_type_str(enum bpf_link_type t)9882 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9883 {
9884 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9885 return NULL;
9886
9887 return link_type_name[t];
9888 }
9889
libbpf_bpf_map_type_str(enum bpf_map_type t)9890 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9891 {
9892 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9893 return NULL;
9894
9895 return map_type_name[t];
9896 }
9897
libbpf_bpf_prog_type_str(enum bpf_prog_type t)9898 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9899 {
9900 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9901 return NULL;
9902
9903 return prog_type_name[t];
9904 }
9905
find_struct_ops_map_by_offset(struct bpf_object * obj,int sec_idx,size_t offset)9906 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9907 int sec_idx,
9908 size_t offset)
9909 {
9910 struct bpf_map *map;
9911 size_t i;
9912
9913 for (i = 0; i < obj->nr_maps; i++) {
9914 map = &obj->maps[i];
9915 if (!bpf_map__is_struct_ops(map))
9916 continue;
9917 if (map->sec_idx == sec_idx &&
9918 map->sec_offset <= offset &&
9919 offset - map->sec_offset < map->def.value_size)
9920 return map;
9921 }
9922
9923 return NULL;
9924 }
9925
9926 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9927 * st_ops->data for shadow type.
9928 */
bpf_object__collect_st_ops_relos(struct bpf_object * obj,Elf64_Shdr * shdr,Elf_Data * data)9929 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9930 Elf64_Shdr *shdr, Elf_Data *data)
9931 {
9932 const struct btf_type *type;
9933 const struct btf_member *member;
9934 struct bpf_struct_ops *st_ops;
9935 struct bpf_program *prog;
9936 unsigned int shdr_idx;
9937 const struct btf *btf;
9938 struct bpf_map *map;
9939 unsigned int moff, insn_idx;
9940 const char *name;
9941 __u32 member_idx;
9942 Elf64_Sym *sym;
9943 Elf64_Rel *rel;
9944 int i, nrels;
9945
9946 btf = obj->btf;
9947 nrels = shdr->sh_size / shdr->sh_entsize;
9948 for (i = 0; i < nrels; i++) {
9949 rel = elf_rel_by_idx(data, i);
9950 if (!rel) {
9951 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9952 return -LIBBPF_ERRNO__FORMAT;
9953 }
9954
9955 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9956 if (!sym) {
9957 pr_warn("struct_ops reloc: symbol %zx not found\n",
9958 (size_t)ELF64_R_SYM(rel->r_info));
9959 return -LIBBPF_ERRNO__FORMAT;
9960 }
9961
9962 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9963 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9964 if (!map) {
9965 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9966 (size_t)rel->r_offset);
9967 return -EINVAL;
9968 }
9969
9970 moff = rel->r_offset - map->sec_offset;
9971 shdr_idx = sym->st_shndx;
9972 st_ops = map->st_ops;
9973 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9974 map->name,
9975 (long long)(rel->r_info >> 32),
9976 (long long)sym->st_value,
9977 shdr_idx, (size_t)rel->r_offset,
9978 map->sec_offset, sym->st_name, name);
9979
9980 if (shdr_idx >= SHN_LORESERVE) {
9981 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9982 map->name, (size_t)rel->r_offset, shdr_idx);
9983 return -LIBBPF_ERRNO__RELOC;
9984 }
9985 if (sym->st_value % BPF_INSN_SZ) {
9986 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9987 map->name, (unsigned long long)sym->st_value);
9988 return -LIBBPF_ERRNO__FORMAT;
9989 }
9990 insn_idx = sym->st_value / BPF_INSN_SZ;
9991
9992 type = btf__type_by_id(btf, st_ops->type_id);
9993 member = find_member_by_offset(type, moff * 8);
9994 if (!member) {
9995 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9996 map->name, moff);
9997 return -EINVAL;
9998 }
9999 member_idx = member - btf_members(type);
10000 name = btf__name_by_offset(btf, member->name_off);
10001
10002 if (!resolve_func_ptr(btf, member->type, NULL)) {
10003 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
10004 map->name, name);
10005 return -EINVAL;
10006 }
10007
10008 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
10009 if (!prog) {
10010 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
10011 map->name, shdr_idx, name);
10012 return -EINVAL;
10013 }
10014
10015 /* prevent the use of BPF prog with invalid type */
10016 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
10017 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
10018 map->name, prog->name);
10019 return -EINVAL;
10020 }
10021
10022 st_ops->progs[member_idx] = prog;
10023
10024 /* st_ops->data will be exposed to users, being returned by
10025 * bpf_map__initial_value() as a pointer to the shadow
10026 * type. All function pointers in the original struct type
10027 * should be converted to a pointer to struct bpf_program
10028 * in the shadow type.
10029 */
10030 *((struct bpf_program **)(st_ops->data + moff)) = prog;
10031 }
10032
10033 return 0;
10034 }
10035
10036 #define BTF_TRACE_PREFIX "btf_trace_"
10037 #define BTF_LSM_PREFIX "bpf_lsm_"
10038 #define BTF_ITER_PREFIX "bpf_iter_"
10039 #define BTF_MAX_NAME_SIZE 128
10040
btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,const char ** prefix,int * kind)10041 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
10042 const char **prefix, int *kind)
10043 {
10044 switch (attach_type) {
10045 case BPF_TRACE_RAW_TP:
10046 *prefix = BTF_TRACE_PREFIX;
10047 *kind = BTF_KIND_TYPEDEF;
10048 break;
10049 case BPF_LSM_MAC:
10050 case BPF_LSM_CGROUP:
10051 *prefix = BTF_LSM_PREFIX;
10052 *kind = BTF_KIND_FUNC;
10053 break;
10054 case BPF_TRACE_ITER:
10055 *prefix = BTF_ITER_PREFIX;
10056 *kind = BTF_KIND_FUNC;
10057 break;
10058 default:
10059 *prefix = "";
10060 *kind = BTF_KIND_FUNC;
10061 }
10062 }
10063
find_btf_by_prefix_kind(const struct btf * btf,const char * prefix,const char * name,__u32 kind)10064 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
10065 const char *name, __u32 kind)
10066 {
10067 char btf_type_name[BTF_MAX_NAME_SIZE];
10068 int ret;
10069
10070 ret = snprintf(btf_type_name, sizeof(btf_type_name),
10071 "%s%s", prefix, name);
10072 /* snprintf returns the number of characters written excluding the
10073 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
10074 * indicates truncation.
10075 */
10076 if (ret < 0 || ret >= sizeof(btf_type_name))
10077 return -ENAMETOOLONG;
10078 return btf__find_by_name_kind(btf, btf_type_name, kind);
10079 }
10080
find_attach_btf_id(struct btf * btf,const char * name,enum bpf_attach_type attach_type)10081 static inline int find_attach_btf_id(struct btf *btf, const char *name,
10082 enum bpf_attach_type attach_type)
10083 {
10084 const char *prefix;
10085 int kind;
10086
10087 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
10088 return find_btf_by_prefix_kind(btf, prefix, name, kind);
10089 }
10090
libbpf_find_vmlinux_btf_id(const char * name,enum bpf_attach_type attach_type)10091 int libbpf_find_vmlinux_btf_id(const char *name,
10092 enum bpf_attach_type attach_type)
10093 {
10094 struct btf *btf;
10095 int err;
10096
10097 btf = btf__load_vmlinux_btf();
10098 err = libbpf_get_error(btf);
10099 if (err) {
10100 pr_warn("vmlinux BTF is not found\n");
10101 return libbpf_err(err);
10102 }
10103
10104 err = find_attach_btf_id(btf, name, attach_type);
10105 if (err <= 0)
10106 pr_warn("%s is not found in vmlinux BTF\n", name);
10107
10108 btf__free(btf);
10109 return libbpf_err(err);
10110 }
10111
libbpf_find_prog_btf_id(const char * name,__u32 attach_prog_fd,int token_fd)10112 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd)
10113 {
10114 struct bpf_prog_info info;
10115 __u32 info_len = sizeof(info);
10116 struct btf *btf;
10117 int err;
10118
10119 memset(&info, 0, info_len);
10120 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
10121 if (err) {
10122 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n",
10123 attach_prog_fd, errstr(err));
10124 return err;
10125 }
10126
10127 err = -EINVAL;
10128 if (!info.btf_id) {
10129 pr_warn("The target program doesn't have BTF\n");
10130 goto out;
10131 }
10132 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd);
10133 err = libbpf_get_error(btf);
10134 if (err) {
10135 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err));
10136 goto out;
10137 }
10138 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
10139 btf__free(btf);
10140 if (err <= 0) {
10141 pr_warn("%s is not found in prog's BTF\n", name);
10142 goto out;
10143 }
10144 out:
10145 return err;
10146 }
10147
find_kernel_btf_id(struct bpf_object * obj,const char * attach_name,enum bpf_attach_type attach_type,int * btf_obj_fd,int * btf_type_id)10148 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
10149 enum bpf_attach_type attach_type,
10150 int *btf_obj_fd, int *btf_type_id)
10151 {
10152 int ret, i, mod_len = 0;
10153 const char *fn_name, *mod_name = NULL;
10154
10155 fn_name = strchr(attach_name, ':');
10156 if (fn_name) {
10157 mod_name = attach_name;
10158 mod_len = fn_name - mod_name;
10159 fn_name++;
10160 }
10161
10162 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) {
10163 ret = find_attach_btf_id(obj->btf_vmlinux,
10164 mod_name ? fn_name : attach_name,
10165 attach_type);
10166 if (ret > 0) {
10167 *btf_obj_fd = 0; /* vmlinux BTF */
10168 *btf_type_id = ret;
10169 return 0;
10170 }
10171 if (ret != -ENOENT)
10172 return ret;
10173 }
10174
10175 ret = load_module_btfs(obj);
10176 if (ret)
10177 return ret;
10178
10179 for (i = 0; i < obj->btf_module_cnt; i++) {
10180 const struct module_btf *mod = &obj->btf_modules[i];
10181
10182 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0)
10183 continue;
10184
10185 ret = find_attach_btf_id(mod->btf,
10186 mod_name ? fn_name : attach_name,
10187 attach_type);
10188 if (ret > 0) {
10189 *btf_obj_fd = mod->fd;
10190 *btf_type_id = ret;
10191 return 0;
10192 }
10193 if (ret == -ENOENT)
10194 continue;
10195
10196 return ret;
10197 }
10198
10199 return -ESRCH;
10200 }
10201
libbpf_find_attach_btf_id(struct bpf_program * prog,const char * attach_name,int * btf_obj_fd,int * btf_type_id)10202 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
10203 int *btf_obj_fd, int *btf_type_id)
10204 {
10205 enum bpf_attach_type attach_type = prog->expected_attach_type;
10206 __u32 attach_prog_fd = prog->attach_prog_fd;
10207 int err = 0;
10208
10209 /* BPF program's BTF ID */
10210 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
10211 if (!attach_prog_fd) {
10212 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
10213 return -EINVAL;
10214 }
10215 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd);
10216 if (err < 0) {
10217 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n",
10218 prog->name, attach_prog_fd, attach_name, errstr(err));
10219 return err;
10220 }
10221 *btf_obj_fd = 0;
10222 *btf_type_id = err;
10223 return 0;
10224 }
10225
10226 /* kernel/module BTF ID */
10227 if (prog->obj->gen_loader) {
10228 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
10229 *btf_obj_fd = 0;
10230 *btf_type_id = 1;
10231 } else {
10232 err = find_kernel_btf_id(prog->obj, attach_name,
10233 attach_type, btf_obj_fd,
10234 btf_type_id);
10235 }
10236 if (err) {
10237 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n",
10238 prog->name, attach_name, errstr(err));
10239 return err;
10240 }
10241 return 0;
10242 }
10243
libbpf_attach_type_by_name(const char * name,enum bpf_attach_type * attach_type)10244 int libbpf_attach_type_by_name(const char *name,
10245 enum bpf_attach_type *attach_type)
10246 {
10247 char *type_names;
10248 const struct bpf_sec_def *sec_def;
10249
10250 if (!name)
10251 return libbpf_err(-EINVAL);
10252
10253 sec_def = find_sec_def(name);
10254 if (!sec_def) {
10255 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
10256 type_names = libbpf_get_type_names(true);
10257 if (type_names != NULL) {
10258 pr_debug("attachable section(type) names are:%s\n", type_names);
10259 free(type_names);
10260 }
10261
10262 return libbpf_err(-EINVAL);
10263 }
10264
10265 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
10266 return libbpf_err(-EINVAL);
10267 if (!(sec_def->cookie & SEC_ATTACHABLE))
10268 return libbpf_err(-EINVAL);
10269
10270 *attach_type = sec_def->expected_attach_type;
10271 return 0;
10272 }
10273
bpf_map__fd(const struct bpf_map * map)10274 int bpf_map__fd(const struct bpf_map *map)
10275 {
10276 if (!map)
10277 return libbpf_err(-EINVAL);
10278 if (!map_is_created(map))
10279 return -1;
10280 return map->fd;
10281 }
10282
map_uses_real_name(const struct bpf_map * map)10283 static bool map_uses_real_name(const struct bpf_map *map)
10284 {
10285 /* Since libbpf started to support custom .data.* and .rodata.* maps,
10286 * their user-visible name differs from kernel-visible name. Users see
10287 * such map's corresponding ELF section name as a map name.
10288 * This check distinguishes .data/.rodata from .data.* and .rodata.*
10289 * maps to know which name has to be returned to the user.
