1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to setting various queue properties from drivers
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/t10-pi.h>
18 #include <linux/crc64.h>
19
20 #include "blk.h"
21 #include "blk-rq-qos.h"
22 #include "blk-wbt.h"
23
blk_queue_rq_timeout(struct request_queue * q,unsigned int timeout)24 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
25 {
26 WRITE_ONCE(q->rq_timeout, timeout);
27 }
28 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
29
30 /**
31 * blk_set_stacking_limits - set default limits for stacking devices
32 * @lim: the queue_limits structure to reset
33 *
34 * Prepare queue limits for applying limits from underlying devices using
35 * blk_stack_limits().
36 */
blk_set_stacking_limits(struct queue_limits * lim)37 void blk_set_stacking_limits(struct queue_limits *lim)
38 {
39 memset(lim, 0, sizeof(*lim));
40 lim->logical_block_size = SECTOR_SIZE;
41 lim->physical_block_size = SECTOR_SIZE;
42 lim->io_min = SECTOR_SIZE;
43 lim->discard_granularity = SECTOR_SIZE;
44 lim->dma_alignment = SECTOR_SIZE - 1;
45 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
46
47 /* Inherit limits from component devices */
48 lim->max_segments = USHRT_MAX;
49 lim->max_discard_segments = USHRT_MAX;
50 lim->max_hw_sectors = UINT_MAX;
51 lim->max_segment_size = UINT_MAX;
52 lim->max_sectors = UINT_MAX;
53 lim->max_dev_sectors = UINT_MAX;
54 lim->max_write_zeroes_sectors = UINT_MAX;
55 lim->max_hw_wzeroes_unmap_sectors = UINT_MAX;
56 lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
57 lim->max_hw_zone_append_sectors = UINT_MAX;
58 lim->max_user_discard_sectors = UINT_MAX;
59 }
60 EXPORT_SYMBOL(blk_set_stacking_limits);
61
blk_apply_bdi_limits(struct backing_dev_info * bdi,struct queue_limits * lim)62 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
63 struct queue_limits *lim)
64 {
65 u64 io_opt = lim->io_opt;
66
67 /*
68 * For read-ahead of large files to be effective, we need to read ahead
69 * at least twice the optimal I/O size. For rotational devices that do
70 * not report an optimal I/O size (e.g. ATA HDDs), use the maximum I/O
71 * size to avoid falling back to the (rather inefficient) small default
72 * read-ahead size.
73 *
74 * There is no hardware limitation for the read-ahead size and the user
75 * might have increased the read-ahead size through sysfs, so don't ever
76 * decrease it.
77 */
78 if (!io_opt && (lim->features & BLK_FEAT_ROTATIONAL))
79 io_opt = (u64)lim->max_sectors << SECTOR_SHIFT;
80
81 bdi->ra_pages = max3(bdi->ra_pages,
82 io_opt * 2 >> PAGE_SHIFT,
83 VM_READAHEAD_PAGES);
84 bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
85 }
86
blk_validate_zoned_limits(struct queue_limits * lim)87 static int blk_validate_zoned_limits(struct queue_limits *lim)
88 {
89 if (!(lim->features & BLK_FEAT_ZONED)) {
90 if (WARN_ON_ONCE(lim->max_open_zones) ||
91 WARN_ON_ONCE(lim->max_active_zones) ||
92 WARN_ON_ONCE(lim->zone_write_granularity) ||
93 WARN_ON_ONCE(lim->max_zone_append_sectors))
94 return -EINVAL;
95 return 0;
96 }
97
98 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
99 return -EINVAL;
100
101 /*
102 * Given that active zones include open zones, the maximum number of
103 * open zones cannot be larger than the maximum number of active zones.
104 */
105 if (lim->max_active_zones &&
106 lim->max_open_zones > lim->max_active_zones)
107 return -EINVAL;
108
109 if (lim->zone_write_granularity < lim->logical_block_size)
110 lim->zone_write_granularity = lim->logical_block_size;
111
112 /*
113 * The Zone Append size is limited by the maximum I/O size and the zone
114 * size given that it can't span zones.
115 *
116 * If no max_hw_zone_append_sectors limit is provided, the block layer
117 * will emulated it, else we're also bound by the hardware limit.
