1 /*
2  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public Licens
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
16  *
17  */
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h>		/* for struct sg_iovec */
29 
30 #include <trace/events/block.h>
31 
32 /*
33  * Test patch to inline a certain number of bi_io_vec's inside the bio
34  * itself, to shrink a bio data allocation from two mempool calls to one
35  */
36 #define BIO_INLINE_VECS		4
37 
38 static mempool_t *bio_split_pool __read_mostly;
39 
40 /*
41  * if you change this list, also change bvec_alloc or things will
42  * break badly! cannot be bigger than what you can fit into an
43  * unsigned short
44  */
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48 };
49 #undef BV
50 
51 /*
52  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53  * IO code that does not need private memory pools.
54  */
55 struct bio_set *fs_bio_set;
56 
57 /*
58  * Our slab pool management
59  */
60 struct bio_slab {
61 	struct kmem_cache *slab;
62 	unsigned int slab_ref;
63 	unsigned int slab_size;
64 	char name[8];
65 };
66 static DEFINE_MUTEX(bio_slab_lock);
67 static struct bio_slab *bio_slabs;
68 static unsigned int bio_slab_nr, bio_slab_max;
69 
bio_find_or_create_slab(unsigned int extra_size)70 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71 {
72 	unsigned int sz = sizeof(struct bio) + extra_size;
73 	struct kmem_cache *slab = NULL;
74 	struct bio_slab *bslab;
75 	unsigned int i, entry = -1;
76 
77 	mutex_lock(&bio_slab_lock);
78 
79 	i = 0;
80 	while (i < bio_slab_nr) {
81 		bslab = &bio_slabs[i];
82 
83 		if (!bslab->slab && entry == -1)
84 			entry = i;
85 		else if (bslab->slab_size == sz) {
86 			slab = bslab->slab;
87 			bslab->slab_ref++;
88 			break;
89 		}
90 		i++;
91 	}
92 
93 	if (slab)
94 		goto out_unlock;
95 
96 	if (bio_slab_nr == bio_slab_max && entry == -1) {
97 		bio_slab_max <<= 1;
98 		bio_slabs = krealloc(bio_slabs,
99 				     bio_slab_max * sizeof(struct bio_slab),
100 				     GFP_KERNEL);
101 		if (!bio_slabs)
102 			goto out_unlock;
103 	}
104 	if (entry == -1)
105 		entry = bio_slab_nr++;
106 
107 	bslab = &bio_slabs[entry];
108 
109 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 	slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 	if (!slab)
112 		goto out_unlock;
113 
114 	printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
115 	bslab->slab = slab;
116 	bslab->slab_ref = 1;
117 	bslab->slab_size = sz;
118 out_unlock:
119 	mutex_unlock(&bio_slab_lock);
120 	return slab;
121 }
122 
bio_put_slab(struct bio_set * bs)123 static void bio_put_slab(struct bio_set *bs)
124 {
125 	struct bio_slab *bslab = NULL;
126 	unsigned int i;
127 
128 	mutex_lock(&bio_slab_lock);
129 
130 	for (i = 0; i < bio_slab_nr; i++) {
131 		if (bs->bio_slab == bio_slabs[i].slab) {
132 			bslab = &bio_slabs[i];
133 			break;
134 		}
135 	}
136 
137 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 		goto out;
139 
140 	WARN_ON(!bslab->slab_ref);
141 
142 	if (--bslab->slab_ref)
143 		goto out;
144 
145 	kmem_cache_destroy(bslab->slab);
146 	bslab->slab = NULL;
147 
148 out:
149 	mutex_unlock(&bio_slab_lock);
150 }
151 
bvec_nr_vecs(unsigned short idx)152 unsigned int bvec_nr_vecs(unsigned short idx)
153 {
154 	return bvec_slabs[idx].nr_vecs;
155 }
156 
bvec_free_bs(struct bio_set * bs,struct bio_vec * bv,unsigned int idx)157 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158 {
159 	BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160 
161 	if (idx == BIOVEC_MAX_IDX)
162 		mempool_free(bv, bs->bvec_pool);
163 	else {
164 		struct biovec_slab *bvs = bvec_slabs + idx;
165 
166 		kmem_cache_free(bvs->slab, bv);
167 	}
168 }
169 
bvec_alloc_bs(gfp_t gfp_mask,int nr,unsigned long * idx,struct bio_set * bs)170 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 			      struct bio_set *bs)
172 {
173 	struct bio_vec *bvl;
174 
175 	/*
176 	 * see comment near bvec_array define!
177 	 */
178 	switch (nr) {
179 	case 1:
180 		*idx = 0;
181 		break;
182 	case 2 ... 4:
183 		*idx = 1;
184 		break;
185 	case 5 ... 16:
186 		*idx = 2;
187 		break;
188 	case 17 ... 64:
189 		*idx = 3;
190 		break;
191 	case 65 ... 128:
192 		*idx = 4;
193 		break;
194 	case 129 ... BIO_MAX_PAGES:
195 		*idx = 5;
196 		break;
197 	default:
198 		return NULL;
199 	}
200 
201 	/*
202 	 * idx now points to the pool we want to allocate from. only the
203 	 * 1-vec entry pool is mempool backed.
204 	 */
205 	if (*idx == BIOVEC_MAX_IDX) {
206 fallback:
207 		bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 	} else {
209 		struct biovec_slab *bvs = bvec_slabs + *idx;
210 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211 
212 		/*
213 		 * Make this allocation restricted and don't dump info on
214 		 * allocation failures, since we'll fallback to the mempool
215 		 * in case of failure.
216 		 */
217 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
218 
219 		/*
220 		 * Try a slab allocation. If this fails and __GFP_WAIT
221 		 * is set, retry with the 1-entry mempool
222 		 */
223 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 		if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 			*idx = BIOVEC_MAX_IDX;
226 			goto fallback;
227 		}
228 	}
229 
230 	return bvl;
231 }
232 
bio_free(struct bio * bio,struct bio_set * bs)233 void bio_free(struct bio *bio, struct bio_set *bs)
234 {
235 	void *p;
236 
237 	if (bio_has_allocated_vec(bio))
238 		bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
239 
240 	if (bio_integrity(bio))
241 		bio_integrity_free(bio, bs);
242 
243 	/*
244 	 * If we have front padding, adjust the bio pointer before freeing
245 	 */
246 	p = bio;
247 	if (bs->front_pad)
248 		p -= bs->front_pad;
249 
250 	mempool_free(p, bs->bio_pool);
251 }
252 EXPORT_SYMBOL(bio_free);
253 
bio_init(struct bio * bio)254 void bio_init(struct bio *bio)
255 {
256 	memset(bio, 0, sizeof(*bio));
257 	bio->bi_flags = 1 << BIO_UPTODATE;
258 	atomic_set(&bio->bi_cnt, 1);
259 }
260 EXPORT_SYMBOL(bio_init);
261 
262 /**
263  * bio_alloc_bioset - allocate a bio for I/O
264  * @gfp_mask:   the GFP_ mask given to the slab allocator
265  * @nr_iovecs:	number of iovecs to pre-allocate
266  * @bs:		the bio_set to allocate from.