10290 */
10291 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
10292 return true;
10293 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
10294 return true;
10295 return false;
10296 }
10297
bpf_map__name(const struct bpf_map * map)10298 const char *bpf_map__name(const struct bpf_map *map)
10299 {
10300 if (!map)
10301 return NULL;
10302
10303 if (map_uses_real_name(map))
10304 return map->real_name;
10305
10306 return map->name;
10307 }
10308
bpf_map__type(const struct bpf_map * map)10309 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
10310 {
10311 return map->def.type;
10312 }
10313
bpf_map__set_type(struct bpf_map * map,enum bpf_map_type type)10314 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
10315 {
10316 if (map_is_created(map))
10317 return libbpf_err(-EBUSY);
10318 map->def.type = type;
10319 return 0;
10320 }
10321
bpf_map__map_flags(const struct bpf_map * map)10322 __u32 bpf_map__map_flags(const struct bpf_map *map)
10323 {
10324 return map->def.map_flags;
10325 }
10326
bpf_map__set_map_flags(struct bpf_map * map,__u32 flags)10327 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
10328 {
10329 if (map_is_created(map))
10330 return libbpf_err(-EBUSY);
10331 map->def.map_flags = flags;
10332 return 0;
10333 }
10334
bpf_map__map_extra(const struct bpf_map * map)10335 __u64 bpf_map__map_extra(const struct bpf_map *map)
10336 {
10337 return map->map_extra;
10338 }
10339
bpf_map__set_map_extra(struct bpf_map * map,__u64 map_extra)10340 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
10341 {
10342 if (map_is_created(map))
10343 return libbpf_err(-EBUSY);
10344 map->map_extra = map_extra;
10345 return 0;
10346 }
10347
bpf_map__numa_node(const struct bpf_map * map)10348 __u32 bpf_map__numa_node(const struct bpf_map *map)
10349 {
10350 return map->numa_node;
10351 }
10352
bpf_map__set_numa_node(struct bpf_map * map,__u32 numa_node)10353 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10354 {
10355 if (map_is_created(map))
10356 return libbpf_err(-EBUSY);
10357 map->numa_node = numa_node;
10358 return 0;
10359 }
10360
bpf_map__key_size(const struct bpf_map * map)10361 __u32 bpf_map__key_size(const struct bpf_map *map)
10362 {
10363 return map->def.key_size;
10364 }
10365
bpf_map__set_key_size(struct bpf_map * map,__u32 size)10366 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10367 {
10368 if (map_is_created(map))
10369 return libbpf_err(-EBUSY);
10370 map->def.key_size = size;
10371 return 0;
10372 }
10373
bpf_map__value_size(const struct bpf_map * map)10374 __u32 bpf_map__value_size(const struct bpf_map *map)
10375 {
10376 return map->def.value_size;
10377 }
10378
map_btf_datasec_resize(struct bpf_map * map,__u32 size)10379 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10380 {
10381 struct btf *btf;
10382 struct btf_type *datasec_type, *var_type;
10383 struct btf_var_secinfo *var;
10384 const struct btf_type *array_type;
10385 const struct btf_array *array;
10386 int vlen, element_sz, new_array_id;
10387 __u32 nr_elements;
10388
10389 /* check btf existence */
10390 btf = bpf_object__btf(map->obj);
10391 if (!btf)
10392 return -ENOENT;
10393
10394 /* verify map is datasec */
10395 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10396 if (!btf_is_datasec(datasec_type)) {
10397 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10398 bpf_map__name(map));
10399 return -EINVAL;
10400 }
10401
10402 /* verify datasec has at least one var */
10403 vlen = btf_vlen(datasec_type);
10404 if (vlen == 0) {
10405 pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10406 bpf_map__name(map));
10407 return -EINVAL;
10408 }
10409
10410 /* verify last var in the datasec is an array */
10411 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10412 var_type = btf_type_by_id(btf, var->type);
10413 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10414 if (!btf_is_array(array_type)) {
10415 pr_warn("map '%s': cannot be resized, last var must be an array\n",
10416 bpf_map__name(map));
10417 return -EINVAL;
10418 }
10419
10420 /* verify request size aligns with array */
10421 array = btf_array(array_type);
10422 element_sz = btf__resolve_size(btf, array->type);
10423 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10424 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10425 bpf_map__name(map), element_sz, size);
10426 return -EINVAL;
10427 }
10428
10429 /* create a new array based on the existing array, but with new length */
10430 nr_elements = (size - var->offset) / element_sz;
10431 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10432 if (new_array_id < 0)
10433 return new_array_id;
10434
10435 /* adding a new btf type invalidates existing pointers to btf objects,
10436 * so refresh pointers before proceeding
10437 */
10438 datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10439 var = &btf_var_secinfos(datasec_type)[vlen - 1];
10440 var_type = btf_type_by_id(btf, var->type);
10441
10442 /* finally update btf info */
10443 datasec_type->size = size;
10444 var->size = size - var->offset;
10445 var_type->type = new_array_id;
10446
10447 return 0;
10448 }
10449
bpf_map__set_value_size(struct bpf_map * map,__u32 size)10450 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10451 {
10452 if (map_is_created(map))
10453 return libbpf_err(-EBUSY);
10454
10455 if (map->mmaped) {
10456 size_t mmap_old_sz, mmap_new_sz;
10457 int err;
10458
10459 if (map->def.type != BPF_MAP_TYPE_ARRAY)
10460 return libbpf_err(-EOPNOTSUPP);
10461
10462 mmap_old_sz = bpf_map_mmap_sz(map);
10463 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10464 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10465 if (err) {
10466 pr_warn("map '%s': failed to resize memory-mapped region: %s\n",
10467 bpf_map__name(map), errstr(err));
10468 return libbpf_err(err);
10469 }
10470 err = map_btf_datasec_resize(map, size);
10471 if (err && err != -ENOENT) {
10472 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n",
10473 bpf_map__name(map), errstr(err));
10474 map->btf_value_type_id = 0;
10475 map->btf_key_type_id = 0;
10476 }
10477 }
10478
10479 map->def.value_size = size;
10480 return 0;
10481 }
10482
bpf_map__btf_key_type_id(const struct bpf_map * map)10483 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10484 {
10485 return map ? map->btf_key_type_id : 0;
10486 }
10487
bpf_map__btf_value_type_id(const struct bpf_map * map)10488 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10489 {
10490 return map ? map->btf_value_type_id : 0;
10491 }
10492
bpf_map__set_initial_value(struct bpf_map * map,const void * data,size_t size)10493 int bpf_map__set_initial_value(struct bpf_map *map,
10494 const void *data, size_t size)
10495 {
10496 size_t actual_sz;
10497
10498 if (map_is_created(map))
10499 return libbpf_err(-EBUSY);
10500
10501 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10502 return libbpf_err(-EINVAL);
10503
10504 if (map->def.type == BPF_MAP_TYPE_ARENA)
10505 actual_sz = map->obj->arena_data_sz;
10506 else
10507 actual_sz = map->def.value_size;
10508 if (size != actual_sz)
10509 return libbpf_err(-EINVAL);
10510
10511 memcpy(map->mmaped, data, size);
10512 return 0;
10513 }
10514
bpf_map__initial_value(const struct bpf_map * map,size_t * psize)10515 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10516 {
10517 if (bpf_map__is_struct_ops(map)) {
10518 if (psize)
10519 *psize = map->def.value_size;
10520 return map->st_ops->data;
10521 }
10522
10523 if (!map->mmaped)
10524 return NULL;
10525
10526 if (map->def.type == BPF_MAP_TYPE_ARENA)
10527 *psize = map->obj->arena_data_sz;
10528 else
10529 *psize = map->def.value_size;
10530
10531 return map->mmaped;
10532 }
10533
bpf_map__is_internal(const struct bpf_map * map)10534 bool bpf_map__is_internal(const struct bpf_map *map)
10535 {
10536 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10537 }
10538
bpf_map__ifindex(const struct bpf_map * map)10539 __u32 bpf_map__ifindex(const struct bpf_map *map)
10540 {
10541 return map->map_ifindex;
10542 }
10543
bpf_map__set_ifindex(struct bpf_map * map,__u32 ifindex)10544 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10545 {
10546 if (map_is_created(map))
10547 return libbpf_err(-EBUSY);
10548 map->map_ifindex = ifindex;
10549 return 0;
10550 }
10551
bpf_map__set_inner_map_fd(struct bpf_map * map,int fd)10552 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10553 {
10554 if (!bpf_map_type__is_map_in_map(map->def.type)) {
10555 pr_warn("error: unsupported map type\n");
10556 return libbpf_err(-EINVAL);
10557 }
10558 if (map->inner_map_fd != -1) {
10559 pr_warn("error: inner_map_fd already specified\n");
10560 return libbpf_err(-EINVAL);
10561 }
10562 if (map->inner_map) {
10563 bpf_map__destroy(map->inner_map);
10564 zfree(&map->inner_map);
10565 }
10566 map->inner_map_fd = fd;
10567 return 0;
10568 }
10569
bpf_map__set_exclusive_program(struct bpf_map * map,struct bpf_program * prog)10570 int bpf_map__set_exclusive_program(struct bpf_map *map, struct bpf_program *prog)
10571 {
10572 if (map_is_created(map)) {
10573 pr_warn("exclusive programs must be set before map creation\n");
10574 return libbpf_err(-EINVAL);
10575 }
10576
10577 if (map->obj != prog->obj) {
10578 pr_warn("excl_prog and map must be from the same bpf object\n");
10579 return libbpf_err(-EINVAL);
10580 }
10581
10582 map->excl_prog = prog;
10583 return 0;
10584 }
10585
bpf_map__exclusive_program(struct bpf_map * map)10586 struct bpf_program *bpf_map__exclusive_program(struct bpf_map *map)
10587 {
10588 return map->excl_prog;
10589 }
10590
10591 static struct bpf_map *
__bpf_map__iter(const struct bpf_map * m,const struct bpf_object * obj,int i)10592 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10593 {
10594 ssize_t idx;
10595 struct bpf_map *s, *e;
10596
10597 if (!obj || !obj->maps)
10598 return errno = EINVAL, NULL;
10599
10600 s = obj->maps;
10601 e = obj->maps + obj->nr_maps;
10602
10603 if ((m < s) || (m >= e)) {
10604 pr_warn("error in %s: map handler doesn't belong to object\n",
10605 __func__);
10606 return errno = EINVAL, NULL;
10607 }
10608
10609 idx = (m - obj->maps) + i;
10610 if (idx >= obj->nr_maps || idx < 0)
10611 return NULL;
10612 return &obj->maps[idx];
10613 }
10614
10615 struct bpf_map *
bpf_object__next_map(const struct bpf_object * obj,const struct bpf_map * prev)10616 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10617 {
10618 if (prev == NULL && obj != NULL)
10619 return obj->maps;
10620
10621 return __bpf_map__iter(prev, obj, 1);
10622 }
10623
10624 struct bpf_map *
bpf_object__prev_map(const struct bpf_object * obj,const struct bpf_map * next)10625 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10626 {
10627 if (next == NULL && obj != NULL) {
10628 if (!obj->nr_maps)
10629 return NULL;
10630 return obj->maps + obj->nr_maps - 1;
10631 }
10632
10633 return __bpf_map__iter(next, obj, -1);
10634 }
10635
10636 struct bpf_map *
bpf_object__find_map_by_name(const struct bpf_object * obj,const char * name)10637 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10638 {
10639 struct bpf_map *pos;
10640
10641 bpf_object__for_each_map(pos, obj) {
10642 /* if it's a special internal map name (which always starts
10643 * with dot) then check if that special name matches the
10644 * real map name (ELF section name)
10645 */
10646 if (name[0] == '.') {
10647 if (pos->real_name && strcmp(pos->real_name, name) == 0)
10648 return pos;
10649 continue;
10650 }
10651 /* otherwise map name has to be an exact match */
10652 if (map_uses_real_name(pos)) {
10653 if (strcmp(pos->real_name, name) == 0)
10654 return pos;
10655 continue;
10656 }
10657 if (strcmp(pos->name, name) == 0)
10658 return pos;
10659 }
10660 return errno = ENOENT, NULL;
10661 }
10662
10663 int
bpf_object__find_map_fd_by_name(const struct bpf_object * obj,const char * name)10664 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10665 {
10666 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10667 }
10668
validate_map_op(const struct bpf_map * map,size_t key_sz,size_t value_sz,bool check_value_sz)10669 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10670 size_t value_sz, bool check_value_sz)
10671 {
10672 if (!map_is_created(map)) /* map is not yet created */
10673 return -ENOENT;
10674
10675 if (map->def.key_size != key_sz) {
10676 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10677 map->name, key_sz, map->def.key_size);
10678 return -EINVAL;
10679 }
10680
10681 if (map->fd < 0) {
10682 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
10683 return -EINVAL;
10684 }
10685
10686 if (!check_value_sz)
10687 return 0;
10688
10689 switch (map->def.type) {
10690 case BPF_MAP_TYPE_PERCPU_ARRAY:
10691 case BPF_MAP_TYPE_PERCPU_HASH:
10692 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10693 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10694 int num_cpu = libbpf_num_possible_cpus();
10695 size_t elem_sz = roundup(map->def.value_size, 8);
10696
10697 if (value_sz != num_cpu * elem_sz) {
10698 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10699 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10700 return -EINVAL;
10701 }
10702 break;
10703 }
10704 default:
10705 if (map->def.value_size != value_sz) {
10706 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10707 map->name, value_sz, map->def.value_size);
10708 return -EINVAL;
10709 }
10710 break;
10711 }
10712 return 0;
10713 }
10714
bpf_map__lookup_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10715 int bpf_map__lookup_elem(const struct bpf_map *map,
10716 const void *key, size_t key_sz,
10717 void *value, size_t value_sz, __u64 flags)
10718 {
10719 int err;
10720
10721 err = validate_map_op(map, key_sz, value_sz, true);
10722 if (err)
10723 return libbpf_err(err);
10724
10725 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10726 }
10727
bpf_map__update_elem(const struct bpf_map * map,const void * key,size_t key_sz,const void * value,size_t value_sz,__u64 flags)10728 int bpf_map__update_elem(const struct bpf_map *map,
10729 const void *key, size_t key_sz,
10730 const void *value, size_t value_sz, __u64 flags)
10731 {
10732 int err;
10733
10734 err = validate_map_op(map, key_sz, value_sz, true);
10735 if (err)
10736 return libbpf_err(err);
10737
10738 return bpf_map_update_elem(map->fd, key, value, flags);
10739 }
10740
bpf_map__delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,__u64 flags)10741 int bpf_map__delete_elem(const struct bpf_map *map,
10742 const void *key, size_t key_sz, __u64 flags)
10743 {
10744 int err;
10745
10746 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10747 if (err)
10748 return libbpf_err(err);
10749
10750 return bpf_map_delete_elem_flags(map->fd, key, flags);
10751 }
10752
bpf_map__lookup_and_delete_elem(const struct bpf_map * map,const void * key,size_t key_sz,void * value,size_t value_sz,__u64 flags)10753 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10754 const void *key, size_t key_sz,
10755 void *value, size_t value_sz, __u64 flags)
10756 {
10757 int err;
10758
10759 err = validate_map_op(map, key_sz, value_sz, true);
10760 if (err)
10761 return libbpf_err(err);
10762
10763 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10764 }
10765
bpf_map__get_next_key(const struct bpf_map * map,const void * cur_key,void * next_key,size_t key_sz)10766 int bpf_map__get_next_key(const struct bpf_map *map,
10767 const void *cur_key, void *next_key, size_t key_sz)
10768 {
10769 int err;
10770
10771 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10772 if (err)
10773 return libbpf_err(err);
10774
10775 return bpf_map_get_next_key(map->fd, cur_key, next_key);
10776 }
10777
libbpf_get_error(const void * ptr)10778 long libbpf_get_error(const void *ptr)
10779 {
10780 if (!IS_ERR_OR_NULL(ptr))
10781 return 0;
10782
10783 if (IS_ERR(ptr))
10784 errno = -PTR_ERR(ptr);
10785
10786 /* If ptr == NULL, then errno should be already set by the failing
10787 * API, because libbpf never returns NULL on success and it now always
10788 * sets errno on error. So no extra errno handling for ptr == NULL
10789 * case.
10790 */
10791 return -errno;
10792 }
10793
10794 /* Replace link's underlying BPF program with the new one */
bpf_link__update_program(struct bpf_link * link,struct bpf_program * prog)10795 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10796 {
10797 int ret;
10798 int prog_fd = bpf_program__fd(prog);
10799
10800 if (prog_fd < 0) {
10801 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n",
10802 prog->name);
10803 return libbpf_err(-EINVAL);
10804 }
10805
10806 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL);
10807 return libbpf_err_errno(ret);
10808 }
10809
10810 /* Release "ownership" of underlying BPF resource (typically, BPF program
10811 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10812 * link, when destructed through bpf_link__destroy() call won't attempt to
10813 * detach/unregisted that BPF resource. This is useful in situations where,
10814 * say, attached BPF program has to outlive userspace program that attached it
10815 * in the system. Depending on type of BPF program, though, there might be
10816 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10817 * exit of userspace program doesn't trigger automatic detachment and clean up
10818 * inside the kernel.