118 */
119 lim->max_zone_append_sectors =
120 min_not_zero(lim->max_hw_zone_append_sectors,
121 min(lim->chunk_sectors, lim->max_hw_sectors));
122 return 0;
123 }
124
blk_validate_integrity_limits(struct queue_limits * lim)125 static int blk_validate_integrity_limits(struct queue_limits *lim)
126 {
127 struct blk_integrity *bi = &lim->integrity;
128
129 if (!bi->metadata_size) {
130 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
131 bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
132 pr_warn("invalid PI settings.\n");
133 return -EINVAL;
134 }
135 bi->flags |= BLK_INTEGRITY_NOGENERATE | BLK_INTEGRITY_NOVERIFY;
136 return 0;
137 }
138
139 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
140 pr_warn("integrity support disabled.\n");
141 return -EINVAL;
142 }
143
144 if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
145 (bi->flags & BLK_INTEGRITY_REF_TAG)) {
146 pr_warn("ref tag not support without checksum.\n");
147 return -EINVAL;
148 }
149
150 if (bi->pi_tuple_size > bi->metadata_size) {
151 pr_warn("pi_tuple_size (%u) exceeds metadata_size (%u)\n",
152 bi->pi_tuple_size,
153 bi->metadata_size);
154 return -EINVAL;
155 }
156
157 switch (bi->csum_type) {
158 case BLK_INTEGRITY_CSUM_NONE:
159 if (bi->pi_tuple_size) {
160 pr_warn("pi_tuple_size must be 0 when checksum type \
161 is none\n");
162 return -EINVAL;
163 }
164 break;
165 case BLK_INTEGRITY_CSUM_CRC:
166 case BLK_INTEGRITY_CSUM_IP:
167 if (bi->pi_tuple_size != sizeof(struct t10_pi_tuple)) {
168 pr_warn("pi_tuple_size mismatch for T10 PI: expected \
169 %zu, got %u\n",
170 sizeof(struct t10_pi_tuple),
171 bi->pi_tuple_size);
172 return -EINVAL;
173 }
174 break;
175 case BLK_INTEGRITY_CSUM_CRC64:
176 if (bi->pi_tuple_size != sizeof(struct crc64_pi_tuple)) {
177 pr_warn("pi_tuple_size mismatch for CRC64 PI: \
178 expected %zu, got %u\n",
179 sizeof(struct crc64_pi_tuple),
180 bi->pi_tuple_size);
181 return -EINVAL;
182 }
183 break;
184 }
185
186 if (!bi->interval_exp)
187 bi->interval_exp = ilog2(lim->logical_block_size);
188
189 return 0;
190 }
191
192 /*
193 * Returns max guaranteed bytes which we can fit in a bio.
194 *
195 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
196 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
197 * the first and last segments.
198 */
blk_queue_max_guaranteed_bio(struct queue_limits * lim)199 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
200 {
201 unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
202 unsigned int length;
203
204 length = min(max_segments, 2) * lim->logical_block_size;
205 if (max_segments > 2)
206 length += (max_segments - 2) * PAGE_SIZE;
207
208 return length;
209 }
210
blk_atomic_writes_update_limits(struct queue_limits * lim)211 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
212 {
213 unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
214 blk_queue_max_guaranteed_bio(lim));
215
216 unit_limit = rounddown_pow_of_two(unit_limit);
217
218 lim->atomic_write_max_sectors =
219 min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
220 lim->max_hw_sectors);
221 lim->atomic_write_unit_min =
222 min(lim->atomic_write_hw_unit_min, unit_limit);
223 lim->atomic_write_unit_max =
224 min(lim->atomic_write_hw_unit_max, unit_limit);
225 lim->atomic_write_boundary_sectors =
226 lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
227 }
228
blk_validate_atomic_write_limits(struct queue_limits * lim)229 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
230 {
231 unsigned int boundary_sectors;
232 unsigned int atomic_write_hw_max_sectors =
233 lim->atomic_write_hw_max >> SECTOR_SHIFT;
234
235 if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
236 goto unsupported;
237
238 if (!lim->atomic_write_hw_max)
239 goto unsupported;
240
241 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
242 goto unsupported;
243
244 if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
245 goto unsupported;
246
247 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
248 lim->atomic_write_hw_unit_max))
249 goto unsupported;
250
251 if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
252 lim->atomic_write_hw_max))
253 goto unsupported;
254
255 if (WARN_ON_ONCE(lim->chunk_sectors &&
256 atomic_write_hw_max_sectors > lim->chunk_sectors))
257 goto unsupported;
258
259 boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
260
261 if (boundary_sectors) {
262 if (WARN_ON_ONCE(lim->atomic_write_hw_max >
263 lim->atomic_write_hw_boundary))
264 goto unsupported;
265 /*
266 * A feature of boundary support is that it disallows bios to
267 * be merged which would result in a merged request which
268 * crosses either a chunk sector or atomic write HW boundary,
269 * even though chunk sectors may be just set for performance.
