1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/xcr.h>
61 #include <asm/pvclock.h>
62 #include <asm/div64.h>
63 
64 #define MAX_IO_MSRS 256
65 #define KVM_MAX_MCE_BANKS 32
66 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
67 
68 #define emul_to_vcpu(ctxt) \
69 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
70 
71 /* EFER defaults:
72  * - enable syscall per default because its emulated by KVM
73  * - enable LME and LMA per default on 64 bit KVM
74  */
75 #ifdef CONFIG_X86_64
76 static
77 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
78 #else
79 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
80 #endif
81 
82 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
83 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
84 
85 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
86 static void process_nmi(struct kvm_vcpu *vcpu);
87 
88 struct kvm_x86_ops *kvm_x86_ops;
89 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90 
91 static bool ignore_msrs = 0;
92 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
93 
94 bool kvm_has_tsc_control;
95 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
96 u32  kvm_max_guest_tsc_khz;
97 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98 
99 #define KVM_NR_SHARED_MSRS 16
100 
101 struct kvm_shared_msrs_global {
102 	int nr;
103 	u32 msrs[KVM_NR_SHARED_MSRS];
104 };
105 
106 struct kvm_shared_msrs {
107 	struct user_return_notifier urn;
108 	bool registered;
109 	struct kvm_shared_msr_values {
110 		u64 host;
111 		u64 curr;
112 	} values[KVM_NR_SHARED_MSRS];
113 };
114 
115 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
116 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117 
118 struct kvm_stats_debugfs_item debugfs_entries[] = {
119 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
120 	{ "pf_guest", VCPU_STAT(pf_guest) },
121 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
122 	{ "invlpg", VCPU_STAT(invlpg) },
123 	{ "exits", VCPU_STAT(exits) },
124 	{ "io_exits", VCPU_STAT(io_exits) },
125 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
126 	{ "signal_exits", VCPU_STAT(signal_exits) },
127 	{ "irq_window", VCPU_STAT(irq_window_exits) },
128 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
129 	{ "halt_exits", VCPU_STAT(halt_exits) },
130 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
131 	{ "hypercalls", VCPU_STAT(hypercalls) },
132 	{ "request_irq", VCPU_STAT(request_irq_exits) },
133 	{ "irq_exits", VCPU_STAT(irq_exits) },
134 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
135 	{ "efer_reload", VCPU_STAT(efer_reload) },
136 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
137 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
138 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
139 	{ "irq_injections", VCPU_STAT(irq_injections) },
140 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
141 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
142 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
143 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
144 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
145 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
146 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
147 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
148 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
149 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
150 	{ "largepages", VM_STAT(lpages) },
151 	{ NULL }
152 };
153 
154 u64 __read_mostly host_xcr0;
155 
156 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)158 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 {
160 	int i;
161 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
162 		vcpu->arch.apf.gfns[i] = ~0;
163 }
164 
kvm_on_user_return(struct user_return_notifier * urn)165 static void kvm_on_user_return(struct user_return_notifier *urn)
166 {
167 	unsigned slot;
168 	struct kvm_shared_msrs *locals
169 		= container_of(urn, struct kvm_shared_msrs, urn);
170 	struct kvm_shared_msr_values *values;
171 
172 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
173 		values = &locals->values[slot];
174 		if (values->host != values->curr) {
175 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
176 			values->curr = values->host;
177 		}
178 	}
179 	locals->registered = false;
180 	user_return_notifier_unregister(urn);
181 }
182 
shared_msr_update(unsigned slot,u32 msr)183 static void shared_msr_update(unsigned slot, u32 msr)
184 {
185 	struct kvm_shared_msrs *smsr;
186 	u64 value;
187 
188 	smsr = &__get_cpu_var(shared_msrs);
189 	/* only read, and nobody should modify it at this time,
190 	 * so don't need lock */
191 	if (slot >= shared_msrs_global.nr) {
192 		printk(KERN_ERR "kvm: invalid MSR slot!");
193 		return;
194 	}
195 	rdmsrl_safe(msr, &value);
196 	smsr->values[slot].host = value;
197 	smsr->values[slot].curr = value;
198 }
199 
kvm_define_shared_msr(unsigned slot,u32 msr)200 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 {
202 	if (slot >= shared_msrs_global.nr)
203 		shared_msrs_global.nr = slot + 1;
204 	shared_msrs_global.msrs[slot] = msr;
205 	/* we need ensured the shared_msr_global have been updated */
206 	smp_wmb();
207 }
208 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209 
kvm_shared_msr_cpu_online(void)210 static void kvm_shared_msr_cpu_online(void)
211 {
212 	unsigned i;
213 
214 	for (i = 0; i < shared_msrs_global.nr; ++i)
215 		shared_msr_update(i, shared_msrs_global.msrs[i]);
216 }
217 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)218 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 {
220 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221 
222 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
223 		return;
224 	smsr->values[slot].curr = value;
225 	wrmsrl(shared_msrs_global.msrs[slot], value);
226 	if (!smsr->registered) {
227 		smsr->urn.on_user_return = kvm_on_user_return;
228 		user_return_notifier_register(&smsr->urn);
229 		smsr->registered = true;
230 	}
231 }
232 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233 
drop_user_return_notifiers(void * ignore)234 static void drop_user_return_notifiers(void *ignore)
235 {
236 	struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237 
238 	if (smsr->registered)
239 		kvm_on_user_return(&smsr->urn);
240 }
241 
kvm_get_apic_base(struct kvm_vcpu * vcpu)242 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 {
244 	if (irqchip_in_kernel(vcpu->kvm))
245 		return vcpu->arch.apic_base;
246 	else
247 		return vcpu->arch.apic_base;
248 }
249 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250 
kvm_set_apic_base(struct kvm_vcpu * vcpu,u64 data)251 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 {
253 	/* TODO: reserve bits check */
254 	if (irqchip_in_kernel(vcpu->kvm))
255 		kvm_lapic_set_base(vcpu, data);
256 	else
257 		vcpu->arch.apic_base = data;
258 }
259 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260 
261 #define EXCPT_BENIGN		0
262 #define EXCPT_CONTRIBUTORY	1
263 #define EXCPT_PF		2
264 
exception_class(int vector)265 static int exception_class(int vector)
266 {
267 	switch (vector) {
268 	case PF_VECTOR:
269 		return EXCPT_PF;
270 	case DE_VECTOR:
271 	case TS_VECTOR:
272 	case NP_VECTOR:
273 	case SS_VECTOR:
274 	case GP_VECTOR:
275 		return EXCPT_CONTRIBUTORY;
276 	default:
277 		break;
278 	}
279 	return EXCPT_BENIGN;
280 }
281 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)282 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
283 		unsigned nr, bool has_error, u32 error_code,
284 		bool reinject)
285 {
286 	u32 prev_nr;
287 	int class1, class2;
288 
289 	kvm_make_request(KVM_REQ_EVENT, vcpu);
290 
291 	if (!vcpu->arch.exception.pending) {
292 	queue:
293 		vcpu->arch.exception.pending = true;
294 		vcpu->arch.exception.has_error_code = has_error;
295 		vcpu->arch.exception.nr = nr;
296 		vcpu->arch.exception.error_code = error_code;
297 		vcpu->arch.exception.reinject = reinject;
298 		return;
299 	}
300 
301 	/* to check exception */
302 	prev_nr = vcpu->arch.exception.nr;
303 	if (prev_nr == DF_VECTOR) {
304 		/* triple fault -> shutdown */
305 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
306 		return;
307 	}
308 	class1 = exception_class(prev_nr);
309 	class2 = exception_class(nr);
310 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
311 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
312 		/* generate double fault per SDM Table 5-5 */
313 		vcpu->arch.exception.pending = true;
314 		vcpu->arch.exception.has_error_code = true;
315 		vcpu->arch.exception.nr = DF_VECTOR;
316 		vcpu->arch.exception.error_code = 0;
317 	} else
318 		/* replace previous exception with a new one in a hope
319 		   that instruction re-execution will regenerate lost
320 		   exception */
321 		goto queue;
322 }
323 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)324 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 {
326 	kvm_multiple_exception(vcpu, nr, false, 0, false);
327 }
328 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)330 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 {
332 	kvm_multiple_exception(vcpu, nr, false, 0, true);
333 }
334 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)336 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 {
338 	if (err)
339 		kvm_inject_gp(vcpu, 0);
340 	else
341 		kvm_x86_ops->skip_emulated_instruction(vcpu);
342 }
343 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)345 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 {
347 	++vcpu->stat.pf_guest;
348 	vcpu->arch.cr2 = fault->address;
349 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 }
351 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)353 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 {
355 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
356 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
357 	else
358 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
359 }
360 
kvm_inject_nmi(struct kvm_vcpu * vcpu)361 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 {
363 	atomic_inc(&vcpu->arch.nmi_queued);
364 	kvm_make_request(KVM_REQ_NMI, vcpu);
365 }
366 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)368 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 {
370 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 }
372 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)374 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 {
376 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 }
378 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
379 
380 /*
381  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
382  * a #GP and return false.
383  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)384 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 {
386 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
387 		return true;
388 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
389 	return false;
390 }
391 EXPORT_SYMBOL_GPL(kvm_require_cpl);
392 
393 /*
394  * This function will be used to read from the physical memory of the currently
395  * running guest. The difference to kvm_read_guest_page is that this function
396  * can read from guest physical or from the guest's guest physical memory.
397  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)398 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
399 			    gfn_t ngfn, void *data, int offset, int len,
400 			    u32 access)
401 {
402 	gfn_t real_gfn;
403 	gpa_t ngpa;
404 
405 	ngpa     = gfn_to_gpa(ngfn);
406 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
407 	if (real_gfn == UNMAPPED_GVA)
408 		return -EFAULT;
409 
410 	real_gfn = gpa_to_gfn(real_gfn);
411 
412 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 }
414 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)416 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
417 			       void *data, int offset, int len, u32 access)
418 {
419 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
420 				       data, offset, len, access);
421 }
422 
423 /*
424  * Load the pae pdptrs.  Return true is they are all valid.
425  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)426 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 {
428 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
429 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
430 	int i;
431 	int ret;
432 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433 
434 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
435 				      offset * sizeof(u64), sizeof(pdpte),
436 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
437 	if (ret < 0) {
438 		ret = 0;
439 		goto out;
440 	}
441 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
442 		if (is_present_gpte(pdpte[i]) &&
443 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
444 			ret = 0;
445 			goto out;
446 		}
447 	}
448 	ret = 1;
449 
450 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
451 	__set_bit(VCPU_EXREG_PDPTR,
452 		  (unsigned long *)&vcpu->arch.regs_avail);
453 	__set_bit(VCPU_EXREG_PDPTR,
454 		  (unsigned long *)&vcpu->arch.regs_dirty);
455 out:
456 
457 	return ret;
458 }
459 EXPORT_SYMBOL_GPL(load_pdptrs);
460 
pdptrs_changed(struct kvm_vcpu * vcpu)461 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 {
463 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
464 	bool changed = true;
465 	int offset;
466 	gfn_t gfn;
467 	int r;
468 
469 	if (is_long_mode(vcpu) || !is_pae(vcpu))
470 		return false;
471 
472 	if (!test_bit(VCPU_EXREG_PDPTR,
473 		      (unsigned long *)&vcpu->arch.regs_avail))
474 		return true;
475 
476 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
477 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
478 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
479 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
480 	if (r < 0)
481 		goto out;
482 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
483 out:
484 
485 	return changed;
486 }
487 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)488 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 {
490 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
491 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
492 				    X86_CR0_CD | X86_CR0_NW;
493 
494 	cr0 |= X86_CR0_ET;
495 
496 #ifdef CONFIG_X86_64
497 	if (cr0 & 0xffffffff00000000UL)
498 		return 1;
499 #endif
500 
501 	cr0 &= ~CR0_RESERVED_BITS;
502 
503 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
504 		return 1;
505 
506 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
507 		return 1;
508 
509 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
510 #ifdef CONFIG_X86_64
511 		if ((vcpu->arch.efer & EFER_LME)) {
512 			int cs_db, cs_l;
513 
514 			if (!is_pae(vcpu))
515 				return 1;
516 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
517 			if (cs_l)
518 				return 1;
519 		} else
520 #endif
521 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
522 						 kvm_read_cr3(vcpu)))
523 			return 1;
524 	}
525 
526 	kvm_x86_ops->set_cr0(vcpu, cr0);
527 
528 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
529 		kvm_clear_async_pf_completion_queue(vcpu);
530 		kvm_async_pf_hash_reset(vcpu);
531 	}
532 
533 	if ((cr0 ^ old_cr0) & update_bits)
534 		kvm_mmu_reset_context(vcpu);
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)539 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 {
541 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 }
543 EXPORT_SYMBOL_GPL(kvm_lmsw);
544 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)545 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 {
547 	u64 xcr0;
548 
549 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
550 	if (index != XCR_XFEATURE_ENABLED_MASK)
551 		return 1;
552 	xcr0 = xcr;
553 	if (kvm_x86_ops->get_cpl(vcpu) != 0)
554 		return 1;
555 	if (!(xcr0 & XSTATE_FP))
556 		return 1;
557 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
558 		return 1;
559 	if (xcr0 & ~host_xcr0)
560 		return 1;
561 	vcpu->arch.xcr0 = xcr0;
562 	vcpu->guest_xcr0_loaded = 0;
563 	return 0;
564 }
565 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)566 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 {
568 	if (__kvm_set_xcr(vcpu, index, xcr)) {
569 		kvm_inject_gp(vcpu, 0);
570 		return 1;
571 	}
572 	return 0;
573 }
574 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)576 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
577 {
578 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
579 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
580 				   X86_CR4_PAE | X86_CR4_SMEP;
581 	if (cr4 & CR4_RESERVED_BITS)
582 		return 1;
583 
584 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
585 		return 1;
586 
587 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
588 		return 1;
589 
590 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
591 		return 1;
592 
593 	if (is_long_mode(vcpu)) {
594 		if (!(cr4 & X86_CR4_PAE))
595 			return 1;
596 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
597 		   && ((cr4 ^ old_cr4) & pdptr_bits)
598 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
599 				   kvm_read_cr3(vcpu)))
600 		return 1;
601 
602 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
603 		return 1;
604 
605 	if ((cr4 ^ old_cr4) & pdptr_bits)
606 		kvm_mmu_reset_context(vcpu);
607 
608 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
609 		kvm_update_cpuid(vcpu);
610 
611 	return 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_set_cr4);
614 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)615 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
616 {
617 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
618 		kvm_mmu_sync_roots(vcpu);
619 		kvm_mmu_flush_tlb(vcpu);
620 		return 0;
621 	}
622 
623 	if (is_long_mode(vcpu)) {
624 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
625 			return 1;
626 	} else {
627 		if (is_pae(vcpu)) {
628 			if (cr3 & CR3_PAE_RESERVED_BITS)
629 				return 1;
630 			if (is_paging(vcpu) &&
631 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
632 				return 1;
633 		}
634 		/*
635 		 * We don't check reserved bits in nonpae mode, because
636 		 * this isn't enforced, and VMware depends on this.
637 		 */
638 	}
639 
640 	/*
641 	 * Does the new cr3 value map to physical memory? (Note, we
642 	 * catch an invalid cr3 even in real-mode, because it would
643 	 * cause trouble later on when we turn on paging anyway.)
644 	 *
645 	 * A real CPU would silently accept an invalid cr3 and would
646 	 * attempt to use it - with largely undefined (and often hard
647 	 * to debug) behavior on the guest side.
648 	 */
649 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
650 		return 1;
651 	vcpu->arch.cr3 = cr3;
652 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
653 	vcpu->arch.mmu.new_cr3(vcpu);
654 	return 0;
655 }
656 EXPORT_SYMBOL_GPL(kvm_set_cr3);
657 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)658 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
659 {
660 	if (cr8 & CR8_RESERVED_BITS)
661 		return 1;
662 	if (irqchip_in_kernel(vcpu->kvm))
663 		kvm_lapic_set_tpr(vcpu, cr8);
664 	else
665 		vcpu->arch.cr8 = cr8;
666 	return 0;
667 }
668 EXPORT_SYMBOL_GPL(kvm_set_cr8);
669 
kvm_get_cr8(struct kvm_vcpu * vcpu)670 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
671 {
672 	if (irqchip_in_kernel(vcpu->kvm))
673 		return kvm_lapic_get_cr8(vcpu);
674 	else
675 		return vcpu->arch.cr8;
676 }
677 EXPORT_SYMBOL_GPL(kvm_get_cr8);
678 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)679 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
680 {
681 	switch (dr) {
682 	case 0 ... 3:
683 		vcpu->arch.db[dr] = val;
684 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
685 			vcpu->arch.eff_db[dr] = val;
686 		break;
687 	case 4:
688 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
689 			return 1; /* #UD */
690 		/* fall through */
691 	case 6:
692 		if (val & 0xffffffff00000000ULL)
693 			return -1; /* #GP */
694 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
695 		break;
696 	case 5:
697 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
698 			return 1; /* #UD */
699 		/* fall through */
700 	default: /* 7 */
701 		if (val & 0xffffffff00000000ULL)
702 			return -1; /* #GP */
703 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
704 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
705 			kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
706 			vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
707 		}
708 		break;
709 	}
710 
711 	return 0;
712 }
713 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)714 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
715 {
716 	int res;
717 
718 	res = __kvm_set_dr(vcpu, dr, val);
719 	if (res > 0)
720 		kvm_queue_exception(vcpu, UD_VECTOR);
721 	else if (res < 0)
722 		kvm_inject_gp(vcpu, 0);
723 
724 	return res;
725 }
726 EXPORT_SYMBOL_GPL(kvm_set_dr);
727 
_kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)728 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
729 {
730 	switch (dr) {
731 	case 0 ... 3:
732 		*val = vcpu->arch.db[dr];
733 		break;
734 	case 4:
735 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
736 			return 1;
737 		/* fall through */
738 	case 6:
739 		*val = vcpu->arch.dr6;
740 		break;
741 	case 5:
742 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
743 			return 1;
744 		/* fall through */
745 	default: /* 7 */
746 		*val = vcpu->arch.dr7;
747 		break;
748 	}
749 
750 	return 0;
751 }
752 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)753 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
754 {
755 	if (_kvm_get_dr(vcpu, dr, val)) {
756 		kvm_queue_exception(vcpu, UD_VECTOR);
757 		return 1;
758 	}
759 	return 0;
760 }
761 EXPORT_SYMBOL_GPL(kvm_get_dr);
762 
kvm_rdpmc(struct kvm_vcpu * vcpu)763 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
764 {
765 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
766 	u64 data;
767 	int err;
768 
769 	err = kvm_pmu_read_pmc(vcpu, ecx, &data);
770 	if (err)
771 		return err;
772 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
773 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
774 	return err;
775 }
776 EXPORT_SYMBOL_GPL(kvm_rdpmc);
777 
778 /*
779  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
780  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
781  *
782  * This list is modified at module load time to reflect the
783  * capabilities of the host cpu. This capabilities test skips MSRs that are
784  * kvm-specific. Those are put in the beginning of the list.
785  */
786 
787 #define KVM_SAVE_MSRS_BEGIN	9
788 static u32 msrs_to_save[] = {
789 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
790 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
791 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
792 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
793 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
794 	MSR_STAR,
795 #ifdef CONFIG_X86_64
796 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
797 #endif
798 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
799 };
800 
801 static unsigned num_msrs_to_save;
802 
803 static u32 emulated_msrs[] = {
804 	MSR_IA32_TSCDEADLINE,
805 	MSR_IA32_MISC_ENABLE,
806 	MSR_IA32_MCG_STATUS,
807 	MSR_IA32_MCG_CTL,
808 };
809 
set_efer(struct kvm_vcpu * vcpu,u64 efer)810 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
811 {
812 	u64 old_efer = vcpu->arch.efer;
813 
814 	if (efer & efer_reserved_bits)
815 		return 1;
816 
817 	if (is_paging(vcpu)
818 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
819 		return 1;
820 
821 	if (efer & EFER_FFXSR) {
822 		struct kvm_cpuid_entry2 *feat;
823 
824 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
825 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
826 			return 1;
827 	}
828 
829 	if (efer & EFER_SVME) {
830 		struct kvm_cpuid_entry2 *feat;
831 
832 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
833 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
834 			return 1;
835 	}
836 
837 	efer &= ~EFER_LMA;
838 	efer |= vcpu->arch.efer & EFER_LMA;
839 
840 	kvm_x86_ops->set_efer(vcpu, efer);
841 
842 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
843 
844 	/* Update reserved bits */
845 	if ((efer ^ old_efer) & EFER_NX)
846 		kvm_mmu_reset_context(vcpu);
847 
848 	return 0;
849 }
850 
kvm_enable_efer_bits(u64 mask)851 void kvm_enable_efer_bits(u64 mask)
852 {
853        efer_reserved_bits &= ~mask;
854 }
855 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
856 
857 
858 /*
859  * Writes msr value into into the appropriate "register".
860  * Returns 0 on success, non-0 otherwise.
861  * Assumes vcpu_load() was already called.
862  */
kvm_set_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)863 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
864 {
865 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
866 }
867 
868 /*
869  * Adapt set_msr() to msr_io()'s calling convention
870  */
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)871 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
872 {
873 	return kvm_set_msr(vcpu, index, *data);
874 }
875 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)876 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
877 {
878 	int version;
879 	int r;
880 	struct pvclock_wall_clock wc;
881 	struct timespec boot;
882 
883 	if (!wall_clock)
884 		return;
885 
886 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
887 	if (r)
888 		return;
889 
890 	if (version & 1)
891 		++version;  /* first time write, random junk */
892 
893 	++version;
894 
895 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
896 
897 	/*
898 	 * The guest calculates current wall clock time by adding
899 	 * system time (updated by kvm_guest_time_update below) to the
900 	 * wall clock specified here.  guest system time equals host
901 	 * system time for us, thus we must fill in host boot time here.
