xref: /linux/fs/bcachefs/bset.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Code for working with individual keys, and sorted sets of keys with in a
4  * btree node
5  *
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcachefs.h"
10 #include "btree_cache.h"
11 #include "bset.h"
12 #include "eytzinger.h"
13 #include "trace.h"
14 #include "util.h"
15 
16 #include <linux/unaligned.h>
17 #include <linux/console.h>
18 #include <linux/random.h>
19 #include <linux/prefetch.h>
20 
21 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *,
22 						  struct btree *);
23 
__btree_node_iter_used(struct btree_node_iter * iter)24 static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter)
25 {
26 	unsigned n = ARRAY_SIZE(iter->data);
27 
28 	while (n && __btree_node_iter_set_end(iter, n - 1))
29 		--n;
30 
31 	return n;
32 }
33 
bch2_bkey_to_bset(struct btree * b,struct bkey_packed * k)34 struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k)
35 {
36 	return bch2_bkey_to_bset_inlined(b, k);
37 }
38 
39 /*
40  * There are never duplicate live keys in the btree - but including keys that
41  * have been flagged as deleted (and will be cleaned up later) we _will_ see
42  * duplicates.
43  *
44  * Thus the sort order is: usual key comparison first, but for keys that compare
45  * equal the deleted key(s) come first, and the (at most one) live version comes
46  * last.
47  *
48  * The main reason for this is insertion: to handle overwrites, we first iterate
49  * over keys that compare equal to our insert key, and then insert immediately
50  * prior to the first key greater than the key we're inserting - our insert
51  * position will be after all keys that compare equal to our insert key, which
52  * by the time we actually do the insert will all be deleted.
53  */
54 
bch2_dump_bset(struct bch_fs * c,struct btree * b,struct bset * i,unsigned set)55 void bch2_dump_bset(struct bch_fs *c, struct btree *b,
56 		    struct bset *i, unsigned set)
57 {
58 	struct bkey_packed *_k, *_n;
59 	struct bkey uk, n;
60 	struct bkey_s_c k;
61 	struct printbuf buf = PRINTBUF;
62 
63 	if (!i->u64s)
64 		return;
65 
66 	for (_k = i->start;
67 	     _k < vstruct_last(i);
68 	     _k = _n) {
69 		_n = bkey_p_next(_k);
70 
71 		if (!_k->u64s) {
72 			printk(KERN_ERR "block %u key %5zu - u64s 0? aieee!\n", set,
73 			       _k->_data - i->_data);
74 			break;
75 		}
76 
77 		k = bkey_disassemble(b, _k, &uk);
78 
79 		printbuf_reset(&buf);
80 		if (c)
81 			bch2_bkey_val_to_text(&buf, c, k);
82 		else
83 			bch2_bkey_to_text(&buf, k.k);
84 		printk(KERN_ERR "block %u key %5zu: %s\n", set,
85 		       _k->_data - i->_data, buf.buf);
86 
87 		if (_n == vstruct_last(i))
88 			continue;
89 
90 		n = bkey_unpack_key(b, _n);
91 
92 		if (bpos_lt(n.p, k.k->p)) {
93 			printk(KERN_ERR "Key skipped backwards\n");
94 			continue;
95 		}
96 
97 		if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p))
98 			printk(KERN_ERR "Duplicate keys\n");
99 	}
100 
101 	printbuf_exit(&buf);
102 }
103 
bch2_dump_btree_node(struct bch_fs * c,struct btree * b)104 void bch2_dump_btree_node(struct bch_fs *c, struct btree *b)
105 {
106 	console_lock();
107 	for_each_bset(b, t)
108 		bch2_dump_bset(c, b, bset(b, t), t - b->set);
109 	console_unlock();
110 }
111 
bch2_dump_btree_node_iter(struct btree * b,struct btree_node_iter * iter)112 void bch2_dump_btree_node_iter(struct btree *b,
113 			      struct btree_node_iter *iter)
114 {
115 	struct btree_node_iter_set *set;
116 	struct printbuf buf = PRINTBUF;
117 
118 	printk(KERN_ERR "btree node iter with %u/%u sets:\n",
119 	       __btree_node_iter_used(iter), b->nsets);
120 
121 	btree_node_iter_for_each(iter, set) {
122 		struct bkey_packed *k = __btree_node_offset_to_key(b, set->k);
123 		struct bset_tree *t = bch2_bkey_to_bset(b, k);
124 		struct bkey uk = bkey_unpack_key(b, k);
125 
126 		printbuf_reset(&buf);
127 		bch2_bkey_to_text(&buf, &uk);
128 		printk(KERN_ERR "set %zu key %u: %s\n",
129 		       t - b->set, set->k, buf.buf);
130 	}
131 
132 	printbuf_exit(&buf);
133 }
134 
bch2_btree_node_count_keys(struct btree * b)135 struct btree_nr_keys bch2_btree_node_count_keys(struct btree *b)
136 {
137 	struct bkey_packed *k;
138 	struct btree_nr_keys nr = {};
139 
140 	for_each_bset(b, t)
141 		bset_tree_for_each_key(b, t, k)
142 			if (!bkey_deleted(k))
143 				btree_keys_account_key_add(&nr, t - b->set, k);
144 	return nr;
145 }
146 
__bch2_verify_btree_nr_keys(struct btree * b)147 void __bch2_verify_btree_nr_keys(struct btree *b)
148 {
149 	struct btree_nr_keys nr = bch2_btree_node_count_keys(b);
150 
151 	BUG_ON(memcmp(&nr, &b->nr, sizeof(nr)));
152 }
153 
__bch2_btree_node_iter_next_check(struct btree_node_iter * _iter,struct btree * b)154 static void __bch2_btree_node_iter_next_check(struct btree_node_iter *_iter,
155 					    struct btree *b)
156 {
157 	struct btree_node_iter iter = *_iter;
158 	const struct bkey_packed *k, *n;
159 
160 	k = bch2_btree_node_iter_peek_all(&iter, b);
161 	__bch2_btree_node_iter_advance(&iter, b);
162 	n = bch2_btree_node_iter_peek_all(&iter, b);
163 
164 	bkey_unpack_key(b, k);
165 
166 	if (n &&
167 	    bkey_iter_cmp(b, k, n) > 0) {
168 		struct btree_node_iter_set *set;
169 		struct bkey ku = bkey_unpack_key(b, k);
170 		struct bkey nu = bkey_unpack_key(b, n);
171 		struct printbuf buf1 = PRINTBUF;
172 		struct printbuf buf2 = PRINTBUF;
173 
174 		bch2_dump_btree_node(NULL, b);
175 		bch2_bkey_to_text(&buf1, &ku);
176 		bch2_bkey_to_text(&buf2, &nu);
177 		printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n",
178 		       buf1.buf, buf2.buf);
179 		printk(KERN_ERR "iter was:");
180 
181 		btree_node_iter_for_each(_iter, set) {
182 			struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k);
183 			struct bset_tree *t = bch2_bkey_to_bset(b, k2);
184 			printk(" [%zi %zi]", t - b->set,
185 			       k2->_data - bset(b, t)->_data);
186 		}
187 		panic("\n");
188 	}
189 }
190 
__bch2_btree_node_iter_verify(struct btree_node_iter * iter,struct btree * b)191 void __bch2_btree_node_iter_verify(struct btree_node_iter *iter,
192 				   struct btree *b)
193 {
194 	struct btree_node_iter_set *set, *s2;
195 	struct bkey_packed *k, *p;
196 
197 	if (bch2_btree_node_iter_end(iter))
198 		return;
199 
200 	/* Verify no duplicates: */
201 	btree_node_iter_for_each(iter, set) {
