1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "system/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "system/replay.h"
41
42 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
43 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
44
45 static void coroutine_fn GRAPH_RDLOCK
46 bdrv_parent_cb_resize(BlockDriverState *bs);
47
48 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
49 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
50
51 static void GRAPH_RDLOCK
bdrv_parent_drained_begin(BlockDriverState * bs,BdrvChild * ignore)52 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
53 {
54 BdrvChild *c, *next;
55 IO_OR_GS_CODE();
56 assert_bdrv_graph_readable();
57
58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59 if (c == ignore) {
60 continue;
61 }
62 bdrv_parent_drained_begin_single(c);
63 }
64 }
65
bdrv_parent_drained_end_single(BdrvChild * c)66 void bdrv_parent_drained_end_single(BdrvChild *c)
67 {
68 GLOBAL_STATE_CODE();
69
70 assert(c->quiesced_parent);
71 c->quiesced_parent = false;
72
73 if (c->klass->drained_end) {
74 c->klass->drained_end(c);
75 }
76 }
77
78 static void GRAPH_RDLOCK
bdrv_parent_drained_end(BlockDriverState * bs,BdrvChild * ignore)79 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
80 {
81 BdrvChild *c;
82 IO_OR_GS_CODE();
83 assert_bdrv_graph_readable();
84
85 QLIST_FOREACH(c, &bs->parents, next_parent) {
86 if (c == ignore) {
87 continue;
88 }
89 bdrv_parent_drained_end_single(c);
90 }
91 }
92
bdrv_parent_drained_poll_single(BdrvChild * c)93 bool bdrv_parent_drained_poll_single(BdrvChild *c)
94 {
95 IO_OR_GS_CODE();
96
97 if (c->klass->drained_poll) {
98 return c->klass->drained_poll(c);
99 }
100 return false;
101 }
102
103 static bool GRAPH_RDLOCK
bdrv_parent_drained_poll(BlockDriverState * bs,BdrvChild * ignore,bool ignore_bds_parents)104 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
105 bool ignore_bds_parents)
106 {
107 BdrvChild *c, *next;
108 bool busy = false;
109 IO_OR_GS_CODE();
110 assert_bdrv_graph_readable();
111
112 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
113 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
114 continue;
115 }
116 busy |= bdrv_parent_drained_poll_single(c);
117 }
118
119 return busy;
120 }
121
bdrv_parent_drained_begin_single(BdrvChild * c)122 void bdrv_parent_drained_begin_single(BdrvChild *c)
123 {
124 GLOBAL_STATE_CODE();
125
126 assert(!c->quiesced_parent);
127 c->quiesced_parent = true;
128
129 if (c->klass->drained_begin) {
130 /* called with rdlock taken, but it doesn't really need it. */
131 c->klass->drained_begin(c);
132 }
133 }
134
bdrv_merge_limits(BlockLimits * dst,const BlockLimits * src)135 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
136 {
137 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
138 src->pdiscard_alignment);
139 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
140 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
141 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
142 src->max_hw_transfer);
143 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
144 src->opt_mem_alignment);
145 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
146 src->min_mem_alignment);
147 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
148 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
149 }
150
151 typedef struct BdrvRefreshLimitsState {
152 BlockDriverState *bs;
153 BlockLimits old_bl;
154 } BdrvRefreshLimitsState;
155
bdrv_refresh_limits_abort(void * opaque)156 static void bdrv_refresh_limits_abort(void *opaque)
157 {
158 BdrvRefreshLimitsState *s = opaque;
159
160 s->bs->bl = s->old_bl;
161 }
162
163 static TransactionActionDrv bdrv_refresh_limits_drv = {
164 .abort = bdrv_refresh_limits_abort,
165 .clean = g_free,
166 };
167
168 /* @tran is allowed to be NULL, in this case no rollback is possible. */
bdrv_refresh_limits(BlockDriverState * bs,Transaction * tran,Error ** errp)169 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
170 {
171 ERRP_GUARD();
172 BlockDriver *drv = bs->drv;
173 BdrvChild *c;
174 bool have_limits;
175
176 GLOBAL_STATE_CODE();
177
178 if (tran) {
179 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
180 *s = (BdrvRefreshLimitsState) {
181 .bs = bs,
182 .old_bl = bs->bl,
183 };
184 tran_add(tran, &bdrv_refresh_limits_drv, s);
185 }
186
187 memset(&bs->bl, 0, sizeof(bs->bl));
188
189 if (!drv) {
190 return;
191 }
192
193 /* Default alignment based on whether driver has byte interface */
194 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
195 drv->bdrv_aio_preadv ||
196 drv->bdrv_co_preadv_part) ? 1 : 512;
197
198 /* Take some limits from the children as a default */
199 have_limits = false;
200 QLIST_FOREACH(c, &bs->children, next) {
201 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
202 {
203 bdrv_merge_limits(&bs->bl, &c->bs->bl);
204 have_limits = true;
205 }
206
207 if (c->role & BDRV_CHILD_FILTERED) {
208 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
209 }
210 }
211
212 if (!have_limits) {
213 bs->bl.min_mem_alignment = 512;
214 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
215
216 /* Safe default since most protocols use readv()/writev()/etc */
217 bs->bl.max_iov = IOV_MAX;
218 }
219
220 /* Then let the driver override it */
221 if (drv->bdrv_refresh_limits) {
222 drv->bdrv_refresh_limits(bs, errp);
223 if (*errp) {
224 return;
225 }
226 }
227
228 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
229 error_setg(errp, "Driver requires too large request alignment");
230 }
231 }
232
233 /**
234 * The copy-on-read flag is actually a reference count so multiple users may
235 * use the feature without worrying about clobbering its previous state.
236 * Copy-on-read stays enabled until all users have called to disable it.
237 */
bdrv_enable_copy_on_read(BlockDriverState * bs)238 void bdrv_enable_copy_on_read(BlockDriverState *bs)
239 {
240 IO_CODE();
241 qatomic_inc(&bs->copy_on_read);
242 }
243
bdrv_disable_copy_on_read(BlockDriverState * bs)244 void bdrv_disable_copy_on_read(BlockDriverState *bs)
245 {
246 int old = qatomic_fetch_dec(&bs->copy_on_read);
247 IO_CODE();
248 assert(old >= 1);
249 }
250
251 typedef struct {
252 Coroutine *co;
253 BlockDriverState *bs;
254 bool done;
255 bool begin;
256 bool poll;
257 BdrvChild *parent;
258 } BdrvCoDrainData;
259
260 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
bdrv_drain_poll(BlockDriverState * bs,BdrvChild * ignore_parent,bool ignore_bds_parents)261 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
262 bool ignore_bds_parents)
263 {
264 GLOBAL_STATE_CODE();
265
266 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
267 return true;
268 }
269
270 if (qatomic_read(&bs->in_flight)) {
271 return true;
272 }
273
274 return false;
275 }
276
bdrv_drain_poll_top_level(BlockDriverState * bs,BdrvChild * ignore_parent)277 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
278 BdrvChild *ignore_parent)
279 {
280 GLOBAL_STATE_CODE();
281 GRAPH_RDLOCK_GUARD_MAINLOOP();
282
283 return bdrv_drain_poll(bs, ignore_parent, false);
284 }
285
286 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
287 bool poll);
288 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
289
bdrv_co_drain_bh_cb(void * opaque)290 static void bdrv_co_drain_bh_cb(void *opaque)
291 {
292 BdrvCoDrainData *data = opaque;
293 Coroutine *co = data->co;
294 BlockDriverState *bs = data->bs;
295
296 if (bs) {
297 bdrv_dec_in_flight(bs);
298 if (data->begin) {
299 bdrv_do_drained_begin(bs, data->parent, data->poll);
300 } else {
301 assert(!data->poll);
302 bdrv_do_drained_end(bs, data->parent);
303 }
304 } else {
305 assert(data->begin);
306 bdrv_drain_all_begin();
307 }
308
309 data->done = true;
310 aio_co_wake(co);
311 }
312
bdrv_co_yield_to_drain(BlockDriverState * bs,bool begin,BdrvChild * parent,bool poll)313 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
314 bool begin,
315 BdrvChild *parent,
316 bool poll)
317 {
318 BdrvCoDrainData data;
319 Coroutine *self = qemu_coroutine_self();
320
321 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
322 * other coroutines run if they were queued by aio_co_enter(). */
323
324 assert(qemu_in_coroutine());
325 data = (BdrvCoDrainData) {
326 .co = self,
327 .bs = bs,
328 .done = false,
329 .begin = begin,
330 .parent = parent,
331 .poll = poll,
332 };
333
334 if (bs) {
335 bdrv_inc_in_flight(bs);
336 }
337
338 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
339 bdrv_co_drain_bh_cb, &data);
340
341 qemu_coroutine_yield();
342 /* If we are resumed from some other event (such as an aio completion or a
343 * timer callback), it is a bug in the caller that should be fixed. */
344 assert(data.done);
345 }
346
bdrv_do_drained_begin(BlockDriverState * bs,BdrvChild * parent,bool poll)347 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
348 bool poll)
349 {
350 IO_OR_GS_CODE();
351
352 if (qemu_in_coroutine()) {
353 bdrv_co_yield_to_drain(bs, true, parent, poll);
354 return;
355 }
356
357 GLOBAL_STATE_CODE();
358
359 /* Stop things in parent-to-child order */
360 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
361 GRAPH_RDLOCK_GUARD_MAINLOOP();
362 bdrv_parent_drained_begin(bs, parent);
363 if (bs->drv && bs->drv->bdrv_drain_begin) {
364 bs->drv->bdrv_drain_begin(bs);
365 }
366 }
367
368 /*
369 * Wait for drained requests to finish.
370 *
371 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
372 * call is needed so things in this AioContext can make progress even
373 * though we don't return to the main AioContext loop - this automatically
374 * includes other nodes in the same AioContext and therefore all child
375 * nodes.
376 */
377 if (poll) {
378 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
379 }
380 }
381
bdrv_do_drained_begin_quiesce(BlockDriverState * bs,BdrvChild * parent)382 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
383 {
384 bdrv_do_drained_begin(bs, parent, false);
385 }
386
387 void coroutine_mixed_fn
bdrv_drained_begin(BlockDriverState * bs)388 bdrv_drained_begin(BlockDriverState *bs)
389 {
390 IO_OR_GS_CODE();
391 bdrv_do_drained_begin(bs, NULL, true);
392 }
393
394 /**
395 * This function does not poll, nor must any of its recursively called
396 * functions.
397 */
bdrv_do_drained_end(BlockDriverState * bs,BdrvChild * parent)398 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
399 {
400 int old_quiesce_counter;
401
402 IO_OR_GS_CODE();
403
404 if (qemu_in_coroutine()) {
405 bdrv_co_yield_to_drain(bs, false, parent, false);
406 return;
407 }
408
409 /* At this point, we should be always running in the main loop. */
410 GLOBAL_STATE_CODE();
411 assert(bs->quiesce_counter > 0);
412 GLOBAL_STATE_CODE();
413
414 /* Re-enable things in child-to-parent order */
415 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
416 if (old_quiesce_counter == 1) {
417 GRAPH_RDLOCK_GUARD_MAINLOOP();
418 if (bs->drv && bs->drv->bdrv_drain_end) {
419 bs->drv->bdrv_drain_end(bs);
420 }
421 bdrv_parent_drained_end(bs, parent);
422 }
423 }
424
bdrv_drained_end(BlockDriverState * bs)425 void bdrv_drained_end(BlockDriverState *bs)
426 {
427 IO_OR_GS_CODE();
428 bdrv_do_drained_end(bs, NULL);
429 }
430
bdrv_drain(BlockDriverState * bs)431 void bdrv_drain(BlockDriverState *bs)
432 {
433 IO_OR_GS_CODE();
434 bdrv_drained_begin(bs);
435 bdrv_drained_end(bs);
436 }
437
bdrv_drain_assert_idle(BlockDriverState * bs)438 static void bdrv_drain_assert_idle(BlockDriverState *bs)
439 {
440 BdrvChild *child, *next;
441 GLOBAL_STATE_CODE();
442 GRAPH_RDLOCK_GUARD_MAINLOOP();
443
444 assert(qatomic_read(&bs->in_flight) == 0);
445 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
446 bdrv_drain_assert_idle(child->bs);
447 }
448 }
449
450 unsigned int bdrv_drain_all_count = 0;
451
bdrv_drain_all_poll(void)452 static bool bdrv_drain_all_poll(void)
453 {
454 BlockDriverState *bs = NULL;
455 bool result = false;
456
457 GLOBAL_STATE_CODE();
458 GRAPH_RDLOCK_GUARD_MAINLOOP();
459
460 /*
461 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
462 * so iterating bdrv_next_all_states() is safe.
463 */
464 while ((bs = bdrv_next_all_states(bs))) {
465 result |= bdrv_drain_poll(bs, NULL, true);
466 }
467
468 return result;
469 }
470
471 /*
472 * Wait for pending requests to complete across all BlockDriverStates
473 *
474 * This function does not flush data to disk, use bdrv_flush_all() for that
475 * after calling this function.
476 *
477 * This pauses all block jobs and disables external clients. It must
478 * be paired with bdrv_drain_all_end().
