xref: /qemu/target/avr/cpu.c (revision 3072961b6edc99abfbd87caac3de29bb58a52ccf)
1 /*
2  * QEMU AVR CPU
3  *
4  * Copyright (c) 2019-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu/qemu-print.h"
24 #include "exec/translation-block.h"
25 #include "system/address-spaces.h"
26 #include "cpu.h"
27 #include "disas/dis-asm.h"
28 #include "tcg/debug-assert.h"
29 #include "hw/qdev-properties.h"
30 #include "accel/tcg/cpu-ops.h"
31 
avr_cpu_set_pc(CPUState * cs,vaddr value)32 static void avr_cpu_set_pc(CPUState *cs, vaddr value)
33 {
34     AVRCPU *cpu = AVR_CPU(cs);
35 
36     cpu->env.pc_w = value / 2; /* internally PC points to words */
37 }
38 
avr_cpu_get_pc(CPUState * cs)39 static vaddr avr_cpu_get_pc(CPUState *cs)
40 {
41     AVRCPU *cpu = AVR_CPU(cs);
42 
43     return cpu->env.pc_w * 2;
44 }
45 
avr_cpu_has_work(CPUState * cs)46 static bool avr_cpu_has_work(CPUState *cs)
47 {
48     return (cs->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_RESET))
49             && cpu_interrupts_enabled(cpu_env(cs));
50 }
51 
avr_cpu_mmu_index(CPUState * cs,bool ifetch)52 static int avr_cpu_mmu_index(CPUState *cs, bool ifetch)
53 {
54     return ifetch ? MMU_CODE_IDX : MMU_DATA_IDX;
55 }
56 
avr_get_tb_cpu_state(CPUState * cs)57 static TCGTBCPUState avr_get_tb_cpu_state(CPUState *cs)
58 {
59     CPUAVRState *env = cpu_env(cs);
60     uint32_t flags = 0;
61 
62     if (env->fullacc) {
63         flags |= TB_FLAGS_FULL_ACCESS;
64     }
65     if (env->skip) {
66         flags |= TB_FLAGS_SKIP;
67     }
68 
69     return (TCGTBCPUState){ .pc = env->pc_w * 2, .flags = flags };
70 }
71 
avr_cpu_synchronize_from_tb(CPUState * cs,const TranslationBlock * tb)72 static void avr_cpu_synchronize_from_tb(CPUState *cs,
73                                         const TranslationBlock *tb)
74 {
75     tcg_debug_assert(!tcg_cflags_has(cs, CF_PCREL));
76     cpu_env(cs)->pc_w = tb->pc / 2; /* internally PC points to words */
77 }
78 
avr_restore_state_to_opc(CPUState * cs,const TranslationBlock * tb,const uint64_t * data)79 static void avr_restore_state_to_opc(CPUState *cs,
80                                      const TranslationBlock *tb,
81                                      const uint64_t *data)
82 {
83     cpu_env(cs)->pc_w = data[0];
84 }
85 
avr_cpu_reset_hold(Object * obj,ResetType type)86 static void avr_cpu_reset_hold(Object *obj, ResetType type)
87 {
88     CPUState *cs = CPU(obj);
89     AVRCPU *cpu = AVR_CPU(cs);
90     AVRCPUClass *mcc = AVR_CPU_GET_CLASS(obj);
91     CPUAVRState *env = &cpu->env;
92 
93     if (mcc->parent_phases.hold) {
94         mcc->parent_phases.hold(obj, type);
95     }
96 
97     env->pc_w = 0;
98     env->sregI = 1;
99     env->sregC = 0;
100     env->sregZ = 0;
101     env->sregN = 0;
102     env->sregV = 0;
103     env->sregS = 0;
104     env->sregH = 0;
105     env->sregT = 0;
106 
107     env->rampD = 0;
108     env->rampX = 0;
109     env->rampY = 0;
110     env->rampZ = 0;
111     env->eind = 0;
112     env->sp = cpu->init_sp;
113 
114     env->skip = 0;
115 
116     memset(env->r, 0, sizeof(env->r));
117 }
118 
avr_cpu_disas_set_info(CPUState * cpu,disassemble_info * info)119 static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
120 {
121     info->endian = BFD_ENDIAN_LITTLE;
122     info->mach = bfd_arch_avr;
123     info->print_insn = avr_print_insn;
124 }
125 
avr_cpu_realizefn(DeviceState * dev,Error ** errp)126 static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
127 {
128     CPUState *cs = CPU(dev);
129     CPUAVRState *env = cpu_env(cs);
130     AVRCPU *cpu = env_archcpu(env);
131     AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev);
132     Error *local_err = NULL;
133 
134     cpu_exec_realizefn(cs, &local_err);
135     if (local_err != NULL) {
136         error_propagate(errp, local_err);
137         return;
138     }
139     qemu_init_vcpu(cs);
140     cpu_reset(cs);
141 
142     mcc->parent_realize(dev, errp);
143 
144     /*
145      * Two blocks in the low data space loop back into cpu registers.