267  *
268  * Description:
269  *   bio_alloc_bioset will try its own mempool to satisfy the allocation.
270  *   If %__GFP_WAIT is set then we will block on the internal pool waiting
271  *   for a &struct bio to become free.
272  *
273  *   Note that the caller must set ->bi_destructor on successful return
274  *   of a bio, to do the appropriate freeing of the bio once the reference
275  *   count drops to zero.
276  **/
bio_alloc_bioset(gfp_t gfp_mask,int nr_iovecs,struct bio_set * bs)277 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
278 {
279 	unsigned long idx = BIO_POOL_NONE;
280 	struct bio_vec *bvl = NULL;
281 	struct bio *bio;
282 	void *p;
283 
284 	p = mempool_alloc(bs->bio_pool, gfp_mask);
285 	if (unlikely(!p))
286 		return NULL;
287 	bio = p + bs->front_pad;
288 
289 	bio_init(bio);
290 
291 	if (unlikely(!nr_iovecs))
292 		goto out_set;
293 
294 	if (nr_iovecs <= BIO_INLINE_VECS) {
295 		bvl = bio->bi_inline_vecs;
296 		nr_iovecs = BIO_INLINE_VECS;
297 	} else {
298 		bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 		if (unlikely(!bvl))
300 			goto err_free;
301 
302 		nr_iovecs = bvec_nr_vecs(idx);
303 	}
304 out_set:
305 	bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 	bio->bi_max_vecs = nr_iovecs;
307 	bio->bi_io_vec = bvl;
308 	return bio;
309 
310 err_free:
311 	mempool_free(p, bs->bio_pool);
312 	return NULL;
313 }
314 EXPORT_SYMBOL(bio_alloc_bioset);
315 
bio_fs_destructor(struct bio * bio)316 static void bio_fs_destructor(struct bio *bio)
317 {
318 	bio_free(bio, fs_bio_set);
319 }
320 
321 /**
322  *	bio_alloc - allocate a new bio, memory pool backed
323  *	@gfp_mask: allocation mask to use
324  *	@nr_iovecs: number of iovecs
325  *
326  *	bio_alloc will allocate a bio and associated bio_vec array that can hold
327  *	at least @nr_iovecs entries. Allocations will be done from the
328  *	fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
329  *
330  *	If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
331  *	a bio. This is due to the mempool guarantees. To make this work, callers
332  *	must never allocate more than 1 bio at a time from this pool. Callers
333  *	that need to allocate more than 1 bio must always submit the previously
334  *	allocated bio for IO before attempting to allocate a new one. Failure to
335  *	do so can cause livelocks under memory pressure.
336  *
337  *	RETURNS:
338  *	Pointer to new bio on success, NULL on failure.
339  */
bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)340 struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
341 {
342 	struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
343 
344 	if (bio)
345 		bio->bi_destructor = bio_fs_destructor;
346 
347 	return bio;
348 }
349 EXPORT_SYMBOL(bio_alloc);
350 
bio_kmalloc_destructor(struct bio * bio)351 static void bio_kmalloc_destructor(struct bio *bio)
352 {
353 	if (bio_integrity(bio))
354 		bio_integrity_free(bio, fs_bio_set);
355 	kfree(bio);
356 }
357 
358 /**
359  * bio_kmalloc - allocate a bio for I/O using kmalloc()
360  * @gfp_mask:   the GFP_ mask given to the slab allocator
361  * @nr_iovecs:	number of iovecs to pre-allocate
362  *
363  * Description:
364  *   Allocate a new bio with @nr_iovecs bvecs.  If @gfp_mask contains
365  *   %__GFP_WAIT, the allocation is guaranteed to succeed.
366  *
367  **/
bio_kmalloc(gfp_t gfp_mask,unsigned int nr_iovecs)368 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
369 {
370 	struct bio *bio;
371 
372 	if (nr_iovecs > UIO_MAXIOV)
373 		return NULL;
374 
375 	bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
376 		      gfp_mask);
377 	if (unlikely(!bio))
378 		return NULL;
379 
380 	bio_init(bio);
381 	bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
382 	bio->bi_max_vecs = nr_iovecs;
383 	bio->bi_io_vec = bio->bi_inline_vecs;
384 	bio->bi_destructor = bio_kmalloc_destructor;
385 
386 	return bio;
387 }
388 EXPORT_SYMBOL(bio_kmalloc);
389 
zero_fill_bio(struct bio * bio)390 void zero_fill_bio(struct bio *bio)
391 {
392 	unsigned long flags;
393 	struct bio_vec *bv;
394 	int i;
395 
396 	bio_for_each_segment(bv, bio, i) {
397 		char *data = bvec_kmap_irq(bv, &flags);
398 		memset(data, 0, bv->bv_len);
399 		flush_dcache_page(bv->bv_page);
400 		bvec_kunmap_irq(data, &flags);
401 	}
402 }
403 EXPORT_SYMBOL(zero_fill_bio);
404 
405 /**
406  * bio_put - release a reference to a bio
407  * @bio:   bio to release reference to
408  *
409  * Description:
410  *   Put a reference to a &struct bio, either one you have gotten with
411  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
412  **/
bio_put(struct bio * bio)413 void bio_put(struct bio *bio)
414 {
415 	BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
416 
417 	/*
418 	 * last put frees it
419 	 */
420 	if (atomic_dec_and_test(&bio->bi_cnt)) {
421 		bio->bi_next = NULL;
422 		bio->bi_destructor(bio);
423 	}
424 }
425 EXPORT_SYMBOL(bio_put);
426 
bio_phys_segments(struct request_queue * q,struct bio * bio)427 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
428 {
429 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
430 		blk_recount_segments(q, bio);
431 
432 	return bio->bi_phys_segments;
433 }
434 EXPORT_SYMBOL(bio_phys_segments);
435 
436 /**
437  * 	__bio_clone	-	clone a bio
438  * 	@bio: destination bio
439  * 	@bio_src: bio to clone
440  *
441  *	Clone a &bio. Caller will own the returned bio, but not
442  *	the actual data it points to. Reference count of returned
443  * 	bio will be one.