479 *
480 * NOTE: no new block jobs or BlockDriverStates can be created between
481 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
482 */
bdrv_drain_all_begin_nopoll(void)483 void bdrv_drain_all_begin_nopoll(void)
484 {
485 BlockDriverState *bs = NULL;
486 GLOBAL_STATE_CODE();
487
488 /*
489 * bdrv queue is managed by record/replay,
490 * waiting for finishing the I/O requests may
491 * be infinite
492 */
493 if (replay_events_enabled()) {
494 return;
495 }
496
497 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
498 * loop AioContext, so make sure we're in the main context. */
499 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
500 assert(bdrv_drain_all_count < INT_MAX);
501 bdrv_drain_all_count++;
502
503 /* Quiesce all nodes, without polling in-flight requests yet. The graph
504 * cannot change during this loop. */
505 while ((bs = bdrv_next_all_states(bs))) {
506 bdrv_do_drained_begin(bs, NULL, false);
507 }
508 }
509
bdrv_drain_all_begin(void)510 void coroutine_mixed_fn bdrv_drain_all_begin(void)
511 {
512 BlockDriverState *bs = NULL;
513
514 if (qemu_in_coroutine()) {
515 bdrv_co_yield_to_drain(NULL, true, NULL, true);
516 return;
517 }
518
519 /*
520 * bdrv queue is managed by record/replay,
521 * waiting for finishing the I/O requests may
522 * be infinite
523 */
524 if (replay_events_enabled()) {
525 return;
526 }
527
528 bdrv_drain_all_begin_nopoll();
529
530 /* Now poll the in-flight requests */
531 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
532
533 while ((bs = bdrv_next_all_states(bs))) {
534 bdrv_drain_assert_idle(bs);
535 }
536 }
537
bdrv_drain_all_end_quiesce(BlockDriverState * bs)538 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
539 {
540 GLOBAL_STATE_CODE();
541
542 g_assert(bs->quiesce_counter > 0);
543 g_assert(!bs->refcnt);
544
545 while (bs->quiesce_counter) {
546 bdrv_do_drained_end(bs, NULL);
547 }
548 }
549
bdrv_drain_all_end(void)550 void bdrv_drain_all_end(void)
551 {
552 BlockDriverState *bs = NULL;
553 GLOBAL_STATE_CODE();
554
555 /*
556 * bdrv queue is managed by record/replay,
557 * waiting for finishing the I/O requests may
558 * be endless
559 */
560 if (replay_events_enabled()) {
561 return;
562 }
563
564 while ((bs = bdrv_next_all_states(bs))) {
565 bdrv_do_drained_end(bs, NULL);
566 }
567
568 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
569 assert(bdrv_drain_all_count > 0);
570 bdrv_drain_all_count--;
571 }
572
bdrv_drain_all(void)573 void bdrv_drain_all(void)
574 {
575 GLOBAL_STATE_CODE();
576 bdrv_drain_all_begin();
577 bdrv_drain_all_end();
578 }
579
580 /**
581 * Remove an active request from the tracked requests list
582 *
583 * This function should be called when a tracked request is completing.
584 */
tracked_request_end(BdrvTrackedRequest * req)585 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
586 {
587 if (req->serialising) {
588 qatomic_dec(&req->bs->serialising_in_flight);
589 }
590
591 qemu_mutex_lock(&req->bs->reqs_lock);
592 QLIST_REMOVE(req, list);
593 qemu_mutex_unlock(&req->bs->reqs_lock);
594
595 /*
596 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
597 * anymore because the request has been removed from the list, so it's safe
598 * to restart the queue outside reqs_lock to minimize the critical section.
599 */
600 qemu_co_queue_restart_all(&req->wait_queue);
601 }
602
603 /**
604 * Add an active request to the tracked requests list
605 */
tracked_request_begin(BdrvTrackedRequest * req,BlockDriverState * bs,int64_t offset,int64_t bytes,enum BdrvTrackedRequestType type)606 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
607 BlockDriverState *bs,
608 int64_t offset,
609 int64_t bytes,
610 enum BdrvTrackedRequestType type)
611 {
612 bdrv_check_request(offset, bytes, &error_abort);
613
614 *req = (BdrvTrackedRequest){
615 .bs = bs,
616 .offset = offset,
617 .bytes = bytes,
618 .type = type,
619 .co = qemu_coroutine_self(),
620 .serialising = false,
621 .overlap_offset = offset,
622 .overlap_bytes = bytes,
623 };
624
625 qemu_co_queue_init(&req->wait_queue);
626
627 qemu_mutex_lock(&bs->reqs_lock);
628 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
629 qemu_mutex_unlock(&bs->reqs_lock);
630 }
631
tracked_request_overlaps(BdrvTrackedRequest * req,int64_t offset,int64_t bytes)632 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
633 int64_t offset, int64_t bytes)
634 {
635 bdrv_check_request(offset, bytes, &error_abort);
636
637 /* aaaa bbbb */
638 if (offset >= req->overlap_offset + req->overlap_bytes) {
639 return false;
640 }
641 /* bbbb aaaa */
642 if (req->overlap_offset >= offset + bytes) {
643 return false;
644 }
645 return true;
646 }
647
648 /* Called with self->bs->reqs_lock held */
649 static coroutine_fn BdrvTrackedRequest *
bdrv_find_conflicting_request(BdrvTrackedRequest * self)650 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
651 {
652 BdrvTrackedRequest *req;
653
654 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
655 if (req == self || (!req->serialising && !self->serialising)) {
656 continue;
657 }
658 if (tracked_request_overlaps(req, self->overlap_offset,
659 self->overlap_bytes))
660 {
661 /*
662 * Hitting this means there was a reentrant request, for
663 * example, a block driver issuing nested requests. This must
664 * never happen since it means deadlock.
665 */
666 assert(qemu_coroutine_self() != req->co);
667
668 /*
669 * If the request is already (indirectly) waiting for us, or
670 * will wait for us as soon as it wakes up, then just go on
671 * (instead of producing a deadlock in the former case).
672 */
673 if (!req->waiting_for) {
674 return req;
675 }
676 }
677 }
678
679 return NULL;
680 }
681
682 /* Called with self->bs->reqs_lock held */
683 static void coroutine_fn
bdrv_wait_serialising_requests_locked(BdrvTrackedRequest * self)684 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
685 {
686 BdrvTrackedRequest *req;
687
688 while ((req = bdrv_find_conflicting_request(self))) {
689 self->waiting_for = req;
690 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
691 self->waiting_for = NULL;
692 }
693 }
694
695 /* Called with req->bs->reqs_lock held */
tracked_request_set_serialising(BdrvTrackedRequest * req,uint64_t align)696 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
697 uint64_t align)
698 {
699 int64_t overlap_offset = req->offset & ~(align - 1);
700 int64_t overlap_bytes =
701 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
702
703 bdrv_check_request(req->offset, req->bytes, &error_abort);
704
705 if (!req->serialising) {
706 qatomic_inc(&req->bs->serialising_in_flight);
707 req->serialising = true;
708 }
709
710 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
711 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
712 }
713
714 /**
715 * Return the tracked request on @bs for the current coroutine, or
716 * NULL if there is none.
717 */
bdrv_co_get_self_request(BlockDriverState * bs)718 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
719 {
720 BdrvTrackedRequest *req;
721 Coroutine *self = qemu_coroutine_self();
722 IO_CODE();
723
724 QLIST_FOREACH(req, &bs->tracked_requests, list) {
725 if (req->co == self) {
726 return req;
727 }
728 }
729
730 return NULL;
731 }
732
733 /**
734 * Round a region to subcluster (if supported) or cluster boundaries
735 */
736 void coroutine_fn GRAPH_RDLOCK
bdrv_round_to_subclusters(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * align_offset,int64_t * align_bytes)737 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
738 int64_t *align_offset, int64_t *align_bytes)
739 {
740 BlockDriverInfo bdi;
741 IO_CODE();
742 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
743 *align_offset = offset;
744 *align_bytes = bytes;
745 } else {
746 int64_t c = bdi.subcluster_size;
747 *align_offset = QEMU_ALIGN_DOWN(offset, c);
748 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
749 }
750 }
751
bdrv_get_cluster_size(BlockDriverState * bs)752 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
753 {
754 BlockDriverInfo bdi;
755 int ret;
756
757 ret = bdrv_co_get_info(bs, &bdi);
758 if (ret < 0 || bdi.cluster_size == 0) {
759 return bs->bl.request_alignment;
760 } else {
761 return bdi.cluster_size;
762 }
763 }
764
bdrv_inc_in_flight(BlockDriverState * bs)765 void bdrv_inc_in_flight(BlockDriverState *bs)
766 {
767 IO_CODE();
768 qatomic_inc(&bs->in_flight);
769 }
770
bdrv_wakeup(BlockDriverState * bs)771 void bdrv_wakeup(BlockDriverState *bs)
772 {
773 IO_CODE();
774 aio_wait_kick();
775 }
776
bdrv_dec_in_flight(BlockDriverState * bs)777 void bdrv_dec_in_flight(BlockDriverState *bs)
778 {
779 IO_CODE();
780 qatomic_dec(&bs->in_flight);
781 bdrv_wakeup(bs);
782 }
783
784 static void coroutine_fn
bdrv_wait_serialising_requests(BdrvTrackedRequest * self)785 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
786 {
787 BlockDriverState *bs = self->bs;
788
789 if (!qatomic_read(&bs->serialising_in_flight)) {
790 return;
791 }
792
793 qemu_mutex_lock(&bs->reqs_lock);
794 bdrv_wait_serialising_requests_locked(self);
795 qemu_mutex_unlock(&bs->reqs_lock);
796 }
797
bdrv_make_request_serialising(BdrvTrackedRequest * req,uint64_t align)798 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
799 uint64_t align)
800 {
801 IO_CODE();
802
803 qemu_mutex_lock(&req->bs->reqs_lock);
804
805 tracked_request_set_serialising(req, align);
806 bdrv_wait_serialising_requests_locked(req);
807
808 qemu_mutex_unlock(&req->bs->reqs_lock);
809 }
810
bdrv_check_qiov_request(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,Error ** errp)811 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
812 QEMUIOVector *qiov, size_t qiov_offset,
813 Error **errp)
814 {
815 /*
816 * Check generic offset/bytes correctness
817 */
818
819 if (offset < 0) {
820 error_setg(errp, "offset is negative: %" PRIi64, offset);
821 return -EIO;
822 }
823
824 if (bytes < 0) {
825 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
826 return -EIO;
827 }
828
829 if (bytes > BDRV_MAX_LENGTH) {
830 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
831 bytes, BDRV_MAX_LENGTH);
832 return -EIO;
833 }
834
835 if (offset > BDRV_MAX_LENGTH) {
836 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
837 offset, BDRV_MAX_LENGTH);
838 return -EIO;
839 }
840
841 if (offset > BDRV_MAX_LENGTH - bytes) {
842 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
843 "exceeds maximum(%" PRIi64 ")", offset, bytes,
844 BDRV_MAX_LENGTH);
845 return -EIO;
846 }
847
848 if (!qiov) {
849 return 0;
850 }
851
852 /*
853 * Check qiov and qiov_offset
854 */
855
856 if (qiov_offset > qiov->size) {
857 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
858 qiov_offset, qiov->size);
859 return -EIO;
860 }
861
862 if (bytes > qiov->size - qiov_offset) {
863 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
864 "vector size(%zu)", bytes, qiov_offset, qiov->size);
865 return -EIO;
866 }
867
868 return 0;
869 }
870
bdrv_check_request(int64_t offset,int64_t bytes,Error ** errp)871 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
872 {
873 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
874 }
875
bdrv_check_request32(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)876 static int bdrv_check_request32(int64_t offset, int64_t bytes,
877 QEMUIOVector *qiov, size_t qiov_offset)
878 {
879 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
880 if (ret < 0) {
881 return ret;
882 }
883
884 if (bytes > BDRV_REQUEST_MAX_BYTES) {
885 return -EIO;
886 }
887
888 return 0;
889 }
890
891 /*
892 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
893 * The operation is sped up by checking the block status and only writing
894 * zeroes to the device if they currently do not return zeroes. Optional
895 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
896 * BDRV_REQ_FUA).
897 *
898 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
899 */
bdrv_make_zero(BdrvChild * child,BdrvRequestFlags flags)900 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
901 {
902 int ret;
903 int64_t target_size, bytes, offset = 0;
904 BlockDriverState *bs = child->bs;
905 IO_CODE();
906
907 target_size = bdrv_getlength(bs);
908 if (target_size < 0) {
909 return target_size;
910 }
911
912 for (;;) {
913 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
914 if (bytes <= 0) {
915 return 0;
916 }
917 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
918 if (ret < 0) {
919 return ret;
920 }
921 if (ret & BDRV_BLOCK_ZERO) {
922 offset += bytes;
923 continue;
924 }
925 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
926 if (ret < 0) {
927 return ret;
928 }
929 offset += bytes;
930 }
931 }
932
933 /*
934 * Writes to the file and ensures that no writes are reordered across this
935 * request (acts as a barrier)
936 *
937 * Returns 0 on success, -errno in error cases.