146      */
147     memory_region_init_io(&cpu->cpu_reg1, OBJECT(cpu), &avr_cpu_reg1, env,
148                           "avr-cpu-reg1", 32);
149     memory_region_add_subregion(get_system_memory(),
150                                 OFFSET_DATA, &cpu->cpu_reg1);
151 
152     memory_region_init_io(&cpu->cpu_reg2, OBJECT(cpu), &avr_cpu_reg2, env,
153                           "avr-cpu-reg2", 8);
154     memory_region_add_subregion(get_system_memory(),
155                                 OFFSET_DATA + 0x58, &cpu->cpu_reg2);
156 }
157 
avr_cpu_set_int(void * opaque,int irq,int level)158 static void avr_cpu_set_int(void *opaque, int irq, int level)
159 {
160     AVRCPU *cpu = opaque;
161     CPUAVRState *env = &cpu->env;
162     CPUState *cs = CPU(cpu);
163     uint64_t mask = (1ull << irq);
164 
165     if (level) {
166         env->intsrc |= mask;
167         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
168     } else {
169         env->intsrc &= ~mask;
170         if (env->intsrc == 0) {
171             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
172         }
173     }
174 }
175 
avr_cpu_initfn(Object * obj)176 static void avr_cpu_initfn(Object *obj)
177 {
178     AVRCPU *cpu = AVR_CPU(obj);
179 
180     /* Set the number of interrupts supported by the CPU. */
181     qdev_init_gpio_in(DEVICE(cpu), avr_cpu_set_int,
182                       sizeof(cpu->env.intsrc) * 8);
183 }
184 
185 static const Property avr_cpu_properties[] = {
186     DEFINE_PROP_UINT32("init-sp", AVRCPU, init_sp, 0),
187 };
188 
avr_cpu_class_by_name(const char * cpu_model)189 static ObjectClass *avr_cpu_class_by_name(const char *cpu_model)
190 {
191     return object_class_by_name(cpu_model);
192 }
193 
avr_cpu_dump_state(CPUState * cs,FILE * f,int flags)194 static void avr_cpu_dump_state(CPUState *cs, FILE *f, int flags)
195 {
196     CPUAVRState *env = cpu_env(cs);
197     int i;
198 
199     qemu_fprintf(f, "\n");
200     qemu_fprintf(f, "PC:    %06x\n", env->pc_w * 2); /* PC points to words */
201     qemu_fprintf(f, "SP:      %04x\n", env->sp);
202     qemu_fprintf(f, "rampD:     %02x\n", env->rampD >> 16);
203     qemu_fprintf(f, "rampX:     %02x\n", env->rampX >> 16);
204     qemu_fprintf(f, "rampY:     %02x\n", env->rampY >> 16);
205     qemu_fprintf(f, "rampZ:     %02x\n", env->rampZ >> 16);
206     qemu_fprintf(f, "EIND:      %02x\n", env->eind >> 16);
207     qemu_fprintf(f, "X:       %02x%02x\n", env->r[27], env->r[26]);
208     qemu_fprintf(f, "Y:       %02x%02x\n", env->r[29], env->r[28]);
209     qemu_fprintf(f, "Z:       %02x%02x\n", env->r[31], env->r[30]);
210     qemu_fprintf(f, "SREG:    [ %c %c %c %c %c %c %c %c ]\n",
211                  env->sregI ? 'I' : '-',
212                  env->sregT ? 'T' : '-',
213                  env->sregH ? 'H' : '-',
