xref: /linux/block/bio.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio-integrity.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/highmem.h>
19 #include <linux/blk-crypto.h>
20 #include <linux/xarray.h>
21 
22 #include <trace/events/block.h>
23 #include "blk.h"
24 #include "blk-rq-qos.h"
25 #include "blk-cgroup.h"
26 
27 #define ALLOC_CACHE_THRESHOLD	16
28 #define ALLOC_CACHE_MAX		256
29 
30 struct bio_alloc_cache {
31 	struct bio		*free_list;
32 	struct bio		*free_list_irq;
33 	unsigned int		nr;
34 	unsigned int		nr_irq;
35 };
36 
37 static struct biovec_slab {
38 	int nr_vecs;
39 	char *name;
40 	struct kmem_cache *slab;
41 } bvec_slabs[] __read_mostly = {
42 	{ .nr_vecs = 16, .name = "biovec-16" },
43 	{ .nr_vecs = 64, .name = "biovec-64" },
44 	{ .nr_vecs = 128, .name = "biovec-128" },
45 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
46 };
47 
biovec_slab(unsigned short nr_vecs)48 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
49 {
50 	switch (nr_vecs) {
51 	/* smaller bios use inline vecs */
52 	case 5 ... 16:
53 		return &bvec_slabs[0];
54 	case 17 ... 64:
55 		return &bvec_slabs[1];
56 	case 65 ... 128:
57 		return &bvec_slabs[2];
58 	case 129 ... BIO_MAX_VECS:
59 		return &bvec_slabs[3];
60 	default:
61 		BUG();
62 		return NULL;
63 	}
64 }
65 
66 /*
67  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
68  * IO code that does not need private memory pools.
69  */
70 struct bio_set fs_bio_set;
71 EXPORT_SYMBOL(fs_bio_set);
72 
73 /*
74  * Our slab pool management
75  */
76 struct bio_slab {
77 	struct kmem_cache *slab;
78 	unsigned int slab_ref;
79 	unsigned int slab_size;
80 	char name[12];
81 };
82 static DEFINE_MUTEX(bio_slab_lock);
83 static DEFINE_XARRAY(bio_slabs);
84 
create_bio_slab(unsigned int size)85 static struct bio_slab *create_bio_slab(unsigned int size)
86 {
87 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
88 
89 	if (!bslab)
90 		return NULL;
91 
92 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
93 	bslab->slab = kmem_cache_create(bslab->name, size,
94 			ARCH_KMALLOC_MINALIGN,
95 			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
96 	if (!bslab->slab)
97 		goto fail_alloc_slab;
98 
99 	bslab->slab_ref = 1;
100 	bslab->slab_size = size;
101 
102 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
103 		return bslab;
104 
105 	kmem_cache_destroy(bslab->slab);
106 
107 fail_alloc_slab:
108 	kfree(bslab);
109 	return NULL;
110 }
111 
bs_bio_slab_size(struct bio_set * bs)112 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
113 {
114 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
115 }
116 
bio_find_or_create_slab(struct bio_set * bs)117 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
118 {
119 	unsigned int size = bs_bio_slab_size(bs);
120 	struct bio_slab *bslab;
121 
122 	mutex_lock(&bio_slab_lock);
123 	bslab = xa_load(&bio_slabs, size);
124 	if (bslab)
125 		bslab->slab_ref++;
126 	else
127 		bslab = create_bio_slab(size);
128 	mutex_unlock(&bio_slab_lock);
129 
130 	if (bslab)
131 		return bslab->slab;
132 	return NULL;
133 }
134 
bio_put_slab(struct bio_set * bs)135 static void bio_put_slab(struct bio_set *bs)
136 {
137 	struct bio_slab *bslab = NULL;
138 	unsigned int slab_size = bs_bio_slab_size(bs);
139 
140 	mutex_lock(&bio_slab_lock);
141 
142 	bslab = xa_load(&bio_slabs, slab_size);
143 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 		goto out;
145 
146 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
147 
148 	WARN_ON(!bslab->slab_ref);
149 
150 	if (--bslab->slab_ref)
151 		goto out;
152 
153 	xa_erase(&bio_slabs, slab_size);
154 
155 	kmem_cache_destroy(bslab->slab);
156 	kfree(bslab);
157 
158 out:
159 	mutex_unlock(&bio_slab_lock);
160 }
161 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)162 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
163 {
164 	BUG_ON(nr_vecs > BIO_MAX_VECS);
165 
166 	if (nr_vecs == BIO_MAX_VECS)
167 		mempool_free(bv, pool);
168 	else if (nr_vecs > BIO_INLINE_VECS)
169 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
170 }
171 
172 /*
173  * Make the first allocation restricted and don't dump info on allocation
174  * failures, since we'll fall back to the mempool in case of failure.
175  */
bvec_alloc_gfp(gfp_t gfp)176 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
177 {
178 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
179 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
180 }
181 
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)182 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
183 		gfp_t gfp_mask)
184 {
185 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
186 
187 	if (WARN_ON_ONCE(!bvs))
188 		return NULL;
189 
190 	/*
191 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
192 	 * We also rely on this in the bvec_free path.
193 	 */
194 	*nr_vecs = bvs->nr_vecs;
195 
196 	/*
197 	 * Try a slab allocation first for all smaller allocations.  If that
198 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
199 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
200 	 */
201 	if (*nr_vecs < BIO_MAX_VECS) {
202 		struct bio_vec *bvl;
203 
204 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
205 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
206 			return bvl;
207 		*nr_vecs = BIO_MAX_VECS;
208 	}
209 
210 	return mempool_alloc(pool, gfp_mask);
211 }
212 
bio_uninit(struct bio * bio)213 void bio_uninit(struct bio *bio)
214 {
215 #ifdef CONFIG_BLK_CGROUP
216 	if (bio->bi_blkg) {
217 		blkg_put(bio->bi_blkg);
218 		bio->bi_blkg = NULL;
219 	}
220 #endif
221 	if (bio_integrity(bio))
222 		bio_integrity_free(bio);
223 
224 	bio_crypt_free_ctx(bio);
225 }
226 EXPORT_SYMBOL(bio_uninit);
227 
bio_free(struct bio * bio)228 static void bio_free(struct bio *bio)
229 {
230 	struct bio_set *bs = bio->bi_pool;
231 	void *p = bio;
232 
233 	WARN_ON_ONCE(!bs);
234 
235 	bio_uninit(bio);
236 	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
237 	mempool_free(p - bs->front_pad, &bs->bio_pool);
238 }
239 
240 /*
241  * Users of this function have their own bio allocation. Subsequently,
242  * they must remember to pair any call to bio_init() with bio_uninit()
243  * when IO has completed, or when the bio is released.
244  */
bio_init(struct bio * bio,struct block_device * bdev,struct bio_vec * table,unsigned short max_vecs,blk_opf_t opf)245 void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
246 	      unsigned short max_vecs, blk_opf_t opf)
247 {
248 	bio->bi_next = NULL;
249 	bio->bi_bdev = bdev;
250 	bio->bi_opf = opf;
251 	bio->bi_flags = 0;
252 	bio->bi_ioprio = 0;
253 	bio->bi_write_hint = 0;
254 	bio->bi_write_stream = 0;
255 	bio->bi_status = 0;
256 	bio->bi_iter.bi_sector = 0;
257 	bio->bi_iter.bi_size = 0;
258 	bio->bi_iter.bi_idx = 0;
259 	bio->bi_iter.bi_bvec_done = 0;
260 	bio->bi_end_io = NULL;
261 	bio->bi_private = NULL;
262 #ifdef CONFIG_BLK_CGROUP
263 	bio->bi_blkg = NULL;
264 	bio->bi_issue.value = 0;
265 	if (bdev)
266 		bio_associate_blkg(bio);
267 #ifdef CONFIG_BLK_CGROUP_IOCOST
268 	bio->bi_iocost_cost = 0;
269 #endif
270 #endif
271 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
272 	bio->bi_crypt_context = NULL;
273 #endif
274 #ifdef CONFIG_BLK_DEV_INTEGRITY
275 	bio->bi_integrity = NULL;
276 #endif
277 	bio->bi_vcnt = 0;
278 
279 	atomic_set(&bio->__bi_remaining, 1);
280 	atomic_set(&bio->__bi_cnt, 1);
281 	bio->bi_cookie = BLK_QC_T_NONE;
282 
283 	bio->bi_max_vecs = max_vecs;
284 	bio->bi_io_vec = table;
285 	bio->bi_pool = NULL;
286 }
287 EXPORT_SYMBOL(bio_init);
288 
289 /**
290  * bio_reset - reinitialize a bio
291  * @bio:	bio to reset
292  * @bdev:	block device to use the bio for
293  * @opf:	operation and flags for bio
294  *
295  * Description:
296  *   After calling bio_reset(), @bio will be in the same state as a freshly
297  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
298  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
299  *   comment in struct bio.
