1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26
27 #define ALLOC_CACHE_THRESHOLD 16
28 #define ALLOC_CACHE_MAX 256
29
30 struct bio_alloc_cache {
31 struct bio *free_list;
32 struct bio *free_list_irq;
33 unsigned int nr;
34 unsigned int nr_irq;
35 };
36
37 static struct biovec_slab {
38 int nr_vecs;
39 char *name;
40 struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 { .nr_vecs = 16, .name = "biovec-16" },
43 { .nr_vecs = 64, .name = "biovec-64" },
44 { .nr_vecs = 128, .name = "biovec-128" },
45 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 switch (nr_vecs) {
51 /* smaller bios use inline vecs */
52 case 5 ... 16:
53 return &bvec_slabs[0];
54 case 17 ... 64:
55 return &bvec_slabs[1];
56 case 65 ... 128:
57 return &bvec_slabs[2];
58 case 129 ... BIO_MAX_VECS:
59 return &bvec_slabs[3];
60 default:
61 BUG();
62 return NULL;
63 }
64 }
65
66 /*
67 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68 * IO code that does not need private memory pools.
69 */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72
73 /*
74 * Our slab pool management
75 */
76 struct bio_slab {
77 struct kmem_cache *slab;
78 unsigned int slab_ref;
79 unsigned int slab_size;
80 char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88
89 if (!bslab)
90 return NULL;
91
92 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 bslab->slab = kmem_cache_create(bslab->name, size,
94 ARCH_KMALLOC_MINALIGN,
95 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 if (!bslab->slab)
97 goto fail_alloc_slab;
98
99 bslab->slab_ref = 1;
100 bslab->slab_size = size;
101
102 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 return bslab;
104
105 kmem_cache_destroy(bslab->slab);
106
107 fail_alloc_slab:
108 kfree(bslab);
109 return NULL;
110 }
111
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 unsigned int size = bs_bio_slab_size(bs);
120 struct bio_slab *bslab;
121
122 mutex_lock(&bio_slab_lock);
123 bslab = xa_load(&bio_slabs, size);
124 if (bslab)
125 bslab->slab_ref++;
126 else
127 bslab = create_bio_slab(size);
128 mutex_unlock(&bio_slab_lock);
129
130 if (bslab)
131 return bslab->slab;
132 return NULL;
133 }
134
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 struct bio_slab *bslab = NULL;
138 unsigned int slab_size = bs_bio_slab_size(bs);
139
140 mutex_lock(&bio_slab_lock);
141
142 bslab = xa_load(&bio_slabs, slab_size);
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147
148 WARN_ON(!bslab->slab_ref);
149
150 if (--bslab->slab_ref)
151 goto out;
152
153 xa_erase(&bio_slabs, slab_size);
154
155 kmem_cache_destroy(bslab->slab);
156 kfree(bslab);
157
158 out:
159 mutex_unlock(&bio_slab_lock);
160 }
161
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 BUG_ON(nr_vecs > BIO_MAX_VECS);
165
166 if (nr_vecs == BIO_MAX_VECS)
167 mempool_free(bv, pool);
168 else if (nr_vecs > BIO_INLINE_VECS)
169 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171
172 /*
173 * Make the first allocation restricted and don't dump info on allocation
174 * failures, since we'll fall back to the mempool in case of failure.
175 */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 gfp_t gfp_mask)
184 {
185 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186
187 if (WARN_ON_ONCE(!bvs))
188 return NULL;
189
190 /*
191 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 * We also rely on this in the bvec_free path.
193 */
194 *nr_vecs = bvs->nr_vecs;
195
196 /*
197 * Try a slab allocation first for all smaller allocations. If that
198 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 */
201 if (*nr_vecs < BIO_MAX_VECS) {
202 struct bio_vec *bvl;
203
204 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 return bvl;
207 *nr_vecs = BIO_MAX_VECS;
208 }
209
210 return mempool_alloc(pool, gfp_mask);
211 }
212
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 if (bio->bi_blkg) {
217 blkg_put(bio->bi_blkg);
218 bio->bi_blkg = NULL;
219 }
220 #endif
221 if (bio_integrity(bio))
222 bio_integrity_free(bio);
223
224 bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 struct bio_set *bs = bio->bi_pool;
231 void *p = bio;
232
233 WARN_ON_ONCE(!bs);
234
235 bio_uninit(bio);
236 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239
240 /*
241 * Users of this function have their own bio allocation. Subsequently,
242 * they must remember to pair any call to bio_init() with bio_uninit()
243 * when IO has completed, or when the bio is released.
244 */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 unsigned short max_vecs, blk_opf_t opf)
247 {
248 bio->bi_next = NULL;
249 bio->bi_bdev = bdev;
250 bio->bi_opf = opf;
251 bio->bi_flags = 0;
252 bio->bi_ioprio = 0;
253 bio->bi_write_hint = 0;
254 bio->bi_write_stream = 0;
255 bio->bi_status = 0;
256 bio->bi_iter.bi_sector = 0;
257 bio->bi_iter.bi_size = 0;
258 bio->bi_iter.bi_idx = 0;
259 bio->bi_iter.bi_bvec_done = 0;
260 bio->bi_end_io = NULL;
261 bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 bio->bi_blkg = NULL;
264 bio->bi_issue.value = 0;
265 if (bdev)
266 bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 bio->bi_crypt_context = NULL;
273 #endif
274 #ifdef CONFIG_BLK_DEV_INTEGRITY
275 bio->bi_integrity = NULL;
276 #endif
277 bio->bi_vcnt = 0;
278
279 atomic_set(&bio->__bi_remaining, 1);
280 atomic_set(&bio->__bi_cnt, 1);
281 bio->bi_cookie = BLK_QC_T_NONE;
282
283 bio->bi_max_vecs = max_vecs;
284 bio->bi_io_vec = table;
285 bio->bi_pool = NULL;
286 }
287 EXPORT_SYMBOL(bio_init);
288
289 /**
290 * bio_reset - reinitialize a bio
291 * @bio: bio to reset
292 * @bdev: block device to use the bio for
293 * @opf: operation and flags for bio
294 *
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
300 */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302 {
303 bio_uninit(bio);
304 memset(bio, 0, BIO_RESET_BYTES);
305 atomic_set(&bio->__bi_remaining, 1);
306 bio->bi_bdev = bdev;
307 if (bio->bi_bdev)
308 bio_associate_blkg(bio);
309 bio->bi_opf = opf;
310 }
311 EXPORT_SYMBOL(bio_reset);
312
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 struct bio *parent = bio->bi_private;
316
317 if (bio->bi_status && !parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
321 }
322
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 bio_endio(__bio_chain_endio(bio));
326 }
327
328 /**
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the parent bio of @bio
332 *
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
336 *
337 * The caller must not set bi_private or bi_end_io in @bio.