902 	 */
903 	getboottime(&boot);
904 
905 	wc.sec = boot.tv_sec;
906 	wc.nsec = boot.tv_nsec;
907 	wc.version = version;
908 
909 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
910 
911 	version++;
912 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
913 }
914 
div_frac(uint32_t dividend,uint32_t divisor)915 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
916 {
917 	uint32_t quotient, remainder;
918 
919 	/* Don't try to replace with do_div(), this one calculates
920 	 * "(dividend << 32) / divisor" */
921 	__asm__ ( "divl %4"
922 		  : "=a" (quotient), "=d" (remainder)
923 		  : "0" (0), "1" (dividend), "r" (divisor) );
924 	return quotient;
925 }
926 
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)927 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
928 			       s8 *pshift, u32 *pmultiplier)
929 {
930 	uint64_t scaled64;
931 	int32_t  shift = 0;
932 	uint64_t tps64;
933 	uint32_t tps32;
934 
935 	tps64 = base_khz * 1000LL;
936 	scaled64 = scaled_khz * 1000LL;
937 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
938 		tps64 >>= 1;
939 		shift--;
940 	}
941 
942 	tps32 = (uint32_t)tps64;
943 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
944 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
945 			scaled64 >>= 1;
946 		else
947 			tps32 <<= 1;
948 		shift++;
949 	}
950 
951 	*pshift = shift;
952 	*pmultiplier = div_frac(scaled64, tps32);
953 
954 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
955 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
956 }
957 
get_kernel_ns(void)958 static inline u64 get_kernel_ns(void)
959 {
960 	struct timespec ts;
961 
962 	WARN_ON(preemptible());
963 	ktime_get_ts(&ts);
964 	monotonic_to_bootbased(&ts);
965 	return timespec_to_ns(&ts);
966 }
967 
968 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
969 unsigned long max_tsc_khz;
970 
kvm_tsc_changes_freq(void)971 static inline int kvm_tsc_changes_freq(void)
972 {
973 	int cpu = get_cpu();
974 	int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
975 		  cpufreq_quick_get(cpu) != 0;
976 	put_cpu();
977 	return ret;
978 }
979 
vcpu_tsc_khz(struct kvm_vcpu * vcpu)980 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
981 {
982 	if (vcpu->arch.virtual_tsc_khz)
983 		return vcpu->arch.virtual_tsc_khz;
984 	else
985 		return __this_cpu_read(cpu_tsc_khz);
986 }
987 
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)988 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
989 {
990 	u64 ret;
991 
992 	WARN_ON(preemptible());
993 	if (kvm_tsc_changes_freq())
994 		printk_once(KERN_WARNING
995 		 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
996 	ret = nsec * vcpu_tsc_khz(vcpu);
997 	do_div(ret, USEC_PER_SEC);
998 	return ret;
999 }
1000 
kvm_init_tsc_catchup(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1001 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1002 {
1003 	/* Compute a scale to convert nanoseconds in TSC cycles */
1004 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1005 			   &vcpu->arch.tsc_catchup_shift,
1006 			   &vcpu->arch.tsc_catchup_mult);
1007 }
1008 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1009 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1010 {
1011 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1012 				      vcpu->arch.tsc_catchup_mult,
1013 				      vcpu->arch.tsc_catchup_shift);
1014 	tsc += vcpu->arch.last_tsc_write;
1015 	return tsc;
1016 }
1017 
kvm_write_tsc(struct kvm_vcpu * vcpu,u64 data)1018 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1019 {
1020 	struct kvm *kvm = vcpu->kvm;
1021 	u64 offset, ns, elapsed;
1022 	unsigned long flags;
1023 	s64 sdiff;
1024 
1025 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1026 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1027 	ns = get_kernel_ns();
1028 	elapsed = ns - kvm->arch.last_tsc_nsec;
1029 	sdiff = data - kvm->arch.last_tsc_write;
1030 	if (sdiff < 0)
1031 		sdiff = -sdiff;
1032 
1033 	/*
1034 	 * Special case: close write to TSC within 5 seconds of
1035 	 * another CPU is interpreted as an attempt to synchronize
1036 	 * The 5 seconds is to accommodate host load / swapping as
1037 	 * well as any reset of TSC during the boot process.
1038 	 *
1039 	 * In that case, for a reliable TSC, we can match TSC offsets,
1040 	 * or make a best guest using elapsed value.
1041 	 */
1042 	if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1043 	    elapsed < 5ULL * NSEC_PER_SEC) {
1044 		if (!check_tsc_unstable()) {
1045 			offset = kvm->arch.last_tsc_offset;
1046 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1047 		} else {
1048 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1049 			offset += delta;
1050 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1051 		}
1052 		ns = kvm->arch.last_tsc_nsec;
1053 	}
1054 	kvm->arch.last_tsc_nsec = ns;
1055 	kvm->arch.last_tsc_write = data;
1056 	kvm->arch.last_tsc_offset = offset;
1057 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1058 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1059 
1060 	/* Reset of TSC must disable overshoot protection below */
1061 	vcpu->arch.hv_clock.tsc_timestamp = 0;
1062 	vcpu->arch.last_tsc_write = data;
1063 	vcpu->arch.last_tsc_nsec = ns;
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1066 
kvm_guest_time_update(struct kvm_vcpu * v)1067 static int kvm_guest_time_update(struct kvm_vcpu *v)
1068 {
1069 	unsigned long flags;
1070 	struct kvm_vcpu_arch *vcpu = &v->arch;
1071 	void *shared_kaddr;
1072 	unsigned long this_tsc_khz;
1073 	s64 kernel_ns, max_kernel_ns;
1074 	u64 tsc_timestamp;
1075 
1076 	/* Keep irq disabled to prevent changes to the clock */
1077 	local_irq_save(flags);
1078 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1079 	kernel_ns = get_kernel_ns();
1080 	this_tsc_khz = vcpu_tsc_khz(v);
1081 	if (unlikely(this_tsc_khz == 0)) {
1082 		local_irq_restore(flags);
1083 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1084 		return 1;
1085 	}
1086 
1087 	/*
1088 	 * We may have to catch up the TSC to match elapsed wall clock
1089 	 * time for two reasons, even if kvmclock is used.
1090 	 *   1) CPU could have been running below the maximum TSC rate
1091 	 *   2) Broken TSC compensation resets the base at each VCPU
1092 	 *      entry to avoid unknown leaps of TSC even when running
1093 	 *      again on the same CPU.  This may cause apparent elapsed
1094 	 *      time to disappear, and the guest to stand still or run
1095 	 *	very slowly.
1096 	 */
1097 	if (vcpu->tsc_catchup) {
1098 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1099 		if (tsc > tsc_timestamp) {
1100 			kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1101 			tsc_timestamp = tsc;
1102 		}
1103 	}
1104 
1105 	local_irq_restore(flags);
1106 
1107 	if (!vcpu->time_page)
1108 		return 0;
1109 
1110 	/*
1111 	 * Time as measured by the TSC may go backwards when resetting the base
1112 	 * tsc_timestamp.  The reason for this is that the TSC resolution is
1113 	 * higher than the resolution of the other clock scales.  Thus, many
1114 	 * possible measurments of the TSC correspond to one measurement of any
1115 	 * other clock, and so a spread of values is possible.  This is not a
1116 	 * problem for the computation of the nanosecond clock; with TSC rates
1117 	 * around 1GHZ, there can only be a few cycles which correspond to one
1118 	 * nanosecond value, and any path through this code will inevitably
1119 	 * take longer than that.  However, with the kernel_ns value itself,
1120 	 * the precision may be much lower, down to HZ granularity.  If the
1121 	 * first sampling of TSC against kernel_ns ends in the low part of the
1122 	 * range, and the second in the high end of the range, we can get:
1123 	 *
1124 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1125 	 *
1126 	 * As the sampling errors potentially range in the thousands of cycles,
1127 	 * it is possible such a time value has already been observed by the
1128 	 * guest.  To protect against this, we must compute the system time as
1129 	 * observed by the guest and ensure the new system time is greater.
1130 	 */
1131 	max_kernel_ns = 0;
1132 	if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1133 		max_kernel_ns = vcpu->last_guest_tsc -
1134 				vcpu->hv_clock.tsc_timestamp;
1135 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1136 				    vcpu->hv_clock.tsc_to_system_mul,
1137 				    vcpu->hv_clock.tsc_shift);
1138 		max_kernel_ns += vcpu->last_kernel_ns;
1139 	}
1140 
1141 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1142 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1143 				   &vcpu->hv_clock.tsc_shift,
1144 				   &vcpu->hv_clock.tsc_to_system_mul);
1145 		vcpu->hw_tsc_khz = this_tsc_khz;
1146 	}
1147 
1148 	if (max_kernel_ns > kernel_ns)
1149 		kernel_ns = max_kernel_ns;
1150 
1151 	/* With all the info we got, fill in the values */
1152 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1153 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1154 	vcpu->last_kernel_ns = kernel_ns;
1155 	vcpu->last_guest_tsc = tsc_timestamp;
1156 	vcpu->hv_clock.flags = 0;
1157 
1158 	/*
1159 	 * The interface expects us to write an even number signaling that the
1160 	 * update is finished. Since the guest won't see the intermediate
1161 	 * state, we just increase by 2 at the end.
1162 	 */
1163 	vcpu->hv_clock.version += 2;
1164 
1165 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1166 
1167 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1168 	       sizeof(vcpu->hv_clock));
1169 
1170 	kunmap_atomic(shared_kaddr, KM_USER0);
1171 
1172 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1173 	return 0;
1174 }
1175 
msr_mtrr_valid(unsigned msr)1176 static bool msr_mtrr_valid(unsigned msr)
1177 {
1178 	switch (msr) {
1179 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1180 	case MSR_MTRRfix64K_00000:
1181 	case MSR_MTRRfix16K_80000:
1182 	case MSR_MTRRfix16K_A0000:
1183 	case MSR_MTRRfix4K_C0000:
1184 	case MSR_MTRRfix4K_C8000:
1185 	case MSR_MTRRfix4K_D0000:
1186 	case MSR_MTRRfix4K_D8000:
1187 	case MSR_MTRRfix4K_E0000:
1188 	case MSR_MTRRfix4K_E8000:
1189 	case MSR_MTRRfix4K_F0000:
1190 	case MSR_MTRRfix4K_F8000:
1191 	case MSR_MTRRdefType:
1192 	case MSR_IA32_CR_PAT:
1193 		return true;
1194 	case 0x2f8:
1195 		return true;
1196 	}
1197 	return false;
1198 }
1199 
valid_pat_type(unsigned t)1200 static bool valid_pat_type(unsigned t)
1201 {
1202 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1203 }
1204 
valid_mtrr_type(unsigned t)1205 static bool valid_mtrr_type(unsigned t)
1206 {
1207 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1208 }
1209 
mtrr_valid(struct kvm_vcpu * vcpu,u32 msr,u64 data)1210 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1211 {
1212 	int i;
1213 
1214 	if (!msr_mtrr_valid(msr))
1215 		return false;
1216 
1217 	if (msr == MSR_IA32_CR_PAT) {
1218 		for (i = 0; i < 8; i++)
1219 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
1220 				return false;
1221 		return true;
1222 	} else if (msr == MSR_MTRRdefType) {
1223 		if (data & ~0xcff)
1224 			return false;
1225 		return valid_mtrr_type(data & 0xff);
1226 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1227 		for (i = 0; i < 8 ; i++)
1228 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1229 				return false;
1230 		return true;
1231 	}
1232 
1233 	/* variable MTRRs */
1234 	return valid_mtrr_type(data & 0xff);
1235 }
1236 
set_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 data)1237 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1238 {
1239 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1240 
1241 	if (!mtrr_valid(vcpu, msr, data))
1242 		return 1;
1243 
1244 	if (msr == MSR_MTRRdefType) {
1245 		vcpu->arch.mtrr_state.def_type = data;
1246 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1247 	} else if (msr == MSR_MTRRfix64K_00000)
1248 		p[0] = data;
1249 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1250 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
1251 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1252 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1253 	else if (msr == MSR_IA32_CR_PAT)
1254 		vcpu->arch.pat = data;
1255 	else {	/* Variable MTRRs */
1256 		int idx, is_mtrr_mask;
1257 		u64 *pt;
1258 
1259 		idx = (msr - 0x200) / 2;
1260 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1261 		if (!is_mtrr_mask)
1262 			pt =
1263 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1264 		else
1265 			pt =
1266 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1267 		*pt = data;
1268 	}
1269 
1270 	kvm_mmu_reset_context(vcpu);
1271 	return 0;
1272 }
1273 
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1274 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1275 {
1276 	u64 mcg_cap = vcpu->arch.mcg_cap;
1277 	unsigned bank_num = mcg_cap & 0xff;
1278 
1279 	switch (msr) {
1280 	case MSR_IA32_MCG_STATUS:
1281 		vcpu->arch.mcg_status = data;
1282 		break;
1283 	case MSR_IA32_MCG_CTL:
1284 		if (!(mcg_cap & MCG_CTL_P))
1285 			return 1;
1286 		if (data != 0 && data != ~(u64)0)
1287 			return -1;
1288 		vcpu->arch.mcg_ctl = data;
1289 		break;
1290 	default:
1291 		if (msr >= MSR_IA32_MC0_CTL &&
1292 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1293 			u32 offset = msr - MSR_IA32_MC0_CTL;
1294 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1295 			 * some Linux kernels though clear bit 10 in bank 4 to
1296 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1297 			 * this to avoid an uncatched #GP in the guest
1298 			 */
1299 			if ((offset & 0x3) == 0 &&
1300 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1301 				return -1;
1302 			vcpu->arch.mce_banks[offset] = data;
1303 			break;
1304 		}
1305 		return 1;
1306 	}
1307 	return 0;
1308 }
1309 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)1310 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1311 {
1312 	struct kvm *kvm = vcpu->kvm;
1313 	int lm = is_long_mode(vcpu);
1314 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1315 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1316 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1317 		: kvm->arch.xen_hvm_config.blob_size_32;
1318 	u32 page_num = data & ~PAGE_MASK;
1319 	u64 page_addr = data & PAGE_MASK;
1320 	u8 *page;
1321 	int r;
1322 
1323 	r = -E2BIG;
1324 	if (page_num >= blob_size)
1325 		goto out;
1326 	r = -ENOMEM;
1327 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1328 	if (IS_ERR(page)) {
1329 		r = PTR_ERR(page);
1330 		goto out;
1331 	}
1332 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1333 		goto out_free;
1334 	r = 0;
1335 out_free:
1336 	kfree(page);
1337 out:
1338 	return r;
1339 }
1340 
kvm_hv_hypercall_enabled(struct kvm * kvm)1341 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1342 {
1343 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1344 }
1345 
kvm_hv_msr_partition_wide(u32 msr)1346 static bool kvm_hv_msr_partition_wide(u32 msr)
1347 {
1348 	bool r = false;
1349 	switch (msr) {
1350 	case HV_X64_MSR_GUEST_OS_ID:
1351 	case HV_X64_MSR_HYPERCALL:
1352 		r = true;
1353 		break;
1354 	}
1355 
1356 	return r;
1357 }
1358 
set_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 data)1359 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1360 {
1361 	struct kvm *kvm = vcpu->kvm;
1362 
1363 	switch (msr) {
1364 	case HV_X64_MSR_GUEST_OS_ID:
1365 		kvm->arch.hv_guest_os_id = data;
1366 		/* setting guest os id to zero disables hypercall page */
1367 		if (!kvm->arch.hv_guest_os_id)
1368 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1369 		break;
1370 	case HV_X64_MSR_HYPERCALL: {
1371 		u64 gfn;
1372 		unsigned long addr;
1373 		u8 instructions[4];
1374 
1375 		/* if guest os id is not set hypercall should remain disabled */
1376 		if (!kvm->arch.hv_guest_os_id)
1377 			break;
1378 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1379 			kvm->arch.hv_hypercall = data;
1380 			break;
1381 		}
1382 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1383 		addr = gfn_to_hva(kvm, gfn);
1384 		if (kvm_is_error_hva(addr))
1385 			return 1;
1386 		kvm_x86_ops->patch_hypercall(vcpu, instructions);
1387 		((unsigned char *)instructions)[3] = 0xc3; /* ret */
1388 		if (__copy_to_user((void __user *)addr, instructions, 4))
1389 			return 1;
1390 		kvm->arch.hv_hypercall = data;
1391 		break;
1392 	}
1393 	default:
1394 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1395 			  "data 0x%llx\n", msr, data);
1396 		return 1;
1397 	}
1398 	return 0;
1399 }
1400 
set_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 data)1401 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1402 {
1403 	switch (msr) {
1404 	case HV_X64_MSR_APIC_ASSIST_PAGE: {
1405 		unsigned long addr;
1406 
1407 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1408 			vcpu->arch.hv_vapic = data;
1409 			break;
1410 		}
1411 		addr = gfn_to_hva(vcpu->kvm, data >>
1412 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1413 		if (kvm_is_error_hva(addr))
1414 			return 1;
1415 		if (__clear_user((void __user *)addr, PAGE_SIZE))
1416 			return 1;
1417 		vcpu->arch.hv_vapic = data;
1418 		break;
1419 	}
1420 	case HV_X64_MSR_EOI:
1421 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1422 	case HV_X64_MSR_ICR:
1423 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1424 	case HV_X64_MSR_TPR:
1425 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1426 	default:
1427 		pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1428 			  "data 0x%llx\n", msr, data);
1429 		return 1;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)1435 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1436 {
1437 	gpa_t gpa = data & ~0x3f;
1438 
1439 	/* Bits 2:5 are resrved, Should be zero */
1440 	if (data & 0x3c)
1441 		return 1;
1442 
1443 	vcpu->arch.apf.msr_val = data;
1444 
1445 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1446 		kvm_clear_async_pf_completion_queue(vcpu);
1447 		kvm_async_pf_hash_reset(vcpu);
1448 		return 0;
1449 	}
1450 
1451 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1452 		return 1;
1453 
1454 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1455 	kvm_async_pf_wakeup_all(vcpu);
1456 	return 0;
1457 }
1458 
kvmclock_reset(struct kvm_vcpu * vcpu)1459 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1460 {
1461 	if (vcpu->arch.time_page) {
1462 		kvm_release_page_dirty(vcpu->arch.time_page);
1463 		vcpu->arch.time_page = NULL;
1464 	}
1465 }
1466 
accumulate_steal_time(struct kvm_vcpu * vcpu)1467 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1468 {
1469 	u64 delta;
1470 
1471 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1472 		return;
1473 
1474 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1475 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
1476 	vcpu->arch.st.accum_steal = delta;
1477 }
1478 
record_steal_time(struct kvm_vcpu * vcpu)1479 static void record_steal_time(struct kvm_vcpu *vcpu)
1480 {
1481 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1482 		return;
1483 
1484 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1485 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1486 		return;
1487 
1488 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1489 	vcpu->arch.st.steal.version += 2;
1490 	vcpu->arch.st.accum_steal = 0;
1491 
1492 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1493 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1494 }
1495 
kvm_set_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 data)1496 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1497 {
1498 	bool pr = false;
1499 
1500 	switch (msr) {
1501 	case MSR_EFER:
1502 		return set_efer(vcpu, data);
1503 	case MSR_K7_HWCR:
1504 		data &= ~(u64)0x40;	/* ignore flush filter disable */
1505 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
1506 		if (data != 0) {
1507 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1508 				data);
1509 			return 1;
1510 		}
1511 		break;
1512 	case MSR_FAM10H_MMIO_CONF_BASE:
1513 		if (data != 0) {
1514 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1515 				"0x%llx\n", data);
1516 			return 1;
1517 		}
1518 		break;
1519 	case MSR_AMD64_NB_CFG:
1520 		break;
1521 	case MSR_IA32_DEBUGCTLMSR:
1522 		if (!data) {
1523 			/* We support the non-activated case already */
1524 			break;
1525 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1526 			/* Values other than LBR and BTF are vendor-specific,
1527 			   thus reserved and should throw a #GP */
1528 			return 1;
1529 		}
1530 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1531 			__func__, data);
1532 		break;
1533 	case MSR_IA32_UCODE_REV:
1534 	case MSR_IA32_UCODE_WRITE:
1535 	case MSR_VM_HSAVE_PA:
1536 	case MSR_AMD64_PATCH_LOADER:
1537 		break;
1538 	case 0x200 ... 0x2ff:
1539 		return set_msr_mtrr(vcpu, msr, data);
1540 	case MSR_IA32_APICBASE:
1541 		kvm_set_apic_base(vcpu, data);
1542 		break;
1543 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1544 		return kvm_x2apic_msr_write(vcpu, msr, data);
1545 	case MSR_IA32_TSCDEADLINE:
1546 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
1547 		break;
1548 	case MSR_IA32_MISC_ENABLE:
1549 		vcpu->arch.ia32_misc_enable_msr = data;
1550 		break;
1551 	case MSR_KVM_WALL_CLOCK_NEW:
1552 	case MSR_KVM_WALL_CLOCK:
1553 		vcpu->kvm->arch.wall_clock = data;
1554 		kvm_write_wall_clock(vcpu->kvm, data);
1555 		break;
1556 	case MSR_KVM_SYSTEM_TIME_NEW:
1557 	case MSR_KVM_SYSTEM_TIME: {
1558 		kvmclock_reset(vcpu);
1559 
1560 		vcpu->arch.time = data;
1561 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1562 
1563 		/* we verify if the enable bit is set... */
1564 		if (!(data & 1))
1565 			break;
1566 
1567 		/* ...but clean it before doing the actual write */
1568 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1569 
1570 		vcpu->arch.time_page =
1571 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1572 
1573 		if (is_error_page(vcpu->arch.time_page)) {
1574 			kvm_release_page_clean(vcpu->arch.time_page);
1575 			vcpu->arch.time_page = NULL;
1576 		}
1577 		break;
1578 	}
1579 	case MSR_KVM_ASYNC_PF_EN:
1580 		if (kvm_pv_enable_async_pf(vcpu, data))
1581 			return 1;
1582 		break;
1583 	case MSR_KVM_STEAL_TIME:
1584 
1585 		if (unlikely(!sched_info_on()))
1586 			return 1;
1587 
1588 		if (data & KVM_STEAL_RESERVED_MASK)
1589 			return 1;
1590 
1591 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1592 							data & KVM_STEAL_VALID_BITS))
1593 			return 1;
1594 
1595 		vcpu->arch.st.msr_val = data;
1596 
1597 		if (!(data & KVM_MSR_ENABLED))
1598 			break;
1599 
1600 		vcpu->arch.st.last_steal = current->sched_info.run_delay;
1601 
1602 		preempt_disable();
1603 		accumulate_steal_time(vcpu);
1604 		preempt_enable();
1605 
1606 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1607 
1608 		break;
1609 
1610 	case MSR_IA32_MCG_CTL:
1611 	case MSR_IA32_MCG_STATUS:
1612 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1613 		return set_msr_mce(vcpu, msr, data);
1614 
1615 	/* Performance counters are not protected by a CPUID bit,
1616 	 * so we should check all of them in the generic path for the sake of
1617 	 * cross vendor migration.
1618 	 * Writing a zero into the event select MSRs disables them,
1619 	 * which we perfectly emulate ;-). Any other value should be at least
1620 	 * reported, some guests depend on them.
1621 	 */
1622 	case MSR_K7_EVNTSEL0:
1623 	case MSR_K7_EVNTSEL1:
1624 	case MSR_K7_EVNTSEL2:
1625 	case MSR_K7_EVNTSEL3:
1626 		if (data != 0)
1627 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1628 				"0x%x data 0x%llx\n", msr, data);
1629 		break;
1630 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
1631 	 * so we ignore writes to make it happy.
1632 	 */
1633 	case MSR_K7_PERFCTR0:
1634 	case MSR_K7_PERFCTR1:
1635 	case MSR_K7_PERFCTR2:
1636 	case MSR_K7_PERFCTR3:
1637 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1638 			"0x%x data 0x%llx\n", msr, data);
1639 		break;
1640 	case MSR_P6_PERFCTR0:
1641 	case MSR_P6_PERFCTR1:
1642 		pr = true;
1643 	case MSR_P6_EVNTSEL0:
1644 	case MSR_P6_EVNTSEL1:
1645 		if (kvm_pmu_msr(vcpu, msr))
1646 			return kvm_pmu_set_msr(vcpu, msr, data);
1647 
1648 		if (pr || data != 0)
1649 			pr_unimpl(vcpu, "disabled perfctr wrmsr: "
1650 				"0x%x data 0x%llx\n", msr, data);
1651 		break;
1652 	case MSR_K7_CLK_CTL:
1653 		/*
1654 		 * Ignore all writes to this no longer documented MSR.
1655 		 * Writes are only relevant for old K7 processors,
1656 		 * all pre-dating SVM, but a recommended workaround from
1657 		 * AMD for these chips. It is possible to speicify the
1658 		 * affected processor models on the command line, hence
1659 		 * the need to ignore the workaround.