300  */
bio_reset(struct bio * bio,struct block_device * bdev,blk_opf_t opf)301 void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
302 {
303 	bio_uninit(bio);
304 	memset(bio, 0, BIO_RESET_BYTES);
305 	atomic_set(&bio->__bi_remaining, 1);
306 	bio->bi_bdev = bdev;
307 	if (bio->bi_bdev)
308 		bio_associate_blkg(bio);
309 	bio->bi_opf = opf;
310 }
311 EXPORT_SYMBOL(bio_reset);
312 
__bio_chain_endio(struct bio * bio)313 static struct bio *__bio_chain_endio(struct bio *bio)
314 {
315 	struct bio *parent = bio->bi_private;
316 
317 	if (bio->bi_status && !parent->bi_status)
318 		parent->bi_status = bio->bi_status;
319 	bio_put(bio);
320 	return parent;
321 }
322 
bio_chain_endio(struct bio * bio)323 static void bio_chain_endio(struct bio *bio)
324 {
325 	bio_endio(__bio_chain_endio(bio));
326 }
327 
328 /**
329  * bio_chain - chain bio completions
330  * @bio: the target bio
331  * @parent: the parent bio of @bio
332  *
333  * The caller won't have a bi_end_io called when @bio completes - instead,
334  * @parent's bi_end_io won't be called until both @parent and @bio have
335  * completed; the chained bio will also be freed when it completes.
336  *
337  * The caller must not set bi_private or bi_end_io in @bio.
338  */
bio_chain(struct bio * bio,struct bio * parent)339 void bio_chain(struct bio *bio, struct bio *parent)
340 {
341 	BUG_ON(bio->bi_private || bio->bi_end_io);
342 
343 	bio->bi_private = parent;
344 	bio->bi_end_io	= bio_chain_endio;
345 	bio_inc_remaining(parent);
346 }
347 EXPORT_SYMBOL(bio_chain);
348 
349 /**
350  * bio_chain_and_submit - submit a bio after chaining it to another one
351  * @prev: bio to chain and submit
352  * @new: bio to chain to
353  *
354  * If @prev is non-NULL, chain it to @new and submit it.
355  *
356  * Return: @new.
357  */
bio_chain_and_submit(struct bio * prev,struct bio * new)358 struct bio *bio_chain_and_submit(struct bio *prev, struct bio *new)
359 {
360 	if (prev) {
361 		bio_chain(prev, new);
362 		submit_bio(prev);
363 	}
364 	return new;
365 }
366 
blk_next_bio(struct bio * bio,struct block_device * bdev,unsigned int nr_pages,blk_opf_t opf,gfp_t gfp)367 struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
368 		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
369 {
370 	return bio_chain_and_submit(bio, bio_alloc(bdev, nr_pages, opf, gfp));
371 }
372 EXPORT_SYMBOL_GPL(blk_next_bio);
373 
bio_alloc_rescue(struct work_struct * work)374 static void bio_alloc_rescue(struct work_struct *work)
375 {
376 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
377 	struct bio *bio;
378 
379 	while (1) {
380 		spin_lock(&bs->rescue_lock);
381 		bio = bio_list_pop(&bs->rescue_list);
382 		spin_unlock(&bs->rescue_lock);
383 
384 		if (!bio)
385 			break;
386 
387 		submit_bio_noacct(bio);
388 	}
389 }
390 
punt_bios_to_rescuer(struct bio_set * bs)391 static void punt_bios_to_rescuer(struct bio_set *bs)
392 {
393 	struct bio_list punt, nopunt;
394 	struct bio *bio;
395 
396 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
397 		return;
398 	/*
399 	 * In order to guarantee forward progress we must punt only bios that
400 	 * were allocated from this bio_set; otherwise, if there was a bio on
401 	 * there for a stacking driver higher up in the stack, processing it
402 	 * could require allocating bios from this bio_set, and doing that from
403 	 * our own rescuer would be bad.
404 	 *
405 	 * Since bio lists are singly linked, pop them all instead of trying to
406 	 * remove from the middle of the list:
407 	 */
408 
409 	bio_list_init(&punt);
410 	bio_list_init(&nopunt);
411 
412 	while ((bio = bio_list_pop(&current->bio_list[0])))
413 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
414 	current->bio_list[0] = nopunt;
415 
416 	bio_list_init(&nopunt);
417 	while ((bio = bio_list_pop(&current->bio_list[1])))
418 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
419 	current->bio_list[1] = nopunt;
420 
421 	spin_lock(&bs->rescue_lock);
422 	bio_list_merge(&bs->rescue_list, &punt);
423 	spin_unlock(&bs->rescue_lock);
424 
425 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
426 }
427 
bio_alloc_irq_cache_splice(struct bio_alloc_cache * cache)428 static void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
429 {
430 	unsigned long flags;
431 
432 	/* cache->free_list must be empty */
433 	if (WARN_ON_ONCE(cache->free_list))
434 		return;
435 
436 	local_irq_save(flags);
437 	cache->free_list = cache->free_list_irq;
438 	cache->free_list_irq = NULL;
439 	cache->nr += cache->nr_irq;
440 	cache->nr_irq = 0;
441 	local_irq_restore(flags);
442 }
443 
bio_alloc_percpu_cache(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp,struct bio_set * bs)444 static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
445 		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
446 		struct bio_set *bs)
447 {
448 	struct bio_alloc_cache *cache;
449 	struct bio *bio;
450 
451 	cache = per_cpu_ptr(bs->cache, get_cpu());
452 	if (!cache->free_list) {
453 		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
454 			bio_alloc_irq_cache_splice(cache);
455 		if (!cache->free_list) {
456 			put_cpu();
457 			return NULL;
458 		}
459 	}
460 	bio = cache->free_list;
461 	cache->free_list = bio->bi_next;
462 	cache->nr--;
463 	put_cpu();
464 
465 	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
466 	bio->bi_pool = bs;
467 	return bio;
468 }
469 
470 /**
471  * bio_alloc_bioset - allocate a bio for I/O
472  * @bdev:	block device to allocate the bio for (can be %NULL)
473  * @nr_vecs:	number of bvecs to pre-allocate
474  * @opf:	operation and flags for bio
475  * @gfp_mask:   the GFP_* mask given to the slab allocator
476  * @bs:		the bio_set to allocate from.
477  *
478  * Allocate a bio from the mempools in @bs.
479  *
480  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
481  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
482  * callers must never allocate more than 1 bio at a time from the general pool.
483  * Callers that need to allocate more than 1 bio must always submit the
484  * previously allocated bio for IO before attempting to allocate a new one.
485  * Failure to do so can cause deadlocks under memory pressure.
486  *
487  * Note that when running under submit_bio_noacct() (i.e. any block driver),
488  * bios are not submitted until after you return - see the code in
489  * submit_bio_noacct() that converts recursion into iteration, to prevent
490  * stack overflows.