270 * For simplicity, disallow atomic writes for a chunk sector
271 * which is non-zero and smaller than atomic write HW boundary.
272 * Furthermore, chunk sectors must be a multiple of atomic
273 * write HW boundary. Otherwise boundary support becomes
274 * complicated.
275 * Devices which do not conform to these rules can be dealt
276 * with if and when they show up.
277 */
278 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
279 goto unsupported;
280
281 /*
282 * The boundary size just needs to be a multiple of unit_max
283 * (and not necessarily a power-of-2), so this following check
284 * could be relaxed in future.
285 * Furthermore, if needed, unit_max could even be reduced so
286 * that it is compliant with a !power-of-2 boundary.
287 */
288 if (!is_power_of_2(boundary_sectors))
289 goto unsupported;
290 }
291
292 blk_atomic_writes_update_limits(lim);
293 return;
294
295 unsupported:
296 lim->atomic_write_max_sectors = 0;
297 lim->atomic_write_boundary_sectors = 0;
298 lim->atomic_write_unit_min = 0;
299 lim->atomic_write_unit_max = 0;
300 }
301
302 /*
303 * Check that the limits in lim are valid, initialize defaults for unset
304 * values, and cap values based on others where needed.
305 */
blk_validate_limits(struct queue_limits * lim)306 int blk_validate_limits(struct queue_limits *lim)
307 {
308 unsigned int max_hw_sectors;
309 unsigned int logical_block_sectors;
310 unsigned long seg_size;
311 int err;
312
313 /*
314 * Unless otherwise specified, default to 512 byte logical blocks and a
315 * physical block size equal to the logical block size.
316 */
317 if (!lim->logical_block_size)
318 lim->logical_block_size = SECTOR_SIZE;
319 else if (blk_validate_block_size(lim->logical_block_size)) {
320 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
321 return -EINVAL;
322 }
323 if (lim->physical_block_size < lim->logical_block_size) {
324 lim->physical_block_size = lim->logical_block_size;
325 } else if (!is_power_of_2(lim->physical_block_size)) {
326 pr_warn("Invalid physical block size (%d)\n", lim->physical_block_size);
327 return -EINVAL;
328 }
329
330 /*
331 * The minimum I/O size defaults to the physical block size unless
332 * explicitly overridden.
333 */
334 if (lim->io_min < lim->physical_block_size)
335 lim->io_min = lim->physical_block_size;
336
337 /*
338 * The optimal I/O size may not be aligned to physical block size
339 * (because it may be limited by dma engines which have no clue about
340 * block size of the disks attached to them), so we round it down here.
341 */
342 lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
343
344 /*
345 * max_hw_sectors has a somewhat weird default for historical reason,
346 * but driver really should set their own instead of relying on this
347 * value.
348 *
349 * The block layer relies on the fact that every driver can
350 * handle at lest a page worth of data per I/O, and needs the value
351 * aligned to the logical block size.
352 */
353 if (!lim->max_hw_sectors)
354 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
355 if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
356 return -EINVAL;
357 logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
358 if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
359 return -EINVAL;
360 lim->max_hw_sectors = round_down(lim->max_hw_sectors,
361 logical_block_sectors);
362
363 /*
364 * The actual max_sectors value is a complex beast and also takes the
365 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
366 * value into account. The ->max_sectors value is always calculated
367 * from these, so directly setting it won't have any effect.
368 */
369 max_hw_sectors = min_not_zero(lim->max_hw_sectors,
370 lim->max_dev_sectors);
371 if (lim->max_user_sectors) {
372 if (lim->max_user_sectors < BLK_MIN_SEGMENT_SIZE / SECTOR_SIZE)
373 return -EINVAL;
374 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
375 } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
376 lim->max_sectors =
377 min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
378 } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
379 lim->max_sectors =
380 min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
381 } else {
382 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
383 }
384 lim->max_sectors = round_down(lim->max_sectors,
385 logical_block_sectors);
386
387 /*
388 * Random default for the maximum number of segments. Driver should not
389 * rely on this and set their own.
390 */
391 if (!lim->max_segments)
392 lim->max_segments = BLK_MAX_SEGMENTS;
393
394 if (lim->max_hw_wzeroes_unmap_sectors &&
395 lim->max_hw_wzeroes_unmap_sectors != lim->max_write_zeroes_sectors)
396 return -EINVAL;
397 lim->max_wzeroes_unmap_sectors = min(lim->max_hw_wzeroes_unmap_sectors,
398 lim->max_user_wzeroes_unmap_sectors);
399
400 lim->max_discard_sectors =
401 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
402
403 /*
404 * When discard is not supported, discard_granularity should be reported
405 * as 0 to userspace.
