1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_cache.h"
5 #include "btree_iter.h"
6 #include "btree_key_cache.h"
7 #include "btree_locking.h"
8 #include "btree_update.h"
9 #include "errcode.h"
10 #include "error.h"
11 #include "journal.h"
12 #include "journal_reclaim.h"
13 #include "trace.h"
14
15 #include <linux/sched/mm.h>
16
btree_uses_pcpu_readers(enum btree_id id)17 static inline bool btree_uses_pcpu_readers(enum btree_id id)
18 {
19 return id == BTREE_ID_subvolumes;
20 }
21
22 static struct kmem_cache *bch2_key_cache;
23
bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg * arg,const void * obj)24 static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
25 const void *obj)
26 {
27 const struct bkey_cached *ck = obj;
28 const struct bkey_cached_key *key = arg->key;
29
30 return ck->key.btree_id != key->btree_id ||
31 !bpos_eq(ck->key.pos, key->pos);
32 }
33
34 static const struct rhashtable_params bch2_btree_key_cache_params = {
35 .head_offset = offsetof(struct bkey_cached, hash),
36 .key_offset = offsetof(struct bkey_cached, key),
37 .key_len = sizeof(struct bkey_cached_key),
38 .obj_cmpfn = bch2_btree_key_cache_cmp_fn,
39 .automatic_shrinking = true,
40 };
41
btree_path_cached_set(struct btree_trans * trans,struct btree_path * path,struct bkey_cached * ck,enum btree_node_locked_type lock_held)42 static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
43 struct bkey_cached *ck,
44 enum btree_node_locked_type lock_held)
45 {
46 path->l[0].lock_seq = six_lock_seq(&ck->c.lock);
47 path->l[0].b = (void *) ck;
48 mark_btree_node_locked(trans, path, 0, lock_held);
49 }
50
51 __flatten
52 inline struct bkey_cached *
bch2_btree_key_cache_find(struct bch_fs * c,enum btree_id btree_id,struct bpos pos)53 bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
54 {
55 struct bkey_cached_key key = {
56 .btree_id = btree_id,
57 .pos = pos,
58 };
59
60 return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
61 bch2_btree_key_cache_params);
62 }
63
bkey_cached_lock_for_evict(struct bkey_cached * ck)64 static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
65 {
66 if (!six_trylock_intent(&ck->c.lock))
67 return false;
68
69 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
70 six_unlock_intent(&ck->c.lock);
71 return false;
72 }
73
74 if (!six_trylock_write(&ck->c.lock)) {
75 six_unlock_intent(&ck->c.lock);
76 return false;
77 }
78
79 return true;
80 }
81
bkey_cached_evict(struct btree_key_cache * c,struct bkey_cached * ck)82 static bool bkey_cached_evict(struct btree_key_cache *c,
83 struct bkey_cached *ck)
84 {
85 bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
86 bch2_btree_key_cache_params);
87 if (ret) {
88 memset(&ck->key, ~0, sizeof(ck->key));
89 atomic_long_dec(&c->nr_keys);
90 }
91
92 return ret;
93 }
94
__bkey_cached_free(struct rcu_pending * pending,struct rcu_head * rcu)95 static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
96 {
97 struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
98 struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
99
100 this_cpu_dec(*c->btree_key_cache.nr_pending);
101 kmem_cache_free(bch2_key_cache, ck);
102 }
103
bkey_cached_free(struct btree_key_cache * bc,struct bkey_cached * ck)104 static void bkey_cached_free(struct btree_key_cache *bc,
105 struct bkey_cached *ck)
106 {
107 kfree(ck->k);
108 ck->k = NULL;
109 ck->u64s = 0;
110
111 six_unlock_write(&ck->c.lock);
112 six_unlock_intent(&ck->c.lock);
113
114 bool pcpu_readers = ck->c.lock.readers != NULL;
115 rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
116 this_cpu_inc(*bc->nr_pending);
117 }
118
__bkey_cached_alloc(unsigned key_u64s,gfp_t gfp)119 static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
120 {