491  *
492  * This would normally mean allocating multiple bios under submit_bio_noacct()
493  * would be susceptible to deadlocks, but we have
494  * deadlock avoidance code that resubmits any blocked bios from a rescuer
495  * thread.
496  *
497  * However, we do not guarantee forward progress for allocations from other
498  * mempools. Doing multiple allocations from the same mempool under
499  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
500  * for per bio allocations.
501  *
502  * Returns: Pointer to new bio on success, NULL on failure.
503  */
bio_alloc_bioset(struct block_device * bdev,unsigned short nr_vecs,blk_opf_t opf,gfp_t gfp_mask,struct bio_set * bs)504 struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
505 			     blk_opf_t opf, gfp_t gfp_mask,
506 			     struct bio_set *bs)
507 {
508 	gfp_t saved_gfp = gfp_mask;
509 	struct bio *bio;
510 	void *p;
511 
512 	/* should not use nobvec bioset for nr_vecs > 0 */
513 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
514 		return NULL;
515 
516 	if (opf & REQ_ALLOC_CACHE) {
517 		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
518 			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
519 						     gfp_mask, bs);
520 			if (bio)
521 				return bio;
522 			/*
523 			 * No cached bio available, bio returned below marked with
524 			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
525 			 */
526 		} else {
527 			opf &= ~REQ_ALLOC_CACHE;
528 		}
529 	}
530 
531 	/*
532 	 * submit_bio_noacct() converts recursion to iteration; this means if
533 	 * we're running beneath it, any bios we allocate and submit will not be
534 	 * submitted (and thus freed) until after we return.
535 	 *
536 	 * This exposes us to a potential deadlock if we allocate multiple bios
537 	 * from the same bio_set() while running underneath submit_bio_noacct().
538 	 * If we were to allocate multiple bios (say a stacking block driver
539 	 * that was splitting bios), we would deadlock if we exhausted the
540 	 * mempool's reserve.
541 	 *
542 	 * We solve this, and guarantee forward progress, with a rescuer
543 	 * workqueue per bio_set. If we go to allocate and there are bios on
544 	 * current->bio_list, we first try the allocation without
545 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
546 	 * blocking to the rescuer workqueue before we retry with the original
547 	 * gfp_flags.
548 	 */
549 	if (current->bio_list &&
550 	    (!bio_list_empty(&current->bio_list[0]) ||
551 	     !bio_list_empty(&current->bio_list[1])) &&
552 	    bs->rescue_workqueue)
553 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
554 
555 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
556 	if (!p && gfp_mask != saved_gfp) {
557 		punt_bios_to_rescuer(bs);
558 		gfp_mask = saved_gfp;
559 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
560 	}
561 	if (unlikely(!p))
562 		return NULL;
563 	if (!mempool_is_saturated(&bs->bio_pool))
564 		opf &= ~REQ_ALLOC_CACHE;
565 
566 	bio = p + bs->front_pad;
567 	if (nr_vecs > BIO_INLINE_VECS) {
568 		struct bio_vec *bvl = NULL;
569 
570 		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
571 		if (!bvl && gfp_mask != saved_gfp) {
572 			punt_bios_to_rescuer(bs);
573 			gfp_mask = saved_gfp;
574 			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
575 		}
576 		if (unlikely(!bvl))
577 			goto err_free;
578 
579 		bio_init(bio, bdev, bvl, nr_vecs, opf);
580 	} else if (nr_vecs) {
581 		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
582 	} else {
583 		bio_init(bio, bdev, NULL, 0, opf);
584 	}
585 
586 	bio->bi_pool = bs;
587 	return bio;
588 
589 err_free:
590 	mempool_free(p, &bs->bio_pool);
591 	return NULL;
592 }
593 EXPORT_SYMBOL(bio_alloc_bioset);
594 
595 /**
596  * bio_kmalloc - kmalloc a bio
597  * @nr_vecs:	number of bio_vecs to allocate
598  * @gfp_mask:   the GFP_* mask given to the slab allocator
599  *
600  * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
601  * using bio_init() before use.  To free a bio returned from this function use
602  * kfree() after calling bio_uninit().  A bio returned from this function can
603  * be reused by calling bio_uninit() before calling bio_init() again.
604  *
605  * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
606  * function are not backed by a mempool can fail.  Do not use this function
607  * for allocations in the file system I/O path.
608  *
609  * Returns: Pointer to new bio on success, NULL on failure.
610  */
bio_kmalloc(unsigned short nr_vecs,gfp_t gfp_mask)611 struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
612 {
613 	struct bio *bio;
614 
615 	if (nr_vecs > BIO_MAX_INLINE_VECS)
616 		return NULL;
617 	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
618 }
619 EXPORT_SYMBOL(bio_kmalloc);
620 
zero_fill_bio_iter(struct bio * bio,struct bvec_iter start)621 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
622 {
623 	struct bio_vec bv;
624 	struct bvec_iter iter;
625 
626 	__bio_for_each_segment(bv, bio, iter, start)
627 		memzero_bvec(&bv);
628 }
629 EXPORT_SYMBOL(zero_fill_bio_iter);
630 
631 /**
632  * bio_truncate - truncate the bio to small size of @new_size
633  * @bio:	the bio to be truncated
634  * @new_size:	new size for truncating the bio
635  *
636  * Description:
637  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
638  *   REQ_OP_READ, zero the truncated part. This function should only
639  *   be used for handling corner cases, such as bio eod.
640  */
bio_truncate(struct bio * bio,unsigned new_size)641 static void bio_truncate(struct bio *bio, unsigned new_size)
642 {
643 	struct bio_vec bv;
644 	struct bvec_iter iter;
645 	unsigned int done = 0;
646 	bool truncated = false;
647 
648 	if (new_size >= bio->bi_iter.bi_size)
649 		return;
650 
651 	if (bio_op(bio) != REQ_OP_READ)
652 		goto exit;
653 
654 	bio_for_each_segment(bv, bio, iter) {
655 		if (done + bv.bv_len > new_size) {
656 			size_t offset;
657 
658 			if (!truncated)
659 				offset = new_size - done;
660 			else
661 				offset = 0;
662 			memzero_page(bv.bv_page, bv.bv_offset + offset,
663 				  bv.bv_len - offset);
664 			truncated = true;
665 		}
666 		done += bv.bv_len;
667 	}
668 
669  exit:
670 	/*
671 	 * Don't touch bvec table here and make it really immutable, since
672 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
673 	 * in its .end_bio() callback.
674 	 *
675 	 * It is enough to truncate bio by updating .bi_size since we can make
676 	 * correct bvec with the updated .bi_size for drivers.
677 	 */
678 	bio->bi_iter.bi_size = new_size;
679 }
680 
681 /**
682  * guard_bio_eod - truncate a BIO to fit the block device
683  * @bio:	bio to truncate
684  *
685  * This allows us to do IO even on the odd last sectors of a device, even if the
686  * block size is some multiple of the physical sector size.
687  *
688  * We'll just truncate the bio to the size of the device, and clear the end of
689  * the buffer head manually.  Truly out-of-range accesses will turn into actual
690  * I/O errors, this only handles the "we need to be able to do I/O at the final
691  * sector" case.
692  */
guard_bio_eod(struct bio * bio)693 void guard_bio_eod(struct bio *bio)
694 {
695 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
696 
697 	if (!maxsector)
698 		return;
699 
700 	/*
701 	 * If the *whole* IO is past the end of the device,
702 	 * let it through, and the IO layer will turn it into
703 	 * an EIO.