444  */
__bio_clone(struct bio * bio,struct bio * bio_src)445 void __bio_clone(struct bio *bio, struct bio *bio_src)
446 {
447 	memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
448 		bio_src->bi_max_vecs * sizeof(struct bio_vec));
449 
450 	/*
451 	 * most users will be overriding ->bi_bdev with a new target,
452 	 * so we don't set nor calculate new physical/hw segment counts here
453 	 */
454 	bio->bi_sector = bio_src->bi_sector;
455 	bio->bi_bdev = bio_src->bi_bdev;
456 	bio->bi_flags |= 1 << BIO_CLONED;
457 	bio->bi_rw = bio_src->bi_rw;
458 	bio->bi_vcnt = bio_src->bi_vcnt;
459 	bio->bi_size = bio_src->bi_size;
460 	bio->bi_idx = bio_src->bi_idx;
461 }
462 EXPORT_SYMBOL(__bio_clone);
463 
464 /**
465  *	bio_clone	-	clone a bio
466  *	@bio: bio to clone
467  *	@gfp_mask: allocation priority
468  *
469  * 	Like __bio_clone, only also allocates the returned bio
470  */
bio_clone(struct bio * bio,gfp_t gfp_mask)471 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
472 {
473 	struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
474 
475 	if (!b)
476 		return NULL;
477 
478 	b->bi_destructor = bio_fs_destructor;
479 	__bio_clone(b, bio);
480 
481 	if (bio_integrity(bio)) {
482 		int ret;
483 
484 		ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
485 
486 		if (ret < 0) {
487 			bio_put(b);
488 			return NULL;
489 		}
490 	}
491 
492 	return b;
493 }
494 EXPORT_SYMBOL(bio_clone);
495 
496 /**
497  *	bio_get_nr_vecs		- return approx number of vecs
498  *	@bdev:  I/O target
499  *
500  *	Return the approximate number of pages we can send to this target.
501  *	There's no guarantee that you will be able to fit this number of pages
502  *	into a bio, it does not account for dynamic restrictions that vary
503  *	on offset.
504  */
bio_get_nr_vecs(struct block_device * bdev)505 int bio_get_nr_vecs(struct block_device *bdev)
506 {
507 	struct request_queue *q = bdev_get_queue(bdev);
508 	return min_t(unsigned,
509 		     queue_max_segments(q),
510 		     queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
511 }
512 EXPORT_SYMBOL(bio_get_nr_vecs);
513 
__bio_add_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned short max_sectors)514 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
515 			  *page, unsigned int len, unsigned int offset,
516 			  unsigned short max_sectors)
517 {
518 	int retried_segments = 0;
519 	struct bio_vec *bvec;
520 
521 	/*
522 	 * cloned bio must not modify vec list
523 	 */
524 	if (unlikely(bio_flagged(bio, BIO_CLONED)))
525 		return 0;
526 
527 	if (((bio->bi_size + len) >> 9) > max_sectors)
528 		return 0;
529 
530 	/*
531 	 * For filesystems with a blocksize smaller than the pagesize
532 	 * we will often be called with the same page as last time and
533 	 * a consecutive offset.  Optimize this special case.
534 	 */
535 	if (bio->bi_vcnt > 0) {
536 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
537 
538 		if (page == prev->bv_page &&
539 		    offset == prev->bv_offset + prev->bv_len) {
540 			unsigned int prev_bv_len = prev->bv_len;
541 			prev->bv_len += len;
542 
543 			if (q->merge_bvec_fn) {
544 				struct bvec_merge_data bvm = {
545 					/* prev_bvec is already charged in
546 					   bi_size, discharge it in order to
547 					   simulate merging updated prev_bvec
548 					   as new bvec. */
549 					.bi_bdev = bio->bi_bdev,
550 					.bi_sector = bio->bi_sector,
551 					.bi_size = bio->bi_size - prev_bv_len,
552 					.bi_rw = bio->bi_rw,
553 				};
554 
555 				if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
556 					prev->bv_len -= len;
557 					return 0;
558 				}
559 			}
560 
561 			goto done;
562 		}
563 	}
564 
565 	if (bio->bi_vcnt >= bio->bi_max_vecs)
566 		return 0;
567 
568 	/*
569 	 * we might lose a segment or two here, but rather that than
570 	 * make this too complex.
571 	 */
572 
573 	while (bio->bi_phys_segments >= queue_max_segments(q)) {
574 
575 		if (retried_segments)
576 			return 0;
577 
578 		retried_segments = 1;
579 		blk_recount_segments(q, bio);
580 	}
581 
582 	/*
583 	 * setup the new entry, we might clear it again later if we
584 	 * cannot add the page
585 	 */
586 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
587 	bvec->bv_page = page;
588 	bvec->bv_len = len;
589 	bvec->bv_offset = offset;
590 
591 	/*
592 	 * if queue has other restrictions (eg varying max sector size
593 	 * depending on offset), it can specify a merge_bvec_fn in the
594 	 * queue to get further control
595 	 */
596 	if (q->merge_bvec_fn) {
597 		struct bvec_merge_data bvm = {
598 			.bi_bdev = bio->bi_bdev,
599 			.bi_sector = bio->bi_sector,
600 			.bi_size = bio->bi_size,
601 			.bi_rw = bio->bi_rw,
602 		};
603 
604 		/*
605 		 * merge_bvec_fn() returns number of bytes it can accept
606 		 * at this offset
607 		 */
608 		if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
609 			bvec->bv_page = NULL;
610 			bvec->bv_len = 0;
611 			bvec->bv_offset = 0;
612 			return 0;
613 		}
614 	}
615 
616 	/* If we may be able to merge these biovecs, force a recount */
617 	if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
618 		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
619 
620 	bio->bi_vcnt++;
621 	bio->bi_phys_segments++;
622  done:
623 	bio->bi_size += len;
624 	return len;
625 }
626 
627 /**
628  *	bio_add_pc_page	-	attempt to add page to bio
629  *	@q: the target queue
630  *	@bio: destination bio
631  *	@page: page to add
632  *	@len: vec entry length
633  *	@offset: vec entry offset
634  *
635  *	Attempt to add a page to the bio_vec maplist. This can fail for a
636  *	number of reasons, such as the bio being full or target block device
637  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
638  *	so it is always possible to add a single page to an empty bio.
639  *
640  *	This should only be used by REQ_PC bios.
641  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)642 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
643 		    unsigned int len, unsigned int offset)
644 {
645 	return __bio_add_page(q, bio, page, len, offset,
646 			      queue_max_hw_sectors(q));
647 }
648 EXPORT_SYMBOL(bio_add_pc_page);
649 
650 /**
651  *	bio_add_page	-	attempt to add page to bio
652  *	@bio: destination bio
653  *	@page: page to add
654  *	@len: vec entry length
655  *	@offset: vec entry offset
656  *
657  *	Attempt to add a page to the bio_vec maplist. This can fail for a
658  *	number of reasons, such as the bio being full or target block device
659  *	limitations. The target block device must allow bio's up to PAGE_SIZE,
660  *	so it is always possible to add a single page to an empty bio.
