1 /*
2 * Block layer I/O functions
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "system/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "block/dirty-bitmap.h"
34 #include "block/write-threshold.h"
35 #include "qemu/cutils.h"
36 #include "qemu/memalign.h"
37 #include "qapi/error.h"
38 #include "qemu/error-report.h"
39 #include "qemu/main-loop.h"
40 #include "system/replay.h"
41 #include "qemu/units.h"
42
43 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
44 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
45
46 /* Maximum read size for checking if data reads as zero, in bytes */
47 #define MAX_ZERO_CHECK_BUFFER (128 * KiB)
48
49 static void coroutine_fn GRAPH_RDLOCK
50 bdrv_parent_cb_resize(BlockDriverState *bs);
51
52 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
53 int64_t offset, int64_t bytes, BdrvRequestFlags flags);
54
55 static void GRAPH_RDLOCK
bdrv_parent_drained_begin(BlockDriverState * bs,BdrvChild * ignore)56 bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
57 {
58 BdrvChild *c, *next;
59 IO_OR_GS_CODE();
60 assert_bdrv_graph_readable();
61
62 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
63 if (c == ignore) {
64 continue;
65 }
66 bdrv_parent_drained_begin_single(c);
67 }
68 }
69
bdrv_parent_drained_end_single(BdrvChild * c)70 void bdrv_parent_drained_end_single(BdrvChild *c)
71 {
72 GLOBAL_STATE_CODE();
73
74 assert(c->quiesced_parent);
75 c->quiesced_parent = false;
76
77 if (c->klass->drained_end) {
78 c->klass->drained_end(c);
79 }
80 }
81
82 static void GRAPH_RDLOCK
bdrv_parent_drained_end(BlockDriverState * bs,BdrvChild * ignore)83 bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
84 {
85 BdrvChild *c;
86 IO_OR_GS_CODE();
87 assert_bdrv_graph_readable();
88
89 QLIST_FOREACH(c, &bs->parents, next_parent) {
90 if (c == ignore) {
91 continue;
92 }
93 bdrv_parent_drained_end_single(c);
94 }
95 }
96
bdrv_parent_drained_poll_single(BdrvChild * c)97 bool bdrv_parent_drained_poll_single(BdrvChild *c)
98 {
99 IO_OR_GS_CODE();
100
101 if (c->klass->drained_poll) {
102 return c->klass->drained_poll(c);
103 }
104 return false;
105 }
106
107 static bool GRAPH_RDLOCK
bdrv_parent_drained_poll(BlockDriverState * bs,BdrvChild * ignore,bool ignore_bds_parents)108 bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
109 bool ignore_bds_parents)
110 {
111 BdrvChild *c, *next;
112 bool busy = false;
113 IO_OR_GS_CODE();
114 assert_bdrv_graph_readable();
115
116 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
117 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
118 continue;
119 }
120 busy |= bdrv_parent_drained_poll_single(c);
121 }
122
123 return busy;
124 }
125
bdrv_parent_drained_begin_single(BdrvChild * c)126 void bdrv_parent_drained_begin_single(BdrvChild *c)
127 {
128 GLOBAL_STATE_CODE();
129
130 assert(!c->quiesced_parent);
131 c->quiesced_parent = true;
132
133 if (c->klass->drained_begin) {
134 /* called with rdlock taken, but it doesn't really need it. */
135 c->klass->drained_begin(c);
136 }
137 }
138
bdrv_merge_limits(BlockLimits * dst,const BlockLimits * src)139 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
140 {
141 dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
142 src->pdiscard_alignment);
143 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
144 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
145 dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
146 src->max_hw_transfer);
147 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
148 src->opt_mem_alignment);
149 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
150 src->min_mem_alignment);
151 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
152 dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
153 }
154
155 typedef struct BdrvRefreshLimitsState {
156 BlockDriverState *bs;
157 BlockLimits old_bl;
158 } BdrvRefreshLimitsState;
159
bdrv_refresh_limits_abort(void * opaque)160 static void bdrv_refresh_limits_abort(void *opaque)
161 {
162 BdrvRefreshLimitsState *s = opaque;
163
164 s->bs->bl = s->old_bl;
165 }
166
167 static TransactionActionDrv bdrv_refresh_limits_drv = {
168 .abort = bdrv_refresh_limits_abort,
169 .clean = g_free,
170 };
171
172 /* @tran is allowed to be NULL, in this case no rollback is possible. */
bdrv_refresh_limits(BlockDriverState * bs,Transaction * tran,Error ** errp)173 void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
174 {
175 ERRP_GUARD();
176 BlockDriver *drv = bs->drv;
177 BdrvChild *c;
178 bool have_limits;
179
180 GLOBAL_STATE_CODE();
181
182 if (tran) {
183 BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
184 *s = (BdrvRefreshLimitsState) {
185 .bs = bs,
186 .old_bl = bs->bl,
187 };
188 tran_add(tran, &bdrv_refresh_limits_drv, s);
189 }
190
191 memset(&bs->bl, 0, sizeof(bs->bl));
192
193 if (!drv) {
194 return;
195 }
196
197 /* Default alignment based on whether driver has byte interface */
198 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
199 drv->bdrv_aio_preadv ||
200 drv->bdrv_co_preadv_part) ? 1 : 512;
201
202 /* Take some limits from the children as a default */
203 have_limits = false;
204 QLIST_FOREACH(c, &bs->children, next) {
205 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
206 {
207 bdrv_merge_limits(&bs->bl, &c->bs->bl);
208 have_limits = true;
209 }
210
211 if (c->role & BDRV_CHILD_FILTERED) {
212 bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
213 }
214 }
215
216 if (!have_limits) {
217 bs->bl.min_mem_alignment = 512;
218 bs->bl.opt_mem_alignment = qemu_real_host_page_size();
219
220 /* Safe default since most protocols use readv()/writev()/etc */
221 bs->bl.max_iov = IOV_MAX;
222 }
223
224 /* Then let the driver override it */
225 if (drv->bdrv_refresh_limits) {
226 drv->bdrv_refresh_limits(bs, errp);
227 if (*errp) {
228 return;
229 }
230 }
231
232 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
233 error_setg(errp, "Driver requires too large request alignment");
234 }
235 }
236
237 /**
238 * The copy-on-read flag is actually a reference count so multiple users may
239 * use the feature without worrying about clobbering its previous state.
240 * Copy-on-read stays enabled until all users have called to disable it.
241 */
bdrv_enable_copy_on_read(BlockDriverState * bs)242 void bdrv_enable_copy_on_read(BlockDriverState *bs)
243 {
244 IO_CODE();
245 qatomic_inc(&bs->copy_on_read);
246 }
247
bdrv_disable_copy_on_read(BlockDriverState * bs)248 void bdrv_disable_copy_on_read(BlockDriverState *bs)
249 {
250 int old = qatomic_fetch_dec(&bs->copy_on_read);
251 IO_CODE();
252 assert(old >= 1);
253 }
254
255 typedef struct {
256 Coroutine *co;
257 BlockDriverState *bs;
258 bool done;
259 bool begin;
260 bool poll;
261 BdrvChild *parent;
262 } BdrvCoDrainData;
263
264 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
bdrv_drain_poll(BlockDriverState * bs,BdrvChild * ignore_parent,bool ignore_bds_parents)265 bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
266 bool ignore_bds_parents)
267 {
268 GLOBAL_STATE_CODE();
269
270 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
271 return true;
272 }
273
274 if (qatomic_read(&bs->in_flight)) {
275 return true;
276 }
277
278 return false;
279 }
280
bdrv_drain_poll_top_level(BlockDriverState * bs,BdrvChild * ignore_parent)281 static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
282 BdrvChild *ignore_parent)
283 {
284 GLOBAL_STATE_CODE();
285 GRAPH_RDLOCK_GUARD_MAINLOOP();
286
287 return bdrv_drain_poll(bs, ignore_parent, false);
288 }
289
290 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
291 bool poll);
292 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
293
bdrv_co_drain_bh_cb(void * opaque)294 static void bdrv_co_drain_bh_cb(void *opaque)
295 {
296 BdrvCoDrainData *data = opaque;
297 Coroutine *co = data->co;
298 BlockDriverState *bs = data->bs;
299
300 if (bs) {
301 bdrv_dec_in_flight(bs);
302 if (data->begin) {
303 bdrv_do_drained_begin(bs, data->parent, data->poll);
304 } else {
305 assert(!data->poll);
306 bdrv_do_drained_end(bs, data->parent);
307 }
308 } else {
309 assert(data->begin);
310 bdrv_drain_all_begin();
311 }
312
313 data->done = true;
314 aio_co_wake(co);
315 }
316
bdrv_co_yield_to_drain(BlockDriverState * bs,bool begin,BdrvChild * parent,bool poll)317 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
318 bool begin,
319 BdrvChild *parent,
320 bool poll)
321 {
322 BdrvCoDrainData data;
323 Coroutine *self = qemu_coroutine_self();
324
325 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
326 * other coroutines run if they were queued by aio_co_enter(). */
327
328 assert(qemu_in_coroutine());
329 data = (BdrvCoDrainData) {
330 .co = self,
331 .bs = bs,
332 .done = false,
333 .begin = begin,
334 .parent = parent,
335 .poll = poll,
336 };
337
338 if (bs) {
339 bdrv_inc_in_flight(bs);
340 }
341
342 replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
343 bdrv_co_drain_bh_cb, &data);
344
345 qemu_coroutine_yield();
346 /* If we are resumed from some other event (such as an aio completion or a
347 * timer callback), it is a bug in the caller that should be fixed. */
348 assert(data.done);
349 }
350
bdrv_do_drained_begin(BlockDriverState * bs,BdrvChild * parent,bool poll)351 static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
352 bool poll)
353 {
354 IO_OR_GS_CODE();
355
356 if (qemu_in_coroutine()) {
357 bdrv_co_yield_to_drain(bs, true, parent, poll);
358 return;
359 }
360
361 GLOBAL_STATE_CODE();
362
363 /* Stop things in parent-to-child order */
364 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
365 GRAPH_RDLOCK_GUARD_MAINLOOP();
366 bdrv_parent_drained_begin(bs, parent);
367 if (bs->drv && bs->drv->bdrv_drain_begin) {
368 bs->drv->bdrv_drain_begin(bs);
369 }
370 }
371
372 /*
373 * Wait for drained requests to finish.
374 *
375 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
376 * call is needed so things in this AioContext can make progress even
377 * though we don't return to the main AioContext loop - this automatically
378 * includes other nodes in the same AioContext and therefore all child
379 * nodes.
380 */
381 if (poll) {
382 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
383 }
384 }
385
bdrv_do_drained_begin_quiesce(BlockDriverState * bs,BdrvChild * parent)386 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
387 {
388 bdrv_do_drained_begin(bs, parent, false);
389 }
390
391 void coroutine_mixed_fn
bdrv_drained_begin(BlockDriverState * bs)392 bdrv_drained_begin(BlockDriverState *bs)
393 {
394 IO_OR_GS_CODE();
395 bdrv_do_drained_begin(bs, NULL, true);
396 }
397
398 /**
399 * This function does not poll, nor must any of its recursively called
400 * functions.
401 */
bdrv_do_drained_end(BlockDriverState * bs,BdrvChild * parent)402 static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
403 {
404 int old_quiesce_counter;
405
406 IO_OR_GS_CODE();
407
408 if (qemu_in_coroutine()) {
409 bdrv_co_yield_to_drain(bs, false, parent, false);
410 return;
411 }
412
413 /* At this point, we should be always running in the main loop. */
414 GLOBAL_STATE_CODE();
415 assert(bs->quiesce_counter > 0);
416
417 /* Re-enable things in child-to-parent order */
418 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
419 if (old_quiesce_counter == 1) {
420 GRAPH_RDLOCK_GUARD_MAINLOOP();
421 if (bs->drv && bs->drv->bdrv_drain_end) {
422 bs->drv->bdrv_drain_end(bs);
423 }
424 bdrv_parent_drained_end(bs, parent);
425 }
426 }
427
bdrv_drained_end(BlockDriverState * bs)428 void bdrv_drained_end(BlockDriverState *bs)
429 {
430 IO_OR_GS_CODE();
431 bdrv_do_drained_end(bs, NULL);
432 }
433
bdrv_drain(BlockDriverState * bs)434 void bdrv_drain(BlockDriverState *bs)
435 {
436 IO_OR_GS_CODE();
437 bdrv_drained_begin(bs);
438 bdrv_drained_end(bs);
439 }
440
bdrv_drain_assert_idle(BlockDriverState * bs)441 static void bdrv_drain_assert_idle(BlockDriverState *bs)
442 {
443 BdrvChild *child, *next;
444 GLOBAL_STATE_CODE();
445 GRAPH_RDLOCK_GUARD_MAINLOOP();
446
447 assert(qatomic_read(&bs->in_flight) == 0);
448 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
449 bdrv_drain_assert_idle(child->bs);
450 }
451 }
452
453 unsigned int bdrv_drain_all_count = 0;
454
bdrv_drain_all_poll(void)455 static bool bdrv_drain_all_poll(void)
456 {
457 BlockDriverState *bs = NULL;
458 bool result = false;
459
460 GLOBAL_STATE_CODE();
461 GRAPH_RDLOCK_GUARD_MAINLOOP();
462
463 /*
464 * bdrv_drain_poll() can't make changes to the graph and we hold the BQL,
465 * so iterating bdrv_next_all_states() is safe.
466 */
467 while ((bs = bdrv_next_all_states(bs))) {
468 result |= bdrv_drain_poll(bs, NULL, true);
469 }
470
471 return result;
472 }
473
474 /*
475 * Wait for pending requests to complete across all BlockDriverStates
476 *
477 * This function does not flush data to disk, use bdrv_flush_all() for that
478 * after calling this function.
479 *
480 * This pauses all block jobs and disables external clients. It must
481 * be paired with bdrv_drain_all_end().