10819 */
bpf_link__disconnect(struct bpf_link * link)10820 void bpf_link__disconnect(struct bpf_link *link)
10821 {
10822 link->disconnected = true;
10823 }
10824
bpf_link__destroy(struct bpf_link * link)10825 int bpf_link__destroy(struct bpf_link *link)
10826 {
10827 int err = 0;
10828
10829 if (IS_ERR_OR_NULL(link))
10830 return 0;
10831
10832 if (!link->disconnected && link->detach)
10833 err = link->detach(link);
10834 if (link->pin_path)
10835 free(link->pin_path);
10836 if (link->dealloc)
10837 link->dealloc(link);
10838 else
10839 free(link);
10840
10841 return libbpf_err(err);
10842 }
10843
bpf_link__fd(const struct bpf_link * link)10844 int bpf_link__fd(const struct bpf_link *link)
10845 {
10846 return link->fd;
10847 }
10848
bpf_link__pin_path(const struct bpf_link * link)10849 const char *bpf_link__pin_path(const struct bpf_link *link)
10850 {
10851 return link->pin_path;
10852 }
10853
bpf_link__detach_fd(struct bpf_link * link)10854 static int bpf_link__detach_fd(struct bpf_link *link)
10855 {
10856 return libbpf_err_errno(close(link->fd));
10857 }
10858
bpf_link__open(const char * path)10859 struct bpf_link *bpf_link__open(const char *path)
10860 {
10861 struct bpf_link *link;
10862 int fd;
10863
10864 fd = bpf_obj_get(path);
10865 if (fd < 0) {
10866 fd = -errno;
10867 pr_warn("failed to open link at %s: %d\n", path, fd);
10868 return libbpf_err_ptr(fd);
10869 }
10870
10871 link = calloc(1, sizeof(*link));
10872 if (!link) {
10873 close(fd);
10874 return libbpf_err_ptr(-ENOMEM);
10875 }
10876 link->detach = &bpf_link__detach_fd;
10877 link->fd = fd;
10878
10879 link->pin_path = strdup(path);
10880 if (!link->pin_path) {
10881 bpf_link__destroy(link);
10882 return libbpf_err_ptr(-ENOMEM);
10883 }
10884
10885 return link;
10886 }
10887
bpf_link__detach(struct bpf_link * link)10888 int bpf_link__detach(struct bpf_link *link)
10889 {
10890 return bpf_link_detach(link->fd) ? -errno : 0;
10891 }
10892
bpf_link__pin(struct bpf_link * link,const char * path)10893 int bpf_link__pin(struct bpf_link *link, const char *path)
10894 {
10895 int err;
10896
10897 if (link->pin_path)
10898 return libbpf_err(-EBUSY);
10899 err = make_parent_dir(path);
10900 if (err)
10901 return libbpf_err(err);
10902 err = check_path(path);
10903 if (err)
10904 return libbpf_err(err);
10905
10906 link->pin_path = strdup(path);
10907 if (!link->pin_path)
10908 return libbpf_err(-ENOMEM);
10909
10910 if (bpf_obj_pin(link->fd, link->pin_path)) {
10911 err = -errno;
10912 zfree(&link->pin_path);
10913 return libbpf_err(err);
10914 }
10915
10916 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10917 return 0;
10918 }
10919
bpf_link__unpin(struct bpf_link * link)10920 int bpf_link__unpin(struct bpf_link *link)
10921 {
10922 int err;
10923
10924 if (!link->pin_path)
10925 return libbpf_err(-EINVAL);
10926
10927 err = unlink(link->pin_path);
10928 if (err != 0)
10929 return -errno;
10930
10931 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10932 zfree(&link->pin_path);
10933 return 0;
10934 }
10935
10936 struct bpf_link_perf {
10937 struct bpf_link link;
10938 int perf_event_fd;
10939 /* legacy kprobe support: keep track of probe identifier and type */
10940 char *legacy_probe_name;
10941 bool legacy_is_kprobe;
10942 bool legacy_is_retprobe;
10943 };
10944
10945 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10946 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10947
bpf_link_perf_detach(struct bpf_link * link)10948 static int bpf_link_perf_detach(struct bpf_link *link)
10949 {
10950 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10951 int err = 0;
10952
10953 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10954 err = -errno;
10955
10956 if (perf_link->perf_event_fd != link->fd)
10957 close(perf_link->perf_event_fd);
10958 close(link->fd);
10959
10960 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10961 if (perf_link->legacy_probe_name) {
10962 if (perf_link->legacy_is_kprobe) {
10963 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10964 perf_link->legacy_is_retprobe);
10965 } else {
10966 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10967 perf_link->legacy_is_retprobe);
10968 }
10969 }
10970
10971 return err;
10972 }
10973
bpf_link_perf_dealloc(struct bpf_link * link)10974 static void bpf_link_perf_dealloc(struct bpf_link *link)
10975 {
10976 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10977
10978 free(perf_link->legacy_probe_name);
10979 free(perf_link);
10980 }
10981
bpf_program__attach_perf_event_opts(const struct bpf_program * prog,int pfd,const struct bpf_perf_event_opts * opts)10982 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10983 const struct bpf_perf_event_opts *opts)
10984 {
10985 struct bpf_link_perf *link;
10986 int prog_fd, link_fd = -1, err;
10987 bool force_ioctl_attach;
10988
10989 if (!OPTS_VALID(opts, bpf_perf_event_opts))
10990 return libbpf_err_ptr(-EINVAL);
10991
10992 if (pfd < 0) {
10993 pr_warn("prog '%s': invalid perf event FD %d\n",
10994 prog->name, pfd);
10995 return libbpf_err_ptr(-EINVAL);
10996 }
10997 prog_fd = bpf_program__fd(prog);
10998 if (prog_fd < 0) {
10999 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11000 prog->name);
11001 return libbpf_err_ptr(-EINVAL);
11002 }
11003
11004 link = calloc(1, sizeof(*link));
11005 if (!link)
11006 return libbpf_err_ptr(-ENOMEM);
11007 link->link.detach = &bpf_link_perf_detach;
11008 link->link.dealloc = &bpf_link_perf_dealloc;
11009 link->perf_event_fd = pfd;
11010
11011 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
11012 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
11013 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
11014 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
11015
11016 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
11017 if (link_fd < 0) {
11018 err = -errno;
11019 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n",
11020 prog->name, pfd, errstr(err));
11021 goto err_out;
11022 }
11023 link->link.fd = link_fd;
11024 } else {
11025 if (OPTS_GET(opts, bpf_cookie, 0)) {
11026 pr_warn("prog '%s': user context value is not supported\n", prog->name);
11027 err = -EOPNOTSUPP;
11028 goto err_out;
11029 }
11030
11031 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
11032 err = -errno;
11033 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
11034 prog->name, pfd, errstr(err));
11035 if (err == -EPROTO)
11036 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
11037 prog->name, pfd);
11038 goto err_out;
11039 }
11040 link->link.fd = pfd;
11041 }
11042
11043 if (!OPTS_GET(opts, dont_enable, false)) {
11044 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11045 err = -errno;
11046 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
11047 prog->name, pfd, errstr(err));
11048 goto err_out;
11049 }
11050 }
11051
11052 return &link->link;
11053 err_out:
11054 if (link_fd >= 0)
11055 close(link_fd);
11056 free(link);
11057 return libbpf_err_ptr(err);
11058 }
11059
bpf_program__attach_perf_event(const struct bpf_program * prog,int pfd)11060 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
11061 {
11062 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
11063 }
11064
11065 /*
11066 * this function is expected to parse integer in the range of [0, 2^31-1] from
11067 * given file using scanf format string fmt. If actual parsed value is
11068 * negative, the result might be indistinguishable from error
11069 */
parse_uint_from_file(const char * file,const char * fmt)11070 static int parse_uint_from_file(const char *file, const char *fmt)
11071 {
11072 int err, ret;
11073 FILE *f;
11074
11075 f = fopen(file, "re");
11076 if (!f) {
11077 err = -errno;
11078 pr_debug("failed to open '%s': %s\n", file, errstr(err));
11079 return err;
11080 }
11081 err = fscanf(f, fmt, &ret);
11082 if (err != 1) {
11083 err = err == EOF ? -EIO : -errno;
11084 pr_debug("failed to parse '%s': %s\n", file, errstr(err));
11085 fclose(f);
11086 return err;
11087 }
11088 fclose(f);
11089 return ret;
11090 }
11091
determine_kprobe_perf_type(void)11092 static int determine_kprobe_perf_type(void)
11093 {
11094 const char *file = "/sys/bus/event_source/devices/kprobe/type";
11095
11096 return parse_uint_from_file(file, "%d\n");
11097 }
11098
determine_uprobe_perf_type(void)11099 static int determine_uprobe_perf_type(void)
11100 {
11101 const char *file = "/sys/bus/event_source/devices/uprobe/type";
11102
11103 return parse_uint_from_file(file, "%d\n");
11104 }
11105
determine_kprobe_retprobe_bit(void)11106 static int determine_kprobe_retprobe_bit(void)
11107 {
11108 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
11109
11110 return parse_uint_from_file(file, "config:%d\n");
11111 }
11112
determine_uprobe_retprobe_bit(void)11113 static int determine_uprobe_retprobe_bit(void)
11114 {
11115 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
11116
11117 return parse_uint_from_file(file, "config:%d\n");
11118 }
11119
11120 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
11121 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
11122
perf_event_open_probe(bool uprobe,bool retprobe,const char * name,uint64_t offset,int pid,size_t ref_ctr_off)11123 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
11124 uint64_t offset, int pid, size_t ref_ctr_off)
11125 {
11126 const size_t attr_sz = sizeof(struct perf_event_attr);
11127 struct perf_event_attr attr;
11128 int type, pfd;
11129
11130 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
11131 return -EINVAL;
11132
11133 memset(&attr, 0, attr_sz);
11134
11135 type = uprobe ? determine_uprobe_perf_type()
11136 : determine_kprobe_perf_type();
11137 if (type < 0) {
11138 pr_warn("failed to determine %s perf type: %s\n",
11139 uprobe ? "uprobe" : "kprobe",
11140 errstr(type));
11141 return type;
11142 }
11143 if (retprobe) {
11144 int bit = uprobe ? determine_uprobe_retprobe_bit()
11145 : determine_kprobe_retprobe_bit();
11146
11147 if (bit < 0) {
11148 pr_warn("failed to determine %s retprobe bit: %s\n",
11149 uprobe ? "uprobe" : "kprobe",
11150 errstr(bit));
11151 return bit;
11152 }
11153 attr.config |= 1 << bit;
11154 }
11155 attr.size = attr_sz;
11156 attr.type = type;
11157 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
11158 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
11159 attr.config2 = offset; /* kprobe_addr or probe_offset */
11160
11161 /* pid filter is meaningful only for uprobes */
11162 pfd = syscall(__NR_perf_event_open, &attr,
11163 pid < 0 ? -1 : pid /* pid */,
11164 pid == -1 ? 0 : -1 /* cpu */,
11165 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11166 return pfd >= 0 ? pfd : -errno;
11167 }
11168
append_to_file(const char * file,const char * fmt,...)11169 static int append_to_file(const char *file, const char *fmt, ...)
11170 {
11171 int fd, n, err = 0;
11172 va_list ap;
11173 char buf[1024];
11174
11175 va_start(ap, fmt);
11176 n = vsnprintf(buf, sizeof(buf), fmt, ap);
11177 va_end(ap);
11178
11179 if (n < 0 || n >= sizeof(buf))
11180 return -EINVAL;
11181
11182 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
11183 if (fd < 0)
11184 return -errno;
11185
11186 if (write(fd, buf, n) < 0)
11187 err = -errno;
11188
11189 close(fd);
11190 return err;
11191 }
11192
11193 #define DEBUGFS "/sys/kernel/debug/tracing"
11194 #define TRACEFS "/sys/kernel/tracing"
11195
use_debugfs(void)11196 static bool use_debugfs(void)
11197 {
11198 static int has_debugfs = -1;
11199
11200 if (has_debugfs < 0)
11201 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
11202
11203 return has_debugfs == 1;
11204 }
11205
tracefs_path(void)11206 static const char *tracefs_path(void)
11207 {
11208 return use_debugfs() ? DEBUGFS : TRACEFS;
11209 }
11210
tracefs_kprobe_events(void)11211 static const char *tracefs_kprobe_events(void)
11212 {
11213 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
11214 }
11215
tracefs_uprobe_events(void)11216 static const char *tracefs_uprobe_events(void)
11217 {
11218 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
11219 }
11220
tracefs_available_filter_functions(void)11221 static const char *tracefs_available_filter_functions(void)
11222 {
11223 return use_debugfs() ? DEBUGFS"/available_filter_functions"
11224 : TRACEFS"/available_filter_functions";
11225 }
11226
tracefs_available_filter_functions_addrs(void)11227 static const char *tracefs_available_filter_functions_addrs(void)
11228 {
11229 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
11230 : TRACEFS"/available_filter_functions_addrs";
11231 }
11232
gen_probe_legacy_event_name(char * buf,size_t buf_sz,const char * name,size_t offset)11233 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz,
11234 const char *name, size_t offset)
11235 {
11236 static int index = 0;
11237 int i;
11238
11239 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(),
11240 __sync_fetch_and_add(&index, 1), name, offset);
11241
11242 /* sanitize name in the probe name */
11243 for (i = 0; buf[i]; i++) {
11244 if (!isalnum(buf[i]))
11245 buf[i] = '_';
11246 }
11247 }
11248
add_kprobe_event_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset)11249 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
11250 const char *kfunc_name, size_t offset)
11251 {
11252 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
11253 retprobe ? 'r' : 'p',
11254 retprobe ? "kretprobes" : "kprobes",
11255 probe_name, kfunc_name, offset);
11256 }
11257
remove_kprobe_event_legacy(const char * probe_name,bool retprobe)11258 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
11259 {
11260 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
11261 retprobe ? "kretprobes" : "kprobes", probe_name);
11262 }
11263
determine_kprobe_perf_type_legacy(const char * probe_name,bool retprobe)11264 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11265 {
11266 char file[256];
11267
11268 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11269 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
11270
11271 return parse_uint_from_file(file, "%d\n");
11272 }
11273
perf_event_kprobe_open_legacy(const char * probe_name,bool retprobe,const char * kfunc_name,size_t offset,int pid)11274 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
11275 const char *kfunc_name, size_t offset, int pid)
11276 {
11277 const size_t attr_sz = sizeof(struct perf_event_attr);
11278 struct perf_event_attr attr;
11279 int type, pfd, err;
11280
11281 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
11282 if (err < 0) {
11283 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
11284 kfunc_name, offset,
11285 errstr(err));
11286 return err;
11287 }
11288 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
11289 if (type < 0) {
11290 err = type;
11291 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
11292 kfunc_name, offset,
11293 errstr(err));
11294 goto err_clean_legacy;
11295 }
11296
11297 memset(&attr, 0, attr_sz);
11298 attr.size = attr_sz;
11299 attr.config = type;
11300 attr.type = PERF_TYPE_TRACEPOINT;
11301
11302 pfd = syscall(__NR_perf_event_open, &attr,
11303 pid < 0 ? -1 : pid, /* pid */
11304 pid == -1 ? 0 : -1, /* cpu */
11305 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11306 if (pfd < 0) {
11307 err = -errno;
11308 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
11309 errstr(err));
11310 goto err_clean_legacy;
11311 }
11312 return pfd;
11313
11314 err_clean_legacy:
11315 /* Clear the newly added legacy kprobe_event */
11316 remove_kprobe_event_legacy(probe_name, retprobe);
11317 return err;
11318 }
11319
arch_specific_syscall_pfx(void)11320 static const char *arch_specific_syscall_pfx(void)
11321 {
11322 #if defined(__x86_64__)
11323 return "x64";
11324 #elif defined(__i386__)
11325 return "ia32";
11326 #elif defined(__s390x__)
11327 return "s390x";
11328 #elif defined(__s390__)
11329 return "s390";
11330 #elif defined(__arm__)
11331 return "arm";
11332 #elif defined(__aarch64__)
11333 return "arm64";
11334 #elif defined(__mips__)
11335 return "mips";
11336 #elif defined(__riscv)
11337 return "riscv";
11338 #elif defined(__powerpc__)
11339 return "powerpc";
11340 #elif defined(__powerpc64__)
11341 return "powerpc64";
11342 #else
11343 return NULL;
11344 #endif
11345 }
11346
probe_kern_syscall_wrapper(int token_fd)11347 int probe_kern_syscall_wrapper(int token_fd)
11348 {
11349 char syscall_name[64];
11350 const char *ksys_pfx;
11351
11352 ksys_pfx = arch_specific_syscall_pfx();
11353 if (!ksys_pfx)
11354 return 0;
11355
11356 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
11357
11358 if (determine_kprobe_perf_type() >= 0) {
11359 int pfd;
11360
11361 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
11362 if (pfd >= 0)
11363 close(pfd);
11364
11365 return pfd >= 0 ? 1 : 0;
11366 } else { /* legacy mode */
11367 char probe_name[MAX_EVENT_NAME_LEN];
11368
11369 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
11370 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
11371 return 0;
11372
11373 (void)remove_kprobe_event_legacy(probe_name, false);
11374 return 1;
11375 }
11376 }
11377
11378 struct bpf_link *
bpf_program__attach_kprobe_opts(const struct bpf_program * prog,const char * func_name,const struct bpf_kprobe_opts * opts)11379 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
11380 const char *func_name,
11381 const struct bpf_kprobe_opts *opts)
11382 {
11383 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11384 enum probe_attach_mode attach_mode;
11385 char *legacy_probe = NULL;
11386 struct bpf_link *link;
11387 size_t offset;
11388 bool retprobe, legacy;
11389 int pfd, err;
11390
11391 if (!OPTS_VALID(opts, bpf_kprobe_opts))
11392 return libbpf_err_ptr(-EINVAL);
11393
11394 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11395 retprobe = OPTS_GET(opts, retprobe, false);
11396 offset = OPTS_GET(opts, offset, 0);
11397 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11398
11399 legacy = determine_kprobe_perf_type() < 0;
11400 switch (attach_mode) {
11401 case PROBE_ATTACH_MODE_LEGACY:
11402 legacy = true;
11403 pe_opts.force_ioctl_attach = true;
11404 break;
11405 case PROBE_ATTACH_MODE_PERF:
11406 if (legacy)
11407 return libbpf_err_ptr(-ENOTSUP);
11408 pe_opts.force_ioctl_attach = true;
11409 break;
11410 case PROBE_ATTACH_MODE_LINK:
11411 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11412 return libbpf_err_ptr(-ENOTSUP);
11413 break;
11414 case PROBE_ATTACH_MODE_DEFAULT:
11415 break;
11416 default:
11417 return libbpf_err_ptr(-EINVAL);
11418 }
11419
11420 if (!legacy) {
11421 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11422 func_name, offset,
11423 -1 /* pid */, 0 /* ref_ctr_off */);
11424 } else {
11425 char probe_name[MAX_EVENT_NAME_LEN];
11426
11427 gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
11428 func_name, offset);
11429
11430 legacy_probe = strdup(probe_name);
11431 if (!legacy_probe)
11432 return libbpf_err_ptr(-ENOMEM);
11433
11434 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11435 offset, -1 /* pid */);
11436 }
11437 if (pfd < 0) {
11438 err = -errno;
11439 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11440 prog->name, retprobe ? "kretprobe" : "kprobe",
11441 func_name, offset,
11442 errstr(err));
11443 goto err_out;
11444 }
11445 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11446 err = libbpf_get_error(link);
11447 if (err) {
11448 close(pfd);
11449 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11450 prog->name, retprobe ? "kretprobe" : "kprobe",
11451 func_name, offset,
11452 errstr(err));
11453 goto err_clean_legacy;
11454 }
11455 if (legacy) {
11456 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11457
11458 perf_link->legacy_probe_name = legacy_probe;
11459 perf_link->legacy_is_kprobe = true;
11460 perf_link->legacy_is_retprobe = retprobe;
11461 }
11462
11463 return link;
11464
11465 err_clean_legacy:
11466 if (legacy)
11467 remove_kprobe_event_legacy(legacy_probe, retprobe);
11468 err_out:
11469 free(legacy_probe);
11470 return libbpf_err_ptr(err);
11471 }
11472
bpf_program__attach_kprobe(const struct bpf_program * prog,bool retprobe,const char * func_name)11473 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11474 bool retprobe,
11475 const char *func_name)
11476 {
11477 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11478 .retprobe = retprobe,
11479 );
11480
11481 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11482 }
11483
bpf_program__attach_ksyscall(const struct bpf_program * prog,const char * syscall_name,const struct bpf_ksyscall_opts * opts)11484 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11485 const char *syscall_name,
11486 const struct bpf_ksyscall_opts *opts)
11487 {
11488 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11489 char func_name[128];
11490
11491 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11492 return libbpf_err_ptr(-EINVAL);
11493
11494 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11495 /* arch_specific_syscall_pfx() should never return NULL here
11496 * because it is guarded by kernel_supports(). However, since
11497 * compiler does not know that we have an explicit conditional
11498 * as well.