121 gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
122
123 struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
124 if (unlikely(!ck))
125 return NULL;
126 ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
127 if (unlikely(!ck->k)) {
128 kmem_cache_free(bch2_key_cache, ck);
129 return NULL;
130 }
131 ck->u64s = key_u64s;
132 return ck;
133 }
134
135 static struct bkey_cached *
bkey_cached_alloc(struct btree_trans * trans,struct btree_path * path,unsigned key_u64s)136 bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
137 {
138 struct bch_fs *c = trans->c;
139 struct btree_key_cache *bc = &c->btree_key_cache;
140 bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
141 int ret;
142
143 struct bkey_cached *ck = container_of_or_null(
144 rcu_pending_dequeue(&bc->pending[pcpu_readers]),
145 struct bkey_cached, rcu);
146 if (ck)
147 goto lock;
148
149 ck = allocate_dropping_locks(trans, ret,
150 __bkey_cached_alloc(key_u64s, _gfp));
151 if (ret) {
152 if (ck)
153 kfree(ck->k);
154 kmem_cache_free(bch2_key_cache, ck);
155 return ERR_PTR(ret);
156 }
157
158 if (ck) {
159 bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0, GFP_KERNEL);
160 ck->c.cached = true;
161 goto lock;
162 }
163
164 ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
165 struct bkey_cached, rcu);
166 if (ck)
167 goto lock;
168 lock:
169 six_lock_intent(&ck->c.lock, NULL, NULL);
170 six_lock_write(&ck->c.lock, NULL, NULL);
171 return ck;
172 }
173
174 static struct bkey_cached *
bkey_cached_reuse(struct btree_key_cache * c)175 bkey_cached_reuse(struct btree_key_cache *c)
176 {
177 struct bucket_table *tbl;
178 struct rhash_head *pos;
179 struct bkey_cached *ck;
180 unsigned i;
181
182 rcu_read_lock();
183 tbl = rht_dereference_rcu(c->table.tbl, &c->table);
184 for (i = 0; i < tbl->size; i++)
185 rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
186 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
187 bkey_cached_lock_for_evict(ck)) {
188 if (bkey_cached_evict(c, ck))
189 goto out;
190 six_unlock_write(&ck->c.lock);
191 six_unlock_intent(&ck->c.lock);
192 }
193 }
194 ck = NULL;
195 out:
196 rcu_read_unlock();
197 return ck;
198 }
199
btree_key_cache_create(struct btree_trans * trans,struct btree_path * path,struct btree_path * ck_path,struct bkey_s_c k)200 static int btree_key_cache_create(struct btree_trans *trans,
201 struct btree_path *path,
202 struct btree_path *ck_path,
203 struct bkey_s_c k)
204 {
205 struct bch_fs *c = trans->c;
206 struct btree_key_cache *bc = &c->btree_key_cache;
207
208 /*
209 * bch2_varint_decode can read past the end of the buffer by at
210 * most 7 bytes (it won't be used):
211 */
212 unsigned key_u64s = k.k->u64s + 1;
213
214 /*
215 * Allocate some extra space so that the transaction commit path is less
216 * likely to have to reallocate, since that requires a transaction
217 * restart:
218 */
219 key_u64s = min(256U, (key_u64s * 3) / 2);
220 key_u64s = roundup_pow_of_two(key_u64s);
221
222 struct bkey_cached *ck = bkey_cached_alloc(trans, ck_path, key_u64s);
223 int ret = PTR_ERR_OR_ZERO(ck);
224 if (ret)
225 return ret;
226
227 if (unlikely(!ck)) {
228 ck = bkey_cached_reuse(bc);
229 if (unlikely(!ck)) {
230 bch_err(c, "error allocating memory for key cache item, btree %s",
231 bch2_btree_id_str(ck_path->btree_id));
232 return -BCH_ERR_ENOMEM_btree_key_cache_create;
233 }
234 }
235
236 ck->c.level = 0;
237 ck->c.btree_id = ck_path->btree_id;
238 ck->key.btree_id = ck_path->btree_id;
239 ck->key.pos = ck_path->pos;
240 ck->flags = 1U << BKEY_CACHED_ACCESSED;
241
242 if (unlikely(key_u64s > ck->u64s)) {
243 mark_btree_node_locked_noreset(ck_path, 0, BTREE_NODE_UNLOCKED);
244
245 struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