482 *
483 * NOTE: no new block jobs or BlockDriverStates can be created between
484 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
485 */
bdrv_drain_all_begin_nopoll(void)486 void bdrv_drain_all_begin_nopoll(void)
487 {
488 BlockDriverState *bs = NULL;
489 GLOBAL_STATE_CODE();
490
491 /*
492 * bdrv queue is managed by record/replay,
493 * waiting for finishing the I/O requests may
494 * be infinite
495 */
496 if (replay_events_enabled()) {
497 return;
498 }
499
500 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
501 * loop AioContext, so make sure we're in the main context. */
502 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
503 assert(bdrv_drain_all_count < INT_MAX);
504 bdrv_drain_all_count++;
505
506 /* Quiesce all nodes, without polling in-flight requests yet. The graph
507 * cannot change during this loop. */
508 while ((bs = bdrv_next_all_states(bs))) {
509 bdrv_do_drained_begin(bs, NULL, false);
510 }
511 }
512
bdrv_drain_all_begin(void)513 void coroutine_mixed_fn bdrv_drain_all_begin(void)
514 {
515 BlockDriverState *bs = NULL;
516
517 if (qemu_in_coroutine()) {
518 bdrv_co_yield_to_drain(NULL, true, NULL, true);
519 return;
520 }
521
522 /*
523 * bdrv queue is managed by record/replay,
524 * waiting for finishing the I/O requests may
525 * be infinite
526 */
527 if (replay_events_enabled()) {
528 return;
529 }
530
531 bdrv_drain_all_begin_nopoll();
532
533 /* Now poll the in-flight requests */
534 AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
535
536 while ((bs = bdrv_next_all_states(bs))) {
537 bdrv_drain_assert_idle(bs);
538 }
539 }
540
bdrv_drain_all_end_quiesce(BlockDriverState * bs)541 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
542 {
543 GLOBAL_STATE_CODE();
544
545 g_assert(bs->quiesce_counter > 0);
546 g_assert(!bs->refcnt);
547
548 while (bs->quiesce_counter) {
549 bdrv_do_drained_end(bs, NULL);
550 }
551 }
552
bdrv_drain_all_end(void)553 void bdrv_drain_all_end(void)
554 {
555 BlockDriverState *bs = NULL;
556 GLOBAL_STATE_CODE();
557
558 /*
559 * bdrv queue is managed by record/replay,
560 * waiting for finishing the I/O requests may
561 * be endless
562 */
563 if (replay_events_enabled()) {
564 return;
565 }
566
567 while ((bs = bdrv_next_all_states(bs))) {
568 bdrv_do_drained_end(bs, NULL);
569 }
570
571 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
572 assert(bdrv_drain_all_count > 0);
573 bdrv_drain_all_count--;
574 }
575
bdrv_drain_all(void)576 void bdrv_drain_all(void)
577 {
578 GLOBAL_STATE_CODE();
579 bdrv_drain_all_begin();
580 bdrv_drain_all_end();
581 }
582
583 /**
584 * Remove an active request from the tracked requests list
585 *
586 * This function should be called when a tracked request is completing.
587 */
tracked_request_end(BdrvTrackedRequest * req)588 static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
589 {
590 if (req->serialising) {
591 qatomic_dec(&req->bs->serialising_in_flight);
592 }
593
594 qemu_mutex_lock(&req->bs->reqs_lock);
595 QLIST_REMOVE(req, list);
596 qemu_mutex_unlock(&req->bs->reqs_lock);
597
598 /*
599 * At this point qemu_co_queue_wait(&req->wait_queue, ...) won't be called
600 * anymore because the request has been removed from the list, so it's safe
601 * to restart the queue outside reqs_lock to minimize the critical section.
602 */
603 qemu_co_queue_restart_all(&req->wait_queue);
604 }
605
606 /**
607 * Add an active request to the tracked requests list
608 */
tracked_request_begin(BdrvTrackedRequest * req,BlockDriverState * bs,int64_t offset,int64_t bytes,enum BdrvTrackedRequestType type)609 static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
610 BlockDriverState *bs,
611 int64_t offset,
612 int64_t bytes,
613 enum BdrvTrackedRequestType type)
614 {
615 bdrv_check_request(offset, bytes, &error_abort);
616
617 *req = (BdrvTrackedRequest){
618 .bs = bs,
619 .offset = offset,
620 .bytes = bytes,
621 .type = type,
622 .co = qemu_coroutine_self(),
623 .serialising = false,
624 .overlap_offset = offset,
625 .overlap_bytes = bytes,
626 };
627
628 qemu_co_queue_init(&req->wait_queue);
629
630 qemu_mutex_lock(&bs->reqs_lock);
631 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
632 qemu_mutex_unlock(&bs->reqs_lock);
633 }
634
tracked_request_overlaps(BdrvTrackedRequest * req,int64_t offset,int64_t bytes)635 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
636 int64_t offset, int64_t bytes)
637 {
638 bdrv_check_request(offset, bytes, &error_abort);
639
640 /* aaaa bbbb */
641 if (offset >= req->overlap_offset + req->overlap_bytes) {
642 return false;
643 }
644 /* bbbb aaaa */
645 if (req->overlap_offset >= offset + bytes) {
646 return false;
647 }
648 return true;
649 }
650
651 /* Called with self->bs->reqs_lock held */
652 static coroutine_fn BdrvTrackedRequest *
bdrv_find_conflicting_request(BdrvTrackedRequest * self)653 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
654 {
655 BdrvTrackedRequest *req;
656
657 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
658 if (req == self || (!req->serialising && !self->serialising)) {
659 continue;
660 }
661 if (tracked_request_overlaps(req, self->overlap_offset,
662 self->overlap_bytes))
663 {
664 /*
665 * Hitting this means there was a reentrant request, for
666 * example, a block driver issuing nested requests. This must
667 * never happen since it means deadlock.
668 */
669 assert(qemu_coroutine_self() != req->co);
670
671 /*
672 * If the request is already (indirectly) waiting for us, or
673 * will wait for us as soon as it wakes up, then just go on
674 * (instead of producing a deadlock in the former case).
675 */
676 if (!req->waiting_for) {
677 return req;
678 }
679 }
680 }
681
682 return NULL;
683 }
684
685 /* Called with self->bs->reqs_lock held */
686 static void coroutine_fn
bdrv_wait_serialising_requests_locked(BdrvTrackedRequest * self)687 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
688 {
689 BdrvTrackedRequest *req;
690
691 while ((req = bdrv_find_conflicting_request(self))) {
692 self->waiting_for = req;
693 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
694 self->waiting_for = NULL;
695 }
696 }
697
698 /* Called with req->bs->reqs_lock held */
tracked_request_set_serialising(BdrvTrackedRequest * req,uint64_t align)699 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
700 uint64_t align)
701 {
702 int64_t overlap_offset = req->offset & ~(align - 1);
703 int64_t overlap_bytes =
704 ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
705
706 bdrv_check_request(req->offset, req->bytes, &error_abort);
707
708 if (!req->serialising) {
709 qatomic_inc(&req->bs->serialising_in_flight);
710 req->serialising = true;
711 }
712
713 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
714 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
715 }
716
717 /**
718 * Return the tracked request on @bs for the current coroutine, or
719 * NULL if there is none.
720 */
bdrv_co_get_self_request(BlockDriverState * bs)721 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
722 {
723 BdrvTrackedRequest *req;
724 Coroutine *self = qemu_coroutine_self();
725 IO_CODE();
726
727 QLIST_FOREACH(req, &bs->tracked_requests, list) {
728 if (req->co == self) {
729 return req;
730 }
731 }
732
733 return NULL;
734 }
735
736 /**
737 * Round a region to subcluster (if supported) or cluster boundaries
738 */
739 void coroutine_fn GRAPH_RDLOCK
bdrv_round_to_subclusters(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * align_offset,int64_t * align_bytes)740 bdrv_round_to_subclusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
741 int64_t *align_offset, int64_t *align_bytes)
742 {
743 BlockDriverInfo bdi;
744 IO_CODE();
745 if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.subcluster_size == 0) {
746 *align_offset = offset;
747 *align_bytes = bytes;
748 } else {
749 int64_t c = bdi.subcluster_size;
750 *align_offset = QEMU_ALIGN_DOWN(offset, c);
751 *align_bytes = QEMU_ALIGN_UP(offset - *align_offset + bytes, c);
752 }
753 }
754
bdrv_get_cluster_size(BlockDriverState * bs)755 static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
756 {
757 BlockDriverInfo bdi;
758 int ret;
759
760 ret = bdrv_co_get_info(bs, &bdi);
761 if (ret < 0 || bdi.cluster_size == 0) {
762 return bs->bl.request_alignment;
763 } else {
764 return bdi.cluster_size;
765 }
766 }
767
bdrv_inc_in_flight(BlockDriverState * bs)768 void bdrv_inc_in_flight(BlockDriverState *bs)
769 {
770 IO_CODE();
771 qatomic_inc(&bs->in_flight);
772 }
773
bdrv_wakeup(BlockDriverState * bs)774 void bdrv_wakeup(BlockDriverState *bs)
775 {
776 IO_CODE();
777 aio_wait_kick();
778 }
779
bdrv_dec_in_flight(BlockDriverState * bs)780 void bdrv_dec_in_flight(BlockDriverState *bs)
781 {
782 IO_CODE();
783 qatomic_dec(&bs->in_flight);
784 bdrv_wakeup(bs);
785 }
786
787 static void coroutine_fn
bdrv_wait_serialising_requests(BdrvTrackedRequest * self)788 bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
789 {
790 BlockDriverState *bs = self->bs;
791
792 if (!qatomic_read(&bs->serialising_in_flight)) {
793 return;
794 }
795
796 qemu_mutex_lock(&bs->reqs_lock);
797 bdrv_wait_serialising_requests_locked(self);
798 qemu_mutex_unlock(&bs->reqs_lock);
799 }
800
bdrv_make_request_serialising(BdrvTrackedRequest * req,uint64_t align)801 void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
802 uint64_t align)
803 {
804 IO_CODE();
805
806 qemu_mutex_lock(&req->bs->reqs_lock);
807
808 tracked_request_set_serialising(req, align);
809 bdrv_wait_serialising_requests_locked(req);
810
811 qemu_mutex_unlock(&req->bs->reqs_lock);
812 }
813
bdrv_check_qiov_request(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,Error ** errp)814 int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
815 QEMUIOVector *qiov, size_t qiov_offset,
816 Error **errp)
817 {
818 /*
819 * Check generic offset/bytes correctness
820 */
821
822 if (offset < 0) {
823 error_setg(errp, "offset is negative: %" PRIi64, offset);
824 return -EIO;
825 }
826
827 if (bytes < 0) {
828 error_setg(errp, "bytes is negative: %" PRIi64, bytes);
829 return -EIO;
830 }
831
832 if (bytes > BDRV_MAX_LENGTH) {
833 error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
834 bytes, BDRV_MAX_LENGTH);
835 return -EIO;
836 }
837
838 if (offset > BDRV_MAX_LENGTH) {
839 error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
840 offset, BDRV_MAX_LENGTH);
841 return -EIO;
842 }
843
844 if (offset > BDRV_MAX_LENGTH - bytes) {
845 error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
846 "exceeds maximum(%" PRIi64 ")", offset, bytes,
847 BDRV_MAX_LENGTH);
848 return -EIO;
849 }
850
851 if (!qiov) {
852 return 0;
853 }
854
855 /*
856 * Check qiov and qiov_offset
857 */
858
859 if (qiov_offset > qiov->size) {
860 error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
861 qiov_offset, qiov->size);
862 return -EIO;
863 }
864
865 if (bytes > qiov->size - qiov_offset) {
866 error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
867 "vector size(%zu)", bytes, qiov_offset, qiov->size);
868 return -EIO;
869 }
870
871 return 0;
872 }
873
bdrv_check_request(int64_t offset,int64_t bytes,Error ** errp)874 int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
875 {
876 return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
877 }
878
bdrv_check_request32(int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)879 static int bdrv_check_request32(int64_t offset, int64_t bytes,
880 QEMUIOVector *qiov, size_t qiov_offset)
881 {
882 int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
883 if (ret < 0) {
884 return ret;
885 }
886
887 if (bytes > BDRV_REQUEST_MAX_BYTES) {
888 return -EIO;
889 }
890
891 return 0;
892 }
893
894 /*
895 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
896 * The operation is sped up by checking the block status and only writing
897 * zeroes to the device if they currently do not return zeroes. Optional
898 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
899 * BDRV_REQ_FUA).
900 *
901 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
902 */
bdrv_make_zero(BdrvChild * child,BdrvRequestFlags flags)903 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
904 {
905 int ret;
906 int64_t target_size, bytes, offset = 0;
907 BlockDriverState *bs = child->bs;
908 IO_CODE();
909
910 target_size = bdrv_getlength(bs);
911 if (target_size < 0) {
912 return target_size;
913 }
914
915 for (;;) {
916 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
917 if (bytes <= 0) {
918 return 0;
919 }
920 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
921 if (ret < 0) {
922 return ret;
923 }
924 if (ret & BDRV_BLOCK_ZERO) {
925 offset += bytes;
926 continue;
927 }
928 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
929 if (ret < 0) {
930 return ret;
931 }
932 offset += bytes;
933 }
934 }
935
936 /*
937 * Writes to the file and ensures that no writes are reordered across this
938 * request (acts as a barrier)
939 *
940 * Returns 0 on success, -errno in error cases.