938 */
bdrv_co_pwrite_sync(BdrvChild * child,int64_t offset,int64_t bytes,const void * buf,BdrvRequestFlags flags)939 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
940 int64_t bytes, const void *buf,
941 BdrvRequestFlags flags)
942 {
943 int ret;
944 IO_CODE();
945 assert_bdrv_graph_readable();
946
947 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
948 if (ret < 0) {
949 return ret;
950 }
951
952 ret = bdrv_co_flush(child->bs);
953 if (ret < 0) {
954 return ret;
955 }
956
957 return 0;
958 }
959
960 typedef struct CoroutineIOCompletion {
961 Coroutine *coroutine;
962 int ret;
963 } CoroutineIOCompletion;
964
bdrv_co_io_em_complete(void * opaque,int ret)965 static void bdrv_co_io_em_complete(void *opaque, int ret)
966 {
967 CoroutineIOCompletion *co = opaque;
968
969 co->ret = ret;
970 aio_co_wake(co->coroutine);
971 }
972
973 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_preadv(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)974 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
975 QEMUIOVector *qiov, size_t qiov_offset, int flags)
976 {
977 BlockDriver *drv = bs->drv;
978 int64_t sector_num;
979 unsigned int nb_sectors;
980 QEMUIOVector local_qiov;
981 int ret;
982 assert_bdrv_graph_readable();
983
984 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
985 assert(!(flags & ~bs->supported_read_flags));
986
987 if (!drv) {
988 return -ENOMEDIUM;
989 }
990
991 if (drv->bdrv_co_preadv_part) {
992 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
993 flags);
994 }
995
996 if (qiov_offset > 0 || bytes != qiov->size) {
997 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
998 qiov = &local_qiov;
999 }
1000
1001 if (drv->bdrv_co_preadv) {
1002 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1003 goto out;
1004 }
1005
1006 if (drv->bdrv_aio_preadv) {
1007 BlockAIOCB *acb;
1008 CoroutineIOCompletion co = {
1009 .coroutine = qemu_coroutine_self(),
1010 };
1011
1012 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1013 bdrv_co_io_em_complete, &co);
1014 if (acb == NULL) {
1015 ret = -EIO;
1016 goto out;
1017 } else {
1018 qemu_coroutine_yield();
1019 ret = co.ret;
1020 goto out;
1021 }
1022 }
1023
1024 sector_num = offset >> BDRV_SECTOR_BITS;
1025 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1026
1027 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1028 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1029 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1030 assert(drv->bdrv_co_readv);
1031
1032 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1033
1034 out:
1035 if (qiov == &local_qiov) {
1036 qemu_iovec_destroy(&local_qiov);
1037 }
1038
1039 return ret;
1040 }
1041
1042 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1043 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1044 QEMUIOVector *qiov, size_t qiov_offset,
1045 BdrvRequestFlags flags)
1046 {
1047 BlockDriver *drv = bs->drv;
1048 bool emulate_fua = false;
1049 int64_t sector_num;
1050 unsigned int nb_sectors;
1051 QEMUIOVector local_qiov;
1052 int ret;
1053 assert_bdrv_graph_readable();
1054
1055 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1056
1057 if (!drv) {
1058 return -ENOMEDIUM;
1059 }
1060
1061 if (bs->open_flags & BDRV_O_NO_FLUSH) {
1062 flags &= ~BDRV_REQ_FUA;
1063 }
1064
1065 if ((flags & BDRV_REQ_FUA) &&
1066 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1067 flags &= ~BDRV_REQ_FUA;
1068 emulate_fua = true;
1069 }
1070
1071 flags &= bs->supported_write_flags;
1072
1073 if (drv->bdrv_co_pwritev_part) {
1074 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1075 flags);
1076 goto emulate_flags;
1077 }
1078
1079 if (qiov_offset > 0 || bytes != qiov->size) {
1080 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1081 qiov = &local_qiov;
1082 }
1083
1084 if (drv->bdrv_co_pwritev) {
1085 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1086 goto emulate_flags;
1087 }
1088
1089 if (drv->bdrv_aio_pwritev) {
1090 BlockAIOCB *acb;
1091 CoroutineIOCompletion co = {
1092 .coroutine = qemu_coroutine_self(),
1093 };
1094
1095 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1096 bdrv_co_io_em_complete, &co);
1097 if (acb == NULL) {
1098 ret = -EIO;
1099 } else {
1100 qemu_coroutine_yield();
1101 ret = co.ret;
1102 }
1103 goto emulate_flags;
1104 }
1105
1106 sector_num = offset >> BDRV_SECTOR_BITS;
1107 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1108
1109 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1110 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1111 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1112
1113 assert(drv->bdrv_co_writev);
1114 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1115
1116 emulate_flags:
1117 if (ret == 0 && emulate_fua) {
1118 ret = bdrv_co_flush(bs);
1119 }
1120
1121 if (qiov == &local_qiov) {
1122 qemu_iovec_destroy(&local_qiov);
1123 }
1124
1125 return ret;
1126 }
1127
1128 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev_compressed(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)1129 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1130 int64_t bytes, QEMUIOVector *qiov,
1131 size_t qiov_offset)
1132 {
1133 BlockDriver *drv = bs->drv;
1134 QEMUIOVector local_qiov;
1135 int ret;
1136 assert_bdrv_graph_readable();
1137
1138 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1139
1140 if (!drv) {
1141 return -ENOMEDIUM;
1142 }
1143
1144 if (!block_driver_can_compress(drv)) {
1145 return -ENOTSUP;
1146 }
1147
1148 if (drv->bdrv_co_pwritev_compressed_part) {
1149 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1150 qiov, qiov_offset);
1151 }
1152
1153 if (qiov_offset == 0) {
1154 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1155 }
1156
1157 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1158 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1159 qemu_iovec_destroy(&local_qiov);
1160
1161 return ret;
1162 }
1163
1164 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_copy_on_readv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)1165 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1166 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1167 {
1168 BlockDriverState *bs = child->bs;
1169
1170 /* Perform I/O through a temporary buffer so that users who scribble over
1171 * their read buffer while the operation is in progress do not end up
1172 * modifying the image file. This is critical for zero-copy guest I/O
1173 * where anything might happen inside guest memory.
1174 */
1175 void *bounce_buffer = NULL;
1176
1177 BlockDriver *drv = bs->drv;
1178 int64_t align_offset;
1179 int64_t align_bytes;
1180 int64_t skip_bytes;
1181 int ret;
1182 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1183 BDRV_REQUEST_MAX_BYTES);
1184 int64_t progress = 0;
1185 bool skip_write;
1186
1187 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1188
1189 if (!drv) {
1190 return -ENOMEDIUM;
1191 }
1192
1193 /*
1194 * Do not write anything when the BDS is inactive. That is not
1195 * allowed, and it would not help.
1196 */
1197 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1198
1199 /* FIXME We cannot require callers to have write permissions when all they
1200 * are doing is a read request. If we did things right, write permissions
1201 * would be obtained anyway, but internally by the copy-on-read code. As
1202 * long as it is implemented here rather than in a separate filter driver,
1203 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1204 * it could request permissions. Therefore we have to bypass the permission
1205 * system for the moment. */
1206 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1207
1208 /* Cover entire cluster so no additional backing file I/O is required when
1209 * allocating cluster in the image file. Note that this value may exceed
1210 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1211 * is one reason we loop rather than doing it all at once.
1212 */
1213 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1214 skip_bytes = offset - align_offset;
1215
1216 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1217 align_offset, align_bytes);
1218
1219 while (align_bytes) {
1220 int64_t pnum;
1221
1222 if (skip_write) {
1223 ret = 1; /* "already allocated", so nothing will be copied */
1224 pnum = MIN(align_bytes, max_transfer);
1225 } else {
1226 ret = bdrv_co_is_allocated(bs, align_offset,
1227 MIN(align_bytes, max_transfer), &pnum);
1228 if (ret < 0) {
1229 /*
1230 * Safe to treat errors in querying allocation as if
1231 * unallocated; we'll probably fail again soon on the
1232 * read, but at least that will set a decent errno.
1233 */
1234 pnum = MIN(align_bytes, max_transfer);
1235 }
1236
1237 /* Stop at EOF if the image ends in the middle of the cluster */
1238 if (ret == 0 && pnum == 0) {
1239 assert(progress >= bytes);
1240 break;
1241 }
1242
1243 assert(skip_bytes < pnum);
1244 }
1245
1246 if (ret <= 0) {
1247 QEMUIOVector local_qiov;
1248
1249 /* Must copy-on-read; use the bounce buffer */
1250 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1251 if (!bounce_buffer) {
1252 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1253 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1254 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1255
1256 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1257 if (!bounce_buffer) {
1258 ret = -ENOMEM;
1259 goto err;
1260 }
1261 }
1262 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1263
1264 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1265 &local_qiov, 0, 0);
1266 if (ret < 0) {
1267 goto err;
1268 }
1269
1270 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1271 if (drv->bdrv_co_pwrite_zeroes &&
1272 buffer_is_zero(bounce_buffer, pnum)) {
1273 /* FIXME: Should we (perhaps conditionally) be setting
1274 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1275 * that still correctly reads as zero? */
1276 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1277 BDRV_REQ_WRITE_UNCHANGED);
1278 } else {
1279 /* This does not change the data on the disk, it is not
1280 * necessary to flush even in cache=writethrough mode.
1281 */
1282 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1283 &local_qiov, 0,
1284 BDRV_REQ_WRITE_UNCHANGED);
1285 }
1286
1287 if (ret < 0) {
1288 /* It might be okay to ignore write errors for guest
1289 * requests. If this is a deliberate copy-on-read
1290 * then we don't want to ignore the error. Simply
1291 * report it in all cases.
1292 */
1293 goto err;
1294 }
1295
1296 if (!(flags & BDRV_REQ_PREFETCH)) {
1297 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1298 bounce_buffer + skip_bytes,
1299 MIN(pnum - skip_bytes, bytes - progress));
1300 }
1301 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1302 /* Read directly into the destination */
1303 ret = bdrv_driver_preadv(bs, offset + progress,
1304 MIN(pnum - skip_bytes, bytes - progress),
1305 qiov, qiov_offset + progress, 0);
1306 if (ret < 0) {
1307 goto err;
1308 }
1309 }
1310
1311 align_offset += pnum;
1312 align_bytes -= pnum;
1313 progress += pnum - skip_bytes;
1314 skip_bytes = 0;
1315 }
1316 ret = 0;
1317
1318 err:
1319 qemu_vfree(bounce_buffer);
1320 return ret;
1321 }
1322
1323 /*
1324 * Forwards an already correctly aligned request to the BlockDriver. This
1325 * handles copy on read, zeroing after EOF, and fragmentation of large
1326 * reads; any other features must be implemented by the caller.
1327 */
1328 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_preadv(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,int flags)1329 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1330 int64_t offset, int64_t bytes, int64_t align,
1331 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1332 {
1333 BlockDriverState *bs = child->bs;
1334 int64_t total_bytes, max_bytes;
1335 int ret = 0;
1336 int64_t bytes_remaining = bytes;
1337 int max_transfer;
1338
1339 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1340 assert(is_power_of_2(align));
1341 assert((offset & (align - 1)) == 0);
1342 assert((bytes & (align - 1)) == 0);
1343 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1344 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1345 align);
1346
1347 /*
1348 * TODO: We would need a per-BDS .supported_read_flags and
1349 * potential fallback support, if we ever implement any read flags
1350 * to pass through to drivers. For now, there aren't any
1351 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1352 */
1353 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1354 BDRV_REQ_REGISTERED_BUF)));
1355
1356 /* Handle Copy on Read and associated serialisation */
1357 if (flags & BDRV_REQ_COPY_ON_READ) {
1358 /* If we touch the same cluster it counts as an overlap. This
1359 * guarantees that allocating writes will be serialized and not race
1360 * with each other for the same cluster. For example, in copy-on-read
1361 * it ensures that the CoR read and write operations are atomic and
1362 * guest writes cannot interleave between them. */
1363 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1364 } else {
1365 bdrv_wait_serialising_requests(req);
1366 }
1367
1368 if (flags & BDRV_REQ_COPY_ON_READ) {
1369 int64_t pnum;
1370
1371 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1372 flags &= ~BDRV_REQ_COPY_ON_READ;
1373
1374 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1375 if (ret < 0) {
1376 goto out;
1377 }
1378
1379 if (!ret || pnum != bytes) {
1380 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1381 qiov, qiov_offset, flags);
1382 goto out;
1383 } else if (flags & BDRV_REQ_PREFETCH) {
1384 goto out;
1385 }
1386 }
1387
1388 /* Forward the request to the BlockDriver, possibly fragmenting it */
1389 total_bytes = bdrv_co_getlength(bs);
1390 if (total_bytes < 0) {
1391 ret = total_bytes;
1392 goto out;
1393 }
1394
1395 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1396
1397 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1398 if (bytes <= max_bytes && bytes <= max_transfer) {
1399 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1400 goto out;
1401 }
1402
1403 while (bytes_remaining) {
1404 int64_t num;
1405
1406 if (max_bytes) {
1407 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1408 assert(num);
1409
1410 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1411 num, qiov,
1412 qiov_offset + bytes - bytes_remaining,
1413 flags);
1414 max_bytes -= num;
1415 } else {
1416 num = bytes_remaining;
1417 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1418 0, bytes_remaining);
1419 }
1420 if (ret < 0) {
1421 goto out;
1422 }
1423 bytes_remaining -= num;
1424 }
1425
1426 out:
1427 return ret < 0 ? ret : 0;
1428 }
1429
1430 /*
1431 * Request padding
1432 *
1433 * |<---- align ----->| |<----- align ---->|
1434 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1435 * | | | | | |
1436 * -*----------$-------*-------- ... --------*-----$------------*---
1437 * | | | | | |
1438 * | offset | | end |
1439 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1440 * [buf ... ) [tail_buf )
1441 *
1442 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1443 * is placed at the beginning of @buf and @tail at the @end.
1444 *
1445 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1446 * around tail, if tail exists.
1447 *
1448 * @merge_reads is true for small requests,
1449 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1450 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1451 *
1452 * @write is true for write requests, false for read requests.
1453 *
1454 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1455 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1456 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1457 * I/O vector elements so for read requests, the data can be copied back after
1458 * the read is done.