661  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)662 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
663 		 unsigned int offset)
664 {
665 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
666 	return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
667 }
668 EXPORT_SYMBOL(bio_add_page);
669 
670 struct bio_map_data {
671 	struct bio_vec *iovecs;
672 	struct sg_iovec *sgvecs;
673 	int nr_sgvecs;
674 	int is_our_pages;
675 };
676 
bio_set_map_data(struct bio_map_data * bmd,struct bio * bio,struct sg_iovec * iov,int iov_count,int is_our_pages)677 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
678 			     struct sg_iovec *iov, int iov_count,
679 			     int is_our_pages)
680 {
681 	memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
682 	memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
683 	bmd->nr_sgvecs = iov_count;
684 	bmd->is_our_pages = is_our_pages;
685 	bio->bi_private = bmd;
686 }
687 
bio_free_map_data(struct bio_map_data * bmd)688 static void bio_free_map_data(struct bio_map_data *bmd)
689 {
690 	kfree(bmd->iovecs);
691 	kfree(bmd->sgvecs);
692 	kfree(bmd);
693 }
694 
bio_alloc_map_data(int nr_segs,unsigned int iov_count,gfp_t gfp_mask)695 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
696 					       unsigned int iov_count,
697 					       gfp_t gfp_mask)
698 {
699 	struct bio_map_data *bmd;
700 
701 	if (iov_count > UIO_MAXIOV)
702 		return NULL;
703 
704 	bmd = kmalloc(sizeof(*bmd), gfp_mask);
705 	if (!bmd)
706 		return NULL;
707 
708 	bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
709 	if (!bmd->iovecs) {
710 		kfree(bmd);
711 		return NULL;
712 	}
713 
714 	bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
715 	if (bmd->sgvecs)
716 		return bmd;
717 
718 	kfree(bmd->iovecs);
719 	kfree(bmd);
720 	return NULL;
721 }
722 
__bio_copy_iov(struct bio * bio,struct bio_vec * iovecs,struct sg_iovec * iov,int iov_count,int to_user,int from_user,int do_free_page)723 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
724 			  struct sg_iovec *iov, int iov_count,
725 			  int to_user, int from_user, int do_free_page)
726 {
727 	int ret = 0, i;
728 	struct bio_vec *bvec;
729 	int iov_idx = 0;
730 	unsigned int iov_off = 0;
731 
732 	__bio_for_each_segment(bvec, bio, i, 0) {
733 		char *bv_addr = page_address(bvec->bv_page);
734 		unsigned int bv_len = iovecs[i].bv_len;
735 
736 		while (bv_len && iov_idx < iov_count) {
737 			unsigned int bytes;
738 			char __user *iov_addr;
739 
740 			bytes = min_t(unsigned int,
741 				      iov[iov_idx].iov_len - iov_off, bv_len);
742 			iov_addr = iov[iov_idx].iov_base + iov_off;
743 
744 			if (!ret) {
745 				if (to_user)
746 					ret = copy_to_user(iov_addr, bv_addr,
747 							   bytes);
748 
749 				if (from_user)
750 					ret = copy_from_user(bv_addr, iov_addr,
751 							     bytes);
752 
753 				if (ret)
754 					ret = -EFAULT;
755 			}
756 
757 			bv_len -= bytes;
758 			bv_addr += bytes;
759 			iov_addr += bytes;
760 			iov_off += bytes;
761 
762 			if (iov[iov_idx].iov_len == iov_off) {
763 				iov_idx++;
764 				iov_off = 0;
765 			}
766 		}
767 
768 		if (do_free_page)
769 			__free_page(bvec->bv_page);
770 	}
771 
772 	return ret;
773 }
774 
775 /**
776  *	bio_uncopy_user	-	finish previously mapped bio
777  *	@bio: bio being terminated
778  *
779  *	Free pages allocated from bio_copy_user() and write back data
780  *	to user space in case of a read.
781  */
bio_uncopy_user(struct bio * bio)782 int bio_uncopy_user(struct bio *bio)
783 {
784 	struct bio_map_data *bmd = bio->bi_private;
785 	int ret = 0;
786 
787 	if (!bio_flagged(bio, BIO_NULL_MAPPED))
788 		ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
789 				     bmd->nr_sgvecs, bio_data_dir(bio) == READ,
790 				     0, bmd->is_our_pages);
791 	bio_free_map_data(bmd);
792 	bio_put(bio);
793 	return ret;
794 }
795 EXPORT_SYMBOL(bio_uncopy_user);
796 
797 /**
798  *	bio_copy_user_iov	-	copy user data to bio
799  *	@q: destination block queue
800  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
801  *	@iov:	the iovec.
802  *	@iov_count: number of elements in the iovec
803  *	@write_to_vm: bool indicating writing to pages or not
804  *	@gfp_mask: memory allocation flags
805  *
806  *	Prepares and returns a bio for indirect user io, bouncing data
807  *	to/from kernel pages as necessary. Must be paired with
808  *	call bio_uncopy_user() on io completion.
809  */
bio_copy_user_iov(struct request_queue * q,struct rq_map_data * map_data,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)810 struct bio *bio_copy_user_iov(struct request_queue *q,
811 			      struct rq_map_data *map_data,
812 			      struct sg_iovec *iov, int iov_count,
813 			      int write_to_vm, gfp_t gfp_mask)
814 {
815 	struct bio_map_data *bmd;
816 	struct bio_vec *bvec;
817 	struct page *page;
818 	struct bio *bio;
819 	int i, ret;
820 	int nr_pages = 0;
821 	unsigned int len = 0;
822 	unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
823 
824 	for (i = 0; i < iov_count; i++) {
825 		unsigned long uaddr;
826 		unsigned long end;
827 		unsigned long start;
828 
829 		uaddr = (unsigned long)iov[i].iov_base;
830 		end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
831 		start = uaddr >> PAGE_SHIFT;
832 
833 		/*
834 		 * Overflow, abort
835 		 */
836 		if (end < start)
837 			return ERR_PTR(-EINVAL);
838 
839 		nr_pages += end - start;
840 		len += iov[i].iov_len;
841 	}
842 
843 	if (offset)
844 		nr_pages++;
845 
846 	bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
847 	if (!bmd)
848 		return ERR_PTR(-ENOMEM);
849 
850 	ret = -ENOMEM;
851 	bio = bio_kmalloc(gfp_mask, nr_pages);
852 	if (!bio)
853 		goto out_bmd;
854 
855 	if (!write_to_vm)
856 		bio->bi_rw |= REQ_WRITE;
857 
858 	ret = 0;
859 
860 	if (map_data) {
861 		nr_pages = 1 << map_data->page_order;
862 		i = map_data->offset / PAGE_SIZE;
863 	}
864 	while (len) {
865 		unsigned int bytes = PAGE_SIZE;
866 
867 		bytes -= offset;
868 
869 		if (bytes > len)
870 			bytes = len;
871 
872 		if (map_data) {
873 			if (i == map_data->nr_entries * nr_pages) {
874 				ret = -ENOMEM;
875 				break;
876 			}
877 
878 			page = map_data->pages[i / nr_pages];
879 			page += (i % nr_pages);
880 
881 			i++;
882 		} else {
883 			page = alloc_page(q->bounce_gfp | gfp_mask);
884 			if (!page) {
885 				ret = -ENOMEM;
886 				break;
887 			}
888 		}
889 
890 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
891 			break;
892 
893 		len -= bytes;
894 		offset = 0;
895 	}
896 
897 	if (ret)
898 		goto cleanup;
899 
900 	/*
901 	 * success
902 	 */
903 	if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
904 	    (map_data && map_data->from_user)) {
905 		ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
906 		if (ret)
907 			goto cleanup;
908 	}
909 
910 	bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
911 	return bio;
912 cleanup:
913 	if (!map_data)
914 		bio_for_each_segment(bvec, bio, i)
915 			__free_page(bvec->bv_page);
916 
917 	bio_put(bio);
918 out_bmd:
919 	bio_free_map_data(bmd);
920 	return ERR_PTR(ret);
921 }
922 
923 /**
924  *	bio_copy_user	-	copy user data to bio
925  *	@q: destination block queue
926  *	@map_data: pointer to the rq_map_data holding pages (if necessary)
927  *	@uaddr: start of user address
928  *	@len: length in bytes
929  *	@write_to_vm: bool indicating writing to pages or not
930  *	@gfp_mask: memory allocation flags
931  *
932  *	Prepares and returns a bio for indirect user io, bouncing data
933  *	to/from kernel pages as necessary. Must be paired with
934  *	call bio_uncopy_user() on io completion.