202 		BUG_ON(set->k > set->end);
203 		btree_node_iter_for_each(iter, s2)
204 			BUG_ON(set != s2 && set->end == s2->end);
205 	}
206 
207 	/* Verify that set->end is correct: */
208 	btree_node_iter_for_each(iter, set) {
209 		for_each_bset(b, t)
210 			if (set->end == t->end_offset) {
211 				BUG_ON(set->k < btree_bkey_first_offset(t) ||
212 				       set->k >= t->end_offset);
213 				goto found;
214 			}
215 		BUG();
216 found:
217 		do {} while (0);
218 	}
219 
220 	/* Verify iterator is sorted: */
221 	btree_node_iter_for_each(iter, set)
222 		BUG_ON(set != iter->data &&
223 		       btree_node_iter_cmp(b, set[-1], set[0]) > 0);
224 
225 	k = bch2_btree_node_iter_peek_all(iter, b);
226 
227 	for_each_bset(b, t) {
228 		if (iter->data[0].end == t->end_offset)
229 			continue;
230 
231 		p = bch2_bkey_prev_all(b, t,
232 			bch2_btree_node_iter_bset_pos(iter, b, t));
233 
234 		BUG_ON(p && bkey_iter_cmp(b, k, p) < 0);
235 	}
236 }
237 
__bch2_verify_insert_pos(struct btree * b,struct bkey_packed * where,struct bkey_packed * insert,unsigned clobber_u64s)238 static void __bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where,
239 				     struct bkey_packed *insert, unsigned clobber_u64s)
240 {
241 	struct bset_tree *t = bch2_bkey_to_bset(b, where);
242 	struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where);
243 	struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s);
244 	struct printbuf buf1 = PRINTBUF;
245 	struct printbuf buf2 = PRINTBUF;
246 #if 0
247 	BUG_ON(prev &&
248 	       bkey_iter_cmp(b, prev, insert) > 0);
249 #else
250 	if (prev &&
251 	    bkey_iter_cmp(b, prev, insert) > 0) {
252 		struct bkey k1 = bkey_unpack_key(b, prev);
253 		struct bkey k2 = bkey_unpack_key(b, insert);
254 
255 		bch2_dump_btree_node(NULL, b);
256 		bch2_bkey_to_text(&buf1, &k1);
257 		bch2_bkey_to_text(&buf2, &k2);
258 
259 		panic("prev > insert:\n"
260 		      "prev    key %s\n"
261 		      "insert  key %s\n",
262 		      buf1.buf, buf2.buf);
263 	}
264 #endif
265 #if 0
266 	BUG_ON(next != btree_bkey_last(b, t) &&
267 	       bkey_iter_cmp(b, insert, next) > 0);
268 #else
269 	if (next != btree_bkey_last(b, t) &&
270 	    bkey_iter_cmp(b, insert, next) > 0) {
271 		struct bkey k1 = bkey_unpack_key(b, insert);
272 		struct bkey k2 = bkey_unpack_key(b, next);
273 
274 		bch2_dump_btree_node(NULL, b);
275 		bch2_bkey_to_text(&buf1, &k1);
276 		bch2_bkey_to_text(&buf2, &k2);
277 
278 		panic("insert > next:\n"
279 		      "insert  key %s\n"
280 		      "next    key %s\n",
281 		      buf1.buf, buf2.buf);
282 	}
283 #endif
284 }
285 
bch2_verify_insert_pos(struct btree * b,struct bkey_packed * where,struct bkey_packed * insert,unsigned clobber_u64s)286 static inline void bch2_verify_insert_pos(struct btree *b,
287 					  struct bkey_packed *where,
288 					  struct bkey_packed *insert,
289 					  unsigned clobber_u64s)
290 {
291 	if (static_branch_unlikely(&bch2_debug_check_bset_lookups))
292 		__bch2_verify_insert_pos(b, where, insert, clobber_u64s);
293 }
294 
295 
296 /* Auxiliary search trees */
297 
298 #define BFLOAT_FAILED_UNPACKED	U8_MAX
299 #define BFLOAT_FAILED		U8_MAX
300 
301 struct bkey_float {
302 	u8		exponent;
303 	u8		key_offset;
304 	u16		mantissa;
305 };
306 #define BKEY_MANTISSA_BITS	16
307 
308 struct ro_aux_tree {
309 	u8			nothing[0];
310 	struct bkey_float	f[];
311 };
312 
313 struct rw_aux_tree {
314 	u16		offset;
315 	struct bpos	k;
316 };
317 
bset_aux_tree_buf_end(const struct bset_tree * t)318 static unsigned bset_aux_tree_buf_end(const struct bset_tree *t)
319 {
320 	BUG_ON(t->aux_data_offset == U16_MAX);
321 
322 	switch (bset_aux_tree_type(t)) {
323 	case BSET_NO_AUX_TREE:
324 		return t->aux_data_offset;
325 	case BSET_RO_AUX_TREE:
326 		return t->aux_data_offset +
327 			DIV_ROUND_UP(t->size * sizeof(struct bkey_float), 8);
328 	case BSET_RW_AUX_TREE:
329 		return t->aux_data_offset +
330 			DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8);
331 	default:
332 		BUG();
333 	}
334 }
335 
bset_aux_tree_buf_start(const struct btree * b,const struct bset_tree * t)336 static unsigned bset_aux_tree_buf_start(const struct btree *b,
337 					const struct bset_tree *t)
338 {
339 	return t == b->set
340 		? DIV_ROUND_UP(b->unpack_fn_len, 8)
341 		: bset_aux_tree_buf_end(t - 1);
342 }
343 
__aux_tree_base(const struct btree * b,const struct bset_tree * t)344 static void *__aux_tree_base(const struct btree *b,
345 			     const struct bset_tree *t)
346 {
347 	return b->aux_data + t->aux_data_offset * 8;
348 }
349 
ro_aux_tree_base(const struct btree * b,const struct bset_tree * t)350 static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b,
351 					    const struct bset_tree *t)
352 {
353 	EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE);
354 
355 	return __aux_tree_base(b, t);
356 }
357 
bkey_float(const struct btree * b,const struct bset_tree * t,unsigned idx)358 static struct bkey_float *bkey_float(const struct btree *b,
359 				     const struct bset_tree *t,
360 				     unsigned idx)
361 {
362 	return ro_aux_tree_base(b, t)->f + idx;
363 }
364 
__bset_aux_tree_verify(struct btree * b)365 static void __bset_aux_tree_verify(struct btree *b)
366 {
367 	for_each_bset(b, t) {
368 		if (t->aux_data_offset == U16_MAX)
369 			continue;
370 
371 		BUG_ON(t != b->set &&
372 		       t[-1].aux_data_offset == U16_MAX);
373 
374 		BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t));
375 		BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b));
376 		BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b));
377 	}
378 }
379 
bset_aux_tree_verify(struct btree * b)380 static inline void bset_aux_tree_verify(struct btree *b)
381 {
382 	if (static_branch_unlikely(&bch2_debug_check_bset_lookups))
383 		__bset_aux_tree_verify(b);
384 }
385 
bch2_btree_keys_init(struct btree * b)386 void bch2_btree_keys_init(struct btree *b)
387 {
388 	unsigned i;
389 
390 	b->nsets		= 0;
391 	memset(&b->nr, 0, sizeof(b->nr));
392 
393 	for (i = 0; i < MAX_BSETS; i++)
394 		b->set[i].data_offset = U16_MAX;
395 
396 	bch2_bset_set_no_aux_tree(b, b->set);
397 }
398 
399 /* Binary tree stuff for auxiliary search trees */
400 
401 /*
402  * Cacheline/offset <-> bkey pointer arithmetic:
403  *
404  * t->tree is a binary search tree in an array; each node corresponds to a key
405  * in one cacheline in t->set (BSET_CACHELINE bytes).