338 */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 BUG_ON(bio->bi_private || bio->bi_end_io);
342
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348
349 /**
350 * bio_chain_and_submit - submit a bio after chaining it to another one
351 * @prev: bio to chain and submit
352 * @new: bio to chain to
353 *
354 * If @prev is non-NULL, chain it to @new and submit it.
355 *
356 * Return: @new.
357 */
bio_chain_and_submit(struct bio * prev,struct bio * new)358 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
359 {
360 if (prev) {
361 bio_chain(prev, new);
362 submit_bio(prev);
363 }
364 return new;
365 }
366
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)367 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369 {
370 return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371 }
372 EXPORT_SYMBOL_GPL(blk_next_bio);
373
bio_alloc_rescue(struct work_struct * work)374 static void bio_alloc_rescue(struct work_struct *work)
375 {
376 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377 struct bio *bio;
378
379 while (1) {
380 spin_lock(&bs->rescue_lock);
381 bio = bio_list_pop(&bs->rescue_list);
382 spin_unlock(&bs->rescue_lock);
383
384 if (!bio)
385 break;
386
387 submit_bio_noacct(bio);
388 }
389 }
390
punt_bios_to_rescuer(struct bio_set * bs)391 static void punt_bios_to_rescuer(struct bio_set *bs)
392 {
393 struct bio_list punt, nopunt;
394 struct bio *bio;
395
396 if (WARN_ON_ONCE(!bs->rescue_workqueue))
397 return;
398 /*
399 * In order to guarantee forward progress we must punt only bios that
400 * were allocated from this bio_set; otherwise, if there was a bio on
401 * there for a stacking driver higher up in the stack, processing it
402 * could require allocating bios from this bio_set, and doing that from
403 * our own rescuer would be bad.
404 *
405 * Since bio lists are singly linked, pop them all instead of trying to
406 * remove from the middle of the list:
407 */
408
409 bio_list_init(&punt);
410 bio_list_init(&nopunt);
411
412 while ((bio = bio_list_pop(¤t->bio_list[0])))
413 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 current->bio_list[0] = nopunt;
415
416 bio_list_init(&nopunt);
417 while ((bio = bio_list_pop(¤t->bio_list[1])))
418 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 current->bio_list[1] = nopunt;
420
421 spin_lock(&bs->rescue_lock);
422 bio_list_merge(&bs->rescue_list, &punt);
423 spin_unlock(&bs->rescue_lock);
424
425 queue_work(bs->rescue_workqueue, &bs->rescue_work);
426 }
427
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)428 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429 {
430 unsigned long flags;
431
432 /* cache->free_list must be empty */
433 if (WARN_ON_ONCE(cache->free_list))
434 return;
435
436 local_irq_save(flags);
437 cache->free_list = cache->free_list_irq;
438 cache->free_list_irq = NULL;
439 cache->nr += cache->nr_irq;
440 cache->nr_irq = 0;
441 local_irq_restore(flags);
442 }
443
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)444 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
445 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
446 struct bio_set *bs)
447 {
448 struct bio_alloc_cache *cache;
449 struct bio *bio;
450
451 cache = per_cpu_ptr(bs->cache, get_cpu());
452 if (!cache->free_list) {
453 if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454 bio_alloc_irq_cache_splice(cache);
455 if (!cache->free_list) {
456 put_cpu();
457 return NULL;
458 }
459 }
460 bio = cache->free_list;
461 cache->free_list = bio->bi_next;
462 cache->nr--;
463 put_cpu();
464
465 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
466 bio->bi_pool = bs;
467 return bio;
468 }
469
470 /**
471 * bio_alloc_bioset - allocate a bio for I/O
472 * @bdev: block device to allocate the bio for (can be %NULL)
473 * @nr_vecs: number of bvecs to pre-allocate
474 * @opf: operation and flags for bio
475 * @gfp_mask: the GFP_* mask given to the slab allocator
476 * @bs: the bio_set to allocate from.
477 *
478 * Allocate a bio from the mempools in @bs.
479 *
480 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
481 * allocate a bio. This is due to the mempool guarantees. To make this work,
482 * callers must never allocate more than 1 bio at a time from the general pool.
483 * Callers that need to allocate more than 1 bio must always submit the
484 * previously allocated bio for IO before attempting to allocate a new one.
485 * Failure to do so can cause deadlocks under memory pressure.
486 *
487 * Note that when running under submit_bio_noacct() (i.e. any block driver),
488 * bios are not submitted until after you return - see the code in
489 * submit_bio_noacct() that converts recursion into iteration, to prevent
490 * stack overflows.
491 *
492 * This would normally mean allocating multiple bios under submit_bio_noacct()
493 * would be susceptible to deadlocks, but we have
494 * deadlock avoidance code that resubmits any blocked bios from a rescuer
495 * thread.
496 *
497 * However, we do not guarantee forward progress for allocations from other
498 * mempools. Doing multiple allocations from the same mempool under
499 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
500 * for per bio allocations.
501 *
502 * Returns: Pointer to new bio on success, NULL on failure.
503 */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)504 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
505 blk_opf_t opf, gfp_t gfp_mask,
506 struct bio_set *bs)
507 {
508 gfp_t saved_gfp = gfp_mask;
509 struct bio *bio;
510 void *p;
511
512 /* should not use nobvec bioset for nr_vecs > 0 */
513 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
514 return NULL;
515
516 if (opf & REQ_ALLOC_CACHE) {
517 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
518 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
519 gfp_mask, bs);
520 if (bio)
521 return bio;
522 /*
523 * No cached bio available, bio returned below marked with
524 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
525 */
526 } else {
527 opf &= ~REQ_ALLOC_CACHE;
528 }
529 }
530
531 /*
532 * submit_bio_noacct() converts recursion to iteration; this means if
533 * we're running beneath it, any bios we allocate and submit will not be
534 * submitted (and thus freed) until after we return.
535 *
536 * This exposes us to a potential deadlock if we allocate multiple bios
537 * from the same bio_set() while running underneath submit_bio_noacct().
538 * If we were to allocate multiple bios (say a stacking block driver
539 * that was splitting bios), we would deadlock if we exhausted the
540 * mempool's reserve.
541 *
542 * We solve this, and guarantee forward progress, with a rescuer
543 * workqueue per bio_set. If we go to allocate and there are bios on
544 * current->bio_list, we first try the allocation without
545 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
546 * blocking to the rescuer workqueue before we retry with the original
547 * gfp_flags.