246 kmalloc(key_u64s * sizeof(u64), _gfp));
247 if (unlikely(!new_k)) {
248 bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
249 bch2_btree_id_str(ck->key.btree_id), key_u64s);
250 ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
251 } else if (ret) {
252 kfree(new_k);
253 goto err;
254 }
255
256 kfree(ck->k);
257 ck->k = new_k;
258 ck->u64s = key_u64s;
259 }
260
261 bkey_reassemble(ck->k, k);
262
263 ret = bch2_btree_node_lock_write(trans, path, &path_l(path)->b->c);
264 if (unlikely(ret))
265 goto err;
266
267 ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
268
269 bch2_btree_node_unlock_write(trans, path, path_l(path)->b);
270
271 if (unlikely(ret)) /* raced with another fill? */
272 goto err;
273
274 atomic_long_inc(&bc->nr_keys);
275 six_unlock_write(&ck->c.lock);
276
277 enum six_lock_type lock_want = __btree_lock_want(ck_path, 0);
278 if (lock_want == SIX_LOCK_read)
279 six_lock_downgrade(&ck->c.lock);
280 btree_path_cached_set(trans, ck_path, ck, (enum btree_node_locked_type) lock_want);
281 ck_path->uptodate = BTREE_ITER_UPTODATE;
282 return 0;
283 err:
284 bkey_cached_free(bc, ck);
285 mark_btree_node_locked_noreset(ck_path, 0, BTREE_NODE_UNLOCKED);
286
287 return ret;
288 }
289
do_trace_key_cache_fill(struct btree_trans * trans,struct btree_path * ck_path,struct bkey_s_c k)290 static noinline_for_stack void do_trace_key_cache_fill(struct btree_trans *trans,
291 struct btree_path *ck_path,
292 struct bkey_s_c k)
293 {
294 struct printbuf buf = PRINTBUF;
295
296 bch2_bpos_to_text(&buf, ck_path->pos);
297 prt_char(&buf, ' ');
298 bch2_bkey_val_to_text(&buf, trans->c, k);
299 trace_key_cache_fill(trans, buf.buf);
300 printbuf_exit(&buf);
301 }
302
btree_key_cache_fill(struct btree_trans * trans,btree_path_idx_t ck_path_idx,unsigned flags)303 static noinline int btree_key_cache_fill(struct btree_trans *trans,
304 btree_path_idx_t ck_path_idx,
305 unsigned flags)
306 {
307 struct btree_path *ck_path = trans->paths + ck_path_idx;
308
309 if (flags & BTREE_ITER_cached_nofill) {
310 ck_path->l[0].b = NULL;
311 return 0;
312 }
313
314 struct bch_fs *c = trans->c;
315 struct btree_iter iter;
316 struct bkey_s_c k;
317 int ret;
318
319 bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
320 BTREE_ITER_intent|
321 BTREE_ITER_key_cache_fill|
322 BTREE_ITER_cached_nofill);
323 iter.flags &= ~BTREE_ITER_with_journal;
324 k = bch2_btree_iter_peek_slot(trans, &iter);
325 ret = bkey_err(k);
326 if (ret)
327 goto err;
328
329 /* Recheck after btree lookup, before allocating: */
330 ck_path = trans->paths + ck_path_idx;
331 ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
332 if (unlikely(ret))
333 goto out;
334
335 ret = btree_key_cache_create(trans, btree_iter_path(trans, &iter), ck_path, k);
336 if (ret)
337 goto err;
338
339 if (trace_key_cache_fill_enabled())
340 do_trace_key_cache_fill(trans, ck_path, k);
341 out:
342 /* We're not likely to need this iterator again: */
343 bch2_set_btree_iter_dontneed(trans, &iter);
344 err:
345 bch2_trans_iter_exit(trans, &iter);
346 return ret;
347 }
348
btree_path_traverse_cached_fast(struct btree_trans * trans,btree_path_idx_t path_idx)349 static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
350 btree_path_idx_t path_idx)
351 {
352 struct bch_fs *c = trans->c;
353 struct bkey_cached *ck;
354 struct btree_path *path = trans->paths + path_idx;
355 retry:
356 ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
357 if (!ck)
358 return -ENOENT;
359
360 enum six_lock_type lock_want = __btree_lock_want(path, 0);
361
362 int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
363 if (ret)
364 return ret;
365
366 if (ck->key.btree_id != path->btree_id ||
367 !bpos_eq(ck->key.pos, path->pos)) {