406  *
407  * This means we don't have to store the full index of the key that a node in
408  * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and
409  * then bkey_float->m gives us the offset within that cacheline, in units of 8
410  * bytes.
411  *
412  * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
413  * make this work.
414  *
415  * To construct the bfloat for an arbitrary key we need to know what the key
416  * immediately preceding it is: we have to check if the two keys differ in the
417  * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
418  * of the previous key so we can walk backwards to it from t->tree[j]'s key.
419  */
420 
bset_cacheline(const struct btree * b,const struct bset_tree * t,unsigned cacheline)421 static inline void *bset_cacheline(const struct btree *b,
422 				   const struct bset_tree *t,
423 				   unsigned cacheline)
424 {
425 	return (void *) round_down((unsigned long) btree_bkey_first(b, t),
426 				   L1_CACHE_BYTES) +
427 		cacheline * BSET_CACHELINE;
428 }
429 
cacheline_to_bkey(const struct btree * b,const struct bset_tree * t,unsigned cacheline,unsigned offset)430 static struct bkey_packed *cacheline_to_bkey(const struct btree *b,
431 					     const struct bset_tree *t,
432 					     unsigned cacheline,
433 					     unsigned offset)
434 {
435 	return bset_cacheline(b, t, cacheline) + offset * 8;
436 }
437 
bkey_to_cacheline(const struct btree * b,const struct bset_tree * t,const struct bkey_packed * k)438 static unsigned bkey_to_cacheline(const struct btree *b,
439 				  const struct bset_tree *t,
440 				  const struct bkey_packed *k)
441 {
442 	return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE;
443 }
444 
__bkey_to_cacheline_offset(const struct btree * b,const struct bset_tree * t,unsigned cacheline,const struct bkey_packed * k)445 static ssize_t __bkey_to_cacheline_offset(const struct btree *b,
446 					  const struct bset_tree *t,
447 					  unsigned cacheline,
448 					  const struct bkey_packed *k)
449 {
450 	return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline);
451 }
452 
bkey_to_cacheline_offset(const struct btree * b,const struct bset_tree * t,unsigned cacheline,const struct bkey_packed * k)453 static unsigned bkey_to_cacheline_offset(const struct btree *b,
454 					 const struct bset_tree *t,
455 					 unsigned cacheline,
456 					 const struct bkey_packed *k)
457 {
458 	size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k);
459 
460 	EBUG_ON(m > U8_MAX);
461 	return m;
462 }
463 
tree_to_bkey(const struct btree * b,const struct bset_tree * t,unsigned j)464 static inline struct bkey_packed *tree_to_bkey(const struct btree *b,
465 					       const struct bset_tree *t,
466 					       unsigned j)
467 {
468 	return cacheline_to_bkey(b, t,
469 			__eytzinger1_to_inorder(j, t->size - 1, t->extra),
470 			bkey_float(b, t, j)->key_offset);
471 }
472 
rw_aux_tree(const struct btree * b,const struct bset_tree * t)473 static struct rw_aux_tree *rw_aux_tree(const struct btree *b,
474 				       const struct bset_tree *t)
475 {
476 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
477 
478 	return __aux_tree_base(b, t);
479 }
480 
481 /*
482  * For the write set - the one we're currently inserting keys into - we don't
483  * maintain a full search tree, we just keep a simple lookup table in t->prev.
484  */
rw_aux_to_bkey(const struct btree * b,struct bset_tree * t,unsigned j)485 static struct bkey_packed *rw_aux_to_bkey(const struct btree *b,
486 					  struct bset_tree *t,
487 					  unsigned j)
488 {
489 	return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset);
490 }
491 
rw_aux_tree_set(const struct btree * b,struct bset_tree * t,unsigned j,struct bkey_packed * k)492 static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t,
493 			    unsigned j, struct bkey_packed *k)
494 {
495 	EBUG_ON(k >= btree_bkey_last(b, t));
496 
497 	rw_aux_tree(b, t)[j] = (struct rw_aux_tree) {
498 		.offset	= __btree_node_key_to_offset(b, k),
499 		.k	= bkey_unpack_pos(b, k),
500 	};
501 }
502 
__bch2_bset_verify_rw_aux_tree(struct btree * b,struct bset_tree * t)503 static void __bch2_bset_verify_rw_aux_tree(struct btree *b, struct bset_tree *t)
504 {
505 	struct bkey_packed *k = btree_bkey_first(b, t);
506 	unsigned j = 0;
507 
508 	BUG_ON(bset_has_ro_aux_tree(t));
509 
510 	if (!bset_has_rw_aux_tree(t))
511 		return;
512 
513 	BUG_ON(t->size < 1);
514 	BUG_ON(rw_aux_to_bkey(b, t, j) != k);
515 
516 	goto start;
517 	while (1) {
518 		if (rw_aux_to_bkey(b, t, j) == k) {
519 			BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k,
520 					bkey_unpack_pos(b, k)));
521 start:
522 			if (++j == t->size)
523 				break;
524 
525 			BUG_ON(rw_aux_tree(b, t)[j].offset <=
526 			       rw_aux_tree(b, t)[j - 1].offset);
527 		}
528 
529 		k = bkey_p_next(k);
530 		BUG_ON(k >= btree_bkey_last(b, t));
531 	}
532 }
533 
bch2_bset_verify_rw_aux_tree(struct btree * b,struct bset_tree * t)534 static inline void bch2_bset_verify_rw_aux_tree(struct btree *b,
535 						struct bset_tree *t)
536 {
537 	if (static_branch_unlikely(&bch2_debug_check_bset_lookups))
538 		__bch2_bset_verify_rw_aux_tree(b, t);
539 }
540 
541 /* returns idx of first entry >= offset: */
rw_aux_tree_bsearch(struct btree * b,struct bset_tree * t,unsigned offset)542 static unsigned rw_aux_tree_bsearch(struct btree *b,
543 				    struct bset_tree *t,
544 				    unsigned offset)
545 {
546 	unsigned bset_offs = offset - btree_bkey_first_offset(t);
547 	unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t);
548 	unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0;
549 
550 	EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE);
551 	EBUG_ON(!t->size);
552 	EBUG_ON(idx > t->size);
553 
554 	while (idx < t->size &&
555 	       rw_aux_tree(b, t)[idx].offset < offset)
556 		idx++;
557 
558 	while (idx &&
559 	       rw_aux_tree(b, t)[idx - 1].offset >= offset)
560 		idx--;
561 
562 	EBUG_ON(idx < t->size &&
563 		rw_aux_tree(b, t)[idx].offset < offset);
564 	EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset);
565 	EBUG_ON(idx + 1 < t->size &&
566 		rw_aux_tree(b, t)[idx].offset ==
567 		rw_aux_tree(b, t)[idx + 1].offset);
568 
569 	return idx;
570 }
571 
bkey_mantissa(const struct bkey_packed * k,const struct bkey_float * f)572 static inline unsigned bkey_mantissa(const struct bkey_packed *k,
573 				     const struct bkey_float *f)
574 {
575 	u64 v;
576 
577 	EBUG_ON(!bkey_packed(k));
578 
579 	v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3)));
580 
581 	/*
582 	 * In little endian, we're shifting off low bits (and then the bits we
583 	 * want are at the low end), in big endian we're shifting off high bits
584 	 * (and then the bits we want are at the high end, so we shift them
585 	 * back down):
586 	 */
587 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
588 	v >>= f->exponent & 7;
589 #else
590 	v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS;
591 #endif
592 	return (u16) v;
593 }
594 
make_bfloat(struct btree * b,struct bset_tree * t,unsigned j,struct bkey_packed * min_key,struct bkey_packed * max_key)595 static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t,
596 					unsigned j,
597 					struct bkey_packed *min_key,
598 					struct bkey_packed *max_key)
599 {
600 	struct bkey_float *f = bkey_float(b, t, j);
601 	struct bkey_packed *m = tree_to_bkey(b, t, j);
602 	struct bkey_packed *l = is_power_of_2(j)
603 		? min_key
604 		: tree_to_bkey(b, t, j >> ffs(j));
605 	struct bkey_packed *r = is_power_of_2(j + 1)
606 		? max_key
607 		: tree_to_bkey(b, t, j >> (ffz(j) + 1));
608 	unsigned mantissa;
609 	int shift, exponent, high_bit;
610 
611 	/*
612 	 * for failed bfloats, the lookup code falls back to comparing against
613 	 * the original key.