548 */
549 if (current->bio_list &&
550 (!bio_list_empty(¤t->bio_list[0]) ||
551 !bio_list_empty(¤t->bio_list[1])) &&
552 bs->rescue_workqueue)
553 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
554
555 p = mempool_alloc(&bs->bio_pool, gfp_mask);
556 if (!p && gfp_mask != saved_gfp) {
557 punt_bios_to_rescuer(bs);
558 gfp_mask = saved_gfp;
559 p = mempool_alloc(&bs->bio_pool, gfp_mask);
560 }
561 if (unlikely(!p))
562 return NULL;
563 if (!mempool_is_saturated(&bs->bio_pool))
564 opf &= ~REQ_ALLOC_CACHE;
565
566 bio = p + bs->front_pad;
567 if (nr_vecs > BIO_INLINE_VECS) {
568 struct bio_vec *bvl = NULL;
569
570 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
571 if (!bvl && gfp_mask != saved_gfp) {
572 punt_bios_to_rescuer(bs);
573 gfp_mask = saved_gfp;
574 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
575 }
576 if (unlikely(!bvl))
577 goto err_free;
578
579 bio_init(bio, bdev, bvl, nr_vecs, opf);
580 } else if (nr_vecs) {
581 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
582 } else {
583 bio_init(bio, bdev, NULL, 0, opf);
584 }
585
586 bio->bi_pool = bs;
587 return bio;
588
589 err_free:
590 mempool_free(p, &bs->bio_pool);
591 return NULL;
592 }
593 EXPORT_SYMBOL(bio_alloc_bioset);
594
595 /**
596 * bio_kmalloc - kmalloc a bio
597 * @nr_vecs: number of bio_vecs to allocate
598 * @gfp_mask: the GFP_* mask given to the slab allocator
599 *
600 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
601 * using bio_init() before use. To free a bio returned from this function use
602 * kfree() after calling bio_uninit(). A bio returned from this function can
603 * be reused by calling bio_uninit() before calling bio_init() again.
604 *
605 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
606 * function are not backed by a mempool can fail. Do not use this function
607 * for allocations in the file system I/O path.
608 *
609 * Returns: Pointer to new bio on success, NULL on failure.
610 */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)611 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
612 {
613 struct bio *bio;
614
615 if (nr_vecs > BIO_MAX_INLINE_VECS)
616 return NULL;
617 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
618 }
619 EXPORT_SYMBOL(bio_kmalloc);
620
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)621 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
622 {
623 struct bio_vec bv;
624 struct bvec_iter iter;
625
626 __bio_for_each_segment(bv, bio, iter, start)
627 memzero_bvec(&bv);
628 }
629 EXPORT_SYMBOL(zero_fill_bio_iter);
630
631 /**
632 * bio_truncate - truncate the bio to small size of @new_size
633 * @bio: the bio to be truncated
634 * @new_size: new size for truncating the bio
635 *
636 * Description:
637 * Truncate the bio to new size of @new_size. If bio_op(bio) is
638 * REQ_OP_READ, zero the truncated part. This function should only
639 * be used for handling corner cases, such as bio eod.
640 */
bio_truncate(struct bio * bio,unsigned new_size)641 static void bio_truncate(struct bio *bio, unsigned new_size)
642 {
643 struct bio_vec bv;
644 struct bvec_iter iter;
645 unsigned int done = 0;
646 bool truncated = false;
647
648 if (new_size >= bio->bi_iter.bi_size)
649 return;
650
651 if (bio_op(bio) != REQ_OP_READ)
652 goto exit;
653
654 bio_for_each_segment(bv, bio, iter) {
655 if (done + bv.bv_len > new_size) {
656 size_t offset;
657
658 if (!truncated)
659 offset = new_size - done;
660 else
661 offset = 0;
662 memzero_page(bv.bv_page, bv.bv_offset + offset,
663 bv.bv_len - offset);
664 truncated = true;
665 }
666 done += bv.bv_len;
667 }
668
669 exit:
670 /*
671 * Don't touch bvec table here and make it really immutable, since
672 * fs bio user has to retrieve all pages via bio_for_each_segment_all
673 * in its .end_bio() callback.
674 *
675 * It is enough to truncate bio by updating .bi_size since we can make
676 * correct bvec with the updated .bi_size for drivers.
677 */
678 bio->bi_iter.bi_size = new_size;
679 }
680
681 /**
682 * guard_bio_eod - truncate a BIO to fit the block device
683 * @bio: bio to truncate
684 *
685 * This allows us to do IO even on the odd last sectors of a device, even if the
686 * block size is some multiple of the physical sector size.
687 *
688 * We'll just truncate the bio to the size of the device, and clear the end of
689 * the buffer head manually. Truly out-of-range accesses will turn into actual
690 * I/O errors, this only handles the "we need to be able to do I/O at the final
691 * sector" case.
692 */
guard_bio_eod(struct bio * bio)693 void guard_bio_eod(struct bio *bio)
694 {
695 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
696
697 if (!maxsector)
698 return;
699
700 /*
701 * If the *whole* IO is past the end of the device,
702 * let it through, and the IO layer will turn it into
703 * an EIO.