1459 */
1460 typedef struct BdrvRequestPadding {
1461 uint8_t *buf;
1462 size_t buf_len;
1463 uint8_t *tail_buf;
1464 size_t head;
1465 size_t tail;
1466 bool merge_reads;
1467 bool write;
1468 QEMUIOVector local_qiov;
1469
1470 uint8_t *collapse_bounce_buf;
1471 size_t collapse_len;
1472 QEMUIOVector pre_collapse_qiov;
1473 } BdrvRequestPadding;
1474
bdrv_init_padding(BlockDriverState * bs,int64_t offset,int64_t bytes,bool write,BdrvRequestPadding * pad)1475 static bool bdrv_init_padding(BlockDriverState *bs,
1476 int64_t offset, int64_t bytes,
1477 bool write,
1478 BdrvRequestPadding *pad)
1479 {
1480 int64_t align = bs->bl.request_alignment;
1481 int64_t sum;
1482
1483 bdrv_check_request(offset, bytes, &error_abort);
1484 assert(align <= INT_MAX); /* documented in block/block_int.h */
1485 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1486
1487 memset(pad, 0, sizeof(*pad));
1488
1489 pad->head = offset & (align - 1);
1490 pad->tail = ((offset + bytes) & (align - 1));
1491 if (pad->tail) {
1492 pad->tail = align - pad->tail;
1493 }
1494
1495 if (!pad->head && !pad->tail) {
1496 return false;
1497 }
1498
1499 assert(bytes); /* Nothing good in aligning zero-length requests */
1500
1501 sum = pad->head + bytes + pad->tail;
1502 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1503 pad->buf = qemu_blockalign(bs, pad->buf_len);
1504 pad->merge_reads = sum == pad->buf_len;
1505 if (pad->tail) {
1506 pad->tail_buf = pad->buf + pad->buf_len - align;
1507 }
1508
1509 pad->write = write;
1510
1511 return true;
1512 }
1513
1514 static int coroutine_fn GRAPH_RDLOCK
bdrv_padding_rmw_read(BdrvChild * child,BdrvTrackedRequest * req,BdrvRequestPadding * pad,bool zero_middle)1515 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1516 BdrvRequestPadding *pad, bool zero_middle)
1517 {
1518 QEMUIOVector local_qiov;
1519 BlockDriverState *bs = child->bs;
1520 uint64_t align = bs->bl.request_alignment;
1521 int ret;
1522
1523 assert(req->serialising && pad->buf);
1524
1525 if (pad->head || pad->merge_reads) {
1526 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1527
1528 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1529
1530 if (pad->head) {
1531 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1532 }
1533 if (pad->merge_reads && pad->tail) {
1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1535 }
1536 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1537 align, &local_qiov, 0, 0);
1538 if (ret < 0) {
1539 return ret;
1540 }
1541 if (pad->head) {
1542 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1543 }
1544 if (pad->merge_reads && pad->tail) {
1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1546 }
1547
1548 if (pad->merge_reads) {
1549 goto zero_mem;
1550 }
1551 }
1552
1553 if (pad->tail) {
1554 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1555
1556 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1557 ret = bdrv_aligned_preadv(
1558 child, req,
1559 req->overlap_offset + req->overlap_bytes - align,
1560 align, align, &local_qiov, 0, 0);
1561 if (ret < 0) {
1562 return ret;
1563 }
1564 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1565 }
1566
1567 zero_mem:
1568 if (zero_middle) {
1569 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1570 }
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * Free *pad's associated buffers, and perform any necessary finalization steps.
1577 */
bdrv_padding_finalize(BdrvRequestPadding * pad)1578 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1579 {
1580 if (pad->collapse_bounce_buf) {
1581 if (!pad->write) {
1582 /*
1583 * If padding required elements in the vector to be collapsed into a
1584 * bounce buffer, copy the bounce buffer content back
1585 */
1586 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1587 pad->collapse_bounce_buf, pad->collapse_len);
1588 }
1589 qemu_vfree(pad->collapse_bounce_buf);
1590 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1591 }
1592 if (pad->buf) {
1593 qemu_vfree(pad->buf);
1594 qemu_iovec_destroy(&pad->local_qiov);
1595 }
1596 memset(pad, 0, sizeof(*pad));
1597 }
1598
1599 /*
1600 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1601 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1602 *
1603 * To ensure this, when necessary, the first two or three elements of @iov are
1604 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1605 * bounce buffer in pad->local_qiov.
1606 *
1607 * After performing a read request, the data from the bounce buffer must be
1608 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1609 */
bdrv_create_padded_qiov(BlockDriverState * bs,BdrvRequestPadding * pad,struct iovec * iov,int niov,size_t iov_offset,size_t bytes)1610 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1611 BdrvRequestPadding *pad,
1612 struct iovec *iov, int niov,
1613 size_t iov_offset, size_t bytes)
1614 {
1615 int padded_niov, surplus_count, collapse_count;
1616
1617 /* Assert this invariant */
1618 assert(niov <= IOV_MAX);
1619
1620 /*
1621 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1622 * to the guest is not ideal, but there is little else we can do. At least
1623 * this will practically never happen on 64-bit systems.
1624 */
1625 if (SIZE_MAX - pad->head < bytes ||
1626 SIZE_MAX - pad->head - bytes < pad->tail)
1627 {
1628 return -EINVAL;
1629 }
1630
1631 /* Length of the resulting IOV if we just concatenated everything */
1632 padded_niov = !!pad->head + niov + !!pad->tail;
1633
1634 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1635
1636 if (pad->head) {
1637 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1638 }
1639
1640 /*
1641 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1642 * Instead, merge the first two or three elements of @iov to reduce the
1643 * number of vector elements as necessary.
1644 */
1645 if (padded_niov > IOV_MAX) {
1646 /*
1647 * Only head and tail can have lead to the number of entries exceeding
1648 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1649 * to reduce the number of elements by `surplus_count`, so we merge that
1650 * many elements plus one into one element.
1651 */
1652 surplus_count = padded_niov - IOV_MAX;
1653 assert(surplus_count <= !!pad->head + !!pad->tail);
1654 collapse_count = surplus_count + 1;
1655
1656 /*
1657 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1658 * advance `iov` (and associated variables) by those elements.
1659 */
1660 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1661 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1662 collapse_count, iov_offset, SIZE_MAX);
1663 iov += collapse_count;
1664 iov_offset = 0;
1665 niov -= collapse_count;
1666 bytes -= pad->pre_collapse_qiov.size;
1667
1668 /*
1669 * Construct the bounce buffer to match the length of the to-collapse
1670 * vector elements, and for write requests, initialize it with the data
1671 * from those elements. Then add it to `pad->local_qiov`.
1672 */
1673 pad->collapse_len = pad->pre_collapse_qiov.size;
1674 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1675 if (pad->write) {
1676 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1677 pad->collapse_bounce_buf, pad->collapse_len);
1678 }
1679 qemu_iovec_add(&pad->local_qiov,
1680 pad->collapse_bounce_buf, pad->collapse_len);
1681 }
1682
1683 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1684
1685 if (pad->tail) {
1686 qemu_iovec_add(&pad->local_qiov,
1687 pad->buf + pad->buf_len - pad->tail, pad->tail);
1688 }
1689
1690 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1691 return 0;
1692 }
1693
1694 /*
1695 * bdrv_pad_request
1696 *
1697 * Exchange request parameters with padded request if needed. Don't include RMW
1698 * read of padding, bdrv_padding_rmw_read() should be called separately if
1699 * needed.
1700 *
1701 * @write is true for write requests, false for read requests.
1702 *
1703 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1704 * - on function start they represent original request
1705 * - on failure or when padding is not needed they are unchanged
1706 * - on success when padding is needed they represent padded request
1707 */
bdrv_pad_request(BlockDriverState * bs,QEMUIOVector ** qiov,size_t * qiov_offset,int64_t * offset,int64_t * bytes,bool write,BdrvRequestPadding * pad,bool * padded,BdrvRequestFlags * flags)1708 static int bdrv_pad_request(BlockDriverState *bs,
1709 QEMUIOVector **qiov, size_t *qiov_offset,
1710 int64_t *offset, int64_t *bytes,
1711 bool write,
1712 BdrvRequestPadding *pad, bool *padded,
1713 BdrvRequestFlags *flags)
1714 {
1715 int ret;
1716 struct iovec *sliced_iov;
1717 int sliced_niov;
1718 size_t sliced_head, sliced_tail;
1719
1720 /* Should have been checked by the caller already */
1721 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1722 if (ret < 0) {
1723 return ret;
1724 }
1725
1726 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1727 if (padded) {
1728 *padded = false;
1729 }
1730 return 0;
1731 }
1732
1733 /*
1734 * For prefetching in stream_populate(), no qiov is passed along, because
1735 * only copy-on-read matters.
1736 */
1737 if (*qiov) {
1738 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1739 &sliced_head, &sliced_tail,
1740 &sliced_niov);
1741
1742 /* Guaranteed by bdrv_check_request32() */
1743 assert(*bytes <= SIZE_MAX);
1744 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1745 sliced_head, *bytes);
1746 if (ret < 0) {
1747 bdrv_padding_finalize(pad);
1748 return ret;
1749 }
1750 *qiov = &pad->local_qiov;
1751 *qiov_offset = 0;
1752 }
1753
1754 *bytes += pad->head + pad->tail;
1755 *offset -= pad->head;
1756 if (padded) {
1757 *padded = true;
1758 }
1759 if (flags) {
1760 /* Can't use optimization hint with bounce buffer */
1761 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1762 }
1763
1764 return 0;
1765 }
1766
bdrv_co_preadv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1767 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1768 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1769 BdrvRequestFlags flags)
1770 {
1771 IO_CODE();
1772 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1773 }
1774
bdrv_co_preadv_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1775 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1776 int64_t offset, int64_t bytes,
1777 QEMUIOVector *qiov, size_t qiov_offset,
1778 BdrvRequestFlags flags)
1779 {
1780 BlockDriverState *bs = child->bs;
1781 BdrvTrackedRequest req;
1782 BdrvRequestPadding pad;
1783 int ret;
1784 IO_CODE();
1785
1786 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1787
1788 if (!bdrv_co_is_inserted(bs)) {
1789 return -ENOMEDIUM;
1790 }
1791
1792 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1793 if (ret < 0) {
1794 return ret;
1795 }
1796
1797 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1798 /*
1799 * Aligning zero request is nonsense. Even if driver has special meaning
1800 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1801 * it to driver due to request_alignment.
1802 *
1803 * Still, no reason to return an error if someone do unaligned
1804 * zero-length read occasionally.
1805 */
1806 return 0;
1807 }
1808
1809 bdrv_inc_in_flight(bs);
1810
1811 /* Don't do copy-on-read if we read data before write operation */
1812 if (qatomic_read(&bs->copy_on_read)) {
1813 flags |= BDRV_REQ_COPY_ON_READ;
1814 }
1815
1816 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1817 &pad, NULL, &flags);
1818 if (ret < 0) {
1819 goto fail;
1820 }
1821
1822 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1823 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1824 bs->bl.request_alignment,
1825 qiov, qiov_offset, flags);
1826 tracked_request_end(&req);
1827 bdrv_padding_finalize(&pad);
1828
1829 fail:
1830 bdrv_dec_in_flight(bs);
1831
1832 return ret;
1833 }
1834
1835 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1836 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1837 BdrvRequestFlags flags)
1838 {
1839 BlockDriver *drv = bs->drv;
1840 QEMUIOVector qiov;
1841 void *buf = NULL;
1842 int ret = 0;
1843 bool need_flush = false;
1844 int head = 0;
1845 int tail = 0;
1846
1847 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1848 INT64_MAX);
1849 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1850 bs->bl.request_alignment);
1851 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1852
1853 assert_bdrv_graph_readable();
1854 bdrv_check_request(offset, bytes, &error_abort);
1855
1856 if (!drv) {
1857 return -ENOMEDIUM;
1858 }
1859
1860 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1861 return -ENOTSUP;
1862 }
1863
1864 /* By definition there is no user buffer so this flag doesn't make sense */
1865 if (flags & BDRV_REQ_REGISTERED_BUF) {
1866 return -EINVAL;
1867 }
1868
1869 /* If opened with discard=off we should never unmap. */
1870 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1871 flags &= ~BDRV_REQ_MAY_UNMAP;
1872 }
1873
1874 /* Invalidate the cached block-status data range if this write overlaps */
1875 bdrv_bsc_invalidate_range(bs, offset, bytes);
1876
1877 assert(alignment % bs->bl.request_alignment == 0);
1878 head = offset % alignment;
1879 tail = (offset + bytes) % alignment;
1880 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1881 assert(max_write_zeroes >= bs->bl.request_alignment);
1882
1883 while (bytes > 0 && !ret) {
1884 int64_t num = bytes;
1885
1886 /* Align request. Block drivers can expect the "bulk" of the request
1887 * to be aligned, and that unaligned requests do not cross cluster
1888 * boundaries.