1660 		 */
1661 		break;
1662 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1663 		if (kvm_hv_msr_partition_wide(msr)) {
1664 			int r;
1665 			mutex_lock(&vcpu->kvm->lock);
1666 			r = set_msr_hyperv_pw(vcpu, msr, data);
1667 			mutex_unlock(&vcpu->kvm->lock);
1668 			return r;
1669 		} else
1670 			return set_msr_hyperv(vcpu, msr, data);
1671 		break;
1672 	case MSR_IA32_BBL_CR_CTL3:
1673 		/* Drop writes to this legacy MSR -- see rdmsr
1674 		 * counterpart for further detail.
1675 		 */
1676 		pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1677 		break;
1678 	default:
1679 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1680 			return xen_hvm_config(vcpu, data);
1681 		if (kvm_pmu_msr(vcpu, msr))
1682 			return kvm_pmu_set_msr(vcpu, msr, data);
1683 		if (!ignore_msrs) {
1684 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1685 				msr, data);
1686 			return 1;
1687 		} else {
1688 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1689 				msr, data);
1690 			break;
1691 		}
1692 	}
1693 	return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1696 
1697 
1698 /*
1699  * Reads an msr value (of 'msr_index') into 'pdata'.
1700  * Returns 0 on success, non-0 otherwise.
1701  * Assumes vcpu_load() was already called.
1702  */
kvm_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)1703 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1704 {
1705 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1706 }
1707 
get_msr_mtrr(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1708 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1709 {
1710 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1711 
1712 	if (!msr_mtrr_valid(msr))
1713 		return 1;
1714 
1715 	if (msr == MSR_MTRRdefType)
1716 		*pdata = vcpu->arch.mtrr_state.def_type +
1717 			 (vcpu->arch.mtrr_state.enabled << 10);
1718 	else if (msr == MSR_MTRRfix64K_00000)
1719 		*pdata = p[0];
1720 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1721 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1722 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1723 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1724 	else if (msr == MSR_IA32_CR_PAT)
1725 		*pdata = vcpu->arch.pat;
1726 	else {	/* Variable MTRRs */
1727 		int idx, is_mtrr_mask;
1728 		u64 *pt;
1729 
1730 		idx = (msr - 0x200) / 2;
1731 		is_mtrr_mask = msr - 0x200 - 2 * idx;
1732 		if (!is_mtrr_mask)
1733 			pt =
1734 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1735 		else
1736 			pt =
1737 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1738 		*pdata = *pt;
1739 	}
1740 
1741 	return 0;
1742 }
1743 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1744 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1745 {
1746 	u64 data;
1747 	u64 mcg_cap = vcpu->arch.mcg_cap;
1748 	unsigned bank_num = mcg_cap & 0xff;
1749 
1750 	switch (msr) {
1751 	case MSR_IA32_P5_MC_ADDR:
1752 	case MSR_IA32_P5_MC_TYPE:
1753 		data = 0;
1754 		break;
1755 	case MSR_IA32_MCG_CAP:
1756 		data = vcpu->arch.mcg_cap;
1757 		break;
1758 	case MSR_IA32_MCG_CTL:
1759 		if (!(mcg_cap & MCG_CTL_P))
1760 			return 1;
1761 		data = vcpu->arch.mcg_ctl;
1762 		break;
1763 	case MSR_IA32_MCG_STATUS:
1764 		data = vcpu->arch.mcg_status;
1765 		break;
1766 	default:
1767 		if (msr >= MSR_IA32_MC0_CTL &&
1768 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1769 			u32 offset = msr - MSR_IA32_MC0_CTL;
1770 			data = vcpu->arch.mce_banks[offset];
1771 			break;
1772 		}
1773 		return 1;
1774 	}
1775 	*pdata = data;
1776 	return 0;
1777 }
1778 
get_msr_hyperv_pw(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1779 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1780 {
1781 	u64 data = 0;
1782 	struct kvm *kvm = vcpu->kvm;
1783 
1784 	switch (msr) {
1785 	case HV_X64_MSR_GUEST_OS_ID:
1786 		data = kvm->arch.hv_guest_os_id;
1787 		break;
1788 	case HV_X64_MSR_HYPERCALL:
1789 		data = kvm->arch.hv_hypercall;
1790 		break;
1791 	default:
1792 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1793 		return 1;
1794 	}
1795 
1796 	*pdata = data;
1797 	return 0;
1798 }
1799 
get_msr_hyperv(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1800 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1801 {
1802 	u64 data = 0;
1803 
1804 	switch (msr) {
1805 	case HV_X64_MSR_VP_INDEX: {
1806 		int r;
1807 		struct kvm_vcpu *v;
1808 		kvm_for_each_vcpu(r, v, vcpu->kvm)
1809 			if (v == vcpu)
1810 				data = r;
1811 		break;
1812 	}
1813 	case HV_X64_MSR_EOI:
1814 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1815 	case HV_X64_MSR_ICR:
1816 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1817 	case HV_X64_MSR_TPR:
1818 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1819 	case HV_X64_MSR_APIC_ASSIST_PAGE:
1820 		data = vcpu->arch.hv_vapic;
1821 		break;
1822 	default:
1823 		pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1824 		return 1;
1825 	}
1826 	*pdata = data;
1827 	return 0;
1828 }
1829 
kvm_get_msr_common(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)1830 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1831 {
1832 	u64 data;
1833 
1834 	switch (msr) {
1835 	case MSR_IA32_PLATFORM_ID:
1836 	case MSR_IA32_EBL_CR_POWERON:
1837 	case MSR_IA32_DEBUGCTLMSR:
1838 	case MSR_IA32_LASTBRANCHFROMIP:
1839 	case MSR_IA32_LASTBRANCHTOIP:
1840 	case MSR_IA32_LASTINTFROMIP:
1841 	case MSR_IA32_LASTINTTOIP:
1842 	case MSR_K8_SYSCFG:
1843 	case MSR_K7_HWCR:
1844 	case MSR_VM_HSAVE_PA:
1845 	case MSR_K7_EVNTSEL0:
1846 	case MSR_K7_PERFCTR0:
1847 	case MSR_K8_INT_PENDING_MSG:
1848 	case MSR_AMD64_NB_CFG:
1849 	case MSR_FAM10H_MMIO_CONF_BASE:
1850 		data = 0;
1851 		break;
1852 	case MSR_P6_PERFCTR0:
1853 	case MSR_P6_PERFCTR1:
1854 	case MSR_P6_EVNTSEL0:
1855 	case MSR_P6_EVNTSEL1:
1856 		if (kvm_pmu_msr(vcpu, msr))
1857 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1858 		data = 0;
1859 		break;
1860 	case MSR_IA32_UCODE_REV:
1861 		data = 0x100000000ULL;
1862 		break;
1863 	case MSR_MTRRcap:
1864 		data = 0x500 | KVM_NR_VAR_MTRR;
1865 		break;
1866 	case 0x200 ... 0x2ff:
1867 		return get_msr_mtrr(vcpu, msr, pdata);
1868 	case 0xcd: /* fsb frequency */
1869 		data = 3;
1870 		break;
1871 		/*
1872 		 * MSR_EBC_FREQUENCY_ID
1873 		 * Conservative value valid for even the basic CPU models.
1874 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1875 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1876 		 * and 266MHz for model 3, or 4. Set Core Clock
1877 		 * Frequency to System Bus Frequency Ratio to 1 (bits
1878 		 * 31:24) even though these are only valid for CPU
1879 		 * models > 2, however guests may end up dividing or
1880 		 * multiplying by zero otherwise.
1881 		 */
1882 	case MSR_EBC_FREQUENCY_ID:
1883 		data = 1 << 24;
1884 		break;
1885 	case MSR_IA32_APICBASE:
1886 		data = kvm_get_apic_base(vcpu);
1887 		break;
1888 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1889 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
1890 		break;
1891 	case MSR_IA32_TSCDEADLINE:
1892 		data = kvm_get_lapic_tscdeadline_msr(vcpu);
1893 		break;
1894 	case MSR_IA32_MISC_ENABLE:
1895 		data = vcpu->arch.ia32_misc_enable_msr;
1896 		break;
1897 	case MSR_IA32_PERF_STATUS:
1898 		/* TSC increment by tick */
1899 		data = 1000ULL;
1900 		/* CPU multiplier */
1901 		data |= (((uint64_t)4ULL) << 40);
1902 		break;
1903 	case MSR_EFER:
1904 		data = vcpu->arch.efer;
1905 		break;
1906 	case MSR_KVM_WALL_CLOCK:
1907 	case MSR_KVM_WALL_CLOCK_NEW:
1908 		data = vcpu->kvm->arch.wall_clock;
1909 		break;
1910 	case MSR_KVM_SYSTEM_TIME:
1911 	case MSR_KVM_SYSTEM_TIME_NEW:
1912 		data = vcpu->arch.time;
1913 		break;
1914 	case MSR_KVM_ASYNC_PF_EN:
1915 		data = vcpu->arch.apf.msr_val;
1916 		break;
1917 	case MSR_KVM_STEAL_TIME:
1918 		data = vcpu->arch.st.msr_val;
1919 		break;
1920 	case MSR_IA32_P5_MC_ADDR:
1921 	case MSR_IA32_P5_MC_TYPE:
1922 	case MSR_IA32_MCG_CAP:
1923 	case MSR_IA32_MCG_CTL:
1924 	case MSR_IA32_MCG_STATUS:
1925 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1926 		return get_msr_mce(vcpu, msr, pdata);
1927 	case MSR_K7_CLK_CTL:
1928 		/*
1929 		 * Provide expected ramp-up count for K7. All other
1930 		 * are set to zero, indicating minimum divisors for
1931 		 * every field.
1932 		 *
1933 		 * This prevents guest kernels on AMD host with CPU
1934 		 * type 6, model 8 and higher from exploding due to
1935 		 * the rdmsr failing.
1936 		 */
1937 		data = 0x20000000;
1938 		break;
1939 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1940 		if (kvm_hv_msr_partition_wide(msr)) {
1941 			int r;
1942 			mutex_lock(&vcpu->kvm->lock);
1943 			r = get_msr_hyperv_pw(vcpu, msr, pdata);
1944 			mutex_unlock(&vcpu->kvm->lock);
1945 			return r;
1946 		} else
1947 			return get_msr_hyperv(vcpu, msr, pdata);
1948 		break;
1949 	case MSR_IA32_BBL_CR_CTL3:
1950 		/* This legacy MSR exists but isn't fully documented in current
1951 		 * silicon.  It is however accessed by winxp in very narrow
1952 		 * scenarios where it sets bit #19, itself documented as
1953 		 * a "reserved" bit.  Best effort attempt to source coherent
1954 		 * read data here should the balance of the register be
1955 		 * interpreted by the guest:
1956 		 *
1957 		 * L2 cache control register 3: 64GB range, 256KB size,
1958 		 * enabled, latency 0x1, configured
1959 		 */
1960 		data = 0xbe702111;
1961 		break;
1962 	default:
1963 		if (kvm_pmu_msr(vcpu, msr))
1964 			return kvm_pmu_get_msr(vcpu, msr, pdata);
1965 		if (!ignore_msrs) {
1966 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1967 			return 1;
1968 		} else {
1969 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1970 			data = 0;
1971 		}
1972 		break;
1973 	}
1974 	*pdata = data;
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1978 
1979 /*
1980  * Read or write a bunch of msrs. All parameters are kernel addresses.
1981  *
1982  * @return number of msrs set successfully.
1983  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))1984 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1985 		    struct kvm_msr_entry *entries,
1986 		    int (*do_msr)(struct kvm_vcpu *vcpu,
1987 				  unsigned index, u64 *data))
1988 {
1989 	int i, idx;
1990 
1991 	idx = srcu_read_lock(&vcpu->kvm->srcu);
1992 	for (i = 0; i < msrs->nmsrs; ++i)
1993 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
1994 			break;
1995 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1996 
1997 	return i;
1998 }
1999 
2000 /*
2001  * Read or write a bunch of msrs. Parameters are user addresses.
2002  *
2003  * @return number of msrs set successfully.
2004  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2005 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2006 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2007 				unsigned index, u64 *data),
2008 		  int writeback)
2009 {
2010 	struct kvm_msrs msrs;
2011 	struct kvm_msr_entry *entries;
2012 	int r, n;
2013 	unsigned size;
2014 
2015 	r = -EFAULT;
2016 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2017 		goto out;
2018 
2019 	r = -E2BIG;
2020 	if (msrs.nmsrs >= MAX_IO_MSRS)
2021 		goto out;
2022 
2023 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2024 	entries = memdup_user(user_msrs->entries, size);
2025 	if (IS_ERR(entries)) {
2026 		r = PTR_ERR(entries);
2027 		goto out;
2028 	}
2029 
2030 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2031 	if (r < 0)
2032 		goto out_free;
2033 
2034 	r = -EFAULT;
2035 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2036 		goto out_free;
2037 
2038 	r = n;
2039 
2040 out_free:
2041 	kfree(entries);
2042 out:
2043 	return r;
2044 }
2045 
kvm_dev_ioctl_check_extension(long ext)2046 int kvm_dev_ioctl_check_extension(long ext)
2047 {
2048 	int r;
2049 
2050 	switch (ext) {
2051 	case KVM_CAP_IRQCHIP:
2052 	case KVM_CAP_HLT:
2053 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2054 	case KVM_CAP_SET_TSS_ADDR:
2055 	case KVM_CAP_EXT_CPUID:
2056 	case KVM_CAP_CLOCKSOURCE:
2057 	case KVM_CAP_PIT:
2058 	case KVM_CAP_NOP_IO_DELAY:
2059 	case KVM_CAP_MP_STATE:
2060 	case KVM_CAP_SYNC_MMU:
2061 	case KVM_CAP_USER_NMI:
2062 	case KVM_CAP_REINJECT_CONTROL:
2063 	case KVM_CAP_IRQ_INJECT_STATUS:
2064 	case KVM_CAP_ASSIGN_DEV_IRQ:
2065 	case KVM_CAP_IRQFD:
2066 	case KVM_CAP_IOEVENTFD:
2067 	case KVM_CAP_PIT2:
2068 	case KVM_CAP_PIT_STATE2:
2069 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2070 	case KVM_CAP_XEN_HVM:
2071 	case KVM_CAP_ADJUST_CLOCK:
2072 	case KVM_CAP_VCPU_EVENTS:
2073 	case KVM_CAP_HYPERV:
2074 	case KVM_CAP_HYPERV_VAPIC:
2075 	case KVM_CAP_HYPERV_SPIN:
2076 	case KVM_CAP_PCI_SEGMENT:
2077 	case KVM_CAP_DEBUGREGS:
2078 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2079 	case KVM_CAP_XSAVE:
2080 	case KVM_CAP_ASYNC_PF:
2081 	case KVM_CAP_GET_TSC_KHZ:
2082 		r = 1;
2083 		break;
2084 	case KVM_CAP_COALESCED_MMIO:
2085 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2086 		break;
2087 	case KVM_CAP_VAPIC:
2088 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2089 		break;
2090 	case KVM_CAP_NR_VCPUS:
2091 		r = KVM_SOFT_MAX_VCPUS;
2092 		break;
2093 	case KVM_CAP_MAX_VCPUS:
2094 		r = KVM_MAX_VCPUS;
2095 		break;
2096 	case KVM_CAP_NR_MEMSLOTS:
2097 		r = KVM_MEMORY_SLOTS;
2098 		break;
2099 	case KVM_CAP_PV_MMU:	/* obsolete */
2100 		r = 0;
2101 		break;
2102 	case KVM_CAP_IOMMU:
2103 		r = iommu_present(&pci_bus_type);
2104 		break;
2105 	case KVM_CAP_MCE:
2106 		r = KVM_MAX_MCE_BANKS;
2107 		break;
2108 	case KVM_CAP_XCRS:
2109 		r = cpu_has_xsave;
2110 		break;
2111 	case KVM_CAP_TSC_CONTROL:
2112 		r = kvm_has_tsc_control;
2113 		break;
2114 	case KVM_CAP_TSC_DEADLINE_TIMER:
2115 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2116 		break;
2117 	default:
2118 		r = 0;
2119 		break;
2120 	}
2121 	return r;
2122 
2123 }
2124 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2125 long kvm_arch_dev_ioctl(struct file *filp,
2126 			unsigned int ioctl, unsigned long arg)
2127 {
2128 	void __user *argp = (void __user *)arg;
2129 	long r;
2130 
2131 	switch (ioctl) {
2132 	case KVM_GET_MSR_INDEX_LIST: {
2133 		struct kvm_msr_list __user *user_msr_list = argp;
2134 		struct kvm_msr_list msr_list;
2135 		unsigned n;
2136 
2137 		r = -EFAULT;
2138 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2139 			goto out;
2140 		n = msr_list.nmsrs;
2141 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2142 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2143 			goto out;
2144 		r = -E2BIG;
2145 		if (n < msr_list.nmsrs)
2146 			goto out;
2147 		r = -EFAULT;
2148 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2149 				 num_msrs_to_save * sizeof(u32)))
2150 			goto out;
2151 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2152 				 &emulated_msrs,
2153 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2154 			goto out;
2155 		r = 0;
2156 		break;
2157 	}
2158 	case KVM_GET_SUPPORTED_CPUID: {
2159 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2160 		struct kvm_cpuid2 cpuid;
2161 
2162 		r = -EFAULT;
2163 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2164 			goto out;
2165 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2166 						      cpuid_arg->entries);
2167 		if (r)
2168 			goto out;
2169 
2170 		r = -EFAULT;
2171 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2172 			goto out;
2173 		r = 0;
2174 		break;
2175 	}
2176 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2177 		u64 mce_cap;
2178 
2179 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2180 		r = -EFAULT;
2181 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2182 			goto out;
2183 		r = 0;
2184 		break;
2185 	}
2186 	default:
2187 		r = -EINVAL;
2188 	}
2189 out:
2190 	return r;
2191 }
2192 
wbinvd_ipi(void * garbage)2193 static void wbinvd_ipi(void *garbage)
2194 {
2195 	wbinvd();
2196 }
2197 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2198 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2199 {
2200 	return vcpu->kvm->arch.iommu_domain &&
2201 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2202 }
2203 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2204 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2205 {
2206 	/* Address WBINVD may be executed by guest */
2207 	if (need_emulate_wbinvd(vcpu)) {
2208 		if (kvm_x86_ops->has_wbinvd_exit())
2209 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2210 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2211 			smp_call_function_single(vcpu->cpu,
2212 					wbinvd_ipi, NULL, 1);
2213 	}
2214 
2215 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2216 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2217 		/* Make sure TSC doesn't go backwards */
2218 		s64 tsc_delta;
2219 		u64 tsc;
2220 
2221 		tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2222 		tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2223 			     tsc - vcpu->arch.last_guest_tsc;
2224 
2225 		if (tsc_delta < 0)
2226 			mark_tsc_unstable("KVM discovered backwards TSC");
2227 		if (check_tsc_unstable()) {
2228 			kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2229 			vcpu->arch.tsc_catchup = 1;
2230 		}
2231 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2232 		if (vcpu->cpu != cpu)
2233 			kvm_migrate_timers(vcpu);
2234 		vcpu->cpu = cpu;
2235 	}
2236 
2237 	accumulate_steal_time(vcpu);
2238 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2239 }
2240 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2241 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2242 {
2243 	kvm_x86_ops->vcpu_put(vcpu);
2244 	kvm_put_guest_fpu(vcpu);
2245 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
2246 }
2247 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2248 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2249 				    struct kvm_lapic_state *s)
2250 {
2251 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2252 
2253 	return 0;
2254 }
2255 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2256 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2257 				    struct kvm_lapic_state *s)
2258 {
2259 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2260 	kvm_apic_post_state_restore(vcpu);
2261 	update_cr8_intercept(vcpu);
2262 
2263 	return 0;
2264 }
2265 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2266 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2267 				    struct kvm_interrupt *irq)
2268 {
2269 	if (irq->irq < 0 || irq->irq >= 256)
2270 		return -EINVAL;
2271 	if (irqchip_in_kernel(vcpu->kvm))
2272 		return -ENXIO;
2273 
2274 	kvm_queue_interrupt(vcpu, irq->irq, false);
2275 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2276 
2277 	return 0;
2278 }
2279 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2280 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2281 {
2282 	kvm_inject_nmi(vcpu);
2283 
2284 	return 0;
2285 }
2286 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2287 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2288 					   struct kvm_tpr_access_ctl *tac)
2289 {
2290 	if (tac->flags)
2291 		return -EINVAL;
2292 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2293 	return 0;
2294 }
2295 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2296 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2297 					u64 mcg_cap)
2298 {
2299 	int r;
2300 	unsigned bank_num = mcg_cap & 0xff, bank;
2301 
2302 	r = -EINVAL;
2303 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2304 		goto out;
2305 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2306 		goto out;
2307 	r = 0;
2308 	vcpu->arch.mcg_cap = mcg_cap;
2309 	/* Init IA32_MCG_CTL to all 1s */
2310 	if (mcg_cap & MCG_CTL_P)
2311 		vcpu->arch.mcg_ctl = ~(u64)0;
2312 	/* Init IA32_MCi_CTL to all 1s */
2313 	for (bank = 0; bank < bank_num; bank++)
2314 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2315 out:
2316 	return r;
2317 }
2318 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2319 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2320 				      struct kvm_x86_mce *mce)
2321 {
2322 	u64 mcg_cap = vcpu->arch.mcg_cap;
2323 	unsigned bank_num = mcg_cap & 0xff;
2324 	u64 *banks = vcpu->arch.mce_banks;
2325 
2326 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2327 		return -EINVAL;
2328 	/*
2329 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2330 	 * reporting is disabled
2331 	 */
2332 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2333 	    vcpu->arch.mcg_ctl != ~(u64)0)
2334 		return 0;
2335 	banks += 4 * mce->bank;
2336 	/*
2337 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2338 	 * reporting is disabled for the bank
2339 	 */
2340 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2341 		return 0;
2342 	if (mce->status & MCI_STATUS_UC) {
2343 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2344 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2345 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2346 			return 0;
2347 		}
2348 		if (banks[1] & MCI_STATUS_VAL)
2349 			mce->status |= MCI_STATUS_OVER;
2350 		banks[2] = mce->addr;
2351 		banks[3] = mce->misc;
2352 		vcpu->arch.mcg_status = mce->mcg_status;
2353 		banks[1] = mce->status;
2354 		kvm_queue_exception(vcpu, MC_VECTOR);
2355 	} else if (!(banks[1] & MCI_STATUS_VAL)
2356 		   || !(banks[1] & MCI_STATUS_UC)) {
2357 		if (banks[1] & MCI_STATUS_VAL)
2358 			mce->status |= MCI_STATUS_OVER;
2359 		banks[2] = mce->addr;
2360 		banks[3] = mce->misc;
2361 		banks[1] = mce->status;
2362 	} else
2363 		banks[1] |= MCI_STATUS_OVER;
2364 	return 0;
2365 }
2366 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2367 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2368 					       struct kvm_vcpu_events *events)
2369 {
2370 	process_nmi(vcpu);
2371 	events->exception.injected =
2372 		vcpu->arch.exception.pending &&
2373 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2374 	events->exception.nr = vcpu->arch.exception.nr;
2375 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2376 	events->exception.pad = 0;
2377 	events->exception.error_code = vcpu->arch.exception.error_code;
2378 