704 */
705 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
706 return;
707
708 maxsector -= bio->bi_iter.bi_sector;
709 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
710 return;
711
712 bio_truncate(bio, maxsector << 9);
713 }
714
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)715 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
716 unsigned int nr)
717 {
718 unsigned int i = 0;
719 struct bio *bio;
720
721 while ((bio = cache->free_list) != NULL) {
722 cache->free_list = bio->bi_next;
723 cache->nr--;
724 bio_free(bio);
725 if (++i == nr)
726 break;
727 }
728 return i;
729 }
730
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)731 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
732 unsigned int nr)
733 {
734 nr -= __bio_alloc_cache_prune(cache, nr);
735 if (!READ_ONCE(cache->free_list)) {
736 bio_alloc_irq_cache_splice(cache);
737 __bio_alloc_cache_prune(cache, nr);
738 }
739 }
740
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)741 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
742 {
743 struct bio_set *bs;
744
745 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
746 if (bs->cache) {
747 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
748
749 bio_alloc_cache_prune(cache, -1U);
750 }
751 return 0;
752 }
753
bio_alloc_cache_destroy(struct bio_set * bs)754 static void bio_alloc_cache_destroy(struct bio_set *bs)
755 {
756 int cpu;
757
758 if (!bs->cache)
759 return;
760
761 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
762 for_each_possible_cpu(cpu) {
763 struct bio_alloc_cache *cache;
764
765 cache = per_cpu_ptr(bs->cache, cpu);
766 bio_alloc_cache_prune(cache, -1U);
767 }
768 free_percpu(bs->cache);
769 bs->cache = NULL;
770 }
771
bio_put_percpu_cache(struct bio * bio)772 static inline void bio_put_percpu_cache(struct bio *bio)
773 {
774 struct bio_alloc_cache *cache;
775
776 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
777 if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
778 goto out_free;
779
780 if (in_task()) {
781 bio_uninit(bio);
782 bio->bi_next = cache->free_list;
783 /* Not necessary but helps not to iopoll already freed bios */
784 bio->bi_bdev = NULL;
785 cache->free_list = bio;
786 cache->nr++;
787 } else if (in_hardirq()) {
788 lockdep_assert_irqs_disabled();
789
790 bio_uninit(bio);
791 bio->bi_next = cache->free_list_irq;
792 cache->free_list_irq = bio;
793 cache->nr_irq++;
794 } else {
795 goto out_free;
796 }
797 put_cpu();
798 return;
799 out_free:
800 put_cpu();
801 bio_free(bio);
802 }
803
804 /**
805 * bio_put - release a reference to a bio
806 * @bio: bio to release reference to
807 *
808 * Description:
809 * Put a reference to a &struct bio, either one you have gotten with
810 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
811 **/
bio_put(struct bio * bio)812 void bio_put(struct bio *bio)
813 {
814 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
815 BUG_ON(!atomic_read(&bio->__bi_cnt));
816 if (!atomic_dec_and_test(&bio->__bi_cnt))
817 return;
818 }
819 if (bio->bi_opf & REQ_ALLOC_CACHE)
820 bio_put_percpu_cache(bio);
821 else
822 bio_free(bio);
823 }
824 EXPORT_SYMBOL(bio_put);
825
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)826 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
827 {
828 bio_set_flag(bio, BIO_CLONED);
829 bio->bi_ioprio = bio_src->bi_ioprio;
830 bio->bi_write_hint = bio_src->bi_write_hint;
831 bio->bi_write_stream = bio_src->bi_write_stream;
832 bio->bi_iter = bio_src->bi_iter;
833
834 if (bio->bi_bdev) {
835 if (bio->bi_bdev == bio_src->bi_bdev &&
836 bio_flagged(bio_src, BIO_REMAPPED))
837 bio_set_flag(bio, BIO_REMAPPED);
838 bio_clone_blkg_association(bio, bio_src);
839 }
840
841 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
842 return -ENOMEM;
843 if (bio_integrity(bio_src) &&
844 bio_integrity_clone(bio, bio_src, gfp) < 0)
845 return -ENOMEM;
846 return 0;
847 }
848
849 /**
850 * bio_alloc_clone - clone a bio that shares the original bio's biovec
851 * @bdev: block_device to clone onto
852 * @bio_src: bio to clone from
853 * @gfp: allocation priority
854 * @bs: bio_set to allocate from
855 *
856 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
857 * bio, but not the actual data it points to.
858 *
859 * The caller must ensure that the return bio is not freed before @bio_src.
860 */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)861 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
862 gfp_t gfp, struct bio_set *bs)
863 {
864 struct bio *bio;
865
866 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
867 if (!bio)
868 return NULL;
869
870 if (__bio_clone(bio, bio_src, gfp) < 0) {
871 bio_put(bio);
872 return NULL;
873 }
874 bio->bi_io_vec = bio_src->bi_io_vec;
875
876 return bio;
877 }
878 EXPORT_SYMBOL(bio_alloc_clone);
879
880 /**
881 * bio_init_clone - clone a bio that shares the original bio's biovec
882 * @bdev: block_device to clone onto
883 * @bio: bio to clone into
884 * @bio_src: bio to clone from
885 * @gfp: allocation priority
886 *
887 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
888 * The caller owns the returned bio, but not the actual data it points to.
889 *
890 * The caller must ensure that @bio_src is not freed before @bio.
891 */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)892 int bio_init_clone(struct block_device *bdev, struct bio *bio,
893 struct bio *bio_src, gfp_t gfp)
894 {
895 int ret;
896
897 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
898 ret = __bio_clone(bio, bio_src, gfp);
899 if (ret)
900 bio_uninit(bio);
901 return ret;
902 }
903 EXPORT_SYMBOL(bio_init_clone);
904
905 /**
906 * bio_full - check if the bio is full
907 * @bio: bio to check
908 * @len: length of one segment to be added
909 *
910 * Return true if @bio is full and one segment with @len bytes can't be
911 * added to the bio, otherwise return false
912 */
bio_full(struct bio * bio,unsigned len)913 static inline bool bio_full(struct bio *bio, unsigned len)
914 {
915 if (bio->bi_vcnt >= bio->bi_max_vecs)
916 return true;
917 if (bio->bi_iter.bi_size > UINT_MAX - len)
918 return true;
919 return false;
920 }
921
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)922 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
923 unsigned int len, unsigned int off)
924 {
925 size_t bv_end = bv->bv_offset + bv->bv_len;
926 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
927 phys_addr_t page_addr = page_to_phys(page);
928
929 if (vec_end_addr + 1 != page_addr + off)
930 return false;
931 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
932 return false;
933
934 if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
935 if (IS_ENABLED(CONFIG_KMSAN))
936 return false;
937 if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
938 return false;
939 }
940
941 bv->bv_len += len;
942 return true;
943 }
944
945 /*
946 * Try to merge a page into a segment, while obeying the hardware segment
947 * size limit.
948 *
949 * This is kept around for the integrity metadata, which is still tries
950 * to build the initial bio to the hardware limit and doesn't have proper
951 * helpers to split. Hopefully this will go away soon.
952 */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)953 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
954 struct page *page, unsigned len, unsigned offset)
955 {
956 unsigned long mask = queue_segment_boundary(q);
957 phys_addr_t addr1 = bvec_phys(bv);
958 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
959
960 if ((addr1 | mask) != (addr2 | mask))
961 return false;
962 if (len > queue_max_segment_size(q) - bv->bv_len)
963 return false;
964 return bvec_try_merge_page(bv, page, len, offset);
965 }
966
967 /**
968 * __bio_add_page - add page(s) to a bio in a new segment
969 * @bio: destination bio
970 * @page: start page to add
971 * @len: length of the data to add, may cross pages
972 * @off: offset of the data relative to @page, may cross pages
973 *
974 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
975 * that @bio has space for another bvec.
976 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)977 void __bio_add_page(struct bio *bio, struct page *page,
978 unsigned int len, unsigned int off)
979 {
980 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
981 WARN_ON_ONCE(bio_full(bio, len));
982
983 if (is_pci_p2pdma_page(page))
984 bio->bi_opf |= REQ_P2PDMA | REQ_NOMERGE;
985
986 bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
987 bio->bi_iter.bi_size += len;
988 bio->bi_vcnt++;
989 }
990 EXPORT_SYMBOL_GPL(__bio_add_page);
991
992 /**
993 * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
994 * @bio: destination bio
995 * @vaddr: data to add
996 * @len: length of the data to add, may cross pages
997 *
998 * Add the data at @vaddr to @bio. The caller must have ensure a segment
999 * is available for the added data. No merging into an existing segment
1000 * will be performed.