1889 */
1890 if (head) {
1891 /* Make a small request up to the first aligned sector. For
1892 * convenience, limit this request to max_transfer even if
1893 * we don't need to fall back to writes. */
1894 num = MIN(MIN(bytes, max_transfer), alignment - head);
1895 head = (head + num) % alignment;
1896 assert(num < max_write_zeroes);
1897 } else if (tail && num > alignment) {
1898 /* Shorten the request to the last aligned sector. */
1899 num -= tail;
1900 }
1901
1902 /* limit request size */
1903 if (num > max_write_zeroes) {
1904 num = max_write_zeroes;
1905 }
1906
1907 ret = -ENOTSUP;
1908 /* First try the efficient write zeroes operation */
1909 if (drv->bdrv_co_pwrite_zeroes) {
1910 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1911 flags & bs->supported_zero_flags);
1912 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1913 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1914 need_flush = true;
1915 }
1916 } else {
1917 assert(!bs->supported_zero_flags);
1918 }
1919
1920 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1921 /* Fall back to bounce buffer if write zeroes is unsupported */
1922 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1923
1924 if ((flags & BDRV_REQ_FUA) &&
1925 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1926 /* No need for bdrv_driver_pwrite() to do a fallback
1927 * flush on each chunk; use just one at the end */
1928 write_flags &= ~BDRV_REQ_FUA;
1929 need_flush = true;
1930 }
1931 num = MIN(num, max_transfer);
1932 if (buf == NULL) {
1933 buf = qemu_try_blockalign0(bs, num);
1934 if (buf == NULL) {
1935 ret = -ENOMEM;
1936 goto fail;
1937 }
1938 }
1939 qemu_iovec_init_buf(&qiov, buf, num);
1940
1941 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1942
1943 /* Keep bounce buffer around if it is big enough for all
1944 * all future requests.
1945 */
1946 if (num < max_transfer) {
1947 qemu_vfree(buf);
1948 buf = NULL;
1949 }
1950 }
1951
1952 offset += num;
1953 bytes -= num;
1954 }
1955
1956 fail:
1957 if (ret == 0 && need_flush) {
1958 ret = bdrv_co_flush(bs);
1959 }
1960 qemu_vfree(buf);
1961 return ret;
1962 }
1963
1964 static inline int coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_prepare(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int flags)1965 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1966 BdrvTrackedRequest *req, int flags)
1967 {
1968 BlockDriverState *bs = child->bs;
1969
1970 bdrv_check_request(offset, bytes, &error_abort);
1971
1972 if (bdrv_is_read_only(bs)) {
1973 return -EPERM;
1974 }
1975
1976 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1977 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1978 assert(!(flags & ~BDRV_REQ_MASK));
1979 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1980
1981 if (flags & BDRV_REQ_SERIALISING) {
1982 QEMU_LOCK_GUARD(&bs->reqs_lock);
1983
1984 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1985
1986 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1987 return -EBUSY;
1988 }
1989
1990 bdrv_wait_serialising_requests_locked(req);
1991 } else {
1992 bdrv_wait_serialising_requests(req);
1993 }
1994
1995 assert(req->overlap_offset <= offset);
1996 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1997 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
1998 child->perm & BLK_PERM_RESIZE);
1999
2000 switch (req->type) {
2001 case BDRV_TRACKED_WRITE:
2002 case BDRV_TRACKED_DISCARD:
2003 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2004 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2005 } else {
2006 assert(child->perm & BLK_PERM_WRITE);
2007 }
2008 bdrv_write_threshold_check_write(bs, offset, bytes);
2009 return 0;
2010 case BDRV_TRACKED_TRUNCATE:
2011 assert(child->perm & BLK_PERM_RESIZE);
2012 return 0;
2013 default:
2014 abort();
2015 }
2016 }
2017
2018 static inline void coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_finish(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int ret)2019 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2020 BdrvTrackedRequest *req, int ret)
2021 {
2022 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2023 BlockDriverState *bs = child->bs;
2024
2025 bdrv_check_request(offset, bytes, &error_abort);
2026
2027 qatomic_inc(&bs->write_gen);
2028
2029 /*
2030 * Discard cannot extend the image, but in error handling cases, such as
2031 * when reverting a qcow2 cluster allocation, the discarded range can pass
2032 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2033 * here. Instead, just skip it, since semantically a discard request
2034 * beyond EOF cannot expand the image anyway.
2035 */
2036 if (ret == 0 &&
2037 (req->type == BDRV_TRACKED_TRUNCATE ||
2038 end_sector > bs->total_sectors) &&
2039 req->type != BDRV_TRACKED_DISCARD) {
2040 bs->total_sectors = end_sector;
2041 bdrv_parent_cb_resize(bs);
2042 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2043 }
2044 if (req->bytes) {
2045 switch (req->type) {
2046 case BDRV_TRACKED_WRITE:
2047 stat64_max(&bs->wr_highest_offset, offset + bytes);
2048 /* fall through, to set dirty bits */
2049 case BDRV_TRACKED_DISCARD:
2050 bdrv_set_dirty(bs, offset, bytes);
2051 break;
2052 default:
2053 break;
2054 }
2055 }
2056 }
2057
2058 /*
2059 * Forwards an already correctly aligned write request to the BlockDriver,
2060 * after possibly fragmenting it.
2061 */
2062 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_pwritev(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2063 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2064 int64_t offset, int64_t bytes, int64_t align,
2065 QEMUIOVector *qiov, size_t qiov_offset,
2066 BdrvRequestFlags flags)
2067 {
2068 BlockDriverState *bs = child->bs;
2069 BlockDriver *drv = bs->drv;
2070 int ret;
2071
2072 int64_t bytes_remaining = bytes;
2073 int max_transfer;
2074
2075 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2076
2077 if (!drv) {
2078 return -ENOMEDIUM;
2079 }
2080
2081 if (bdrv_has_readonly_bitmaps(bs)) {
2082 return -EPERM;
2083 }
2084
2085 assert(is_power_of_2(align));
2086 assert((offset & (align - 1)) == 0);
2087 assert((bytes & (align - 1)) == 0);
2088 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2089 align);
2090
2091 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2092
2093 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2094 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2095 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2096 flags |= BDRV_REQ_ZERO_WRITE;
2097 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2098 flags |= BDRV_REQ_MAY_UNMAP;
2099 }
2100
2101 /* Can't use optimization hint with bufferless zero write */
2102 flags &= ~BDRV_REQ_REGISTERED_BUF;
2103 }
2104
2105 if (ret < 0) {
2106 /* Do nothing, write notifier decided to fail this request */
2107 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2108 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2109 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2110 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2111 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2112 qiov, qiov_offset);
2113 } else if (bytes <= max_transfer) {
2114 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2115 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2116 } else {
2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2118 while (bytes_remaining) {
2119 int num = MIN(bytes_remaining, max_transfer);
2120 int local_flags = flags;
2121
2122 assert(num);
2123 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2124 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2125 /* If FUA is going to be emulated by flush, we only
2126 * need to flush on the last iteration */
2127 local_flags &= ~BDRV_REQ_FUA;
2128 }
2129
2130 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2131 num, qiov,
2132 qiov_offset + bytes - bytes_remaining,
2133 local_flags);
2134 if (ret < 0) {
2135 break;
2136 }
2137 bytes_remaining -= num;
2138 }
2139 }
2140 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2141
2142 if (ret >= 0) {
2143 ret = 0;
2144 }
2145 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2146
2147 return ret;
2148 }
2149
2150 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_zero_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags,BdrvTrackedRequest * req)2151 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2152 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2153 {
2154 BlockDriverState *bs = child->bs;
2155 QEMUIOVector local_qiov;
2156 uint64_t align = bs->bl.request_alignment;
2157 int ret = 0;
2158 bool padding;
2159 BdrvRequestPadding pad;
2160
2161 /* This flag doesn't make sense for padding or zero writes */
2162 flags &= ~BDRV_REQ_REGISTERED_BUF;
2163
2164 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2165 if (padding) {
2166 assert(!(flags & BDRV_REQ_NO_WAIT));
2167 bdrv_make_request_serialising(req, align);
2168
2169 bdrv_padding_rmw_read(child, req, &pad, true);
2170
2171 if (pad.head || pad.merge_reads) {
2172 int64_t aligned_offset = offset & ~(align - 1);
2173 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2174
2175 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2176 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2177 align, &local_qiov, 0,
2178 flags & ~BDRV_REQ_ZERO_WRITE);
2179 if (ret < 0 || pad.merge_reads) {
2180 /* Error or all work is done */
2181 goto out;
2182 }
2183 offset += write_bytes - pad.head;
2184 bytes -= write_bytes - pad.head;
2185 }
2186 }
2187
2188 assert(!bytes || (offset & (align - 1)) == 0);
2189 if (bytes >= align) {
2190 /* Write the aligned part in the middle. */
2191 int64_t aligned_bytes = bytes & ~(align - 1);
2192 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2193 NULL, 0, flags);
2194 if (ret < 0) {
2195 goto out;
2196 }
2197 bytes -= aligned_bytes;
2198 offset += aligned_bytes;
2199 }
2200
2201 assert(!bytes || (offset & (align - 1)) == 0);
2202 if (bytes) {
2203 assert(align == pad.tail + bytes);
2204
2205 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2206 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2207 &local_qiov, 0,
2208 flags & ~BDRV_REQ_ZERO_WRITE);
2209 }
2210
2211 out:
2212 bdrv_padding_finalize(&pad);
2213
2214 return ret;
2215 }
2216
2217 /*
2218 * Handle a write request in coroutine context
2219 */
bdrv_co_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)2220 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2221 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2222 BdrvRequestFlags flags)
2223 {
2224 IO_CODE();
2225 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2226 }
2227
bdrv_co_pwritev_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2228 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2229 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2230 BdrvRequestFlags flags)
2231 {
2232 BlockDriverState *bs = child->bs;
2233 BdrvTrackedRequest req;
2234 uint64_t align = bs->bl.request_alignment;
2235 BdrvRequestPadding pad;
2236 int ret;
2237 bool padded = false;
2238 IO_CODE();
2239
2240 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2241
2242 if (!bdrv_co_is_inserted(bs)) {
2243 return -ENOMEDIUM;
2244 }
2245
2246 if (flags & BDRV_REQ_ZERO_WRITE) {
2247 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2248 } else {
2249 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2250 }
2251 if (ret < 0) {
2252 return ret;
2253 }
2254
2255 /* If the request is misaligned then we can't make it efficient */
2256 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2257 !QEMU_IS_ALIGNED(offset | bytes, align))
2258 {
2259 return -ENOTSUP;
2260 }
2261
2262 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2263 /*
2264 * Aligning zero request is nonsense. Even if driver has special meaning
2265 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2266 * it to driver due to request_alignment.
2267 *
2268 * Still, no reason to return an error if someone do unaligned
2269 * zero-length write occasionally.
2270 */
2271 return 0;
2272 }
2273
2274 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2275 /*
2276 * Pad request for following read-modify-write cycle.
2277 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2278 * alignment only if there is no ZERO flag.
2279 */
2280 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2281 &pad, &padded, &flags);
2282 if (ret < 0) {
2283 return ret;
2284 }
2285 }
2286
2287 bdrv_inc_in_flight(bs);
2288 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2289
2290 if (flags & BDRV_REQ_ZERO_WRITE) {
2291 assert(!padded);
2292 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2293 goto out;
2294 }
2295
2296 if (padded) {
2297 /*
2298 * Request was unaligned to request_alignment and therefore
2299 * padded. We are going to do read-modify-write, and must
2300 * serialize the request to prevent interactions of the
2301 * widened region with other transactions.
2302 */
2303 assert(!(flags & BDRV_REQ_NO_WAIT));
2304 bdrv_make_request_serialising(&req, align);
2305 bdrv_padding_rmw_read(child, &req, &pad, false);
2306 }
2307
2308 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2309 qiov, qiov_offset, flags);
2310
2311 bdrv_padding_finalize(&pad);
2312
2313 out:
2314 tracked_request_end(&req);
2315 bdrv_dec_in_flight(bs);
2316
2317 return ret;
2318 }
2319
bdrv_co_pwrite_zeroes(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags)2320 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2321 int64_t bytes, BdrvRequestFlags flags)
2322 {
2323 IO_CODE();
2324 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2325 assert_bdrv_graph_readable();
2326
2327 return bdrv_co_pwritev(child, offset, bytes, NULL,
2328 BDRV_REQ_ZERO_WRITE | flags);
2329 }
2330
2331 /*
2332 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2333 */
bdrv_flush_all(void)2334 int bdrv_flush_all(void)
2335 {
2336 BdrvNextIterator it;
2337 BlockDriverState *bs = NULL;
2338 int result = 0;
2339
2340 GLOBAL_STATE_CODE();
2341 GRAPH_RDLOCK_GUARD_MAINLOOP();
2342
2343 /*
2344 * bdrv queue is managed by record/replay,
2345 * creating new flush request for stopping
2346 * the VM may break the determinism
2347 */
2348 if (replay_events_enabled()) {
2349 return result;
2350 }
2351
2352 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2353 int ret = bdrv_flush(bs);
2354 if (ret < 0 && !result) {
2355 result = ret;
2356 }
2357 }
2358
2359 return result;
2360 }
2361
2362 /*
2363 * Returns the allocation status of the specified sectors.
2364 * Drivers not implementing the functionality are assumed to not support
2365 * backing files, hence all their sectors are reported as allocated.
2366 *
2367 * If 'want_zero' is true, the caller is querying for mapping
2368 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2369 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2370 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2371 *
2372 * If 'offset' is beyond the end of the disk image the return value is
2373 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2374 *
2375 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2376 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2377 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2378 *
2379 * 'pnum' is set to the number of bytes (including and immediately
2380 * following the specified offset) that are easily known to be in the
2381 * same allocated/unallocated state. Note that a second call starting
2382 * at the original offset plus returned pnum may have the same status.
2383 * The returned value is non-zero on success except at end-of-file.
2384 *
2385 * Returns negative errno on failure. Otherwise, if the
2386 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2387 * set to the host mapping and BDS corresponding to the guest offset.