935  */
bio_copy_user(struct request_queue * q,struct rq_map_data * map_data,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)936 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
937 			  unsigned long uaddr, unsigned int len,
938 			  int write_to_vm, gfp_t gfp_mask)
939 {
940 	struct sg_iovec iov;
941 
942 	iov.iov_base = (void __user *)uaddr;
943 	iov.iov_len = len;
944 
945 	return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
946 }
947 EXPORT_SYMBOL(bio_copy_user);
948 
__bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)949 static struct bio *__bio_map_user_iov(struct request_queue *q,
950 				      struct block_device *bdev,
951 				      struct sg_iovec *iov, int iov_count,
952 				      int write_to_vm, gfp_t gfp_mask)
953 {
954 	int i, j;
955 	int nr_pages = 0;
956 	struct page **pages;
957 	struct bio *bio;
958 	int cur_page = 0;
959 	int ret, offset;
960 
961 	for (i = 0; i < iov_count; i++) {
962 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
963 		unsigned long len = iov[i].iov_len;
964 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
965 		unsigned long start = uaddr >> PAGE_SHIFT;
966 
967 		/*
968 		 * Overflow, abort
969 		 */
970 		if (end < start)
971 			return ERR_PTR(-EINVAL);
972 
973 		nr_pages += end - start;
974 		/*
975 		 * buffer must be aligned to at least hardsector size for now
976 		 */
977 		if (uaddr & queue_dma_alignment(q))
978 			return ERR_PTR(-EINVAL);
979 	}
980 
981 	if (!nr_pages)
982 		return ERR_PTR(-EINVAL);
983 
984 	bio = bio_kmalloc(gfp_mask, nr_pages);
985 	if (!bio)
986 		return ERR_PTR(-ENOMEM);
987 
988 	ret = -ENOMEM;
989 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
990 	if (!pages)
991 		goto out;
992 
993 	for (i = 0; i < iov_count; i++) {
994 		unsigned long uaddr = (unsigned long)iov[i].iov_base;
995 		unsigned long len = iov[i].iov_len;
996 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 		unsigned long start = uaddr >> PAGE_SHIFT;
998 		const int local_nr_pages = end - start;
999 		const int page_limit = cur_page + local_nr_pages;
1000 
1001 		ret = get_user_pages_fast(uaddr, local_nr_pages,
1002 				write_to_vm, &pages[cur_page]);
1003 		if (ret < local_nr_pages) {
1004 			ret = -EFAULT;
1005 			goto out_unmap;
1006 		}
1007 
1008 		offset = uaddr & ~PAGE_MASK;
1009 		for (j = cur_page; j < page_limit; j++) {
1010 			unsigned int bytes = PAGE_SIZE - offset;
1011 
1012 			if (len <= 0)
1013 				break;
1014 
1015 			if (bytes > len)
1016 				bytes = len;
1017 
1018 			/*
1019 			 * sorry...
1020 			 */
1021 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1022 					    bytes)
1023 				break;
1024 
1025 			len -= bytes;
1026 			offset = 0;
1027 		}
1028 
1029 		cur_page = j;
1030 		/*
1031 		 * release the pages we didn't map into the bio, if any
1032 		 */
1033 		while (j < page_limit)
1034 			page_cache_release(pages[j++]);
1035 	}
1036 
1037 	kfree(pages);
1038 
1039 	/*
1040 	 * set data direction, and check if mapped pages need bouncing
1041 	 */
1042 	if (!write_to_vm)
1043 		bio->bi_rw |= REQ_WRITE;
1044 
1045 	bio->bi_bdev = bdev;
1046 	bio->bi_flags |= (1 << BIO_USER_MAPPED);
1047 	return bio;
1048 
1049  out_unmap:
1050 	for (i = 0; i < nr_pages; i++) {
1051 		if(!pages[i])
1052 			break;
1053 		page_cache_release(pages[i]);
1054 	}
1055  out:
1056 	kfree(pages);
1057 	bio_put(bio);
1058 	return ERR_PTR(ret);
1059 }
1060 
1061 /**
1062  *	bio_map_user	-	map user address into bio
1063  *	@q: the struct request_queue for the bio
1064  *	@bdev: destination block device
1065  *	@uaddr: start of user address
1066  *	@len: length in bytes
1067  *	@write_to_vm: bool indicating writing to pages or not
1068  *	@gfp_mask: memory allocation flags
1069  *
1070  *	Map the user space address into a bio suitable for io to a block
1071  *	device. Returns an error pointer in case of error.
1072  */
bio_map_user(struct request_queue * q,struct block_device * bdev,unsigned long uaddr,unsigned int len,int write_to_vm,gfp_t gfp_mask)1073 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1074 			 unsigned long uaddr, unsigned int len, int write_to_vm,
1075 			 gfp_t gfp_mask)
1076 {
1077 	struct sg_iovec iov;
1078 
1079 	iov.iov_base = (void __user *)uaddr;
1080 	iov.iov_len = len;
1081 
1082 	return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1083 }
1084 EXPORT_SYMBOL(bio_map_user);
1085 
1086 /**
1087  *	bio_map_user_iov - map user sg_iovec table into bio
1088  *	@q: the struct request_queue for the bio
1089  *	@bdev: destination block device
1090  *	@iov:	the iovec.