704 	 */
705 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
706 		return;
707 
708 	maxsector -= bio->bi_iter.bi_sector;
709 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
710 		return;
711 
712 	bio_truncate(bio, maxsector << 9);
713 }
714 
__bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)715 static int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
716 				   unsigned int nr)
717 {
718 	unsigned int i = 0;
719 	struct bio *bio;
720 
721 	while ((bio = cache->free_list) != NULL) {
722 		cache->free_list = bio->bi_next;
723 		cache->nr--;
724 		bio_free(bio);
725 		if (++i == nr)
726 			break;
727 	}
728 	return i;
729 }
730 
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)731 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
732 				  unsigned int nr)
733 {
734 	nr -= __bio_alloc_cache_prune(cache, nr);
735 	if (!READ_ONCE(cache->free_list)) {
736 		bio_alloc_irq_cache_splice(cache);
737 		__bio_alloc_cache_prune(cache, nr);
738 	}
739 }
740 
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)741 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
742 {
743 	struct bio_set *bs;
744 
745 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
746 	if (bs->cache) {
747 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
748 
749 		bio_alloc_cache_prune(cache, -1U);
750 	}
751 	return 0;
752 }
753 
bio_alloc_cache_destroy(struct bio_set * bs)754 static void bio_alloc_cache_destroy(struct bio_set *bs)
755 {
756 	int cpu;
757 
758 	if (!bs->cache)
759 		return;
760 
761 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
762 	for_each_possible_cpu(cpu) {
763 		struct bio_alloc_cache *cache;
764 
765 		cache = per_cpu_ptr(bs->cache, cpu);
766 		bio_alloc_cache_prune(cache, -1U);
767 	}
768 	free_percpu(bs->cache);
769 	bs->cache = NULL;
770 }
771 
bio_put_percpu_cache(struct bio * bio)772 static inline void bio_put_percpu_cache(struct bio *bio)
773 {
774 	struct bio_alloc_cache *cache;
775 
776 	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
777 	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX)
778 		goto out_free;
779 
780 	if (in_task()) {
781 		bio_uninit(bio);
782 		bio->bi_next = cache->free_list;
783 		/* Not necessary but helps not to iopoll already freed bios */
784 		bio->bi_bdev = NULL;
785 		cache->free_list = bio;
786 		cache->nr++;
787 	} else if (in_hardirq()) {
788 		lockdep_assert_irqs_disabled();
789 
790 		bio_uninit(bio);
791 		bio->bi_next = cache->free_list_irq;
792 		cache->free_list_irq = bio;
793 		cache->nr_irq++;
794 	} else {
795 		goto out_free;
796 	}
797 	put_cpu();
798 	return;
799 out_free:
800 	put_cpu();
801 	bio_free(bio);
802 }
803 
804 /**
805  * bio_put - release a reference to a bio
806  * @bio:   bio to release reference to
807  *
808  * Description:
809  *   Put a reference to a &struct bio, either one you have gotten with
810  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
811  **/
bio_put(struct bio * bio)812 void bio_put(struct bio *bio)
813 {
814 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
815 		BUG_ON(!atomic_read(&bio->__bi_cnt));
816 		if (!atomic_dec_and_test(&bio->__bi_cnt))
817 			return;
818 	}
819 	if (bio->bi_opf & REQ_ALLOC_CACHE)
820 		bio_put_percpu_cache(bio);
821 	else
822 		bio_free(bio);
823 }
824 EXPORT_SYMBOL(bio_put);
825 
__bio_clone(struct bio * bio,struct bio * bio_src,gfp_t gfp)826 static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
827 {
828 	bio_set_flag(bio, BIO_CLONED);
829 	bio->bi_ioprio = bio_src->bi_ioprio;
830 	bio->bi_write_hint = bio_src->bi_write_hint;
831 	bio->bi_write_stream = bio_src->bi_write_stream;
832 	bio->bi_iter = bio_src->bi_iter;
833 
834 	if (bio->bi_bdev) {
835 		if (bio->bi_bdev == bio_src->bi_bdev &&
836 		    bio_flagged(bio_src, BIO_REMAPPED))
837 			bio_set_flag(bio, BIO_REMAPPED);
838 		bio_clone_blkg_association(bio, bio_src);
839 	}
840 
841 	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
842 		return -ENOMEM;
843 	if (bio_integrity(bio_src) &&
844 	    bio_integrity_clone(bio, bio_src, gfp) < 0)
845 		return -ENOMEM;
846 	return 0;
847 }
848 
849 /**
850  * bio_alloc_clone - clone a bio that shares the original bio's biovec
851  * @bdev: block_device to clone onto
852  * @bio_src: bio to clone from
853  * @gfp: allocation priority
854  * @bs: bio_set to allocate from
855  *
856  * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
857  * bio, but not the actual data it points to.
858  *
859  * The caller must ensure that the return bio is not freed before @bio_src.
860  */
bio_alloc_clone(struct block_device * bdev,struct bio * bio_src,gfp_t gfp,struct bio_set * bs)861 struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
862 		gfp_t gfp, struct bio_set *bs)
863 {
864 	struct bio *bio;
865 
866 	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
867 	if (!bio)
868 		return NULL;
869 
870 	if (__bio_clone(bio, bio_src, gfp) < 0) {
871 		bio_put(bio);
872 		return NULL;
873 	}
874 	bio->bi_io_vec = bio_src->bi_io_vec;
875 
876 	return bio;
877 }
878 EXPORT_SYMBOL(bio_alloc_clone);
879 
880 /**
881  * bio_init_clone - clone a bio that shares the original bio's biovec
882  * @bdev: block_device to clone onto
883  * @bio: bio to clone into
884  * @bio_src: bio to clone from
885  * @gfp: allocation priority
886  *
887  * Initialize a new bio in caller provided memory that is a clone of @bio_src.
888  * The caller owns the returned bio, but not the actual data it points to.
889  *
890  * The caller must ensure that @bio_src is not freed before @bio.
891  */
bio_init_clone(struct block_device * bdev,struct bio * bio,struct bio * bio_src,gfp_t gfp)892 int bio_init_clone(struct block_device *bdev, struct bio *bio,
893 		struct bio *bio_src, gfp_t gfp)
894 {
895 	int ret;
896 
897 	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
898 	ret = __bio_clone(bio, bio_src, gfp);
899 	if (ret)
900 		bio_uninit(bio);
901 	return ret;
902 }
903 EXPORT_SYMBOL(bio_init_clone);
904 
905 /**
906  * bio_full - check if the bio is full
907  * @bio:	bio to check
908  * @len:	length of one segment to be added
909  *
910  * Return true if @bio is full and one segment with @len bytes can't be
911  * added to the bio, otherwise return false
912  */
bio_full(struct bio * bio,unsigned len)913 static inline bool bio_full(struct bio *bio, unsigned len)
914 {
915 	if (bio->bi_vcnt >= bio->bi_max_vecs)
916 		return true;
917 	if (bio->bi_iter.bi_size > UINT_MAX - len)
918 		return true;
919 	return false;
920 }
921 
bvec_try_merge_page(struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off)922 static bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
923 		unsigned int len, unsigned int off)
924 {
925 	size_t bv_end = bv->bv_offset + bv->bv_len;
926 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
927 	phys_addr_t page_addr = page_to_phys(page);
928 
929 	if (vec_end_addr + 1 != page_addr + off)
930 		return false;
931 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
932 		return false;
933 
934 	if ((vec_end_addr & PAGE_MASK) != ((page_addr + off) & PAGE_MASK)) {
935 		if (IS_ENABLED(CONFIG_KMSAN))
936 			return false;
937 		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
938 			return false;
939 	}
940 
941 	bv->bv_len += len;
942 	return true;
943 }
944 
945 /*
946  * Try to merge a page into a segment, while obeying the hardware segment
947  * size limit.
948  *
949  * This is kept around for the integrity metadata, which is still tries
950  * to build the initial bio to the hardware limit and doesn't have proper
951  * helpers to split.  Hopefully this will go away soon.