11499 */
11500 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11501 arch_specific_syscall_pfx() ? : "", syscall_name);
11502 } else {
11503 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11504 }
11505
11506 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11507 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11508
11509 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11510 }
11511
11512 /* Adapted from perf/util/string.c */
glob_match(const char * str,const char * pat)11513 bool glob_match(const char *str, const char *pat)
11514 {
11515 while (*str && *pat && *pat != '*') {
11516 if (*pat == '?') { /* Matches any single character */
11517 str++;
11518 pat++;
11519 continue;
11520 }
11521 if (*str != *pat)
11522 return false;
11523 str++;
11524 pat++;
11525 }
11526 /* Check wild card */
11527 if (*pat == '*') {
11528 while (*pat == '*')
11529 pat++;
11530 if (!*pat) /* Tail wild card matches all */
11531 return true;
11532 while (*str)
11533 if (glob_match(str++, pat))
11534 return true;
11535 }
11536 return !*str && !*pat;
11537 }
11538
11539 struct kprobe_multi_resolve {
11540 const char *pattern;
11541 unsigned long *addrs;
11542 size_t cap;
11543 size_t cnt;
11544 };
11545
11546 struct avail_kallsyms_data {
11547 char **syms;
11548 size_t cnt;
11549 struct kprobe_multi_resolve *res;
11550 };
11551
avail_func_cmp(const void * a,const void * b)11552 static int avail_func_cmp(const void *a, const void *b)
11553 {
11554 return strcmp(*(const char **)a, *(const char **)b);
11555 }
11556
avail_kallsyms_cb(unsigned long long sym_addr,char sym_type,const char * sym_name,void * ctx)11557 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11558 const char *sym_name, void *ctx)
11559 {
11560 struct avail_kallsyms_data *data = ctx;
11561 struct kprobe_multi_resolve *res = data->res;
11562 int err;
11563
11564 if (!glob_match(sym_name, res->pattern))
11565 return 0;
11566
11567 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) {
11568 /* Some versions of kernel strip out .llvm.<hash> suffix from
11569 * function names reported in available_filter_functions, but
11570 * don't do so for kallsyms. While this is clearly a kernel
11571 * bug (fixed by [0]) we try to accommodate that in libbpf to
11572 * make multi-kprobe usability a bit better: if no match is
11573 * found, we will strip .llvm. suffix and try one more time.
11574 *
11575 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG")
11576 */
11577 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx;
11578
11579 if (!(sym_sfx = strstr(sym_name, ".llvm.")))
11580 return 0;
11581
11582 /* psym_trim vs sym_trim dance is done to avoid pointer vs array
11583 * coercion differences and get proper `const char **` pointer
11584 * which avail_func_cmp() expects
11585 */
11586 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name);
11587 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11588 return 0;
11589 }
11590
11591 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11592 if (err)
11593 return err;
11594
11595 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11596 return 0;
11597 }
11598
libbpf_available_kallsyms_parse(struct kprobe_multi_resolve * res)11599 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11600 {
11601 const char *available_functions_file = tracefs_available_filter_functions();
11602 struct avail_kallsyms_data data;
11603 char sym_name[500];
11604 FILE *f;
11605 int err = 0, ret, i;
11606 char **syms = NULL;
11607 size_t cap = 0, cnt = 0;
11608
11609 f = fopen(available_functions_file, "re");
11610 if (!f) {
11611 err = -errno;
11612 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err));
11613 return err;
11614 }
11615
11616 while (true) {
11617 char *name;
11618
11619 ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11620 if (ret == EOF && feof(f))
11621 break;
11622
11623 if (ret != 1) {
11624 pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11625 err = -EINVAL;
11626 goto cleanup;
11627 }
11628
11629 if (!glob_match(sym_name, res->pattern))
11630 continue;
11631
11632 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11633 if (err)
11634 goto cleanup;
11635
11636 name = strdup(sym_name);
11637 if (!name) {
11638 err = -errno;
11639 goto cleanup;
11640 }
11641
11642 syms[cnt++] = name;
11643 }
11644
11645 /* no entries found, bail out */
11646 if (cnt == 0) {
11647 err = -ENOENT;
11648 goto cleanup;
11649 }
11650
11651 /* sort available functions */
11652 qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11653
11654 data.syms = syms;
11655 data.res = res;
11656 data.cnt = cnt;
11657 libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11658
11659 if (res->cnt == 0)
11660 err = -ENOENT;
11661
11662 cleanup:
11663 for (i = 0; i < cnt; i++)
11664 free((char *)syms[i]);
11665 free(syms);
11666
11667 fclose(f);
11668 return err;
11669 }
11670
has_available_filter_functions_addrs(void)11671 static bool has_available_filter_functions_addrs(void)
11672 {
11673 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11674 }
11675
libbpf_available_kprobes_parse(struct kprobe_multi_resolve * res)11676 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11677 {
11678 const char *available_path = tracefs_available_filter_functions_addrs();
11679 char sym_name[500];
11680 FILE *f;
11681 int ret, err = 0;
11682 unsigned long long sym_addr;
11683
11684 f = fopen(available_path, "re");
11685 if (!f) {
11686 err = -errno;
11687 pr_warn("failed to open %s: %s\n", available_path, errstr(err));
11688 return err;
11689 }
11690
11691 while (true) {
11692 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11693 if (ret == EOF && feof(f))
11694 break;
11695
11696 if (ret != 2) {
11697 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11698 ret);
11699 err = -EINVAL;
11700 goto cleanup;
11701 }
11702
11703 if (!glob_match(sym_name, res->pattern))
11704 continue;
11705
11706 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11707 sizeof(*res->addrs), res->cnt + 1);
11708 if (err)
11709 goto cleanup;
11710
11711 res->addrs[res->cnt++] = (unsigned long)sym_addr;
11712 }
11713
11714 if (res->cnt == 0)
11715 err = -ENOENT;
11716
11717 cleanup:
11718 fclose(f);
11719 return err;
11720 }
11721
11722 struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program * prog,const char * pattern,const struct bpf_kprobe_multi_opts * opts)11723 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11724 const char *pattern,
11725 const struct bpf_kprobe_multi_opts *opts)
11726 {
11727 LIBBPF_OPTS(bpf_link_create_opts, lopts);
11728 struct kprobe_multi_resolve res = {
11729 .pattern = pattern,
11730 };
11731 enum bpf_attach_type attach_type;
11732 struct bpf_link *link = NULL;
11733 const unsigned long *addrs;
11734 int err, link_fd, prog_fd;
11735 bool retprobe, session, unique_match;
11736 const __u64 *cookies;
11737 const char **syms;
11738 size_t cnt;
11739
11740 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11741 return libbpf_err_ptr(-EINVAL);
11742
11743 prog_fd = bpf_program__fd(prog);
11744 if (prog_fd < 0) {
11745 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
11746 prog->name);
11747 return libbpf_err_ptr(-EINVAL);
11748 }
11749
11750 syms = OPTS_GET(opts, syms, false);
11751 addrs = OPTS_GET(opts, addrs, false);
11752 cnt = OPTS_GET(opts, cnt, false);
11753 cookies = OPTS_GET(opts, cookies, false);
11754 unique_match = OPTS_GET(opts, unique_match, false);
11755
11756 if (!pattern && !addrs && !syms)
11757 return libbpf_err_ptr(-EINVAL);
11758 if (pattern && (addrs || syms || cookies || cnt))
11759 return libbpf_err_ptr(-EINVAL);
11760 if (!pattern && !cnt)
11761 return libbpf_err_ptr(-EINVAL);
11762 if (!pattern && unique_match)
11763 return libbpf_err_ptr(-EINVAL);
11764 if (addrs && syms)
11765 return libbpf_err_ptr(-EINVAL);
11766
11767 if (pattern) {
11768 if (has_available_filter_functions_addrs())
11769 err = libbpf_available_kprobes_parse(&res);
11770 else
11771 err = libbpf_available_kallsyms_parse(&res);
11772 if (err)
11773 goto error;
11774
11775 if (unique_match && res.cnt != 1) {
11776 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n",
11777 prog->name, pattern, res.cnt);
11778 err = -EINVAL;
11779 goto error;
11780 }
11781
11782 addrs = res.addrs;
11783 cnt = res.cnt;
11784 }
11785
11786 retprobe = OPTS_GET(opts, retprobe, false);
11787 session = OPTS_GET(opts, session, false);
11788
11789 if (retprobe && session)
11790 return libbpf_err_ptr(-EINVAL);
11791
11792 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI;
11793
11794 lopts.kprobe_multi.syms = syms;
11795 lopts.kprobe_multi.addrs = addrs;
11796 lopts.kprobe_multi.cookies = cookies;
11797 lopts.kprobe_multi.cnt = cnt;
11798 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11799
11800 link = calloc(1, sizeof(*link));
11801 if (!link) {
11802 err = -ENOMEM;
11803 goto error;
11804 }
11805 link->detach = &bpf_link__detach_fd;
11806
11807 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
11808 if (link_fd < 0) {
11809 err = -errno;
11810 pr_warn("prog '%s': failed to attach: %s\n",
11811 prog->name, errstr(err));
11812 goto error;
11813 }
11814 link->fd = link_fd;
11815 free(res.addrs);
11816 return link;
11817
11818 error:
11819 free(link);
11820 free(res.addrs);
11821 return libbpf_err_ptr(err);
11822 }
11823
attach_kprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11824 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11825 {
11826 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11827 unsigned long offset = 0;
11828 const char *func_name;
11829 char *func;
11830 int n;
11831
11832 *link = NULL;
11833
11834 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11835 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11836 return 0;
11837
11838 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11839 if (opts.retprobe)
11840 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11841 else
11842 func_name = prog->sec_name + sizeof("kprobe/") - 1;
11843
11844 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11845 if (n < 1) {
11846 pr_warn("kprobe name is invalid: %s\n", func_name);
11847 return -EINVAL;
11848 }
11849 if (opts.retprobe && offset != 0) {
11850 free(func);
11851 pr_warn("kretprobes do not support offset specification\n");
11852 return -EINVAL;
11853 }
11854
11855 opts.offset = offset;
11856 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11857 free(func);
11858 return libbpf_get_error(*link);
11859 }
11860
attach_ksyscall(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11861 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11862 {
11863 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11864 const char *syscall_name;
11865
11866 *link = NULL;
11867
11868 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11869 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11870 return 0;
11871
11872 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11873 if (opts.retprobe)
11874 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11875 else
11876 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11877
11878 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11879 return *link ? 0 : -errno;
11880 }
11881
attach_kprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11882 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11883 {
11884 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11885 const char *spec;
11886 char *pattern;
11887 int n;
11888
11889 *link = NULL;
11890
11891 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11892 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11893 strcmp(prog->sec_name, "kretprobe.multi") == 0)
11894 return 0;
11895
11896 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11897 if (opts.retprobe)
11898 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11899 else
11900 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11901
11902 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11903 if (n < 1) {
11904 pr_warn("kprobe multi pattern is invalid: %s\n", spec);
11905 return -EINVAL;
11906 }
11907
11908 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11909 free(pattern);
11910 return libbpf_get_error(*link);
11911 }
11912
attach_kprobe_session(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11913 static int attach_kprobe_session(const struct bpf_program *prog, long cookie,
11914 struct bpf_link **link)
11915 {
11916 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true);
11917 const char *spec;
11918 char *pattern;
11919 int n;
11920
11921 *link = NULL;
11922
11923 /* no auto-attach for SEC("kprobe.session") */
11924 if (strcmp(prog->sec_name, "kprobe.session") == 0)
11925 return 0;
11926
11927 spec = prog->sec_name + sizeof("kprobe.session/") - 1;
11928 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11929 if (n < 1) {
11930 pr_warn("kprobe session pattern is invalid: %s\n", spec);
11931 return -EINVAL;
11932 }
11933
11934 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11935 free(pattern);
11936 return *link ? 0 : -errno;
11937 }
11938
attach_uprobe_multi(const struct bpf_program * prog,long cookie,struct bpf_link ** link)11939 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11940 {
11941 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11942 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11943 int n, ret = -EINVAL;
11944
11945 *link = NULL;
11946
11947 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11948 &probe_type, &binary_path, &func_name);
11949 switch (n) {
11950 case 1:
11951 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11952 ret = 0;
11953 break;
11954 case 3:
11955 opts.session = str_has_pfx(probe_type, "uprobe.session");
11956 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi");
11957
11958 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11959 ret = libbpf_get_error(*link);
11960 break;
11961 default:
11962 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11963 prog->sec_name);
11964 break;
11965 }
11966 free(probe_type);
11967 free(binary_path);
11968 free(func_name);
11969 return ret;
11970 }
11971
add_uprobe_event_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset)11972 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11973 const char *binary_path, size_t offset)
11974 {
11975 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11976 retprobe ? 'r' : 'p',
11977 retprobe ? "uretprobes" : "uprobes",
11978 probe_name, binary_path, offset);
11979 }
11980
remove_uprobe_event_legacy(const char * probe_name,bool retprobe)11981 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11982 {
11983 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11984 retprobe ? "uretprobes" : "uprobes", probe_name);
11985 }
11986
determine_uprobe_perf_type_legacy(const char * probe_name,bool retprobe)11987 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11988 {
11989 char file[512];
11990
11991 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11992 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11993
11994 return parse_uint_from_file(file, "%d\n");
11995 }
11996
perf_event_uprobe_open_legacy(const char * probe_name,bool retprobe,const char * binary_path,size_t offset,int pid)11997 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11998 const char *binary_path, size_t offset, int pid)
11999 {
12000 const size_t attr_sz = sizeof(struct perf_event_attr);
12001 struct perf_event_attr attr;
12002 int type, pfd, err;
12003
12004 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
12005 if (err < 0) {
12006 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n",
12007 binary_path, (size_t)offset, errstr(err));
12008 return err;
12009 }
12010 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
12011 if (type < 0) {
12012 err = type;
12013 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n",
12014 binary_path, offset, errstr(err));
12015 goto err_clean_legacy;
12016 }
12017
12018 memset(&attr, 0, attr_sz);
12019 attr.size = attr_sz;
12020 attr.config = type;
12021 attr.type = PERF_TYPE_TRACEPOINT;
12022
12023 pfd = syscall(__NR_perf_event_open, &attr,
12024 pid < 0 ? -1 : pid, /* pid */
12025 pid == -1 ? 0 : -1, /* cpu */
12026 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12027 if (pfd < 0) {
12028 err = -errno;
12029 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err));
12030 goto err_clean_legacy;
12031 }
12032 return pfd;
12033
12034 err_clean_legacy:
12035 /* Clear the newly added legacy uprobe_event */
12036 remove_uprobe_event_legacy(probe_name, retprobe);
12037 return err;
12038 }
12039
12040 /* Find offset of function name in archive specified by path. Currently
12041 * supported are .zip files that do not compress their contents, as used on
12042 * Android in the form of APKs, for example. "file_name" is the name of the ELF
12043 * file inside the archive. "func_name" matches symbol name or name@@LIB for
12044 * library functions.
12045 *
12046 * An overview of the APK format specifically provided here:
12047 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
12048 */
elf_find_func_offset_from_archive(const char * archive_path,const char * file_name,const char * func_name)12049 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
12050 const char *func_name)
12051 {
12052 struct zip_archive *archive;
12053 struct zip_entry entry;
12054 long ret;
12055 Elf *elf;
12056
12057 archive = zip_archive_open(archive_path);
12058 if (IS_ERR(archive)) {
12059 ret = PTR_ERR(archive);
12060 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
12061 return ret;
12062 }
12063
12064 ret = zip_archive_find_entry(archive, file_name, &entry);
12065 if (ret) {
12066 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
12067 archive_path, ret);
12068 goto out;
12069 }
12070 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
12071 (unsigned long)entry.data_offset);
12072
12073 if (entry.compression) {
12074 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
12075 archive_path);
12076 ret = -LIBBPF_ERRNO__FORMAT;
12077 goto out;
12078 }
12079
12080 elf = elf_memory((void *)entry.data, entry.data_length);
12081 if (!elf) {
12082 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
12083 elf_errmsg(-1));
12084 ret = -LIBBPF_ERRNO__LIBELF;
12085 goto out;
12086 }
12087
12088 ret = elf_find_func_offset(elf, file_name, func_name);
12089 if (ret > 0) {
12090 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
12091 func_name, file_name, archive_path, entry.data_offset, ret,
12092 ret + entry.data_offset);
12093 ret += entry.data_offset;
12094 }
12095 elf_end(elf);
12096
12097 out:
12098 zip_archive_close(archive);
12099 return ret;
12100 }
12101
arch_specific_lib_paths(void)12102 static const char *arch_specific_lib_paths(void)
12103 {
12104 /*
12105 * Based on https://packages.debian.org/sid/libc6.
12106 *
12107 * Assume that the traced program is built for the same architecture
12108 * as libbpf, which should cover the vast majority of cases.