214                  env->sregS ? 'S' : '-',
215                  env->sregV ? 'V' : '-',
216                  env->sregN ? '-' : 'N', /* Zf has negative logic */
217                  env->sregZ ? 'Z' : '-',
218                  env->sregC ? 'I' : '-');
219     qemu_fprintf(f, "SKIP:    %02x\n", env->skip);
220 
221     qemu_fprintf(f, "\n");
222     for (i = 0; i < ARRAY_SIZE(env->r); i++) {
223         qemu_fprintf(f, "R[%02d]:  %02x   ", i, env->r[i]);
224 
225         if ((i % 8) == 7) {
226             qemu_fprintf(f, "\n");
227         }
228     }
229     qemu_fprintf(f, "\n");
230 }
231 
232 #include "hw/core/sysemu-cpu-ops.h"
233 
234 static const struct SysemuCPUOps avr_sysemu_ops = {
235     .has_work = avr_cpu_has_work,
236     .get_phys_page_debug = avr_cpu_get_phys_page_debug,
237 };
238 
239 static const TCGCPUOps avr_tcg_ops = {
240     .guest_default_memory_order = 0,
241     .mttcg_supported = false,
242     .initialize = avr_cpu_tcg_init,
243     .translate_code = avr_cpu_translate_code,
244     .get_tb_cpu_state = avr_get_tb_cpu_state,
245     .synchronize_from_tb = avr_cpu_synchronize_from_tb,
246     .restore_state_to_opc = avr_restore_state_to_opc,
247     .mmu_index = avr_cpu_mmu_index,
248     .cpu_exec_interrupt = avr_cpu_exec_interrupt,
249     .cpu_exec_halt = avr_cpu_has_work,
250     .cpu_exec_reset = cpu_reset,
251     .tlb_fill = avr_cpu_tlb_fill,
252     .do_interrupt = avr_cpu_do_interrupt,
253     /*
254      * TODO: code and data wrapping are different, but for the most part
255      * AVR only references bytes or aligned code fetches.  But we use
256      * non-aligned MO_16 accesses for stack push/pop.
257      */
258     .pointer_wrap = cpu_pointer_wrap_uint32,
259 };
260 
avr_cpu_class_init(ObjectClass * oc,const void * data)261 static void avr_cpu_class_init(ObjectClass *oc, const void *data)
262 {
263     DeviceClass *dc = DEVICE_CLASS(oc);
264     CPUClass *cc = CPU_CLASS(oc);
265     AVRCPUClass *mcc = AVR_CPU_CLASS(oc);
266     ResettableClass *rc = RESETTABLE_CLASS(oc);
267 
268     device_class_set_parent_realize(dc, avr_cpu_realizefn, &mcc->parent_realize);
269 
270     device_class_set_props(dc, avr_cpu_properties);
271 
272     resettable_class_set_parent_phases(rc, NULL, avr_cpu_reset_hold, NULL,
273                                        &mcc->parent_phases);
274 
275     cc->class_by_name = avr_cpu_class_by_name;
276 
277     cc->dump_state = avr_cpu_dump_state;
278     cc->set_pc = avr_cpu_set_pc;
279     cc->get_pc = avr_cpu_get_pc;
280     dc->vmsd = &vms_avr_cpu;
281     cc->sysemu_ops = &avr_sysemu_ops;
282     cc->disas_set_info = avr_cpu_disas_set_info;
283     cc->gdb_read_register = avr_cpu_gdb_read_register;
284     cc->gdb_write_register = avr_cpu_gdb_write_register;
285     cc->gdb_adjust_breakpoint = avr_cpu_gdb_adjust_breakpoint;