614 	 */
615 
616 	if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) ||
617 	    !b->nr_key_bits) {
618 		f->exponent = BFLOAT_FAILED_UNPACKED;
619 		return;
620 	}
621 
622 	/*
623 	 * The greatest differing bit of l and r is the first bit we must
624 	 * include in the bfloat mantissa we're creating in order to do
625 	 * comparisons - that bit always becomes the high bit of
626 	 * bfloat->mantissa, and thus the exponent we're calculating here is
627 	 * the position of what will become the low bit in bfloat->mantissa:
628 	 *
629 	 * Note that this may be negative - we may be running off the low end
630 	 * of the key: we handle this later:
631 	 */
632 	high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r),
633 		       min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1);
634 	exponent = high_bit - (BKEY_MANTISSA_BITS - 1);
635 
636 	/*
637 	 * Then we calculate the actual shift value, from the start of the key
638 	 * (k->_data), to get the key bits starting at exponent:
639 	 */
640 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
641 	shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent;
642 
643 	EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64);
644 #else
645 	shift = high_bit_offset +
646 		b->nr_key_bits -
647 		exponent -
648 		BKEY_MANTISSA_BITS;
649 
650 	EBUG_ON(shift < KEY_PACKED_BITS_START);
651 #endif
652 	EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED);
653 
654 	f->exponent = shift;
655 	mantissa = bkey_mantissa(m, f);
656 
657 	/*
658 	 * If we've got garbage bits, set them to all 1s - it's legal for the
659 	 * bfloat to compare larger than the original key, but not smaller:
660 	 */
661 	if (exponent < 0)
662 		mantissa |= ~(~0U << -exponent);
663 
664 	f->mantissa = mantissa;
665 }
666 
667 /* bytes remaining - only valid for last bset: */
__bset_tree_capacity(struct btree * b,const struct bset_tree * t)668 static unsigned __bset_tree_capacity(struct btree *b, const struct bset_tree *t)
669 {
670 	bset_aux_tree_verify(b);
671 
672 	return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64);
673 }
674 
bset_ro_tree_capacity(struct btree * b,const struct bset_tree * t)675 static unsigned bset_ro_tree_capacity(struct btree *b, const struct bset_tree *t)
676 {
677 	return __bset_tree_capacity(b, t) / sizeof(struct bkey_float);
678 }
679 
bset_rw_tree_capacity(struct btree * b,const struct bset_tree * t)680 static unsigned bset_rw_tree_capacity(struct btree *b, const struct bset_tree *t)
681 {
682 	return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree);
683 }
684 
__build_rw_aux_tree(struct btree * b,struct bset_tree * t)685 static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t)
686 {
687 	struct bkey_packed *k;
688 
689 	t->size = 1;
690 	t->extra = BSET_RW_AUX_TREE_VAL;
691 	rw_aux_tree(b, t)[0].offset =
692 		__btree_node_key_to_offset(b, btree_bkey_first(b, t));
693 
694 	bset_tree_for_each_key(b, t, k) {
695 		if (t->size == bset_rw_tree_capacity(b, t))
696 			break;
697 
698 		if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) >
699 		    L1_CACHE_BYTES)
700 			rw_aux_tree_set(b, t, t->size++, k);
701 	}
702 }
703 
__build_ro_aux_tree(struct btree * b,struct bset_tree * t)704 static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t)
705 {
706 	struct bkey_packed *k = btree_bkey_first(b, t);
707 	struct bkey_i min_key, max_key;
708 	unsigned cacheline = 1;
709 
710 	t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)),
711 		      bset_ro_tree_capacity(b, t));
712 retry:
713 	if (t->size < 2) {
714 		t->size = 0;
715 		t->extra = BSET_NO_AUX_TREE_VAL;
716 		return;
717 	}
718 
719 	t->extra = eytzinger1_extra(t->size - 1);
720 
721 	/* First we figure out where the first key in each cacheline is */
722 	eytzinger1_for_each(j, t->size - 1) {
723 		while (bkey_to_cacheline(b, t, k) < cacheline)
724 			k = bkey_p_next(k);
725 
726 		if (k >= btree_bkey_last(b, t)) {
727 			/* XXX: this path sucks */
728 			t->size--;
729 			goto retry;
730 		}
731 
732 		bkey_float(b, t, j)->key_offset =
733 			bkey_to_cacheline_offset(b, t, cacheline++, k);
734 
735 		EBUG_ON(tree_to_bkey(b, t, j) != k);
736 	}
737 
738 	if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) {
739 		bkey_init(&min_key.k);
740 		min_key.k.p = b->data->min_key;
741 	}
742 
743 	if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) {
744 		bkey_init(&max_key.k);
745 		max_key.k.p = b->data->max_key;
746 	}
747 
748 	/* Then we build the tree */
749 	eytzinger1_for_each(j, t->size - 1)
750 		make_bfloat(b, t, j,
751 			    bkey_to_packed(&min_key),
752 			    bkey_to_packed(&max_key));
753 }
754 
bset_alloc_tree(struct btree * b,struct bset_tree * t)755 static void bset_alloc_tree(struct btree *b, struct bset_tree *t)
756 {
757 	struct bset_tree *i;
758 
759 	for (i = b->set; i != t; i++)
760 		BUG_ON(bset_has_rw_aux_tree(i));
761 
762 	bch2_bset_set_no_aux_tree(b, t);
763 
764 	/* round up to next cacheline: */
765 	t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t),
766 				      SMP_CACHE_BYTES / sizeof(u64));
767 
768 	bset_aux_tree_verify(b);
769 }
770 
bch2_bset_build_aux_tree(struct btree * b,struct bset_tree * t,bool writeable)771 void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t,
772 			     bool writeable)
773 {
774 	if (writeable
775 	    ? bset_has_rw_aux_tree(t)
776 	    : bset_has_ro_aux_tree(t))
777 		return;
778 
779 	bset_alloc_tree(b, t);
780 
781 	if (!__bset_tree_capacity(b, t))
782 		return;
783 
784 	if (writeable)
785 		__build_rw_aux_tree(b, t);
786 	else
787 		__build_ro_aux_tree(b, t);
788 
789 	bset_aux_tree_verify(b);
790 }
791 
bch2_bset_init_first(struct btree * b,struct bset * i)792 void bch2_bset_init_first(struct btree *b, struct bset *i)
793 {
794 	struct bset_tree *t;
795 
796 	BUG_ON(b->nsets);
797 
798 	memset(i, 0, sizeof(*i));
799 	get_random_bytes(&i->seq, sizeof(i->seq));
800 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
801 