952  */
bvec_try_merge_hw_page(struct request_queue * q,struct bio_vec * bv,struct page * page,unsigned len,unsigned offset)953 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
954 		struct page *page, unsigned len, unsigned offset)
955 {
956 	unsigned long mask = queue_segment_boundary(q);
957 	phys_addr_t addr1 = bvec_phys(bv);
958 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
959 
960 	if ((addr1 | mask) != (addr2 | mask))
961 		return false;
962 	if (len > queue_max_segment_size(q) - bv->bv_len)
963 		return false;
964 	return bvec_try_merge_page(bv, page, len, offset);
965 }
966 
967 /**
968  * __bio_add_page - add page(s) to a bio in a new segment
969  * @bio: destination bio
970  * @page: start page to add
971  * @len: length of the data to add, may cross pages
972  * @off: offset of the data relative to @page, may cross pages
973  *
974  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
975  * that @bio has space for another bvec.
976  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)977 void __bio_add_page(struct bio *bio, struct page *page,
978 		unsigned int len, unsigned int off)
979 {
980 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
981 	WARN_ON_ONCE(bio_full(bio, len));
982 
983 	if (is_pci_p2pdma_page(page))
984 		bio->bi_opf |= REQ_P2PDMA | REQ_NOMERGE;
985 
986 	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
987 	bio->bi_iter.bi_size += len;
988 	bio->bi_vcnt++;
989 }
990 EXPORT_SYMBOL_GPL(__bio_add_page);
991 
992 /**
993  * bio_add_virt_nofail - add data in the direct kernel mapping to a bio
994  * @bio: destination bio
995  * @vaddr: data to add
996  * @len: length of the data to add, may cross pages
997  *
998  * Add the data at @vaddr to @bio.  The caller must have ensure a segment
999  * is available for the added data.  No merging into an existing segment
1000  * will be performed.
1001  */
bio_add_virt_nofail(struct bio * bio,void * vaddr,unsigned len)1002 void bio_add_virt_nofail(struct bio *bio, void *vaddr, unsigned len)
1003 {
1004 	__bio_add_page(bio, virt_to_page(vaddr), len, offset_in_page(vaddr));
1005 }
1006 EXPORT_SYMBOL_GPL(bio_add_virt_nofail);
1007 
1008 /**
1009  *	bio_add_page	-	attempt to add page(s) to bio
1010  *	@bio: destination bio
1011  *	@page: start page to add
1012  *	@len: vec entry length, may cross pages
1013  *	@offset: vec entry offset relative to @page, may cross pages
1014  *
1015  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1016  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1017  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1018 int bio_add_page(struct bio *bio, struct page *page,
1019 		 unsigned int len, unsigned int offset)
1020 {
1021 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1022 		return 0;
1023 	if (bio->bi_iter.bi_size > UINT_MAX - len)
1024 		return 0;
1025 
1026 	if (bio->bi_vcnt > 0) {
1027 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
1028 
1029 		if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
1030 			return 0;
1031 
1032 		if (bvec_try_merge_page(bv, page, len, offset)) {
1033 			bio->bi_iter.bi_size += len;
1034 			return len;
1035 		}
1036 	}
1037 
1038 	if (bio->bi_vcnt >= bio->bi_max_vecs)
1039 		return 0;
1040 	__bio_add_page(bio, page, len, offset);
1041 	return len;
1042 }
1043 EXPORT_SYMBOL(bio_add_page);
1044 
bio_add_folio_nofail(struct bio * bio,struct folio * folio,size_t len,size_t off)1045 void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
1046 			  size_t off)
1047 {
1048 	unsigned long nr = off / PAGE_SIZE;
1049 
1050 	WARN_ON_ONCE(len > UINT_MAX);
1051 	__bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE);
1052 }
1053 EXPORT_SYMBOL_GPL(bio_add_folio_nofail);
1054 
1055 /**
1056  * bio_add_folio - Attempt to add part of a folio to a bio.
1057  * @bio: BIO to add to.
1058  * @folio: Folio to add.
1059  * @len: How many bytes from the folio to add.
1060  * @off: First byte in this folio to add.
1061  *
1062  * Filesystems that use folios can call this function instead of calling
1063  * bio_add_page() for each page in the folio.  If @off is bigger than
1064  * PAGE_SIZE, this function can create a bio_vec that starts in a page
1065  * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
1066  *
1067  * Return: Whether the addition was successful.
1068  */
bio_add_folio(struct bio * bio,struct folio * folio,size_t len,size_t off)1069 bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1070 		   size_t off)
1071 {
1072 	unsigned long nr = off / PAGE_SIZE;
1073 
1074 	if (len > UINT_MAX)
1075 		return false;
1076 	return bio_add_page(bio, folio_page(folio, nr), len, off % PAGE_SIZE) > 0;
1077 }
1078 EXPORT_SYMBOL(bio_add_folio);
1079 
1080 /**
1081  * bio_add_vmalloc_chunk - add a vmalloc chunk to a bio
1082  * @bio: destination bio
1083  * @vaddr: vmalloc address to add
1084  * @len: total length in bytes of the data to add
1085  *
1086  * Add data starting at @vaddr to @bio and return how many bytes were added.
1087  * This may be less than the amount originally asked.  Returns 0 if no data
1088  * could be added to @bio.
1089  *
1090  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1091  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1092  * the completion handler.
1093  */
bio_add_vmalloc_chunk(struct bio * bio,void * vaddr,unsigned len)1094 unsigned int bio_add_vmalloc_chunk(struct bio *bio, void *vaddr, unsigned len)
1095 {
1096 	unsigned int offset = offset_in_page(vaddr);
1097 
1098 	len = min(len, PAGE_SIZE - offset);
1099 	if (bio_add_page(bio, vmalloc_to_page(vaddr), len, offset) < len)
1100 		return 0;
1101 	if (op_is_write(bio_op(bio)))
1102 		flush_kernel_vmap_range(vaddr, len);
1103 	return len;
1104 }
1105 EXPORT_SYMBOL_GPL(bio_add_vmalloc_chunk);
1106 
1107 /**
1108  * bio_add_vmalloc - add a vmalloc region to a bio
1109  * @bio: destination bio
1110  * @vaddr: vmalloc address to add
1111  * @len: total length in bytes of the data to add
1112  *
1113  * Add data starting at @vaddr to @bio.  Return %true on success or %false if
1114  * @bio does not have enough space for the payload.
1115  *
1116  * This helper calls flush_kernel_vmap_range() for the range added.  For reads
1117  * the caller still needs to manually call invalidate_kernel_vmap_range() in
1118  * the completion handler.
1119  */
bio_add_vmalloc(struct bio * bio,void * vaddr,unsigned int len)1120 bool bio_add_vmalloc(struct bio *bio, void *vaddr, unsigned int len)
1121 {
1122 	do {
1123 		unsigned int added = bio_add_vmalloc_chunk(bio, vaddr, len);
1124 
1125 		if (!added)
1126 			return false;
1127 		vaddr += added;
1128 		len -= added;
1129 	} while (len);
1130 
1131 	return true;
1132 }
1133 EXPORT_SYMBOL_GPL(bio_add_vmalloc);
1134 
__bio_release_pages(struct bio * bio,bool mark_dirty)1135 void __bio_release_pages(struct bio *bio, bool mark_dirty)
1136 {
1137 	struct folio_iter fi;
1138 
1139 	bio_for_each_folio_all(fi, bio) {
1140 		size_t nr_pages;
1141 
1142 		if (mark_dirty) {
1143 			folio_lock(fi.folio);
1144 			folio_mark_dirty(fi.folio);
1145 			folio_unlock(fi.folio);
1146 		}
1147 		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
1148 			   fi.offset / PAGE_SIZE + 1;
1149 		unpin_user_folio(fi.folio, nr_pages);
1150 	}
1151 }
1152 EXPORT_SYMBOL_GPL(__bio_release_pages);
1153 
bio_iov_bvec_set(struct bio * bio,const struct iov_iter * iter)1154 void bio_iov_bvec_set(struct bio *bio, const struct iov_iter *iter)
1155 {
1156 	WARN_ON_ONCE(bio->bi_max_vecs);
1157 
1158 	bio->bi_vcnt = iter->nr_segs;
1159 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1160 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1161 	bio->bi_iter.bi_size = iov_iter_count(iter);
1162 	bio_set_flag(bio, BIO_CLONED);
1163 }
1164 
get_contig_folio_len(unsigned int * num_pages,struct page ** pages,unsigned int i,struct folio * folio,size_t left,size_t offset)1165 static unsigned int get_contig_folio_len(unsigned int *num_pages,
1166 					 struct page **pages, unsigned int i,
1167 					 struct folio *folio, size_t left,
1168 					 size_t offset)
1169 {
1170 	size_t bytes = left;
1171 	size_t contig_sz = min_t(size_t, PAGE_SIZE - offset, bytes);
1172 	unsigned int j;
1173 
1174 	/*
1175 	 * We might COW a single page in the middle of
1176 	 * a large folio, so we have to check that all
1177 	 * pages belong to the same folio.