368 six_unlock_type(&ck->c.lock, lock_want);
369 goto retry;
370 }
371
372 if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
373 set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
374
375 btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
376 path->uptodate = BTREE_ITER_UPTODATE;
377 return 0;
378 }
379
bch2_btree_path_traverse_cached(struct btree_trans * trans,btree_path_idx_t path_idx,unsigned flags)380 int bch2_btree_path_traverse_cached(struct btree_trans *trans,
381 btree_path_idx_t path_idx,
382 unsigned flags)
383 {
384 EBUG_ON(trans->paths[path_idx].level);
385
386 int ret;
387 do {
388 ret = btree_path_traverse_cached_fast(trans, path_idx);
389 if (unlikely(ret == -ENOENT))
390 ret = btree_key_cache_fill(trans, path_idx, flags);
391 } while (ret == -EEXIST);
392
393 struct btree_path *path = trans->paths + path_idx;
394
395 if (unlikely(ret)) {
396 path->uptodate = BTREE_ITER_NEED_TRAVERSE;
397 if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
398 btree_node_unlock(trans, path, 0);
399 path->l[0].b = ERR_PTR(ret);
400 }
401 } else {
402 BUG_ON(path->uptodate);
403 BUG_ON(!path->nodes_locked);
404 }
405
406 return ret;
407 }
408
btree_key_cache_flush_pos(struct btree_trans * trans,struct bkey_cached_key key,u64 journal_seq,unsigned commit_flags,bool evict)409 static int btree_key_cache_flush_pos(struct btree_trans *trans,
410 struct bkey_cached_key key,
411 u64 journal_seq,
412 unsigned commit_flags,
413 bool evict)
414 {
415 struct bch_fs *c = trans->c;
416 struct journal *j = &c->journal;
417 struct btree_iter c_iter, b_iter;
418 struct bkey_cached *ck = NULL;
419 int ret;
420
421 bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
422 BTREE_ITER_slots|
423 BTREE_ITER_intent|
424 BTREE_ITER_all_snapshots);
425 bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
426 BTREE_ITER_cached|
427 BTREE_ITER_intent);
428 b_iter.flags &= ~BTREE_ITER_with_key_cache;
429
430 ret = bch2_btree_iter_traverse(trans, &c_iter);
431 if (ret)
432 goto out;
433
434 ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
435 if (!ck)
436 goto out;
437
438 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
439 if (evict)
440 goto evict;
441 goto out;
442 }
443
444 if (journal_seq && ck->journal.seq != journal_seq)
445 goto out;
446
447 trans->journal_res.seq = ck->journal.seq;
448
449 /*
450 * If we're at the end of the journal, we really want to free up space
451 * in the journal right away - we don't want to pin that old journal
452 * sequence number with a new btree node write, we want to re-journal
453 * the update
454 */
455 if (ck->journal.seq == journal_last_seq(j))
456 commit_flags |= BCH_WATERMARK_reclaim;
457
458 if (ck->journal.seq != journal_last_seq(j) ||
459 !test_bit(JOURNAL_space_low, &c->journal.flags))
460 commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
461
462 struct bkey_s_c btree_k = bch2_btree_iter_peek_slot(trans, &b_iter);
463 ret = bkey_err(btree_k);
464 if (ret)
465 goto err;
466
467 /* * Check that we're not violating cache coherency rules: */
468 BUG_ON(bkey_deleted(btree_k.k));
469
470 ret = bch2_trans_update(trans, &b_iter, ck->k,
471 BTREE_UPDATE_key_cache_reclaim|
472 BTREE_UPDATE_internal_snapshot_node|
473 BTREE_TRIGGER_norun) ?:
474 bch2_trans_commit(trans, NULL, NULL,
475 BCH_TRANS_COMMIT_no_check_rw|
476 BCH_TRANS_COMMIT_no_enospc|
477 commit_flags);
478 err:
479 bch2_fs_fatal_err_on(ret &&
480 !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
481 !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
482 !bch2_journal_error(j), c,
483 "flushing key cache: %s", bch2_err_str(ret));
484 if (ret)
485 goto out;
486
487 bch2_journal_pin_drop(j, &ck->journal);
488
489 struct btree_path *path = btree_iter_path(trans, &c_iter);