941 */
bdrv_co_pwrite_sync(BdrvChild * child,int64_t offset,int64_t bytes,const void * buf,BdrvRequestFlags flags)942 int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
943 int64_t bytes, const void *buf,
944 BdrvRequestFlags flags)
945 {
946 int ret;
947 IO_CODE();
948 assert_bdrv_graph_readable();
949
950 ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
951 if (ret < 0) {
952 return ret;
953 }
954
955 ret = bdrv_co_flush(child->bs);
956 if (ret < 0) {
957 return ret;
958 }
959
960 return 0;
961 }
962
963 typedef struct CoroutineIOCompletion {
964 Coroutine *coroutine;
965 int ret;
966 } CoroutineIOCompletion;
967
bdrv_co_io_em_complete(void * opaque,int ret)968 static void bdrv_co_io_em_complete(void *opaque, int ret)
969 {
970 CoroutineIOCompletion *co = opaque;
971
972 co->ret = ret;
973 aio_co_wake(co->coroutine);
974 }
975
976 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_preadv(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)977 bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
978 QEMUIOVector *qiov, size_t qiov_offset, int flags)
979 {
980 BlockDriver *drv = bs->drv;
981 int64_t sector_num;
982 unsigned int nb_sectors;
983 QEMUIOVector local_qiov;
984 int ret;
985 assert_bdrv_graph_readable();
986
987 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
988 assert(!(flags & ~bs->supported_read_flags));
989
990 if (!drv) {
991 return -ENOMEDIUM;
992 }
993
994 if (drv->bdrv_co_preadv_part) {
995 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
996 flags);
997 }
998
999 if (qiov_offset > 0 || bytes != qiov->size) {
1000 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1001 qiov = &local_qiov;
1002 }
1003
1004 if (drv->bdrv_co_preadv) {
1005 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1006 goto out;
1007 }
1008
1009 if (drv->bdrv_aio_preadv) {
1010 BlockAIOCB *acb;
1011 CoroutineIOCompletion co = {
1012 .coroutine = qemu_coroutine_self(),
1013 };
1014
1015 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1016 bdrv_co_io_em_complete, &co);
1017 if (acb == NULL) {
1018 ret = -EIO;
1019 goto out;
1020 } else {
1021 qemu_coroutine_yield();
1022 ret = co.ret;
1023 goto out;
1024 }
1025 }
1026
1027 sector_num = offset >> BDRV_SECTOR_BITS;
1028 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1029
1030 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1031 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1032 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1033 assert(drv->bdrv_co_readv);
1034
1035 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1036
1037 out:
1038 if (qiov == &local_qiov) {
1039 qemu_iovec_destroy(&local_qiov);
1040 }
1041
1042 return ret;
1043 }
1044
1045 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1046 bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
1047 QEMUIOVector *qiov, size_t qiov_offset,
1048 BdrvRequestFlags flags)
1049 {
1050 BlockDriver *drv = bs->drv;
1051 bool emulate_fua = false;
1052 int64_t sector_num;
1053 unsigned int nb_sectors;
1054 QEMUIOVector local_qiov;
1055 int ret;
1056 assert_bdrv_graph_readable();
1057
1058 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1059
1060 if (!drv) {
1061 return -ENOMEDIUM;
1062 }
1063
1064 if (bs->open_flags & BDRV_O_NO_FLUSH) {
1065 flags &= ~BDRV_REQ_FUA;
1066 }
1067
1068 if ((flags & BDRV_REQ_FUA) &&
1069 (~bs->supported_write_flags & BDRV_REQ_FUA)) {
1070 flags &= ~BDRV_REQ_FUA;
1071 emulate_fua = true;
1072 }
1073
1074 flags &= bs->supported_write_flags;
1075
1076 if (drv->bdrv_co_pwritev_part) {
1077 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1078 flags);
1079 goto emulate_flags;
1080 }
1081
1082 if (qiov_offset > 0 || bytes != qiov->size) {
1083 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1084 qiov = &local_qiov;
1085 }
1086
1087 if (drv->bdrv_co_pwritev) {
1088 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
1089 goto emulate_flags;
1090 }
1091
1092 if (drv->bdrv_aio_pwritev) {
1093 BlockAIOCB *acb;
1094 CoroutineIOCompletion co = {
1095 .coroutine = qemu_coroutine_self(),
1096 };
1097
1098 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
1099 bdrv_co_io_em_complete, &co);
1100 if (acb == NULL) {
1101 ret = -EIO;
1102 } else {
1103 qemu_coroutine_yield();
1104 ret = co.ret;
1105 }
1106 goto emulate_flags;
1107 }
1108
1109 sector_num = offset >> BDRV_SECTOR_BITS;
1110 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1111
1112 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1113 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1114 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1115
1116 assert(drv->bdrv_co_writev);
1117 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
1118
1119 emulate_flags:
1120 if (ret == 0 && emulate_fua) {
1121 ret = bdrv_co_flush(bs);
1122 }
1123
1124 if (qiov == &local_qiov) {
1125 qemu_iovec_destroy(&local_qiov);
1126 }
1127
1128 return ret;
1129 }
1130
1131 static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev_compressed(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)1132 bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
1133 int64_t bytes, QEMUIOVector *qiov,
1134 size_t qiov_offset)
1135 {
1136 BlockDriver *drv = bs->drv;
1137 QEMUIOVector local_qiov;
1138 int ret;
1139 assert_bdrv_graph_readable();
1140
1141 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1142
1143 if (!drv) {
1144 return -ENOMEDIUM;
1145 }
1146
1147 if (!block_driver_can_compress(drv)) {
1148 return -ENOTSUP;
1149 }
1150
1151 if (drv->bdrv_co_pwritev_compressed_part) {
1152 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1153 qiov, qiov_offset);
1154 }
1155
1156 if (qiov_offset == 0) {
1157 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1158 }
1159
1160 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1161 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1162 qemu_iovec_destroy(&local_qiov);
1163
1164 return ret;
1165 }
1166
1167 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_copy_on_readv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,int flags)1168 bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
1169 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1170 {
1171 BlockDriverState *bs = child->bs;
1172
1173 /* Perform I/O through a temporary buffer so that users who scribble over
1174 * their read buffer while the operation is in progress do not end up
1175 * modifying the image file. This is critical for zero-copy guest I/O
1176 * where anything might happen inside guest memory.
1177 */
1178 void *bounce_buffer = NULL;
1179
1180 BlockDriver *drv = bs->drv;
1181 int64_t align_offset;
1182 int64_t align_bytes;
1183 int64_t skip_bytes;
1184 int ret;
1185 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1186 BDRV_REQUEST_MAX_BYTES);
1187 int64_t progress = 0;
1188 bool skip_write;
1189
1190 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1191
1192 if (!drv) {
1193 return -ENOMEDIUM;
1194 }
1195
1196 /*
1197 * Do not write anything when the BDS is inactive. That is not
1198 * allowed, and it would not help.
1199 */
1200 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1201
1202 /* FIXME We cannot require callers to have write permissions when all they
1203 * are doing is a read request. If we did things right, write permissions
1204 * would be obtained anyway, but internally by the copy-on-read code. As
1205 * long as it is implemented here rather than in a separate filter driver,
1206 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1207 * it could request permissions. Therefore we have to bypass the permission
1208 * system for the moment. */
1209 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1210
1211 /* Cover entire cluster so no additional backing file I/O is required when
1212 * allocating cluster in the image file. Note that this value may exceed
1213 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1214 * is one reason we loop rather than doing it all at once.
1215 */
1216 bdrv_round_to_subclusters(bs, offset, bytes, &align_offset, &align_bytes);
1217 skip_bytes = offset - align_offset;
1218
1219 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1220 align_offset, align_bytes);
1221
1222 while (align_bytes) {
1223 int64_t pnum;
1224
1225 if (skip_write) {
1226 ret = 1; /* "already allocated", so nothing will be copied */
1227 pnum = MIN(align_bytes, max_transfer);
1228 } else {
1229 ret = bdrv_co_is_allocated(bs, align_offset,
1230 MIN(align_bytes, max_transfer), &pnum);
1231 if (ret < 0) {
1232 /*
1233 * Safe to treat errors in querying allocation as if
1234 * unallocated; we'll probably fail again soon on the
1235 * read, but at least that will set a decent errno.
1236 */
1237 pnum = MIN(align_bytes, max_transfer);
1238 }
1239
1240 /* Stop at EOF if the image ends in the middle of the cluster */
1241 if (ret == 0 && pnum == 0) {
1242 assert(progress >= bytes);
1243 break;
1244 }
1245
1246 assert(skip_bytes < pnum);
1247 }
1248
1249 if (ret <= 0) {
1250 QEMUIOVector local_qiov;
1251
1252 /* Must copy-on-read; use the bounce buffer */
1253 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1254 if (!bounce_buffer) {
1255 int64_t max_we_need = MAX(pnum, align_bytes - pnum);
1256 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1257 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1258
1259 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1260 if (!bounce_buffer) {
1261 ret = -ENOMEM;
1262 goto err;
1263 }
1264 }
1265 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1266
1267 ret = bdrv_driver_preadv(bs, align_offset, pnum,
1268 &local_qiov, 0, 0);
1269 if (ret < 0) {
1270 goto err;
1271 }
1272
1273 bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
1274 if (drv->bdrv_co_pwrite_zeroes &&
1275 buffer_is_zero(bounce_buffer, pnum)) {
1276 /* FIXME: Should we (perhaps conditionally) be setting
1277 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1278 * that still correctly reads as zero? */
1279 ret = bdrv_co_do_pwrite_zeroes(bs, align_offset, pnum,
1280 BDRV_REQ_WRITE_UNCHANGED);
1281 } else {
1282 /* This does not change the data on the disk, it is not
1283 * necessary to flush even in cache=writethrough mode.
1284 */
1285 ret = bdrv_driver_pwritev(bs, align_offset, pnum,
1286 &local_qiov, 0,
1287 BDRV_REQ_WRITE_UNCHANGED);
1288 }
1289
1290 if (ret < 0) {
1291 /* It might be okay to ignore write errors for guest
1292 * requests. If this is a deliberate copy-on-read
1293 * then we don't want to ignore the error. Simply
1294 * report it in all cases.
1295 */
1296 goto err;
1297 }
1298
1299 if (!(flags & BDRV_REQ_PREFETCH)) {
1300 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1301 bounce_buffer + skip_bytes,
1302 MIN(pnum - skip_bytes, bytes - progress));
1303 }
1304 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1305 /* Read directly into the destination */
1306 ret = bdrv_driver_preadv(bs, offset + progress,
1307 MIN(pnum - skip_bytes, bytes - progress),
1308 qiov, qiov_offset + progress, 0);
1309 if (ret < 0) {
1310 goto err;
1311 }
1312 }
1313
1314 align_offset += pnum;
1315 align_bytes -= pnum;
1316 progress += pnum - skip_bytes;
1317 skip_bytes = 0;
1318 }
1319 ret = 0;
1320
1321 err:
1322 qemu_vfree(bounce_buffer);
1323 return ret;
1324 }
1325
1326 /*
1327 * Forwards an already correctly aligned request to the BlockDriver. This
1328 * handles copy on read, zeroing after EOF, and fragmentation of large
1329 * reads; any other features must be implemented by the caller.
1330 */
1331 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_preadv(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,int flags)1332 bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
1333 int64_t offset, int64_t bytes, int64_t align,
1334 QEMUIOVector *qiov, size_t qiov_offset, int flags)
1335 {
1336 BlockDriverState *bs = child->bs;
1337 int64_t total_bytes, max_bytes;
1338 int ret = 0;
1339 int64_t bytes_remaining = bytes;
1340 int max_transfer;
1341
1342 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
1343 assert(is_power_of_2(align));
1344 assert((offset & (align - 1)) == 0);
1345 assert((bytes & (align - 1)) == 0);
1346 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1347 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1348 align);
1349
1350 /*
1351 * TODO: We would need a per-BDS .supported_read_flags and
1352 * potential fallback support, if we ever implement any read flags
1353 * to pass through to drivers. For now, there aren't any
1354 * passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
1355 */
1356 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
1357 BDRV_REQ_REGISTERED_BUF)));
1358
1359 /* Handle Copy on Read and associated serialisation */
1360 if (flags & BDRV_REQ_COPY_ON_READ) {
1361 /* If we touch the same cluster it counts as an overlap. This
1362 * guarantees that allocating writes will be serialized and not race
1363 * with each other for the same cluster. For example, in copy-on-read
1364 * it ensures that the CoR read and write operations are atomic and
1365 * guest writes cannot interleave between them. */
1366 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1367 } else {
1368 bdrv_wait_serialising_requests(req);
1369 }
1370
1371 if (flags & BDRV_REQ_COPY_ON_READ) {
1372 int64_t pnum;
1373
1374 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1375 flags &= ~BDRV_REQ_COPY_ON_READ;
1376
1377 ret = bdrv_co_is_allocated(bs, offset, bytes, &pnum);
1378 if (ret < 0) {
1379 goto out;
1380 }
1381
1382 if (!ret || pnum != bytes) {
1383 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1384 qiov, qiov_offset, flags);
1385 goto out;
1386 } else if (flags & BDRV_REQ_PREFETCH) {
1387 goto out;
1388 }
1389 }
1390
1391 /* Forward the request to the BlockDriver, possibly fragmenting it */
1392 total_bytes = bdrv_co_getlength(bs);
1393 if (total_bytes < 0) {
1394 ret = total_bytes;
1395 goto out;
1396 }
1397
1398 assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
1399
1400 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1401 if (bytes <= max_bytes && bytes <= max_transfer) {
1402 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1403 goto out;
1404 }
1405
1406 while (bytes_remaining) {
1407 int64_t num;
1408
1409 if (max_bytes) {
1410 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1411 assert(num);
1412
1413 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1414 num, qiov,
1415 qiov_offset + bytes - bytes_remaining,
1416 flags);
1417 max_bytes -= num;
1418 } else {
1419 num = bytes_remaining;
1420 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1421 0, bytes_remaining);
1422 }
1423 if (ret < 0) {
1424 goto out;
1425 }
1426 bytes_remaining -= num;
1427 }
1428
1429 out:
1430 return ret < 0 ? ret : 0;
1431 }
1432
1433 /*
1434 * Request padding
1435 *
1436 * |<---- align ----->| |<----- align ---->|
1437 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1438 * | | | | | |
1439 * -*----------$-------*-------- ... --------*-----$------------*---
1440 * | | | | | |
1441 * | offset | | end |
1442 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1443 * [buf ... ) [tail_buf )
1444 *
1445 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1446 * is placed at the beginning of @buf and @tail at the @end.
1447 *
1448 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1449 * around tail, if tail exists.
1450 *
1451 * @merge_reads is true for small requests,
1452 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1453 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1454 *
1455 * @write is true for write requests, false for read requests.
1456 *
1457 * If padding makes the vector too long (exceeding IOV_MAX), then we need to
1458 * merge existing vector elements into a single one. @collapse_bounce_buf acts
1459 * as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
1460 * I/O vector elements so for read requests, the data can be copied back after
1461 * the read is done.