2379 	events->interrupt.injected =
2380 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2381 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2382 	events->interrupt.soft = 0;
2383 	events->interrupt.shadow =
2384 		kvm_x86_ops->get_interrupt_shadow(vcpu,
2385 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2386 
2387 	events->nmi.injected = vcpu->arch.nmi_injected;
2388 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2389 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2390 	events->nmi.pad = 0;
2391 
2392 	events->sipi_vector = vcpu->arch.sipi_vector;
2393 
2394 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2395 			 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2396 			 | KVM_VCPUEVENT_VALID_SHADOW);
2397 	memset(&events->reserved, 0, sizeof(events->reserved));
2398 }
2399 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2400 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2401 					      struct kvm_vcpu_events *events)
2402 {
2403 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2404 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2405 			      | KVM_VCPUEVENT_VALID_SHADOW))
2406 		return -EINVAL;
2407 
2408 	process_nmi(vcpu);
2409 	vcpu->arch.exception.pending = events->exception.injected;
2410 	vcpu->arch.exception.nr = events->exception.nr;
2411 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2412 	vcpu->arch.exception.error_code = events->exception.error_code;
2413 
2414 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2415 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2416 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2417 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2418 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2419 						  events->interrupt.shadow);
2420 
2421 	vcpu->arch.nmi_injected = events->nmi.injected;
2422 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2423 		vcpu->arch.nmi_pending = events->nmi.pending;
2424 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2425 
2426 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2427 		vcpu->arch.sipi_vector = events->sipi_vector;
2428 
2429 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2430 
2431 	return 0;
2432 }
2433 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2434 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2435 					     struct kvm_debugregs *dbgregs)
2436 {
2437 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2438 	dbgregs->dr6 = vcpu->arch.dr6;
2439 	dbgregs->dr7 = vcpu->arch.dr7;
2440 	dbgregs->flags = 0;
2441 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2442 }
2443 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2444 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2445 					    struct kvm_debugregs *dbgregs)
2446 {
2447 	if (dbgregs->flags)
2448 		return -EINVAL;
2449 
2450 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2451 	vcpu->arch.dr6 = dbgregs->dr6;
2452 	vcpu->arch.dr7 = dbgregs->dr7;
2453 
2454 	return 0;
2455 }
2456 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)2457 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2458 					 struct kvm_xsave *guest_xsave)
2459 {
2460 	if (cpu_has_xsave)
2461 		memcpy(guest_xsave->region,
2462 			&vcpu->arch.guest_fpu.state->xsave,
2463 			xstate_size);
2464 	else {
2465 		memcpy(guest_xsave->region,
2466 			&vcpu->arch.guest_fpu.state->fxsave,
2467 			sizeof(struct i387_fxsave_struct));
2468 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2469 			XSTATE_FPSSE;
2470 	}
2471 }
2472 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)2473 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2474 					struct kvm_xsave *guest_xsave)
2475 {
2476 	u64 xstate_bv =
2477 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2478 
2479 	if (cpu_has_xsave)
2480 		memcpy(&vcpu->arch.guest_fpu.state->xsave,
2481 			guest_xsave->region, xstate_size);
2482 	else {
2483 		if (xstate_bv & ~XSTATE_FPSSE)
2484 			return -EINVAL;
2485 		memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2486 			guest_xsave->region, sizeof(struct i387_fxsave_struct));
2487 	}
2488 	return 0;
2489 }
2490 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)2491 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2492 					struct kvm_xcrs *guest_xcrs)
2493 {
2494 	if (!cpu_has_xsave) {
2495 		guest_xcrs->nr_xcrs = 0;
2496 		return;
2497 	}
2498 
2499 	guest_xcrs->nr_xcrs = 1;
2500 	guest_xcrs->flags = 0;
2501 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2502 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2503 }
2504 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)2505 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2506 				       struct kvm_xcrs *guest_xcrs)
2507 {
2508 	int i, r = 0;
2509 
2510 	if (!cpu_has_xsave)
2511 		return -EINVAL;
2512 
2513 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2514 		return -EINVAL;
2515 
2516 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2517 		/* Only support XCR0 currently */
2518 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2519 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2520 				guest_xcrs->xcrs[0].value);
2521 			break;
2522 		}
2523 	if (r)
2524 		r = -EINVAL;
2525 	return r;
2526 }
2527 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2528 long kvm_arch_vcpu_ioctl(struct file *filp,
2529 			 unsigned int ioctl, unsigned long arg)
2530 {
2531 	struct kvm_vcpu *vcpu = filp->private_data;
2532 	void __user *argp = (void __user *)arg;
2533 	int r;
2534 	union {
2535 		struct kvm_lapic_state *lapic;
2536 		struct kvm_xsave *xsave;
2537 		struct kvm_xcrs *xcrs;
2538 		void *buffer;
2539 	} u;
2540 
2541 	u.buffer = NULL;
2542 	switch (ioctl) {
2543 	case KVM_GET_LAPIC: {
2544 		r = -EINVAL;
2545 		if (!vcpu->arch.apic)
2546 			goto out;
2547 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2548 
2549 		r = -ENOMEM;
2550 		if (!u.lapic)
2551 			goto out;
2552 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2553 		if (r)
2554 			goto out;
2555 		r = -EFAULT;
2556 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2557 			goto out;
2558 		r = 0;
2559 		break;
2560 	}
2561 	case KVM_SET_LAPIC: {
2562 		r = -EINVAL;
2563 		if (!vcpu->arch.apic)
2564 			goto out;
2565 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
2566 		if (IS_ERR(u.lapic)) {
2567 			r = PTR_ERR(u.lapic);
2568 			goto out;
2569 		}
2570 
2571 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2572 		if (r)
2573 			goto out;
2574 		r = 0;
2575 		break;
2576 	}
2577 	case KVM_INTERRUPT: {
2578 		struct kvm_interrupt irq;
2579 
2580 		r = -EFAULT;
2581 		if (copy_from_user(&irq, argp, sizeof irq))
2582 			goto out;
2583 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2584 		if (r)
2585 			goto out;
2586 		r = 0;
2587 		break;
2588 	}
2589 	case KVM_NMI: {
2590 		r = kvm_vcpu_ioctl_nmi(vcpu);
2591 		if (r)
2592 			goto out;
2593 		r = 0;
2594 		break;
2595 	}
2596 	case KVM_SET_CPUID: {
2597 		struct kvm_cpuid __user *cpuid_arg = argp;
2598 		struct kvm_cpuid cpuid;
2599 
2600 		r = -EFAULT;
2601 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2602 			goto out;
2603 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2604 		if (r)
2605 			goto out;
2606 		break;
2607 	}
2608 	case KVM_SET_CPUID2: {
2609 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2610 		struct kvm_cpuid2 cpuid;
2611 
2612 		r = -EFAULT;
2613 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2614 			goto out;
2615 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2616 					      cpuid_arg->entries);
2617 		if (r)
2618 			goto out;
2619 		break;
2620 	}
2621 	case KVM_GET_CPUID2: {
2622 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2623 		struct kvm_cpuid2 cpuid;
2624 
2625 		r = -EFAULT;
2626 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2627 			goto out;
2628 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2629 					      cpuid_arg->entries);
2630 		if (r)
2631 			goto out;
2632 		r = -EFAULT;
2633 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2634 			goto out;
2635 		r = 0;
2636 		break;
2637 	}
2638 	case KVM_GET_MSRS:
2639 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
2640 		break;
2641 	case KVM_SET_MSRS:
2642 		r = msr_io(vcpu, argp, do_set_msr, 0);
2643 		break;
2644 	case KVM_TPR_ACCESS_REPORTING: {
2645 		struct kvm_tpr_access_ctl tac;
2646 
2647 		r = -EFAULT;
2648 		if (copy_from_user(&tac, argp, sizeof tac))
2649 			goto out;
2650 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2651 		if (r)
2652 			goto out;
2653 		r = -EFAULT;
2654 		if (copy_to_user(argp, &tac, sizeof tac))
2655 			goto out;
2656 		r = 0;
2657 		break;
2658 	};
2659 	case KVM_SET_VAPIC_ADDR: {
2660 		struct kvm_vapic_addr va;
2661 
2662 		r = -EINVAL;
2663 		if (!irqchip_in_kernel(vcpu->kvm))
2664 			goto out;
2665 		r = -EFAULT;
2666 		if (copy_from_user(&va, argp, sizeof va))
2667 			goto out;
2668 		r = 0;
2669 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2670 		break;
2671 	}
2672 	case KVM_X86_SETUP_MCE: {
2673 		u64 mcg_cap;
2674 
2675 		r = -EFAULT;
2676 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2677 			goto out;
2678 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2679 		break;
2680 	}
2681 	case KVM_X86_SET_MCE: {
2682 		struct kvm_x86_mce mce;
2683 
2684 		r = -EFAULT;
2685 		if (copy_from_user(&mce, argp, sizeof mce))
2686 			goto out;
2687 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2688 		break;
2689 	}
2690 	case KVM_GET_VCPU_EVENTS: {
2691 		struct kvm_vcpu_events events;
2692 
2693 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2694 
2695 		r = -EFAULT;
2696 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2697 			break;
2698 		r = 0;
2699 		break;
2700 	}
2701 	case KVM_SET_VCPU_EVENTS: {
2702 		struct kvm_vcpu_events events;
2703 
2704 		r = -EFAULT;
2705 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2706 			break;
2707 
2708 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2709 		break;
2710 	}
2711 	case KVM_GET_DEBUGREGS: {
2712 		struct kvm_debugregs dbgregs;
2713 
2714 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2715 
2716 		r = -EFAULT;
2717 		if (copy_to_user(argp, &dbgregs,
2718 				 sizeof(struct kvm_debugregs)))
2719 			break;
2720 		r = 0;
2721 		break;
2722 	}
2723 	case KVM_SET_DEBUGREGS: {
2724 		struct kvm_debugregs dbgregs;
2725 
2726 		r = -EFAULT;
2727 		if (copy_from_user(&dbgregs, argp,
2728 				   sizeof(struct kvm_debugregs)))
2729 			break;
2730 
2731 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2732 		break;
2733 	}
2734 	case KVM_GET_XSAVE: {
2735 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2736 		r = -ENOMEM;
2737 		if (!u.xsave)
2738 			break;
2739 
2740 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2741 
2742 		r = -EFAULT;
2743 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2744 			break;
2745 		r = 0;
2746 		break;
2747 	}
2748 	case KVM_SET_XSAVE: {
2749 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
2750 		if (IS_ERR(u.xsave)) {
2751 			r = PTR_ERR(u.xsave);
2752 			goto out;
2753 		}
2754 
2755 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2756 		break;
2757 	}
2758 	case KVM_GET_XCRS: {
2759 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2760 		r = -ENOMEM;
2761 		if (!u.xcrs)
2762 			break;
2763 
2764 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2765 
2766 		r = -EFAULT;
2767 		if (copy_to_user(argp, u.xcrs,
2768 				 sizeof(struct kvm_xcrs)))
2769 			break;
2770 		r = 0;
2771 		break;
2772 	}
2773 	case KVM_SET_XCRS: {
2774 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2775 		if (IS_ERR(u.xcrs)) {
2776 			r = PTR_ERR(u.xcrs);
2777 			goto out;
2778 		}
2779 
2780 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2781 		break;
2782 	}
2783 	case KVM_SET_TSC_KHZ: {
2784 		u32 user_tsc_khz;
2785 
2786 		r = -EINVAL;
2787 		if (!kvm_has_tsc_control)
2788 			break;
2789 
2790 		user_tsc_khz = (u32)arg;
2791 
2792 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2793 			goto out;
2794 
2795 		kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
2796 
2797 		r = 0;
2798 		goto out;
2799 	}
2800 	case KVM_GET_TSC_KHZ: {
2801 		r = -EIO;
2802 		if (check_tsc_unstable())
2803 			goto out;
2804 
2805 		r = vcpu_tsc_khz(vcpu);
2806 
2807 		goto out;
2808 	}
2809 	default:
2810 		r = -EINVAL;
2811 	}
2812 out:
2813 	kfree(u.buffer);
2814 	return r;
2815 }
2816 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)2817 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2818 {
2819 	int ret;
2820 
2821 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
2822 		return -1;
2823 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2824 	return ret;
2825 }
2826 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)2827 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2828 					      u64 ident_addr)
2829 {
2830 	kvm->arch.ept_identity_map_addr = ident_addr;
2831 	return 0;
2832 }
2833 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)2834 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2835 					  u32 kvm_nr_mmu_pages)
2836 {
2837 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2838 		return -EINVAL;
2839 
2840 	mutex_lock(&kvm->slots_lock);
2841 	spin_lock(&kvm->mmu_lock);
2842 
2843 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2844 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2845 
2846 	spin_unlock(&kvm->mmu_lock);
2847 	mutex_unlock(&kvm->slots_lock);
2848 	return 0;
2849 }
2850 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)2851 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2852 {
2853 	return kvm->arch.n_max_mmu_pages;
2854 }
2855 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)2856 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2857 {
2858 	int r;
2859 
2860 	r = 0;
2861 	switch (chip->chip_id) {
2862 	case KVM_IRQCHIP_PIC_MASTER:
2863 		memcpy(&chip->chip.pic,
2864 			&pic_irqchip(kvm)->pics[0],
2865 			sizeof(struct kvm_pic_state));
2866 		break;
2867 	case KVM_IRQCHIP_PIC_SLAVE:
2868 		memcpy(&chip->chip.pic,
2869 			&pic_irqchip(kvm)->pics[1],
2870 			sizeof(struct kvm_pic_state));
2871 		break;
2872 	case KVM_IRQCHIP_IOAPIC:
2873 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2874 		break;
2875 	default:
2876 		r = -EINVAL;
2877 		break;
2878 	}
2879 	return r;
2880 }
2881 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)2882 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2883 {
2884 	int r;
2885 
2886 	r = 0;
2887 	switch (chip->chip_id) {
2888 	case KVM_IRQCHIP_PIC_MASTER:
2889 		spin_lock(&pic_irqchip(kvm)->lock);
2890 		memcpy(&pic_irqchip(kvm)->pics[0],
2891 			&chip->chip.pic,
2892 			sizeof(struct kvm_pic_state));
2893 		spin_unlock(&pic_irqchip(kvm)->lock);
2894 		break;
2895 	case KVM_IRQCHIP_PIC_SLAVE:
2896 		spin_lock(&pic_irqchip(kvm)->lock);
2897 		memcpy(&pic_irqchip(kvm)->pics[1],
2898 			&chip->chip.pic,
2899 			sizeof(struct kvm_pic_state));
2900 		spin_unlock(&pic_irqchip(kvm)->lock);
2901 		break;
2902 	case KVM_IRQCHIP_IOAPIC:
2903 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2904 		break;
2905 	default:
2906 		r = -EINVAL;
2907 		break;
2908 	}
2909 	kvm_pic_update_irq(pic_irqchip(kvm));
2910 	return r;
2911 }
2912 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)2913 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2914 {
2915 	int r = 0;
2916 
2917 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2918 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2919 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2920 	return r;
2921 }
2922 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)2923 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2924 {
2925 	int r = 0;
2926 
2927 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2928 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2929 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2930 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2931 	return r;
2932 }
2933 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)2934 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2935 {
2936 	int r = 0;
2937 
2938 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2939 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2940 		sizeof(ps->channels));
2941 	ps->flags = kvm->arch.vpit->pit_state.flags;
2942 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2943 	memset(&ps->reserved, 0, sizeof(ps->reserved));
2944 	return r;
2945 }
2946 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)2947 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2948 {
2949 	int r = 0, start = 0;
2950 	u32 prev_legacy, cur_legacy;
2951 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2952 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2953 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2954 	if (!prev_legacy && cur_legacy)
2955 		start = 1;
2956 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2957 	       sizeof(kvm->arch.vpit->pit_state.channels));
2958 	kvm->arch.vpit->pit_state.flags = ps->flags;
2959 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2960 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2961 	return r;
2962 }
2963 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)2964 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2965 				 struct kvm_reinject_control *control)
2966 {
2967 	if (!kvm->arch.vpit)
2968 		return -ENXIO;
2969 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
2970 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2971 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2972 	return 0;
2973 }
2974 
2975 /**
2976  * write_protect_slot - write protect a slot for dirty logging
2977  * @kvm: the kvm instance
2978  * @memslot: the slot we protect
2979  * @dirty_bitmap: the bitmap indicating which pages are dirty
2980  * @nr_dirty_pages: the number of dirty pages
2981  *
2982  * We have two ways to find all sptes to protect:
2983  * 1. Use kvm_mmu_slot_remove_write_access() which walks all shadow pages and
2984  *    checks ones that have a spte mapping a page in the slot.
2985  * 2. Use kvm_mmu_rmap_write_protect() for each gfn found in the bitmap.
2986  *
2987  * Generally speaking, if there are not so many dirty pages compared to the
2988  * number of shadow pages, we should use the latter.
2989  *
2990  * Note that letting others write into a page marked dirty in the old bitmap
2991  * by using the remaining tlb entry is not a problem.  That page will become
2992  * write protected again when we flush the tlb and then be reported dirty to
2993  * the user space by copying the old bitmap.
2994  */
write_protect_slot(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long * dirty_bitmap,unsigned long nr_dirty_pages)2995 static void write_protect_slot(struct kvm *kvm,
2996 			       struct kvm_memory_slot *memslot,
2997 			       unsigned long *dirty_bitmap,
2998 			       unsigned long nr_dirty_pages)
2999 {
3000 	/* Not many dirty pages compared to # of shadow pages. */
3001 	if (nr_dirty_pages < kvm->arch.n_used_mmu_pages) {
3002 		unsigned long gfn_offset;
3003 
3004 		for_each_set_bit(gfn_offset, dirty_bitmap, memslot->npages) {
3005 			unsigned long gfn = memslot->base_gfn + gfn_offset;
3006 
3007 			spin_lock(&kvm->mmu_lock);
3008 			kvm_mmu_rmap_write_protect(kvm, gfn, memslot);
3009 			spin_unlock(&kvm->mmu_lock);
3010 		}
3011 		kvm_flush_remote_tlbs(kvm);
3012 	} else {
3013 		spin_lock(&kvm->mmu_lock);
3014 		kvm_mmu_slot_remove_write_access(kvm, memslot->id);
3015 		spin_unlock(&kvm->mmu_lock);
3016 	}
3017 }
3018 
3019 /*
3020  * Get (and clear) the dirty memory log for a memory slot.
3021  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3022 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3023 				      struct kvm_dirty_log *log)
3024 {
3025 	int r;
3026 	struct kvm_memory_slot *memslot;
3027 	unsigned long n, nr_dirty_pages;
3028 
3029 	mutex_lock(&kvm->slots_lock);
3030 
3031 	r = -EINVAL;
3032 	if (log->slot >= KVM_MEMORY_SLOTS)
3033 		goto out;
3034 
3035 	memslot = id_to_memslot(kvm->memslots, log->slot);
3036 	r = -ENOENT;
3037 	if (!memslot->dirty_bitmap)
3038 		goto out;
3039 
3040 	n = kvm_dirty_bitmap_bytes(memslot);
3041 	nr_dirty_pages = memslot->nr_dirty_pages;
3042 
3043 	/* If nothing is dirty, don't bother messing with page tables. */
3044 	if (nr_dirty_pages) {
3045 		struct kvm_memslots *slots, *old_slots;
3046 		unsigned long *dirty_bitmap, *dirty_bitmap_head;
3047 
3048 		dirty_bitmap = memslot->dirty_bitmap;
3049 		dirty_bitmap_head = memslot->dirty_bitmap_head;
3050 		if (dirty_bitmap == dirty_bitmap_head)
3051 			dirty_bitmap_head += n / sizeof(long);
3052 		memset(dirty_bitmap_head, 0, n);
3053 
3054 		r = -ENOMEM;
3055 		slots = kmemdup(kvm->memslots, sizeof(*kvm->memslots), GFP_KERNEL);
3056 		if (!slots)
3057 			goto out;
3058 
3059 		memslot = id_to_memslot(slots, log->slot);
3060 		memslot->nr_dirty_pages = 0;
3061 		memslot->dirty_bitmap = dirty_bitmap_head;
3062 		update_memslots(slots, NULL);
3063 
3064 		old_slots = kvm->memslots;
3065 		rcu_assign_pointer(kvm->memslots, slots);
3066 		synchronize_srcu_expedited(&kvm->srcu);
3067 		kfree(old_slots);
3068 
3069 		write_protect_slot(kvm, memslot, dirty_bitmap, nr_dirty_pages);
3070 
3071 		r = -EFAULT;
3072 		if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3073 			goto out;
3074 	} else {
3075 		r = -EFAULT;
3076 		if (clear_user(log->dirty_bitmap, n))
3077 			goto out;
3078 	}
3079 
3080 	r = 0;
3081 out:
3082 	mutex_unlock(&kvm->slots_lock);
3083 	return r;
3084 }
3085 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3086 long kvm_arch_vm_ioctl(struct file *filp,
3087 		       unsigned int ioctl, unsigned long arg)
3088 {
3089 	struct kvm *kvm = filp->private_data;
3090 	void __user *argp = (void __user *)arg;
3091 	int r = -ENOTTY;
3092 	/*
3093 	 * This union makes it completely explicit to gcc-3.x
3094 	 * that these two variables' stack usage should be
3095 	 * combined, not added together.