1001 */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1002 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1003 {
1004 __bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1005 }
1006 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1007
1008 /**
1009 * bio_add_page - attempt to add page(s) to bio
1010 * @bio: destination bio
1011 * @page: start page to add
1012 * @len: vec entry length, may cross pages
1013 * @offset: vec entry offset relative to @page, may cross pages
1014 *
1015 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1016 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1017 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1018 int bio_add_page(struct bio *bio, struct page *page,
1019 unsigned int len, unsigned int offset)
1020 {
1021 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1022 return 0;
1023 if (bio->bi_iter.bi_size > UINT_MAX - len)
1024 return 0;
1025
1026 if (bio->bi_vcnt > 0) {
1027 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1028
1029 if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1030 return 0;
1031
1032 if (bvec_try_merge_page(bv, page, len, offset)) {
1033 bio->bi_iter.bi_size += len;
1034 return len;
1035 }
1036 }
1037
1038 if (bio->bi_vcnt >= bio->bi_max_vecs)
1039 return 0;
1040 __bio_add_page(bio, page, len, offset);
1041 return len;
1042 }
1043 EXPORT_SYMBOL(bio_add_page);
1044
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1045 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1046 size_t off)
1047 {
1048 unsigned long nr = off / PAGE_SIZE;
1049
1050 WARN_ON_ONCE(len > UINT_MAX);
1051 __bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1052 }
1053 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1054
1055 /**
1056 * bio_add_folio - Attempt to add part of a folio to a bio.
1057 * @bio: BIO to add to.
1058 * @folio: Folio to add.
1059 * @len: How many bytes from the folio to add.
1060 * @off: First byte in this folio to add.
1061 *
1062 * Filesystems that use folios can call this function instead of calling
1063 * bio_add_page() for each page in the folio. If @off is bigger than
1064 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1065 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1066 *
1067 * Return: Whether the addition was successful.
1068 */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1069 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1070 size_t off)
1071 {
1072 unsigned long nr = off / PAGE_SIZE;
1073
1074 if (len > UINT_MAX)
1075 return false;
1076 return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1077 }
1078 EXPORT_SYMBOL(bio_add_folio);
1079
1080 /**
1081 * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1082 * @bio: destination bio
1083 * @vaddr: vmalloc address to add
1084 * @len: total length in bytes of the data to add
1085 *
1086 * Add data starting at @vaddr to @bio and return how many bytes were added.
1087 * This may be less than the amount originally asked. Returns 0 if no data
1088 * could be added to @bio.
1089 *
1090 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1091 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1092 * the completion handler.
1093 */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1094 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1095 {
1096 unsigned int offset = offset_in_page(vaddr);
1097
1098 len = min(len, PAGE_SIZE - offset);
1099 if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1100 return 0;
1101 if (op_is_write(bio_op(bio)))
1102 flush_kernel_vmap_range(vaddr, len);
1103 return len;
1104 }
1105 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1106
1107 /**
1108 * bio_add_vmalloc - add a vmalloc region to a bio
1109 * @bio: destination bio
1110 * @vaddr: vmalloc address to add
1111 * @len: total length in bytes of the data to add
1112 *
1113 * Add data starting at @vaddr to @bio. Return %true on success or %false if
1114 * @bio does not have enough space for the payload.
1115 *
1116 * This helper calls flush_kernel_vmap_range() for the range added. For reads
1117 * the caller still needs to manually call invalidate_kernel_vmap_range() in
1118 * the completion handler.
1119 */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1120 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1121 {
1122 do {
1123 unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1124
1125 if (!added)
1126 return false;
1127 vaddr += added;
1128 len -= added;
1129 } while (len);
1130
1131 return true;
1132 }
1133 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1134
__bio_release_pages(struct bio * bio,bool mark_dirty)1135 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1136 {
1137 struct folio_iter fi;
1138
1139 bio_for_each_folio_all(fi, bio) {
1140 size_t nr_pages;
1141
1142 if (mark_dirty) {
1143 folio_lock(fi.folio);
1144 folio_mark_dirty(fi.folio);
1145 folio_unlock(fi.folio);
1146 }
1147 nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1148 fi.offset / PAGE_SIZE + 1;
1149 unpin_user_folio(fi.folio, nr_pages);
1150 }
1151 }
1152 EXPORT_SYMBOL_GPL(__bio_release_pages);
1153
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1154 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1155 {
1156 WARN_ON_ONCE(bio->bi_max_vecs);
1157
1158 bio->bi_vcnt = iter->nr_segs;
1159 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1160 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1161 bio->bi_iter.bi_size = iov_iter_count(iter);
1162 bio_set_flag(bio, BIO_CLONED);
1163 }
1164
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1165 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1166 struct page **pages, unsigned int i,
1167 struct folio *folio, size_t left,
1168 size_t offset)
1169 {
1170 size_t bytes = left;
1171 size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1172 unsigned int j;
1173
1174 /*
1175 * We might COW a single page in the middle of
1176 * a large folio, so we have to check that all
1177 * pages belong to the same folio.
1178 */
1179 bytes -= contig_sz;
1180 for (j = i + 1; j < i + *num_pages; j++) {
1181 size_t next = min_t(size_t, PAGE_SIZE, bytes);
1182
1183 if (page_folio(pages[j]) != folio ||
1184 pages[j] != pages[j - 1] + 1) {
1185 break;
1186 }
1187 contig_sz += next;
1188 bytes -= next;
1189 }
1190 *num_pages = j - i;
1191
1192 return contig_sz;
1193 }
1194
1195 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1196
1197 /**
1198 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1199 * @bio: bio to add pages to
1200 * @iter: iov iterator describing the region to be mapped
1201 *
1202 * Extracts pages from *iter and appends them to @bio's bvec array. The pages
1203 * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1204 * For a multi-segment *iter, this function only adds pages from the next
1205 * non-empty segment of the iov iterator.
1206 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1207 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1208 {
1209 iov_iter_extraction_t extraction_flags = 0;
1210 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1211 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1212 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1213 struct page **pages = (struct page **)bv;
1214 ssize_t size;
1215 unsigned int num_pages, i = 0;
1216 size_t offset, folio_offset, left, len;
1217 int ret = 0;
1218
1219 /*
1220 * Move page array up in the allocated memory for the bio vecs as far as
1221 * possible so that we can start filling biovecs from the beginning
1222 * without overwriting the temporary page array.
1223 */
1224 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1225 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1226
1227 if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1228 extraction_flags |= ITER_ALLOW_P2PDMA;
1229
1230 /*
1231 * Each segment in the iov is required to be a block size multiple.