802 	t = &b->set[b->nsets++];
803 	set_btree_bset(b, t, i);
804 }
805 
bch2_bset_init_next(struct btree * b,struct btree_node_entry * bne)806 void bch2_bset_init_next(struct btree *b, struct btree_node_entry *bne)
807 {
808 	struct bset *i = &bne->keys;
809 	struct bset_tree *t;
810 
811 	BUG_ON(bset_byte_offset(b, bne) >= btree_buf_bytes(b));
812 	BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b)));
813 	BUG_ON(b->nsets >= MAX_BSETS);
814 
815 	memset(i, 0, sizeof(*i));
816 	i->seq = btree_bset_first(b)->seq;
817 	SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN);
818 
819 	t = &b->set[b->nsets++];
820 	set_btree_bset(b, t, i);
821 }
822 
823 /*
824  * find _some_ key in the same bset as @k that precedes @k - not necessarily the
825  * immediate predecessor:
826  */
__bkey_prev(struct btree * b,struct bset_tree * t,struct bkey_packed * k)827 static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t,
828 				       struct bkey_packed *k)
829 {
830 	struct bkey_packed *p;
831 	unsigned offset;
832 	int j;
833 
834 	EBUG_ON(k < btree_bkey_first(b, t) ||
835 		k > btree_bkey_last(b, t));
836 
837 	if (k == btree_bkey_first(b, t))
838 		return NULL;
839 
840 	switch (bset_aux_tree_type(t)) {
841 	case BSET_NO_AUX_TREE:
842 		p = btree_bkey_first(b, t);
843 		break;
844 	case BSET_RO_AUX_TREE:
845 		j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k));
846 
847 		do {
848 			p = j ? tree_to_bkey(b, t,
849 					__inorder_to_eytzinger1(j--,
850 							t->size - 1, t->extra))
851 			      : btree_bkey_first(b, t);
852 		} while (p >= k);
853 		break;
854 	case BSET_RW_AUX_TREE:
855 		offset = __btree_node_key_to_offset(b, k);
856 		j = rw_aux_tree_bsearch(b, t, offset);
857 		p = j ? rw_aux_to_bkey(b, t, j - 1)
858 		      : btree_bkey_first(b, t);
859 		break;
860 	}
861 
862 	return p;
863 }
864 
bch2_bkey_prev_filter(struct btree * b,struct bset_tree * t,struct bkey_packed * k,unsigned min_key_type)865 struct bkey_packed *bch2_bkey_prev_filter(struct btree *b,
866 					  struct bset_tree *t,
867 					  struct bkey_packed *k,
868 					  unsigned min_key_type)
869 {
870 	struct bkey_packed *p, *i, *ret = NULL, *orig_k = k;
871 
872 	while ((p = __bkey_prev(b, t, k)) && !ret) {
873 		for (i = p; i != k; i = bkey_p_next(i))
874 			if (i->type >= min_key_type)
875 				ret = i;
876 
877 		k = p;
878 	}
879 
880 	if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) {
881 		BUG_ON(ret >= orig_k);
882 
883 		for (i = ret
884 			? bkey_p_next(ret)
885 			: btree_bkey_first(b, t);
886 		     i != orig_k;
887 		     i = bkey_p_next(i))
888 			BUG_ON(i->type >= min_key_type);
889 	}
890 
891 	return ret;
892 }
893 
894 /* Insert */
895 
rw_aux_tree_insert_entry(struct btree * b,struct bset_tree * t,unsigned idx)896 static void rw_aux_tree_insert_entry(struct btree *b,
897 				     struct bset_tree *t,
898 				     unsigned idx)
899 {
900 	EBUG_ON(!idx || idx > t->size);
901 	struct bkey_packed *start = rw_aux_to_bkey(b, t, idx - 1);
902 	struct bkey_packed *end = idx < t->size
903 				  ? rw_aux_to_bkey(b, t, idx)
904 				  : btree_bkey_last(b, t);
905 
906 	if (t->size < bset_rw_tree_capacity(b, t) &&
907 	    (void *) end - (void *) start > L1_CACHE_BYTES) {
908 		struct bkey_packed *k = start;
909 
910 		while (1) {
911 			k = bkey_p_next(k);
912 			if (k == end)
913 				break;
914 
915 			if ((void *) k - (void *) start >= L1_CACHE_BYTES) {
916 				memmove(&rw_aux_tree(b, t)[idx + 1],
917 					&rw_aux_tree(b, t)[idx],
918 					(void *) &rw_aux_tree(b, t)[t->size] -
919 					(void *) &rw_aux_tree(b, t)[idx]);
920 				t->size++;
921 				rw_aux_tree_set(b, t, idx, k);
922 				break;
923 			}
924 		}
925 	}
926 }
927 
bch2_bset_fix_lookup_table(struct btree * b,struct bset_tree * t,struct bkey_packed * _where,unsigned clobber_u64s,unsigned new_u64s)928 static void bch2_bset_fix_lookup_table(struct btree *b,
929 				       struct bset_tree *t,
930 				       struct bkey_packed *_where,
931 				       unsigned clobber_u64s,
932 				       unsigned new_u64s)
933 {
934 	int shift = new_u64s - clobber_u64s;
935 	unsigned idx, j, where = __btree_node_key_to_offset(b, _where);
936 
937 	EBUG_ON(bset_has_ro_aux_tree(t));
938 
939 	if (!bset_has_rw_aux_tree(t))
940 		return;
941 
942 	if (where > rw_aux_tree(b, t)[t->size - 1].offset) {
943 		rw_aux_tree_insert_entry(b, t, t->size);
944 		goto verify;
945 	}
946 
947 	/* returns first entry >= where */
948 	idx = rw_aux_tree_bsearch(b, t, where);
949 
950 	if (rw_aux_tree(b, t)[idx].offset == where) {
951 		if (!idx) { /* never delete first entry */
952 			idx++;
953 		} else if (where < t->end_offset) {
954 			rw_aux_tree_set(b, t, idx++, _where);
955 		} else {
956 			EBUG_ON(where != t->end_offset);
957 			rw_aux_tree_insert_entry(b, t, --t->size);
958 			goto verify;
959 		}
960 	}
961 
962 	EBUG_ON(idx < t->size && rw_aux_tree(b, t)[idx].offset <= where);
963 	if (idx < t->size &&
964 	    rw_aux_tree(b, t)[idx].offset + shift ==
965 	    rw_aux_tree(b, t)[idx - 1].offset) {
966 		memmove(&rw_aux_tree(b, t)[idx],
967 			&rw_aux_tree(b, t)[idx + 1],
968 			(void *) &rw_aux_tree(b, t)[t->size] -
969 			(void *) &rw_aux_tree(b, t)[idx + 1]);
970 		t->size -= 1;
971 	}
972 
973 	for (j = idx; j < t->size; j++)
974 		rw_aux_tree(b, t)[j].offset += shift;
975 
976 	EBUG_ON(idx < t->size &&
977 		rw_aux_tree(b, t)[idx].offset ==
978 		rw_aux_tree(b, t)[idx - 1].offset);
979 
980 	rw_aux_tree_insert_entry(b, t, idx);
981 
982 verify:
983 	bch2_bset_verify_rw_aux_tree(b, t);
984 	bset_aux_tree_verify(b);
985 }
986 
bch2_bset_insert(struct btree * b,struct bkey_packed * where,struct bkey_i * insert,unsigned clobber_u64s)987 void bch2_bset_insert(struct btree *b,
988 		      struct bkey_packed *where,
989 		      struct bkey_i *insert,
990 		      unsigned clobber_u64s)
991 {
992 	struct bkey_format *f = &b->format;
993 	struct bset_tree *t = bset_tree_last(b);
994 	struct bkey_packed packed, *src = bkey_to_packed(insert);