3096 	 */
3097 	union {
3098 		struct kvm_pit_state ps;
3099 		struct kvm_pit_state2 ps2;
3100 		struct kvm_pit_config pit_config;
3101 	} u;
3102 
3103 	switch (ioctl) {
3104 	case KVM_SET_TSS_ADDR:
3105 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3106 		if (r < 0)
3107 			goto out;
3108 		break;
3109 	case KVM_SET_IDENTITY_MAP_ADDR: {
3110 		u64 ident_addr;
3111 
3112 		r = -EFAULT;
3113 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3114 			goto out;
3115 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3116 		if (r < 0)
3117 			goto out;
3118 		break;
3119 	}
3120 	case KVM_SET_NR_MMU_PAGES:
3121 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3122 		if (r)
3123 			goto out;
3124 		break;
3125 	case KVM_GET_NR_MMU_PAGES:
3126 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3127 		break;
3128 	case KVM_CREATE_IRQCHIP: {
3129 		struct kvm_pic *vpic;
3130 
3131 		mutex_lock(&kvm->lock);
3132 		r = -EEXIST;
3133 		if (kvm->arch.vpic)
3134 			goto create_irqchip_unlock;
3135 		r = -ENOMEM;
3136 		vpic = kvm_create_pic(kvm);
3137 		if (vpic) {
3138 			r = kvm_ioapic_init(kvm);
3139 			if (r) {
3140 				mutex_lock(&kvm->slots_lock);
3141 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3142 							  &vpic->dev_master);
3143 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3144 							  &vpic->dev_slave);
3145 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3146 							  &vpic->dev_eclr);
3147 				mutex_unlock(&kvm->slots_lock);
3148 				kfree(vpic);
3149 				goto create_irqchip_unlock;
3150 			}
3151 		} else
3152 			goto create_irqchip_unlock;
3153 		smp_wmb();
3154 		kvm->arch.vpic = vpic;
3155 		smp_wmb();
3156 		r = kvm_setup_default_irq_routing(kvm);
3157 		if (r) {
3158 			mutex_lock(&kvm->slots_lock);
3159 			mutex_lock(&kvm->irq_lock);
3160 			kvm_ioapic_destroy(kvm);
3161 			kvm_destroy_pic(kvm);
3162 			mutex_unlock(&kvm->irq_lock);
3163 			mutex_unlock(&kvm->slots_lock);
3164 		}
3165 	create_irqchip_unlock:
3166 		mutex_unlock(&kvm->lock);
3167 		break;
3168 	}
3169 	case KVM_CREATE_PIT:
3170 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3171 		goto create_pit;
3172 	case KVM_CREATE_PIT2:
3173 		r = -EFAULT;
3174 		if (copy_from_user(&u.pit_config, argp,
3175 				   sizeof(struct kvm_pit_config)))
3176 			goto out;
3177 	create_pit:
3178 		mutex_lock(&kvm->slots_lock);
3179 		r = -EEXIST;
3180 		if (kvm->arch.vpit)
3181 			goto create_pit_unlock;
3182 		r = -ENOMEM;
3183 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3184 		if (kvm->arch.vpit)
3185 			r = 0;
3186 	create_pit_unlock:
3187 		mutex_unlock(&kvm->slots_lock);
3188 		break;
3189 	case KVM_IRQ_LINE_STATUS:
3190 	case KVM_IRQ_LINE: {
3191 		struct kvm_irq_level irq_event;
3192 
3193 		r = -EFAULT;
3194 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
3195 			goto out;
3196 		r = -ENXIO;
3197 		if (irqchip_in_kernel(kvm)) {
3198 			__s32 status;
3199 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3200 					irq_event.irq, irq_event.level);
3201 			if (ioctl == KVM_IRQ_LINE_STATUS) {
3202 				r = -EFAULT;
3203 				irq_event.status = status;
3204 				if (copy_to_user(argp, &irq_event,
3205 							sizeof irq_event))
3206 					goto out;
3207 			}
3208 			r = 0;
3209 		}
3210 		break;
3211 	}
3212 	case KVM_GET_IRQCHIP: {
3213 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3214 		struct kvm_irqchip *chip;
3215 
3216 		chip = memdup_user(argp, sizeof(*chip));
3217 		if (IS_ERR(chip)) {
3218 			r = PTR_ERR(chip);
3219 			goto out;
3220 		}
3221 
3222 		r = -ENXIO;
3223 		if (!irqchip_in_kernel(kvm))
3224 			goto get_irqchip_out;
3225 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3226 		if (r)
3227 			goto get_irqchip_out;
3228 		r = -EFAULT;
3229 		if (copy_to_user(argp, chip, sizeof *chip))
3230 			goto get_irqchip_out;
3231 		r = 0;
3232 	get_irqchip_out:
3233 		kfree(chip);
3234 		if (r)
3235 			goto out;
3236 		break;
3237 	}
3238 	case KVM_SET_IRQCHIP: {
3239 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3240 		struct kvm_irqchip *chip;
3241 
3242 		chip = memdup_user(argp, sizeof(*chip));
3243 		if (IS_ERR(chip)) {
3244 			r = PTR_ERR(chip);
3245 			goto out;
3246 		}
3247 
3248 		r = -ENXIO;
3249 		if (!irqchip_in_kernel(kvm))
3250 			goto set_irqchip_out;
3251 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3252 		if (r)
3253 			goto set_irqchip_out;
3254 		r = 0;
3255 	set_irqchip_out:
3256 		kfree(chip);
3257 		if (r)
3258 			goto out;
3259 		break;
3260 	}
3261 	case KVM_GET_PIT: {
3262 		r = -EFAULT;
3263 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3264 			goto out;
3265 		r = -ENXIO;
3266 		if (!kvm->arch.vpit)
3267 			goto out;
3268 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3269 		if (r)
3270 			goto out;
3271 		r = -EFAULT;
3272 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3273 			goto out;
3274 		r = 0;
3275 		break;
3276 	}
3277 	case KVM_SET_PIT: {
3278 		r = -EFAULT;
3279 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3280 			goto out;
3281 		r = -ENXIO;
3282 		if (!kvm->arch.vpit)
3283 			goto out;
3284 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3285 		if (r)
3286 			goto out;
3287 		r = 0;
3288 		break;
3289 	}
3290 	case KVM_GET_PIT2: {
3291 		r = -ENXIO;
3292 		if (!kvm->arch.vpit)
3293 			goto out;
3294 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3295 		if (r)
3296 			goto out;
3297 		r = -EFAULT;
3298 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3299 			goto out;
3300 		r = 0;
3301 		break;
3302 	}
3303 	case KVM_SET_PIT2: {
3304 		r = -EFAULT;
3305 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3306 			goto out;
3307 		r = -ENXIO;
3308 		if (!kvm->arch.vpit)
3309 			goto out;
3310 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3311 		if (r)
3312 			goto out;
3313 		r = 0;
3314 		break;
3315 	}
3316 	case KVM_REINJECT_CONTROL: {
3317 		struct kvm_reinject_control control;
3318 		r =  -EFAULT;
3319 		if (copy_from_user(&control, argp, sizeof(control)))
3320 			goto out;
3321 		r = kvm_vm_ioctl_reinject(kvm, &control);
3322 		if (r)
3323 			goto out;
3324 		r = 0;
3325 		break;
3326 	}
3327 	case KVM_XEN_HVM_CONFIG: {
3328 		r = -EFAULT;
3329 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3330 				   sizeof(struct kvm_xen_hvm_config)))
3331 			goto out;
3332 		r = -EINVAL;
3333 		if (kvm->arch.xen_hvm_config.flags)
3334 			goto out;
3335 		r = 0;
3336 		break;
3337 	}
3338 	case KVM_SET_CLOCK: {
3339 		struct kvm_clock_data user_ns;
3340 		u64 now_ns;
3341 		s64 delta;
3342 
3343 		r = -EFAULT;
3344 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3345 			goto out;
3346 
3347 		r = -EINVAL;
3348 		if (user_ns.flags)
3349 			goto out;
3350 
3351 		r = 0;
3352 		local_irq_disable();
3353 		now_ns = get_kernel_ns();
3354 		delta = user_ns.clock - now_ns;
3355 		local_irq_enable();
3356 		kvm->arch.kvmclock_offset = delta;
3357 		break;
3358 	}
3359 	case KVM_GET_CLOCK: {
3360 		struct kvm_clock_data user_ns;
3361 		u64 now_ns;
3362 
3363 		local_irq_disable();
3364 		now_ns = get_kernel_ns();
3365 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3366 		local_irq_enable();
3367 		user_ns.flags = 0;
3368 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3369 
3370 		r = -EFAULT;
3371 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3372 			goto out;
3373 		r = 0;
3374 		break;
3375 	}
3376 
3377 	default:
3378 		;
3379 	}
3380 out:
3381 	return r;
3382 }
3383 
kvm_init_msr_list(void)3384 static void kvm_init_msr_list(void)
3385 {
3386 	u32 dummy[2];
3387 	unsigned i, j;
3388 
3389 	/* skip the first msrs in the list. KVM-specific */
3390 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3391 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3392 			continue;
3393 		if (j < i)
3394 			msrs_to_save[j] = msrs_to_save[i];
3395 		j++;
3396 	}
3397 	num_msrs_to_save = j;
3398 }
3399 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)3400 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3401 			   const void *v)
3402 {
3403 	int handled = 0;
3404 	int n;
3405 
3406 	do {
3407 		n = min(len, 8);
3408 		if (!(vcpu->arch.apic &&
3409 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3410 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3411 			break;
3412 		handled += n;
3413 		addr += n;
3414 		len -= n;
3415 		v += n;
3416 	} while (len);
3417 
3418 	return handled;
3419 }
3420 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)3421 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3422 {
3423 	int handled = 0;
3424 	int n;
3425 
3426 	do {
3427 		n = min(len, 8);
3428 		if (!(vcpu->arch.apic &&
3429 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3430 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3431 			break;
3432 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3433 		handled += n;
3434 		addr += n;
3435 		len -= n;
3436 		v += n;
3437 	} while (len);
3438 
3439 	return handled;
3440 }
3441 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3442 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3443 			struct kvm_segment *var, int seg)
3444 {
3445 	kvm_x86_ops->set_segment(vcpu, var, seg);
3446 }
3447 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3448 void kvm_get_segment(struct kvm_vcpu *vcpu,
3449 		     struct kvm_segment *var, int seg)
3450 {
3451 	kvm_x86_ops->get_segment(vcpu, var, seg);
3452 }
3453 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access)3454 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3455 {
3456 	gpa_t t_gpa;
3457 	struct x86_exception exception;
3458 
3459 	BUG_ON(!mmu_is_nested(vcpu));
3460 
3461 	/* NPT walks are always user-walks */
3462 	access |= PFERR_USER_MASK;
3463 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3464 
3465 	return t_gpa;
3466 }
3467 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3468 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3469 			      struct x86_exception *exception)
3470 {
3471 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3472 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3473 }
3474 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3475  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3476 				struct x86_exception *exception)
3477 {
3478 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3479 	access |= PFERR_FETCH_MASK;
3480 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3481 }
3482 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3483 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3484 			       struct x86_exception *exception)
3485 {
3486 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3487 	access |= PFERR_WRITE_MASK;
3488 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3489 }
3490 
3491 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)3492 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3493 				struct x86_exception *exception)
3494 {
3495 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3496 }
3497 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)3498 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3499 				      struct kvm_vcpu *vcpu, u32 access,
3500 				      struct x86_exception *exception)
3501 {
3502 	void *data = val;
3503 	int r = X86EMUL_CONTINUE;
3504 
3505 	while (bytes) {
3506 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3507 							    exception);
3508 		unsigned offset = addr & (PAGE_SIZE-1);
3509 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3510 		int ret;
3511 
3512 		if (gpa == UNMAPPED_GVA)
3513 			return X86EMUL_PROPAGATE_FAULT;
3514 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3515 		if (ret < 0) {
3516 			r = X86EMUL_IO_NEEDED;
3517 			goto out;
3518 		}
3519 
3520 		bytes -= toread;
3521 		data += toread;
3522 		addr += toread;
3523 	}
3524 out:
3525 	return r;
3526 }
3527 
3528 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3529 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3530 				gva_t addr, void *val, unsigned int bytes,
3531 				struct x86_exception *exception)
3532 {
3533 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3534 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3535 
3536 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3537 					  access | PFERR_FETCH_MASK,
3538 					  exception);
3539 }
3540 
kvm_read_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3541 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3542 			       gva_t addr, void *val, unsigned int bytes,
3543 			       struct x86_exception *exception)
3544 {
3545 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3546 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3547 
3548 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3549 					  exception);
3550 }
3551 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3552 
kvm_read_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3553 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3554 				      gva_t addr, void *val, unsigned int bytes,
3555 				      struct x86_exception *exception)
3556 {
3557 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3558 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3559 }
3560 
kvm_write_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)3561 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3562 				       gva_t addr, void *val,
3563 				       unsigned int bytes,
3564 				       struct x86_exception *exception)
3565 {
3566 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3567 	void *data = val;
3568 	int r = X86EMUL_CONTINUE;
3569 
3570 	while (bytes) {
3571 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3572 							     PFERR_WRITE_MASK,
3573 							     exception);
3574 		unsigned offset = addr & (PAGE_SIZE-1);
3575 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3576 		int ret;
3577 
3578 		if (gpa == UNMAPPED_GVA)
3579 			return X86EMUL_PROPAGATE_FAULT;
3580 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3581 		if (ret < 0) {
3582 			r = X86EMUL_IO_NEEDED;
3583 			goto out;
3584 		}
3585 
3586 		bytes -= towrite;
3587 		data += towrite;
3588 		addr += towrite;
3589 	}
3590 out:
3591 	return r;
3592 }
3593 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3594 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)3595 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3596 				gpa_t *gpa, struct x86_exception *exception,
3597 				bool write)
3598 {
3599 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3600 
3601 	if (vcpu_match_mmio_gva(vcpu, gva) &&
3602 		  check_write_user_access(vcpu, write, access,
3603 		  vcpu->arch.access)) {
3604 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3605 					(gva & (PAGE_SIZE - 1));
3606 		trace_vcpu_match_mmio(gva, *gpa, write, false);
3607 		return 1;
3608 	}
3609 
3610 	if (write)
3611 		access |= PFERR_WRITE_MASK;
3612 
3613 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3614 
3615 	if (*gpa == UNMAPPED_GVA)
3616 		return -1;
3617 
3618 	/* For APIC access vmexit */
3619 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3620 		return 1;
3621 
3622 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3623 		trace_vcpu_match_mmio(gva, *gpa, write, true);
3624 		return 1;
3625 	}
3626 
3627 	return 0;
3628 }
3629 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)3630 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3631 			const void *val, int bytes)
3632 {
3633 	int ret;
3634 
3635 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3636 	if (ret < 0)
3637 		return 0;
3638 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3639 	return 1;
3640 }
3641 
3642 struct read_write_emulator_ops {
3643 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3644 				  int bytes);
3645 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3646 				  void *val, int bytes);
3647 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3648 			       int bytes, void *val);
3649 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3650 				    void *val, int bytes);
3651 	bool write;
3652 };
3653 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)3654 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3655 {
3656 	if (vcpu->mmio_read_completed) {
3657 		memcpy(val, vcpu->mmio_data, bytes);
3658 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3659 			       vcpu->mmio_phys_addr, *(u64 *)val);
3660 		vcpu->mmio_read_completed = 0;
3661 		return 1;
3662 	}
3663 
3664 	return 0;
3665 }
3666 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)3667 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3668 			void *val, int bytes)
3669 {
3670 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3671 }
3672 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)3673 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3674 			 void *val, int bytes)
3675 {
3676 	return emulator_write_phys(vcpu, gpa, val, bytes);
3677 }
3678 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)3679 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3680 {
3681 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3682 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
3683 }
3684 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)3685 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3686 			  void *val, int bytes)
3687 {
3688 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3689 	return X86EMUL_IO_NEEDED;
3690 }
3691 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)3692 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3693 			   void *val, int bytes)
3694 {
3695 	memcpy(vcpu->mmio_data, val, bytes);
3696 	memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
3697 	return X86EMUL_CONTINUE;
3698 }
3699 
3700 static struct read_write_emulator_ops read_emultor = {
3701 	.read_write_prepare = read_prepare,
3702 	.read_write_emulate = read_emulate,
3703 	.read_write_mmio = vcpu_mmio_read,
3704 	.read_write_exit_mmio = read_exit_mmio,
3705 };
3706 
3707 static struct read_write_emulator_ops write_emultor = {
3708 	.read_write_emulate = write_emulate,
3709 	.read_write_mmio = write_mmio,
3710 	.read_write_exit_mmio = write_exit_mmio,
3711 	.write = true,
3712 };
3713 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,struct read_write_emulator_ops * ops)3714 static int emulator_read_write_onepage(unsigned long addr, void *val,
3715 				       unsigned int bytes,
3716 				       struct x86_exception *exception,
3717 				       struct kvm_vcpu *vcpu,
3718 				       struct read_write_emulator_ops *ops)
3719 {
3720 	gpa_t gpa;
3721 	int handled, ret;
3722 	bool write = ops->write;
3723 
3724 	if (ops->read_write_prepare &&
3725 		  ops->read_write_prepare(vcpu, val, bytes))
3726 		return X86EMUL_CONTINUE;
3727 
3728 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3729 
3730 	if (ret < 0)
3731 		return X86EMUL_PROPAGATE_FAULT;
3732 
3733 	/* For APIC access vmexit */
3734 	if (ret)
3735 		goto mmio;
3736 
3737 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3738 		return X86EMUL_CONTINUE;
3739 
3740 mmio:
3741 	/*
3742 	 * Is this MMIO handled locally?
3743 	 */
3744 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3745 	if (handled == bytes)
3746 		return X86EMUL_CONTINUE;
3747 
3748 	gpa += handled;
3749 	bytes -= handled;
3750 	val += handled;
3751 
3752 	vcpu->mmio_needed = 1;
3753 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
3754 	vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3755 	vcpu->mmio_size = bytes;
3756 	vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
3757 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = write;
3758 	vcpu->mmio_index = 0;
3759 
3760 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3761 }
3762 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct read_write_emulator_ops * ops)3763 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3764 			void *val, unsigned int bytes,
3765 			struct x86_exception *exception,
3766 			struct read_write_emulator_ops *ops)
3767 {
3768 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3769 
3770 	/* Crossing a page boundary? */
3771 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3772 		int rc, now;
3773 
3774 		now = -addr & ~PAGE_MASK;
3775 		rc = emulator_read_write_onepage(addr, val, now, exception,
3776 						 vcpu, ops);
3777 
3778 		if (rc != X86EMUL_CONTINUE)
3779 			return rc;
3780 		addr += now;
3781 		val += now;
3782 		bytes -= now;
3783 	}
3784 
3785 	return emulator_read_write_onepage(addr, val, bytes, exception,
3786 					   vcpu, ops);
3787 }
3788 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)3789 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3790 				  unsigned long addr,
3791 				  void *val,
3792 				  unsigned int bytes,
3793 				  struct x86_exception *exception)
3794 {
3795 	return emulator_read_write(ctxt, addr, val, bytes,
3796 				   exception, &read_emultor);
3797 }
3798 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)3799 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3800 			    unsigned long addr,
3801 			    const void *val,
3802 			    unsigned int bytes,
3803 			    struct x86_exception *exception)
3804 {
3805 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
3806 				   exception, &write_emultor);
3807 }
3808 
3809 #define CMPXCHG_TYPE(t, ptr, old, new) \
3810 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3811 
3812 #ifdef CONFIG_X86_64
3813 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3814 #else
3815 #  define CMPXCHG64(ptr, old, new) \
3816 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3817 #endif
3818 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)3819 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3820 				     unsigned long addr,
3821 				     const void *old,
3822 				     const void *new,
3823 				     unsigned int bytes,
3824 				     struct x86_exception *exception)
3825 {
3826 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3827 	gpa_t gpa;
3828 	struct page *page;
3829 	char *kaddr;
3830 	bool exchanged;
3831 
3832 	/* guests cmpxchg8b have to be emulated atomically */
3833 	if (bytes > 8 || (bytes & (bytes - 1)))
3834 		goto emul_write;
3835 
3836 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3837 
3838 	if (gpa == UNMAPPED_GVA ||
3839 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3840 		goto emul_write;
3841 
3842 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3843 		goto emul_write;
3844 
3845 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3846 	if (is_error_page(page)) {
3847 		kvm_release_page_clean(page);
3848 		goto emul_write;
3849 	}
3850 
3851 	kaddr = kmap_atomic(page, KM_USER0);
3852 	kaddr += offset_in_page(gpa);
3853 	switch (bytes) {
3854 	case 1:
3855 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3856 		break;
3857 	case 2:
3858 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3859 		break;
3860 	case 4:
3861 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3862 		break;
3863 	case 8:
3864 		exchanged = CMPXCHG64(kaddr, old, new);
3865 		break;
3866 	default:
3867 		BUG();
3868 	}
3869 	kunmap_atomic(kaddr, KM_USER0);
3870 	kvm_release_page_dirty(page);
3871 
3872 	if (!exchanged)
3873 		return X86EMUL_CMPXCHG_FAILED;
3874 
3875 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3876 
3877 	return X86EMUL_CONTINUE;
3878 
3879 emul_write:
3880 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3881 
3882 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3883 }
3884 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)3885 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3886 {
3887 	/* TODO: String I/O for in kernel device */
3888 	int r;
3889 
3890 	if (vcpu->arch.pio.in)
3891 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3892 				    vcpu->arch.pio.size, pd);
3893 	else
3894 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3895 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
3896 				     pd);
3897 	return r;
3898 }
3899 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)3900 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
3901 			       unsigned short port, void *val,
3902 			       unsigned int count, bool in)
3903 {
3904 	trace_kvm_pio(!in, port, size, count);
3905 
3906 	vcpu->arch.pio.port = port;
3907 	vcpu->arch.pio.in = in;
3908 	vcpu->arch.pio.count  = count;
3909 	vcpu->arch.pio.size = size;
3910 
3911 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3912 		vcpu->arch.pio.count = 0;
3913 		return 1;
3914 	}
3915 
3916 	vcpu->run->exit_reason = KVM_EXIT_IO;
3917 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
3918 	vcpu->run->io.size = size;
3919 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3920 	vcpu->run->io.count = count;
3921 	vcpu->run->io.port = port;
3922 
3923 	return 0;
3924 }
3925 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)3926 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
3927 				    int size, unsigned short port, void *val,
3928 				    unsigned int count)
3929 {
3930 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3931 	int ret;
3932 
3933 	if (vcpu->arch.pio.count)
3934 		goto data_avail;
3935 
3936 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
3937 	if (ret) {
3938 data_avail:
3939 		memcpy(val, vcpu->arch.pio_data, size * count);
3940 		vcpu->arch.pio.count = 0;
3941 		return 1;
3942 	}
3943 
3944 	return 0;
3945 }
3946 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)3947 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
3948 				     int size, unsigned short port,
3949 				     const void *val, unsigned int count)
3950 {
3951 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3952 
3953 	memcpy(vcpu->arch.pio_data, val, size * count);
3954 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
3955 }
3956 
get_segment_base(struct kvm_vcpu * vcpu,int seg)3957 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3958 {
3959 	return kvm_x86_ops->get_segment_base(vcpu, seg);
3960 }
3961 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)3962 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
3963 {
3964 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
3965 }
3966 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)3967 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3968 {
3969 	if (!need_emulate_wbinvd(vcpu))
3970 		return X86EMUL_CONTINUE;
3971 
3972 	if (kvm_x86_ops->has_wbinvd_exit()) {
3973 		int cpu = get_cpu();
3974 
3975 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3976 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3977 				wbinvd_ipi, NULL, 1);
3978 		put_cpu();
3979 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3980 	} else
3981 		wbinvd();
3982 	return X86EMUL_CONTINUE;
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3985 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)3986 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
3987 {
3988 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
3989 }
3990 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)3991 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
3992 {
3993 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
3994 }
3995 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)3996 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
3997 {
3998 
3999 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4000 }
4001 
mk_cr_64(u64 curr_cr,u32 new_val)4002 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4003 {
4004 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4005 }
4006 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4007 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4008 {
4009 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010 	unsigned long value;
4011 
4012 	switch (cr) {
4013 	case 0:
4014 		value = kvm_read_cr0(vcpu);
4015 		break;
4016 	case 2:
4017 		value = vcpu->arch.cr2;
4018 		break;
4019 	case 3:
4020 		value = kvm_read_cr3(vcpu);
4021 		break;
4022 	case 4:
4023 		value = kvm_read_cr4(vcpu);
4024 		break;
4025 	case 8:
4026 		value = kvm_get_cr8(vcpu);
4027 		break;
4028 	default:
4029 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4030 		return 0;
4031 	}
4032 
4033 	return value;
4034 }
4035 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4036 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4037 {
4038 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4039 	int res = 0;
4040 
4041 	switch (cr) {
4042 	case 0:
4043 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4044 		break;
4045 	case 2:
4046 		vcpu->arch.cr2 = val;
4047 		break;
4048 	case 3:
4049 		res = kvm_set_cr3(vcpu, val);
4050 		break;
4051 	case 4:
4052 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4053 		break;
4054 	case 8:
4055 		res = kvm_set_cr8(vcpu, val);
4056 		break;
4057 	default:
4058 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4059 		res = -1;
4060 	}
4061 
4062 	return res;
4063 }
4064 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4065 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4066 {
4067 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4068 }
4069 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4070 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4071 {
4072 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4073 }
4074 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4075 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4076 {
4077 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4078 }
4079 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4080 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4081 {
4082 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4083 }
4084 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4085 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4086 {
4087 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4088 }
4089 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4090 static unsigned long emulator_get_cached_segment_base(
4091 	struct x86_emulate_ctxt *ctxt, int seg)
4092 {
4093 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4094 }
4095 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4096 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4097 				 struct desc_struct *desc, u32 *base3,
4098 				 int seg)
4099 {
4100 	struct kvm_segment var;
4101 
4102 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4103 	*selector = var.selector;
4104 
4105 	if (var.unusable)
4106 		return false;
4107 
4108 	if (var.g)
4109 		var.limit >>= 12;
4110 	set_desc_limit(desc, var.limit);
4111 	set_desc_base(desc, (unsigned long)var.base);
4112 #ifdef CONFIG_X86_64
4113 	if (base3)
4114 		*base3 = var.base >> 32;
4115 #endif
4116 	desc->type = var.type;
4117 	desc->s = var.s;
4118 	desc->dpl = var.dpl;
4119 	desc->p = var.present;
4120 	desc->avl = var.avl;
4121 	desc->l = var.l;
4122 	desc->d = var.db;
4123 	desc->g = var.g;
4124 
4125 	return true;
4126 }
4127 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)4128 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4129 				 struct desc_struct *desc, u32 base3,
4130 				 int seg)
4131 {
4132 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4133 	struct kvm_segment var;
4134 
4135 	var.selector = selector;
4136 	var.base = get_desc_base(desc);
4137 #ifdef CONFIG_X86_64
4138 	var.base |= ((u64)base3) << 32;
4139 #endif
4140 	var.limit = get_desc_limit(desc);
4141 	if (desc->g)
4142 		var.limit = (var.limit << 12) | 0xfff;
4143 	var.type = desc->type;
4144 	var.present = desc->p;
4145 	var.dpl = desc->dpl;
4146 	var.db = desc->d;
4147 	var.s = desc->s;
4148 	var.l = desc->l;
4149 	var.g = desc->g;
4150 	var.avl = desc->avl;
4151 	var.present = desc->p;
4152 	var.unusable = !var.present;
4153 	var.padding = 0;
4154 
4155 	kvm_set_segment(vcpu, &var, seg);
4156 	return;
4157 }
4158 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)4159 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4160 			    u32 msr_index, u64 *pdata)
4161 {
4162 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4163 }
4164 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)4165 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4166 			    u32 msr_index, u64 data)
4167 {
4168 	return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4169 }
4170 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)4171 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4172 			     u32 pmc, u64 *pdata)
4173 {
4174 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4175 }
4176 
emulator_halt(struct x86_emulate_ctxt * ctxt)4177 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4178 {
4179 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4180 }
4181 
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)4182 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4183 {
4184 	preempt_disable();
4185 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4186 	/*
4187 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4188 	 * so it may be clear at this point.