1462 */
1463 typedef struct BdrvRequestPadding {
1464 uint8_t *buf;
1465 size_t buf_len;
1466 uint8_t *tail_buf;
1467 size_t head;
1468 size_t tail;
1469 bool merge_reads;
1470 bool write;
1471 QEMUIOVector local_qiov;
1472
1473 uint8_t *collapse_bounce_buf;
1474 size_t collapse_len;
1475 QEMUIOVector pre_collapse_qiov;
1476 } BdrvRequestPadding;
1477
bdrv_init_padding(BlockDriverState * bs,int64_t offset,int64_t bytes,bool write,BdrvRequestPadding * pad)1478 static bool bdrv_init_padding(BlockDriverState *bs,
1479 int64_t offset, int64_t bytes,
1480 bool write,
1481 BdrvRequestPadding *pad)
1482 {
1483 int64_t align = bs->bl.request_alignment;
1484 int64_t sum;
1485
1486 bdrv_check_request(offset, bytes, &error_abort);
1487 assert(align <= INT_MAX); /* documented in block/block_int.h */
1488 assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
1489
1490 memset(pad, 0, sizeof(*pad));
1491
1492 pad->head = offset & (align - 1);
1493 pad->tail = ((offset + bytes) & (align - 1));
1494 if (pad->tail) {
1495 pad->tail = align - pad->tail;
1496 }
1497
1498 if (!pad->head && !pad->tail) {
1499 return false;
1500 }
1501
1502 assert(bytes); /* Nothing good in aligning zero-length requests */
1503
1504 sum = pad->head + bytes + pad->tail;
1505 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1506 pad->buf = qemu_blockalign(bs, pad->buf_len);
1507 pad->merge_reads = sum == pad->buf_len;
1508 if (pad->tail) {
1509 pad->tail_buf = pad->buf + pad->buf_len - align;
1510 }
1511
1512 pad->write = write;
1513
1514 return true;
1515 }
1516
1517 static int coroutine_fn GRAPH_RDLOCK
bdrv_padding_rmw_read(BdrvChild * child,BdrvTrackedRequest * req,BdrvRequestPadding * pad,bool zero_middle)1518 bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
1519 BdrvRequestPadding *pad, bool zero_middle)
1520 {
1521 QEMUIOVector local_qiov;
1522 BlockDriverState *bs = child->bs;
1523 uint64_t align = bs->bl.request_alignment;
1524 int ret;
1525
1526 assert(req->serialising && pad->buf);
1527
1528 if (pad->head || pad->merge_reads) {
1529 int64_t bytes = pad->merge_reads ? pad->buf_len : align;
1530
1531 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1532
1533 if (pad->head) {
1534 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1535 }
1536 if (pad->merge_reads && pad->tail) {
1537 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1538 }
1539 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1540 align, &local_qiov, 0, 0);
1541 if (ret < 0) {
1542 return ret;
1543 }
1544 if (pad->head) {
1545 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1546 }
1547 if (pad->merge_reads && pad->tail) {
1548 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1549 }
1550
1551 if (pad->merge_reads) {
1552 goto zero_mem;
1553 }
1554 }
1555
1556 if (pad->tail) {
1557 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1558
1559 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1560 ret = bdrv_aligned_preadv(
1561 child, req,
1562 req->overlap_offset + req->overlap_bytes - align,
1563 align, align, &local_qiov, 0, 0);
1564 if (ret < 0) {
1565 return ret;
1566 }
1567 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1568 }
1569
1570 zero_mem:
1571 if (zero_middle) {
1572 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1573 }
1574
1575 return 0;
1576 }
1577
1578 /**
1579 * Free *pad's associated buffers, and perform any necessary finalization steps.
1580 */
bdrv_padding_finalize(BdrvRequestPadding * pad)1581 static void bdrv_padding_finalize(BdrvRequestPadding *pad)
1582 {
1583 if (pad->collapse_bounce_buf) {
1584 if (!pad->write) {
1585 /*
1586 * If padding required elements in the vector to be collapsed into a
1587 * bounce buffer, copy the bounce buffer content back
1588 */
1589 qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
1590 pad->collapse_bounce_buf, pad->collapse_len);
1591 }
1592 qemu_vfree(pad->collapse_bounce_buf);
1593 qemu_iovec_destroy(&pad->pre_collapse_qiov);
1594 }
1595 if (pad->buf) {
1596 qemu_vfree(pad->buf);
1597 qemu_iovec_destroy(&pad->local_qiov);
1598 }
1599 memset(pad, 0, sizeof(*pad));
1600 }
1601
1602 /*
1603 * Create pad->local_qiov by wrapping @iov in the padding head and tail, while
1604 * ensuring that the resulting vector will not exceed IOV_MAX elements.
1605 *
1606 * To ensure this, when necessary, the first two or three elements of @iov are
1607 * merged into pad->collapse_bounce_buf and replaced by a reference to that
1608 * bounce buffer in pad->local_qiov.
1609 *
1610 * After performing a read request, the data from the bounce buffer must be
1611 * copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
1612 */
bdrv_create_padded_qiov(BlockDriverState * bs,BdrvRequestPadding * pad,struct iovec * iov,int niov,size_t iov_offset,size_t bytes)1613 static int bdrv_create_padded_qiov(BlockDriverState *bs,
1614 BdrvRequestPadding *pad,
1615 struct iovec *iov, int niov,
1616 size_t iov_offset, size_t bytes)
1617 {
1618 int padded_niov, surplus_count, collapse_count;
1619
1620 /* Assert this invariant */
1621 assert(niov <= IOV_MAX);
1622
1623 /*
1624 * Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
1625 * to the guest is not ideal, but there is little else we can do. At least
1626 * this will practically never happen on 64-bit systems.
1627 */
1628 if (SIZE_MAX - pad->head < bytes ||
1629 SIZE_MAX - pad->head - bytes < pad->tail)
1630 {
1631 return -EINVAL;
1632 }
1633
1634 /* Length of the resulting IOV if we just concatenated everything */
1635 padded_niov = !!pad->head + niov + !!pad->tail;
1636
1637 qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
1638
1639 if (pad->head) {
1640 qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
1641 }
1642
1643 /*
1644 * If padded_niov > IOV_MAX, we cannot just concatenate everything.
1645 * Instead, merge the first two or three elements of @iov to reduce the
1646 * number of vector elements as necessary.
1647 */
1648 if (padded_niov > IOV_MAX) {
1649 /*
1650 * Only head and tail can have lead to the number of entries exceeding
1651 * IOV_MAX, so we can exceed it by the head and tail at most. We need
1652 * to reduce the number of elements by `surplus_count`, so we merge that
1653 * many elements plus one into one element.
1654 */
1655 surplus_count = padded_niov - IOV_MAX;
1656 assert(surplus_count <= !!pad->head + !!pad->tail);
1657 collapse_count = surplus_count + 1;
1658
1659 /*
1660 * Move the elements to collapse into `pad->pre_collapse_qiov`, then
1661 * advance `iov` (and associated variables) by those elements.
1662 */
1663 qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
1664 qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
1665 collapse_count, iov_offset, SIZE_MAX);
1666 iov += collapse_count;
1667 iov_offset = 0;
1668 niov -= collapse_count;
1669 bytes -= pad->pre_collapse_qiov.size;
1670
1671 /*
1672 * Construct the bounce buffer to match the length of the to-collapse
1673 * vector elements, and for write requests, initialize it with the data
1674 * from those elements. Then add it to `pad->local_qiov`.
1675 */
1676 pad->collapse_len = pad->pre_collapse_qiov.size;
1677 pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
1678 if (pad->write) {
1679 qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
1680 pad->collapse_bounce_buf, pad->collapse_len);
1681 }
1682 qemu_iovec_add(&pad->local_qiov,
1683 pad->collapse_bounce_buf, pad->collapse_len);
1684 }
1685
1686 qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
1687
1688 if (pad->tail) {
1689 qemu_iovec_add(&pad->local_qiov,
1690 pad->buf + pad->buf_len - pad->tail, pad->tail);
1691 }
1692
1693 assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
1694 return 0;
1695 }
1696
1697 /*
1698 * bdrv_pad_request
1699 *
1700 * Exchange request parameters with padded request if needed. Don't include RMW
1701 * read of padding, bdrv_padding_rmw_read() should be called separately if
1702 * needed.
1703 *
1704 * @write is true for write requests, false for read requests.
1705 *
1706 * Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
1707 * - on function start they represent original request
1708 * - on failure or when padding is not needed they are unchanged
1709 * - on success when padding is needed they represent padded request
1710 */
bdrv_pad_request(BlockDriverState * bs,QEMUIOVector ** qiov,size_t * qiov_offset,int64_t * offset,int64_t * bytes,bool write,BdrvRequestPadding * pad,bool * padded,BdrvRequestFlags * flags)1711 static int bdrv_pad_request(BlockDriverState *bs,
1712 QEMUIOVector **qiov, size_t *qiov_offset,
1713 int64_t *offset, int64_t *bytes,
1714 bool write,
1715 BdrvRequestPadding *pad, bool *padded,
1716 BdrvRequestFlags *flags)
1717 {
1718 int ret;
1719 struct iovec *sliced_iov;
1720 int sliced_niov;
1721 size_t sliced_head, sliced_tail;
1722
1723 /* Should have been checked by the caller already */
1724 ret = bdrv_check_request32(*offset, *bytes, *qiov, *qiov_offset);
1725 if (ret < 0) {
1726 return ret;
1727 }
1728
1729 if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
1730 if (padded) {
1731 *padded = false;
1732 }
1733 return 0;
1734 }
1735
1736 /*
1737 * For prefetching in stream_populate(), no qiov is passed along, because
1738 * only copy-on-read matters.
1739 */
1740 if (*qiov) {
1741 sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
1742 &sliced_head, &sliced_tail,
1743 &sliced_niov);
1744
1745 /* Guaranteed by bdrv_check_request32() */
1746 assert(*bytes <= SIZE_MAX);
1747 ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
1748 sliced_head, *bytes);
1749 if (ret < 0) {
1750 bdrv_padding_finalize(pad);
1751 return ret;
1752 }
1753 *qiov = &pad->local_qiov;
1754 *qiov_offset = 0;
1755 }
1756
1757 *bytes += pad->head + pad->tail;
1758 *offset -= pad->head;
1759 if (padded) {
1760 *padded = true;
1761 }
1762 if (flags) {
1763 /* Can't use optimization hint with bounce buffer */
1764 *flags &= ~BDRV_REQ_REGISTERED_BUF;
1765 }
1766
1767 return 0;
1768 }
1769
bdrv_co_preadv(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1770 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1771 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
1772 BdrvRequestFlags flags)
1773 {
1774 IO_CODE();
1775 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1776 }
1777
bdrv_co_preadv_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)1778 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1779 int64_t offset, int64_t bytes,
1780 QEMUIOVector *qiov, size_t qiov_offset,
1781 BdrvRequestFlags flags)
1782 {
1783 BlockDriverState *bs = child->bs;
1784 BdrvTrackedRequest req;
1785 BdrvRequestPadding pad;
1786 int ret;
1787 IO_CODE();
1788
1789 trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
1790
1791 if (!bdrv_co_is_inserted(bs)) {
1792 return -ENOMEDIUM;
1793 }
1794
1795 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
1796 if (ret < 0) {
1797 return ret;
1798 }
1799
1800 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1801 /*
1802 * Aligning zero request is nonsense. Even if driver has special meaning
1803 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1804 * it to driver due to request_alignment.
1805 *
1806 * Still, no reason to return an error if someone do unaligned
1807 * zero-length read occasionally.
1808 */
1809 return 0;
1810 }
1811
1812 bdrv_inc_in_flight(bs);
1813
1814 /* Don't do copy-on-read if we read data before write operation */
1815 if (qatomic_read(&bs->copy_on_read)) {
1816 flags |= BDRV_REQ_COPY_ON_READ;
1817 }
1818
1819 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
1820 &pad, NULL, &flags);
1821 if (ret < 0) {
1822 goto fail;
1823 }
1824
1825 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1826 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1827 bs->bl.request_alignment,
1828 qiov, qiov_offset, flags);
1829 tracked_request_end(&req);
1830 bdrv_padding_finalize(&pad);
1831
1832 fail:
1833 bdrv_dec_in_flight(bs);
1834
1835 return ret;
1836 }
1837
1838 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1839 bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
1840 BdrvRequestFlags flags)
1841 {
1842 BlockDriver *drv = bs->drv;
1843 QEMUIOVector qiov;
1844 void *buf = NULL;
1845 int ret = 0;
1846 bool need_flush = false;
1847 int head = 0;
1848 int tail = 0;
1849
1850 int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
1851 INT64_MAX);
1852 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1853 bs->bl.request_alignment);
1854 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1855
1856 assert_bdrv_graph_readable();
1857 bdrv_check_request(offset, bytes, &error_abort);
1858
1859 if (!drv) {
1860 return -ENOMEDIUM;
1861 }
1862
1863 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1864 return -ENOTSUP;
1865 }
1866
1867 /* By definition there is no user buffer so this flag doesn't make sense */
1868 if (flags & BDRV_REQ_REGISTERED_BUF) {
1869 return -EINVAL;
1870 }
1871
1872 /* If opened with discard=off we should never unmap. */
1873 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1874 flags &= ~BDRV_REQ_MAY_UNMAP;
1875 }
1876
1877 /* Invalidate the cached block-status data range if this write overlaps */
1878 bdrv_bsc_invalidate_range(bs, offset, bytes);
1879
1880 assert(alignment % bs->bl.request_alignment == 0);
1881 head = offset % alignment;
1882 tail = (offset + bytes) % alignment;
1883 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1884 assert(max_write_zeroes >= bs->bl.request_alignment);
1885
1886 while (bytes > 0 && !ret) {
1887 int64_t num = bytes;
1888
1889 /* Align request. Block drivers can expect the "bulk" of the request
1890 * to be aligned, and that unaligned requests do not cross cluster
1891 * boundaries.
1892 */
1893 if (head) {
1894 /* Make a small request up to the first aligned sector. For
1895 * convenience, limit this request to max_transfer even if
1896 * we don't need to fall back to writes. */
1897 num = MIN(MIN(bytes, max_transfer), alignment - head);
1898 head = (head + num) % alignment;
1899 assert(num < max_write_zeroes);
1900 } else if (tail && num > alignment) {
1901 /* Shorten the request to the last aligned sector. */
1902 num -= tail;
1903 }
1904
1905 /* limit request size */
1906 if (num > max_write_zeroes) {
1907 num = max_write_zeroes;
1908 }
1909
1910 ret = -ENOTSUP;
1911 /* First try the efficient write zeroes operation */
1912 if (drv->bdrv_co_pwrite_zeroes) {
1913 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1914 flags & bs->supported_zero_flags);
1915 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1916 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1917 need_flush = true;
1918 }
1919 } else {
1920 assert(!bs->supported_zero_flags);
1921 }
1922
1923 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1924 /* Fall back to bounce buffer if write zeroes is unsupported */
1925 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1926
1927 if ((flags & BDRV_REQ_FUA) &&
1928 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1929 /* No need for bdrv_driver_pwrite() to do a fallback
1930 * flush on each chunk; use just one at the end */
1931 write_flags &= ~BDRV_REQ_FUA;
1932 need_flush = true;
1933 }
1934 num = MIN(num, max_transfer);
1935 if (buf == NULL) {
1936 buf = qemu_try_blockalign0(bs, num);
1937 if (buf == NULL) {
1938 ret = -ENOMEM;
1939 goto fail;
1940 }
1941 }
1942 qemu_iovec_init_buf(&qiov, buf, num);
1943
1944 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1945
1946 /* Keep bounce buffer around if it is big enough for all
1947 * all future requests.