1178 	 */
1179 	bytes -= contig_sz;
1180 	for (j = i + 1; j < i + *num_pages; j++) {
1181 		size_t next = min_t(size_t, PAGE_SIZE, bytes);
1182 
1183 		if (page_folio(pages[j]) != folio ||
1184 		    pages[j] != pages[j - 1] + 1) {
1185 			break;
1186 		}
1187 		contig_sz += next;
1188 		bytes -= next;
1189 	}
1190 	*num_pages = j - i;
1191 
1192 	return contig_sz;
1193 }
1194 
1195 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1196 
1197 /**
1198  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1199  * @bio: bio to add pages to
1200  * @iter: iov iterator describing the region to be mapped
1201  *
1202  * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
1203  * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
1204  * For a multi-segment *iter, this function only adds pages from the next
1205  * non-empty segment of the iov iterator.
1206  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1207 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1208 {
1209 	iov_iter_extraction_t extraction_flags = 0;
1210 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1211 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1212 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1213 	struct page **pages = (struct page **)bv;
1214 	ssize_t size;
1215 	unsigned int num_pages, i = 0;
1216 	size_t offset, folio_offset, left, len;
1217 	int ret = 0;
1218 
1219 	/*
1220 	 * Move page array up in the allocated memory for the bio vecs as far as
1221 	 * possible so that we can start filling biovecs from the beginning
1222 	 * without overwriting the temporary page array.
1223 	 */
1224 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1225 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1226 
1227 	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
1228 		extraction_flags |= ITER_ALLOW_P2PDMA;
1229 
1230 	/*
1231 	 * Each segment in the iov is required to be a block size multiple.
1232 	 * However, we may not be able to get the entire segment if it spans
1233 	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1234 	 * result to ensure the bio's total size is correct. The remainder of
1235 	 * the iov data will be picked up in the next bio iteration.
1236 	 */
1237 	size = iov_iter_extract_pages(iter, &pages,
1238 				      UINT_MAX - bio->bi_iter.bi_size,
1239 				      nr_pages, extraction_flags, &offset);
1240 	if (unlikely(size <= 0))
1241 		return size ? size : -EFAULT;
1242 
1243 	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1244 
1245 	if (bio->bi_bdev) {
1246 		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1247 		iov_iter_revert(iter, trim);
1248 		size -= trim;
1249 	}
1250 
1251 	if (unlikely(!size)) {
1252 		ret = -EFAULT;
1253 		goto out;
1254 	}
1255 
1256 	for (left = size, i = 0; left > 0; left -= len, i += num_pages) {
1257 		struct page *page = pages[i];
1258 		struct folio *folio = page_folio(page);
1259 		unsigned int old_vcnt = bio->bi_vcnt;
1260 
1261 		folio_offset = ((size_t)folio_page_idx(folio, page) <<
1262 			       PAGE_SHIFT) + offset;
1263 
1264 		len = min(folio_size(folio) - folio_offset, left);
1265 
1266 		num_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1267 
1268 		if (num_pages > 1)
1269 			len = get_contig_folio_len(&num_pages, pages, i,
1270 						   folio, left, offset);
1271 
1272 		if (!bio_add_folio(bio, folio, len, folio_offset)) {
1273 			WARN_ON_ONCE(1);
1274 			ret = -EINVAL;
1275 			goto out;
1276 		}
1277 
1278 		if (bio_flagged(bio, BIO_PAGE_PINNED)) {
1279 			/*
1280 			 * We're adding another fragment of a page that already
1281 			 * was part of the last segment.  Undo our pin as the
1282 			 * page was pinned when an earlier fragment of it was
1283 			 * added to the bio and __bio_release_pages expects a
1284 			 * single pin per page.
1285 			 */
1286 			if (offset && bio->bi_vcnt == old_vcnt)
1287 				unpin_user_folio(folio, 1);
1288 		}
1289 		offset = 0;
1290 	}
1291 
1292 	iov_iter_revert(iter, left);
1293 out:
1294 	while (i < nr_pages)
1295 		bio_release_page(bio, pages[i++]);
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1302  * @bio: bio to add pages to
1303  * @iter: iov iterator describing the region to be added
1304  *
1305  * This takes either an iterator pointing to user memory, or one pointing to
1306  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1307  * map them into the kernel. On IO completion, the caller should put those
1308  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1309  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1310  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1311  * completed by a call to ->ki_complete() or returns with an error other than
1312  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1313  * on IO completion. If it isn't, then pages should be released.
1314  *
1315  * The function tries, but does not guarantee, to pin as many pages as
1316  * fit into the bio, or are requested in @iter, whatever is smaller. If
1317  * MM encounters an error pinning the requested pages, it stops. Error
1318  * is returned only if 0 pages could be pinned.
1319  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1320 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1321 {
1322 	int ret = 0;
1323 
1324 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1325 		return -EIO;
1326 
1327 	if (iov_iter_is_bvec(iter)) {
1328 		bio_iov_bvec_set(bio, iter);
1329 		iov_iter_advance(iter, bio->bi_iter.bi_size);
1330 		return 0;
1331 	}
1332 
1333 	if (iov_iter_extract_will_pin(iter))
1334 		bio_set_flag(bio, BIO_PAGE_PINNED);
1335 	do {
1336 		ret = __bio_iov_iter_get_pages(bio, iter);
1337 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1338 
1339 	return bio->bi_vcnt ? 0 : ret;
1340 }
1341 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1342 
submit_bio_wait_endio(struct bio * bio)1343 static void submit_bio_wait_endio(struct bio *bio)
1344 {
1345 	complete(bio->bi_private);
1346 }
1347 
1348 /**
1349  * submit_bio_wait - submit a bio, and wait until it completes
1350  * @bio: The &struct bio which describes the I/O
1351  *
1352  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1353  * bio_endio() on failure.
1354  *
1355  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1356  * result in bio reference to be consumed. The caller must drop the reference
1357  * on his own.
1358  */
submit_bio_wait(struct bio * bio)1359 int submit_bio_wait(struct bio *bio)
1360 {
1361 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1362 			bio->bi_bdev->bd_disk->lockdep_map);
1363 
1364 	bio->bi_private = &done;
1365 	bio->bi_end_io = submit_bio_wait_endio;
1366 	bio->bi_opf |= REQ_SYNC;
1367 	submit_bio(bio);
1368 	blk_wait_io(&done);
1369 
1370 	return blk_status_to_errno(bio->bi_status);
1371 }
1372 EXPORT_SYMBOL(submit_bio_wait);
1373 
1374 /**
1375  * bdev_rw_virt - synchronously read into / write from kernel mapping
1376  * @bdev:	block device to access
1377  * @sector:	sector to access
1378  * @data:	data to read/write
1379  * @len:	length in byte to read/write
1380  * @op:		operation (e.g. REQ_OP_READ/REQ_OP_WRITE)
1381  *
1382  * Performs synchronous I/O to @bdev for @data/@len.  @data must be in
1383  * the kernel direct mapping and not a vmalloc address.