1091  *	@iov_count: number of elements in the iovec
1092  *	@write_to_vm: bool indicating writing to pages or not
1093  *	@gfp_mask: memory allocation flags
1094  *
1095  *	Map the user space address into a bio suitable for io to a block
1096  *	device. Returns an error pointer in case of error.
1097  */
bio_map_user_iov(struct request_queue * q,struct block_device * bdev,struct sg_iovec * iov,int iov_count,int write_to_vm,gfp_t gfp_mask)1098 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1099 			     struct sg_iovec *iov, int iov_count,
1100 			     int write_to_vm, gfp_t gfp_mask)
1101 {
1102 	struct bio *bio;
1103 
1104 	bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1105 				 gfp_mask);
1106 	if (IS_ERR(bio))
1107 		return bio;
1108 
1109 	/*
1110 	 * subtle -- if __bio_map_user() ended up bouncing a bio,
1111 	 * it would normally disappear when its bi_end_io is run.
1112 	 * however, we need it for the unmap, so grab an extra
1113 	 * reference to it
1114 	 */
1115 	bio_get(bio);
1116 
1117 	return bio;
1118 }
1119 
__bio_unmap_user(struct bio * bio)1120 static void __bio_unmap_user(struct bio *bio)
1121 {
1122 	struct bio_vec *bvec;
1123 	int i;
1124 
1125 	/*
1126 	 * make sure we dirty pages we wrote to
1127 	 */
1128 	__bio_for_each_segment(bvec, bio, i, 0) {
1129 		if (bio_data_dir(bio) == READ)
1130 			set_page_dirty_lock(bvec->bv_page);
1131 
1132 		page_cache_release(bvec->bv_page);
1133 	}
1134 
1135 	bio_put(bio);
1136 }
1137 
1138 /**
1139  *	bio_unmap_user	-	unmap a bio
1140  *	@bio:		the bio being unmapped
1141  *
1142  *	Unmap a bio previously mapped by bio_map_user(). Must be called with
1143  *	a process context.
1144  *
1145  *	bio_unmap_user() may sleep.
1146  */
bio_unmap_user(struct bio * bio)1147 void bio_unmap_user(struct bio *bio)
1148 {
1149 	__bio_unmap_user(bio);
1150 	bio_put(bio);
1151 }
1152 EXPORT_SYMBOL(bio_unmap_user);
1153 
bio_map_kern_endio(struct bio * bio,int err)1154 static void bio_map_kern_endio(struct bio *bio, int err)
1155 {
1156 	bio_put(bio);
1157 }
1158 
__bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1159 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1160 				  unsigned int len, gfp_t gfp_mask)
1161 {
1162 	unsigned long kaddr = (unsigned long)data;
1163 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1164 	unsigned long start = kaddr >> PAGE_SHIFT;
1165 	const int nr_pages = end - start;
1166 	int offset, i;
1167 	struct bio *bio;
1168 
1169 	bio = bio_kmalloc(gfp_mask, nr_pages);
1170 	if (!bio)
1171 		return ERR_PTR(-ENOMEM);
1172 
1173 	offset = offset_in_page(kaddr);
1174 	for (i = 0; i < nr_pages; i++) {
1175 		unsigned int bytes = PAGE_SIZE - offset;
1176 
1177 		if (len <= 0)
1178 			break;
1179 
1180 		if (bytes > len)
1181 			bytes = len;
1182 
1183 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1184 				    offset) < bytes)
1185 			break;
1186 
1187 		data += bytes;
1188 		len -= bytes;
1189 		offset = 0;
1190 	}
1191 
1192 	bio->bi_end_io = bio_map_kern_endio;
1193 	return bio;
1194 }
1195 
1196 /**
1197  *	bio_map_kern	-	map kernel address into bio
1198  *	@q: the struct request_queue for the bio
1199  *	@data: pointer to buffer to map
1200  *	@len: length in bytes
1201  *	@gfp_mask: allocation flags for bio allocation
1202  *
1203  *	Map the kernel address into a bio suitable for io to a block
1204  *	device. Returns an error pointer in case of error.
1205  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)1206 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1207 			 gfp_t gfp_mask)
1208 {
1209 	struct bio *bio;
1210 
1211 	bio = __bio_map_kern(q, data, len, gfp_mask);
1212 	if (IS_ERR(bio))
1213 		return bio;
1214 
1215 	if (bio->bi_size == len)
1216 		return bio;
1217 
1218 	/*
1219 	 * Don't support partial mappings.
1220 	 */
1221 	bio_put(bio);
1222 	return ERR_PTR(-EINVAL);
1223 }
1224 EXPORT_SYMBOL(bio_map_kern);
1225 
bio_copy_kern_endio(struct bio * bio,int err)1226 static void bio_copy_kern_endio(struct bio *bio, int err)
1227 {
1228 	struct bio_vec *bvec;
1229 	const int read = bio_data_dir(bio) == READ;
1230 	struct bio_map_data *bmd = bio->bi_private;
1231 	int i;
1232 	char *p = bmd->sgvecs[0].iov_base;
1233 
1234 	__bio_for_each_segment(bvec, bio, i, 0) {
1235 		char *addr = page_address(bvec->bv_page);
1236 		int len = bmd->iovecs[i].bv_len;
1237 
1238 		if (read)
1239 			memcpy(p, addr, len);
1240 
1241 		__free_page(bvec->bv_page);
1242 		p += len;
1243 	}
1244 
1245 	bio_free_map_data(bmd);
1246 	bio_put(bio);
1247 }
1248 
1249 /**
1250  *	bio_copy_kern	-	copy kernel address into bio
1251  *	@q: the struct request_queue for the bio
1252  *	@data: pointer to buffer to copy
1253  *	@len: length in bytes
1254  *	@gfp_mask: allocation flags for bio and page allocation
1255  *	@reading: data direction is READ
1256  *
1257  *	copy the kernel address into a bio suitable for io to a block
1258  *	device. Returns an error pointer in case of error.
1259  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)1260 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1261 			  gfp_t gfp_mask, int reading)
1262 {
1263 	struct bio *bio;
1264 	struct bio_vec *bvec;
1265 	int i;
1266 
1267 	bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1268 	if (IS_ERR(bio))
1269 		return bio;
1270 
1271 	if (!reading) {
1272 		void *p = data;
1273 
1274 		bio_for_each_segment(bvec, bio, i) {
1275 			char *addr = page_address(bvec->bv_page);
1276 
1277 			memcpy(addr, p, bvec->bv_len);
1278 			p += bvec->bv_len;
1279 		}
1280 	}
1281 
1282 	bio->bi_end_io = bio_copy_kern_endio;
1283 
1284 	return bio;
1285 }
1286 EXPORT_SYMBOL(bio_copy_kern);
1287 
1288 /*
1289  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1290  * for performing direct-IO in BIOs.