4189 	 */
4190 	clts();
4191 }
4192 
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)4193 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4194 {
4195 	preempt_enable();
4196 }
4197 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)4198 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4199 			      struct x86_instruction_info *info,
4200 			      enum x86_intercept_stage stage)
4201 {
4202 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4203 }
4204 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)4205 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4206 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4207 {
4208 	struct kvm_cpuid_entry2 *cpuid = NULL;
4209 
4210 	if (eax && ecx)
4211 		cpuid = kvm_find_cpuid_entry(emul_to_vcpu(ctxt),
4212 					    *eax, *ecx);
4213 
4214 	if (cpuid) {
4215 		*eax = cpuid->eax;
4216 		*ecx = cpuid->ecx;
4217 		if (ebx)
4218 			*ebx = cpuid->ebx;
4219 		if (edx)
4220 			*edx = cpuid->edx;
4221 		return true;
4222 	}
4223 
4224 	return false;
4225 }
4226 
4227 static struct x86_emulate_ops emulate_ops = {
4228 	.read_std            = kvm_read_guest_virt_system,
4229 	.write_std           = kvm_write_guest_virt_system,
4230 	.fetch               = kvm_fetch_guest_virt,
4231 	.read_emulated       = emulator_read_emulated,
4232 	.write_emulated      = emulator_write_emulated,
4233 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4234 	.invlpg              = emulator_invlpg,
4235 	.pio_in_emulated     = emulator_pio_in_emulated,
4236 	.pio_out_emulated    = emulator_pio_out_emulated,
4237 	.get_segment         = emulator_get_segment,
4238 	.set_segment         = emulator_set_segment,
4239 	.get_cached_segment_base = emulator_get_cached_segment_base,
4240 	.get_gdt             = emulator_get_gdt,
4241 	.get_idt	     = emulator_get_idt,
4242 	.set_gdt             = emulator_set_gdt,
4243 	.set_idt	     = emulator_set_idt,
4244 	.get_cr              = emulator_get_cr,
4245 	.set_cr              = emulator_set_cr,
4246 	.cpl                 = emulator_get_cpl,
4247 	.get_dr              = emulator_get_dr,
4248 	.set_dr              = emulator_set_dr,
4249 	.set_msr             = emulator_set_msr,
4250 	.get_msr             = emulator_get_msr,
4251 	.read_pmc            = emulator_read_pmc,
4252 	.halt                = emulator_halt,
4253 	.wbinvd              = emulator_wbinvd,
4254 	.fix_hypercall       = emulator_fix_hypercall,
4255 	.get_fpu             = emulator_get_fpu,
4256 	.put_fpu             = emulator_put_fpu,
4257 	.intercept           = emulator_intercept,
4258 	.get_cpuid           = emulator_get_cpuid,
4259 };
4260 
cache_all_regs(struct kvm_vcpu * vcpu)4261 static void cache_all_regs(struct kvm_vcpu *vcpu)
4262 {
4263 	kvm_register_read(vcpu, VCPU_REGS_RAX);
4264 	kvm_register_read(vcpu, VCPU_REGS_RSP);
4265 	kvm_register_read(vcpu, VCPU_REGS_RIP);
4266 	vcpu->arch.regs_dirty = ~0;
4267 }
4268 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)4269 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4270 {
4271 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4272 	/*
4273 	 * an sti; sti; sequence only disable interrupts for the first
4274 	 * instruction. So, if the last instruction, be it emulated or
4275 	 * not, left the system with the INT_STI flag enabled, it
4276 	 * means that the last instruction is an sti. We should not
4277 	 * leave the flag on in this case. The same goes for mov ss
4278 	 */
4279 	if (!(int_shadow & mask))
4280 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4281 }
4282 
inject_emulated_exception(struct kvm_vcpu * vcpu)4283 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4284 {
4285 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4286 	if (ctxt->exception.vector == PF_VECTOR)
4287 		kvm_propagate_fault(vcpu, &ctxt->exception);
4288 	else if (ctxt->exception.error_code_valid)
4289 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4290 				      ctxt->exception.error_code);
4291 	else
4292 		kvm_queue_exception(vcpu, ctxt->exception.vector);
4293 }
4294 
init_decode_cache(struct x86_emulate_ctxt * ctxt,const unsigned long * regs)4295 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4296 			      const unsigned long *regs)
4297 {
4298 	memset(&ctxt->twobyte, 0,
4299 	       (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4300 	memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4301 
4302 	ctxt->fetch.start = 0;
4303 	ctxt->fetch.end = 0;
4304 	ctxt->io_read.pos = 0;
4305 	ctxt->io_read.end = 0;
4306 	ctxt->mem_read.pos = 0;
4307 	ctxt->mem_read.end = 0;
4308 }
4309 
init_emulate_ctxt(struct kvm_vcpu * vcpu)4310 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4311 {
4312 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4313 	int cs_db, cs_l;
4314 
4315 	/*
4316 	 * TODO: fix emulate.c to use guest_read/write_register
4317 	 * instead of direct ->regs accesses, can save hundred cycles
4318 	 * on Intel for instructions that don't read/change RSP, for
4319 	 * for example.
4320 	 */
4321 	cache_all_regs(vcpu);
4322 
4323 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4324 
4325 	ctxt->eflags = kvm_get_rflags(vcpu);
4326 	ctxt->eip = kvm_rip_read(vcpu);
4327 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
4328 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
4329 		     cs_l				? X86EMUL_MODE_PROT64 :
4330 		     cs_db				? X86EMUL_MODE_PROT32 :
4331 							  X86EMUL_MODE_PROT16;
4332 	ctxt->guest_mode = is_guest_mode(vcpu);
4333 
4334 	init_decode_cache(ctxt, vcpu->arch.regs);
4335 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4336 }
4337 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)4338 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4339 {
4340 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4341 	int ret;
4342 
4343 	init_emulate_ctxt(vcpu);
4344 
4345 	ctxt->op_bytes = 2;
4346 	ctxt->ad_bytes = 2;
4347 	ctxt->_eip = ctxt->eip + inc_eip;
4348 	ret = emulate_int_real(ctxt, irq);
4349 
4350 	if (ret != X86EMUL_CONTINUE)
4351 		return EMULATE_FAIL;
4352 
4353 	ctxt->eip = ctxt->_eip;
4354 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4355 	kvm_rip_write(vcpu, ctxt->eip);
4356 	kvm_set_rflags(vcpu, ctxt->eflags);
4357 
4358 	if (irq == NMI_VECTOR)
4359 		vcpu->arch.nmi_pending = 0;
4360 	else
4361 		vcpu->arch.interrupt.pending = false;
4362 
4363 	return EMULATE_DONE;
4364 }
4365 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4366 
handle_emulation_failure(struct kvm_vcpu * vcpu)4367 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4368 {
4369 	int r = EMULATE_DONE;
4370 
4371 	++vcpu->stat.insn_emulation_fail;
4372 	trace_kvm_emulate_insn_failed(vcpu);
4373 	if (!is_guest_mode(vcpu)) {
4374 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4375 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4376 		vcpu->run->internal.ndata = 0;
4377 		r = EMULATE_FAIL;
4378 	}
4379 	kvm_queue_exception(vcpu, UD_VECTOR);
4380 
4381 	return r;
4382 }
4383 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t gva)4384 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4385 {
4386 	gpa_t gpa;
4387 
4388 	if (tdp_enabled)
4389 		return false;
4390 
4391 	/*
4392 	 * if emulation was due to access to shadowed page table
4393 	 * and it failed try to unshadow page and re-entetr the
4394 	 * guest to let CPU execute the instruction.
4395 	 */
4396 	if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4397 		return true;
4398 
4399 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4400 
4401 	if (gpa == UNMAPPED_GVA)
4402 		return true; /* let cpu generate fault */
4403 
4404 	if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4405 		return true;
4406 
4407 	return false;
4408 }
4409 
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)4410 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4411 			      unsigned long cr2,  int emulation_type)
4412 {
4413 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4414 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4415 
4416 	last_retry_eip = vcpu->arch.last_retry_eip;
4417 	last_retry_addr = vcpu->arch.last_retry_addr;
4418 
4419 	/*
4420 	 * If the emulation is caused by #PF and it is non-page_table
4421 	 * writing instruction, it means the VM-EXIT is caused by shadow
4422 	 * page protected, we can zap the shadow page and retry this
4423 	 * instruction directly.
4424 	 *
4425 	 * Note: if the guest uses a non-page-table modifying instruction
4426 	 * on the PDE that points to the instruction, then we will unmap
4427 	 * the instruction and go to an infinite loop. So, we cache the
4428 	 * last retried eip and the last fault address, if we meet the eip
4429 	 * and the address again, we can break out of the potential infinite
4430 	 * loop.
4431 	 */
4432 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4433 
4434 	if (!(emulation_type & EMULTYPE_RETRY))
4435 		return false;
4436 
4437 	if (x86_page_table_writing_insn(ctxt))
4438 		return false;
4439 
4440 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4441 		return false;
4442 
4443 	vcpu->arch.last_retry_eip = ctxt->eip;
4444 	vcpu->arch.last_retry_addr = cr2;
4445 
4446 	if (!vcpu->arch.mmu.direct_map)
4447 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4448 
4449 	kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4450 
4451 	return true;
4452 }
4453 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)4454 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4455 			    unsigned long cr2,
4456 			    int emulation_type,
4457 			    void *insn,
4458 			    int insn_len)
4459 {
4460 	int r;
4461 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4462 	bool writeback = true;
4463 
4464 	kvm_clear_exception_queue(vcpu);
4465 
4466 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4467 		init_emulate_ctxt(vcpu);
4468 		ctxt->interruptibility = 0;
4469 		ctxt->have_exception = false;
4470 		ctxt->perm_ok = false;
4471 
4472 		ctxt->only_vendor_specific_insn
4473 			= emulation_type & EMULTYPE_TRAP_UD;
4474 
4475 		r = x86_decode_insn(ctxt, insn, insn_len);
4476 
4477 		trace_kvm_emulate_insn_start(vcpu);
4478 		++vcpu->stat.insn_emulation;
4479 		if (r != EMULATION_OK)  {
4480 			if (emulation_type & EMULTYPE_TRAP_UD)
4481 				return EMULATE_FAIL;
4482 			if (reexecute_instruction(vcpu, cr2))
4483 				return EMULATE_DONE;
4484 			if (emulation_type & EMULTYPE_SKIP)
4485 				return EMULATE_FAIL;
4486 			return handle_emulation_failure(vcpu);
4487 		}
4488 	}
4489 
4490 	if (emulation_type & EMULTYPE_SKIP) {
4491 		kvm_rip_write(vcpu, ctxt->_eip);
4492 		return EMULATE_DONE;
4493 	}
4494 
4495 	if (retry_instruction(ctxt, cr2, emulation_type))
4496 		return EMULATE_DONE;
4497 
4498 	/* this is needed for vmware backdoor interface to work since it
4499 	   changes registers values  during IO operation */
4500 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4501 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4502 		memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4503 	}
4504 
4505 restart:
4506 	r = x86_emulate_insn(ctxt);
4507 
4508 	if (r == EMULATION_INTERCEPTED)
4509 		return EMULATE_DONE;
4510 
4511 	if (r == EMULATION_FAILED) {
4512 		if (reexecute_instruction(vcpu, cr2))
4513 			return EMULATE_DONE;
4514 
4515 		return handle_emulation_failure(vcpu);
4516 	}
4517 
4518 	if (ctxt->have_exception) {
4519 		inject_emulated_exception(vcpu);
4520 		r = EMULATE_DONE;
4521 	} else if (vcpu->arch.pio.count) {
4522 		if (!vcpu->arch.pio.in)
4523 			vcpu->arch.pio.count = 0;
4524 		else
4525 			writeback = false;
4526 		r = EMULATE_DO_MMIO;
4527 	} else if (vcpu->mmio_needed) {
4528 		if (!vcpu->mmio_is_write)
4529 			writeback = false;
4530 		r = EMULATE_DO_MMIO;
4531 	} else if (r == EMULATION_RESTART)
4532 		goto restart;
4533 	else
4534 		r = EMULATE_DONE;
4535 
4536 	if (writeback) {
4537 		toggle_interruptibility(vcpu, ctxt->interruptibility);
4538 		kvm_set_rflags(vcpu, ctxt->eflags);
4539 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4540 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4541 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4542 		kvm_rip_write(vcpu, ctxt->eip);
4543 	} else
4544 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4545 
4546 	return r;
4547 }
4548 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4549 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)4550 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4551 {
4552 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4553 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4554 					    size, port, &val, 1);
4555 	/* do not return to emulator after return from userspace */
4556 	vcpu->arch.pio.count = 0;
4557 	return ret;
4558 }
4559 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4560 
tsc_bad(void * info)4561 static void tsc_bad(void *info)
4562 {
4563 	__this_cpu_write(cpu_tsc_khz, 0);
4564 }
4565 
tsc_khz_changed(void * data)4566 static void tsc_khz_changed(void *data)
4567 {
4568 	struct cpufreq_freqs *freq = data;
4569 	unsigned long khz = 0;
4570 
4571 	if (data)
4572 		khz = freq->new;
4573 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4574 		khz = cpufreq_quick_get(raw_smp_processor_id());
4575 	if (!khz)
4576 		khz = tsc_khz;
4577 	__this_cpu_write(cpu_tsc_khz, khz);
4578 }
4579 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)4580 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4581 				     void *data)
4582 {
4583 	struct cpufreq_freqs *freq = data;
4584 	struct kvm *kvm;
4585 	struct kvm_vcpu *vcpu;
4586 	int i, send_ipi = 0;
4587 
4588 	/*
4589 	 * We allow guests to temporarily run on slowing clocks,
4590 	 * provided we notify them after, or to run on accelerating
4591 	 * clocks, provided we notify them before.  Thus time never
4592 	 * goes backwards.
4593 	 *
4594 	 * However, we have a problem.  We can't atomically update
4595 	 * the frequency of a given CPU from this function; it is
4596 	 * merely a notifier, which can be called from any CPU.
4597 	 * Changing the TSC frequency at arbitrary points in time
4598 	 * requires a recomputation of local variables related to
4599 	 * the TSC for each VCPU.  We must flag these local variables
4600 	 * to be updated and be sure the update takes place with the
4601 	 * new frequency before any guests proceed.
4602 	 *
4603 	 * Unfortunately, the combination of hotplug CPU and frequency
4604 	 * change creates an intractable locking scenario; the order
4605 	 * of when these callouts happen is undefined with respect to
4606 	 * CPU hotplug, and they can race with each other.  As such,
4607 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4608 	 * undefined; you can actually have a CPU frequency change take
4609 	 * place in between the computation of X and the setting of the
4610 	 * variable.  To protect against this problem, all updates of
4611 	 * the per_cpu tsc_khz variable are done in an interrupt
4612 	 * protected IPI, and all callers wishing to update the value
4613 	 * must wait for a synchronous IPI to complete (which is trivial
4614 	 * if the caller is on the CPU already).  This establishes the
4615 	 * necessary total order on variable updates.
4616 	 *
4617 	 * Note that because a guest time update may take place
4618 	 * anytime after the setting of the VCPU's request bit, the
4619 	 * correct TSC value must be set before the request.  However,
4620 	 * to ensure the update actually makes it to any guest which
4621 	 * starts running in hardware virtualization between the set
4622 	 * and the acquisition of the spinlock, we must also ping the
4623 	 * CPU after setting the request bit.
4624 	 *
4625 	 */
4626 
4627 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4628 		return 0;
4629 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4630 		return 0;
4631 
4632 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4633 
4634 	raw_spin_lock(&kvm_lock);
4635 	list_for_each_entry(kvm, &vm_list, vm_list) {
4636 		kvm_for_each_vcpu(i, vcpu, kvm) {
4637 			if (vcpu->cpu != freq->cpu)
4638 				continue;
4639 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4640 			if (vcpu->cpu != smp_processor_id())
4641 				send_ipi = 1;
4642 		}
4643 	}
4644 	raw_spin_unlock(&kvm_lock);
4645 
4646 	if (freq->old < freq->new && send_ipi) {
4647 		/*
4648 		 * We upscale the frequency.  Must make the guest
4649 		 * doesn't see old kvmclock values while running with
4650 		 * the new frequency, otherwise we risk the guest sees
4651 		 * time go backwards.
4652 		 *
4653 		 * In case we update the frequency for another cpu
4654 		 * (which might be in guest context) send an interrupt
4655 		 * to kick the cpu out of guest context.  Next time
4656 		 * guest context is entered kvmclock will be updated,
4657 		 * so the guest will not see stale values.
4658 		 */
4659 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4660 	}
4661 	return 0;
4662 }
4663 
4664 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4665 	.notifier_call  = kvmclock_cpufreq_notifier
4666 };
4667 
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)4668 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4669 					unsigned long action, void *hcpu)
4670 {
4671 	unsigned int cpu = (unsigned long)hcpu;
4672 
4673 	switch (action) {
4674 		case CPU_ONLINE:
4675 		case CPU_DOWN_FAILED:
4676 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4677 			break;
4678 		case CPU_DOWN_PREPARE:
4679 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
4680 			break;
4681 	}
4682 	return NOTIFY_OK;
4683 }
4684 
4685 static struct notifier_block kvmclock_cpu_notifier_block = {
4686 	.notifier_call  = kvmclock_cpu_notifier,
4687 	.priority = -INT_MAX
4688 };
4689 
kvm_timer_init(void)4690 static void kvm_timer_init(void)
4691 {
4692 	int cpu;
4693 
4694 	max_tsc_khz = tsc_khz;
4695 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4696 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4697 #ifdef CONFIG_CPU_FREQ
4698 		struct cpufreq_policy policy;
4699 		memset(&policy, 0, sizeof(policy));
4700 		cpu = get_cpu();
4701 		cpufreq_get_policy(&policy, cpu);
4702 		if (policy.cpuinfo.max_freq)
4703 			max_tsc_khz = policy.cpuinfo.max_freq;
4704 		put_cpu();
4705 #endif
4706 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4707 					  CPUFREQ_TRANSITION_NOTIFIER);
4708 	}
4709 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4710 	for_each_online_cpu(cpu)
4711 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4712 }
4713 
4714 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4715 
kvm_is_in_guest(void)4716 int kvm_is_in_guest(void)
4717 {
4718 	return __this_cpu_read(current_vcpu) != NULL;
4719 }
4720 
kvm_is_user_mode(void)4721 static int kvm_is_user_mode(void)
4722 {
4723 	int user_mode = 3;
4724 
4725 	if (__this_cpu_read(current_vcpu))
4726 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4727 
4728 	return user_mode != 0;
4729 }
4730 
kvm_get_guest_ip(void)4731 static unsigned long kvm_get_guest_ip(void)
4732 {
4733 	unsigned long ip = 0;
4734 
4735 	if (__this_cpu_read(current_vcpu))
4736 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4737 
4738 	return ip;
4739 }
4740 
4741 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4742 	.is_in_guest		= kvm_is_in_guest,
4743 	.is_user_mode		= kvm_is_user_mode,
4744 	.get_guest_ip		= kvm_get_guest_ip,
4745 };
4746 
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)4747 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4748 {
4749 	__this_cpu_write(current_vcpu, vcpu);
4750 }
4751 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4752 
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)4753 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4754 {
4755 	__this_cpu_write(current_vcpu, NULL);
4756 }
4757 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4758 
kvm_set_mmio_spte_mask(void)4759 static void kvm_set_mmio_spte_mask(void)
4760 {
4761 	u64 mask;
4762 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
4763 
4764 	/*
4765 	 * Set the reserved bits and the present bit of an paging-structure
4766 	 * entry to generate page fault with PFER.RSV = 1.
4767 	 */
4768 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4769 	mask |= 1ull;
4770 
4771 #ifdef CONFIG_X86_64
4772 	/*
4773 	 * If reserved bit is not supported, clear the present bit to disable
4774 	 * mmio page fault.