995 
996 	bch2_bset_verify_rw_aux_tree(b, t);
997 	bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s);
998 
999 	if (bch2_bkey_pack_key(&packed, &insert->k, f))
1000 		src = &packed;
1001 
1002 	if (!bkey_deleted(&insert->k))
1003 		btree_keys_account_key_add(&b->nr, t - b->set, src);
1004 
1005 	if (src->u64s != clobber_u64s) {
1006 		u64 *src_p = (u64 *) where->_data + clobber_u64s;
1007 		u64 *dst_p = (u64 *) where->_data + src->u64s;
1008 
1009 		EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) <
1010 			(int) clobber_u64s - src->u64s);
1011 
1012 		memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1013 		le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s);
1014 		set_btree_bset_end(b, t);
1015 	}
1016 
1017 	memcpy_u64s_small(where, src,
1018 		    bkeyp_key_u64s(f, src));
1019 	memcpy_u64s(bkeyp_val(f, where), &insert->v,
1020 		    bkeyp_val_u64s(f, src));
1021 
1022 	if (src->u64s != clobber_u64s)
1023 		bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s);
1024 
1025 	bch2_verify_btree_nr_keys(b);
1026 }
1027 
bch2_bset_delete(struct btree * b,struct bkey_packed * where,unsigned clobber_u64s)1028 void bch2_bset_delete(struct btree *b,
1029 		      struct bkey_packed *where,
1030 		      unsigned clobber_u64s)
1031 {
1032 	struct bset_tree *t = bset_tree_last(b);
1033 	u64 *src_p = (u64 *) where->_data + clobber_u64s;
1034 	u64 *dst_p = where->_data;
1035 
1036 	bch2_bset_verify_rw_aux_tree(b, t);
1037 
1038 	EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s);
1039 
1040 	memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p);
1041 	le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s);
1042 	set_btree_bset_end(b, t);
1043 
1044 	bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0);
1045 }
1046 
1047 /* Lookup */
1048 
1049 __flatten
bset_search_write_set(const struct btree * b,struct bset_tree * t,struct bpos * search)1050 static struct bkey_packed *bset_search_write_set(const struct btree *b,
1051 				struct bset_tree *t,
1052 				struct bpos *search)
1053 {
1054 	unsigned l = 0, r = t->size;
1055 
1056 	while (l + 1 != r) {
1057 		unsigned m = (l + r) >> 1;
1058 
1059 		if (bpos_lt(rw_aux_tree(b, t)[m].k, *search))
1060 			l = m;
1061 		else
1062 			r = m;
1063 	}
1064 
1065 	return rw_aux_to_bkey(b, t, l);
1066 }
1067 
prefetch_four_cachelines(void * p)1068 static inline void prefetch_four_cachelines(void *p)
1069 {
1070 #ifdef CONFIG_X86_64
1071 	asm("prefetcht0 (-127 + 64 * 0)(%0);"
1072 	    "prefetcht0 (-127 + 64 * 1)(%0);"
1073 	    "prefetcht0 (-127 + 64 * 2)(%0);"
1074 	    "prefetcht0 (-127 + 64 * 3)(%0);"
1075 	    :
1076 	    : "r" (p + 127));
1077 #else
1078 	prefetch(p + L1_CACHE_BYTES * 0);
1079 	prefetch(p + L1_CACHE_BYTES * 1);
1080 	prefetch(p + L1_CACHE_BYTES * 2);
1081 	prefetch(p + L1_CACHE_BYTES * 3);
1082 #endif
1083 }
1084 
bkey_mantissa_bits_dropped(const struct btree * b,const struct bkey_float * f)1085 static inline bool bkey_mantissa_bits_dropped(const struct btree *b,
1086 					      const struct bkey_float *f)
1087 {
1088 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1089 	unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits;
1090 
1091 	return f->exponent > key_bits_start;
1092 #else
1093 	unsigned key_bits_end = high_bit_offset + b->nr_key_bits;
1094 
1095 	return f->exponent + BKEY_MANTISSA_BITS < key_bits_end;
1096 #endif
1097 }
1098 
1099 __flatten
bset_search_tree(const struct btree * b,const struct bset_tree * t,const struct bpos * search,const struct bkey_packed * packed_search)1100 static struct bkey_packed *bset_search_tree(const struct btree *b,
1101 				const struct bset_tree *t,
1102 				const struct bpos *search,
1103 				const struct bkey_packed *packed_search)
1104 {
1105 	struct ro_aux_tree *base = ro_aux_tree_base(b, t);
1106 	struct bkey_float *f;
1107 	struct bkey_packed *k;
1108 	unsigned inorder, n = 1, l, r;
1109 	int cmp;
1110 
1111 	do {
1112 		if (likely(n << 4 < t->size))
1113 			prefetch(&base->f[n << 4]);
1114 
1115 		f = &base->f[n];
1116 		if (unlikely(f->exponent >= BFLOAT_FAILED))
1117 			goto slowpath;
1118 
1119 		l = f->mantissa;
1120 		r = bkey_mantissa(packed_search, f);
1121 
1122 		if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f))
1123 			goto slowpath;
1124 
1125 		n = n * 2 + (l < r);
1126 		continue;
1127 slowpath:
1128 		k = tree_to_bkey(b, t, n);
1129 		cmp = bkey_cmp_p_or_unp(b, k, packed_search, search);
1130 		if (!cmp)
1131 			return k;
1132 
1133 		n = n * 2 + (cmp < 0);
1134 	} while (n < t->size);
1135 
1136 	inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra);
1137 
1138 	/*
1139 	 * n would have been the node we recursed to - the low bit tells us if
1140 	 * we recursed left or recursed right.
1141 	 */
1142 	if (likely(!(n & 1))) {
1143 		--inorder;
1144 		if (unlikely(!inorder))
1145 			return btree_bkey_first(b, t);
1146 
1147 		f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)];
1148 	}
1149 
1150 	return cacheline_to_bkey(b, t, inorder, f->key_offset);
1151 }
1152 
1153 static __always_inline __flatten
__bch2_bset_search(struct btree * b,struct bset_tree * t,struct bpos * search,const struct bkey_packed * lossy_packed_search)1154 struct bkey_packed *__bch2_bset_search(struct btree *b,
1155 				struct bset_tree *t,
1156 				struct bpos *search,
1157 				const struct bkey_packed *lossy_packed_search)
1158 {
1159 
1160 	/*
1161 	 * First, we search for a cacheline, then lastly we do a linear search
1162 	 * within that cacheline.
1163 	 *
1164 	 * To search for the cacheline, there's three different possibilities:
1165 	 *  * The set is too small to have a search tree, so we just do a linear
1166 	 *    search over the whole set.
1167 	 *  * The set is the one we're currently inserting into; keeping a full
1168 	 *    auxiliary search tree up to date would be too expensive, so we
1169 	 *    use a much simpler lookup table to do a binary search -
1170 	 *    bset_search_write_set().