1948 */
1949 if (num < max_transfer) {
1950 qemu_vfree(buf);
1951 buf = NULL;
1952 }
1953 }
1954
1955 offset += num;
1956 bytes -= num;
1957 }
1958
1959 fail:
1960 if (ret == 0 && need_flush) {
1961 ret = bdrv_co_flush(bs);
1962 }
1963 qemu_vfree(buf);
1964 return ret;
1965 }
1966
1967 static inline int coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_prepare(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int flags)1968 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
1969 BdrvTrackedRequest *req, int flags)
1970 {
1971 BlockDriverState *bs = child->bs;
1972
1973 bdrv_check_request(offset, bytes, &error_abort);
1974
1975 if (bdrv_is_read_only(bs)) {
1976 return -EPERM;
1977 }
1978
1979 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1980 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1981 assert(!(flags & ~BDRV_REQ_MASK));
1982 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1983
1984 if (flags & BDRV_REQ_SERIALISING) {
1985 QEMU_LOCK_GUARD(&bs->reqs_lock);
1986
1987 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1988
1989 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1990 return -EBUSY;
1991 }
1992
1993 bdrv_wait_serialising_requests_locked(req);
1994 } else {
1995 bdrv_wait_serialising_requests(req);
1996 }
1997
1998 assert(req->overlap_offset <= offset);
1999 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
2000 assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
2001 child->perm & BLK_PERM_RESIZE);
2002
2003 switch (req->type) {
2004 case BDRV_TRACKED_WRITE:
2005 case BDRV_TRACKED_DISCARD:
2006 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
2007 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
2008 } else {
2009 assert(child->perm & BLK_PERM_WRITE);
2010 }
2011 bdrv_write_threshold_check_write(bs, offset, bytes);
2012 return 0;
2013 case BDRV_TRACKED_TRUNCATE:
2014 assert(child->perm & BLK_PERM_RESIZE);
2015 return 0;
2016 default:
2017 abort();
2018 }
2019 }
2020
2021 static inline void coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_finish(BdrvChild * child,int64_t offset,int64_t bytes,BdrvTrackedRequest * req,int ret)2022 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
2023 BdrvTrackedRequest *req, int ret)
2024 {
2025 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
2026 BlockDriverState *bs = child->bs;
2027
2028 bdrv_check_request(offset, bytes, &error_abort);
2029
2030 qatomic_inc(&bs->write_gen);
2031
2032 /*
2033 * Discard cannot extend the image, but in error handling cases, such as
2034 * when reverting a qcow2 cluster allocation, the discarded range can pass
2035 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
2036 * here. Instead, just skip it, since semantically a discard request
2037 * beyond EOF cannot expand the image anyway.
2038 */
2039 if (ret == 0 &&
2040 (req->type == BDRV_TRACKED_TRUNCATE ||
2041 end_sector > bs->total_sectors) &&
2042 req->type != BDRV_TRACKED_DISCARD) {
2043 bs->total_sectors = end_sector;
2044 bdrv_parent_cb_resize(bs);
2045 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
2046 }
2047 if (req->bytes) {
2048 switch (req->type) {
2049 case BDRV_TRACKED_WRITE:
2050 stat64_max(&bs->wr_highest_offset, offset + bytes);
2051 /* fall through, to set dirty bits */
2052 case BDRV_TRACKED_DISCARD:
2053 bdrv_set_dirty(bs, offset, bytes);
2054 break;
2055 default:
2056 break;
2057 }
2058 }
2059 }
2060
2061 /*
2062 * Forwards an already correctly aligned write request to the BlockDriver,
2063 * after possibly fragmenting it.
2064 */
2065 static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_pwritev(BdrvChild * child,BdrvTrackedRequest * req,int64_t offset,int64_t bytes,int64_t align,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2066 bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
2067 int64_t offset, int64_t bytes, int64_t align,
2068 QEMUIOVector *qiov, size_t qiov_offset,
2069 BdrvRequestFlags flags)
2070 {
2071 BlockDriverState *bs = child->bs;
2072 BlockDriver *drv = bs->drv;
2073 int ret;
2074
2075 int64_t bytes_remaining = bytes;
2076 int max_transfer;
2077
2078 bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
2079
2080 if (!drv) {
2081 return -ENOMEDIUM;
2082 }
2083
2084 if (bdrv_has_readonly_bitmaps(bs)) {
2085 return -EPERM;
2086 }
2087
2088 assert(is_power_of_2(align));
2089 assert((offset & (align - 1)) == 0);
2090 assert((bytes & (align - 1)) == 0);
2091 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
2092 align);
2093
2094 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
2095
2096 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
2097 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
2098 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
2099 flags |= BDRV_REQ_ZERO_WRITE;
2100 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
2101 flags |= BDRV_REQ_MAY_UNMAP;
2102 }
2103
2104 /* Can't use optimization hint with bufferless zero write */
2105 flags &= ~BDRV_REQ_REGISTERED_BUF;
2106 }
2107
2108 if (ret < 0) {
2109 /* Do nothing, write notifier decided to fail this request */
2110 } else if (flags & BDRV_REQ_ZERO_WRITE) {
2111 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
2112 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
2113 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
2114 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
2115 qiov, qiov_offset);
2116 } else if (bytes <= max_transfer) {
2117 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2118 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
2119 } else {
2120 bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
2121 while (bytes_remaining) {
2122 int num = MIN(bytes_remaining, max_transfer);
2123 int local_flags = flags;
2124
2125 assert(num);
2126 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2127 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2128 /* If FUA is going to be emulated by flush, we only
2129 * need to flush on the last iteration */
2130 local_flags &= ~BDRV_REQ_FUA;
2131 }
2132
2133 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2134 num, qiov,
2135 qiov_offset + bytes - bytes_remaining,
2136 local_flags);
2137 if (ret < 0) {
2138 break;
2139 }
2140 bytes_remaining -= num;
2141 }
2142 }
2143 bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
2144
2145 if (ret >= 0) {
2146 ret = 0;
2147 }
2148 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2149
2150 return ret;
2151 }
2152
2153 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_zero_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags,BdrvTrackedRequest * req)2154 bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
2155 BdrvRequestFlags flags, BdrvTrackedRequest *req)
2156 {
2157 BlockDriverState *bs = child->bs;
2158 QEMUIOVector local_qiov;
2159 uint64_t align = bs->bl.request_alignment;
2160 int ret = 0;
2161 bool padding;
2162 BdrvRequestPadding pad;
2163
2164 /* This flag doesn't make sense for padding or zero writes */
2165 flags &= ~BDRV_REQ_REGISTERED_BUF;
2166
2167 padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
2168 if (padding) {
2169 assert(!(flags & BDRV_REQ_NO_WAIT));
2170 bdrv_make_request_serialising(req, align);
2171
2172 bdrv_padding_rmw_read(child, req, &pad, true);
2173
2174 if (pad.head || pad.merge_reads) {
2175 int64_t aligned_offset = offset & ~(align - 1);
2176 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2177
2178 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2179 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2180 align, &local_qiov, 0,
2181 flags & ~BDRV_REQ_ZERO_WRITE);
2182 if (ret < 0 || pad.merge_reads) {
2183 /* Error or all work is done */
2184 goto out;
2185 }
2186 offset += write_bytes - pad.head;
2187 bytes -= write_bytes - pad.head;
2188 }
2189 }
2190
2191 assert(!bytes || (offset & (align - 1)) == 0);
2192 if (bytes >= align) {
2193 /* Write the aligned part in the middle. */
2194 int64_t aligned_bytes = bytes & ~(align - 1);
2195 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2196 NULL, 0, flags);
2197 if (ret < 0) {
2198 goto out;
2199 }
2200 bytes -= aligned_bytes;
2201 offset += aligned_bytes;
2202 }
2203
2204 assert(!bytes || (offset & (align - 1)) == 0);
2205 if (bytes) {
2206 assert(align == pad.tail + bytes);
2207
2208 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2209 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2210 &local_qiov, 0,
2211 flags & ~BDRV_REQ_ZERO_WRITE);
2212 }
2213
2214 out:
2215 bdrv_padding_finalize(&pad);
2216
2217 return ret;
2218 }
2219
2220 /*
2221 * Handle a write request in coroutine context
2222 */
bdrv_co_pwritev(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)2223 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2224 int64_t offset, int64_t bytes, QEMUIOVector *qiov,
2225 BdrvRequestFlags flags)
2226 {
2227 IO_CODE();
2228 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2229 }
2230
bdrv_co_pwritev_part(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset,BdrvRequestFlags flags)2231 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2232 int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
2233 BdrvRequestFlags flags)
2234 {
2235 BlockDriverState *bs = child->bs;
2236 BdrvTrackedRequest req;
2237 uint64_t align = bs->bl.request_alignment;
2238 BdrvRequestPadding pad;
2239 int ret;
2240 bool padded = false;
2241 IO_CODE();
2242
2243 trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
2244
2245 if (!bdrv_co_is_inserted(bs)) {
2246 return -ENOMEDIUM;
2247 }
2248
2249 if (flags & BDRV_REQ_ZERO_WRITE) {
2250 ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
2251 } else {
2252 ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
2253 }
2254 if (ret < 0) {
2255 return ret;
2256 }
2257
2258 /* If the request is misaligned then we can't make it efficient */
2259 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2260 !QEMU_IS_ALIGNED(offset | bytes, align))
2261 {
2262 return -ENOTSUP;
2263 }
2264
2265 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2266 /*
2267 * Aligning zero request is nonsense. Even if driver has special meaning
2268 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2269 * it to driver due to request_alignment.
2270 *
2271 * Still, no reason to return an error if someone do unaligned
2272 * zero-length write occasionally.
2273 */
2274 return 0;
2275 }
2276
2277 if (!(flags & BDRV_REQ_ZERO_WRITE)) {
2278 /*
2279 * Pad request for following read-modify-write cycle.
2280 * bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
2281 * alignment only if there is no ZERO flag.
2282 */
2283 ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
2284 &pad, &padded, &flags);
2285 if (ret < 0) {
2286 return ret;
2287 }
2288 }
2289
2290 bdrv_inc_in_flight(bs);
2291 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2292
2293 if (flags & BDRV_REQ_ZERO_WRITE) {
2294 assert(!padded);
2295 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2296 goto out;
2297 }
2298
2299 if (padded) {
2300 /*
2301 * Request was unaligned to request_alignment and therefore
2302 * padded. We are going to do read-modify-write, and must
2303 * serialize the request to prevent interactions of the
2304 * widened region with other transactions.
2305 */
2306 assert(!(flags & BDRV_REQ_NO_WAIT));
2307 bdrv_make_request_serialising(&req, align);
2308 bdrv_padding_rmw_read(child, &req, &pad, false);
2309 }
2310
2311 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2312 qiov, qiov_offset, flags);
2313
2314 bdrv_padding_finalize(&pad);
2315
2316 out:
2317 tracked_request_end(&req);
2318 bdrv_dec_in_flight(bs);
2319
2320 return ret;
2321 }
2322
bdrv_co_pwrite_zeroes(BdrvChild * child,int64_t offset,int64_t bytes,BdrvRequestFlags flags)2323 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2324 int64_t bytes, BdrvRequestFlags flags)
2325 {
2326 IO_CODE();
2327 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2328 assert_bdrv_graph_readable();
2329
2330 return bdrv_co_pwritev(child, offset, bytes, NULL,
2331 BDRV_REQ_ZERO_WRITE | flags);
2332 }
2333
2334 /*
2335 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2336 */
bdrv_flush_all(void)2337 int bdrv_flush_all(void)
2338 {
2339 BdrvNextIterator it;
2340 BlockDriverState *bs = NULL;
2341 int result = 0;
2342
2343 GLOBAL_STATE_CODE();
2344 GRAPH_RDLOCK_GUARD_MAINLOOP();
2345
2346 /*
2347 * bdrv queue is managed by record/replay,
2348 * creating new flush request for stopping
2349 * the VM may break the determinism
2350 */
2351 if (replay_events_enabled()) {
2352 return result;
2353 }
2354
2355 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2356 int ret = bdrv_flush(bs);
2357 if (ret < 0 && !result) {
2358 result = ret;
2359 }
2360 }
2361
2362 return result;
2363 }
2364
2365 /*
2366 * Returns the allocation status of the specified sectors.
2367 * Drivers not implementing the functionality are assumed to not support
2368 * backing files, hence all their sectors are reported as allocated.
2369 *
2370 * 'mode' serves as a hint as to which results are favored; see the
2371 * BDRV_WANT_* macros for details.
2372 *
2373 * If 'offset' is beyond the end of the disk image the return value is
2374 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2375 *
2376 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2377 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2378 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2379 *
2380 * 'pnum' is set to the number of bytes (including and immediately
2381 * following the specified offset) that are easily known to be in the
2382 * same allocated/unallocated state. Note that a second call starting
2383 * at the original offset plus returned pnum may have the same status.
2384 * The returned value is non-zero on success except at end-of-file.
2385 *
2386 * Returns negative errno on failure. Otherwise, if the
2387 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2388 * set to the host mapping and BDS corresponding to the guest offset.
2389 */
2390 static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_block_status(BlockDriverState * bs,unsigned int mode,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2391 bdrv_co_do_block_status(BlockDriverState *bs, unsigned int mode,
2392 int64_t offset, int64_t bytes,
2393 int64_t *pnum, int64_t *map, BlockDriverState **file)
2394 {
2395 int64_t total_size;
2396 int64_t n; /* bytes */
2397 int ret;
2398 int64_t local_map = 0;
2399 BlockDriverState *local_file = NULL;
2400 int64_t aligned_offset, aligned_bytes;
2401 uint32_t align;
2402 bool has_filtered_child;
2403
2404 assert(pnum);
2405 assert_bdrv_graph_readable();
2406 *pnum = 0;
2407 total_size = bdrv_co_getlength(bs);
2408 if (total_size < 0) {
2409 ret = total_size;
2410 goto early_out;
2411 }
2412
2413 if (offset >= total_size) {
2414 ret = BDRV_BLOCK_EOF;
2415 goto early_out;
2416 }
2417 if (!bytes) {
2418 ret = 0;
2419 goto early_out;
2420 }
2421
2422 n = total_size - offset;
2423 if (n < bytes) {
2424 bytes = n;
2425 }
2426
2427 /* Must be non-NULL or bdrv_co_getlength() would have failed */
2428 assert(bs->drv);
2429 has_filtered_child = bdrv_filter_child(bs);
2430 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2431 *pnum = bytes;
2432 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2433 if (offset + bytes == total_size) {
2434 ret |= BDRV_BLOCK_EOF;
2435 }
2436 if (bs->drv->protocol_name) {
2437 ret |= BDRV_BLOCK_OFFSET_VALID;
2438 local_map = offset;
2439 local_file = bs;
2440 }
2441 goto early_out;
2442 }
2443
2444 bdrv_inc_in_flight(bs);
2445
2446 /* Round out to request_alignment boundaries */
2447 align = bs->bl.request_alignment;
2448 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2449 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2450
2451 if (bs->drv->bdrv_co_block_status) {
2452 /*
2453 * Use the block-status cache only for protocol nodes: Format
2454 * drivers are generally quick to inquire the status, but protocol
2455 * drivers often need to get information from outside of qemu, so
2456 * we do not have control over the actual implementation. There
2457 * have been cases where inquiring the status took an unreasonably
2458 * long time, and we can do nothing in qemu to fix it.