12109 */
12110 #if defined(__x86_64__)
12111 return "/lib/x86_64-linux-gnu";
12112 #elif defined(__i386__)
12113 return "/lib/i386-linux-gnu";
12114 #elif defined(__s390x__)
12115 return "/lib/s390x-linux-gnu";
12116 #elif defined(__s390__)
12117 return "/lib/s390-linux-gnu";
12118 #elif defined(__arm__) && defined(__SOFTFP__)
12119 return "/lib/arm-linux-gnueabi";
12120 #elif defined(__arm__) && !defined(__SOFTFP__)
12121 return "/lib/arm-linux-gnueabihf";
12122 #elif defined(__aarch64__)
12123 return "/lib/aarch64-linux-gnu";
12124 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
12125 return "/lib/mips64el-linux-gnuabi64";
12126 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
12127 return "/lib/mipsel-linux-gnu";
12128 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
12129 return "/lib/powerpc64le-linux-gnu";
12130 #elif defined(__sparc__) && defined(__arch64__)
12131 return "/lib/sparc64-linux-gnu";
12132 #elif defined(__riscv) && __riscv_xlen == 64
12133 return "/lib/riscv64-linux-gnu";
12134 #else
12135 return NULL;
12136 #endif
12137 }
12138
12139 /* Get full path to program/shared library. */
resolve_full_path(const char * file,char * result,size_t result_sz)12140 static int resolve_full_path(const char *file, char *result, size_t result_sz)
12141 {
12142 const char *search_paths[3] = {};
12143 int i, perm;
12144
12145 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
12146 search_paths[0] = getenv("LD_LIBRARY_PATH");
12147 search_paths[1] = "/usr/lib64:/usr/lib";
12148 search_paths[2] = arch_specific_lib_paths();
12149 perm = R_OK;
12150 } else {
12151 search_paths[0] = getenv("PATH");
12152 search_paths[1] = "/usr/bin:/usr/sbin";
12153 perm = R_OK | X_OK;
12154 }
12155
12156 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
12157 const char *s;
12158
12159 if (!search_paths[i])
12160 continue;
12161 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
12162 char *next_path;
12163 int seg_len;
12164
12165 if (s[0] == ':')
12166 s++;
12167 next_path = strchr(s, ':');
12168 seg_len = next_path ? next_path - s : strlen(s);
12169 if (!seg_len)
12170 continue;
12171 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
12172 /* ensure it has required permissions */
12173 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
12174 continue;
12175 pr_debug("resolved '%s' to '%s'\n", file, result);
12176 return 0;
12177 }
12178 }
12179 return -ENOENT;
12180 }
12181
12182 struct bpf_link *
bpf_program__attach_uprobe_multi(const struct bpf_program * prog,pid_t pid,const char * path,const char * func_pattern,const struct bpf_uprobe_multi_opts * opts)12183 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
12184 pid_t pid,
12185 const char *path,
12186 const char *func_pattern,
12187 const struct bpf_uprobe_multi_opts *opts)
12188 {
12189 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
12190 LIBBPF_OPTS(bpf_link_create_opts, lopts);
12191 unsigned long *resolved_offsets = NULL;
12192 enum bpf_attach_type attach_type;
12193 int err = 0, link_fd, prog_fd;
12194 struct bpf_link *link = NULL;
12195 char full_path[PATH_MAX];
12196 bool retprobe, session;
12197 const __u64 *cookies;
12198 const char **syms;
12199 size_t cnt;
12200
12201 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
12202 return libbpf_err_ptr(-EINVAL);
12203
12204 prog_fd = bpf_program__fd(prog);
12205 if (prog_fd < 0) {
12206 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12207 prog->name);
12208 return libbpf_err_ptr(-EINVAL);
12209 }
12210
12211 syms = OPTS_GET(opts, syms, NULL);
12212 offsets = OPTS_GET(opts, offsets, NULL);
12213 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
12214 cookies = OPTS_GET(opts, cookies, NULL);
12215 cnt = OPTS_GET(opts, cnt, 0);
12216 retprobe = OPTS_GET(opts, retprobe, false);
12217 session = OPTS_GET(opts, session, false);
12218
12219 /*
12220 * User can specify 2 mutually exclusive set of inputs:
12221 *
12222 * 1) use only path/func_pattern/pid arguments
12223 *
12224 * 2) use path/pid with allowed combinations of:
12225 * syms/offsets/ref_ctr_offsets/cookies/cnt
12226 *
12227 * - syms and offsets are mutually exclusive
12228 * - ref_ctr_offsets and cookies are optional
12229 *
12230 * Any other usage results in error.
12231 */
12232
12233 if (!path)
12234 return libbpf_err_ptr(-EINVAL);
12235 if (!func_pattern && cnt == 0)
12236 return libbpf_err_ptr(-EINVAL);
12237
12238 if (func_pattern) {
12239 if (syms || offsets || ref_ctr_offsets || cookies || cnt)
12240 return libbpf_err_ptr(-EINVAL);
12241 } else {
12242 if (!!syms == !!offsets)
12243 return libbpf_err_ptr(-EINVAL);
12244 }
12245
12246 if (retprobe && session)
12247 return libbpf_err_ptr(-EINVAL);
12248
12249 if (func_pattern) {
12250 if (!strchr(path, '/')) {
12251 err = resolve_full_path(path, full_path, sizeof(full_path));
12252 if (err) {
12253 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12254 prog->name, path, errstr(err));
12255 return libbpf_err_ptr(err);
12256 }
12257 path = full_path;
12258 }
12259
12260 err = elf_resolve_pattern_offsets(path, func_pattern,
12261 &resolved_offsets, &cnt);
12262 if (err < 0)
12263 return libbpf_err_ptr(err);
12264 offsets = resolved_offsets;
12265 } else if (syms) {
12266 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
12267 if (err < 0)
12268 return libbpf_err_ptr(err);
12269 offsets = resolved_offsets;
12270 }
12271
12272 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI;
12273
12274 lopts.uprobe_multi.path = path;
12275 lopts.uprobe_multi.offsets = offsets;
12276 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
12277 lopts.uprobe_multi.cookies = cookies;
12278 lopts.uprobe_multi.cnt = cnt;
12279 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0;
12280
12281 if (pid == 0)
12282 pid = getpid();
12283 if (pid > 0)
12284 lopts.uprobe_multi.pid = pid;
12285
12286 link = calloc(1, sizeof(*link));
12287 if (!link) {
12288 err = -ENOMEM;
12289 goto error;
12290 }
12291 link->detach = &bpf_link__detach_fd;
12292
12293 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts);
12294 if (link_fd < 0) {
12295 err = -errno;
12296 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
12297 prog->name, errstr(err));
12298 goto error;
12299 }
12300 link->fd = link_fd;
12301 free(resolved_offsets);
12302 return link;
12303
12304 error:
12305 free(resolved_offsets);
12306 free(link);
12307 return libbpf_err_ptr(err);
12308 }
12309
12310 LIBBPF_API struct bpf_link *
bpf_program__attach_uprobe_opts(const struct bpf_program * prog,pid_t pid,const char * binary_path,size_t func_offset,const struct bpf_uprobe_opts * opts)12311 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
12312 const char *binary_path, size_t func_offset,
12313 const struct bpf_uprobe_opts *opts)
12314 {
12315 const char *archive_path = NULL, *archive_sep = NULL;
12316 char *legacy_probe = NULL;
12317 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12318 enum probe_attach_mode attach_mode;
12319 char full_path[PATH_MAX];
12320 struct bpf_link *link;
12321 size_t ref_ctr_off;
12322 int pfd, err;
12323 bool retprobe, legacy;
12324 const char *func_name;
12325
12326 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12327 return libbpf_err_ptr(-EINVAL);
12328
12329 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
12330 retprobe = OPTS_GET(opts, retprobe, false);
12331 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
12332 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12333
12334 if (!binary_path)
12335 return libbpf_err_ptr(-EINVAL);
12336
12337 /* Check if "binary_path" refers to an archive. */
12338 archive_sep = strstr(binary_path, "!/");
12339 if (archive_sep) {
12340 full_path[0] = '\0';
12341 libbpf_strlcpy(full_path, binary_path,
12342 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
12343 archive_path = full_path;
12344 binary_path = archive_sep + 2;
12345 } else if (!strchr(binary_path, '/')) {
12346 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
12347 if (err) {
12348 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12349 prog->name, binary_path, errstr(err));
12350 return libbpf_err_ptr(err);
12351 }
12352 binary_path = full_path;
12353 }
12354 func_name = OPTS_GET(opts, func_name, NULL);
12355 if (func_name) {
12356 long sym_off;
12357
12358 if (archive_path) {
12359 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
12360 func_name);
12361 binary_path = archive_path;
12362 } else {
12363 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
12364 }
12365 if (sym_off < 0)
12366 return libbpf_err_ptr(sym_off);
12367 func_offset += sym_off;
12368 }
12369
12370 legacy = determine_uprobe_perf_type() < 0;
12371 switch (attach_mode) {
12372 case PROBE_ATTACH_MODE_LEGACY:
12373 legacy = true;
12374 pe_opts.force_ioctl_attach = true;
12375 break;
12376 case PROBE_ATTACH_MODE_PERF:
12377 if (legacy)
12378 return libbpf_err_ptr(-ENOTSUP);
12379 pe_opts.force_ioctl_attach = true;
12380 break;
12381 case PROBE_ATTACH_MODE_LINK:
12382 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
12383 return libbpf_err_ptr(-ENOTSUP);
12384 break;
12385 case PROBE_ATTACH_MODE_DEFAULT:
12386 break;
12387 default:
12388 return libbpf_err_ptr(-EINVAL);
12389 }
12390
12391 if (!legacy) {
12392 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
12393 func_offset, pid, ref_ctr_off);
12394 } else {
12395 char probe_name[MAX_EVENT_NAME_LEN];
12396
12397 if (ref_ctr_off)
12398 return libbpf_err_ptr(-EINVAL);
12399
12400 gen_probe_legacy_event_name(probe_name, sizeof(probe_name),
12401 strrchr(binary_path, '/') ? : binary_path,
12402 func_offset);
12403
12404 legacy_probe = strdup(probe_name);
12405 if (!legacy_probe)
12406 return libbpf_err_ptr(-ENOMEM);
12407
12408 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
12409 binary_path, func_offset, pid);
12410 }
12411 if (pfd < 0) {
12412 err = -errno;
12413 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
12414 prog->name, retprobe ? "uretprobe" : "uprobe",
12415 binary_path, func_offset,
12416 errstr(err));
12417 goto err_out;
12418 }
12419
12420 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12421 err = libbpf_get_error(link);
12422 if (err) {
12423 close(pfd);
12424 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
12425 prog->name, retprobe ? "uretprobe" : "uprobe",
12426 binary_path, func_offset,
12427 errstr(err));
12428 goto err_clean_legacy;
12429 }
12430 if (legacy) {
12431 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
12432
12433 perf_link->legacy_probe_name = legacy_probe;
12434 perf_link->legacy_is_kprobe = false;
12435 perf_link->legacy_is_retprobe = retprobe;
12436 }
12437 return link;
12438
12439 err_clean_legacy:
12440 if (legacy)
12441 remove_uprobe_event_legacy(legacy_probe, retprobe);
12442 err_out:
12443 free(legacy_probe);
12444 return libbpf_err_ptr(err);
12445 }
12446
12447 /* Format of u[ret]probe section definition supporting auto-attach:
12448 * u[ret]probe/binary:function[+offset]
12449 *
12450 * binary can be an absolute/relative path or a filename; the latter is resolved to a
12451 * full binary path via bpf_program__attach_uprobe_opts.
12452 *
12453 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
12454 * specified (and auto-attach is not possible) or the above format is specified for
12455 * auto-attach.
12456 */
attach_uprobe(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12457 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12458 {
12459 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12460 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12461 int n, c, ret = -EINVAL;
12462 long offset = 0;
12463
12464 *link = NULL;
12465
12466 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12467 &probe_type, &binary_path, &func_name);
12468 switch (n) {
12469 case 1:
12470 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12471 ret = 0;
12472 break;
12473 case 2:
12474 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12475 prog->name, prog->sec_name);
12476 break;
12477 case 3:
12478 /* check if user specifies `+offset`, if yes, this should be
12479 * the last part of the string, make sure sscanf read to EOL
12480 */
12481 func_off = strrchr(func_name, '+');
12482 if (func_off) {
12483 n = sscanf(func_off, "+%li%n", &offset, &c);
12484 if (n == 1 && *(func_off + c) == '\0')
12485 func_off[0] = '\0';
12486 else
12487 offset = 0;
12488 }
12489 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12490 strcmp(probe_type, "uretprobe.s") == 0;
12491 if (opts.retprobe && offset != 0) {
12492 pr_warn("prog '%s': uretprobes do not support offset specification\n",
12493 prog->name);
12494 break;
12495 }
12496 opts.func_name = func_name;
12497 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12498 ret = libbpf_get_error(*link);
12499 break;
12500 default:
12501 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12502 prog->sec_name);
12503 break;
12504 }
12505 free(probe_type);
12506 free(binary_path);
12507 free(func_name);
12508
12509 return ret;
12510 }
12511
bpf_program__attach_uprobe(const struct bpf_program * prog,bool retprobe,pid_t pid,const char * binary_path,size_t func_offset)12512 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12513 bool retprobe, pid_t pid,
12514 const char *binary_path,
12515 size_t func_offset)
12516 {
12517 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12518
12519 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12520 }
12521
bpf_program__attach_usdt(const struct bpf_program * prog,pid_t pid,const char * binary_path,const char * usdt_provider,const char * usdt_name,const struct bpf_usdt_opts * opts)12522 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12523 pid_t pid, const char *binary_path,
12524 const char *usdt_provider, const char *usdt_name,
12525 const struct bpf_usdt_opts *opts)
12526 {
12527 char resolved_path[512];
12528 struct bpf_object *obj = prog->obj;
12529 struct bpf_link *link;
12530 __u64 usdt_cookie;
12531 int err;
12532
12533 if (!OPTS_VALID(opts, bpf_uprobe_opts))
12534 return libbpf_err_ptr(-EINVAL);
12535
12536 if (bpf_program__fd(prog) < 0) {
12537 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
12538 prog->name);
12539 return libbpf_err_ptr(-EINVAL);
12540 }
12541
12542 if (!binary_path)
12543 return libbpf_err_ptr(-EINVAL);
12544
12545 if (!strchr(binary_path, '/')) {
12546 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12547 if (err) {
12548 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n",
12549 prog->name, binary_path, errstr(err));
12550 return libbpf_err_ptr(err);
12551 }
12552 binary_path = resolved_path;
12553 }
12554
12555 /* USDT manager is instantiated lazily on first USDT attach. It will
12556 * be destroyed together with BPF object in bpf_object__close().