1171 	 *  * Or we use the auxiliary search tree we constructed earlier -
1172 	 *    bset_search_tree()
1173 	 */
1174 
1175 	switch (bset_aux_tree_type(t)) {
1176 	case BSET_NO_AUX_TREE:
1177 		return btree_bkey_first(b, t);
1178 	case BSET_RW_AUX_TREE:
1179 		return bset_search_write_set(b, t, search);
1180 	case BSET_RO_AUX_TREE:
1181 		return bset_search_tree(b, t, search, lossy_packed_search);
1182 	default:
1183 		BUG();
1184 	}
1185 }
1186 
1187 static __always_inline __flatten
bch2_bset_search_linear(struct btree * b,struct bset_tree * t,struct bpos * search,struct bkey_packed * packed_search,const struct bkey_packed * lossy_packed_search,struct bkey_packed * m)1188 struct bkey_packed *bch2_bset_search_linear(struct btree *b,
1189 				struct bset_tree *t,
1190 				struct bpos *search,
1191 				struct bkey_packed *packed_search,
1192 				const struct bkey_packed *lossy_packed_search,
1193 				struct bkey_packed *m)
1194 {
1195 	if (lossy_packed_search)
1196 		while (m != btree_bkey_last(b, t) &&
1197 		       bkey_iter_cmp_p_or_unp(b, m,
1198 					lossy_packed_search, search) < 0)
1199 			m = bkey_p_next(m);
1200 
1201 	if (!packed_search)
1202 		while (m != btree_bkey_last(b, t) &&
1203 		       bkey_iter_pos_cmp(b, m, search) < 0)
1204 			m = bkey_p_next(m);
1205 
1206 	if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) {
1207 		struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m);
1208 
1209 		BUG_ON(prev &&
1210 		       bkey_iter_cmp_p_or_unp(b, prev,
1211 					packed_search, search) >= 0);
1212 	}
1213 
1214 	return m;
1215 }
1216 
1217 /* Btree node iterator */
1218 
__bch2_btree_node_iter_push(struct btree_node_iter * iter,struct btree * b,const struct bkey_packed * k,const struct bkey_packed * end)1219 static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter,
1220 			      struct btree *b,
1221 			      const struct bkey_packed *k,
1222 			      const struct bkey_packed *end)
1223 {
1224 	if (k != end) {
1225 		struct btree_node_iter_set *pos;
1226 
1227 		btree_node_iter_for_each(iter, pos)
1228 			;
1229 
1230 		BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data));
1231 		*pos = (struct btree_node_iter_set) {
1232 			__btree_node_key_to_offset(b, k),
1233 			__btree_node_key_to_offset(b, end)
1234 		};
1235 	}
1236 }
1237 
bch2_btree_node_iter_push(struct btree_node_iter * iter,struct btree * b,const struct bkey_packed * k,const struct bkey_packed * end)1238 void bch2_btree_node_iter_push(struct btree_node_iter *iter,
1239 			       struct btree *b,
1240 			       const struct bkey_packed *k,
1241 			       const struct bkey_packed *end)
1242 {
1243 	__bch2_btree_node_iter_push(iter, b, k, end);
1244 	bch2_btree_node_iter_sort(iter, b);
1245 }
1246 
1247 noinline __flatten __cold
btree_node_iter_init_pack_failed(struct btree_node_iter * iter,struct btree * b,struct bpos * search)1248 static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter,
1249 			      struct btree *b, struct bpos *search)
1250 {
1251 	struct bkey_packed *k;
1252 
1253 	trace_bkey_pack_pos_fail(search);
1254 
1255 	bch2_btree_node_iter_init_from_start(iter, b);
1256 
1257 	while ((k = bch2_btree_node_iter_peek(iter, b)) &&
1258 	       bkey_iter_pos_cmp(b, k, search) < 0)
1259 		bch2_btree_node_iter_advance(iter, b);
1260 }
1261 
1262 /**
1263  * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a
1264  * given position
1265  *
1266  * @iter:	iterator to initialize
1267  * @b:		btree node to search
1268  * @search:	search key
1269  *
1270  * Main entry point to the lookup code for individual btree nodes:
1271  *
1272  * NOTE:
1273  *
1274  * When you don't filter out deleted keys, btree nodes _do_ contain duplicate
1275  * keys. This doesn't matter for most code, but it does matter for lookups.
1276  *
1277  * Some adjacent keys with a string of equal keys:
1278  *	i j k k k k l m
1279  *
1280  * If you search for k, the lookup code isn't guaranteed to return you any
1281  * specific k. The lookup code is conceptually doing a binary search and
1282  * iterating backwards is very expensive so if the pivot happens to land at the
1283  * last k that's what you'll get.
1284  *
1285  * This works out ok, but it's something to be aware of:
1286  *
1287  *  - For non extents, we guarantee that the live key comes last - see
1288  *    btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't
1289  *    see will only be deleted keys you don't care about.
1290  *
1291  *  - For extents, deleted keys sort last (see the comment at the top of this
1292  *    file). But when you're searching for extents, you actually want the first
1293  *    key strictly greater than your search key - an extent that compares equal
1294  *    to the search key is going to have 0 sectors after the search key.
1295  *
1296  *    But this does mean that we can't just search for
1297  *    bpos_successor(start_of_range) to get the first extent that overlaps with
1298  *    the range we want - if we're unlucky and there's an extent that ends
1299  *    exactly where we searched, then there could be a deleted key at the same
1300  *    position and we'd get that when we search instead of the preceding extent
1301  *    we needed.
1302  *
1303  *    So we've got to search for start_of_range, then after the lookup iterate
1304  *    past any extents that compare equal to the position we searched for.
1305  */
1306 __flatten
bch2_btree_node_iter_init(struct btree_node_iter * iter,struct btree * b,struct bpos * search)1307 void bch2_btree_node_iter_init(struct btree_node_iter *iter,
1308 			       struct btree *b, struct bpos *search)
1309 {
1310 	struct bkey_packed p, *packed_search = NULL;
1311 	struct btree_node_iter_set *pos = iter->data;
1312 	struct bkey_packed *k[MAX_BSETS];
1313 	unsigned i;
1314 
1315 	EBUG_ON(bpos_lt(*search, b->data->min_key));
1316 	EBUG_ON(bpos_gt(*search, b->data->max_key));
1317 	bset_aux_tree_verify(b);
1318 
1319 	memset(iter, 0, sizeof(*iter));
1320 
1321 	switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) {
1322 	case BKEY_PACK_POS_EXACT:
1323 		packed_search = &p;
1324 		break;
1325 	case BKEY_PACK_POS_SMALLER:
1326 		packed_search = NULL;
1327 		break;
1328 	case BKEY_PACK_POS_FAIL:
1329 		btree_node_iter_init_pack_failed(iter, b, search);
1330 		return;
1331 	}
1332 
1333 	for (i = 0; i < b->nsets; i++) {
1334 		k[i] = __bch2_bset_search(b, b->set + i, search, &p);
1335 		prefetch_four_cachelines(k[i]);
1336 	}
1337 
1338 	for (i = 0; i < b->nsets; i++) {
1339 		struct bset_tree *t = b->set + i;
1340 		struct bkey_packed *end = btree_bkey_last(b, t);
1341 
1342 		k[i] = bch2_bset_search_linear(b, t, search,
1343 					       packed_search, &p, k[i]);
1344 		if (k[i] != end)
1345 			*pos++ = (struct btree_node_iter_set) {
1346 				__btree_node_key_to_offset(b, k[i]),
1347 				__btree_node_key_to_offset(b, end)
1348 			};
1349 	}
1350 
1351 	bch2_btree_node_iter_sort(iter, b);
1352 }
1353 
bch2_btree_node_iter_init_from_start(struct btree_node_iter * iter,struct btree * b)1354 void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter,