406 */
407 if (lim->max_discard_sectors)
408 lim->discard_granularity =
409 max(lim->discard_granularity, lim->physical_block_size);
410 else
411 lim->discard_granularity = 0;
412
413 if (!lim->max_discard_segments)
414 lim->max_discard_segments = 1;
415
416 /*
417 * By default there is no limit on the segment boundary alignment,
418 * but if there is one it can't be smaller than the page size as
419 * that would break all the normal I/O patterns.
420 */
421 if (!lim->seg_boundary_mask)
422 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
423 if (WARN_ON_ONCE(lim->seg_boundary_mask < BLK_MIN_SEGMENT_SIZE - 1))
424 return -EINVAL;
425
426 /*
427 * Stacking device may have both virtual boundary and max segment
428 * size limit, so allow this setting now, and long-term the two
429 * might need to move out of stacking limits since we have immutable
430 * bvec and lower layer bio splitting is supposed to handle the two
431 * correctly.
432 */
433 if (lim->virt_boundary_mask) {
434 if (!lim->max_segment_size)
435 lim->max_segment_size = UINT_MAX;
436 } else {
437 /*
438 * The maximum segment size has an odd historic 64k default that
439 * drivers probably should override. Just like the I/O size we
440 * require drivers to at least handle a full page per segment.
441 */
442 if (!lim->max_segment_size)
443 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
444 if (WARN_ON_ONCE(lim->max_segment_size < BLK_MIN_SEGMENT_SIZE))
445 return -EINVAL;
446 }
447
448 /* setup min segment size for building new segment in fast path */
449 if (lim->seg_boundary_mask > lim->max_segment_size - 1)
450 seg_size = lim->max_segment_size;
451 else
452 seg_size = lim->seg_boundary_mask + 1;
453 lim->min_segment_size = min_t(unsigned int, seg_size, PAGE_SIZE);
454
455 /*
456 * We require drivers to at least do logical block aligned I/O, but
457 * historically could not check for that due to the separate calls
458 * to set the limits. Once the transition is finished the check
459 * below should be narrowed down to check the logical block size.
460 */
461 if (!lim->dma_alignment)
462 lim->dma_alignment = SECTOR_SIZE - 1;
463 if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
464 return -EINVAL;
465
466 if (lim->alignment_offset) {
467 lim->alignment_offset &= (lim->physical_block_size - 1);
468 lim->flags &= ~BLK_FLAG_MISALIGNED;
469 }
470
471 if (!(lim->features & BLK_FEAT_WRITE_CACHE))
472 lim->features &= ~BLK_FEAT_FUA;
473
474 blk_validate_atomic_write_limits(lim);
475
476 err = blk_validate_integrity_limits(lim);
477 if (err)
478 return err;
479 return blk_validate_zoned_limits(lim);
480 }
481 EXPORT_SYMBOL_GPL(blk_validate_limits);
482
483 /*
484 * Set the default limits for a newly allocated queue. @lim contains the
485 * initial limits set by the driver, which could be no limit in which case
486 * all fields are cleared to zero.
487 */
blk_set_default_limits(struct queue_limits * lim)488 int blk_set_default_limits(struct queue_limits *lim)
489 {
490 /*
491 * Most defaults are set by capping the bounds in blk_validate_limits,
492 * but these limits are special and need an explicit initialization to
493 * the max value here.
494 */
495 lim->max_user_discard_sectors = UINT_MAX;
496 lim->max_user_wzeroes_unmap_sectors = UINT_MAX;
497 return blk_validate_limits(lim);
498 }
499
500 /**
501 * queue_limits_commit_update - commit an atomic update of queue limits
502 * @q: queue to update
503 * @lim: limits to apply
504 *
505 * Apply the limits in @lim that were obtained from queue_limits_start_update()
506 * and updated by the caller to @q. The caller must have frozen the queue or
507 * ensure that there are no outstanding I/Os by other means.
508 *
509 * Returns 0 if successful, else a negative error code.