286     cc->gdb_core_xml_file = "avr-cpu.xml";
287     cc->tcg_ops = &avr_tcg_ops;
288 }
289 
290 /*
291  * Setting features of AVR core type avr5
292  * --------------------------------------
293  *
294  * This type of AVR core is present in the following AVR MCUs:
295  *
296  * ata5702m322, ata5782, ata5790, ata5790n, ata5791, ata5795, ata5831, ata6613c,
297  * ata6614q, ata8210, ata8510, atmega16, atmega16a, atmega161, atmega162,
298  * atmega163, atmega164a, atmega164p, atmega164pa, atmega165, atmega165a,
299  * atmega165p, atmega165pa, atmega168, atmega168a, atmega168p, atmega168pa,
300  * atmega168pb, atmega169, atmega169a, atmega169p, atmega169pa, atmega16hvb,
301  * atmega16hvbrevb, atmega16m1, atmega16u4, atmega32a, atmega32, atmega323,
302  * atmega324a, atmega324p, atmega324pa, atmega325, atmega325a, atmega325p,
303  * atmega325pa, atmega3250, atmega3250a, atmega3250p, atmega3250pa, atmega328,
304  * atmega328p, atmega328pb, atmega329, atmega329a, atmega329p, atmega329pa,
305  * atmega3290, atmega3290a, atmega3290p, atmega3290pa, atmega32c1, atmega32m1,
306  * atmega32u4, atmega32u6, atmega406, atmega64, atmega64a, atmega640, atmega644,
307  * atmega644a, atmega644p, atmega644pa, atmega645, atmega645a, atmega645p,
308  * atmega6450, atmega6450a, atmega6450p, atmega649, atmega649a, atmega649p,
309  * atmega6490, atmega16hva, atmega16hva2, atmega32hvb, atmega6490a, atmega6490p,
310  * atmega64c1, atmega64m1, atmega64hve, atmega64hve2, atmega64rfr2,
311  * atmega644rfr2, atmega32hvbrevb, at90can32, at90can64, at90pwm161, at90pwm216,
312  * at90pwm316, at90scr100, at90usb646, at90usb647, at94k, m3000
313  */
avr_avr5_initfn(Object * obj)314 static void avr_avr5_initfn(Object *obj)
315 {
316     CPUAVRState *env = cpu_env(CPU(obj));
317 
318     set_avr_feature(env, AVR_FEATURE_LPM);
319     set_avr_feature(env, AVR_FEATURE_IJMP_ICALL);
320     set_avr_feature(env, AVR_FEATURE_ADIW_SBIW);
321     set_avr_feature(env, AVR_FEATURE_SRAM);
322     set_avr_feature(env, AVR_FEATURE_BREAK);
323 
324     set_avr_feature(env, AVR_FEATURE_2_BYTE_PC);
325     set_avr_feature(env, AVR_FEATURE_2_BYTE_SP);
326     set_avr_feature(env, AVR_FEATURE_JMP_CALL);
327     set_avr_feature(env, AVR_FEATURE_LPMX);
328     set_avr_feature(env, AVR_FEATURE_MOVW);
329     set_avr_feature(env, AVR_FEATURE_MUL);
330 }
331 
332 /*
333  * Setting features of AVR core type avr51
334  * --------------------------------------
335  *
336  * This type of AVR core is present in the following AVR MCUs:
337  *
338  * atmega128, atmega128a, atmega1280, atmega1281, atmega1284, atmega1284p,
339  * atmega128rfa1, atmega128rfr2, atmega1284rfr2, at90can128, at90usb1286,
340  * at90usb1287
341  */
avr_avr51_initfn(Object * obj)342 static void avr_avr51_initfn(Object *obj)
343 {
344     CPUAVRState *env = cpu_env(CPU(obj));