1291  *
1292  * The problem is that we cannot run set_page_dirty() from interrupt context
1293  * because the required locks are not interrupt-safe.  So what we can do is to
1294  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1295  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1296  * in process context.
1297  *
1298  * We special-case compound pages here: normally this means reads into hugetlb
1299  * pages.  The logic in here doesn't really work right for compound pages
1300  * because the VM does not uniformly chase down the head page in all cases.
1301  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1302  * handle them at all.  So we skip compound pages here at an early stage.
1303  *
1304  * Note that this code is very hard to test under normal circumstances because
1305  * direct-io pins the pages with get_user_pages().  This makes
1306  * is_page_cache_freeable return false, and the VM will not clean the pages.
1307  * But other code (eg, pdflush) could clean the pages if they are mapped
1308  * pagecache.
1309  *
1310  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1311  * deferred bio dirtying paths.
1312  */
1313 
1314 /*
1315  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1316  */
bio_set_pages_dirty(struct bio * bio)1317 void bio_set_pages_dirty(struct bio *bio)
1318 {
1319 	struct bio_vec *bvec = bio->bi_io_vec;
1320 	int i;
1321 
1322 	for (i = 0; i < bio->bi_vcnt; i++) {
1323 		struct page *page = bvec[i].bv_page;
1324 
1325 		if (page && !PageCompound(page))
1326 			set_page_dirty_lock(page);
1327 	}
1328 }
1329 
bio_release_pages(struct bio * bio)1330 static void bio_release_pages(struct bio *bio)
1331 {
1332 	struct bio_vec *bvec = bio->bi_io_vec;
1333 	int i;
1334 
1335 	for (i = 0; i < bio->bi_vcnt; i++) {
1336 		struct page *page = bvec[i].bv_page;
1337 
1338 		if (page)
1339 			put_page(page);
1340 	}
1341 }
1342 
1343 /*
1344  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1345  * If they are, then fine.  If, however, some pages are clean then they must
1346  * have been written out during the direct-IO read.  So we take another ref on
1347  * the BIO and the offending pages and re-dirty the pages in process context.
1348  *
1349  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1350  * here on.  It will run one page_cache_release() against each page and will
1351  * run one bio_put() against the BIO.
1352  */
1353 
1354 static void bio_dirty_fn(struct work_struct *work);
1355 
1356 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1357 static DEFINE_SPINLOCK(bio_dirty_lock);
1358 static struct bio *bio_dirty_list;
1359 
1360 /*
1361  * This runs in process context
1362  */
bio_dirty_fn(struct work_struct * work)1363 static void bio_dirty_fn(struct work_struct *work)
1364 {
1365 	unsigned long flags;
1366 	struct bio *bio;
1367 
1368 	spin_lock_irqsave(&bio_dirty_lock, flags);
1369 	bio = bio_dirty_list;
1370 	bio_dirty_list = NULL;
1371 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1372 
1373 	while (bio) {
1374 		struct bio *next = bio->bi_private;
1375 
1376 		bio_set_pages_dirty(bio);
1377 		bio_release_pages(bio);
1378 		bio_put(bio);
1379 		bio = next;
1380 	}
1381 }
1382 
bio_check_pages_dirty(struct bio * bio)1383 void bio_check_pages_dirty(struct bio *bio)
1384 {
1385 	struct bio_vec *bvec = bio->bi_io_vec;
1386 	int nr_clean_pages = 0;
1387 	int i;
1388 
1389 	for (i = 0; i < bio->bi_vcnt; i++) {
1390 		struct page *page = bvec[i].bv_page;
1391 
1392 		if (PageDirty(page) || PageCompound(page)) {
1393 			page_cache_release(page);
1394 			bvec[i].bv_page = NULL;
1395 		} else {
1396 			nr_clean_pages++;
1397 		}
1398 	}
1399 
1400 	if (nr_clean_pages) {
1401 		unsigned long flags;
1402 
1403 		spin_lock_irqsave(&bio_dirty_lock, flags);
1404 		bio->bi_private = bio_dirty_list;
1405 		bio_dirty_list = bio;
1406 		spin_unlock_irqrestore(&bio_dirty_lock, flags);
1407 		schedule_work(&bio_dirty_work);
1408 	} else {
1409 		bio_put(bio);
1410 	}
1411 }
1412 
1413 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
bio_flush_dcache_pages(struct bio * bi)1414 void bio_flush_dcache_pages(struct bio *bi)
1415 {
1416 	int i;
1417 	struct bio_vec *bvec;
1418 
1419 	bio_for_each_segment(bvec, bi, i)
1420 		flush_dcache_page(bvec->bv_page);
1421 }
1422 EXPORT_SYMBOL(bio_flush_dcache_pages);
1423 #endif
1424 
1425 /**
1426  * bio_endio - end I/O on a bio
1427  * @bio:	bio
1428  * @error:	error, if any
1429  *
1430  * Description:
1431  *   bio_endio() will end I/O on the whole bio. bio_endio() is the
1432  *   preferred way to end I/O on a bio, it takes care of clearing
1433  *   BIO_UPTODATE on error. @error is 0 on success, and and one of the
1434  *   established -Exxxx (-EIO, for instance) error values in case
1435  *   something went wrong. No one should call bi_end_io() directly on a
1436  *   bio unless they own it and thus know that it has an end_io
1437  *   function.