2459 * This is especially problematic for images with large data areas,
2460 * because finding the few holes in them and giving them special
2461 * treatment does not gain much performance. Therefore, we try to
2462 * cache the last-identified data region.
2463 *
2464 * Second, limiting ourselves to protocol nodes allows us to assume
2465 * the block status for data regions to be DATA | OFFSET_VALID, and
2466 * that the host offset is the same as the guest offset.
2467 *
2468 * Note that it is possible that external writers zero parts of
2469 * the cached regions without the cache being invalidated, and so
2470 * we may report zeroes as data. This is not catastrophic,
2471 * however, because reporting zeroes as data is fine.
2472 */
2473 if (QLIST_EMPTY(&bs->children) &&
2474 bdrv_bsc_is_data(bs, aligned_offset, pnum))
2475 {
2476 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
2477 local_file = bs;
2478 local_map = aligned_offset;
2479 } else {
2480 ret = bs->drv->bdrv_co_block_status(bs, mode, aligned_offset,
2481 aligned_bytes, pnum, &local_map,
2482 &local_file);
2483
2484 /*
2485 * Note that checking QLIST_EMPTY(&bs->children) is also done when
2486 * the cache is queried above. Technically, we do not need to check
2487 * it here; the worst that can happen is that we fill the cache for
2488 * non-protocol nodes, and then it is never used. However, filling
2489 * the cache requires an RCU update, so double check here to avoid
2490 * such an update if possible.
2491 *
2492 * Check mode, because we only want to update the cache when we
2493 * have accurate information about what is zero and what is data.
2494 */
2495 if (mode == BDRV_WANT_PRECISE &&
2496 ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
2497 QLIST_EMPTY(&bs->children))
2498 {
2499 /*
2500 * When a protocol driver reports BLOCK_OFFSET_VALID, the
2501 * returned local_map value must be the same as the offset we
2502 * have passed (aligned_offset), and local_bs must be the node
2503 * itself.
2504 * Assert this, because we follow this rule when reading from
2505 * the cache (see the `local_file = bs` and
2506 * `local_map = aligned_offset` assignments above), and the
2507 * result the cache delivers must be the same as the driver
2508 * would deliver.
2509 */
2510 assert(local_file == bs);
2511 assert(local_map == aligned_offset);
2512 bdrv_bsc_fill(bs, aligned_offset, *pnum);
2513 }
2514 }
2515 } else {
2516 /* Default code for filters */
2517
2518 local_file = bdrv_filter_bs(bs);
2519 assert(local_file);
2520
2521 *pnum = aligned_bytes;
2522 local_map = aligned_offset;
2523 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2524 }
2525 if (ret < 0) {
2526 *pnum = 0;
2527 goto out;
2528 }
2529
2530 /*
2531 * The driver's result must be a non-zero multiple of request_alignment.
2532 * Clamp pnum and adjust map to original request.
2533 */
2534 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2535 align > offset - aligned_offset);
2536 if (ret & BDRV_BLOCK_RECURSE) {
2537 assert(ret & BDRV_BLOCK_DATA);
2538 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2539 assert(!(ret & BDRV_BLOCK_ZERO));
2540 }
2541
2542 *pnum -= offset - aligned_offset;
2543 if (*pnum > bytes) {
2544 *pnum = bytes;
2545 }
2546 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2547 local_map += offset - aligned_offset;
2548 }
2549
2550 if (ret & BDRV_BLOCK_RAW) {
2551 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2552 ret = bdrv_co_do_block_status(local_file, mode, local_map,
2553 *pnum, pnum, &local_map, &local_file);
2554 goto out;
2555 }
2556
2557 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2558 ret |= BDRV_BLOCK_ALLOCATED;
2559 } else if (bs->drv->supports_backing) {
2560 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2561
2562 if (!cow_bs) {
2563 ret |= BDRV_BLOCK_ZERO;
2564 } else if (mode == BDRV_WANT_PRECISE) {
2565 int64_t size2 = bdrv_co_getlength(cow_bs);
2566
2567 if (size2 >= 0 && offset >= size2) {
2568 ret |= BDRV_BLOCK_ZERO;
2569 }
2570 }
2571 }
2572
2573 if (mode == BDRV_WANT_PRECISE && ret & BDRV_BLOCK_RECURSE &&
2574 local_file && local_file != bs &&
2575 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2576 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2577 int64_t file_pnum;
2578 int ret2;
2579
2580 ret2 = bdrv_co_do_block_status(local_file, mode, local_map,
2581 *pnum, &file_pnum, NULL, NULL);
2582 if (ret2 >= 0) {
2583 /* Ignore errors. This is just providing extra information, it
2584 * is useful but not necessary.
2585 */
2586 if (ret2 & BDRV_BLOCK_EOF &&
2587 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2588 /*
2589 * It is valid for the format block driver to read
2590 * beyond the end of the underlying file's current
2591 * size; such areas read as zero.
2592 */
2593 ret |= BDRV_BLOCK_ZERO;
2594 } else {
2595 /* Limit request to the range reported by the protocol driver */
2596 *pnum = file_pnum;
2597 ret |= (ret2 & BDRV_BLOCK_ZERO);
2598 }
2599 }
2600
2601 /*
2602 * Now that the recursive search was done, clear the flag. Otherwise,
2603 * with more complicated block graphs like snapshot-access ->
2604 * copy-before-write -> qcow2, where the return value will be propagated
2605 * further up to a parent bdrv_co_do_block_status() call, both the
2606 * BDRV_BLOCK_RECURSE and BDRV_BLOCK_ZERO flags would be set, which is
2607 * not allowed.
2608 */
2609 ret &= ~BDRV_BLOCK_RECURSE;
2610 }
2611
2612 out:
2613 bdrv_dec_in_flight(bs);
2614 if (ret >= 0 && offset + *pnum == total_size) {
2615 ret |= BDRV_BLOCK_EOF;
2616 }
2617 early_out:
2618 if (file) {
2619 *file = local_file;
2620 }
2621 if (map) {
2622 *map = local_map;
2623 }
2624 return ret;
2625 }
2626
2627 int coroutine_fn
bdrv_co_common_block_status_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,unsigned int mode,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file,int * depth)2628 bdrv_co_common_block_status_above(BlockDriverState *bs,
2629 BlockDriverState *base,
2630 bool include_base,
2631 unsigned int mode,
2632 int64_t offset,
2633 int64_t bytes,
2634 int64_t *pnum,
2635 int64_t *map,
2636 BlockDriverState **file,
2637 int *depth)
2638 {
2639 int ret;
2640 BlockDriverState *p;
2641 int64_t eof = 0;
2642 int dummy;
2643 IO_CODE();
2644
2645 assert(!include_base || base); /* Can't include NULL base */
2646 assert_bdrv_graph_readable();
2647
2648 if (!depth) {
2649 depth = &dummy;
2650 }
2651 *depth = 0;
2652
2653 if (!include_base && bs == base) {
2654 *pnum = bytes;
2655 return 0;
2656 }
2657
2658 ret = bdrv_co_do_block_status(bs, mode, offset, bytes, pnum,
2659 map, file);
2660 ++*depth;
2661 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2662 return ret;
2663 }
2664
2665 if (ret & BDRV_BLOCK_EOF) {
2666 eof = offset + *pnum;
2667 }
2668
2669 assert(*pnum <= bytes);
2670 bytes = *pnum;
2671
2672 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2673 p = bdrv_filter_or_cow_bs(p))
2674 {
2675 ret = bdrv_co_do_block_status(p, mode, offset, bytes, pnum,
2676 map, file);
2677 ++*depth;
2678 if (ret < 0) {
2679 return ret;
2680 }
2681 if (*pnum == 0) {
2682 /*
2683 * The top layer deferred to this layer, and because this layer is
2684 * short, any zeroes that we synthesize beyond EOF behave as if they
2685 * were allocated at this layer.
2686 *
2687 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2688 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2689 * below.
2690 */
2691 assert(ret & BDRV_BLOCK_EOF);
2692 *pnum = bytes;
2693 if (file) {
2694 *file = p;
2695 }
2696 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2697 break;
2698 }
2699 if (ret & BDRV_BLOCK_ALLOCATED) {
2700 /*
2701 * We've found the node and the status, we must break.
2702 *
2703 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2704 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2705 * below.
2706 */
2707 ret &= ~BDRV_BLOCK_EOF;
2708 break;
2709 }
2710
2711 if (p == base) {
2712 assert(include_base);
2713 break;
2714 }
2715
2716 /*
2717 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2718 * let's continue the diving.
2719 */
2720 assert(*pnum <= bytes);
2721 bytes = *pnum;
2722 }
2723
2724 if (offset + *pnum == eof) {
2725 ret |= BDRV_BLOCK_EOF;
2726 }
2727
2728 return ret;
2729 }
2730
bdrv_co_block_status_above(BlockDriverState * bs,BlockDriverState * base,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2731 int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2732 BlockDriverState *base,
2733 int64_t offset, int64_t bytes,
2734 int64_t *pnum, int64_t *map,
2735 BlockDriverState **file)
2736 {
2737 IO_CODE();
2738 return bdrv_co_common_block_status_above(bs, base, false,
2739 BDRV_WANT_PRECISE, offset,
2740 bytes, pnum, map, file, NULL);
2741 }
2742
bdrv_co_block_status(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)2743 int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, int64_t offset,
2744 int64_t bytes, int64_t *pnum,
2745 int64_t *map, BlockDriverState **file)
2746 {
2747 IO_CODE();
2748 return bdrv_co_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2749 offset, bytes, pnum, map, file);
2750 }
2751
2752 /*
2753 * Check @bs (and its backing chain) to see if the range defined
2754 * by @offset and @bytes is known to read as zeroes.
2755 * Return 1 if that is the case, 0 otherwise and -errno on error.
2756 * This test is meant to be fast rather than accurate so returning 0
2757 * does not guarantee non-zero data; but a return of 1 is reliable.
2758 */
bdrv_co_is_zero_fast(BlockDriverState * bs,int64_t offset,int64_t bytes)2759 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2760 int64_t bytes)
2761 {
2762 int ret;
2763 int64_t pnum;
2764 IO_CODE();
2765
2766 while (bytes) {
2767 ret = bdrv_co_common_block_status_above(bs, NULL, false,
2768 BDRV_WANT_ZERO, offset, bytes,
2769 &pnum, NULL, NULL, NULL);
2770
2771 if (ret < 0) {
2772 return ret;
2773 }
2774 if (!(ret & BDRV_BLOCK_ZERO)) {
2775 return 0;
2776 }
2777 offset += pnum;
2778 bytes -= pnum;
2779 }
2780
2781 return 1;
2782 }
2783
2784 /*
2785 * Check @bs (and its backing chain) to see if the entire image is known
2786 * to read as zeroes.
2787 * Return 1 if that is the case, 0 otherwise and -errno on error.
2788 * This test is meant to be fast rather than accurate so returning 0
2789 * does not guarantee non-zero data; however, a return of 1 is reliable,
2790 * and this function can report 1 in more cases than bdrv_co_is_zero_fast.
2791 */
bdrv_co_is_all_zeroes(BlockDriverState * bs)2792 int coroutine_fn bdrv_co_is_all_zeroes(BlockDriverState *bs)
2793 {
2794 int ret;
2795 int64_t pnum, bytes;
2796 char *buf;
2797 QEMUIOVector local_qiov;
2798 IO_CODE();
2799
2800 bytes = bdrv_co_getlength(bs);
2801 if (bytes < 0) {
2802 return bytes;
2803 }
2804
2805 /* First probe - see if the entire image reads as zero */
2806 ret = bdrv_co_common_block_status_above(bs, NULL, false, BDRV_WANT_ZERO,
2807 0, bytes, &pnum, NULL, NULL,
2808 NULL);
2809 if (ret < 0) {
2810 return ret;
2811 }
2812 if (ret & BDRV_BLOCK_ZERO) {
2813 return bdrv_co_is_zero_fast(bs, pnum, bytes - pnum);
2814 }
2815
2816 /*
2817 * Because of the way 'blockdev-create' works, raw files tend to
2818 * be created with a non-sparse region at the front to make
2819 * alignment probing easier. If the block starts with only a
2820 * small allocated region, it is still worth the effort to see if
2821 * the rest of the image is still sparse, coupled with manually
2822 * reading the first region to see if it reads zero after all.
2823 */
2824 if (pnum > MAX_ZERO_CHECK_BUFFER) {
2825 return 0;
2826 }
2827 ret = bdrv_co_is_zero_fast(bs, pnum, bytes - pnum);
2828 if (ret <= 0) {
2829 return ret;
2830 }
2831 /* Only the head of the image is unknown, and it's small. Read it. */
2832 buf = qemu_blockalign(bs, pnum);
2833 qemu_iovec_init_buf(&local_qiov, buf, pnum);
2834 ret = bdrv_driver_preadv(bs, 0, pnum, &local_qiov, 0, 0);
2835 if (ret >= 0) {
2836 ret = buffer_is_zero(buf, pnum);
2837 }
2838 qemu_vfree(buf);
2839 return ret;
2840 }
2841
bdrv_co_is_allocated(BlockDriverState * bs,int64_t offset,int64_t bytes,int64_t * pnum)2842 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
2843 int64_t bytes, int64_t *pnum)
2844 {
2845 int ret;
2846 int64_t dummy;
2847 IO_CODE();
2848
2849 ret = bdrv_co_common_block_status_above(bs, bs, true, BDRV_WANT_ALLOCATED,
2850 offset, bytes, pnum ? pnum : &dummy,
2851 NULL, NULL, NULL);
2852 if (ret < 0) {
2853 return ret;
2854 }
2855 return !!(ret & BDRV_BLOCK_ALLOCATED);
2856 }
2857
2858 /*
2859 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2860 *
2861 * Return a positive depth if (a prefix of) the given range is allocated
2862 * in any image between BASE and TOP (BASE is only included if include_base
2863 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2864 * BASE can be NULL to check if the given offset is allocated in any
2865 * image of the chain. Return 0 otherwise, or negative errno on
2866 * failure.
2867 *
2868 * 'pnum' is set to the number of bytes (including and immediately
2869 * following the specified offset) that are known to be in the same
2870 * allocated/unallocated state. Note that a subsequent call starting
2871 * at 'offset + *pnum' may return the same allocation status (in other
2872 * words, the result is not necessarily the maximum possible range);
2873 * but 'pnum' will only be 0 when end of file is reached.