12557 */
12558 if (IS_ERR(obj->usdt_man))
12559 return libbpf_ptr(obj->usdt_man);
12560 if (!obj->usdt_man) {
12561 obj->usdt_man = usdt_manager_new(obj);
12562 if (IS_ERR(obj->usdt_man))
12563 return libbpf_ptr(obj->usdt_man);
12564 }
12565
12566 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12567 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12568 usdt_provider, usdt_name, usdt_cookie);
12569 err = libbpf_get_error(link);
12570 if (err)
12571 return libbpf_err_ptr(err);
12572 return link;
12573 }
12574
attach_usdt(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12575 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12576 {
12577 char *path = NULL, *provider = NULL, *name = NULL;
12578 const char *sec_name;
12579 int n, err;
12580
12581 sec_name = bpf_program__section_name(prog);
12582 if (strcmp(sec_name, "usdt") == 0) {
12583 /* no auto-attach for just SEC("usdt") */
12584 *link = NULL;
12585 return 0;
12586 }
12587
12588 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12589 if (n != 3) {
12590 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12591 sec_name);
12592 err = -EINVAL;
12593 } else {
12594 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12595 provider, name, NULL);
12596 err = libbpf_get_error(*link);
12597 }
12598 free(path);
12599 free(provider);
12600 free(name);
12601 return err;
12602 }
12603
determine_tracepoint_id(const char * tp_category,const char * tp_name)12604 static int determine_tracepoint_id(const char *tp_category,
12605 const char *tp_name)
12606 {
12607 char file[PATH_MAX];
12608 int ret;
12609
12610 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12611 tracefs_path(), tp_category, tp_name);
12612 if (ret < 0)
12613 return -errno;
12614 if (ret >= sizeof(file)) {
12615 pr_debug("tracepoint %s/%s path is too long\n",
12616 tp_category, tp_name);
12617 return -E2BIG;
12618 }
12619 return parse_uint_from_file(file, "%d\n");
12620 }
12621
perf_event_open_tracepoint(const char * tp_category,const char * tp_name)12622 static int perf_event_open_tracepoint(const char *tp_category,
12623 const char *tp_name)
12624 {
12625 const size_t attr_sz = sizeof(struct perf_event_attr);
12626 struct perf_event_attr attr;
12627 int tp_id, pfd, err;
12628
12629 tp_id = determine_tracepoint_id(tp_category, tp_name);
12630 if (tp_id < 0) {
12631 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12632 tp_category, tp_name,
12633 errstr(tp_id));
12634 return tp_id;
12635 }
12636
12637 memset(&attr, 0, attr_sz);
12638 attr.type = PERF_TYPE_TRACEPOINT;
12639 attr.size = attr_sz;
12640 attr.config = tp_id;
12641
12642 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12643 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12644 if (pfd < 0) {
12645 err = -errno;
12646 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12647 tp_category, tp_name,
12648 errstr(err));
12649 return err;
12650 }
12651 return pfd;
12652 }
12653
bpf_program__attach_tracepoint_opts(const struct bpf_program * prog,const char * tp_category,const char * tp_name,const struct bpf_tracepoint_opts * opts)12654 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12655 const char *tp_category,
12656 const char *tp_name,
12657 const struct bpf_tracepoint_opts *opts)
12658 {
12659 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12660 struct bpf_link *link;
12661 int pfd, err;
12662
12663 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12664 return libbpf_err_ptr(-EINVAL);
12665
12666 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12667
12668 pfd = perf_event_open_tracepoint(tp_category, tp_name);
12669 if (pfd < 0) {
12670 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12671 prog->name, tp_category, tp_name,
12672 errstr(pfd));
12673 return libbpf_err_ptr(pfd);
12674 }
12675 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12676 err = libbpf_get_error(link);
12677 if (err) {
12678 close(pfd);
12679 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12680 prog->name, tp_category, tp_name,
12681 errstr(err));
12682 return libbpf_err_ptr(err);
12683 }
12684 return link;
12685 }
12686
bpf_program__attach_tracepoint(const struct bpf_program * prog,const char * tp_category,const char * tp_name)12687 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12688 const char *tp_category,
12689 const char *tp_name)
12690 {
12691 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12692 }
12693
attach_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12694 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12695 {
12696 char *sec_name, *tp_cat, *tp_name;
12697
12698 *link = NULL;
12699
12700 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
12701 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12702 return 0;
12703
12704 sec_name = strdup(prog->sec_name);
12705 if (!sec_name)
12706 return -ENOMEM;
12707
12708 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12709 if (str_has_pfx(prog->sec_name, "tp/"))
12710 tp_cat = sec_name + sizeof("tp/") - 1;
12711 else
12712 tp_cat = sec_name + sizeof("tracepoint/") - 1;
12713 tp_name = strchr(tp_cat, '/');
12714 if (!tp_name) {
12715 free(sec_name);
12716 return -EINVAL;
12717 }
12718 *tp_name = '\0';
12719 tp_name++;
12720
12721 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12722 free(sec_name);
12723 return libbpf_get_error(*link);
12724 }
12725
12726 struct bpf_link *
bpf_program__attach_raw_tracepoint_opts(const struct bpf_program * prog,const char * tp_name,struct bpf_raw_tracepoint_opts * opts)12727 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog,
12728 const char *tp_name,
12729 struct bpf_raw_tracepoint_opts *opts)
12730 {
12731 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts);
12732 struct bpf_link *link;
12733 int prog_fd, pfd;
12734
12735 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts))
12736 return libbpf_err_ptr(-EINVAL);
12737
12738 prog_fd = bpf_program__fd(prog);
12739 if (prog_fd < 0) {
12740 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12741 return libbpf_err_ptr(-EINVAL);
12742 }
12743
12744 link = calloc(1, sizeof(*link));
12745 if (!link)
12746 return libbpf_err_ptr(-ENOMEM);
12747 link->detach = &bpf_link__detach_fd;
12748
12749 raw_opts.tp_name = tp_name;
12750 raw_opts.cookie = OPTS_GET(opts, cookie, 0);
12751 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts);
12752 if (pfd < 0) {
12753 pfd = -errno;
12754 free(link);
12755 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12756 prog->name, tp_name, errstr(pfd));
12757 return libbpf_err_ptr(pfd);
12758 }
12759 link->fd = pfd;
12760 return link;
12761 }
12762
bpf_program__attach_raw_tracepoint(const struct bpf_program * prog,const char * tp_name)12763 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12764 const char *tp_name)
12765 {
12766 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL);
12767 }
12768
attach_raw_tp(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12769 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12770 {
12771 static const char *const prefixes[] = {
12772 "raw_tp",
12773 "raw_tracepoint",
12774 "raw_tp.w",
12775 "raw_tracepoint.w",
12776 };
12777 size_t i;
12778 const char *tp_name = NULL;
12779
12780 *link = NULL;
12781
12782 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12783 size_t pfx_len;
12784
12785 if (!str_has_pfx(prog->sec_name, prefixes[i]))
12786 continue;
12787
12788 pfx_len = strlen(prefixes[i]);
12789 /* no auto-attach case of, e.g., SEC("raw_tp") */
12790 if (prog->sec_name[pfx_len] == '\0')
12791 return 0;
12792
12793 if (prog->sec_name[pfx_len] != '/')
12794 continue;
12795
12796 tp_name = prog->sec_name + pfx_len + 1;
12797 break;
12798 }
12799
12800 if (!tp_name) {
12801 pr_warn("prog '%s': invalid section name '%s'\n",
12802 prog->name, prog->sec_name);
12803 return -EINVAL;
12804 }
12805
12806 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12807 return libbpf_get_error(*link);
12808 }
12809
12810 /* Common logic for all BPF program types that attach to a btf_id */
bpf_program__attach_btf_id(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12811 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12812 const struct bpf_trace_opts *opts)
12813 {
12814 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12815 struct bpf_link *link;
12816 int prog_fd, pfd;
12817
12818 if (!OPTS_VALID(opts, bpf_trace_opts))
12819 return libbpf_err_ptr(-EINVAL);
12820
12821 prog_fd = bpf_program__fd(prog);
12822 if (prog_fd < 0) {
12823 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12824 return libbpf_err_ptr(-EINVAL);
12825 }
12826
12827 link = calloc(1, sizeof(*link));
12828 if (!link)
12829 return libbpf_err_ptr(-ENOMEM);
12830 link->detach = &bpf_link__detach_fd;
12831
12832 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12833 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12834 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12835 if (pfd < 0) {
12836 pfd = -errno;
12837 free(link);
12838 pr_warn("prog '%s': failed to attach: %s\n",
12839 prog->name, errstr(pfd));
12840 return libbpf_err_ptr(pfd);
12841 }
12842 link->fd = pfd;
12843 return link;
12844 }
12845
bpf_program__attach_trace(const struct bpf_program * prog)12846 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12847 {
12848 return bpf_program__attach_btf_id(prog, NULL);
12849 }
12850
bpf_program__attach_trace_opts(const struct bpf_program * prog,const struct bpf_trace_opts * opts)12851 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12852 const struct bpf_trace_opts *opts)
12853 {
12854 return bpf_program__attach_btf_id(prog, opts);
12855 }
12856
bpf_program__attach_lsm(const struct bpf_program * prog)12857 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12858 {
12859 return bpf_program__attach_btf_id(prog, NULL);
12860 }
12861
attach_trace(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12862 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12863 {
12864 *link = bpf_program__attach_trace(prog);
12865 return libbpf_get_error(*link);
12866 }
12867
attach_lsm(const struct bpf_program * prog,long cookie,struct bpf_link ** link)12868 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12869 {
12870 *link = bpf_program__attach_lsm(prog);
12871 return libbpf_get_error(*link);
12872 }
12873
12874 static struct bpf_link *
bpf_program_attach_fd(const struct bpf_program * prog,int target_fd,const char * target_name,const struct bpf_link_create_opts * opts)12875 bpf_program_attach_fd(const struct bpf_program *prog,
12876 int target_fd, const char *target_name,
12877 const struct bpf_link_create_opts *opts)
12878 {
12879 enum bpf_attach_type attach_type;
12880 struct bpf_link *link;
12881 int prog_fd, link_fd;
12882
12883 prog_fd = bpf_program__fd(prog);
12884 if (prog_fd < 0) {
12885 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12886 return libbpf_err_ptr(-EINVAL);
12887 }
12888
12889 link = calloc(1, sizeof(*link));
12890 if (!link)
12891 return libbpf_err_ptr(-ENOMEM);
12892 link->detach = &bpf_link__detach_fd;
12893
12894 attach_type = bpf_program__expected_attach_type(prog);
12895 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12896 if (link_fd < 0) {
12897 link_fd = -errno;
12898 free(link);
12899 pr_warn("prog '%s': failed to attach to %s: %s\n",
12900 prog->name, target_name,
12901 errstr(link_fd));
12902 return libbpf_err_ptr(link_fd);
12903 }
12904 link->fd = link_fd;
12905 return link;
12906 }
12907
12908 struct bpf_link *
bpf_program__attach_cgroup(const struct bpf_program * prog,int cgroup_fd)12909 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12910 {
12911 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12912 }
12913
12914 struct bpf_link *
bpf_program__attach_netns(const struct bpf_program * prog,int netns_fd)12915 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12916 {
12917 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12918 }
12919
12920 struct bpf_link *
bpf_program__attach_sockmap(const struct bpf_program * prog,int map_fd)12921 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd)
12922 {
12923 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL);
12924 }
12925
bpf_program__attach_xdp(const struct bpf_program * prog,int ifindex)12926 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12927 {
12928 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12929 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12930 }
12931
12932 struct bpf_link *
bpf_program__attach_cgroup_opts(const struct bpf_program * prog,int cgroup_fd,const struct bpf_cgroup_opts * opts)12933 bpf_program__attach_cgroup_opts(const struct bpf_program *prog, int cgroup_fd,
12934 const struct bpf_cgroup_opts *opts)
12935 {
12936 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12937 __u32 relative_id;
12938 int relative_fd;
12939
12940 if (!OPTS_VALID(opts, bpf_cgroup_opts))
12941 return libbpf_err_ptr(-EINVAL);
12942
12943 relative_id = OPTS_GET(opts, relative_id, 0);
12944 relative_fd = OPTS_GET(opts, relative_fd, 0);
12945
12946 if (relative_fd && relative_id) {
12947 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12948 prog->name);
12949 return libbpf_err_ptr(-EINVAL);
12950 }
12951
12952 link_create_opts.cgroup.expected_revision = OPTS_GET(opts, expected_revision, 0);
12953 link_create_opts.cgroup.relative_fd = relative_fd;
12954 link_create_opts.cgroup.relative_id = relative_id;
12955 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12956
12957 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", &link_create_opts);
12958 }
12959
12960 struct bpf_link *
bpf_program__attach_tcx(const struct bpf_program * prog,int ifindex,const struct bpf_tcx_opts * opts)12961 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12962 const struct bpf_tcx_opts *opts)
12963 {
12964 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12965 __u32 relative_id;
12966 int relative_fd;
12967
12968 if (!OPTS_VALID(opts, bpf_tcx_opts))
12969 return libbpf_err_ptr(-EINVAL);
12970
12971 relative_id = OPTS_GET(opts, relative_id, 0);
12972 relative_fd = OPTS_GET(opts, relative_fd, 0);
12973
12974 /* validate we don't have unexpected combinations of non-zero fields */
12975 if (!ifindex) {
12976 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12977 prog->name);
12978 return libbpf_err_ptr(-EINVAL);
12979 }
12980 if (relative_fd && relative_id) {
12981 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12982 prog->name);
12983 return libbpf_err_ptr(-EINVAL);
12984 }
12985
12986 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12987 link_create_opts.tcx.relative_fd = relative_fd;
12988 link_create_opts.tcx.relative_id = relative_id;
12989 link_create_opts.flags = OPTS_GET(opts, flags, 0);
12990
12991 /* target_fd/target_ifindex use the same field in LINK_CREATE */
12992 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12993 }
12994
12995 struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program * prog,int ifindex,const struct bpf_netkit_opts * opts)12996 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12997 const struct bpf_netkit_opts *opts)
12998 {
12999 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
13000 __u32 relative_id;
13001 int relative_fd;
13002
13003 if (!OPTS_VALID(opts, bpf_netkit_opts))
13004 return libbpf_err_ptr(-EINVAL);
13005
13006 relative_id = OPTS_GET(opts, relative_id, 0);
13007 relative_fd = OPTS_GET(opts, relative_fd, 0);
13008
13009 /* validate we don't have unexpected combinations of non-zero fields */
13010 if (!ifindex) {
13011 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
13012 prog->name);
13013 return libbpf_err_ptr(-EINVAL);
13014 }
13015 if (relative_fd && relative_id) {
13016 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
13017 prog->name);
13018 return libbpf_err_ptr(-EINVAL);
13019 }
13020
13021 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
13022 link_create_opts.netkit.relative_fd = relative_fd;
13023 link_create_opts.netkit.relative_id = relative_id;
13024 link_create_opts.flags = OPTS_GET(opts, flags, 0);
13025
13026 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
13027 }
13028
bpf_program__attach_freplace(const struct bpf_program * prog,int target_fd,const char * attach_func_name)13029 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
13030 int target_fd,
13031 const char *attach_func_name)
13032 {
13033 int btf_id;
13034
13035 if (!!target_fd != !!attach_func_name) {
13036 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
13037 prog->name);
13038 return libbpf_err_ptr(-EINVAL);
13039 }
13040
13041 if (prog->type != BPF_PROG_TYPE_EXT) {
13042 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n",
13043 prog->name);
13044 return libbpf_err_ptr(-EINVAL);
13045 }
13046
13047 if (target_fd) {
13048 LIBBPF_OPTS(bpf_link_create_opts, target_opts);
13049
13050 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd);
13051 if (btf_id < 0)
13052 return libbpf_err_ptr(btf_id);
13053
13054 target_opts.target_btf_id = btf_id;
13055
13056 return bpf_program_attach_fd(prog, target_fd, "freplace",
13057 &target_opts);
13058 } else {
13059 /* no target, so use raw_tracepoint_open for compatibility
13060 * with old kernels
13061 */
13062 return bpf_program__attach_trace(prog);
13063 }
13064 }
13065
13066 struct bpf_link *
bpf_program__attach_iter(const struct bpf_program * prog,const struct bpf_iter_attach_opts * opts)13067 bpf_program__attach_iter(const struct bpf_program *prog,
13068 const struct bpf_iter_attach_opts *opts)
13069 {
13070 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
13071 struct bpf_link *link;
13072 int prog_fd, link_fd;
13073 __u32 target_fd = 0;
13074
13075 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
13076 return libbpf_err_ptr(-EINVAL);
13077
13078 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
13079 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
13080
13081 prog_fd = bpf_program__fd(prog);
13082 if (prog_fd < 0) {
13083 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13084 return libbpf_err_ptr(-EINVAL);
13085 }
13086
13087 link = calloc(1, sizeof(*link));
13088 if (!link)
13089 return libbpf_err_ptr(-ENOMEM);
13090 link->detach = &bpf_link__detach_fd;
13091
13092 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
13093 &link_create_opts);
13094 if (link_fd < 0) {
13095 link_fd = -errno;
13096 free(link);
13097 pr_warn("prog '%s': failed to attach to iterator: %s\n",
13098 prog->name, errstr(link_fd));
13099 return libbpf_err_ptr(link_fd);
13100 }
13101 link->fd = link_fd;
13102 return link;
13103 }
13104
attach_iter(const struct bpf_program * prog,long cookie,struct bpf_link ** link)13105 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
13106 {
13107 *link = bpf_program__attach_iter(prog, NULL);
13108 return libbpf_get_error(*link);
13109 }
13110
bpf_program__attach_netfilter(const struct bpf_program * prog,const struct bpf_netfilter_opts * opts)13111 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
13112 const struct bpf_netfilter_opts *opts)
13113 {
13114 LIBBPF_OPTS(bpf_link_create_opts, lopts);
13115 struct bpf_link *link;
13116 int prog_fd, link_fd;
13117
13118 if (!OPTS_VALID(opts, bpf_netfilter_opts))
13119 return libbpf_err_ptr(-EINVAL);
13120
13121 prog_fd = bpf_program__fd(prog);
13122 if (prog_fd < 0) {
13123 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
13124 return libbpf_err_ptr(-EINVAL);
13125 }
13126
13127 link = calloc(1, sizeof(*link));
13128 if (!link)
13129 return libbpf_err_ptr(-ENOMEM);
13130
13131 link->detach = &bpf_link__detach_fd;
13132
13133 lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
13134 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
13135 lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
13136 lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
13137
13138 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
13139 if (link_fd < 0) {
13140 link_fd = -errno;
13141 free(link);
13142 pr_warn("prog '%s': failed to attach to netfilter: %s\n",
13143 prog->name, errstr(link_fd));
13144 return libbpf_err_ptr(link_fd);
13145 }
13146 link->fd = link_fd;
13147
13148 return link;
13149 }
13150
bpf_program__attach(const struct bpf_program * prog)13151 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
13152 {
13153 struct bpf_link *link = NULL;
13154 int err;
13155
13156 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13157 return libbpf_err_ptr(-EOPNOTSUPP);
13158
13159 if (bpf_program__fd(prog) < 0) {
13160 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n",
13161 prog->name);
13162 return libbpf_err_ptr(-EINVAL);
13163 }
13164
13165 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
13166 if (err)
13167 return libbpf_err_ptr(err);
13168
13169 /* When calling bpf_program__attach() explicitly, auto-attach support
13170 * is expected to work, so NULL returned link is considered an error.
13171 * This is different for skeleton's attach, see comment in
13172 * bpf_object__attach_skeleton().