510 */
queue_limits_commit_update(struct request_queue * q,struct queue_limits * lim)511 int queue_limits_commit_update(struct request_queue *q,
512 struct queue_limits *lim)
513 {
514 int error;
515
516 error = blk_validate_limits(lim);
517 if (error)
518 goto out_unlock;
519
520 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
521 if (q->crypto_profile && lim->integrity.tag_size) {
522 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
523 error = -EINVAL;
524 goto out_unlock;
525 }
526 #endif
527
528 q->limits = *lim;
529 if (q->disk)
530 blk_apply_bdi_limits(q->disk->bdi, lim);
531 out_unlock:
532 mutex_unlock(&q->limits_lock);
533 return error;
534 }
535 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
536
537 /**
538 * queue_limits_commit_update_frozen - commit an atomic update of queue limits
539 * @q: queue to update
540 * @lim: limits to apply
541 *
542 * Apply the limits in @lim that were obtained from queue_limits_start_update()
543 * and updated with the new values by the caller to @q. Freezes the queue
544 * before the update and unfreezes it after.
545 *
546 * Returns 0 if successful, else a negative error code.
547 */
queue_limits_commit_update_frozen(struct request_queue * q,struct queue_limits * lim)548 int queue_limits_commit_update_frozen(struct request_queue *q,
549 struct queue_limits *lim)
550 {
551 unsigned int memflags;
552 int ret;
553
554 memflags = blk_mq_freeze_queue(q);
555 ret = queue_limits_commit_update(q, lim);
556 blk_mq_unfreeze_queue(q, memflags);
557
558 return ret;
559 }
560 EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
561
562 /**
563 * queue_limits_set - apply queue limits to queue
564 * @q: queue to update
565 * @lim: limits to apply
566 *
567 * Apply the limits in @lim that were freshly initialized to @q.
568 * To update existing limits use queue_limits_start_update() and
569 * queue_limits_commit_update() instead.
570 *
571 * Returns 0 if successful, else a negative error code.
572 */
queue_limits_set(struct request_queue * q,struct queue_limits * lim)573 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
574 {
575 mutex_lock(&q->limits_lock);
576 return queue_limits_commit_update(q, lim);
577 }
578 EXPORT_SYMBOL_GPL(queue_limits_set);
579
queue_limit_alignment_offset(const struct queue_limits * lim,sector_t sector)580 static int queue_limit_alignment_offset(const struct queue_limits *lim,
581 sector_t sector)
582 {
583 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
584 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
585 << SECTOR_SHIFT;
586
587 return (granularity + lim->alignment_offset - alignment) % granularity;
588 }
589
queue_limit_discard_alignment(const struct queue_limits * lim,sector_t sector)590 static unsigned int queue_limit_discard_alignment(
591 const struct queue_limits *lim, sector_t sector)
592 {
593 unsigned int alignment, granularity, offset;
594
595 if (!lim->max_discard_sectors)
596 return 0;
597
598 /* Why are these in bytes, not sectors? */
599 alignment = lim->discard_alignment >> SECTOR_SHIFT;
600 granularity = lim->discard_granularity >> SECTOR_SHIFT;
601
602 /* Offset of the partition start in 'granularity' sectors */
603 offset = sector_div(sector, granularity);
604
605 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
606 offset = (granularity + alignment - offset) % granularity;
607
608 /* Turn it back into bytes, gaah */
609 return offset << SECTOR_SHIFT;
610 }
611
blk_round_down_sectors(unsigned int sectors,unsigned int lbs)612 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
613 {
614 sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
615 if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
616 sectors = PAGE_SIZE >> SECTOR_SHIFT;
617 return sectors;
618 }
619
620 /* Check if second and later bottom devices are compliant */
blk_stack_atomic_writes_tail(struct queue_limits * t,struct queue_limits * b)621 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
622 struct queue_limits *b)
623 {
624 /* We're not going to support different boundary sizes.. yet */
625 if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
626 return false;
627
628 /* Can't support this */
629 if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
630 return false;
631
632 /* Or this */
633 if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
634 return false;
635
636 t->atomic_write_hw_max = min(t->atomic_write_hw_max,
637 b->atomic_write_hw_max);
638 t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
639 b->atomic_write_hw_unit_min);
640 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
641 b->atomic_write_hw_unit_max);
642 return true;
643 }
644
645 /* Check for valid boundary of first bottom device */
blk_stack_atomic_writes_boundary_head(struct queue_limits * t,struct queue_limits * b)646 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
647 struct queue_limits *b)
648 {
649 /*
650 * Ensure atomic write boundary is aligned with chunk sectors. Stacked
651 * devices store chunk sectors in t->io_min.