1384  */
bdev_rw_virt(struct block_device * bdev,sector_t sector,void * data,size_t len,enum req_op op)1385 int bdev_rw_virt(struct block_device *bdev, sector_t sector, void *data,
1386 		size_t len, enum req_op op)
1387 {
1388 	struct bio_vec bv;
1389 	struct bio bio;
1390 	int error;
1391 
1392 	if (WARN_ON_ONCE(is_vmalloc_addr(data)))
1393 		return -EIO;
1394 
1395 	bio_init(&bio, bdev, &bv, 1, op);
1396 	bio.bi_iter.bi_sector = sector;
1397 	bio_add_virt_nofail(&bio, data, len);
1398 	error = submit_bio_wait(&bio);
1399 	bio_uninit(&bio);
1400 	return error;
1401 }
1402 EXPORT_SYMBOL_GPL(bdev_rw_virt);
1403 
bio_wait_end_io(struct bio * bio)1404 static void bio_wait_end_io(struct bio *bio)
1405 {
1406 	complete(bio->bi_private);
1407 	bio_put(bio);
1408 }
1409 
1410 /*
1411  * bio_await_chain - ends @bio and waits for every chained bio to complete
1412  */
bio_await_chain(struct bio * bio)1413 void bio_await_chain(struct bio *bio)
1414 {
1415 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1416 			bio->bi_bdev->bd_disk->lockdep_map);
1417 
1418 	bio->bi_private = &done;
1419 	bio->bi_end_io = bio_wait_end_io;
1420 	bio_endio(bio);
1421 	blk_wait_io(&done);
1422 }
1423 
__bio_advance(struct bio * bio,unsigned bytes)1424 void __bio_advance(struct bio *bio, unsigned bytes)
1425 {
1426 	if (bio_integrity(bio))
1427 		bio_integrity_advance(bio, bytes);
1428 
1429 	bio_crypt_advance(bio, bytes);
1430 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1431 }
1432 EXPORT_SYMBOL(__bio_advance);
1433 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1434 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1435 			struct bio *src, struct bvec_iter *src_iter)
1436 {
1437 	while (src_iter->bi_size && dst_iter->bi_size) {
1438 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1439 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1440 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1441 		void *src_buf = bvec_kmap_local(&src_bv);
1442 		void *dst_buf = bvec_kmap_local(&dst_bv);
1443 
1444 		memcpy(dst_buf, src_buf, bytes);
1445 
1446 		kunmap_local(dst_buf);
1447 		kunmap_local(src_buf);
1448 
1449 		bio_advance_iter_single(src, src_iter, bytes);
1450 		bio_advance_iter_single(dst, dst_iter, bytes);
1451 	}
1452 }
1453 EXPORT_SYMBOL(bio_copy_data_iter);
1454 
1455 /**
1456  * bio_copy_data - copy contents of data buffers from one bio to another
1457  * @src: source bio
1458  * @dst: destination bio
1459  *
1460  * Stops when it reaches the end of either @src or @dst - that is, copies
1461  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1462  */
bio_copy_data(struct bio * dst,struct bio * src)1463 void bio_copy_data(struct bio *dst, struct bio *src)
1464 {
1465 	struct bvec_iter src_iter = src->bi_iter;
1466 	struct bvec_iter dst_iter = dst->bi_iter;
1467 
1468 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1469 }
1470 EXPORT_SYMBOL(bio_copy_data);
1471 
bio_free_pages(struct bio * bio)1472 void bio_free_pages(struct bio *bio)
1473 {
1474 	struct bio_vec *bvec;
1475 	struct bvec_iter_all iter_all;
1476 
1477 	bio_for_each_segment_all(bvec, bio, iter_all)
1478 		__free_page(bvec->bv_page);
1479 }
1480 EXPORT_SYMBOL(bio_free_pages);
1481 
1482 /*
1483  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1484  * for performing direct-IO in BIOs.
1485  *
1486  * The problem is that we cannot run folio_mark_dirty() from interrupt context
1487  * because the required locks are not interrupt-safe.  So what we can do is to
1488  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1489  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1490  * in process context.
1491  *
1492  * Note that this code is very hard to test under normal circumstances because
1493  * direct-io pins the pages with get_user_pages().  This makes
1494  * is_page_cache_freeable return false, and the VM will not clean the pages.
1495  * But other code (eg, flusher threads) could clean the pages if they are mapped
1496  * pagecache.
1497  *
1498  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1499  * deferred bio dirtying paths.
1500  */
1501 
1502 /*
1503  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1504  */
bio_set_pages_dirty(struct bio * bio)1505 void bio_set_pages_dirty(struct bio *bio)
1506 {
1507 	struct folio_iter fi;
1508 
1509 	bio_for_each_folio_all(fi, bio) {
1510 		folio_lock(fi.folio);
1511 		folio_mark_dirty(fi.folio);
1512 		folio_unlock(fi.folio);
1513 	}
1514 }
1515 EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1516 
1517 /*
1518  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1519  * If they are, then fine.  If, however, some pages are clean then they must
1520  * have been written out during the direct-IO read.  So we take another ref on
1521  * the BIO and re-dirty the pages in process context.
1522  *
1523  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1524  * here on.  It will unpin each page and will run one bio_put() against the
1525  * BIO.
1526  */
1527 
1528 static void bio_dirty_fn(struct work_struct *work);
1529 
1530 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1531 static DEFINE_SPINLOCK(bio_dirty_lock);
1532 static struct bio *bio_dirty_list;
1533 
1534 /*
1535  * This runs in process context
1536  */
bio_dirty_fn(struct work_struct * work)1537 static void bio_dirty_fn(struct work_struct *work)
1538 {
1539 	struct bio *bio, *next;
1540 
1541 	spin_lock_irq(&bio_dirty_lock);
1542 	next = bio_dirty_list;
1543 	bio_dirty_list = NULL;
1544 	spin_unlock_irq(&bio_dirty_lock);
1545 
1546 	while ((bio = next) != NULL) {
1547 		next = bio->bi_private;
1548 
1549 		bio_release_pages(bio, true);
1550 		bio_put(bio);
1551 	}
1552 }
1553 
bio_check_pages_dirty(struct bio * bio)1554 void bio_check_pages_dirty(struct bio *bio)
1555 {
1556 	struct folio_iter fi;
1557 	unsigned long flags;
1558 
1559 	bio_for_each_folio_all(fi, bio) {
1560 		if (!folio_test_dirty(fi.folio))
1561 			goto defer;
1562 	}
1563 
1564 	bio_release_pages(bio, false);
1565 	bio_put(bio);
1566 	return;
1567 defer:
1568 	spin_lock_irqsave(&bio_dirty_lock, flags);
1569 	bio->bi_private = bio_dirty_list;
1570 	bio_dirty_list = bio;
1571 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1572 	schedule_work(&bio_dirty_work);
1573 }
1574 EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1575 
bio_remaining_done(struct bio * bio)1576 static inline bool bio_remaining_done(struct bio *bio)
1577 {
1578 	/*
1579 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1580 	 * we always end io on the first invocation.
1581 	 */
1582 	if (!bio_flagged(bio, BIO_CHAIN))
1583 		return true;
1584 
1585 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1586 
1587 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1588 		bio_clear_flag(bio, BIO_CHAIN);
1589 		return true;
1590 	}
1591 
1592 	return false;
1593 }
1594 
1595 /**
1596  * bio_endio - end I/O on a bio
1597  * @bio:	bio
1598  *
1599  * Description:
1600  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1601  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1602  *   bio unless they own it and thus know that it has an end_io function.
1603  *
1604  *   bio_endio() can be called several times on a bio that has been chained
1605  *   using bio_chain().  The ->bi_end_io() function will only be called the
1606  *   last time.