13173 */
13174 if (!link)
13175 return libbpf_err_ptr(-EOPNOTSUPP);
13176
13177 return link;
13178 }
13179
13180 struct bpf_link_struct_ops {
13181 struct bpf_link link;
13182 int map_fd;
13183 };
13184
bpf_link__detach_struct_ops(struct bpf_link * link)13185 static int bpf_link__detach_struct_ops(struct bpf_link *link)
13186 {
13187 struct bpf_link_struct_ops *st_link;
13188 __u32 zero = 0;
13189
13190 st_link = container_of(link, struct bpf_link_struct_ops, link);
13191
13192 if (st_link->map_fd < 0)
13193 /* w/o a real link */
13194 return bpf_map_delete_elem(link->fd, &zero);
13195
13196 return close(link->fd);
13197 }
13198
bpf_map__attach_struct_ops(const struct bpf_map * map)13199 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
13200 {
13201 struct bpf_link_struct_ops *link;
13202 __u32 zero = 0;
13203 int err, fd;
13204
13205 if (!bpf_map__is_struct_ops(map)) {
13206 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name);
13207 return libbpf_err_ptr(-EINVAL);
13208 }
13209
13210 if (map->fd < 0) {
13211 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name);
13212 return libbpf_err_ptr(-EINVAL);
13213 }
13214
13215 link = calloc(1, sizeof(*link));
13216 if (!link)
13217 return libbpf_err_ptr(-EINVAL);
13218
13219 /* kern_vdata should be prepared during the loading phase. */
13220 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13221 /* It can be EBUSY if the map has been used to create or
13222 * update a link before. We don't allow updating the value of
13223 * a struct_ops once it is set. That ensures that the value
13224 * never changed. So, it is safe to skip EBUSY.
13225 */
13226 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
13227 free(link);
13228 return libbpf_err_ptr(err);
13229 }
13230
13231 link->link.detach = bpf_link__detach_struct_ops;
13232
13233 if (!(map->def.map_flags & BPF_F_LINK)) {
13234 /* w/o a real link */
13235 link->link.fd = map->fd;
13236 link->map_fd = -1;
13237 return &link->link;
13238 }
13239
13240 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
13241 if (fd < 0) {
13242 free(link);
13243 return libbpf_err_ptr(fd);
13244 }
13245
13246 link->link.fd = fd;
13247 link->map_fd = map->fd;
13248
13249 return &link->link;
13250 }
13251
13252 /*
13253 * Swap the back struct_ops of a link with a new struct_ops map.
13254 */
bpf_link__update_map(struct bpf_link * link,const struct bpf_map * map)13255 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
13256 {
13257 struct bpf_link_struct_ops *st_ops_link;
13258 __u32 zero = 0;
13259 int err;
13260
13261 if (!bpf_map__is_struct_ops(map))
13262 return libbpf_err(-EINVAL);
13263
13264 if (map->fd < 0) {
13265 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name);
13266 return libbpf_err(-EINVAL);
13267 }
13268
13269 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
13270 /* Ensure the type of a link is correct */
13271 if (st_ops_link->map_fd < 0)
13272 return libbpf_err(-EINVAL);
13273
13274 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
13275 /* It can be EBUSY if the map has been used to create or
13276 * update a link before. We don't allow updating the value of
13277 * a struct_ops once it is set. That ensures that the value
13278 * never changed. So, it is safe to skip EBUSY.
13279 */
13280 if (err && err != -EBUSY)
13281 return err;
13282
13283 err = bpf_link_update(link->fd, map->fd, NULL);
13284 if (err < 0)
13285 return err;
13286
13287 st_ops_link->map_fd = map->fd;
13288
13289 return 0;
13290 }
13291
13292 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
13293 void *private_data);
13294
13295 static enum bpf_perf_event_ret
perf_event_read_simple(void * mmap_mem,size_t mmap_size,size_t page_size,void ** copy_mem,size_t * copy_size,bpf_perf_event_print_t fn,void * private_data)13296 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
13297 void **copy_mem, size_t *copy_size,
13298 bpf_perf_event_print_t fn, void *private_data)
13299 {
13300 struct perf_event_mmap_page *header = mmap_mem;
13301 __u64 data_head = ring_buffer_read_head(header);
13302 __u64 data_tail = header->data_tail;
13303 void *base = ((__u8 *)header) + page_size;
13304 int ret = LIBBPF_PERF_EVENT_CONT;
13305 struct perf_event_header *ehdr;
13306 size_t ehdr_size;
13307
13308 while (data_head != data_tail) {
13309 ehdr = base + (data_tail & (mmap_size - 1));
13310 ehdr_size = ehdr->size;
13311
13312 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
13313 void *copy_start = ehdr;
13314 size_t len_first = base + mmap_size - copy_start;
13315 size_t len_secnd = ehdr_size - len_first;
13316
13317 if (*copy_size < ehdr_size) {
13318 free(*copy_mem);
13319 *copy_mem = malloc(ehdr_size);
13320 if (!*copy_mem) {
13321 *copy_size = 0;
13322 ret = LIBBPF_PERF_EVENT_ERROR;
13323 break;
13324 }
13325 *copy_size = ehdr_size;
13326 }
13327
13328 memcpy(*copy_mem, copy_start, len_first);
13329 memcpy(*copy_mem + len_first, base, len_secnd);
13330 ehdr = *copy_mem;
13331 }
13332
13333 ret = fn(ehdr, private_data);
13334 data_tail += ehdr_size;
13335 if (ret != LIBBPF_PERF_EVENT_CONT)
13336 break;
13337 }
13338
13339 ring_buffer_write_tail(header, data_tail);
13340 return libbpf_err(ret);
13341 }
13342
13343 struct perf_buffer;
13344
13345 struct perf_buffer_params {
13346 struct perf_event_attr *attr;
13347 /* if event_cb is specified, it takes precendence */
13348 perf_buffer_event_fn event_cb;
13349 /* sample_cb and lost_cb are higher-level common-case callbacks */
13350 perf_buffer_sample_fn sample_cb;
13351 perf_buffer_lost_fn lost_cb;
13352 void *ctx;
13353 int cpu_cnt;
13354 int *cpus;
13355 int *map_keys;
13356 };
13357
13358 struct perf_cpu_buf {
13359 struct perf_buffer *pb;
13360 void *base; /* mmap()'ed memory */
13361 void *buf; /* for reconstructing segmented data */
13362 size_t buf_size;
13363 int fd;
13364 int cpu;
13365 int map_key;
13366 };
13367
13368 struct perf_buffer {
13369 perf_buffer_event_fn event_cb;
13370 perf_buffer_sample_fn sample_cb;
13371 perf_buffer_lost_fn lost_cb;
13372 void *ctx; /* passed into callbacks */
13373
13374 size_t page_size;
13375 size_t mmap_size;
13376 struct perf_cpu_buf **cpu_bufs;
13377 struct epoll_event *events;
13378 int cpu_cnt; /* number of allocated CPU buffers */
13379 int epoll_fd; /* perf event FD */
13380 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
13381 };
13382
perf_buffer__free_cpu_buf(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13383 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
13384 struct perf_cpu_buf *cpu_buf)
13385 {
13386 if (!cpu_buf)
13387 return;
13388 if (cpu_buf->base &&
13389 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
13390 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
13391 if (cpu_buf->fd >= 0) {
13392 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
13393 close(cpu_buf->fd);
13394 }
13395 free(cpu_buf->buf);
13396 free(cpu_buf);
13397 }
13398
perf_buffer__free(struct perf_buffer * pb)13399 void perf_buffer__free(struct perf_buffer *pb)
13400 {
13401 int i;
13402
13403 if (IS_ERR_OR_NULL(pb))
13404 return;
13405 if (pb->cpu_bufs) {
13406 for (i = 0; i < pb->cpu_cnt; i++) {
13407 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13408
13409 if (!cpu_buf)
13410 continue;
13411
13412 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
13413 perf_buffer__free_cpu_buf(pb, cpu_buf);
13414 }
13415 free(pb->cpu_bufs);
13416 }
13417 if (pb->epoll_fd >= 0)
13418 close(pb->epoll_fd);
13419 free(pb->events);
13420 free(pb);
13421 }
13422
13423 static struct perf_cpu_buf *
perf_buffer__open_cpu_buf(struct perf_buffer * pb,struct perf_event_attr * attr,int cpu,int map_key)13424 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
13425 int cpu, int map_key)
13426 {
13427 struct perf_cpu_buf *cpu_buf;
13428 int err;
13429
13430 cpu_buf = calloc(1, sizeof(*cpu_buf));
13431 if (!cpu_buf)
13432 return ERR_PTR(-ENOMEM);
13433
13434 cpu_buf->pb = pb;
13435 cpu_buf->cpu = cpu;
13436 cpu_buf->map_key = map_key;
13437
13438 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
13439 -1, PERF_FLAG_FD_CLOEXEC);
13440 if (cpu_buf->fd < 0) {
13441 err = -errno;
13442 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
13443 cpu, errstr(err));
13444 goto error;
13445 }
13446
13447 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
13448 PROT_READ | PROT_WRITE, MAP_SHARED,
13449 cpu_buf->fd, 0);
13450 if (cpu_buf->base == MAP_FAILED) {
13451 cpu_buf->base = NULL;
13452 err = -errno;
13453 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
13454 cpu, errstr(err));
13455 goto error;
13456 }
13457
13458 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
13459 err = -errno;
13460 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
13461 cpu, errstr(err));
13462 goto error;
13463 }
13464
13465 return cpu_buf;
13466
13467 error:
13468 perf_buffer__free_cpu_buf(pb, cpu_buf);
13469 return (struct perf_cpu_buf *)ERR_PTR(err);
13470 }
13471
13472 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13473 struct perf_buffer_params *p);
13474
perf_buffer__new(int map_fd,size_t page_cnt,perf_buffer_sample_fn sample_cb,perf_buffer_lost_fn lost_cb,void * ctx,const struct perf_buffer_opts * opts)13475 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
13476 perf_buffer_sample_fn sample_cb,
13477 perf_buffer_lost_fn lost_cb,
13478 void *ctx,
13479 const struct perf_buffer_opts *opts)
13480 {
13481 const size_t attr_sz = sizeof(struct perf_event_attr);
13482 struct perf_buffer_params p = {};
13483 struct perf_event_attr attr;
13484 __u32 sample_period;
13485
13486 if (!OPTS_VALID(opts, perf_buffer_opts))
13487 return libbpf_err_ptr(-EINVAL);
13488
13489 sample_period = OPTS_GET(opts, sample_period, 1);
13490 if (!sample_period)
13491 sample_period = 1;
13492
13493 memset(&attr, 0, attr_sz);
13494 attr.size = attr_sz;
13495 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
13496 attr.type = PERF_TYPE_SOFTWARE;
13497 attr.sample_type = PERF_SAMPLE_RAW;
13498 attr.wakeup_events = sample_period;
13499
13500 p.attr = &attr;
13501 p.sample_cb = sample_cb;
13502 p.lost_cb = lost_cb;
13503 p.ctx = ctx;
13504
13505 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13506 }
13507
perf_buffer__new_raw(int map_fd,size_t page_cnt,struct perf_event_attr * attr,perf_buffer_event_fn event_cb,void * ctx,const struct perf_buffer_raw_opts * opts)13508 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
13509 struct perf_event_attr *attr,
13510 perf_buffer_event_fn event_cb, void *ctx,
13511 const struct perf_buffer_raw_opts *opts)
13512 {
13513 struct perf_buffer_params p = {};
13514
13515 if (!attr)
13516 return libbpf_err_ptr(-EINVAL);
13517
13518 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13519 return libbpf_err_ptr(-EINVAL);
13520
13521 p.attr = attr;
13522 p.event_cb = event_cb;
13523 p.ctx = ctx;
13524 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13525 p.cpus = OPTS_GET(opts, cpus, NULL);
13526 p.map_keys = OPTS_GET(opts, map_keys, NULL);
13527
13528 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13529 }
13530
__perf_buffer__new(int map_fd,size_t page_cnt,struct perf_buffer_params * p)13531 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13532 struct perf_buffer_params *p)
13533 {
13534 const char *online_cpus_file = "/sys/devices/system/cpu/online";
13535 struct bpf_map_info map;
13536 struct perf_buffer *pb;
13537 bool *online = NULL;
13538 __u32 map_info_len;
13539 int err, i, j, n;
13540
13541 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13542 pr_warn("page count should be power of two, but is %zu\n",
13543 page_cnt);
13544 return ERR_PTR(-EINVAL);
13545 }
13546
13547 /* best-effort sanity checks */
13548 memset(&map, 0, sizeof(map));
13549 map_info_len = sizeof(map);
13550 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13551 if (err) {
13552 err = -errno;
13553 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13554 * -EBADFD, -EFAULT, or -E2BIG on real error
13555 */
13556 if (err != -EINVAL) {
13557 pr_warn("failed to get map info for map FD %d: %s\n",
13558 map_fd, errstr(err));
13559 return ERR_PTR(err);
13560 }
13561 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13562 map_fd);
13563 } else {
13564 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13565 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13566 map.name);
13567 return ERR_PTR(-EINVAL);
13568 }
13569 }
13570
13571 pb = calloc(1, sizeof(*pb));
13572 if (!pb)
13573 return ERR_PTR(-ENOMEM);
13574
13575 pb->event_cb = p->event_cb;
13576 pb->sample_cb = p->sample_cb;
13577 pb->lost_cb = p->lost_cb;
13578 pb->ctx = p->ctx;
13579
13580 pb->page_size = getpagesize();
13581 pb->mmap_size = pb->page_size * page_cnt;
13582 pb->map_fd = map_fd;
13583
13584 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13585 if (pb->epoll_fd < 0) {
13586 err = -errno;
13587 pr_warn("failed to create epoll instance: %s\n",
13588 errstr(err));
13589 goto error;
13590 }
13591
13592 if (p->cpu_cnt > 0) {
13593 pb->cpu_cnt = p->cpu_cnt;
13594 } else {
13595 pb->cpu_cnt = libbpf_num_possible_cpus();
13596 if (pb->cpu_cnt < 0) {
13597 err = pb->cpu_cnt;
13598 goto error;
13599 }
13600 if (map.max_entries && map.max_entries < pb->cpu_cnt)
13601 pb->cpu_cnt = map.max_entries;
13602 }
13603
13604 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13605 if (!pb->events) {
13606 err = -ENOMEM;
13607 pr_warn("failed to allocate events: out of memory\n");
13608 goto error;
13609 }
13610 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13611 if (!pb->cpu_bufs) {
13612 err = -ENOMEM;
13613 pr_warn("failed to allocate buffers: out of memory\n");
13614 goto error;
13615 }
13616
13617 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13618 if (err) {
13619 pr_warn("failed to get online CPU mask: %s\n", errstr(err));
13620 goto error;
13621 }
13622
13623 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13624 struct perf_cpu_buf *cpu_buf;
13625 int cpu, map_key;
13626
13627 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13628 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13629
13630 /* in case user didn't explicitly requested particular CPUs to
13631 * be attached to, skip offline/not present CPUs
13632 */
13633 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13634 continue;
13635
13636 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13637 if (IS_ERR(cpu_buf)) {
13638 err = PTR_ERR(cpu_buf);
13639 goto error;
13640 }
13641
13642 pb->cpu_bufs[j] = cpu_buf;
13643
13644 err = bpf_map_update_elem(pb->map_fd, &map_key,
13645 &cpu_buf->fd, 0);
13646 if (err) {
13647 err = -errno;
13648 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13649 cpu, map_key, cpu_buf->fd,
13650 errstr(err));
13651 goto error;
13652 }
13653
13654 pb->events[j].events = EPOLLIN;
13655 pb->events[j].data.ptr = cpu_buf;
13656 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13657 &pb->events[j]) < 0) {
13658 err = -errno;
13659 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13660 cpu, cpu_buf->fd,
13661 errstr(err));
13662 goto error;
13663 }
13664 j++;
13665 }
13666 pb->cpu_cnt = j;
13667 free(online);
13668
13669 return pb;
13670
13671 error:
13672 free(online);
13673 if (pb)
13674 perf_buffer__free(pb);
13675 return ERR_PTR(err);
13676 }
13677
13678 struct perf_sample_raw {
13679 struct perf_event_header header;
13680 uint32_t size;
13681 char data[];
13682 };
13683
13684 struct perf_sample_lost {
13685 struct perf_event_header header;
13686 uint64_t id;
13687 uint64_t lost;
13688 uint64_t sample_id;
13689 };
13690
13691 static enum bpf_perf_event_ret
perf_buffer__process_record(struct perf_event_header * e,void * ctx)13692 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13693 {
13694 struct perf_cpu_buf *cpu_buf = ctx;
13695 struct perf_buffer *pb = cpu_buf->pb;
13696 void *data = e;
13697
13698 /* user wants full control over parsing perf event */
13699 if (pb->event_cb)
13700 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13701
13702 switch (e->type) {
13703 case PERF_RECORD_SAMPLE: {
13704 struct perf_sample_raw *s = data;
13705
13706 if (pb->sample_cb)
13707 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13708 break;
13709 }
13710 case PERF_RECORD_LOST: {
13711 struct perf_sample_lost *s = data;
13712
13713 if (pb->lost_cb)
13714 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13715 break;
13716 }
13717 default:
13718 pr_warn("unknown perf sample type %d\n", e->type);
13719 return LIBBPF_PERF_EVENT_ERROR;
13720 }
13721 return LIBBPF_PERF_EVENT_CONT;
13722 }
13723
perf_buffer__process_records(struct perf_buffer * pb,struct perf_cpu_buf * cpu_buf)13724 static int perf_buffer__process_records(struct perf_buffer *pb,
13725 struct perf_cpu_buf *cpu_buf)
13726 {
13727 enum bpf_perf_event_ret ret;
13728
13729 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13730 pb->page_size, &cpu_buf->buf,
13731 &cpu_buf->buf_size,
13732 perf_buffer__process_record, cpu_buf);
13733 if (ret != LIBBPF_PERF_EVENT_CONT)
13734 return ret;
13735 return 0;
13736 }
13737
perf_buffer__epoll_fd(const struct perf_buffer * pb)13738 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13739 {
13740 return pb->epoll_fd;
13741 }
13742
perf_buffer__poll(struct perf_buffer * pb,int timeout_ms)13743 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13744 {
13745 int i, cnt, err;
13746
13747 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13748 if (cnt < 0)
13749 return -errno;
13750
13751 for (i = 0; i < cnt; i++) {
13752 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13753
13754 err = perf_buffer__process_records(pb, cpu_buf);
13755 if (err) {
13756 pr_warn("error while processing records: %s\n", errstr(err));
13757 return libbpf_err(err);
13758 }
13759 }
13760 return cnt;
13761 }
13762
13763 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13764 * manager.