345 
346     set_avr_feature(env, AVR_FEATURE_LPM);
347     set_avr_feature(env, AVR_FEATURE_IJMP_ICALL);
348     set_avr_feature(env, AVR_FEATURE_ADIW_SBIW);
349     set_avr_feature(env, AVR_FEATURE_SRAM);
350     set_avr_feature(env, AVR_FEATURE_BREAK);
351 
352     set_avr_feature(env, AVR_FEATURE_2_BYTE_PC);
353     set_avr_feature(env, AVR_FEATURE_2_BYTE_SP);
354     set_avr_feature(env, AVR_FEATURE_RAMPZ);
355     set_avr_feature(env, AVR_FEATURE_ELPMX);
356     set_avr_feature(env, AVR_FEATURE_ELPM);
357     set_avr_feature(env, AVR_FEATURE_JMP_CALL);
358     set_avr_feature(env, AVR_FEATURE_LPMX);
359     set_avr_feature(env, AVR_FEATURE_MOVW);
360     set_avr_feature(env, AVR_FEATURE_MUL);
361 }
362 
363 /*
364  * Setting features of AVR core type avr6
365  * --------------------------------------
366  *
367  * This type of AVR core is present in the following AVR MCUs:
368  *
369  * atmega2560, atmega2561, atmega256rfr2, atmega2564rfr2
370  */
avr_avr6_initfn(Object * obj)371 static void avr_avr6_initfn(Object *obj)
372 {
373     CPUAVRState *env = cpu_env(CPU(obj));
374 
375     set_avr_feature(env, AVR_FEATURE_LPM);
376     set_avr_feature(env, AVR_FEATURE_IJMP_ICALL);
377     set_avr_feature(env, AVR_FEATURE_ADIW_SBIW);
378     set_avr_feature(env, AVR_FEATURE_SRAM);
379     set_avr_feature(env, AVR_FEATURE_BREAK);
380 
381     set_avr_feature(env, AVR_FEATURE_3_BYTE_PC);
382     set_avr_feature(env, AVR_FEATURE_2_BYTE_SP);
383     set_avr_feature(env, AVR_FEATURE_RAMPZ);
384     set_avr_feature(env, AVR_FEATURE_EIJMP_EICALL);
385     set_avr_feature(env, AVR_FEATURE_ELPMX);
386     set_avr_feature(env, AVR_FEATURE_ELPM);
387     set_avr_feature(env, AVR_FEATURE_JMP_CALL);
388     set_avr_feature(env, AVR_FEATURE_LPMX);
389     set_avr_feature(env, AVR_FEATURE_MOVW);
390     set_avr_feature(env, AVR_FEATURE_MUL);
391 }
392 
393 typedef struct AVRCPUInfo {
394     const char *name;
395     void (*initfn)(Object *obj);
396 } AVRCPUInfo;
397 
398 
399 #define DEFINE_AVR_CPU_TYPE(model, initfn) \
400     { \
401         .parent = TYPE_AVR_CPU, \
402         .instance_init = initfn, \
403         .name = AVR_CPU_TYPE_NAME(model), \
404     }
405 
406 static const TypeInfo avr_cpu_type_info[] = {
407     {
408         .name = TYPE_AVR_CPU,
409         .parent = TYPE_CPU,
410         .instance_size = sizeof(AVRCPU),
411         .instance_align = __alignof(AVRCPU),
412         .instance_init = avr_cpu_initfn,
413         .class_size = sizeof(AVRCPUClass),
414         .class_init = avr_cpu_class_init,
415         .abstract = true,
416     },
417     DEFINE_AVR_CPU_TYPE("avr5", avr_avr5_initfn),
418     DEFINE_AVR_CPU_TYPE("avr51", avr_avr51_initfn),
419     DEFINE_AVR_CPU_TYPE("avr6", avr_avr6_initfn),
420 };
421 
422 DEFINE_TYPES(avr_cpu_type_info)
423