490 BUG_ON(!btree_node_locked(path, 0));
491
492 if (!evict) {
493 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
494 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
495 atomic_long_dec(&c->btree_key_cache.nr_dirty);
496 }
497 } else {
498 struct btree_path *path2;
499 unsigned i;
500 evict:
501 trans_for_each_path(trans, path2, i)
502 if (path2 != path)
503 __bch2_btree_path_unlock(trans, path2);
504
505 bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
506
507 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
508 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
509 atomic_long_dec(&c->btree_key_cache.nr_dirty);
510 }
511
512 mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
513 if (bkey_cached_evict(&c->btree_key_cache, ck)) {
514 bkey_cached_free(&c->btree_key_cache, ck);
515 } else {
516 six_unlock_write(&ck->c.lock);
517 six_unlock_intent(&ck->c.lock);
518 }
519 }
520 out:
521 bch2_trans_iter_exit(trans, &b_iter);
522 bch2_trans_iter_exit(trans, &c_iter);
523 return ret;
524 }
525
bch2_btree_key_cache_journal_flush(struct journal * j,struct journal_entry_pin * pin,u64 seq)526 int bch2_btree_key_cache_journal_flush(struct journal *j,
527 struct journal_entry_pin *pin, u64 seq)
528 {
529 struct bch_fs *c = container_of(j, struct bch_fs, journal);
530 struct bkey_cached *ck =
531 container_of(pin, struct bkey_cached, journal);
532 struct bkey_cached_key key;
533 struct btree_trans *trans = bch2_trans_get(c);
534 int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
535 int ret = 0;
536
537 btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
538 key = ck->key;
539
540 if (ck->journal.seq != seq ||
541 !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
542 six_unlock_read(&ck->c.lock);
543 goto unlock;
544 }
545
546 if (ck->seq != seq) {
547 bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
548 bch2_btree_key_cache_journal_flush);
549 six_unlock_read(&ck->c.lock);
550 goto unlock;
551 }
552 six_unlock_read(&ck->c.lock);
553
554 ret = lockrestart_do(trans,
555 btree_key_cache_flush_pos(trans, key, seq,
556 BCH_TRANS_COMMIT_journal_reclaim, false));
557 unlock:
558 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
559
560 bch2_trans_put(trans);
561 return ret;
562 }
563
bch2_btree_insert_key_cached(struct btree_trans * trans,unsigned flags,struct btree_insert_entry * insert_entry)564 bool bch2_btree_insert_key_cached(struct btree_trans *trans,
565 unsigned flags,
566 struct btree_insert_entry *insert_entry)
567 {
568 struct bch_fs *c = trans->c;
569 struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
570 struct bkey_i *insert = insert_entry->k;
571 bool kick_reclaim = false;
572
573 BUG_ON(insert->k.u64s > ck->u64s);
574
575 bkey_copy(ck->k, insert);
576
577 if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
578 EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
579 set_bit(BKEY_CACHED_DIRTY, &ck->flags);
580 atomic_long_inc(&c->btree_key_cache.nr_dirty);
581
582 if (bch2_nr_btree_keys_need_flush(c))
583 kick_reclaim = true;
584 }
585
586 /*
587 * To minimize lock contention, we only add the journal pin here and
588 * defer pin updates to the flush callback via ->seq. Be careful not to
589 * update ->seq on nojournal commits because we don't want to update the
590 * pin to a seq that doesn't include journal updates on disk. Otherwise
591 * we risk losing the update after a crash.
592 *
593 * The only exception is if the pin is not active in the first place. We
594 * have to add the pin because journal reclaim drives key cache
595 * flushing. The flush callback will not proceed unless ->seq matches
596 * the latest pin, so make sure it starts with a consistent value.