652 */
653 if (b->atomic_write_hw_boundary > t->io_min &&
654 b->atomic_write_hw_boundary % t->io_min)
655 return false;
656 if (t->io_min > b->atomic_write_hw_boundary &&
657 t->io_min % b->atomic_write_hw_boundary)
658 return false;
659
660 t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
661 return true;
662 }
663
blk_stack_atomic_writes_chunk_sectors(struct queue_limits * t)664 static void blk_stack_atomic_writes_chunk_sectors(struct queue_limits *t)
665 {
666 unsigned int chunk_bytes;
667
668 if (!t->chunk_sectors)
669 return;
670
671 /*
672 * If chunk sectors is so large that its value in bytes overflows
673 * UINT_MAX, then just shift it down so it definitely will fit.
674 * We don't support atomic writes of such a large size anyway.
675 */
676 if (check_shl_overflow(t->chunk_sectors, SECTOR_SHIFT, &chunk_bytes))
677 chunk_bytes = t->chunk_sectors;
678
679 /*
680 * Find values for limits which work for chunk size.
681 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
682 * size, as the chunk size is not restricted to a power-of-2.
683 * So we need to find highest power-of-2 which works for the chunk
684 * size.
685 * As an example scenario, we could have t->unit_max = 16K and
686 * t->chunk_sectors = 24KB. For this case, reduce t->unit_max to a
687 * value aligned with both limits, i.e. 8K in this example.
688 */
689 t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
690 max_pow_of_two_factor(chunk_bytes));
691
692 t->atomic_write_hw_unit_min = min(t->atomic_write_hw_unit_min,
693 t->atomic_write_hw_unit_max);
694 t->atomic_write_hw_max = min(t->atomic_write_hw_max, chunk_bytes);
695 }
696
697 /* Check stacking of first bottom device */
blk_stack_atomic_writes_head(struct queue_limits * t,struct queue_limits * b)698 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
699 struct queue_limits *b)
700 {
701 if (b->atomic_write_hw_boundary &&
702 !blk_stack_atomic_writes_boundary_head(t, b))
703 return false;
704
705 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
706 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
707 t->atomic_write_hw_max = b->atomic_write_hw_max;
708 return true;
709 }
710
blk_stack_atomic_writes_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)711 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
712 struct queue_limits *b, sector_t start)
713 {
714 if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
715 goto unsupported;
716
717 if (!b->atomic_write_hw_unit_min)
718 goto unsupported;
719
720 if (!blk_atomic_write_start_sect_aligned(start, b))
721 goto unsupported;
722
723 /*
724 * If atomic_write_hw_max is set, we have already stacked 1x bottom
725 * device, so check for compliance.
726 */
727 if (t->atomic_write_hw_max) {
728 if (!blk_stack_atomic_writes_tail(t, b))
729 goto unsupported;
730 return;
731 }
732
733 if (!blk_stack_atomic_writes_head(t, b))
734 goto unsupported;
735 blk_stack_atomic_writes_chunk_sectors(t);
736 return;
737
738 unsupported:
739 t->atomic_write_hw_max = 0;
740 t->atomic_write_hw_unit_max = 0;
741 t->atomic_write_hw_unit_min = 0;
742 t->atomic_write_hw_boundary = 0;
743 }
744
745 /**
746 * blk_stack_limits - adjust queue_limits for stacked devices
747 * @t: the stacking driver limits (top device)
748 * @b: the underlying queue limits (bottom, component device)
749 * @start: first data sector within component device
750 *
751 * Description:
752 * This function is used by stacking drivers like MD and DM to ensure
753 * that all component devices have compatible block sizes and
754 * alignments. The stacking driver must provide a queue_limits
755 * struct (top) and then iteratively call the stacking function for
756 * all component (bottom) devices. The stacking function will
757 * attempt to combine the values and ensure proper alignment.
758 *
759 * Returns 0 if the top and bottom queue_limits are compatible. The
760 * top device's block sizes and alignment offsets may be adjusted to
761 * ensure alignment with the bottom device. If no compatible sizes
762 * and alignments exist, -1 is returned and the resulting top
763 * queue_limits will have the misaligned flag set to indicate that
764 * the alignment_offset is undefined.
765 */
blk_stack_limits(struct queue_limits * t,struct queue_limits * b,sector_t start)766 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
767 sector_t start)
768 {
769 unsigned int top, bottom, alignment, ret = 0;
770
771 t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
772
773 /*
774 * Some feaures need to be supported both by the stacking driver and all
775 * underlying devices. The stacking driver sets these flags before
776 * stacking the limits, and this will clear the flags if any of the
777 * underlying devices does not support it.