4775 	 */
4776 	if (maxphyaddr == 52)
4777 		mask &= ~1ull;
4778 #endif
4779 
4780 	kvm_mmu_set_mmio_spte_mask(mask);
4781 }
4782 
kvm_arch_init(void * opaque)4783 int kvm_arch_init(void *opaque)
4784 {
4785 	int r;
4786 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4787 
4788 	if (kvm_x86_ops) {
4789 		printk(KERN_ERR "kvm: already loaded the other module\n");
4790 		r = -EEXIST;
4791 		goto out;
4792 	}
4793 
4794 	if (!ops->cpu_has_kvm_support()) {
4795 		printk(KERN_ERR "kvm: no hardware support\n");
4796 		r = -EOPNOTSUPP;
4797 		goto out;
4798 	}
4799 	if (ops->disabled_by_bios()) {
4800 		printk(KERN_ERR "kvm: disabled by bios\n");
4801 		r = -EOPNOTSUPP;
4802 		goto out;
4803 	}
4804 
4805 	r = kvm_mmu_module_init();
4806 	if (r)
4807 		goto out;
4808 
4809 	kvm_set_mmio_spte_mask();
4810 	kvm_init_msr_list();
4811 
4812 	kvm_x86_ops = ops;
4813 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4814 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
4815 
4816 	kvm_timer_init();
4817 
4818 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
4819 
4820 	if (cpu_has_xsave)
4821 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4822 
4823 	return 0;
4824 
4825 out:
4826 	return r;
4827 }
4828 
kvm_arch_exit(void)4829 void kvm_arch_exit(void)
4830 {
4831 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4832 
4833 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4834 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4835 					    CPUFREQ_TRANSITION_NOTIFIER);
4836 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4837 	kvm_x86_ops = NULL;
4838 	kvm_mmu_module_exit();
4839 }
4840 
kvm_emulate_halt(struct kvm_vcpu * vcpu)4841 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4842 {
4843 	++vcpu->stat.halt_exits;
4844 	if (irqchip_in_kernel(vcpu->kvm)) {
4845 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4846 		return 1;
4847 	} else {
4848 		vcpu->run->exit_reason = KVM_EXIT_HLT;
4849 		return 0;
4850 	}
4851 }
4852 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4853 
kvm_hv_hypercall(struct kvm_vcpu * vcpu)4854 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4855 {
4856 	u64 param, ingpa, outgpa, ret;
4857 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4858 	bool fast, longmode;
4859 	int cs_db, cs_l;
4860 
4861 	/*
4862 	 * hypercall generates UD from non zero cpl and real mode
4863 	 * per HYPER-V spec
4864 	 */
4865 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4866 		kvm_queue_exception(vcpu, UD_VECTOR);
4867 		return 0;
4868 	}
4869 
4870 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4871 	longmode = is_long_mode(vcpu) && cs_l == 1;
4872 
4873 	if (!longmode) {
4874 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4875 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4876 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4877 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4878 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4879 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4880 	}
4881 #ifdef CONFIG_X86_64
4882 	else {
4883 		param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4884 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4885 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4886 	}
4887 #endif
4888 
4889 	code = param & 0xffff;
4890 	fast = (param >> 16) & 0x1;
4891 	rep_cnt = (param >> 32) & 0xfff;
4892 	rep_idx = (param >> 48) & 0xfff;
4893 
4894 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4895 
4896 	switch (code) {
4897 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4898 		kvm_vcpu_on_spin(vcpu);
4899 		break;
4900 	default:
4901 		res = HV_STATUS_INVALID_HYPERCALL_CODE;
4902 		break;
4903 	}
4904 
4905 	ret = res | (((u64)rep_done & 0xfff) << 32);
4906 	if (longmode) {
4907 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4908 	} else {
4909 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4910 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4911 	}
4912 
4913 	return 1;
4914 }
4915 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)4916 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4917 {
4918 	unsigned long nr, a0, a1, a2, a3, ret;
4919 	int r = 1;
4920 
4921 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
4922 		return kvm_hv_hypercall(vcpu);
4923 
4924 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4925 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4926 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4927 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4928 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4929 
4930 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
4931 
4932 	if (!is_long_mode(vcpu)) {
4933 		nr &= 0xFFFFFFFF;
4934 		a0 &= 0xFFFFFFFF;
4935 		a1 &= 0xFFFFFFFF;
4936 		a2 &= 0xFFFFFFFF;
4937 		a3 &= 0xFFFFFFFF;
4938 	}
4939 
4940 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4941 		ret = -KVM_EPERM;
4942 		goto out;
4943 	}
4944 
4945 	switch (nr) {
4946 	case KVM_HC_VAPIC_POLL_IRQ:
4947 		ret = 0;
4948 		break;
4949 	default:
4950 		ret = -KVM_ENOSYS;
4951 		break;
4952 	}
4953 out:
4954 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4955 	++vcpu->stat.hypercalls;
4956 	return r;
4957 }
4958 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4959 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)4960 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
4961 {
4962 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4963 	char instruction[3];
4964 	unsigned long rip = kvm_rip_read(vcpu);
4965 
4966 	/*
4967 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
4968 	 * to ensure that the updated hypercall appears atomically across all
4969 	 * VCPUs.
4970 	 */
4971 	kvm_mmu_zap_all(vcpu->kvm);
4972 
4973 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
4974 
4975 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
4976 }
4977 
4978 /*
4979  * Check if userspace requested an interrupt window, and that the
4980  * interrupt window is open.
4981  *
4982  * No need to exit to userspace if we already have an interrupt queued.
4983  */
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)4984 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4985 {
4986 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4987 		vcpu->run->request_interrupt_window &&
4988 		kvm_arch_interrupt_allowed(vcpu));
4989 }
4990 
post_kvm_run_save(struct kvm_vcpu * vcpu)4991 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4992 {
4993 	struct kvm_run *kvm_run = vcpu->run;
4994 
4995 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4996 	kvm_run->cr8 = kvm_get_cr8(vcpu);
4997 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
4998 	if (irqchip_in_kernel(vcpu->kvm))
4999 		kvm_run->ready_for_interrupt_injection = 1;
5000 	else
5001 		kvm_run->ready_for_interrupt_injection =
5002 			kvm_arch_interrupt_allowed(vcpu) &&
5003 			!kvm_cpu_has_interrupt(vcpu) &&
5004 			!kvm_event_needs_reinjection(vcpu);
5005 }
5006 
vapic_enter(struct kvm_vcpu * vcpu)5007 static void vapic_enter(struct kvm_vcpu *vcpu)
5008 {
5009 	struct kvm_lapic *apic = vcpu->arch.apic;
5010 	struct page *page;
5011 
5012 	if (!apic || !apic->vapic_addr)
5013 		return;
5014 
5015 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5016 
5017 	vcpu->arch.apic->vapic_page = page;
5018 }
5019 
vapic_exit(struct kvm_vcpu * vcpu)5020 static void vapic_exit(struct kvm_vcpu *vcpu)
5021 {
5022 	struct kvm_lapic *apic = vcpu->arch.apic;
5023 	int idx;
5024 
5025 	if (!apic || !apic->vapic_addr)
5026 		return;
5027 
5028 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5029 	kvm_release_page_dirty(apic->vapic_page);
5030 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5031 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5032 }
5033 
update_cr8_intercept(struct kvm_vcpu * vcpu)5034 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5035 {
5036 	int max_irr, tpr;
5037 
5038 	if (!kvm_x86_ops->update_cr8_intercept)
5039 		return;
5040 
5041 	if (!vcpu->arch.apic)
5042 		return;
5043 
5044 	if (!vcpu->arch.apic->vapic_addr)
5045 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5046 	else
5047 		max_irr = -1;
5048 
5049 	if (max_irr != -1)
5050 		max_irr >>= 4;
5051 
5052 	tpr = kvm_lapic_get_cr8(vcpu);
5053 
5054 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5055 }
5056 
inject_pending_event(struct kvm_vcpu * vcpu)5057 static void inject_pending_event(struct kvm_vcpu *vcpu)
5058 {
5059 	/* try to reinject previous events if any */
5060 	if (vcpu->arch.exception.pending) {
5061 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5062 					vcpu->arch.exception.has_error_code,
5063 					vcpu->arch.exception.error_code);
5064 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5065 					  vcpu->arch.exception.has_error_code,
5066 					  vcpu->arch.exception.error_code,
5067 					  vcpu->arch.exception.reinject);
5068 		return;
5069 	}
5070 
5071 	if (vcpu->arch.nmi_injected) {
5072 		kvm_x86_ops->set_nmi(vcpu);
5073 		return;
5074 	}
5075 
5076 	if (vcpu->arch.interrupt.pending) {
5077 		kvm_x86_ops->set_irq(vcpu);
5078 		return;
5079 	}
5080 
5081 	/* try to inject new event if pending */
5082 	if (vcpu->arch.nmi_pending) {
5083 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
5084 			--vcpu->arch.nmi_pending;
5085 			vcpu->arch.nmi_injected = true;
5086 			kvm_x86_ops->set_nmi(vcpu);
5087 		}
5088 	} else if (kvm_cpu_has_interrupt(vcpu)) {
5089 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5090 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5091 					    false);
5092 			kvm_x86_ops->set_irq(vcpu);
5093 		}
5094 	}
5095 }
5096 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)5097 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5098 {
5099 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5100 			!vcpu->guest_xcr0_loaded) {
5101 		/* kvm_set_xcr() also depends on this */
5102 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5103 		vcpu->guest_xcr0_loaded = 1;
5104 	}
5105 }
5106 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)5107 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5108 {
5109 	if (vcpu->guest_xcr0_loaded) {
5110 		if (vcpu->arch.xcr0 != host_xcr0)
5111 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5112 		vcpu->guest_xcr0_loaded = 0;
5113 	}
5114 }
5115 
process_nmi(struct kvm_vcpu * vcpu)5116 static void process_nmi(struct kvm_vcpu *vcpu)
5117 {
5118 	unsigned limit = 2;
5119 
5120 	/*
5121 	 * x86 is limited to one NMI running, and one NMI pending after it.
5122 	 * If an NMI is already in progress, limit further NMIs to just one.
5123 	 * Otherwise, allow two (and we'll inject the first one immediately).
5124 	 */
5125 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5126 		limit = 1;
5127 
5128 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5129 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5130 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5131 }
5132 
vcpu_enter_guest(struct kvm_vcpu * vcpu)5133 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5134 {
5135 	int r;
5136 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5137 		vcpu->run->request_interrupt_window;
5138 	bool req_immediate_exit = 0;
5139 
5140 	if (vcpu->requests) {
5141 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5142 			kvm_mmu_unload(vcpu);
5143 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5144 			__kvm_migrate_timers(vcpu);
5145 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5146 			r = kvm_guest_time_update(vcpu);
5147 			if (unlikely(r))
5148 				goto out;
5149 		}
5150 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5151 			kvm_mmu_sync_roots(vcpu);
5152 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5153 			kvm_x86_ops->tlb_flush(vcpu);
5154 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5155 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5156 			r = 0;
5157 			goto out;
5158 		}
5159 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5160 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5161 			r = 0;
5162 			goto out;
5163 		}
5164 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5165 			vcpu->fpu_active = 0;
5166 			kvm_x86_ops->fpu_deactivate(vcpu);
5167 		}
5168 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5169 			/* Page is swapped out. Do synthetic halt */
5170 			vcpu->arch.apf.halted = true;
5171 			r = 1;
5172 			goto out;
5173 		}
5174 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5175 			record_steal_time(vcpu);
5176 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
5177 			process_nmi(vcpu);
5178 		req_immediate_exit =
5179 			kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5180 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
5181 			kvm_handle_pmu_event(vcpu);
5182 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
5183 			kvm_deliver_pmi(vcpu);
5184 	}
5185 
5186 	r = kvm_mmu_reload(vcpu);
5187 	if (unlikely(r))
5188 		goto out;
5189 
5190 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5191 		inject_pending_event(vcpu);
5192 
5193 		/* enable NMI/IRQ window open exits if needed */
5194 		if (vcpu->arch.nmi_pending)
5195 			kvm_x86_ops->enable_nmi_window(vcpu);
5196 		else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5197 			kvm_x86_ops->enable_irq_window(vcpu);
5198 
5199 		if (kvm_lapic_enabled(vcpu)) {
5200 			update_cr8_intercept(vcpu);
5201 			kvm_lapic_sync_to_vapic(vcpu);
5202 		}
5203 	}
5204 
5205 	preempt_disable();
5206 
5207 	kvm_x86_ops->prepare_guest_switch(vcpu);
5208 	if (vcpu->fpu_active)
5209 		kvm_load_guest_fpu(vcpu);
5210 	kvm_load_guest_xcr0(vcpu);
5211 
5212 	vcpu->mode = IN_GUEST_MODE;
5213 
5214 	/* We should set ->mode before check ->requests,
5215 	 * see the comment in make_all_cpus_request.
5216 	 */
5217 	smp_mb();
5218 
5219 	local_irq_disable();
5220 
5221 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5222 	    || need_resched() || signal_pending(current)) {
5223 		vcpu->mode = OUTSIDE_GUEST_MODE;
5224 		smp_wmb();
5225 		local_irq_enable();
5226 		preempt_enable();
5227 		kvm_x86_ops->cancel_injection(vcpu);
5228 		r = 1;
5229 		goto out;
5230 	}
5231 
5232 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5233 
5234 	if (req_immediate_exit)
5235 		smp_send_reschedule(vcpu->cpu);
5236 
5237 	kvm_guest_enter();
5238 
5239 	if (unlikely(vcpu->arch.switch_db_regs)) {
5240 		set_debugreg(0, 7);
5241 		set_debugreg(vcpu->arch.eff_db[0], 0);
5242 		set_debugreg(vcpu->arch.eff_db[1], 1);
5243 		set_debugreg(vcpu->arch.eff_db[2], 2);
5244 		set_debugreg(vcpu->arch.eff_db[3], 3);
5245 	}
5246 
5247 	trace_kvm_entry(vcpu->vcpu_id);
5248 	kvm_x86_ops->run(vcpu);
5249 
5250 	/*
5251 	 * If the guest has used debug registers, at least dr7
5252 	 * will be disabled while returning to the host.
5253 	 * If we don't have active breakpoints in the host, we don't
5254 	 * care about the messed up debug address registers. But if
5255 	 * we have some of them active, restore the old state.
5256 	 */
5257 	if (hw_breakpoint_active())
5258 		hw_breakpoint_restore();
5259 
5260 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5261 
5262 	vcpu->mode = OUTSIDE_GUEST_MODE;
5263 	smp_wmb();
5264 	local_irq_enable();
5265 
5266 	++vcpu->stat.exits;
5267 
5268 	/*
5269 	 * We must have an instruction between local_irq_enable() and
5270 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5271 	 * the interrupt shadow.  The stat.exits increment will do nicely.
5272 	 * But we need to prevent reordering, hence this barrier():
5273 	 */
5274 	barrier();
5275 
5276 	kvm_guest_exit();
5277 
5278 	preempt_enable();
5279 
5280 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5281 
5282 	/*
5283 	 * Profile KVM exit RIPs:
5284 	 */
5285 	if (unlikely(prof_on == KVM_PROFILING)) {
5286 		unsigned long rip = kvm_rip_read(vcpu);
5287 		profile_hit(KVM_PROFILING, (void *)rip);
5288 	}
5289 
5290 
5291 	kvm_lapic_sync_from_vapic(vcpu);
5292 
5293 	r = kvm_x86_ops->handle_exit(vcpu);
5294 out:
5295 	return r;
5296 }
5297 
5298 
__vcpu_run(struct kvm_vcpu * vcpu)5299 static int __vcpu_run(struct kvm_vcpu *vcpu)
5300 {
5301 	int r;
5302 	struct kvm *kvm = vcpu->kvm;
5303 
5304 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5305 		pr_debug("vcpu %d received sipi with vector # %x\n",
5306 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5307 		kvm_lapic_reset(vcpu);
5308 		r = kvm_arch_vcpu_reset(vcpu);
5309 		if (r)
5310 			return r;
5311 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5312 	}
5313 
5314 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5315 	vapic_enter(vcpu);
5316 
5317 	r = 1;
5318 	while (r > 0) {
5319 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5320 		    !vcpu->arch.apf.halted)
5321 			r = vcpu_enter_guest(vcpu);
5322 		else {
5323 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5324 			kvm_vcpu_block(vcpu);
5325 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5326 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5327 			{
5328 				switch(vcpu->arch.mp_state) {
5329 				case KVM_MP_STATE_HALTED:
5330 					vcpu->arch.mp_state =
5331 						KVM_MP_STATE_RUNNABLE;
5332 				case KVM_MP_STATE_RUNNABLE:
5333 					vcpu->arch.apf.halted = false;
5334 					break;
5335 				case KVM_MP_STATE_SIPI_RECEIVED:
5336 				default:
5337 					r = -EINTR;
5338 					break;
5339 				}
5340 			}
5341 		}
5342 
5343 		if (r <= 0)
5344 			break;
5345 
5346 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5347 		if (kvm_cpu_has_pending_timer(vcpu))
5348 			kvm_inject_pending_timer_irqs(vcpu);
5349 
5350 		if (dm_request_for_irq_injection(vcpu)) {
5351 			r = -EINTR;
5352 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5353 			++vcpu->stat.request_irq_exits;
5354 		}
5355 
5356 		kvm_check_async_pf_completion(vcpu);
5357 
5358 		if (signal_pending(current)) {
5359 			r = -EINTR;
5360 			vcpu->run->exit_reason = KVM_EXIT_INTR;
5361 			++vcpu->stat.signal_exits;
5362 		}
5363 		if (need_resched()) {
5364 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5365 			kvm_resched(vcpu);
5366 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5367 		}
5368 	}
5369 
5370 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5371 
5372 	vapic_exit(vcpu);
5373 
5374 	return r;
5375 }
5376 
complete_mmio(struct kvm_vcpu * vcpu)5377 static int complete_mmio(struct kvm_vcpu *vcpu)
5378 {
5379 	struct kvm_run *run = vcpu->run;
5380 	int r;
5381 
5382 	if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5383 		return 1;
5384 
5385 	if (vcpu->mmio_needed) {
5386 		vcpu->mmio_needed = 0;
5387 		if (!vcpu->mmio_is_write)
5388 			memcpy(vcpu->mmio_data + vcpu->mmio_index,
5389 			       run->mmio.data, 8);
5390 		vcpu->mmio_index += 8;
5391 		if (vcpu->mmio_index < vcpu->mmio_size) {
5392 			run->exit_reason = KVM_EXIT_MMIO;
5393 			run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5394 			memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5395 			run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5396 			run->mmio.is_write = vcpu->mmio_is_write;
5397 			vcpu->mmio_needed = 1;
5398 			return 0;
5399 		}
5400 		if (vcpu->mmio_is_write)
5401 			return 1;
5402 		vcpu->mmio_read_completed = 1;
5403 	}
5404 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5405 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5406 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5407 	if (r != EMULATE_DONE)
5408 		return 0;
5409 	return 1;
5410 }
5411 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)5412 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5413 {
5414 	int r;
5415 	sigset_t sigsaved;
5416 
5417 	if (!tsk_used_math(current) && init_fpu(current))
5418 		return -ENOMEM;
5419 
5420 	if (vcpu->sigset_active)
5421 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5422 
5423 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5424 		kvm_vcpu_block(vcpu);
5425 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5426 		r = -EAGAIN;
5427 		goto out;
5428 	}
5429 
5430 	/* re-sync apic's tpr */
5431 	if (!irqchip_in_kernel(vcpu->kvm)) {
5432 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5433 			r = -EINVAL;
5434 			goto out;
5435 		}
5436 	}
5437 
5438 	r = complete_mmio(vcpu);
5439 	if (r <= 0)
5440 		goto out;
5441 
5442 	r = __vcpu_run(vcpu);
5443 
5444 out:
5445 	post_kvm_run_save(vcpu);
5446 	if (vcpu->sigset_active)
5447 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5448 
5449 	return r;
5450 }
5451 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)5452 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5453 {
5454 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5455 		/*
5456 		 * We are here if userspace calls get_regs() in the middle of
5457 		 * instruction emulation. Registers state needs to be copied
5458 		 * back from emulation context to vcpu. Usrapace shouldn't do
5459 		 * that usually, but some bad designed PV devices (vmware
5460 		 * backdoor interface) need this to work
5461 		 */
5462 		struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5463 		memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5464 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5465 	}
5466 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5467 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5468 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5469 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5470 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5471 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5472 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5473 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5474 #ifdef CONFIG_X86_64
5475 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5476 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5477 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5478 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5479 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5480 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5481 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5482 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5483 #endif
5484 
5485 	regs->rip = kvm_rip_read(vcpu);
5486 	regs->rflags = kvm_get_rflags(vcpu);
5487 
5488 	return 0;
5489 }
5490 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)5491 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5492 {
5493 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5494 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5495 
5496 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5497 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5498 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5499 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5500 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5501 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5502 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5503 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5504 #ifdef CONFIG_X86_64
5505 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5506 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5507 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5508 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5509 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5510 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5511 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5512 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5513 #endif
5514 
5515 	kvm_rip_write(vcpu, regs->rip);
5516 	kvm_set_rflags(vcpu, regs->rflags);
5517 
5518 	vcpu->arch.exception.pending = false;
5519 
5520 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5521 
5522 	return 0;
5523 }
5524 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)5525 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5526 {
5527 	struct kvm_segment cs;
5528 
5529 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5530 	*db = cs.db;
5531 	*l = cs.l;
5532 }
5533 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5534 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)5535 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5536 				  struct kvm_sregs *sregs)
5537 {
5538 	struct desc_ptr dt;
5539 
5540 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5541 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5542 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5543 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5544 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5545 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5546 
5547 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5548 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5549 
5550 	kvm_x86_ops->get_idt(vcpu, &dt);
5551 	sregs->idt.limit = dt.size;
5552 	sregs->idt.base = dt.address;
5553 	kvm_x86_ops->get_gdt(vcpu, &dt);
5554 	sregs->gdt.limit = dt.size;
5555 	sregs->gdt.base = dt.address;
5556 
5557 	sregs->cr0 = kvm_read_cr0(vcpu);
5558 	sregs->cr2 = vcpu->arch.cr2;
5559 	sregs->cr3 = kvm_read_cr3(vcpu);
5560 	sregs->cr4 = kvm_read_cr4(vcpu);
5561 	sregs->cr8 = kvm_get_cr8(vcpu);
5562 	sregs->efer = vcpu->arch.efer;
5563 	sregs->apic_base = kvm_get_apic_base(vcpu);
5564 
5565 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5566 
5567 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5568 		set_bit(vcpu->arch.interrupt.nr,
5569 			(unsigned long *)sregs->interrupt_bitmap);
5570 
5571 	return 0;
5572 }
5573 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)5574 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5575 				    struct kvm_mp_state *mp_state)
5576 {
5577 	mp_state->mp_state = vcpu->arch.mp_state;
5578 	return 0;
5579 }
5580 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)5581 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5582 				    struct kvm_mp_state *mp_state)
5583 {
5584 	vcpu->arch.mp_state = mp_state->mp_state;
5585 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5586 	return 0;
5587 }
5588 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int reason,bool has_error_code,u32 error_code)5589 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5590 		    bool has_error_code, u32 error_code)
5591 {
5592 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5593 	int ret;
5594 
5595 	init_emulate_ctxt(vcpu);
5596 
5597 	ret = emulator_task_switch(ctxt, tss_selector, reason,
5598 				   has_error_code, error_code);
5599 
5600 	if (ret)
5601 		return EMULATE_FAIL;
5602 
5603 	memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5604 	kvm_rip_write(vcpu, ctxt->eip);
5605 	kvm_set_rflags(vcpu, ctxt->eflags);
5606 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5607 	return EMULATE_DONE;
5608 }
5609 EXPORT_SYMBOL_GPL(kvm_task_switch);
5610 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)5611 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5612 				  struct kvm_sregs *sregs)
5613 {
5614 	int mmu_reset_needed = 0;
5615 	int pending_vec, max_bits, idx;
5616 	struct desc_ptr dt;
5617 
5618 	dt.size = sregs->idt.limit;
5619 	dt.address = sregs->idt.base;
5620 	kvm_x86_ops->set_idt(vcpu, &dt);
5621 	dt.size = sregs->gdt.limit;
5622 	dt.address = sregs->gdt.base;
5623 	kvm_x86_ops->set_gdt(vcpu, &dt);
5624 
5625 	vcpu->arch.cr2 = sregs->cr2;
5626 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5627 	vcpu->arch.cr3 = sregs->cr3;
5628 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5629 
5630 	kvm_set_cr8(vcpu, sregs->cr8);
5631 
5632 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5633 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
5634 	kvm_set_apic_base(vcpu, sregs->apic_base);
5635 
5636 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5637 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5638 	vcpu->arch.cr0 = sregs->cr0;
5639 
5640 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5641 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5642 	if (sregs->cr4 & X86_CR4_OSXSAVE)
5643 		kvm_update_cpuid(vcpu);
5644 
5645 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5646 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5647 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5648 		mmu_reset_needed = 1;
5649 	}
5650 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5651 
5652 	if (mmu_reset_needed)
5653 		kvm_mmu_reset_context(vcpu);
5654 
5655 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5656 	pending_vec = find_first_bit(
5657 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
5658 	if (pending_vec < max_bits) {
5659 		kvm_queue_interrupt(vcpu, pending_vec, false);
5660 		pr_debug("Set back pending irq %d\n", pending_vec);
5661 	}
5662 
5663 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5664 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5665 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5666 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5667 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5668 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5669 
5670 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5671 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5672 
5673 	update_cr8_intercept(vcpu);
5674 
5675 	/* Older userspace won't unhalt the vcpu on reset. */
5676 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5677 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5678 	    !is_protmode(vcpu))
5679 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5680 
5681 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5682 
5683 	return 0;
5684 }
5685 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)5686 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5687 					struct kvm_guest_debug *dbg)
5688 {
5689 	unsigned long rflags;
5690 	int i, r;
5691 
5692 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5693 		r = -EBUSY;
5694 		if (vcpu->arch.exception.pending)
5695 			goto out;
5696 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5697 			kvm_queue_exception(vcpu, DB_VECTOR);
5698 		else
5699 			kvm_queue_exception(vcpu, BP_VECTOR);
5700 	}
5701 
5702 	/*
5703 	 * Read rflags as long as potentially injected trace flags are still
5704 	 * filtered out.