597 */
598 if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
599 !journal_pin_active(&ck->journal)) {
600 ck->seq = trans->journal_res.seq;
601 }
602 bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
603 &ck->journal, bch2_btree_key_cache_journal_flush);
604
605 if (kick_reclaim)
606 journal_reclaim_kick(&c->journal);
607 return true;
608 }
609
bch2_btree_key_cache_drop(struct btree_trans * trans,struct btree_path * path)610 void bch2_btree_key_cache_drop(struct btree_trans *trans,
611 struct btree_path *path)
612 {
613 struct bch_fs *c = trans->c;
614 struct btree_key_cache *bc = &c->btree_key_cache;
615 struct bkey_cached *ck = (void *) path->l[0].b;
616
617 /*
618 * We just did an update to the btree, bypassing the key cache: the key
619 * cache key is now stale and must be dropped, even if dirty:
620 */
621 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
622 clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
623 atomic_long_dec(&c->btree_key_cache.nr_dirty);
624 bch2_journal_pin_drop(&c->journal, &ck->journal);
625 }
626
627 bkey_cached_evict(bc, ck);
628 bkey_cached_free(bc, ck);
629
630 mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
631
632 struct btree_path *path2;
633 unsigned i;
634 trans_for_each_path(trans, path2, i)
635 if (path2->l[0].b == (void *) ck) {
636 __bch2_btree_path_unlock(trans, path2);
637 path2->l[0].b = ERR_PTR(-BCH_ERR_no_btree_node_drop);
638 path2->should_be_locked = false;
639 btree_path_set_dirty(path2, BTREE_ITER_NEED_TRAVERSE);
640 }
641
642 bch2_trans_verify_locks(trans);
643 }
644
bch2_btree_key_cache_scan(struct shrinker * shrink,struct shrink_control * sc)645 static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
646 struct shrink_control *sc)
647 {
648 struct bch_fs *c = shrink->private_data;
649 struct btree_key_cache *bc = &c->btree_key_cache;
650 struct bucket_table *tbl;
651 struct bkey_cached *ck;
652 size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
653 unsigned iter, start;
654 int srcu_idx;
655
656 srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
657 rcu_read_lock();
658
659 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
660
661 /*
662 * Scanning is expensive while a rehash is in progress - most elements
663 * will be on the new hashtable, if it's in progress
664 *
665 * A rehash could still start while we're scanning - that's ok, we'll
666 * still see most elements.
667 */
668 if (unlikely(tbl->nest)) {
669 rcu_read_unlock();
670 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
671 return SHRINK_STOP;
672 }
673
674 iter = bc->shrink_iter;
675 if (iter >= tbl->size)
676 iter = 0;
677 start = iter;
678
679 do {
680 struct rhash_head *pos, *next;
681
682 pos = rht_ptr_rcu(&tbl->buckets[iter]);
683
684 while (!rht_is_a_nulls(pos)) {
685 next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
686 ck = container_of(pos, struct bkey_cached, hash);
687
688 if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
689 bc->skipped_dirty++;
690 } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
691 clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
692 bc->skipped_accessed++;
693 } else if (!bkey_cached_lock_for_evict(ck)) {
694 bc->skipped_lock_fail++;
695 } else if (bkey_cached_evict(bc, ck)) {
696 bkey_cached_free(bc, ck);
697 bc->freed++;
698 freed++;
699 } else {
700 six_unlock_write(&ck->c.lock);
701 six_unlock_intent(&ck->c.lock);
702 }
703
704 scanned++;
705 if (scanned >= nr)
706 goto out;
707
708 pos = next;
709 }
710
711 iter++;
712 if (iter >= tbl->size)
713 iter = 0;
714 } while (scanned < nr && iter != start);
715 out:
716 bc->shrink_iter = iter;
717
718 rcu_read_unlock();
719 srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
720
721 return freed;
722 }
723
bch2_btree_key_cache_count(struct shrinker * shrink,struct shrink_control * sc)724 static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
725 struct shrink_control *sc)
726 {
727 struct bch_fs *c = shrink->private_data;
728 struct btree_key_cache *bc = &c->btree_key_cache;
729 long nr = atomic_long_read(&bc->nr_keys) -
730 atomic_long_read(&bc->nr_dirty);
731
732 /*
733 * Avoid hammering our shrinker too much if it's nearly empty - the
734 * shrinker code doesn't take into account how big our cache is, if it's