778 */
779 if (!(b->features & BLK_FEAT_NOWAIT))
780 t->features &= ~BLK_FEAT_NOWAIT;
781 if (!(b->features & BLK_FEAT_POLL))
782 t->features &= ~BLK_FEAT_POLL;
783
784 t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
785
786 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
787 t->max_user_sectors = min_not_zero(t->max_user_sectors,
788 b->max_user_sectors);
789 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
790 t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
791 t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
792 b->max_write_zeroes_sectors);
793 t->max_user_wzeroes_unmap_sectors =
794 min(t->max_user_wzeroes_unmap_sectors,
795 b->max_user_wzeroes_unmap_sectors);
796 t->max_hw_wzeroes_unmap_sectors =
797 min(t->max_hw_wzeroes_unmap_sectors,
798 b->max_hw_wzeroes_unmap_sectors);
799
800 t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
801 b->max_hw_zone_append_sectors);
802
803 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
804 b->seg_boundary_mask);
805 t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
806 b->virt_boundary_mask);
807
808 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
809 t->max_discard_segments = min_not_zero(t->max_discard_segments,
810 b->max_discard_segments);
811 t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
812 b->max_integrity_segments);
813
814 t->max_segment_size = min_not_zero(t->max_segment_size,
815 b->max_segment_size);
816
817 alignment = queue_limit_alignment_offset(b, start);
818
819 /* Bottom device has different alignment. Check that it is
820 * compatible with the current top alignment.
821 */
822 if (t->alignment_offset != alignment) {
823
824 top = max(t->physical_block_size, t->io_min)
825 + t->alignment_offset;
826 bottom = max(b->physical_block_size, b->io_min) + alignment;
827
828 /* Verify that top and bottom intervals line up */
829 if (max(top, bottom) % min(top, bottom)) {
830 t->flags |= BLK_FLAG_MISALIGNED;
831 ret = -1;
832 }
833 }
834
835 t->logical_block_size = max(t->logical_block_size,
836 b->logical_block_size);
837
838 t->physical_block_size = max(t->physical_block_size,
839 b->physical_block_size);
840
841 t->io_min = max(t->io_min, b->io_min);
842 t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
843 t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
844
845 /* Set non-power-of-2 compatible chunk_sectors boundary */
846 if (b->chunk_sectors)
847 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
848
849 /* Physical block size a multiple of the logical block size? */
850 if (t->physical_block_size & (t->logical_block_size - 1)) {
851 t->physical_block_size = t->logical_block_size;
852 t->flags |= BLK_FLAG_MISALIGNED;
853 ret = -1;
854 }
855
856 /* Minimum I/O a multiple of the physical block size? */
857 if (t->io_min & (t->physical_block_size - 1)) {
858 t->io_min = t->physical_block_size;
859 t->flags |= BLK_FLAG_MISALIGNED;
860 ret = -1;
861 }
862
863 /* Optimal I/O a multiple of the physical block size? */
864 if (t->io_opt & (t->physical_block_size - 1)) {
865 t->io_opt = 0;
866 t->flags |= BLK_FLAG_MISALIGNED;
867 ret = -1;
868 }
869
870 /* chunk_sectors a multiple of the physical block size? */
871 if (t->chunk_sectors % (t->physical_block_size >> SECTOR_SHIFT)) {
872 t->chunk_sectors = 0;
873 t->flags |= BLK_FLAG_MISALIGNED;
874 ret = -1;
875 }
876
877 /* Find lowest common alignment_offset */
878 t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
879 % max(t->physical_block_size, t->io_min);
880
881 /* Verify that new alignment_offset is on a logical block boundary */
882 if (t->alignment_offset & (t->logical_block_size - 1)) {
883 t->flags |= BLK_FLAG_MISALIGNED;
884 ret = -1;
885 }
886
887 t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
888 t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
889 t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
890
891 /* Discard alignment and granularity */
892 if (b->discard_granularity) {
893 alignment = queue_limit_discard_alignment(b, start);
894
895 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
896 b->max_discard_sectors);
897 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
898 b->max_hw_discard_sectors);
899 t->discard_granularity = max(t->discard_granularity,
900 b->discard_granularity);
901 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
902 t->discard_granularity;
903 }
904 t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
905 b->max_secure_erase_sectors);
906 t->zone_write_granularity = max(t->zone_write_granularity,
907 b->zone_write_granularity);
908 if (!(t->features & BLK_FEAT_ZONED)) {
909 t->zone_write_granularity = 0;
910 t->max_zone_append_sectors = 0;
911 }
912 blk_stack_atomic_writes_limits(t, b, start);
913
914 return ret;
915 }
916 EXPORT_SYMBOL(blk_stack_limits);
917
918 /**
919 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
920 * @t: the stacking driver limits (top device)
921 * @bdev: the underlying block device (bottom)
922 * @offset: offset to beginning of data within component device
923 * @pfx: prefix to use for warnings logged
924 *
925 * Description:
926 * This function is used by stacking drivers like MD and DM to ensure
927 * that all component devices have compatible block sizes and
928 * alignments. The stacking driver must provide a queue_limits
929 * struct (top) and then iteratively call the stacking function for
930 * all component (bottom) devices. The stacking function will
931 * attempt to combine the values and ensure proper alignment.