2388 */
2389 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_block_status(BlockDriverState * bs,bool want_zero,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2390 bdrv_co_do_block_status(BlockDriverState *bs, bool want_zero,
2391 int64_t offset, int64_t bytes,
2392 int64_t *pnum, int64_t *map, BlockDriverState **file)
2393 {
2394 int64_t total_size;
2395 int64_t n; /* bytes */
2396 int ret;
2397 int64_t local_map = 0;
2398 BlockDriverState *local_file = NULL;
2399 int64_t aligned_offset, aligned_bytes;
2400 uint32_t align;
2401 bool has_filtered_child;
2402
2403 assert(pnum);
2404 assert_bdrv_graph_readable();
2405 *pnum = 0;
2406 total_size = bdrv_co_getlength(bs);
2407 if (total_size < 0) {
2408 ret = total_size;
2409 goto early_out;
2410 }
2411
2412 if (offset >= total_size) {
2413 ret = BDRV_BLOCK_EOF;
2414 goto early_out;
2415 }
2416 if (!bytes) {
2417 ret = 0;
2418 goto early_out;
2419 }
2420
2421 n = total_size - offset;
2422 if (n < bytes) {
2423 bytes = n;
2424 }
2425
2426 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2427 assert(bs->drv);
2428 has_filtered_child = bdrv_filter_child(bs);
2429 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2430 *pnum = bytes;
2431 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2432 if (offset + bytes == total_size) {
2433 ret |= BDRV_BLOCK_EOF;
2434 }
2435 if (bs->drv->protocol_name) {
2436 ret |= BDRV_BLOCK_OFFSET_VALID;
2437 local_map = offset;
2438 local_file = bs;
2439 }
2440 goto early_out;
2441 }
2442
2443 bdrv_inc_in_flight(bs);
2444
2445 /* Round out to request_alignment boundaries */
2446 align = bs->bl.request_alignment;
2447 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2448 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2449
2450 if (bs->drv->bdrv_co_block_status) {
2451 /*
2452 * Use the block-status cache only for protocol nodes: Format
2453 * drivers are generally quick to inquire the status, but protocol
2454 * drivers often need to get information from outside of qemu, so
2455 * we do not have control over the actual implementation. There
2456 * have been cases where inquiring the status took an unreasonably
2457 * long time, and we can do nothing in qemu to fix it.
2458 * This is especially problematic for images with large data areas,
2459 * because finding the few holes in them and giving them special
2460 * treatment does not gain much performance. Therefore, we try to
2461 * cache the last-identified data region.
2462 *
2463 * Second, limiting ourselves to protocol nodes allows us to assume
2464 * the block status for data regions to be DATA | OFFSET_VALID, and
2465 * that the host offset is the same as the guest offset.
2466 *
2467 * Note that it is possible that external writers zero parts of
2468 * the cached regions without the cache being invalidated, and so
2469 * we may report zeroes as data. This is not catastrophic,
2470 * however, because reporting zeroes as data is fine.
2471 */
2472 if (QLIST_EMPTY(&bs->children) &&
2473 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2474 {
2475 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2476 local_file = bs;
2477 local_map = aligned_offset;
2478 } else {
2479 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2480 aligned_bytes, pnum, &local_map,
2481 &local_file);
2482
2483 /*
2484 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2485 * the cache is queried above. Technically, we do not need to check
2486 * it here; the worst that can happen is that we fill the cache for
2487 * non-protocol nodes, and then it is never used. However, filling
2488 * the cache requires an RCU update, so double check here to avoid
2489 * such an update if possible.
2490 *
2491 * Check want_zero, because we only want to update the cache when we
2492 * have accurate information about what is zero and what is data.
2493 */
2494 if (want_zero &&
2495 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2496 QLIST_EMPTY(&bs->children))
2497 {
2498 /*
2499 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2500 * returned local_map value must be the same as the offset we
2501 * have passed (aligned_offset), and local_bs must be the node
2502 * itself.
2503 * Assert this, because we follow this rule when reading from
2504 * the cache (see the `local_file = bs` and
2505 * `local_map = aligned_offset` assignments above), and the
2506 * result the cache delivers must be the same as the driver
2507 * would deliver.
2508 */
2509 assert(local_file == bs);
2510 assert(local_map == aligned_offset);
2511 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2512 }
2513 }
2514 } else {
2515 /* Default code for filters */
2516
2517 local_file = bdrv_filter_bs(bs);
2518 assert(local_file);
2519
2520 *pnum = aligned_bytes;
2521 local_map = aligned_offset;
2522 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2523 }
2524 if (ret < 0) {
2525 *pnum = 0;
2526 goto out;
2527 }
2528
2529 /*
2530 * The driver's result must be a non-zero multiple of request_alignment.
2531 * Clamp pnum and adjust map to original request.
2532 */
2533 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2534 align > offset - aligned_offset);
2535 if (ret & BDRV_BLOCK_RECURSE) {
2536 assert(ret & BDRV_BLOCK_DATA);
2537 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2538 assert(!(ret & BDRV_BLOCK_ZERO));
2539 }
2540
2541 *pnum -= offset - aligned_offset;
2542 if (*pnum > bytes) {
2543 *pnum = bytes;
2544 }
2545 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2546 local_map += offset - aligned_offset;
2547 }
2548
2549 if (ret & BDRV_BLOCK_RAW) {
2550 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2551 ret = bdrv_co_do_block_status(local_file, want_zero, local_map,
2552 *pnum, pnum, &local_map, &local_file);
2553 goto out;
2554 }
2555
2556 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2557 ret |= BDRV_BLOCK_ALLOCATED;
2558 } else if (bs->drv->supports_backing) {
2559 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2560
2561 if (!cow_bs) {
2562 ret |= BDRV_BLOCK_ZERO;
2563 } else if (want_zero) {
2564 int64_t size2 = bdrv_co_getlength(cow_bs);
2565
2566 if (size2 >= 0 && offset >= size2) {
2567 ret |= BDRV_BLOCK_ZERO;
2568 }
2569 }
2570 }
2571
2572 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2573 local_file && local_file != bs &&
2574 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2575 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2576 int64_t file_pnum;
2577 int ret2;
2578
2579 ret2 = bdrv_co_do_block_status(local_file, want_zero, local_map,
2580 *pnum, &file_pnum, NULL, NULL);
2581 if (ret2 >= 0) {
2582 /* Ignore errors. This is just providing extra information, it
2583 * is useful but not necessary.
2584 */
2585 if (ret2 & BDRV_BLOCK_EOF &&
2586 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2587 /*
2588 * It is valid for the format block driver to read
2589 * beyond the end of the underlying file's current
2590 * size; such areas read as zero.
2591 */
2592 ret |= BDRV_BLOCK_ZERO;
2593 } else {
2594 /* Limit request to the range reported by the protocol driver */
2595 *pnum = file_pnum;
2596 ret |= (ret2 & BDRV_BLOCK_ZERO);
2597 }
2598 }
2599
2600 /*
2601 * Now that the recursive search was done, clear the flag. Otherwise,
2602 * with more complicated block graphs like snapshot-access ->
2603 * copy-before-write -> qcow2, where the return value will be propagated
2604 * further up to a parent bdrv_co_do_block_status() call, both the
2605 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2606 * not allowed.
2607 */
2608 ret &= ~BDRV_BLOCK_RECURSE;
2609 }
2610
2611 out:
2612 bdrv_dec_in_flight(bs);
2613 if (ret >= 0 && offset + *pnum == total_size) {
2614 ret |= BDRV_BLOCK_EOF;
2615 }
2616 early_out:
2617 if (file) {
2618 *file = local_file;
2619 }
2620 if (map) {
2621 *map = local_map;
2622 }
2623 return ret;
2624 }
2625
2626 int coroutine_fn
bdrv_co_common_block_status_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,bool want_zero,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file,int * depth)2627 bdrv_co_common_block_status_above(BlockDriverState *bs,
2628 BlockDriverState *base,
2629 bool include_base,
2630 bool want_zero,
2631 int64_t offset,
2632 int64_t bytes,
2633 int64_t *pnum,
2634 int64_t *map,
2635 BlockDriverState **file,
2636 int *depth)
2637 {
2638 int ret;
2639 BlockDriverState *p;
2640 int64_t eof = 0;
2641 int dummy;
2642 IO_CODE();
2643
2644 assert(!include_base || base); /* Can't include NULL base */
2645 assert_bdrv_graph_readable();
2646
2647 if (!depth) {
2648 depth = &dummy;
2649 }
2650 *depth = 0;
2651
2652 if (!include_base && bs == base) {
2653 *pnum = bytes;
2654 return 0;
2655 }
2656
2657 ret = bdrv_co_do_block_status(bs, want_zero, offset, bytes, pnum,
2658 map, file);
2659 ++*depth;
2660 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2661 return ret;
2662 }
2663
2664 if (ret & BDRV_BLOCK_EOF) {
2665 eof = offset + *pnum;
2666 }
2667
2668 assert(*pnum <= bytes);
2669 bytes = *pnum;
2670
2671 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2672 p = bdrv_filter_or_cow_bs(p))
2673 {
2674 ret = bdrv_co_do_block_status(p, want_zero, offset, bytes, pnum,
2675 map, file);
2676 ++*depth;
2677 if (ret < 0) {
2678 return ret;
2679 }
2680 if (*pnum == 0) {
2681 /*
2682 * The top layer deferred to this layer, and because this layer is
2683 * short, any zeroes that we synthesize beyond EOF behave as if they
2684 * were allocated at this layer.
2685 *
2686 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2687 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2688 * below.
2689 */
2690 assert(ret & BDRV_BLOCK_EOF);
2691 *pnum = bytes;
2692 if (file) {
2693 *file = p;
2694 }
2695 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2696 break;
2697 }
2698 if (ret & BDRV_BLOCK_ALLOCATED) {
2699 /*
2700 * We've found the node and the status, we must break.
2701 *
2702 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2703 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2704 * below.
2705 */
2706 ret &= ~BDRV_BLOCK_EOF;
2707 break;
2708 }
2709
2710 if (p == base) {
2711 assert(include_base);
2712 break;
2713 }
2714
2715 /*
2716 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2717 * let's continue the diving.
2718 */
2719 assert(*pnum <= bytes);
2720 bytes = *pnum;
2721 }
2722
2723 if (offset + *pnum == eof) {
2724 ret |= BDRV_BLOCK_EOF;
2725 }
2726
2727 return ret;
2728 }
2729
bdrv_co_block_status_above(BlockDriverState * bs,BlockDriverState * base,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2730 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2731 BlockDriverState *base,
2732 int64_t offset, int64_t bytes,
2733 int64_t *pnum, int64_t *map,
2734 BlockDriverState **file)
2735 {
2736 IO_CODE();
2737 return bdrv_co_common_block_status_above(bs, base, false, true, offset,
2738 bytes, pnum, map, file, NULL);
2739 }
2740
bdrv_co_block_status(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2741 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2742 int64_t bytes, int64_t *pnum,
2743 int64_t *map, BlockDriverState **file)
2744 {
2745 IO_CODE();
2746 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2747 offset, bytes, pnum, map, file);
2748 }
2749
2750 /*
2751 * Check @bs (and its backing chain) to see if the range defined
2752 * by @offset and @bytes is known to read as zeroes.
2753 * Return 1 if that is the case, 0 otherwise and -errno on error.
2754 * This test is meant to be fast rather than accurate so returning 0
2755 * does not guarantee non-zero data.
2756 */
bdrv_co_is_zero_fast(BlockDriverState * bs,int64_t offset,int64_t bytes)2757 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2758 int64_t bytes)
2759 {
2760 int ret;
2761 int64_t pnum = bytes;
2762 IO_CODE();
2763
2764 if (!bytes) {
2765 return 1;
2766 }
2767
2768 ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
2769 bytes, &pnum, NULL, NULL, NULL);
2770
2771 if (ret < 0) {
2772 return ret;
2773 }
2774
2775 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2776 }
2777
bdrv_co_is_allocated(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum)2778 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2779 int64_t bytes, int64_t *pnum)
2780 {
2781 int ret;
2782 int64_t dummy;
2783 IO_CODE();
2784
2785 ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
2786 bytes, pnum ? pnum : &dummy, NULL,
2787 NULL, NULL);
2788 if (ret < 0) {
2789 return ret;
2790 }
2791 return !!(ret & BDRV_BLOCK_ALLOCATED);
2792 }
2793
2794 /*
2795 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2796 *
2797 * Return a positive depth if (a prefix of) the given range is allocated
2798 * in any image between BASE and TOP (BASE is only included if include_base
2799 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2800 * BASE can be NULL to check if the given offset is allocated in any
2801 * image of the chain. Return 0 otherwise, or negative errno on
2802 * failure.
2803 *
2804 * 'pnum' is set to the number of bytes (including and immediately
2805 * following the specified offset) that are known to be in the same
2806 * allocated/unallocated state. Note that a subsequent call starting
2807 * at 'offset + *pnum' may return the same allocation status (in other
2808 * words, the result is not necessarily the maximum possible range);
2809 * but 'pnum' will only be 0 when end of file is reached.