13765 */
perf_buffer__buffer_cnt(const struct perf_buffer * pb)13766 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13767 {
13768 return pb->cpu_cnt;
13769 }
13770
13771 /*
13772 * Return perf_event FD of a ring buffer in *buf_idx* slot of
13773 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13774 * select()/poll()/epoll() Linux syscalls.
13775 */
perf_buffer__buffer_fd(const struct perf_buffer * pb,size_t buf_idx)13776 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13777 {
13778 struct perf_cpu_buf *cpu_buf;
13779
13780 if (buf_idx >= pb->cpu_cnt)
13781 return libbpf_err(-EINVAL);
13782
13783 cpu_buf = pb->cpu_bufs[buf_idx];
13784 if (!cpu_buf)
13785 return libbpf_err(-ENOENT);
13786
13787 return cpu_buf->fd;
13788 }
13789
perf_buffer__buffer(struct perf_buffer * pb,int buf_idx,void ** buf,size_t * buf_size)13790 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13791 {
13792 struct perf_cpu_buf *cpu_buf;
13793
13794 if (buf_idx >= pb->cpu_cnt)
13795 return libbpf_err(-EINVAL);
13796
13797 cpu_buf = pb->cpu_bufs[buf_idx];
13798 if (!cpu_buf)
13799 return libbpf_err(-ENOENT);
13800
13801 *buf = cpu_buf->base;
13802 *buf_size = pb->mmap_size;
13803 return 0;
13804 }
13805
13806 /*
13807 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13808 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13809 * consume, do nothing and return success.
13810 * Returns:
13811 * - 0 on success;
13812 * - <0 on failure.
13813 */
perf_buffer__consume_buffer(struct perf_buffer * pb,size_t buf_idx)13814 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13815 {
13816 struct perf_cpu_buf *cpu_buf;
13817
13818 if (buf_idx >= pb->cpu_cnt)
13819 return libbpf_err(-EINVAL);
13820
13821 cpu_buf = pb->cpu_bufs[buf_idx];
13822 if (!cpu_buf)
13823 return libbpf_err(-ENOENT);
13824
13825 return perf_buffer__process_records(pb, cpu_buf);
13826 }
13827
perf_buffer__consume(struct perf_buffer * pb)13828 int perf_buffer__consume(struct perf_buffer *pb)
13829 {
13830 int i, err;
13831
13832 for (i = 0; i < pb->cpu_cnt; i++) {
13833 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13834
13835 if (!cpu_buf)
13836 continue;
13837
13838 err = perf_buffer__process_records(pb, cpu_buf);
13839 if (err) {
13840 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n",
13841 i, errstr(err));
13842 return libbpf_err(err);
13843 }
13844 }
13845 return 0;
13846 }
13847
bpf_program__set_attach_target(struct bpf_program * prog,int attach_prog_fd,const char * attach_func_name)13848 int bpf_program__set_attach_target(struct bpf_program *prog,
13849 int attach_prog_fd,
13850 const char *attach_func_name)
13851 {
13852 int btf_obj_fd = 0, btf_id = 0, err;
13853
13854 if (!prog || attach_prog_fd < 0)
13855 return libbpf_err(-EINVAL);
13856
13857 if (prog->obj->state >= OBJ_LOADED)
13858 return libbpf_err(-EINVAL);
13859
13860 if (attach_prog_fd && !attach_func_name) {
13861 /* remember attach_prog_fd and let bpf_program__load() find
13862 * BTF ID during the program load
13863 */
13864 prog->attach_prog_fd = attach_prog_fd;
13865 return 0;
13866 }
13867
13868 if (attach_prog_fd) {
13869 btf_id = libbpf_find_prog_btf_id(attach_func_name,
13870 attach_prog_fd, prog->obj->token_fd);
13871 if (btf_id < 0)
13872 return libbpf_err(btf_id);
13873 } else {
13874 if (!attach_func_name)
13875 return libbpf_err(-EINVAL);
13876
13877 /* load btf_vmlinux, if not yet */
13878 err = bpf_object__load_vmlinux_btf(prog->obj, true);
13879 if (err)
13880 return libbpf_err(err);
13881 err = find_kernel_btf_id(prog->obj, attach_func_name,
13882 prog->expected_attach_type,
13883 &btf_obj_fd, &btf_id);
13884 if (err)
13885 return libbpf_err(err);
13886 }
13887
13888 prog->attach_btf_id = btf_id;
13889 prog->attach_btf_obj_fd = btf_obj_fd;
13890 prog->attach_prog_fd = attach_prog_fd;
13891 return 0;
13892 }
13893
parse_cpu_mask_str(const char * s,bool ** mask,int * mask_sz)13894 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13895 {
13896 int err = 0, n, len, start, end = -1;
13897 bool *tmp;
13898
13899 *mask = NULL;
13900 *mask_sz = 0;
13901
13902 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13903 while (*s) {
13904 if (*s == ',' || *s == '\n') {
13905 s++;
13906 continue;
13907 }
13908 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13909 if (n <= 0 || n > 2) {
13910 pr_warn("Failed to get CPU range %s: %d\n", s, n);
13911 err = -EINVAL;
13912 goto cleanup;
13913 } else if (n == 1) {
13914 end = start;
13915 }
13916 if (start < 0 || start > end) {
13917 pr_warn("Invalid CPU range [%d,%d] in %s\n",
13918 start, end, s);
13919 err = -EINVAL;
13920 goto cleanup;
13921 }
13922 tmp = realloc(*mask, end + 1);
13923 if (!tmp) {
13924 err = -ENOMEM;
13925 goto cleanup;
13926 }
13927 *mask = tmp;
13928 memset(tmp + *mask_sz, 0, start - *mask_sz);
13929 memset(tmp + start, 1, end - start + 1);
13930 *mask_sz = end + 1;
13931 s += len;
13932 }
13933 if (!*mask_sz) {
13934 pr_warn("Empty CPU range\n");
13935 return -EINVAL;
13936 }
13937 return 0;
13938 cleanup:
13939 free(*mask);
13940 *mask = NULL;
13941 return err;
13942 }
13943
parse_cpu_mask_file(const char * fcpu,bool ** mask,int * mask_sz)13944 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13945 {
13946 int fd, err = 0, len;
13947 char buf[128];
13948
13949 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13950 if (fd < 0) {
13951 err = -errno;
13952 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err));
13953 return err;
13954 }
13955 len = read(fd, buf, sizeof(buf));
13956 close(fd);
13957 if (len <= 0) {
13958 err = len ? -errno : -EINVAL;
13959 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err));
13960 return err;
13961 }
13962 if (len >= sizeof(buf)) {
13963 pr_warn("CPU mask is too big in file %s\n", fcpu);
13964 return -E2BIG;
13965 }
13966 buf[len] = '\0';
13967
13968 return parse_cpu_mask_str(buf, mask, mask_sz);
13969 }
13970
libbpf_num_possible_cpus(void)13971 int libbpf_num_possible_cpus(void)
13972 {
13973 static const char *fcpu = "/sys/devices/system/cpu/possible";
13974 static int cpus;
13975 int err, n, i, tmp_cpus;
13976 bool *mask;
13977
13978 tmp_cpus = READ_ONCE(cpus);
13979 if (tmp_cpus > 0)
13980 return tmp_cpus;
13981
13982 err = parse_cpu_mask_file(fcpu, &mask, &n);
13983 if (err)
13984 return libbpf_err(err);
13985
13986 tmp_cpus = 0;
13987 for (i = 0; i < n; i++) {
13988 if (mask[i])
13989 tmp_cpus++;
13990 }
13991 free(mask);
13992
13993 WRITE_ONCE(cpus, tmp_cpus);
13994 return tmp_cpus;
13995 }
13996
populate_skeleton_maps(const struct bpf_object * obj,struct bpf_map_skeleton * maps,size_t map_cnt,size_t map_skel_sz)13997 static int populate_skeleton_maps(const struct bpf_object *obj,
13998 struct bpf_map_skeleton *maps,
13999 size_t map_cnt, size_t map_skel_sz)
14000 {
14001 int i;
14002
14003 for (i = 0; i < map_cnt; i++) {
14004 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz;
14005 struct bpf_map **map = map_skel->map;
14006 const char *name = map_skel->name;
14007 void **mmaped = map_skel->mmaped;
14008
14009 *map = bpf_object__find_map_by_name(obj, name);
14010 if (!*map) {
14011 pr_warn("failed to find skeleton map '%s'\n", name);
14012 return -ESRCH;
14013 }
14014
14015 /* externs shouldn't be pre-setup from user code */
14016 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
14017 *mmaped = (*map)->mmaped;
14018 }
14019 return 0;
14020 }
14021
populate_skeleton_progs(const struct bpf_object * obj,struct bpf_prog_skeleton * progs,size_t prog_cnt,size_t prog_skel_sz)14022 static int populate_skeleton_progs(const struct bpf_object *obj,
14023 struct bpf_prog_skeleton *progs,
14024 size_t prog_cnt, size_t prog_skel_sz)
14025 {
14026 int i;
14027
14028 for (i = 0; i < prog_cnt; i++) {
14029 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz;
14030 struct bpf_program **prog = prog_skel->prog;
14031 const char *name = prog_skel->name;
14032
14033 *prog = bpf_object__find_program_by_name(obj, name);
14034 if (!*prog) {
14035 pr_warn("failed to find skeleton program '%s'\n", name);
14036 return -ESRCH;
14037 }
14038 }
14039 return 0;
14040 }
14041
bpf_object__open_skeleton(struct bpf_object_skeleton * s,const struct bpf_object_open_opts * opts)14042 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
14043 const struct bpf_object_open_opts *opts)
14044 {
14045 struct bpf_object *obj;
14046 int err;
14047
14048 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts);
14049 if (IS_ERR(obj)) {
14050 err = PTR_ERR(obj);
14051 pr_warn("failed to initialize skeleton BPF object '%s': %s\n",
14052 s->name, errstr(err));
14053 return libbpf_err(err);
14054 }
14055
14056 *s->obj = obj;
14057 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz);
14058 if (err) {
14059 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err));
14060 return libbpf_err(err);
14061 }
14062
14063 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14064 if (err) {
14065 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err));
14066 return libbpf_err(err);
14067 }
14068
14069 return 0;
14070 }
14071
bpf_object__open_subskeleton(struct bpf_object_subskeleton * s)14072 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
14073 {
14074 int err, len, var_idx, i;
14075 const char *var_name;
14076 const struct bpf_map *map;
14077 struct btf *btf;
14078 __u32 map_type_id;
14079 const struct btf_type *map_type, *var_type;
14080 const struct bpf_var_skeleton *var_skel;
14081 struct btf_var_secinfo *var;
14082
14083 if (!s->obj)
14084 return libbpf_err(-EINVAL);
14085
14086 btf = bpf_object__btf(s->obj);
14087 if (!btf) {
14088 pr_warn("subskeletons require BTF at runtime (object %s)\n",
14089 bpf_object__name(s->obj));
14090 return libbpf_err(-errno);
14091 }
14092
14093 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz);
14094 if (err) {
14095 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14096 return libbpf_err(err);
14097 }
14098
14099 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz);
14100 if (err) {
14101 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err));
14102 return libbpf_err(err);
14103 }
14104
14105 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
14106 var_skel = (void *)s->vars + var_idx * s->var_skel_sz;
14107 map = *var_skel->map;
14108 map_type_id = bpf_map__btf_value_type_id(map);
14109 map_type = btf__type_by_id(btf, map_type_id);
14110
14111 if (!btf_is_datasec(map_type)) {
14112 pr_warn("type for map '%1$s' is not a datasec: %2$s\n",
14113 bpf_map__name(map),
14114 __btf_kind_str(btf_kind(map_type)));
14115 return libbpf_err(-EINVAL);
14116 }
14117
14118 len = btf_vlen(map_type);
14119 var = btf_var_secinfos(map_type);
14120 for (i = 0; i < len; i++, var++) {
14121 var_type = btf__type_by_id(btf, var->type);
14122 var_name = btf__name_by_offset(btf, var_type->name_off);
14123 if (strcmp(var_name, var_skel->name) == 0) {
14124 *var_skel->addr = map->mmaped + var->offset;
14125 break;
14126 }
14127 }
14128 }
14129 return 0;
14130 }
14131
bpf_object__destroy_subskeleton(struct bpf_object_subskeleton * s)14132 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
14133 {
14134 if (!s)
14135 return;
14136 free(s->maps);
14137 free(s->progs);
14138 free(s->vars);
14139 free(s);
14140 }
14141
bpf_object__load_skeleton(struct bpf_object_skeleton * s)14142 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
14143 {
14144 int i, err;
14145
14146 err = bpf_object__load(*s->obj);
14147 if (err) {
14148 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err));
14149 return libbpf_err(err);
14150 }
14151
14152 for (i = 0; i < s->map_cnt; i++) {
14153 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14154 struct bpf_map *map = *map_skel->map;
14155
14156 if (!map_skel->mmaped)
14157 continue;
14158
14159 *map_skel->mmaped = map->mmaped;
14160 }
14161
14162 return 0;
14163 }
14164
bpf_object__attach_skeleton(struct bpf_object_skeleton * s)14165 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
14166 {
14167 int i, err;
14168
14169 for (i = 0; i < s->prog_cnt; i++) {
14170 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14171 struct bpf_program *prog = *prog_skel->prog;
14172 struct bpf_link **link = prog_skel->link;
14173
14174 if (!prog->autoload || !prog->autoattach)
14175 continue;
14176
14177 /* auto-attaching not supported for this program */
14178 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
14179 continue;
14180
14181 /* if user already set the link manually, don't attempt auto-attach */
14182 if (*link)
14183 continue;
14184
14185 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
14186 if (err) {
14187 pr_warn("prog '%s': failed to auto-attach: %s\n",
14188 bpf_program__name(prog), errstr(err));
14189 return libbpf_err(err);
14190 }
14191
14192 /* It's possible that for some SEC() definitions auto-attach
14193 * is supported in some cases (e.g., if definition completely
14194 * specifies target information), but is not in other cases.
14195 * SEC("uprobe") is one such case. If user specified target
14196 * binary and function name, such BPF program can be
14197 * auto-attached. But if not, it shouldn't trigger skeleton's
14198 * attach to fail. It should just be skipped.
14199 * attach_fn signals such case with returning 0 (no error) and
14200 * setting link to NULL.
14201 */
14202 }
14203
14204
14205 for (i = 0; i < s->map_cnt; i++) {
14206 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14207 struct bpf_map *map = *map_skel->map;
14208 struct bpf_link **link;
14209
14210 if (!map->autocreate || !map->autoattach)
14211 continue;
14212
14213 /* only struct_ops maps can be attached */
14214 if (!bpf_map__is_struct_ops(map))
14215 continue;
14216
14217 /* skeleton is created with earlier version of bpftool, notify user */
14218 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) {
14219 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n",
14220 bpf_map__name(map));
14221 continue;
14222 }
14223
14224 link = map_skel->link;
14225 if (!link) {
14226 pr_warn("map '%s': BPF map skeleton link is uninitialized\n",
14227 bpf_map__name(map));
14228 continue;
14229 }
14230
14231 if (*link)
14232 continue;
14233
14234 *link = bpf_map__attach_struct_ops(map);
14235 if (!*link) {
14236 err = -errno;
14237 pr_warn("map '%s': failed to auto-attach: %s\n",
14238 bpf_map__name(map), errstr(err));
14239 return libbpf_err(err);
14240 }
14241 }
14242
14243 return 0;
14244 }
14245
bpf_object__detach_skeleton(struct bpf_object_skeleton * s)14246 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
14247 {
14248 int i;
14249
14250 for (i = 0; i < s->prog_cnt; i++) {
14251 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz;
14252 struct bpf_link **link = prog_skel->link;
14253
14254 bpf_link__destroy(*link);
14255 *link = NULL;
14256 }
14257
14258 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton))
14259 return;
14260
14261 for (i = 0; i < s->map_cnt; i++) {
14262 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz;
14263 struct bpf_link **link = map_skel->link;
14264
14265 if (link) {
14266 bpf_link__destroy(*link);
14267 *link = NULL;
14268 }
14269 }
14270 }
14271
bpf_object__destroy_skeleton(struct bpf_object_skeleton * s)14272 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
14273 {
14274 if (!s)
14275 return;
14276
14277 bpf_object__detach_skeleton(s);
14278 if (s->obj)
14279 bpf_object__close(*s->obj);
14280 free(s->maps);
14281 free(s->progs);
14282 free(s);
14283 }
14284