1607  **/
bio_endio(struct bio * bio)1608 void bio_endio(struct bio *bio)
1609 {
1610 again:
1611 	if (!bio_remaining_done(bio))
1612 		return;
1613 	if (!bio_integrity_endio(bio))
1614 		return;
1615 
1616 	blk_zone_bio_endio(bio);
1617 
1618 	rq_qos_done_bio(bio);
1619 
1620 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1621 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1622 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1623 	}
1624 
1625 	/*
1626 	 * Need to have a real endio function for chained bios, otherwise
1627 	 * various corner cases will break (like stacking block devices that
1628 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1629 	 * recursion and blowing the stack. Tail call optimization would
1630 	 * handle this, but compiling with frame pointers also disables
1631 	 * gcc's sibling call optimization.
1632 	 */
1633 	if (bio->bi_end_io == bio_chain_endio) {
1634 		bio = __bio_chain_endio(bio);
1635 		goto again;
1636 	}
1637 
1638 #ifdef CONFIG_BLK_CGROUP
1639 	/*
1640 	 * Release cgroup info.  We shouldn't have to do this here, but quite
1641 	 * a few callers of bio_init fail to call bio_uninit, so we cover up
1642 	 * for that here at least for now.
1643 	 */
1644 	if (bio->bi_blkg) {
1645 		blkg_put(bio->bi_blkg);
1646 		bio->bi_blkg = NULL;
1647 	}
1648 #endif
1649 
1650 	if (bio->bi_end_io)
1651 		bio->bi_end_io(bio);
1652 }
1653 EXPORT_SYMBOL(bio_endio);
1654 
1655 /**
1656  * bio_split - split a bio
1657  * @bio:	bio to split
1658  * @sectors:	number of sectors to split from the front of @bio
1659  * @gfp:	gfp mask
1660  * @bs:		bio set to allocate from
1661  *
1662  * Allocates and returns a new bio which represents @sectors from the start of
1663  * @bio, and updates @bio to represent the remaining sectors.
1664  *
1665  * Unless this is a discard request the newly allocated bio will point
1666  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1667  * neither @bio nor @bs are freed before the split bio.
1668  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1669 struct bio *bio_split(struct bio *bio, int sectors,
1670 		      gfp_t gfp, struct bio_set *bs)
1671 {
1672 	struct bio *split;
1673 
1674 	if (WARN_ON_ONCE(sectors <= 0))
1675 		return ERR_PTR(-EINVAL);
1676 	if (WARN_ON_ONCE(sectors >= bio_sectors(bio)))
1677 		return ERR_PTR(-EINVAL);
1678 
1679 	/* Zone append commands cannot be split */
1680 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1681 		return ERR_PTR(-EINVAL);
1682 
1683 	/* atomic writes cannot be split */
1684 	if (bio->bi_opf & REQ_ATOMIC)
1685 		return ERR_PTR(-EINVAL);
1686 
1687 	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
1688 	if (!split)
1689 		return ERR_PTR(-ENOMEM);
1690 
1691 	split->bi_iter.bi_size = sectors << 9;
1692 
1693 	if (bio_integrity(split))
1694 		bio_integrity_trim(split);
1695 
1696 	bio_advance(bio, split->bi_iter.bi_size);
1697 
1698 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1699 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1700 
1701 	return split;
1702 }
1703 EXPORT_SYMBOL(bio_split);
1704 
1705 /**
1706  * bio_trim - trim a bio
1707  * @bio:	bio to trim
1708  * @offset:	number of sectors to trim from the front of @bio
1709  * @size:	size we want to trim @bio to, in sectors
1710  *
1711  * This function is typically used for bios that are cloned and submitted
1712  * to the underlying device in parts.
1713  */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1714 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1715 {
1716 	/* We should never trim an atomic write */
1717 	if (WARN_ON_ONCE(bio->bi_opf & REQ_ATOMIC && size))
1718 		return;
1719 
1720 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1721 			 offset + size > bio_sectors(bio)))
1722 		return;
1723 
1724 	size <<= 9;
1725 	if (offset == 0 && size == bio->bi_iter.bi_size)
1726 		return;
1727 
1728 	bio_advance(bio, offset << 9);
1729 	bio->bi_iter.bi_size = size;
1730 
1731 	if (bio_integrity(bio))
1732 		bio_integrity_trim(bio);
1733 }
1734 EXPORT_SYMBOL_GPL(bio_trim);
1735 
1736 /*
1737  * create memory pools for biovec's in a bio_set.
1738  * use the global biovec slabs created for general use.
1739  */
biovec_init_pool(mempool_t * pool,int pool_entries)1740 int biovec_init_pool(mempool_t *pool, int pool_entries)
1741 {
1742 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1743 
1744 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1745 }
1746 
1747 /*
1748  * bioset_exit - exit a bioset initialized with bioset_init()
1749  *
1750  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1751  * kzalloc()).
1752  */
bioset_exit(struct bio_set * bs)1753 void bioset_exit(struct bio_set *bs)
1754 {
1755 	bio_alloc_cache_destroy(bs);
1756 	if (bs->rescue_workqueue)
1757 		destroy_workqueue(bs->rescue_workqueue);
1758 	bs->rescue_workqueue = NULL;
1759 
1760 	mempool_exit(&bs->bio_pool);
1761 	mempool_exit(&bs->bvec_pool);
1762 
1763 	if (bs->bio_slab)
1764 		bio_put_slab(bs);
1765 	bs->bio_slab = NULL;
1766 }
1767 EXPORT_SYMBOL(bioset_exit);
1768 
1769 /**
1770  * bioset_init - Initialize a bio_set
1771  * @bs:		pool to initialize
1772  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1773  * @front_pad:	Number of bytes to allocate in front of the returned bio
1774  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1775  *              and %BIOSET_NEED_RESCUER
1776  *
1777  * Description:
1778  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1779  *    to ask for a number of bytes to be allocated in front of the bio.
1780  *    Front pad allocation is useful for embedding the bio inside
1781  *    another structure, to avoid allocating extra data to go with the bio.
1782  *    Note that the bio must be embedded at the END of that structure always,
1783  *    or things will break badly.
1784  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1785  *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
1786  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1787  *    to dispatch queued requests when the mempool runs out of space.
1788  *
1789  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1790 int bioset_init(struct bio_set *bs,
1791 		unsigned int pool_size,
1792 		unsigned int front_pad,
1793 		int flags)
1794 {
1795 	bs->front_pad = front_pad;
1796 	if (flags & BIOSET_NEED_BVECS)
1797 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1798 	else
1799 		bs->back_pad = 0;
1800 
1801 	spin_lock_init(&bs->rescue_lock);
1802 	bio_list_init(&bs->rescue_list);
1803 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1804 
1805 	bs->bio_slab = bio_find_or_create_slab(bs);
1806 	if (!bs->bio_slab)
1807 		return -ENOMEM;
1808 
1809 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1810 		goto bad;
1811 
1812 	if ((flags & BIOSET_NEED_BVECS) &&
1813 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1814 		goto bad;
1815 
1816 	if (flags & BIOSET_NEED_RESCUER) {
1817 		bs->rescue_workqueue = alloc_workqueue("bioset",
1818 							WQ_MEM_RECLAIM, 0);
1819 		if (!bs->rescue_workqueue)
1820 			goto bad;
1821 	}
1822 	if (flags & BIOSET_PERCPU_CACHE) {
1823 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1824 		if (!bs->cache)
1825 			goto bad;
1826 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1827 	}
1828 
1829 	return 0;
1830 bad:
1831 	bioset_exit(bs);
1832 	return -ENOMEM;
1833 }
1834 EXPORT_SYMBOL(bioset_init);
1835 
init_bio(void)1836 static int __init init_bio(void)
1837 {
1838 	int i;
1839 
1840 	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
1841 
1842 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1843 		struct biovec_slab *bvs = bvec_slabs + i;
1844 
1845 		bvs->slab = kmem_cache_create(bvs->name,
1846 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1847 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1848 	}
1849 
1850 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1851 					bio_cpu_dead);
1852 
1853 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
1854 			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
1855 		panic("bio: can't allocate bios\n");
1856 
1857 	return 0;
1858 }
1859 subsys_initcall(init_bio);
1860