2874 */
bdrv_co_is_allocated_above(BlockDriverState * bs,BlockDriverState * base,bool include_base,int64_t offset,int64_t bytes,int64_t * pnum)2875 int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *bs,
2876 BlockDriverState *base,
2877 bool include_base, int64_t offset,
2878 int64_t bytes, int64_t *pnum)
2879 {
2880 int depth;
2881 int ret;
2882 IO_CODE();
2883
2884 ret = bdrv_co_common_block_status_above(bs, base, include_base,
2885 BDRV_WANT_ALLOCATED,
2886 offset, bytes, pnum, NULL, NULL,
2887 &depth);
2888 if (ret < 0) {
2889 return ret;
2890 }
2891
2892 if (ret & BDRV_BLOCK_ALLOCATED) {
2893 return depth;
2894 }
2895 return 0;
2896 }
2897
2898 int coroutine_fn
bdrv_co_readv_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2899 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2900 {
2901 BlockDriver *drv = bs->drv;
2902 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2903 int ret;
2904 IO_CODE();
2905 assert_bdrv_graph_readable();
2906
2907 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2908 if (ret < 0) {
2909 return ret;
2910 }
2911
2912 if (!drv) {
2913 return -ENOMEDIUM;
2914 }
2915
2916 bdrv_inc_in_flight(bs);
2917
2918 if (drv->bdrv_co_load_vmstate) {
2919 ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
2920 } else if (child_bs) {
2921 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2922 } else {
2923 ret = -ENOTSUP;
2924 }
2925
2926 bdrv_dec_in_flight(bs);
2927
2928 return ret;
2929 }
2930
2931 int coroutine_fn
bdrv_co_writev_vmstate(BlockDriverState * bs,QEMUIOVector * qiov,int64_t pos)2932 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2933 {
2934 BlockDriver *drv = bs->drv;
2935 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2936 int ret;
2937 IO_CODE();
2938 assert_bdrv_graph_readable();
2939
2940 ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
2941 if (ret < 0) {
2942 return ret;
2943 }
2944
2945 if (!drv) {
2946 return -ENOMEDIUM;
2947 }
2948
2949 bdrv_inc_in_flight(bs);
2950
2951 if (drv->bdrv_co_save_vmstate) {
2952 ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
2953 } else if (child_bs) {
2954 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2955 } else {
2956 ret = -ENOTSUP;
2957 }
2958
2959 bdrv_dec_in_flight(bs);
2960
2961 return ret;
2962 }
2963
bdrv_save_vmstate(BlockDriverState * bs,const uint8_t * buf,int64_t pos,int size)2964 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2965 int64_t pos, int size)
2966 {
2967 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2968 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2969 IO_CODE();
2970
2971 return ret < 0 ? ret : size;
2972 }
2973
bdrv_load_vmstate(BlockDriverState * bs,uint8_t * buf,int64_t pos,int size)2974 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2975 int64_t pos, int size)
2976 {
2977 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2978 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2979 IO_CODE();
2980
2981 return ret < 0 ? ret : size;
2982 }
2983
2984 /**************************************************************/
2985 /* async I/Os */
2986
2987 /**
2988 * Synchronously cancels an acb. Must be called with the BQL held and the acb
2989 * must be processed with the BQL held too (IOThreads are not allowed).
2990 *
2991 * Use bdrv_aio_cancel_async() instead when possible.
2992 */
bdrv_aio_cancel(BlockAIOCB * acb)2993 void bdrv_aio_cancel(BlockAIOCB *acb)
2994 {
2995 GLOBAL_STATE_CODE();
2996 qemu_aio_ref(acb);
2997 bdrv_aio_cancel_async(acb);
2998 AIO_WAIT_WHILE_UNLOCKED(NULL, acb->refcnt > 1);
2999 qemu_aio_unref(acb);
3000 }
3001
3002 /* Async version of aio cancel. The caller is not blocked if the acb implements
3003 * cancel_async, otherwise we do nothing and let the request normally complete.
3004 * In either case the completion callback must be called. */
bdrv_aio_cancel_async(BlockAIOCB * acb)3005 void bdrv_aio_cancel_async(BlockAIOCB *acb)
3006 {
3007 IO_CODE();
3008 if (acb->aiocb_info->cancel_async) {
3009 acb->aiocb_info->cancel_async(acb);
3010 }
3011 }
3012
3013 /**************************************************************/
3014 /* Coroutine block device emulation */
3015
bdrv_co_flush(BlockDriverState * bs)3016 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3017 {
3018 BdrvChild *primary_child = bdrv_primary_child(bs);
3019 BdrvChild *child;
3020 int current_gen;
3021 int ret = 0;
3022 IO_CODE();
3023
3024 assert_bdrv_graph_readable();
3025 bdrv_inc_in_flight(bs);
3026
3027 if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
3028 bdrv_is_sg(bs)) {
3029 goto early_exit;
3030 }
3031
3032 qemu_mutex_lock(&bs->reqs_lock);
3033 current_gen = qatomic_read(&bs->write_gen);
3034
3035 /* Wait until any previous flushes are completed */
3036 while (bs->active_flush_req) {
3037 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
3038 }
3039
3040 /* Flushes reach this point in nondecreasing current_gen order. */
3041 bs->active_flush_req = true;
3042 qemu_mutex_unlock(&bs->reqs_lock);
3043
3044 /* Write back all layers by calling one driver function */
3045 if (bs->drv->bdrv_co_flush) {
3046 ret = bs->drv->bdrv_co_flush(bs);
3047 goto out;
3048 }
3049
3050 /* Write back cached data to the OS even with cache=unsafe */
3051 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
3052 if (bs->drv->bdrv_co_flush_to_os) {
3053 ret = bs->drv->bdrv_co_flush_to_os(bs);
3054 if (ret < 0) {
3055 goto out;
3056 }
3057 }
3058
3059 /* But don't actually force it to the disk with cache=unsafe */
3060 if (bs->open_flags & BDRV_O_NO_FLUSH) {
3061 goto flush_children;
3062 }
3063
3064 /* Check if we really need to flush anything */
3065 if (bs->flushed_gen == current_gen) {
3066 goto flush_children;
3067 }
3068
3069 BLKDBG_CO_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
3070 if (!bs->drv) {
3071 /* bs->drv->bdrv_co_flush() might have ejected the BDS
3072 * (even in case of apparent success) */
3073 ret = -ENOMEDIUM;
3074 goto out;
3075 }
3076 if (bs->drv->bdrv_co_flush_to_disk) {
3077 ret = bs->drv->bdrv_co_flush_to_disk(bs);
3078 } else if (bs->drv->bdrv_aio_flush) {
3079 BlockAIOCB *acb;
3080 CoroutineIOCompletion co = {
3081 .coroutine = qemu_coroutine_self(),
3082 };
3083
3084 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3085 if (acb == NULL) {
3086 ret = -EIO;
3087 } else {
3088 qemu_coroutine_yield();
3089 ret = co.ret;
3090 }
3091 } else {
3092 /*
3093 * Some block drivers always operate in either writethrough or unsafe
3094 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3095 * know how the server works (because the behaviour is hardcoded or
3096 * depends on server-side configuration), so we can't ensure that
3097 * everything is safe on disk. Returning an error doesn't work because
3098 * that would break guests even if the server operates in writethrough
3099 * mode.
3100 *
3101 * Let's hope the user knows what he's doing.
3102 */
3103 ret = 0;
3104 }
3105
3106 if (ret < 0) {
3107 goto out;
3108 }
3109
3110 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
3111 * in the case of cache=unsafe, so there are no useless flushes.
3112 */
3113 flush_children:
3114 ret = 0;
3115 QLIST_FOREACH(child, &bs->children, next) {
3116 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
3117 int this_child_ret = bdrv_co_flush(child->bs);
3118 if (!ret) {
3119 ret = this_child_ret;
3120 }
3121 }
3122 }
3123
3124 out:
3125 /* Notify any pending flushes that we have completed */
3126 if (ret == 0) {
3127 bs->flushed_gen = current_gen;
3128 }
3129
3130 qemu_mutex_lock(&bs->reqs_lock);
3131 bs->active_flush_req = false;
3132 /* Return value is ignored - it's ok if wait queue is empty */
3133 qemu_co_queue_next(&bs->flush_queue);
3134 qemu_mutex_unlock(&bs->reqs_lock);
3135
3136 early_exit:
3137 bdrv_dec_in_flight(bs);
3138 return ret;
3139 }
3140
bdrv_co_pdiscard(BdrvChild * child,int64_t offset,int64_t bytes)3141 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
3142 int64_t bytes)
3143 {
3144 BdrvTrackedRequest req;
3145 int ret;
3146 int64_t max_pdiscard;
3147 int head, tail, align;
3148 BlockDriverState *bs = child->bs;
3149 IO_CODE();
3150 assert_bdrv_graph_readable();
3151
3152 if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
3153 return -ENOMEDIUM;
3154 }
3155
3156 if (bdrv_has_readonly_bitmaps(bs)) {
3157 return -EPERM;
3158 }
3159
3160 ret = bdrv_check_request(offset, bytes, NULL);
3161 if (ret < 0) {
3162 return ret;
3163 }
3164
3165 /* Do nothing if disabled. */
3166 if (!(bs->open_flags & BDRV_O_UNMAP)) {
3167 return 0;
3168 }
3169
3170 if (!bs->drv->bdrv_co_pdiscard) {
3171 return 0;
3172 }
3173
3174 /* Invalidate the cached block-status data range if this discard overlaps */
3175 bdrv_bsc_invalidate_range(bs, offset, bytes);
3176
3177 /*
3178 * Discard is advisory, but some devices track and coalesce
3179 * unaligned requests, so we must pass everything down rather than
3180 * round here. Still, most devices reject unaligned requests with
3181 * -EINVAL or -ENOTSUP, so we must fragment the request accordingly.
3182 */
3183 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
3184 assert(align % bs->bl.request_alignment == 0);
3185 head = offset % align;
3186 tail = (offset + bytes) % align;
3187
3188 bdrv_inc_in_flight(bs);
3189 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
3190
3191 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
3192 if (ret < 0) {
3193 goto out;
3194 }
3195
3196 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
3197 align);
3198 assert(max_pdiscard >= bs->bl.request_alignment);
3199
3200 while (bytes > 0) {
3201 int64_t num = bytes;
3202
3203 if (head) {
3204 /* Make small requests to get to alignment boundaries. */
3205 num = MIN(bytes, align - head);
3206 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
3207 num %= bs->bl.request_alignment;
3208 }
3209 head = (head + num) % align;
3210 assert(num < max_pdiscard);
3211 } else if (tail) {
3212 if (num > align) {
3213 /* Shorten the request to the last aligned cluster. */
3214 num -= tail;
3215 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
3216 tail > bs->bl.request_alignment) {
3217 tail %= bs->bl.request_alignment;
3218 num -= tail;
3219 }
3220 }
3221 /* limit request size */
3222 if (num > max_pdiscard) {
3223 num = max_pdiscard;
3224 }
3225
3226 if (!bs->drv) {
3227 ret = -ENOMEDIUM;
3228 goto out;
3229 }
3230
3231 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
3232 if (ret && ret != -ENOTSUP) {
3233 if (ret == -EINVAL && (offset % align != 0 || num % align != 0)) {
3234 /* Silently skip rejected unaligned head/tail requests */
3235 } else {
3236 goto out; /* bail out */
3237 }
3238 }
3239
3240 offset += num;
3241 bytes -= num;
3242 }
3243 ret = 0;
3244 out:
3245 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
3246 tracked_request_end(&req);
3247 bdrv_dec_in_flight(bs);
3248 return ret;
3249 }
3250
bdrv_co_ioctl(BlockDriverState * bs,int req,void * buf)3251 int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
3252 {
3253 BlockDriver *drv = bs->drv;
3254 CoroutineIOCompletion co = {
3255 .coroutine = qemu_coroutine_self(),
3256 };
3257 BlockAIOCB *acb;
3258 IO_CODE();
3259 assert_bdrv_graph_readable();
3260
3261 bdrv_inc_in_flight(bs);
3262 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
3263 co.ret = -ENOTSUP;
3264 goto out;
3265 }
3266
3267 if (drv->bdrv_co_ioctl) {
3268 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
3269 } else {
3270 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
3271 if (!acb) {
3272 co.ret = -ENOTSUP;
3273 goto out;
3274 }
3275 qemu_coroutine_yield();
3276 }
3277 out:
3278 bdrv_dec_in_flight(bs);
3279 return co.ret;
3280 }
3281
bdrv_co_zone_report(BlockDriverState * bs,int64_t offset,unsigned int * nr_zones,BlockZoneDescriptor * zones)3282 int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
3283 unsigned int *nr_zones,
3284 BlockZoneDescriptor *zones)
3285 {
3286 BlockDriver *drv = bs->drv;
3287 CoroutineIOCompletion co = {
3288 .coroutine = qemu_coroutine_self(),
3289 };
3290 IO_CODE();
3291
3292 bdrv_inc_in_flight(bs);
3293 if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
3294 co.ret = -ENOTSUP;
3295 goto out;
3296 }
3297 co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
3298 out:
3299 bdrv_dec_in_flight(bs);
3300 return co.ret;
3301 }
3302
bdrv_co_zone_mgmt(BlockDriverState * bs,BlockZoneOp op,int64_t offset,int64_t len)3303 int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
3304 int64_t offset, int64_t len)
3305 {
3306 BlockDriver *drv = bs->drv;
3307 CoroutineIOCompletion co = {
3308 .coroutine = qemu_coroutine_self(),
3309 };
3310 IO_CODE();
3311
3312 bdrv_inc_in_flight(bs);
3313 if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
3314 co.ret = -ENOTSUP;
3315 goto out;
3316 }
3317 co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
3318 out:
3319 bdrv_dec_in_flight(bs);
3320 return co.ret;
3321 }
3322
bdrv_co_zone_append(BlockDriverState * bs,int64_t * offset,QEMUIOVector * qiov,BdrvRequestFlags flags)3323 int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
3324 QEMUIOVector *qiov,
3325 BdrvRequestFlags flags)
3326 {
3327 int ret;
3328 BlockDriver *drv = bs->drv;
3329 CoroutineIOCompletion co = {
3330 .coroutine = qemu_coroutine_self(),
3331 };
3332 IO_CODE();
3333
3334 ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
3335 if (ret < 0) {
3336 return ret;
3337 }
3338
3339 bdrv_inc_in_flight(bs);
3340 if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
3341 co.ret = -ENOTSUP;
3342 goto out;
3343 }
3344 co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
3345 out:
3346 bdrv_dec_in_flight(bs);
3347 return co.ret;
3348 }
3349
qemu_blockalign(BlockDriverState * bs,size_t size)3350 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3351 {
3352 IO_CODE();
3353 return qemu_memalign(bdrv_opt_mem_align(bs), size);