1232 * However, we may not be able to get the entire segment if it spans
1233 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1234 * result to ensure the bio's total size is correct. The remainder of
1235 * the iov data will be picked up in the next bio iteration.
1236 */
1237 size = iov_iter_extract_pages(iter, &pages,
1238 UINT_MAX - bio->bi_iter.bi_size,
1239 nr_pages, extraction_flags, &offset);
1240 if (unlikely(size <= 0))
1241 return size ? size : -EFAULT;
1242
1243 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1244
1245 if (bio->bi_bdev) {
1246 size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1247 iov_iter_revert(iter, trim);
1248 size -= trim;
1249 }
1250
1251 if (unlikely(!size)) {
1252 ret = -EFAULT;
1253 goto out;
1254 }
1255
1256 for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1257 struct page *page = pages[i];
1258 struct folio *folio = page_folio(page);
1259 unsigned int old_vcnt = bio->bi_vcnt;
1260
1261 folio_offset = ((size_t)folio_page_idx(folio, page) <<
1262 PAGE_SHIFT) + offset;
1263
1264 len = min(folio_size(folio) - folio_offset, left);
1265
1266 num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1267
1268 if (num_pages > 1)
1269 len = get_contig_folio_len(&num_pages, pages, i,
1270 folio, left, offset);
1271
1272 if (!bio_add_folio(bio, folio, len, folio_offset)) {
1273 WARN_ON_ONCE(1);
1274 ret = -EINVAL;
1275 goto out;
1276 }
1277
1278 if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1279 /*
1280 * We're adding another fragment of a page that already
1281 * was part of the last segment. Undo our pin as the
1282 * page was pinned when an earlier fragment of it was
1283 * added to the bio and __bio_release_pages expects a
1284 * single pin per page.
1285 */
1286 if (offset && bio->bi_vcnt == old_vcnt)
1287 unpin_user_folio(folio, 1);
1288 }
1289 offset = 0;
1290 }
1291
1292 iov_iter_revert(iter, left);
1293 out:
1294 while (i < nr_pages)
1295 bio_release_page(bio, pages[i++]);
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1302 * @bio: bio to add pages to
1303 * @iter: iov iterator describing the region to be added
1304 *
1305 * This takes either an iterator pointing to user memory, or one pointing to
1306 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1307 * map them into the kernel. On IO completion, the caller should put those
1308 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1309 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1310 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1311 * completed by a call to ->ki_complete() or returns with an error other than
1312 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1313 * on IO completion. If it isn't, then pages should be released.
1314 *
1315 * The function tries, but does not guarantee, to pin as many pages as
1316 * fit into the bio, or are requested in @iter, whatever is smaller. If
1317 * MM encounters an error pinning the requested pages, it stops. Error
1318 * is returned only if 0 pages could be pinned.
1319 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1320 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1321 {
1322 int ret = 0;
1323
1324 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1325 return -EIO;
1326
1327 if (iov_iter_is_bvec(iter)) {
1328 bio_iov_bvec_set(bio, iter);
1329 iov_iter_advance(iter, bio->bi_iter.bi_size);
1330 return 0;
1331 }
1332
1333 if (iov_iter_extract_will_pin(iter))
1334 bio_set_flag(bio, BIO_PAGE_PINNED);
1335 do {
1336 ret = __bio_iov_iter_get_pages(bio, iter);
1337 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1338
1339 return bio->bi_vcnt ? 0 : ret;
1340 }
1341 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1342
submit_bio_wait_endio(struct bio * bio)1343 static void submit_bio_wait_endio(struct bio *bio)
1344 {
1345 complete(bio->bi_private);
1346 }
1347
1348 /**
1349 * submit_bio_wait - submit a bio, and wait until it completes
1350 * @bio: The &struct bio which describes the I/O
1351 *
1352 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1353 * bio_endio() on failure.
1354 *
1355 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1356 * result in bio reference to be consumed. The caller must drop the reference
1357 * on his own.
1358 */
submit_bio_wait(struct bio * bio)1359 int submit_bio_wait(struct bio *bio)
1360 {
1361 DECLARE_COMPLETION_ONSTACK_MAP(done,
1362 bio->bi_bdev->bd_disk->lockdep_map);
1363
1364 bio->bi_private = &done;
1365 bio->bi_end_io = submit_bio_wait_endio;
1366 bio->bi_opf |= REQ_SYNC;
1367 submit_bio(bio);
1368 blk_wait_io(&done);
1369
1370 return blk_status_to_errno(bio->bi_status);
1371 }
1372 EXPORT_SYMBOL(submit_bio_wait);
1373
1374 /**
1375 * bdev_rw_virt - synchronously read into / write from kernel mapping
1376 * @bdev: block device to access
1377 * @sector: sector to access
1378 * @data: data to read/write
1379 * @len: length in byte to read/write
1380 * @op: operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1381 *
1382 * Performs synchronous I/O to @bdev for @data/@len. @data must be in
1383 * the kernel direct mapping and not a vmalloc address.
1384 */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1385 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1386 size_t len, enum req_op op)
1387 {
1388 struct bio_vec bv;
1389 struct bio bio;
1390 int error;
1391
1392 if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1393 return -EIO;
1394
1395 bio_init(&bio, bdev, &bv, 1, op);
1396 bio.bi_iter.bi_sector = sector;
1397 bio_add_virt_nofail(&bio, data, len);
1398 error = submit_bio_wait(&bio);
1399 bio_uninit(&bio);
1400 return error;
1401 }
1402 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1403
bio_wait_end_io(struct bio * bio)1404 static void bio_wait_end_io(struct bio *bio)
1405 {
1406 complete(bio->bi_private);
1407 bio_put(bio);
1408 }
1409
1410 /*
1411 * bio_await_chain - ends @bio and waits for every chained bio to complete
1412 */
bio_await_chain(struct bio * bio)1413 void bio_await_chain(struct bio *bio)
1414 {
1415 DECLARE_COMPLETION_ONSTACK_MAP(done,
1416 bio->bi_bdev->bd_disk->lockdep_map);
1417
1418 bio->bi_private = &done;
1419 bio->bi_end_io = bio_wait_end_io;
1420 bio_endio(bio);
1421 blk_wait_io(&done);
1422 }
1423
__bio_advance(struct bio * bio,unsigned bytes)1424 void __bio_advance(struct bio *bio, unsigned bytes)
1425 {
1426 if (bio_integrity(bio))
1427 bio_integrity_advance(bio, bytes);
1428
1429 bio_crypt_advance(bio, bytes);
1430 bio_advance_iter(bio, &bio->bi_iter, bytes);
1431 }
1432 EXPORT_SYMBOL(__bio_advance);
1433
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1434 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1435 struct bio *src, struct bvec_iter *src_iter)
1436 {
1437 while (src_iter->bi_size && dst_iter->bi_size) {
1438 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1439 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1440 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1441 void *src_buf = bvec_kmap_local(&src_bv);
1442 void *dst_buf = bvec_kmap_local(&dst_bv);
1443
1444 memcpy(dst_buf, src_buf, bytes);
1445
1446 kunmap_local(dst_buf);
1447 kunmap_local(src_buf);
1448
1449 bio_advance_iter_single(src, src_iter, bytes);
1450 bio_advance_iter_single(dst, dst_iter, bytes);
1451 }
1452 }
1453 EXPORT_SYMBOL(bio_copy_data_iter);
1454
1455 /**
1456 * bio_copy_data - copy contents of data buffers from one bio to another
1457 * @src: source bio
1458 * @dst: destination bio
1459 *
1460 * Stops when it reaches the end of either @src or @dst - that is, copies
1461 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1462 */
bio_copy_data(struct bio * dst,struct bio * src)1463 void bio_copy_data(struct bio *dst, struct bio *src)
1464 {
1465 struct bvec_iter src_iter = src->bi_iter;
1466 struct bvec_iter dst_iter = dst->bi_iter;
1467
1468 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1469 }
1470 EXPORT_SYMBOL(bio_copy_data);
1471
bio_free_pages(struct bio * bio)1472 void bio_free_pages(struct bio *bio)
1473 {
1474 struct bio_vec *bvec;
1475 struct bvec_iter_all iter_all;
1476
1477 bio_for_each_segment_all(bvec, bio, iter_all)
1478 __free_page(bvec->bv_page);
1479 }
1480 EXPORT_SYMBOL(bio_free_pages);
1481
1482 /*
1483 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1484 * for performing direct-IO in BIOs.