932 */
queue_limits_stack_bdev(struct queue_limits * t,struct block_device * bdev,sector_t offset,const char * pfx)933 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
934 sector_t offset, const char *pfx)
935 {
936 if (blk_stack_limits(t, bdev_limits(bdev),
937 get_start_sect(bdev) + offset))
938 pr_notice("%s: Warning: Device %pg is misaligned\n",
939 pfx, bdev);
940 }
941 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
942
943 /**
944 * queue_limits_stack_integrity - stack integrity profile
945 * @t: target queue limits
946 * @b: base queue limits
947 *
948 * Check if the integrity profile in the @b can be stacked into the
949 * target @t. Stacking is possible if either:
950 *
951 * a) does not have any integrity information stacked into it yet
952 * b) the integrity profile in @b is identical to the one in @t
953 *
954 * If @b can be stacked into @t, return %true. Else return %false and clear the
955 * integrity information in @t.
956 */
queue_limits_stack_integrity(struct queue_limits * t,struct queue_limits * b)957 bool queue_limits_stack_integrity(struct queue_limits *t,
958 struct queue_limits *b)
959 {
960 struct blk_integrity *ti = &t->integrity;
961 struct blk_integrity *bi = &b->integrity;
962
963 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
964 return true;
965
966 if (ti->flags & BLK_INTEGRITY_STACKED) {
967 if (ti->metadata_size != bi->metadata_size)
968 goto incompatible;
969 if (ti->interval_exp != bi->interval_exp)
970 goto incompatible;
971 if (ti->tag_size != bi->tag_size)
972 goto incompatible;
973 if (ti->csum_type != bi->csum_type)
974 goto incompatible;
975 if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
976 (bi->flags & BLK_INTEGRITY_REF_TAG))
977 goto incompatible;
978 } else {
979 ti->flags = BLK_INTEGRITY_STACKED;
980 ti->flags |= (bi->flags & BLK_INTEGRITY_DEVICE_CAPABLE) |
981 (bi->flags & BLK_INTEGRITY_REF_TAG);
982 ti->csum_type = bi->csum_type;
983 ti->metadata_size = bi->metadata_size;
984 ti->pi_offset = bi->pi_offset;
985 ti->interval_exp = bi->interval_exp;
986 ti->tag_size = bi->tag_size;
987 }
988 return true;
989
990 incompatible:
991 memset(ti, 0, sizeof(*ti));
992 return false;
993 }
994 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
995
996 /**
997 * blk_set_queue_depth - tell the block layer about the device queue depth
998 * @q: the request queue for the device
999 * @depth: queue depth
1000 *
1001 */
blk_set_queue_depth(struct request_queue * q,unsigned int depth)1002 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
1003 {
1004 q->queue_depth = depth;
1005 rq_qos_queue_depth_changed(q);
1006 }
1007 EXPORT_SYMBOL(blk_set_queue_depth);
1008
bdev_alignment_offset(struct block_device * bdev)1009 int bdev_alignment_offset(struct block_device *bdev)
1010 {
1011 struct request_queue *q = bdev_get_queue(bdev);
1012
1013 if (q->limits.flags & BLK_FLAG_MISALIGNED)
1014 return -1;
1015 if (bdev_is_partition(bdev))
1016 return queue_limit_alignment_offset(&q->limits,
1017 bdev->bd_start_sect);
1018 return q->limits.alignment_offset;
1019 }
1020 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
1021
bdev_discard_alignment(struct block_device * bdev)1022 unsigned int bdev_discard_alignment(struct block_device *bdev)
1023 {
1024 struct request_queue *q = bdev_get_queue(bdev);
1025
1026 if (bdev_is_partition(bdev))
1027 return queue_limit_discard_alignment(&q->limits,
1028 bdev->bd_start_sect);
1029 return q->limits.discard_alignment;
1030 }
1031 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
1032