2810 */
bdrv_co_is_allocated_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,int64_t offset,int64_t bytes,int64_t * pnum)2811 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2812 BlockDriverState *base,
2813 bool include_base, int64_t offset,
2814 int64_t bytes, int64_t *pnum)
2815 {
2816 int depth;
2817 int ret;
2818 IO_CODE();
2819
2820 ret = bdrv_co_common_block_status_above(bs, base, include_base, false,
2821 offset, bytes, pnum, NULL, NULL,
2822 &depth);
2823 if (ret < 0) {
2824 return ret;
2825 }
2826
2827 if (ret & BDRV_BLOCK_ALLOCATED) {
2828 return depth;
2829 }
2830 return 0;
2831 }
2832
2833 int coroutine_fn
bdrv_co_readv_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2834 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2835 {
2836 BlockDriver *drv = bs->drv;
2837 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2838 int ret;
2839 IO_CODE();
2840 assert_bdrv_graph_readable();
2841
2842 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2843 if (ret < 0) {
2844 return ret;
2845 }
2846
2847 if (!drv) {
2848 return -ENOMEDIUM;
2849 }
2850
2851 bdrv_inc_in_flight(bs);
2852
2853 if (drv->bdrv_co_load_vmstate) {
2854 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2855 } else if (child_bs) {
2856 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2857 } else {
2858 ret = -ENOTSUP;
2859 }
2860
2861 bdrv_dec_in_flight(bs);
2862
2863 return ret;
2864 }
2865
2866 int coroutine_fn
bdrv_co_writev_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2867 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2868 {
2869 BlockDriver *drv = bs->drv;
2870 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2871 int ret;
2872 IO_CODE();
2873 assert_bdrv_graph_readable();
2874
2875 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2876 if (ret < 0) {
2877 return ret;
2878 }
2879
2880 if (!drv) {
2881 return -ENOMEDIUM;
2882 }
2883
2884 bdrv_inc_in_flight(bs);
2885
2886 if (drv->bdrv_co_save_vmstate) {
2887 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2888 } else if (child_bs) {
2889 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2890 } else {
2891 ret = -ENOTSUP;
2892 }
2893
2894 bdrv_dec_in_flight(bs);
2895
2896 return ret;
2897 }
2898
bdrv_save_vmstate(BlockDriverState * bs,const uint8_t * buf,int64_t pos,int size)2899 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2900 int64_t pos, int size)
2901 {
2902 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2903 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2904 IO_CODE();
2905
2906 return ret < 0 ? ret : size;
2907 }
2908
bdrv_load_vmstate(BlockDriverState * bs,uint8_t * buf,int64_t pos,int size)2909 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2910 int64_t pos, int size)
2911 {
2912 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2913 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2914 IO_CODE();
2915
2916 return ret < 0 ? ret : size;
2917 }
2918
2919 /**************************************************************/
2920 /* async I/Os */
2921
2922 /**
2923 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2924 * must be processed with the BQL held too (IOThreads are not allowed).
2925 *
2926 * Use bdrv_aio_cancel_async() instead when possible.
2927 */
bdrv_aio_cancel(BlockAIOCB * acb)2928 void bdrv_aio_cancel(BlockAIOCB *acb)
2929 {
2930 GLOBAL_STATE_CODE();
2931 qemu_aio_ref(acb);
2932 bdrv_aio_cancel_async(acb);
2933 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2934 qemu_aio_unref(acb);
2935 }
2936
2937 /* Async version of aio cancel. The caller is not blocked if the acb implements
2938 * cancel_async, otherwise we do nothing and let the request normally complete.
2939 * In either case the completion callback must be called. */
bdrv_aio_cancel_async(BlockAIOCB * acb)2940 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2941 {
2942 IO_CODE();
2943 if (acb->aiocb_info->cancel_async) {
2944 acb->aiocb_info->cancel_async(acb);
2945 }
2946 }
2947
2948 /**************************************************************/
2949 /* Coroutine block device emulation */
2950
bdrv_co_flush(BlockDriverState * bs)2951 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2952 {
2953 BdrvChild *primary_child = bdrv_primary_child(bs);
2954 BdrvChild *child;
2955 int current_gen;
2956 int ret = 0;
2957 IO_CODE();
2958
2959 assert_bdrv_graph_readable();
2960 bdrv_inc_in_flight(bs);
2961
2962 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
2963 bdrv_is_sg(bs)) {
2964 goto early_exit;
2965 }
2966
2967 qemu_mutex_lock(&bs->reqs_lock);
2968 current_gen = qatomic_read(&bs->write_gen);
2969
2970 /* Wait until any previous flushes are completed */
2971 while (bs->active_flush_req) {
2972 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2973 }
2974
2975 /* Flushes reach this point in nondecreasing current_gen order. */
2976 bs->active_flush_req = true;
2977 qemu_mutex_unlock(&bs->reqs_lock);
2978
2979 /* Write back all layers by calling one driver function */
2980 if (bs->drv->bdrv_co_flush) {
2981 ret = bs->drv->bdrv_co_flush(bs);
2982 goto out;
2983 }
2984
2985 /* Write back cached data to the OS even with cache=unsafe */
2986 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2987 if (bs->drv->bdrv_co_flush_to_os) {
2988 ret = bs->drv->bdrv_co_flush_to_os(bs);
2989 if (ret < 0) {
2990 goto out;
2991 }
2992 }
2993
2994 /* But don't actually force it to the disk with cache=unsafe */
2995 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2996 goto flush_children;
2997 }
2998
2999 /* Check if we really need to flush anything */
3000 if (bs->flushed_gen == current_gen) {
3001 goto flush_children;
3002 }
3003
3004 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3005 if (!bs->drv) {
3006 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3007 * (even in case of apparent success) */
3008 ret = -ENOMEDIUM;
3009 goto out;
3010 }
3011 if (bs->drv->bdrv_co_flush_to_disk) {
3012 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3013 } else if (bs->drv->bdrv_aio_flush) {
3014 BlockAIOCB *acb;
3015 CoroutineIOCompletion co = {
3016 .coroutine = qemu_coroutine_self(),
3017 };
3018
3019 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3020 if (acb == NULL) {
3021 ret = -EIO;
3022 } else {
3023 qemu_coroutine_yield();
3024 ret = co.ret;
3025 }
3026 } else {
3027 /*
3028 * Some block drivers always operate in either writethrough or unsafe
3029 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3030 * know how the server works (because the behaviour is hardcoded or
3031 * depends on server-side configuration), so we can't ensure that
3032 * everything is safe on disk. Returning an error doesn't work because
3033 * that would break guests even if the server operates in writethrough
3034 * mode.
3035 *
3036 * Let's hope the user knows what he's doing.
3037 */
3038 ret = 0;
3039 }
3040
3041 if (ret < 0) {
3042 goto out;
3043 }
3044
3045 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3046 * in the case of cache=unsafe, so there are no useless flushes.
3047 */
3048 flush_children:
3049 ret = 0;
3050 QLIST_FOREACH(child, &bs->children, next) {
3051 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3052 int this_child_ret = bdrv_co_flush(child->bs);
3053 if (!ret) {
3054 ret = this_child_ret;
3055 }
3056 }
3057 }
3058
3059 out:
3060 /* Notify any pending flushes that we have completed */
3061 if (ret == 0) {
3062 bs->flushed_gen = current_gen;
3063 }
3064
3065 qemu_mutex_lock(&bs->reqs_lock);
3066 bs->active_flush_req = false;
3067 /* Return value is ignored - it's ok if wait queue is empty */
3068 qemu_co_queue_next(&bs->flush_queue);
3069 qemu_mutex_unlock(&bs->reqs_lock);
3070
3071 early_exit:
3072 bdrv_dec_in_flight(bs);
3073 return ret;
3074 }
3075
bdrv_co_pdiscard(BdrvChild * child,int64_t offset,int64_t bytes)3076 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3077 int64_t bytes)
3078 {
3079 BdrvTrackedRequest req;
3080 int ret;
3081 int64_t max_pdiscard;
3082 int head, tail, align;
3083 BlockDriverState *bs = child->bs;
3084 IO_CODE();
3085 assert_bdrv_graph_readable();
3086
3087 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3088 return -ENOMEDIUM;
3089 }
3090
3091 if (bdrv_has_readonly_bitmaps(bs)) {
3092 return -EPERM;
3093 }
3094
3095 ret = bdrv_check_request(offset, bytes, NULL);
3096 if (ret < 0) {
3097 return ret;
3098 }
3099
3100 /* Do nothing if disabled. */
3101 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3102 return 0;
3103 }
3104
3105 if (!bs->drv->bdrv_co_pdiscard) {
3106 return 0;
3107 }
3108
3109 /* Invalidate the cached block-status data range if this discard overlaps */
3110 bdrv_bsc_invalidate_range(bs, offset, bytes);
3111
3112 /*
3113 * Discard is advisory, but some devices track and coalesce
3114 * unaligned requests, so we must pass everything down rather than
3115 * round here. Still, most devices reject unaligned requests with
3116 * -EINVAL or -ENOTSUP, so we must fragment the request accordingly.
3117 */
3118 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3119 assert(align % bs->bl.request_alignment == 0);
3120 head = offset % align;
3121 tail = (offset + bytes) % align;
3122
3123 bdrv_inc_in_flight(bs);
3124 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3125
3126 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3127 if (ret < 0) {
3128 goto out;
3129 }
3130
3131 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3132 align);
3133 assert(max_pdiscard >= bs->bl.request_alignment);
3134
3135 while (bytes > 0) {
3136 int64_t num = bytes;
3137
3138 if (head) {
3139 /* Make small requests to get to alignment boundaries. */
3140 num = MIN(bytes, align - head);
3141 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3142 num %= bs->bl.request_alignment;
3143 }
3144 head = (head + num) % align;
3145 assert(num < max_pdiscard);
3146 } else if (tail) {
3147 if (num > align) {
3148 /* Shorten the request to the last aligned cluster. */
3149 num -= tail;
3150 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3151 tail > bs->bl.request_alignment) {
3152 tail %= bs->bl.request_alignment;
3153 num -= tail;
3154 }
3155 }
3156 /* limit request size */
3157 if (num > max_pdiscard) {
3158 num = max_pdiscard;
3159 }
3160
3161 if (!bs->drv) {
3162 ret = -ENOMEDIUM;
3163 goto out;
3164 }
3165
3166 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3167 if (ret && ret != -ENOTSUP) {
3168 if (ret == -EINVAL && (offset % align != 0 || num % align != 0)) {
3169 /* Silently skip rejected unaligned head/tail requests */
3170 } else {
3171 goto out; /* bail out */
3172 }
3173 }
3174
3175 offset += num;
3176 bytes -= num;
3177 }
3178 ret = 0;
3179 out:
3180 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3181 tracked_request_end(&req);
3182 bdrv_dec_in_flight(bs);
3183 return ret;
3184 }
3185
bdrv_co_ioctl(BlockDriverState * bs,int req,void * buf)3186 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3187 {
3188 BlockDriver *drv = bs->drv;
3189 CoroutineIOCompletion co = {
3190 .coroutine = qemu_coroutine_self(),
3191 };
3192 BlockAIOCB *acb;
3193 IO_CODE();
3194 assert_bdrv_graph_readable();
3195
3196 bdrv_inc_in_flight(bs);
3197 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3198 co.ret = -ENOTSUP;
3199 goto out;
3200 }
3201
3202 if (drv->bdrv_co_ioctl) {
3203 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3204 } else {
3205 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3206 if (!acb) {
3207 co.ret = -ENOTSUP;
3208 goto out;
3209 }
3210 qemu_coroutine_yield();
3211 }
3212 out:
3213 bdrv_dec_in_flight(bs);
3214 return co.ret;
3215 }
3216
bdrv_co_zone_report(BlockDriverState * bs,int64_t offset,unsigned int * nr_zones,BlockZoneDescriptor * zones)3217 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3218 unsigned int *nr_zones,
3219 BlockZoneDescriptor *zones)
3220 {
3221 BlockDriver *drv = bs->drv;
3222 CoroutineIOCompletion co = {
3223 .coroutine = qemu_coroutine_self(),
3224 };
3225 IO_CODE();
3226
3227 bdrv_inc_in_flight(bs);
3228 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3229 co.ret = -ENOTSUP;
3230 goto out;
3231 }
3232 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3233 out:
3234 bdrv_dec_in_flight(bs);
3235 return co.ret;
3236 }
3237
bdrv_co_zone_mgmt(BlockDriverState * bs,BlockZoneOp op,int64_t offset,int64_t len)3238 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3239 int64_t offset, int64_t len)
3240 {
3241 BlockDriver *drv = bs->drv;
3242 CoroutineIOCompletion co = {
3243 .coroutine = qemu_coroutine_self(),
3244 };
3245 IO_CODE();
3246
3247 bdrv_inc_in_flight(bs);
3248 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3249 co.ret = -ENOTSUP;
3250 goto out;
3251 }
3252 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3253 out:
3254 bdrv_dec_in_flight(bs);
3255 return co.ret;
3256 }
3257
bdrv_co_zone_append(BlockDriverState * bs,int64_t * offset,QEMUIOVector * qiov,BdrvRequestFlags flags)3258 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3259 QEMUIOVector *qiov,
3260 BdrvRequestFlags flags)
3261 {
3262 int ret;
3263 BlockDriver *drv = bs->drv;
3264 CoroutineIOCompletion co = {
3265 .coroutine = qemu_coroutine_self(),
3266 };
3267 IO_CODE();
3268
3269 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3270 if (ret < 0) {
3271 return ret;
3272 }
3273
3274 bdrv_inc_in_flight(bs);
3275 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3276 co.ret = -ENOTSUP;
3277 goto out;
3278 }
3279 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3280 out:
3281 bdrv_dec_in_flight(bs);
3282 return co.ret;
3283 }
3284
qemu_blockalign(BlockDriverState * bs,size_t size)3285 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3286 {
3287 IO_CODE();