1485 *
1486 * The problem is that we cannot run folio_mark_dirty() from interrupt context
1487 * because the required locks are not interrupt-safe. So what we can do is to
1488 * mark the pages dirty _before_ performing IO. And in interrupt context,
1489 * check that the pages are still dirty. If so, fine. If not, redirty them
1490 * in process context.
1491 *
1492 * Note that this code is very hard to test under normal circumstances because
1493 * direct-io pins the pages with get_user_pages(). This makes
1494 * is_page_cache_freeable return false, and the VM will not clean the pages.
1495 * But other code (eg, flusher threads) could clean the pages if they are mapped
1496 * pagecache.
1497 *
1498 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1499 * deferred bio dirtying paths.
1500 */
1501
1502 /*
1503 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1504 */
bio_set_pages_dirty(struct bio * bio)1505 void bio_set_pages_dirty(struct bio *bio)
1506 {
1507 struct folio_iter fi;
1508
1509 bio_for_each_folio_all(fi, bio) {
1510 folio_lock(fi.folio);
1511 folio_mark_dirty(fi.folio);
1512 folio_unlock(fi.folio);
1513 }
1514 }
1515 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1516
1517 /*
1518 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1519 * If they are, then fine. If, however, some pages are clean then they must
1520 * have been written out during the direct-IO read. So we take another ref on
1521 * the BIO and re-dirty the pages in process context.
1522 *
1523 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1524 * here on. It will unpin each page and will run one bio_put() against the
1525 * BIO.
1526 */
1527
1528 static void bio_dirty_fn(struct work_struct *work);
1529
1530 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1531 static DEFINE_SPINLOCK(bio_dirty_lock);
1532 static struct bio *bio_dirty_list;
1533
1534 /*
1535 * This runs in process context
1536 */
bio_dirty_fn(struct work_struct * work)1537 static void bio_dirty_fn(struct work_struct *work)
1538 {
1539 struct bio *bio, *next;
1540
1541 spin_lock_irq(&bio_dirty_lock);
1542 next = bio_dirty_list;
1543 bio_dirty_list = NULL;
1544 spin_unlock_irq(&bio_dirty_lock);
1545
1546 while ((bio = next) != NULL) {
1547 next = bio->bi_private;
1548
1549 bio_release_pages(bio, true);
1550 bio_put(bio);
1551 }
1552 }
1553
bio_check_pages_dirty(struct bio * bio)1554 void bio_check_pages_dirty(struct bio *bio)
1555 {
1556 struct folio_iter fi;
1557 unsigned long flags;
1558
1559 bio_for_each_folio_all(fi, bio) {
1560 if (!folio_test_dirty(fi.folio))
1561 goto defer;
1562 }
1563
1564 bio_release_pages(bio, false);
1565 bio_put(bio);
1566 return;
1567 defer:
1568 spin_lock_irqsave(&bio_dirty_lock, flags);
1569 bio->bi_private = bio_dirty_list;
1570 bio_dirty_list = bio;
1571 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1572 schedule_work(&bio_dirty_work);
1573 }
1574 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1575
bio_remaining_done(struct bio * bio)1576 static inline bool bio_remaining_done(struct bio *bio)
1577 {
1578 /*
1579 * If we're not chaining, then ->__bi_remaining is always 1 and
1580 * we always end io on the first invocation.
1581 */
1582 if (!bio_flagged(bio, BIO_CHAIN))
1583 return true;
1584
1585 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1586
1587 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1588 bio_clear_flag(bio, BIO_CHAIN);
1589 return true;
1590 }
1591
1592 return false;
1593 }
1594
1595 /**
1596 * bio_endio - end I/O on a bio
1597 * @bio: bio
1598 *
1599 * Description:
1600 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1601 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1602 * bio unless they own it and thus know that it has an end_io function.
1603 *
1604 * bio_endio() can be called several times on a bio that has been chained
1605 * using bio_chain(). The ->bi_end_io() function will only be called the
1606 * last time.
1607 **/
bio_endio(struct bio * bio)1608 void bio_endio(struct bio *bio)
1609 {
1610 again:
1611 if (!bio_remaining_done(bio))
1612 return;
1613 if (!bio_integrity_endio(bio))
1614 return;
1615
1616 blk_zone_bio_endio(bio);
1617
1618 rq_qos_done_bio(bio);
1619
1620 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1621 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1622 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1623 }
1624
1625 /*
1626 * Need to have a real endio function for chained bios, otherwise
1627 * various corner cases will break (like stacking block devices that
1628 * save/restore bi_end_io) - however, we want to avoid unbounded
1629 * recursion and blowing the stack. Tail call optimization would
1630 * handle this, but compiling with frame pointers also disables
1631 * gcc's sibling call optimization.
1632 */
1633 if (bio->bi_end_io == bio_chain_endio) {
1634 bio = __bio_chain_endio(bio);
1635 goto again;
1636 }
1637
1638 #ifdef CONFIG_BLK_CGROUP
1639 /*
1640 * Release cgroup info. We shouldn't have to do this here, but quite
1641 * a few callers of bio_init fail to call bio_uninit, so we cover up
1642 * for that here at least for now.