3354 }
3355
qemu_blockalign0(BlockDriverState * bs,size_t size)3356 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
3357 {
3358 IO_CODE();
3359 return memset(qemu_blockalign(bs, size), 0, size);
3360 }
3361
qemu_try_blockalign(BlockDriverState * bs,size_t size)3362 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
3363 {
3364 size_t align = bdrv_opt_mem_align(bs);
3365 IO_CODE();
3366
3367 /* Ensure that NULL is never returned on success */
3368 assert(align > 0);
3369 if (size == 0) {
3370 size = align;
3371 }
3372
3373 return qemu_try_memalign(align, size);
3374 }
3375
qemu_try_blockalign0(BlockDriverState * bs,size_t size)3376 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3377 {
3378 void *mem = qemu_try_blockalign(bs, size);
3379 IO_CODE();
3380
3381 if (mem) {
3382 memset(mem, 0, size);
3383 }
3384
3385 return mem;
3386 }
3387
3388 /* Helper that undoes bdrv_register_buf() when it fails partway through */
3389 static void GRAPH_RDLOCK
bdrv_register_buf_rollback(BlockDriverState * bs,void * host,size_t size,BdrvChild * final_child)3390 bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
3391 BdrvChild *final_child)
3392 {
3393 BdrvChild *child;
3394
3395 GLOBAL_STATE_CODE();
3396 assert_bdrv_graph_readable();
3397
3398 QLIST_FOREACH(child, &bs->children, next) {
3399 if (child == final_child) {
3400 break;
3401 }
3402
3403 bdrv_unregister_buf(child->bs, host, size);
3404 }
3405
3406 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3407 bs->drv->bdrv_unregister_buf(bs, host, size);
3408 }
3409 }
3410
bdrv_register_buf(BlockDriverState * bs,void * host,size_t size,Error ** errp)3411 bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
3412 Error **errp)
3413 {
3414 BdrvChild *child;
3415
3416 GLOBAL_STATE_CODE();
3417 GRAPH_RDLOCK_GUARD_MAINLOOP();
3418
3419 if (bs->drv && bs->drv->bdrv_register_buf) {
3420 if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
3421 return false;
3422 }
3423 }
3424 QLIST_FOREACH(child, &bs->children, next) {
3425 if (!bdrv_register_buf(child->bs, host, size, errp)) {
3426 bdrv_register_buf_rollback(bs, host, size, child);
3427 return false;
3428 }
3429 }
3430 return true;
3431 }
3432
bdrv_unregister_buf(BlockDriverState * bs,void * host,size_t size)3433 void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
3434 {
3435 BdrvChild *child;
3436
3437 GLOBAL_STATE_CODE();
3438 GRAPH_RDLOCK_GUARD_MAINLOOP();
3439
3440 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3441 bs->drv->bdrv_unregister_buf(bs, host, size);
3442 }
3443 QLIST_FOREACH(child, &bs->children, next) {
3444 bdrv_unregister_buf(child->bs, host, size);
3445 }
3446 }
3447
bdrv_co_copy_range_internal(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags,bool recurse_src)3448 static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
3449 BdrvChild *src, int64_t src_offset, BdrvChild *dst,
3450 int64_t dst_offset, int64_t bytes,
3451 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3452 bool recurse_src)
3453 {
3454 BdrvTrackedRequest req;
3455 int ret;
3456 assert_bdrv_graph_readable();
3457
3458 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3459 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3460 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3461 assert(!(read_flags & BDRV_REQ_NO_WAIT));
3462 assert(!(write_flags & BDRV_REQ_NO_WAIT));
3463
3464 if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
3465 return -ENOMEDIUM;
3466 }
3467 ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
3468 if (ret) {
3469 return ret;
3470 }
3471 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3472 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3473 }
3474
3475 if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
3476 return -ENOMEDIUM;
3477 }
3478 ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
3479 if (ret) {
3480 return ret;
3481 }
3482
3483 if (!src->bs->drv->bdrv_co_copy_range_from
3484 || !dst->bs->drv->bdrv_co_copy_range_to
3485 || src->bs->encrypted || dst->bs->encrypted) {
3486 return -ENOTSUP;
3487 }
3488
3489 if (recurse_src) {
3490 bdrv_inc_in_flight(src->bs);
3491 tracked_request_begin(&req, src->bs, src_offset, bytes,
3492 BDRV_TRACKED_READ);
3493
3494 /* BDRV_REQ_SERIALISING is only for write operation */
3495 assert(!(read_flags & BDRV_REQ_SERIALISING));
3496 bdrv_wait_serialising_requests(&req);
3497
3498 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3499 src, src_offset,
3500 dst, dst_offset,
3501 bytes,
3502 read_flags, write_flags);
3503
3504 tracked_request_end(&req);
3505 bdrv_dec_in_flight(src->bs);
3506 } else {
3507 bdrv_inc_in_flight(dst->bs);
3508 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3509 BDRV_TRACKED_WRITE);
3510 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3511 write_flags);
3512 if (!ret) {
3513 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3514 src, src_offset,
3515 dst, dst_offset,
3516 bytes,
3517 read_flags, write_flags);
3518 }
3519 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3520 tracked_request_end(&req);
3521 bdrv_dec_in_flight(dst->bs);
3522 }
3523
3524 return ret;
3525 }
3526
3527 /* Copy range from @src to @dst.
3528 *
3529 * See the comment of bdrv_co_copy_range for the parameter and return value
3530 * semantics. */
bdrv_co_copy_range_from(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3531 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
3532 BdrvChild *dst, int64_t dst_offset,
3533 int64_t bytes,
3534 BdrvRequestFlags read_flags,
3535 BdrvRequestFlags write_flags)
3536 {
3537 IO_CODE();
3538 assert_bdrv_graph_readable();
3539 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3540 read_flags, write_flags);
3541 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3542 bytes, read_flags, write_flags, true);
3543 }
3544
3545 /* Copy range from @src to @dst.
3546 *
3547 * See the comment of bdrv_co_copy_range for the parameter and return value
3548 * semantics. */
bdrv_co_copy_range_to(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3549 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
3550 BdrvChild *dst, int64_t dst_offset,
3551 int64_t bytes,
3552 BdrvRequestFlags read_flags,
3553 BdrvRequestFlags write_flags)
3554 {
3555 IO_CODE();
3556 assert_bdrv_graph_readable();
3557 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3558 read_flags, write_flags);
3559 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3560 bytes, read_flags, write_flags, false);
3561 }
3562
bdrv_co_copy_range(BdrvChild * src,int64_t src_offset,BdrvChild * dst,int64_t dst_offset,int64_t bytes,BdrvRequestFlags read_flags,BdrvRequestFlags write_flags)3563 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
3564 BdrvChild *dst, int64_t dst_offset,
3565 int64_t bytes, BdrvRequestFlags read_flags,
3566 BdrvRequestFlags write_flags)
3567 {
3568 IO_CODE();
3569 assert_bdrv_graph_readable();
3570
3571 return bdrv_co_copy_range_from(src, src_offset,
3572 dst, dst_offset,
3573 bytes, read_flags, write_flags);
3574 }
3575
3576 static void coroutine_fn GRAPH_RDLOCK
bdrv_parent_cb_resize(BlockDriverState * bs)3577 bdrv_parent_cb_resize(BlockDriverState *bs)
3578 {
3579 BdrvChild *c;
3580
3581 assert_bdrv_graph_readable();
3582
3583 QLIST_FOREACH(c, &bs->parents, next_parent) {
3584 if (c->klass->resize) {
3585 c->klass->resize(c);
3586 }
3587 }
3588 }
3589
3590 /**
3591 * Truncate file to 'offset' bytes (needed only for file protocols)
3592 *
3593 * If 'exact' is true, the file must be resized to exactly the given
3594 * 'offset'. Otherwise, it is sufficient for the node to be at least
3595 * 'offset' bytes in length.
3596 */
bdrv_co_truncate(BdrvChild * child,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)3597 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3598 PreallocMode prealloc, BdrvRequestFlags flags,
3599 Error **errp)
3600 {
3601 BlockDriverState *bs = child->bs;
3602 BdrvChild *filtered, *backing;
3603 BlockDriver *drv = bs->drv;
3604 BdrvTrackedRequest req;
3605 int64_t old_size, new_bytes;
3606 int ret;
3607 IO_CODE();
3608 assert_bdrv_graph_readable();
3609
3610 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3611 if (!drv) {
3612 error_setg(errp, "No medium inserted");
3613 return -ENOMEDIUM;
3614 }
3615 if (offset < 0) {
3616 error_setg(errp, "Image size cannot be negative");
3617 return -EINVAL;
3618 }
3619
3620 ret = bdrv_check_request(offset, 0, errp);
3621 if (ret < 0) {
3622 return ret;
3623 }
3624
3625 old_size = bdrv_co_getlength(bs);
3626 if (old_size < 0) {
3627 error_setg_errno(errp, -old_size, "Failed to get old image size");
3628 return old_size;
3629 }
3630
3631 if (bdrv_is_read_only(bs)) {
3632 error_setg(errp, "Image is read-only");
3633 return -EACCES;
3634 }
3635
3636 if (offset > old_size) {
3637 new_bytes = offset - old_size;
3638 } else {
3639 new_bytes = 0;
3640 }
3641
3642 bdrv_inc_in_flight(bs);
3643 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3644 BDRV_TRACKED_TRUNCATE);
3645
3646 /* If we are growing the image and potentially using preallocation for the
3647 * new area, we need to make sure that no write requests are made to it
3648 * concurrently or they might be overwritten by preallocation. */
3649 if (new_bytes) {
3650 bdrv_make_request_serialising(&req, 1);
3651 }
3652 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3653 0);
3654 if (ret < 0) {
3655 error_setg_errno(errp, -ret,
3656 "Failed to prepare request for truncation");
3657 goto out;
3658 }
3659
3660 filtered = bdrv_filter_child(bs);
3661 backing = bdrv_cow_child(bs);
3662
3663 /*
3664 * If the image has a backing file that is large enough that it would
3665 * provide data for the new area, we cannot leave it unallocated because
3666 * then the backing file content would become visible. Instead, zero-fill
3667 * the new area.
3668 *
3669 * Note that if the image has a backing file, but was opened without the
3670 * backing file, taking care of keeping things consistent with that backing
3671 * file is the user's responsibility.
3672 */
3673 if (new_bytes && backing) {
3674 int64_t backing_len;
3675
3676 backing_len = bdrv_co_getlength(backing->bs);
3677 if (backing_len < 0) {
3678 ret = backing_len;
3679 error_setg_errno(errp, -ret, "Could not get backing file size");
3680 goto out;
3681 }
3682
3683 if (backing_len > old_size) {
3684 flags |= BDRV_REQ_ZERO_WRITE;
3685 }
3686 }
3687
3688 if (drv->bdrv_co_truncate) {
3689 if (flags & ~bs->supported_truncate_flags) {
3690 error_setg(errp, "Block driver does not support requested flags");
3691 ret = -ENOTSUP;
3692 goto out;
3693 }
3694 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3695 } else if (filtered) {
3696 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3697 } else {
3698 error_setg(errp, "Image format driver does not support resize");
3699 ret = -ENOTSUP;
3700 goto out;
3701 }
3702 if (ret < 0) {
3703 goto out;
3704 }
3705
3706 ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3707 if (ret < 0) {
3708 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3709 } else {
3710 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3711 }
3712 /*
3713 * It's possible that truncation succeeded but bdrv_refresh_total_sectors
3714 * failed, but the latter doesn't affect how we should finish the request.
3715 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
3716 */
3717 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3718
3719 out:
3720 tracked_request_end(&req);
3721 bdrv_dec_in_flight(bs);
3722
3723 return ret;
3724 }
3725
bdrv_cancel_in_flight(BlockDriverState * bs)3726 void bdrv_cancel_in_flight(BlockDriverState *bs)
3727 {
3728 GLOBAL_STATE_CODE();
3729 GRAPH_RDLOCK_GUARD_MAINLOOP();
3730
3731 if (!bs || !bs->drv) {
3732 return;
3733 }
3734
3735 if (bs->drv->bdrv_cancel_in_flight) {
3736 bs->drv->bdrv_cancel_in_flight(bs);
3737 }
3738 }
3739
3740 int coroutine_fn
bdrv_co_preadv_snapshot(BdrvChild * child,int64_t offset,int64_t bytes,QEMUIOVector * qiov,size_t qiov_offset)3741 bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
3742 QEMUIOVector *qiov, size_t qiov_offset)
3743 {
3744 BlockDriverState *bs = child->bs;
3745 BlockDriver *drv = bs->drv;
3746 int ret;
3747 IO_CODE();
3748 assert_bdrv_graph_readable();
3749
3750 if (!drv) {
3751 return -ENOMEDIUM;
3752 }
3753
3754 if (!drv->bdrv_co_preadv_snapshot) {
3755 return -ENOTSUP;
3756 }
3757
3758 bdrv_inc_in_flight(bs);
3759 ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
3760 bdrv_dec_in_flight(bs);
3761
3762 return ret;
3763 }
3764
3765 int coroutine_fn
bdrv_co_snapshot_block_status(BlockDriverState * bs,unsigned int mode,int64_t offset,int64_t bytes,int64_t * pnum,int64_t * map,BlockDriverState ** file)3766 bdrv_co_snapshot_block_status(BlockDriverState *bs, unsigned int mode,
3767 int64_t offset, int64_t bytes,
3768 int64_t *pnum, int64_t *map,
3769 BlockDriverState **file)
3770 {
3771 BlockDriver *drv = bs->drv;
3772 int ret;
3773 IO_CODE();
3774 assert_bdrv_graph_readable();
3775
3776 if (!drv) {
3777 return -ENOMEDIUM;
3778 }
3779
3780 if (!drv->bdrv_co_snapshot_block_status) {
3781 return -ENOTSUP;
3782 }
3783
3784 bdrv_inc_in_flight(bs);
3785 ret = drv->bdrv_co_snapshot_block_status(bs, mode, offset, bytes,
3786 pnum, map, file);
3787 bdrv_dec_in_flight(bs);
3788
3789 return ret;
3790 }
3791
3792 int coroutine_fn
bdrv_co_pdiscard_snapshot(BlockDriverState * bs,int64_t offset,int64_t bytes)3793 bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
3794 {
3795 BlockDriver *drv = bs->drv;
3796 int ret;
3797 IO_CODE();
3798 assert_bdrv_graph_readable();
3799
3800 if (!drv) {
3801 return -ENOMEDIUM;
3802 }
3803
3804 if (!drv->bdrv_co_pdiscard_snapshot) {
3805 return -ENOTSUP;
3806 }
3807
3808 bdrv_inc_in_flight(bs);
3809 ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
3810 bdrv_dec_in_flight(bs);
3811
3812 return ret;
3813 }
3814