735 * mostly empty but the system is under memory pressure it causes nasty
736 * lock contention:
737 */
738 nr -= 128;
739
740 return max(0L, nr);
741 }
742
bch2_fs_btree_key_cache_exit(struct btree_key_cache * bc)743 void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
744 {
745 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
746 struct bucket_table *tbl;
747 struct bkey_cached *ck;
748 struct rhash_head *pos;
749 LIST_HEAD(items);
750 unsigned i;
751
752 shrinker_free(bc->shrink);
753
754 /*
755 * The loop is needed to guard against racing with rehash:
756 */
757 while (atomic_long_read(&bc->nr_keys)) {
758 rcu_read_lock();
759 tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
760 if (tbl) {
761 if (tbl->nest) {
762 /* wait for in progress rehash */
763 rcu_read_unlock();
764 mutex_lock(&bc->table.mutex);
765 mutex_unlock(&bc->table.mutex);
766 continue;
767 }
768 for (i = 0; i < tbl->size; i++)
769 while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
770 ck = container_of(pos, struct bkey_cached, hash);
771 BUG_ON(!bkey_cached_evict(bc, ck));
772 kfree(ck->k);
773 kmem_cache_free(bch2_key_cache, ck);
774 }
775 }
776 rcu_read_unlock();
777 }
778
779 if (atomic_long_read(&bc->nr_dirty) &&
780 !bch2_journal_error(&c->journal) &&
781 test_bit(BCH_FS_was_rw, &c->flags))
782 panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
783 atomic_long_read(&bc->nr_dirty));
784
785 if (atomic_long_read(&bc->nr_keys))
786 panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
787 atomic_long_read(&bc->nr_keys));
788
789 if (bc->table_init_done)
790 rhashtable_destroy(&bc->table);
791
792 rcu_pending_exit(&bc->pending[0]);
793 rcu_pending_exit(&bc->pending[1]);
794
795 free_percpu(bc->nr_pending);
796 }
797
bch2_fs_btree_key_cache_init_early(struct btree_key_cache * c)798 void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
799 {
800 }
801
bch2_fs_btree_key_cache_init(struct btree_key_cache * bc)802 int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
803 {
804 struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
805 struct shrinker *shrink;
806
807 bc->nr_pending = alloc_percpu(size_t);
808 if (!bc->nr_pending)
809 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
810
811 if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
812 rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
813 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
814
815 if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
816 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
817
818 bc->table_init_done = true;
819
820 shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
821 if (!shrink)
822 return -BCH_ERR_ENOMEM_fs_btree_cache_init;
823 bc->shrink = shrink;
824 shrink->count_objects = bch2_btree_key_cache_count;
825 shrink->scan_objects = bch2_btree_key_cache_scan;
826 shrink->batch = 1 << 14;
827 shrink->seeks = 0;
828 shrink->private_data = c;
829 shrinker_register(shrink);
830 return 0;
831 }
832
bch2_btree_key_cache_to_text(struct printbuf * out,struct btree_key_cache * bc)833 void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
834 {
835 printbuf_tabstop_push(out, 24);
836 printbuf_tabstop_push(out, 12);
837
838 prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys));
839 prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty));
840 prt_printf(out, "table size:\t%u\r\n", bc->table.tbl->size);
841 prt_newline(out);
842 prt_printf(out, "shrinker:\n");
843 prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free);
844 prt_printf(out, "freed:\t%lu\r\n", bc->freed);
845 prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty);
846 prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed);
847 prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail);
848 prt_newline(out);
849 prt_printf(out, "pending:\t%zu\r\n", per_cpu_sum(bc->nr_pending));
850 }
851
bch2_btree_key_cache_exit(void)852 void bch2_btree_key_cache_exit(void)
853 {
854 kmem_cache_destroy(bch2_key_cache);
855 }
856
bch2_btree_key_cache_init(void)857 int __init bch2_btree_key_cache_init(void)
858 {
859 bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
860 if (!bch2_key_cache)
861 return -ENOMEM;
862
863 return 0;
864 }
865