1355 					  struct btree *b)
1356 {
1357 	memset(iter, 0, sizeof(*iter));
1358 
1359 	for_each_bset(b, t)
1360 		__bch2_btree_node_iter_push(iter, b,
1361 					   btree_bkey_first(b, t),
1362 					   btree_bkey_last(b, t));
1363 	bch2_btree_node_iter_sort(iter, b);
1364 }
1365 
bch2_btree_node_iter_bset_pos(struct btree_node_iter * iter,struct btree * b,struct bset_tree * t)1366 struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter,
1367 						  struct btree *b,
1368 						  struct bset_tree *t)
1369 {
1370 	struct btree_node_iter_set *set;
1371 
1372 	btree_node_iter_for_each(iter, set)
1373 		if (set->end == t->end_offset)
1374 			return __btree_node_offset_to_key(b, set->k);
1375 
1376 	return btree_bkey_last(b, t);
1377 }
1378 
btree_node_iter_sort_two(struct btree_node_iter * iter,struct btree * b,unsigned first)1379 static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter,
1380 					    struct btree *b,
1381 					    unsigned first)
1382 {
1383 	bool ret;
1384 
1385 	if ((ret = (btree_node_iter_cmp(b,
1386 					iter->data[first],
1387 					iter->data[first + 1]) > 0)))
1388 		swap(iter->data[first], iter->data[first + 1]);
1389 	return ret;
1390 }
1391 
bch2_btree_node_iter_sort(struct btree_node_iter * iter,struct btree * b)1392 void bch2_btree_node_iter_sort(struct btree_node_iter *iter,
1393 			       struct btree *b)
1394 {
1395 	/* unrolled bubble sort: */
1396 
1397 	if (!__btree_node_iter_set_end(iter, 2)) {
1398 		btree_node_iter_sort_two(iter, b, 0);
1399 		btree_node_iter_sort_two(iter, b, 1);
1400 	}
1401 
1402 	if (!__btree_node_iter_set_end(iter, 1))
1403 		btree_node_iter_sort_two(iter, b, 0);
1404 }
1405 
bch2_btree_node_iter_set_drop(struct btree_node_iter * iter,struct btree_node_iter_set * set)1406 void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter,
1407 				   struct btree_node_iter_set *set)
1408 {
1409 	struct btree_node_iter_set *last =
1410 		iter->data + ARRAY_SIZE(iter->data) - 1;
1411 
1412 	memmove(&set[0], &set[1], (void *) last - (void *) set);
1413 	*last = (struct btree_node_iter_set) { 0, 0 };
1414 }
1415 
__bch2_btree_node_iter_advance(struct btree_node_iter * iter,struct btree * b)1416 static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1417 						  struct btree *b)
1418 {
1419 	iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s;
1420 
1421 	EBUG_ON(iter->data->k > iter->data->end);
1422 
1423 	if (unlikely(__btree_node_iter_set_end(iter, 0))) {
1424 		/* avoid an expensive memmove call: */
1425 		iter->data[0] = iter->data[1];
1426 		iter->data[1] = iter->data[2];
1427 		iter->data[2] = (struct btree_node_iter_set) { 0, 0 };
1428 		return;
1429 	}
1430 
1431 	if (__btree_node_iter_set_end(iter, 1))
1432 		return;
1433 
1434 	if (!btree_node_iter_sort_two(iter, b, 0))
1435 		return;
1436 
1437 	if (__btree_node_iter_set_end(iter, 2))
1438 		return;
1439 
1440 	btree_node_iter_sort_two(iter, b, 1);
1441 }
1442 
bch2_btree_node_iter_advance(struct btree_node_iter * iter,struct btree * b)1443 void bch2_btree_node_iter_advance(struct btree_node_iter *iter,
1444 				  struct btree *b)
1445 {
1446 	if (static_branch_unlikely(&bch2_debug_check_bset_lookups)) {
1447 		__bch2_btree_node_iter_verify(iter, b);
1448 		__bch2_btree_node_iter_next_check(iter, b);
1449 	}
1450 
1451 	__bch2_btree_node_iter_advance(iter, b);
1452 }
1453 
1454 /*
1455  * Expensive:
1456  */
bch2_btree_node_iter_prev_all(struct btree_node_iter * iter,struct btree * b)1457 struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter,
1458 						  struct btree *b)
1459 {
1460 	struct bkey_packed *k, *prev = NULL;
1461 	struct btree_node_iter_set *set;
1462 	unsigned end = 0;
1463 
1464 	bch2_btree_node_iter_verify(iter, b);
1465 
1466 	for_each_bset(b, t) {
1467 		k = bch2_bkey_prev_all(b, t,
1468 			bch2_btree_node_iter_bset_pos(iter, b, t));
1469 		if (k &&
1470 		    (!prev || bkey_iter_cmp(b, k, prev) > 0)) {
1471 			prev = k;
1472 			end = t->end_offset;
1473 		}
1474 	}
1475 
1476 	if (!prev)
1477 		return NULL;
1478 
1479 	/*
1480 	 * We're manually memmoving instead of just calling sort() to ensure the
1481 	 * prev we picked ends up in slot 0 - sort won't necessarily put it
1482 	 * there because of duplicate deleted keys:
1483 	 */
1484 	btree_node_iter_for_each(iter, set)
1485 		if (set->end == end)
1486 			goto found;
1487 
1488 	BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]);
1489 found:
1490 	BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data));
1491 
1492 	memmove(&iter->data[1],
1493 		&iter->data[0],
1494 		(void *) set - (void *) &iter->data[0]);
1495 
1496 	iter->data[0].k = __btree_node_key_to_offset(b, prev);
1497 	iter->data[0].end = end;
1498 
1499 	bch2_btree_node_iter_verify(iter, b);
1500 	return prev;
1501 }
1502 
bch2_btree_node_iter_prev(struct btree_node_iter * iter,struct btree * b)1503 struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter,
1504 					      struct btree *b)
1505 {
1506 	struct bkey_packed *prev;
1507 
1508 	do {
1509 		prev = bch2_btree_node_iter_prev_all(iter, b);
1510 	} while (prev && bkey_deleted(prev));
1511 
1512 	return prev;
1513 }
1514 
bch2_btree_node_iter_peek_unpack(struct btree_node_iter * iter,struct btree * b,struct bkey * u)1515 struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter,
1516 						 struct btree *b,
1517 						 struct bkey *u)
1518 {
1519 	struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b);
1520 
1521 	return k ? bkey_disassemble(b, k, u) : bkey_s_c_null;
1522 }
1523 
1524 /* Mergesort */
1525 
bch2_btree_keys_stats(const struct btree * b,struct bset_stats * stats)1526 void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats)
1527 {
1528 	for_each_bset_c(b, t) {
1529 		enum bset_aux_tree_type type = bset_aux_tree_type(t);
1530 		size_t j;
1531 
1532 		stats->sets[type].nr++;
1533 		stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) *
1534 			sizeof(u64);
1535 
1536 		if (bset_has_ro_aux_tree(t)) {
1537 			stats->floats += t->size - 1;
1538 
1539 			for (j = 1; j < t->size; j++)
1540 				stats->failed +=
1541 					bkey_float(b, t, j)->exponent ==
1542 					BFLOAT_FAILED;
1543 		}
1544 	}
1545 }
1546 
bch2_bfloat_to_text(struct printbuf * out,struct btree * b,struct bkey_packed * k)1547 void bch2_bfloat_to_text(struct printbuf *out, struct btree *b,
1548 			 struct bkey_packed *k)
1549 {
1550 	struct bset_tree *t = bch2_bkey_to_bset(b, k);
1551 	struct bkey uk;
1552 	unsigned j, inorder;
1553 
1554 	if (!bset_has_ro_aux_tree(t))
1555 		return;
1556 
1557 	inorder = bkey_to_cacheline(b, t, k);
1558 	if (!inorder || inorder >= t->size)
1559 		return;
1560 
1561 	j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra);
1562 	if (k != tree_to_bkey(b, t, j))
1563 		return;
1564 
1565 	switch (bkey_float(b, t, j)->exponent) {
1566 	case BFLOAT_FAILED:
1567 		uk = bkey_unpack_key(b, k);
1568 		prt_printf(out,
1569 		       "    failed unpacked at depth %u\n"
1570 		       "\t",
1571 		       ilog2(j));
1572 		bch2_bpos_to_text(out, uk.p);
1573 		prt_printf(out, "\n");
1574 		break;
1575 	}
1576 }
1577