1438  **/
bio_endio(struct bio * bio,int error)1439 void bio_endio(struct bio *bio, int error)
1440 {
1441 	if (error)
1442 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
1443 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1444 		error = -EIO;
1445 
1446 	if (bio->bi_end_io)
1447 		bio->bi_end_io(bio, error);
1448 }
1449 EXPORT_SYMBOL(bio_endio);
1450 
bio_pair_release(struct bio_pair * bp)1451 void bio_pair_release(struct bio_pair *bp)
1452 {
1453 	if (atomic_dec_and_test(&bp->cnt)) {
1454 		struct bio *master = bp->bio1.bi_private;
1455 
1456 		bio_endio(master, bp->error);
1457 		mempool_free(bp, bp->bio2.bi_private);
1458 	}
1459 }
1460 EXPORT_SYMBOL(bio_pair_release);
1461 
bio_pair_end_1(struct bio * bi,int err)1462 static void bio_pair_end_1(struct bio *bi, int err)
1463 {
1464 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1465 
1466 	if (err)
1467 		bp->error = err;
1468 
1469 	bio_pair_release(bp);
1470 }
1471 
bio_pair_end_2(struct bio * bi,int err)1472 static void bio_pair_end_2(struct bio *bi, int err)
1473 {
1474 	struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1475 
1476 	if (err)
1477 		bp->error = err;
1478 
1479 	bio_pair_release(bp);
1480 }
1481 
1482 /*
1483  * split a bio - only worry about a bio with a single page in its iovec
1484  */
bio_split(struct bio * bi,int first_sectors)1485 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1486 {
1487 	struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1488 
1489 	if (!bp)
1490 		return bp;
1491 
1492 	trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1493 				bi->bi_sector + first_sectors);
1494 
1495 	BUG_ON(bi->bi_vcnt != 1);
1496 	BUG_ON(bi->bi_idx != 0);
1497 	atomic_set(&bp->cnt, 3);
1498 	bp->error = 0;
1499 	bp->bio1 = *bi;
1500 	bp->bio2 = *bi;
1501 	bp->bio2.bi_sector += first_sectors;
1502 	bp->bio2.bi_size -= first_sectors << 9;
1503 	bp->bio1.bi_size = first_sectors << 9;
1504 
1505 	bp->bv1 = bi->bi_io_vec[0];
1506 	bp->bv2 = bi->bi_io_vec[0];
1507 	bp->bv2.bv_offset += first_sectors << 9;
1508 	bp->bv2.bv_len -= first_sectors << 9;
1509 	bp->bv1.bv_len = first_sectors << 9;
1510 
1511 	bp->bio1.bi_io_vec = &bp->bv1;
1512 	bp->bio2.bi_io_vec = &bp->bv2;
1513 
1514 	bp->bio1.bi_max_vecs = 1;
1515 	bp->bio2.bi_max_vecs = 1;
1516 
1517 	bp->bio1.bi_end_io = bio_pair_end_1;
1518 	bp->bio2.bi_end_io = bio_pair_end_2;
1519 
1520 	bp->bio1.bi_private = bi;
1521 	bp->bio2.bi_private = bio_split_pool;
1522 
1523 	if (bio_integrity(bi))
1524 		bio_integrity_split(bi, bp, first_sectors);
1525 
1526 	return bp;
1527 }
1528 EXPORT_SYMBOL(bio_split);
1529 
1530 /**
1531  *      bio_sector_offset - Find hardware sector offset in bio
1532  *      @bio:           bio to inspect
1533  *      @index:         bio_vec index
1534  *      @offset:        offset in bv_page
1535  *
1536  *      Return the number of hardware sectors between beginning of bio
1537  *      and an end point indicated by a bio_vec index and an offset
1538  *      within that vector's page.
1539  */
bio_sector_offset(struct bio * bio,unsigned short index,unsigned int offset)1540 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1541 			   unsigned int offset)
1542 {
1543 	unsigned int sector_sz;
1544 	struct bio_vec *bv;
1545 	sector_t sectors;
1546 	int i;
1547 
1548 	sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1549 	sectors = 0;
1550 
1551 	if (index >= bio->bi_idx)
1552 		index = bio->bi_vcnt - 1;
1553 
1554 	__bio_for_each_segment(bv, bio, i, 0) {
1555 		if (i == index) {
1556 			if (offset > bv->bv_offset)
1557 				sectors += (offset - bv->bv_offset) / sector_sz;
1558 			break;
1559 		}
1560 
1561 		sectors += bv->bv_len / sector_sz;
1562 	}
1563 
1564 	return sectors;
1565 }
1566 EXPORT_SYMBOL(bio_sector_offset);
1567 
1568 /*
1569  * create memory pools for biovec's in a bio_set.
1570  * use the global biovec slabs created for general use.
1571  */
biovec_create_pools(struct bio_set * bs,int pool_entries)1572 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1573 {
1574 	struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1575 
1576 	bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1577 	if (!bs->bvec_pool)
1578 		return -ENOMEM;
1579 
1580 	return 0;
1581 }
1582 
biovec_free_pools(struct bio_set * bs)1583 static void biovec_free_pools(struct bio_set *bs)
1584 {
1585 	mempool_destroy(bs->bvec_pool);
1586 }
1587 
bioset_free(struct bio_set * bs)1588 void bioset_free(struct bio_set *bs)
1589 {
1590 	if (bs->bio_pool)
1591 		mempool_destroy(bs->bio_pool);
1592 
1593 	bioset_integrity_free(bs);
1594 	biovec_free_pools(bs);
1595 	bio_put_slab(bs);
1596 
1597 	kfree(bs);
1598 }
1599 EXPORT_SYMBOL(bioset_free);
1600 
1601 /**
1602  * bioset_create  - Create a bio_set
1603  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1604  * @front_pad:	Number of bytes to allocate in front of the returned bio
1605  *
1606  * Description:
1607  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1608  *    to ask for a number of bytes to be allocated in front of the bio.
1609  *    Front pad allocation is useful for embedding the bio inside
1610  *    another structure, to avoid allocating extra data to go with the bio.
1611  *    Note that the bio must be embedded at the END of that structure always,
1612  *    or things will break badly.
1613  */
bioset_create(unsigned int pool_size,unsigned int front_pad)1614 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1615 {
1616 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1617 	struct bio_set *bs;
1618 
1619 	bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1620 	if (!bs)
1621 		return NULL;
1622 
1623 	bs->front_pad = front_pad;
1624 
1625 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1626 	if (!bs->bio_slab) {
1627 		kfree(bs);
1628 		return NULL;
1629 	}
1630 
1631 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1632 	if (!bs->bio_pool)
1633 		goto bad;
1634 
1635 	if (!biovec_create_pools(bs, pool_size))
1636 		return bs;
1637 
1638 bad:
1639 	bioset_free(bs);
1640 	return NULL;
1641 }
1642 EXPORT_SYMBOL(bioset_create);
1643 
biovec_init_slabs(void)1644 static void __init biovec_init_slabs(void)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1649 		int size;
1650 		struct biovec_slab *bvs = bvec_slabs + i;
1651 
1652 		if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1653 			bvs->slab = NULL;
1654 			continue;
1655 		}
1656 
1657 		size = bvs->nr_vecs * sizeof(struct bio_vec);
1658 		bvs->slab = kmem_cache_create(bvs->name, size, 0,
1659                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1660 	}
1661 }
1662 
init_bio(void)1663 static int __init init_bio(void)
1664 {
1665 	bio_slab_max = 2;
1666 	bio_slab_nr = 0;
1667 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1668 	if (!bio_slabs)
1669 		panic("bio: can't allocate bios\n");
1670 
1671 	bio_integrity_init();
1672 	biovec_init_slabs();
1673 
1674 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1675 	if (!fs_bio_set)
1676 		panic("bio: can't allocate bios\n");
1677 
1678 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1679 		panic("bio: can't create integrity pool\n");
1680 
1681 	bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1682 						     sizeof(struct bio_pair));
1683 	if (!bio_split_pool)
1684 		panic("bio: can't create split pool\n");
1685 
1686 	return 0;
1687 }
1688 subsys_initcall(init_bio);
1689