5705 	 */
5706 	rflags = kvm_get_rflags(vcpu);
5707 
5708 	vcpu->guest_debug = dbg->control;
5709 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5710 		vcpu->guest_debug = 0;
5711 
5712 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5713 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
5714 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5715 		vcpu->arch.switch_db_regs =
5716 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5717 	} else {
5718 		for (i = 0; i < KVM_NR_DB_REGS; i++)
5719 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5720 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5721 	}
5722 
5723 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5724 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5725 			get_segment_base(vcpu, VCPU_SREG_CS);
5726 
5727 	/*
5728 	 * Trigger an rflags update that will inject or remove the trace
5729 	 * flags.
5730 	 */
5731 	kvm_set_rflags(vcpu, rflags);
5732 
5733 	kvm_x86_ops->set_guest_debug(vcpu, dbg);
5734 
5735 	r = 0;
5736 
5737 out:
5738 
5739 	return r;
5740 }
5741 
5742 /*
5743  * Translate a guest virtual address to a guest physical address.
5744  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)5745 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5746 				    struct kvm_translation *tr)
5747 {
5748 	unsigned long vaddr = tr->linear_address;
5749 	gpa_t gpa;
5750 	int idx;
5751 
5752 	idx = srcu_read_lock(&vcpu->kvm->srcu);
5753 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5754 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
5755 	tr->physical_address = gpa;
5756 	tr->valid = gpa != UNMAPPED_GVA;
5757 	tr->writeable = 1;
5758 	tr->usermode = 0;
5759 
5760 	return 0;
5761 }
5762 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)5763 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5764 {
5765 	struct i387_fxsave_struct *fxsave =
5766 			&vcpu->arch.guest_fpu.state->fxsave;
5767 
5768 	memcpy(fpu->fpr, fxsave->st_space, 128);
5769 	fpu->fcw = fxsave->cwd;
5770 	fpu->fsw = fxsave->swd;
5771 	fpu->ftwx = fxsave->twd;
5772 	fpu->last_opcode = fxsave->fop;
5773 	fpu->last_ip = fxsave->rip;
5774 	fpu->last_dp = fxsave->rdp;
5775 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5776 
5777 	return 0;
5778 }
5779 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)5780 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5781 {
5782 	struct i387_fxsave_struct *fxsave =
5783 			&vcpu->arch.guest_fpu.state->fxsave;
5784 
5785 	memcpy(fxsave->st_space, fpu->fpr, 128);
5786 	fxsave->cwd = fpu->fcw;
5787 	fxsave->swd = fpu->fsw;
5788 	fxsave->twd = fpu->ftwx;
5789 	fxsave->fop = fpu->last_opcode;
5790 	fxsave->rip = fpu->last_ip;
5791 	fxsave->rdp = fpu->last_dp;
5792 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5793 
5794 	return 0;
5795 }
5796 
fx_init(struct kvm_vcpu * vcpu)5797 int fx_init(struct kvm_vcpu *vcpu)
5798 {
5799 	int err;
5800 
5801 	err = fpu_alloc(&vcpu->arch.guest_fpu);
5802 	if (err)
5803 		return err;
5804 
5805 	fpu_finit(&vcpu->arch.guest_fpu);
5806 
5807 	/*
5808 	 * Ensure guest xcr0 is valid for loading
5809 	 */
5810 	vcpu->arch.xcr0 = XSTATE_FP;
5811 
5812 	vcpu->arch.cr0 |= X86_CR0_ET;
5813 
5814 	return 0;
5815 }
5816 EXPORT_SYMBOL_GPL(fx_init);
5817 
fx_free(struct kvm_vcpu * vcpu)5818 static void fx_free(struct kvm_vcpu *vcpu)
5819 {
5820 	fpu_free(&vcpu->arch.guest_fpu);
5821 }
5822 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)5823 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5824 {
5825 	if (vcpu->guest_fpu_loaded)
5826 		return;
5827 
5828 	/*
5829 	 * Restore all possible states in the guest,
5830 	 * and assume host would use all available bits.
5831 	 * Guest xcr0 would be loaded later.
5832 	 */
5833 	kvm_put_guest_xcr0(vcpu);
5834 	vcpu->guest_fpu_loaded = 1;
5835 	unlazy_fpu(current);
5836 	fpu_restore_checking(&vcpu->arch.guest_fpu);
5837 	trace_kvm_fpu(1);
5838 }
5839 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)5840 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5841 {
5842 	kvm_put_guest_xcr0(vcpu);
5843 
5844 	if (!vcpu->guest_fpu_loaded)
5845 		return;
5846 
5847 	vcpu->guest_fpu_loaded = 0;
5848 	fpu_save_init(&vcpu->arch.guest_fpu);
5849 	++vcpu->stat.fpu_reload;
5850 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5851 	trace_kvm_fpu(0);
5852 }
5853 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)5854 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5855 {
5856 	kvmclock_reset(vcpu);
5857 
5858 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5859 	fx_free(vcpu);
5860 	kvm_x86_ops->vcpu_free(vcpu);
5861 }
5862 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)5863 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5864 						unsigned int id)
5865 {
5866 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5867 		printk_once(KERN_WARNING
5868 		"kvm: SMP vm created on host with unstable TSC; "
5869 		"guest TSC will not be reliable\n");
5870 	return kvm_x86_ops->vcpu_create(kvm, id);
5871 }
5872 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)5873 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5874 {
5875 	int r;
5876 
5877 	vcpu->arch.mtrr_state.have_fixed = 1;
5878 	vcpu_load(vcpu);
5879 	r = kvm_arch_vcpu_reset(vcpu);
5880 	if (r == 0)
5881 		r = kvm_mmu_setup(vcpu);
5882 	vcpu_put(vcpu);
5883 
5884 	return r;
5885 }
5886 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)5887 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5888 {
5889 	vcpu->arch.apf.msr_val = 0;
5890 
5891 	vcpu_load(vcpu);
5892 	kvm_mmu_unload(vcpu);
5893 	vcpu_put(vcpu);
5894 
5895 	fx_free(vcpu);
5896 	kvm_x86_ops->vcpu_free(vcpu);
5897 }
5898 
kvm_arch_vcpu_reset(struct kvm_vcpu * vcpu)5899 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5900 {
5901 	atomic_set(&vcpu->arch.nmi_queued, 0);
5902 	vcpu->arch.nmi_pending = 0;
5903 	vcpu->arch.nmi_injected = false;
5904 
5905 	vcpu->arch.switch_db_regs = 0;
5906 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5907 	vcpu->arch.dr6 = DR6_FIXED_1;
5908 	vcpu->arch.dr7 = DR7_FIXED_1;
5909 
5910 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5911 	vcpu->arch.apf.msr_val = 0;
5912 	vcpu->arch.st.msr_val = 0;
5913 
5914 	kvmclock_reset(vcpu);
5915 
5916 	kvm_clear_async_pf_completion_queue(vcpu);
5917 	kvm_async_pf_hash_reset(vcpu);
5918 	vcpu->arch.apf.halted = false;
5919 
5920 	kvm_pmu_reset(vcpu);
5921 
5922 	return kvm_x86_ops->vcpu_reset(vcpu);
5923 }
5924 
kvm_arch_hardware_enable(void * garbage)5925 int kvm_arch_hardware_enable(void *garbage)
5926 {
5927 	struct kvm *kvm;
5928 	struct kvm_vcpu *vcpu;
5929 	int i;
5930 
5931 	kvm_shared_msr_cpu_online();
5932 	list_for_each_entry(kvm, &vm_list, vm_list)
5933 		kvm_for_each_vcpu(i, vcpu, kvm)
5934 			if (vcpu->cpu == smp_processor_id())
5935 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5936 	return kvm_x86_ops->hardware_enable(garbage);
5937 }
5938 
kvm_arch_hardware_disable(void * garbage)5939 void kvm_arch_hardware_disable(void *garbage)
5940 {
5941 	kvm_x86_ops->hardware_disable(garbage);
5942 	drop_user_return_notifiers(garbage);
5943 }
5944 
kvm_arch_hardware_setup(void)5945 int kvm_arch_hardware_setup(void)
5946 {
5947 	return kvm_x86_ops->hardware_setup();
5948 }
5949 
kvm_arch_hardware_unsetup(void)5950 void kvm_arch_hardware_unsetup(void)
5951 {
5952 	kvm_x86_ops->hardware_unsetup();
5953 }
5954 
kvm_arch_check_processor_compat(void * rtn)5955 void kvm_arch_check_processor_compat(void *rtn)
5956 {
5957 	kvm_x86_ops->check_processor_compatibility(rtn);
5958 }
5959 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)5960 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5961 {
5962 	struct page *page;
5963 	struct kvm *kvm;
5964 	int r;
5965 
5966 	BUG_ON(vcpu->kvm == NULL);
5967 	kvm = vcpu->kvm;
5968 
5969 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5970 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5971 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5972 	else
5973 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5974 
5975 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5976 	if (!page) {
5977 		r = -ENOMEM;
5978 		goto fail;
5979 	}
5980 	vcpu->arch.pio_data = page_address(page);
5981 
5982 	kvm_init_tsc_catchup(vcpu, max_tsc_khz);
5983 
5984 	r = kvm_mmu_create(vcpu);
5985 	if (r < 0)
5986 		goto fail_free_pio_data;
5987 
5988 	if (irqchip_in_kernel(kvm)) {
5989 		r = kvm_create_lapic(vcpu);
5990 		if (r < 0)
5991 			goto fail_mmu_destroy;
5992 	}
5993 
5994 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5995 				       GFP_KERNEL);
5996 	if (!vcpu->arch.mce_banks) {
5997 		r = -ENOMEM;
5998 		goto fail_free_lapic;
5999 	}
6000 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6001 
6002 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6003 		goto fail_free_mce_banks;
6004 
6005 	kvm_async_pf_hash_reset(vcpu);
6006 	kvm_pmu_init(vcpu);
6007 
6008 	return 0;
6009 fail_free_mce_banks:
6010 	kfree(vcpu->arch.mce_banks);
6011 fail_free_lapic:
6012 	kvm_free_lapic(vcpu);
6013 fail_mmu_destroy:
6014 	kvm_mmu_destroy(vcpu);
6015 fail_free_pio_data:
6016 	free_page((unsigned long)vcpu->arch.pio_data);
6017 fail:
6018 	return r;
6019 }
6020 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)6021 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6022 {
6023 	int idx;
6024 
6025 	kvm_pmu_destroy(vcpu);
6026 	kfree(vcpu->arch.mce_banks);
6027 	kvm_free_lapic(vcpu);
6028 	idx = srcu_read_lock(&vcpu->kvm->srcu);
6029 	kvm_mmu_destroy(vcpu);
6030 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
6031 	free_page((unsigned long)vcpu->arch.pio_data);
6032 }
6033 
kvm_arch_init_vm(struct kvm * kvm)6034 int kvm_arch_init_vm(struct kvm *kvm)
6035 {
6036 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6037 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6038 
6039 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6040 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6041 
6042 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6043 
6044 	return 0;
6045 }
6046 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)6047 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6048 {
6049 	vcpu_load(vcpu);
6050 	kvm_mmu_unload(vcpu);
6051 	vcpu_put(vcpu);
6052 }
6053 
kvm_free_vcpus(struct kvm * kvm)6054 static void kvm_free_vcpus(struct kvm *kvm)
6055 {
6056 	unsigned int i;
6057 	struct kvm_vcpu *vcpu;
6058 
6059 	/*
6060 	 * Unpin any mmu pages first.
6061 	 */
6062 	kvm_for_each_vcpu(i, vcpu, kvm) {
6063 		kvm_clear_async_pf_completion_queue(vcpu);
6064 		kvm_unload_vcpu_mmu(vcpu);
6065 	}
6066 	kvm_for_each_vcpu(i, vcpu, kvm)
6067 		kvm_arch_vcpu_free(vcpu);
6068 
6069 	mutex_lock(&kvm->lock);
6070 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6071 		kvm->vcpus[i] = NULL;
6072 
6073 	atomic_set(&kvm->online_vcpus, 0);
6074 	mutex_unlock(&kvm->lock);
6075 }
6076 
kvm_arch_sync_events(struct kvm * kvm)6077 void kvm_arch_sync_events(struct kvm *kvm)
6078 {
6079 	kvm_free_all_assigned_devices(kvm);
6080 	kvm_free_pit(kvm);
6081 }
6082 
kvm_arch_destroy_vm(struct kvm * kvm)6083 void kvm_arch_destroy_vm(struct kvm *kvm)
6084 {
6085 	kvm_iommu_unmap_guest(kvm);
6086 	kfree(kvm->arch.vpic);
6087 	kfree(kvm->arch.vioapic);
6088 	kvm_free_vcpus(kvm);
6089 	if (kvm->arch.apic_access_page)
6090 		put_page(kvm->arch.apic_access_page);
6091 	if (kvm->arch.ept_identity_pagetable)
6092 		put_page(kvm->arch.ept_identity_pagetable);
6093 }
6094 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,struct kvm_memory_slot old,struct kvm_userspace_memory_region * mem,int user_alloc)6095 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6096 				struct kvm_memory_slot *memslot,
6097 				struct kvm_memory_slot old,
6098 				struct kvm_userspace_memory_region *mem,
6099 				int user_alloc)
6100 {
6101 	int npages = memslot->npages;
6102 	int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6103 
6104 	/* Prevent internal slot pages from being moved by fork()/COW. */
6105 	if (memslot->id >= KVM_MEMORY_SLOTS)
6106 		map_flags = MAP_SHARED | MAP_ANONYMOUS;
6107 
6108 	/*To keep backward compatibility with older userspace,
6109 	 *x86 needs to hanlde !user_alloc case.
6110 	 */
6111 	if (!user_alloc) {
6112 		if (npages && !old.rmap) {
6113 			unsigned long userspace_addr;
6114 
6115 			down_write(&current->mm->mmap_sem);
6116 			userspace_addr = do_mmap(NULL, 0,
6117 						 npages * PAGE_SIZE,
6118 						 PROT_READ | PROT_WRITE,
6119 						 map_flags,
6120 						 0);
6121 			up_write(&current->mm->mmap_sem);
6122 
6123 			if (IS_ERR((void *)userspace_addr))
6124 				return PTR_ERR((void *)userspace_addr);
6125 
6126 			memslot->userspace_addr = userspace_addr;
6127 		}
6128 	}
6129 
6130 
6131 	return 0;
6132 }
6133 
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem,struct kvm_memory_slot old,int user_alloc)6134 void kvm_arch_commit_memory_region(struct kvm *kvm,
6135 				struct kvm_userspace_memory_region *mem,
6136 				struct kvm_memory_slot old,
6137 				int user_alloc)
6138 {
6139 
6140 	int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6141 
6142 	if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6143 		int ret;
6144 
6145 		down_write(&current->mm->mmap_sem);
6146 		ret = do_munmap(current->mm, old.userspace_addr,
6147 				old.npages * PAGE_SIZE);
6148 		up_write(&current->mm->mmap_sem);
6149 		if (ret < 0)
6150 			printk(KERN_WARNING
6151 			       "kvm_vm_ioctl_set_memory_region: "
6152 			       "failed to munmap memory\n");
6153 	}
6154 
6155 	if (!kvm->arch.n_requested_mmu_pages)
6156 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6157 
6158 	spin_lock(&kvm->mmu_lock);
6159 	if (nr_mmu_pages)
6160 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6161 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6162 	spin_unlock(&kvm->mmu_lock);
6163 }
6164 
kvm_arch_flush_shadow(struct kvm * kvm)6165 void kvm_arch_flush_shadow(struct kvm *kvm)
6166 {
6167 	kvm_mmu_zap_all(kvm);
6168 	kvm_reload_remote_mmus(kvm);
6169 }
6170 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)6171 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6172 {
6173 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6174 		!vcpu->arch.apf.halted)
6175 		|| !list_empty_careful(&vcpu->async_pf.done)
6176 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6177 		|| atomic_read(&vcpu->arch.nmi_queued) ||
6178 		(kvm_arch_interrupt_allowed(vcpu) &&
6179 		 kvm_cpu_has_interrupt(vcpu));
6180 }
6181 
kvm_vcpu_kick(struct kvm_vcpu * vcpu)6182 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6183 {
6184 	int me;
6185 	int cpu = vcpu->cpu;
6186 
6187 	if (waitqueue_active(&vcpu->wq)) {
6188 		wake_up_interruptible(&vcpu->wq);
6189 		++vcpu->stat.halt_wakeup;
6190 	}
6191 
6192 	me = get_cpu();
6193 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6194 		if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6195 			smp_send_reschedule(cpu);
6196 	put_cpu();
6197 }
6198 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)6199 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6200 {
6201 	return kvm_x86_ops->interrupt_allowed(vcpu);
6202 }
6203 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)6204 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6205 {
6206 	unsigned long current_rip = kvm_rip_read(vcpu) +
6207 		get_segment_base(vcpu, VCPU_SREG_CS);
6208 
6209 	return current_rip == linear_rip;
6210 }
6211 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6212 
kvm_get_rflags(struct kvm_vcpu * vcpu)6213 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6214 {
6215 	unsigned long rflags;
6216 
6217 	rflags = kvm_x86_ops->get_rflags(vcpu);
6218 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6219 		rflags &= ~X86_EFLAGS_TF;
6220 	return rflags;
6221 }
6222 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6223 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)6224 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6225 {
6226 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6227 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6228 		rflags |= X86_EFLAGS_TF;
6229 	kvm_x86_ops->set_rflags(vcpu, rflags);
6230 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6231 }
6232 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6233 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)6234 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6235 {
6236 	int r;
6237 
6238 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6239 	      is_error_page(work->page))
6240 		return;
6241 
6242 	r = kvm_mmu_reload(vcpu);
6243 	if (unlikely(r))
6244 		return;
6245 
6246 	if (!vcpu->arch.mmu.direct_map &&
6247 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6248 		return;
6249 
6250 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6251 }
6252 
kvm_async_pf_hash_fn(gfn_t gfn)6253 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6254 {
6255 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6256 }
6257 
kvm_async_pf_next_probe(u32 key)6258 static inline u32 kvm_async_pf_next_probe(u32 key)
6259 {
6260 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6261 }
6262 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)6263 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6264 {
6265 	u32 key = kvm_async_pf_hash_fn(gfn);
6266 
6267 	while (vcpu->arch.apf.gfns[key] != ~0)
6268 		key = kvm_async_pf_next_probe(key);
6269 
6270 	vcpu->arch.apf.gfns[key] = gfn;
6271 }
6272 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)6273 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6274 {
6275 	int i;
6276 	u32 key = kvm_async_pf_hash_fn(gfn);
6277 
6278 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6279 		     (vcpu->arch.apf.gfns[key] != gfn &&
6280 		      vcpu->arch.apf.gfns[key] != ~0); i++)
6281 		key = kvm_async_pf_next_probe(key);
6282 
6283 	return key;
6284 }
6285 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)6286 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6287 {
6288 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6289 }
6290 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)6291 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6292 {
6293 	u32 i, j, k;
6294 
6295 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6296 	while (true) {
6297 		vcpu->arch.apf.gfns[i] = ~0;
6298 		do {
6299 			j = kvm_async_pf_next_probe(j);
6300 			if (vcpu->arch.apf.gfns[j] == ~0)
6301 				return;
6302 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6303 			/*
6304 			 * k lies cyclically in ]i,j]
6305 			 * |    i.k.j |
6306 			 * |....j i.k.| or  |.k..j i...|
6307 			 */
6308 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6309 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6310 		i = j;
6311 	}
6312 }
6313 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)6314 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6315 {
6316 
6317 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6318 				      sizeof(val));
6319 }
6320 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)6321 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6322 				     struct kvm_async_pf *work)
6323 {
6324 	struct x86_exception fault;
6325 
6326 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6327 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6328 
6329 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6330 	    (vcpu->arch.apf.send_user_only &&
6331 	     kvm_x86_ops->get_cpl(vcpu) == 0))
6332 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6333 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6334 		fault.vector = PF_VECTOR;
6335 		fault.error_code_valid = true;
6336 		fault.error_code = 0;
6337 		fault.nested_page_fault = false;
6338 		fault.address = work->arch.token;
6339 		kvm_inject_page_fault(vcpu, &fault);
6340 	}
6341 }
6342 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)6343 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6344 				 struct kvm_async_pf *work)
6345 {
6346 	struct x86_exception fault;
6347 
6348 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
6349 	if (is_error_page(work->page))
6350 		work->arch.token = ~0; /* broadcast wakeup */
6351 	else
6352 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6353 
6354 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6355 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6356 		fault.vector = PF_VECTOR;
6357 		fault.error_code_valid = true;
6358 		fault.error_code = 0;
6359 		fault.nested_page_fault = false;
6360 		fault.address = work->arch.token;
6361 		kvm_inject_page_fault(vcpu, &fault);
6362 	}
6363 	vcpu->arch.apf.halted = false;
6364 }
6365 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)6366 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6367 {
6368 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6369 		return true;
6370 	else
6371 		return !kvm_event_needs_reinjection(vcpu) &&
6372 			kvm_x86_ops->interrupt_allowed(vcpu);
6373 }
6374 
6375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
6387