3288 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3289 }
3290
qemu_blockalign0(BlockDriverState * bs,size_t size)3291 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3292 {
3293 IO_CODE();
3294 return memset(qemu_blockalign(bs, size), 0, size);
3295 }
3296
qemu_try_blockalign(BlockDriverState * bs,size_t size)3297 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3298 {
3299 size_t align = bdrv_opt_mem_align(bs);
3300 IO_CODE();
3301
3302 /* Ensure that NULL is never returned on success */
3303 assert(align > 0);
3304 if (size == 0) {
3305 size = align;
3306 }
3307
3308 return qemu_try_memalign(align, size);
3309 }
3310
qemu_try_blockalign0(BlockDriverState * bs,size_t size)3311 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3312 {
3313 void *mem = qemu_try_blockalign(bs, size);
3314 IO_CODE();
3315
3316 if (mem) {
3317 memset(mem, 0, size);
3318 }
3319
3320 return mem;
3321 }
3322
3323 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3324 static void GRAPH_RDLOCK
bdrv_register_buf_rollback(BlockDriverState * bs,void * host,size_t size,BdrvChild * final_child)3325 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3326 BdrvChild *final_child)
3327 {
3328 BdrvChild *child;
3329
3330 GLOBAL_STATE_CODE();
3331 assert_bdrv_graph_readable();
3332
3333 QLIST_FOREACH(child, &bs->children, next) {
3334 if (child == final_child) {
3335 break;
3336 }
3337
3338 bdrv_unregister_buf(child->bs, host, size);
3339 }
3340
3341 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3342 bs->drv->bdrv_unregister_buf(bs, host, size);
3343 }
3344 }
3345
bdrv_register_buf(BlockDriverState * bs,void * host,size_t size,Error ** errp)3346 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3347 Error **errp)
3348 {
3349 BdrvChild *child;
3350
3351 GLOBAL_STATE_CODE();
3352 GRAPH_RDLOCK_GUARD_MAINLOOP();
3353
3354 if (bs->drv && bs->drv->bdrv_register_buf) {
3355 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3356 return false;
3357 }
3358 }
3359 QLIST_FOREACH(child, &bs->children, next) {
3360 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3361 bdrv_register_buf_rollback(bs, host, size, child);
3362 return false;
3363 }
3364 }
3365 return true;
3366 }
3367
bdrv_unregister_buf(BlockDriverState * bs,void * host,size_t size)3368 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3369 {
3370 BdrvChild *child;
3371
3372 GLOBAL_STATE_CODE();
3373 GRAPH_RDLOCK_GUARD_MAINLOOP();
3374
3375 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3376 bs->drv->bdrv_unregister_buf(bs, host, size);
3377 }
3378 QLIST_FOREACH(child, &bs->children, next) {
3379 bdrv_unregister_buf(child->bs, host, size);
3380 }
3381 }
3382
bdrv_co_copy_range_internal(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags,bool recurse_src)3383 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3384 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3385 int64_t dst_offset, int64_t bytes,
3386 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3387 bool recurse_src)
3388 {
3389 BdrvTrackedRequest req;
3390 int ret;
3391 assert_bdrv_graph_readable();
3392
3393 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3394 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3395 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3396 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3397 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3398
3399 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3400 return -ENOMEDIUM;
3401 }
3402 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3403 if (ret) {
3404 return ret;
3405 }
3406 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3407 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3408 }
3409
3410 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3411 return -ENOMEDIUM;
3412 }
3413 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3414 if (ret) {
3415 return ret;
3416 }
3417
3418 if (!src->bs->drv->bdrv_co_copy_range_from
3419 || !dst->bs->drv->bdrv_co_copy_range_to
3420 || src->bs->encrypted || dst->bs->encrypted) {
3421 return -ENOTSUP;
3422 }
3423
3424 if (recurse_src) {
3425 bdrv_inc_in_flight(src->bs);
3426 tracked_request_begin(&req, src->bs, src_offset, bytes,
3427 BDRV_TRACKED_READ);
3428
3429 /* BDRV_REQ_SERIALISING is only for write operation */
3430 assert(!(read_flags & BDRV_REQ_SERIALISING));
3431 bdrv_wait_serialising_requests(&req);
3432
3433 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3434 src, src_offset,
3435 dst, dst_offset,
3436 bytes,
3437 read_flags, write_flags);
3438
3439 tracked_request_end(&req);
3440 bdrv_dec_in_flight(src->bs);
3441 } else {
3442 bdrv_inc_in_flight(dst->bs);
3443 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3444 BDRV_TRACKED_WRITE);
3445 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3446 write_flags);
3447 if (!ret) {
3448 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3449 src, src_offset,
3450 dst, dst_offset,
3451 bytes,
3452 read_flags, write_flags);
3453 }
3454 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3455 tracked_request_end(&req);
3456 bdrv_dec_in_flight(dst->bs);
3457 }
3458
3459 return ret;
3460 }
3461
3462 /* Copy range from @src to @dst.
3463 *
3464 * See the comment of bdrv_co_copy_range for the parameter and return value
3465 * semantics. */
bdrv_co_copy_range_from(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3466 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3467 BdrvChild *dst, int64_t dst_offset,
3468 int64_t bytes,
3469 BdrvRequestFlags read_flags,
3470 BdrvRequestFlags write_flags)
3471 {
3472 IO_CODE();
3473 assert_bdrv_graph_readable();
3474 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3475 read_flags, write_flags);
3476 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3477 bytes, read_flags, write_flags, true);
3478 }
3479
3480 /* Copy range from @src to @dst.
3481 *
3482 * See the comment of bdrv_co_copy_range for the parameter and return value
3483 * semantics. */
bdrv_co_copy_range_to(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3484 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3485 BdrvChild *dst, int64_t dst_offset,
3486 int64_t bytes,
3487 BdrvRequestFlags read_flags,
3488 BdrvRequestFlags write_flags)
3489 {
3490 IO_CODE();
3491 assert_bdrv_graph_readable();
3492 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3493 read_flags, write_flags);
3494 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3495 bytes, read_flags, write_flags, false);
3496 }
3497
bdrv_co_copy_range(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3498 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3499 BdrvChild *dst, int64_t dst_offset,
3500 int64_t bytes, BdrvRequestFlags read_flags,
3501 BdrvRequestFlags write_flags)
3502 {
3503 IO_CODE();
3504 assert_bdrv_graph_readable();
3505
3506 return bdrv_co_copy_range_from(src, src_offset,
3507 dst, dst_offset,
3508 bytes, read_flags, write_flags);
3509 }
3510
3511 static void coroutine_fn GRAPH_RDLOCK
bdrv_parent_cb_resize(BlockDriverState * bs)3512 bdrv_parent_cb_resize(BlockDriverState *bs)
3513 {
3514 BdrvChild *c;
3515
3516 assert_bdrv_graph_readable();
3517
3518 QLIST_FOREACH(c, &bs->parents, next_parent) {
3519 if (c->klass->resize) {
3520 c->klass->resize(c);
3521 }
3522 }
3523 }
3524
3525 /**
3526 * Truncate file to 'offset' bytes (needed only for file protocols)
3527 *
3528 * If 'exact' is true, the file must be resized to exactly the given
3529 * 'offset'. Otherwise, it is sufficient for the node to be at least
3530 * 'offset' bytes in length.
3531 */
bdrv_co_truncate(BdrvChild * child,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)3532 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3533 PreallocMode prealloc, BdrvRequestFlags flags,
3534 Error **errp)
3535 {
3536 BlockDriverState *bs = child->bs;
3537 BdrvChild *filtered, *backing;
3538 BlockDriver *drv = bs->drv;
3539 BdrvTrackedRequest req;
3540 int64_t old_size, new_bytes;
3541 int ret;
3542 IO_CODE();
3543 assert_bdrv_graph_readable();
3544
3545 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3546 if (!drv) {
3547 error_setg(errp, "No medium inserted");
3548 return -ENOMEDIUM;
3549 }
3550 if (offset < 0) {
3551 error_setg(errp, "Image size cannot be negative");
3552 return -EINVAL;
3553 }
3554
3555 ret = bdrv_check_request(offset, 0, errp);
3556 if (ret < 0) {
3557 return ret;
3558 }
3559
3560 old_size = bdrv_co_getlength(bs);
3561 if (old_size < 0) {
3562 error_setg_errno(errp, -old_size, "Failed to get old image size");
3563 return old_size;
3564 }
3565
3566 if (bdrv_is_read_only(bs)) {
3567 error_setg(errp, "Image is read-only");
3568 return -EACCES;
3569 }
3570
3571 if (offset > old_size) {
3572 new_bytes = offset - old_size;
3573 } else {
3574 new_bytes = 0;
3575 }
3576
3577 bdrv_inc_in_flight(bs);
3578 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3579 BDRV_TRACKED_TRUNCATE);
3580
3581 /* If we are growing the image and potentially using preallocation for the
3582 * new area, we need to make sure that no write requests are made to it
3583 * concurrently or they might be overwritten by preallocation. */
3584 if (new_bytes) {
3585 bdrv_make_request_serialising(&req, 1);
3586 }
3587 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3588 0);
3589 if (ret < 0) {
3590 error_setg_errno(errp, -ret,
3591 "Failed to prepare request for truncation");
3592 goto out;
3593 }
3594
3595 filtered = bdrv_filter_child(bs);
3596 backing = bdrv_cow_child(bs);
3597
3598 /*
3599 * If the image has a backing file that is large enough that it would
3600 * provide data for the new area, we cannot leave it unallocated because
3601 * then the backing file content would become visible. Instead, zero-fill
3602 * the new area.
3603 *
3604 * Note that if the image has a backing file, but was opened without the
3605 * backing file, taking care of keeping things consistent with that backing
3606 * file is the user's responsibility.
3607 */
3608 if (new_bytes && backing) {
3609 int64_t backing_len;
3610
3611 backing_len = bdrv_co_getlength(backing->bs);
3612 if (backing_len < 0) {
3613 ret = backing_len;
3614 error_setg_errno(errp, -ret, "Could not get backing file size");
3615 goto out;
3616 }
3617
3618 if (backing_len > old_size) {
3619 flags |= BDRV_REQ_ZERO_WRITE;
3620 }
3621 }
3622
3623 if (drv->bdrv_co_truncate) {
3624 if (flags & ~bs->supported_truncate_flags) {
3625 error_setg(errp, "Block driver does not support requested flags");
3626 ret = -ENOTSUP;
3627 goto out;
3628 }
3629 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3630 } else if (filtered) {
3631 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3632 } else {
3633 error_setg(errp, "Image format driver does not support resize");
3634 ret = -ENOTSUP;
3635 goto out;
3636 }
3637 if (ret < 0) {
3638 goto out;
3639 }
3640
3641 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3642 if (ret < 0) {
3643 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3644 } else {
3645 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3646 }
3647 /*
3648 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3649 * failed, but the latter doesn't affect how we should finish the request.
3650 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3651 */
3652 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3653
3654 out:
3655 tracked_request_end(&req);
3656 bdrv_dec_in_flight(bs);
3657
3658 return ret;
3659 }
3660
bdrv_cancel_in_flight(BlockDriverState * bs)3661 void bdrv_cancel_in_flight(BlockDriverState *bs)
3662 {
3663 GLOBAL_STATE_CODE();
3664 GRAPH_RDLOCK_GUARD_MAINLOOP();
3665
3666 if (!bs || !bs->drv) {
3667 return;
3668 }
3669
3670 if (bs->drv->bdrv_cancel_in_flight) {
3671 bs->drv->bdrv_cancel_in_flight(bs);
3672 }
3673 }
3674
3675 int coroutine_fn
bdrv_co_preadv_snapshot(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)3676 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3677 QEMUIOVector *qiov, size_t qiov_offset)
3678 {
3679 BlockDriverState *bs = child->bs;
3680 BlockDriver *drv = bs->drv;
3681 int ret;
3682 IO_CODE();
3683 assert_bdrv_graph_readable();
3684
3685 if (!drv) {
3686 return -ENOMEDIUM;
3687 }
3688
3689 if (!drv->bdrv_co_preadv_snapshot) {
3690 return -ENOTSUP;
3691 }
3692
3693 bdrv_inc_in_flight(bs);
3694 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3695 bdrv_dec_in_flight(bs);
3696
3697 return ret;
3698 }
3699
3700 int coroutine_fn
bdrv_co_snapshot_block_status(BlockDriverState * bs,bool want_zero,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)3701 bdrv_co_snapshot_block_status(BlockDriverState *bs,
3702 bool want_zero, int64_t offset, int64_t bytes,
3703 int64_t *pnum, int64_t *map,
3704 BlockDriverState **file)
3705 {
3706 BlockDriver *drv = bs->drv;
3707 int ret;
3708 IO_CODE();
3709 assert_bdrv_graph_readable();
3710
3711 if (!drv) {
3712 return -ENOMEDIUM;
3713 }
3714
3715 if (!drv->bdrv_co_snapshot_block_status) {
3716 return -ENOTSUP;
3717 }
3718
3719 bdrv_inc_in_flight(bs);
3720 ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
3721 pnum, map, file);
3722 bdrv_dec_in_flight(bs);
3723
3724 return ret;
3725 }
3726
3727 int coroutine_fn
bdrv_co_pdiscard_snapshot(BlockDriverState * bs,int64_t offset,int64_t bytes)3728 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3729 {
3730 BlockDriver *drv = bs->drv;
3731 int ret;
3732 IO_CODE();
3733 assert_bdrv_graph_readable();
3734
3735 if (!drv) {
3736 return -ENOMEDIUM;
3737 }
3738
3739 if (!drv->bdrv_co_pdiscard_snapshot) {
3740 return -ENOTSUP;
3741 }
3742
3743 bdrv_inc_in_flight(bs);
3744 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3745 bdrv_dec_in_flight(bs);
3746
3747 return ret;
3748 }
3749