1643 */
1644 if (bio->bi_blkg) {
1645 blkg_put(bio->bi_blkg);
1646 bio->bi_blkg = NULL;
1647 }
1648 #endif
1649
1650 if (bio->bi_end_io)
1651 bio->bi_end_io(bio);
1652 }
1653 EXPORT_SYMBOL(bio_endio);
1654
1655 /**
1656 * bio_split - split a bio
1657 * @bio: bio to split
1658 * @sectors: number of sectors to split from the front of @bio
1659 * @gfp: gfp mask
1660 * @bs: bio set to allocate from
1661 *
1662 * Allocates and returns a new bio which represents @sectors from the start of
1663 * @bio, and updates @bio to represent the remaining sectors.
1664 *
1665 * Unless this is a discard request the newly allocated bio will point
1666 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1667 * neither @bio nor @bs are freed before the split bio.
1668 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1669 struct bio *bio_split(struct bio *bio, int sectors,
1670 gfp_t gfp, struct bio_set *bs)
1671 {
1672 struct bio *split;
1673
1674 if (WARN_ON_ONCE(sectors <= 0))
1675 return ERR_PTR(-EINVAL);
1676 if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1677 return ERR_PTR(-EINVAL);
1678
1679 /* Zone append commands cannot be split */
1680 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1681 return ERR_PTR(-EINVAL);
1682
1683 /* atomic writes cannot be split */
1684 if (bio->bi_opf & REQ_ATOMIC)
1685 return ERR_PTR(-EINVAL);
1686
1687 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1688 if (!split)
1689 return ERR_PTR(-ENOMEM);
1690
1691 split->bi_iter.bi_size = sectors << 9;
1692
1693 if (bio_integrity(split))
1694 bio_integrity_trim(split);
1695
1696 bio_advance(bio, split->bi_iter.bi_size);
1697
1698 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1699 bio_set_flag(split, BIO_TRACE_COMPLETION);
1700
1701 return split;
1702 }
1703 EXPORT_SYMBOL(bio_split);
1704
1705 /**
1706 * bio_trim - trim a bio
1707 * @bio: bio to trim
1708 * @offset: number of sectors to trim from the front of @bio
1709 * @size: size we want to trim @bio to, in sectors
1710 *
1711 * This function is typically used for bios that are cloned and submitted
1712 * to the underlying device in parts.
1713 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1714 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1715 {
1716 /* We should never trim an atomic write */
1717 if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1718 return;
1719
1720 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1721 offset + size > bio_sectors(bio)))
1722 return;
1723
1724 size <<= 9;
1725 if (offset == 0 && size == bio->bi_iter.bi_size)
1726 return;
1727
1728 bio_advance(bio, offset << 9);
1729 bio->bi_iter.bi_size = size;
1730
1731 if (bio_integrity(bio))
1732 bio_integrity_trim(bio);
1733 }
1734 EXPORT_SYMBOL_GPL(bio_trim);
1735
1736 /*
1737 * create memory pools for biovec's in a bio_set.
1738 * use the global biovec slabs created for general use.
1739 */
biovec_init_pool(mempool_t * pool,int pool_entries)1740 int biovec_init_pool(mempool_t *pool, int pool_entries)
1741 {
1742 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1743
1744 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1745 }
1746
1747 /*
1748 * bioset_exit - exit a bioset initialized with bioset_init()
1749 *
1750 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1751 * kzalloc()).
1752 */
bioset_exit(struct bio_set * bs)1753 void bioset_exit(struct bio_set *bs)
1754 {
1755 bio_alloc_cache_destroy(bs);
1756 if (bs->rescue_workqueue)
1757 destroy_workqueue(bs->rescue_workqueue);
1758 bs->rescue_workqueue = NULL;
1759
1760 mempool_exit(&bs->bio_pool);
1761 mempool_exit(&bs->bvec_pool);
1762
1763 if (bs->bio_slab)
1764 bio_put_slab(bs);
1765 bs->bio_slab = NULL;
1766 }
1767 EXPORT_SYMBOL(bioset_exit);
1768
1769 /**
1770 * bioset_init - Initialize a bio_set
1771 * @bs: pool to initialize
1772 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1773 * @front_pad: Number of bytes to allocate in front of the returned bio
1774 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1775 * and %BIOSET_NEED_RESCUER
1776 *
1777 * Description:
1778 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1779 * to ask for a number of bytes to be allocated in front of the bio.
1780 * Front pad allocation is useful for embedding the bio inside
1781 * another structure, to avoid allocating extra data to go with the bio.
1782 * Note that the bio must be embedded at the END of that structure always,
1783 * or things will break badly.
1784 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1785 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1786 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1787 * to dispatch queued requests when the mempool runs out of space.
1788 *
1789 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1790 int bioset_init(struct bio_set *bs,
1791 unsigned int pool_size,
1792 unsigned int front_pad,
1793 int flags)
1794 {
1795 bs->front_pad = front_pad;
1796 if (flags & BIOSET_NEED_BVECS)
1797 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1798 else
1799 bs->back_pad = 0;
1800
1801 spin_lock_init(&bs->rescue_lock);
1802 bio_list_init(&bs->rescue_list);
1803 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1804
1805 bs->bio_slab = bio_find_or_create_slab(bs);
1806 if (!bs->bio_slab)
1807 return -ENOMEM;
1808
1809 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1810 goto bad;
1811
1812 if ((flags & BIOSET_NEED_BVECS) &&
1813 biovec_init_pool(&bs->bvec_pool, pool_size))
1814 goto bad;
1815
1816 if (flags & BIOSET_NEED_RESCUER) {
1817 bs->rescue_workqueue = alloc_workqueue("bioset",
1818 WQ_MEM_RECLAIM, 0);
1819 if (!bs->rescue_workqueue)
1820 goto bad;
1821 }
1822 if (flags & BIOSET_PERCPU_CACHE) {
1823 bs->cache = alloc_percpu(struct bio_alloc_cache);
1824 if (!bs->cache)
1825 goto bad;
1826 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1827 }
1828
1829 return 0;
1830 bad:
1831 bioset_exit(bs);
1832 return -ENOMEM;
1833 }
1834 EXPORT_SYMBOL(bioset_init);
1835
init_bio(void)1836 static int __init init_bio(void)
1837 {
1838 int i;
1839
1840 BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1841
1842 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1843 struct biovec_slab *bvs = bvec_slabs + i;
1844
1845 bvs->slab = kmem_cache_create(bvs->name,
1846 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1847 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1848 }
1849
1850 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1851 bio_cpu_dead);
1852
1853 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1854 BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1855 panic("bio: can't allocate bios\n");
1856
1857 return 0;
1858 }
1859 subsys_initcall(init_bio);
1860