1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/timer.h>
19 #include <linux/vmalloc.h>
20 #include <linux/interrupt.h>
21 #include <linux/bitops.h>
22 #include <linux/mutex.h>
23 #include <linux/workqueue.h>
24 #include <linux/highmem.h>
25 #include <linux/firmware.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/file.h>
29 #include <linux/list.h>
30 #include <linux/fs.h>
31 #include <linux/async.h>
32 #include <linux/pm.h>
33 #include <linux/suspend.h>
34 #include <linux/syscore_ops.h>
35 #include <linux/reboot.h>
36 #include <linux/security.h>
37 #include <linux/xz.h>
38
39 #include <generated/utsrelease.h>
40
41 #include "../base.h"
42 #include "firmware.h"
43 #include "fallback.h"
44
45 MODULE_AUTHOR("Manuel Estrada Sainz");
46 MODULE_DESCRIPTION("Multi purpose firmware loading support");
47 MODULE_LICENSE("GPL");
48
49 struct firmware_cache {
50 /* firmware_buf instance will be added into the below list */
51 spinlock_t lock;
52 struct list_head head;
53 int state;
54
55 #ifdef CONFIG_FW_CACHE
56 /*
57 * Names of firmware images which have been cached successfully
58 * will be added into the below list so that device uncache
59 * helper can trace which firmware images have been cached
60 * before.
61 */
62 spinlock_t name_lock;
63 struct list_head fw_names;
64
65 struct delayed_work work;
66
67 struct notifier_block pm_notify;
68 #endif
69 };
70
71 struct fw_cache_entry {
72 struct list_head list;
73 const char *name;
74 };
75
76 struct fw_name_devm {
77 unsigned long magic;
78 const char *name;
79 };
80
to_fw_priv(struct kref * ref)81 static inline struct fw_priv *to_fw_priv(struct kref *ref)
82 {
83 return container_of(ref, struct fw_priv, ref);
84 }
85
86 #define FW_LOADER_NO_CACHE 0
87 #define FW_LOADER_START_CACHE 1
88
89 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
90 * guarding for corner cases a global lock should be OK */
91 DEFINE_MUTEX(fw_lock);
92
93 static struct firmware_cache fw_cache;
94
95 /* Builtin firmware support */
96
97 #ifdef CONFIG_FW_LOADER
98
99 extern struct builtin_fw __start_builtin_fw[];
100 extern struct builtin_fw __end_builtin_fw[];
101
fw_copy_to_prealloc_buf(struct firmware * fw,void * buf,size_t size)102 static void fw_copy_to_prealloc_buf(struct firmware *fw,
103 void *buf, size_t size)
104 {
105 if (!buf || size < fw->size)
106 return;
107 memcpy(buf, fw->data, fw->size);
108 }
109
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)110 static bool fw_get_builtin_firmware(struct firmware *fw, const char *name,
111 void *buf, size_t size)
112 {
113 struct builtin_fw *b_fw;
114
115 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++) {
116 if (strcmp(name, b_fw->name) == 0) {
117 fw->size = b_fw->size;
118 fw->data = b_fw->data;
119 fw_copy_to_prealloc_buf(fw, buf, size);
120
121 return true;
122 }
123 }
124
125 return false;
126 }
127
fw_is_builtin_firmware(const struct firmware * fw)128 static bool fw_is_builtin_firmware(const struct firmware *fw)
129 {
130 struct builtin_fw *b_fw;
131
132 for (b_fw = __start_builtin_fw; b_fw != __end_builtin_fw; b_fw++)
133 if (fw->data == b_fw->data)
134 return true;
135
136 return false;
137 }
138
139 #else /* Module case - no builtin firmware support */
140
fw_get_builtin_firmware(struct firmware * fw,const char * name,void * buf,size_t size)141 static inline bool fw_get_builtin_firmware(struct firmware *fw,
142 const char *name, void *buf,
143 size_t size)
144 {
145 return false;
146 }
147
fw_is_builtin_firmware(const struct firmware * fw)148 static inline bool fw_is_builtin_firmware(const struct firmware *fw)
149 {
150 return false;
151 }
152 #endif
153
fw_state_init(struct fw_priv * fw_priv)154 static void fw_state_init(struct fw_priv *fw_priv)
155 {
156 struct fw_state *fw_st = &fw_priv->fw_st;
157
158 init_completion(&fw_st->completion);
159 fw_st->status = FW_STATUS_UNKNOWN;
160 }
161
fw_state_wait(struct fw_priv * fw_priv)162 static inline int fw_state_wait(struct fw_priv *fw_priv)
163 {
164 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
165 }
166
167 static int fw_cache_piggyback_on_request(const char *name);
168
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)169 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
170 struct firmware_cache *fwc,
171 void *dbuf,
172 size_t size,
173 size_t offset,
174 u32 opt_flags)
175 {
176 struct fw_priv *fw_priv;
177
178 /* For a partial read, the buffer must be preallocated. */
179 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
180 return NULL;
181
182 /* Only partial reads are allowed to use an offset. */
183 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
184 return NULL;
185
186 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
187 if (!fw_priv)
188 return NULL;
189
190 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
191 if (!fw_priv->fw_name) {
192 kfree(fw_priv);
193 return NULL;
194 }
195
196 kref_init(&fw_priv->ref);
197 fw_priv->fwc = fwc;
198 fw_priv->data = dbuf;
199 fw_priv->allocated_size = size;
200 fw_priv->offset = offset;
201 fw_priv->opt_flags = opt_flags;
202 fw_state_init(fw_priv);
203 #ifdef CONFIG_FW_LOADER_USER_HELPER
204 INIT_LIST_HEAD(&fw_priv->pending_list);
205 #endif
206
207 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
208
209 return fw_priv;
210 }
211
__lookup_fw_priv(const char * fw_name)212 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
213 {
214 struct fw_priv *tmp;
215 struct firmware_cache *fwc = &fw_cache;
216
217 list_for_each_entry(tmp, &fwc->head, list)
218 if (!strcmp(tmp->fw_name, fw_name))
219 return tmp;
220 return NULL;
221 }
222
223 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)224 static int alloc_lookup_fw_priv(const char *fw_name,
225 struct firmware_cache *fwc,
226 struct fw_priv **fw_priv,
227 void *dbuf,
228 size_t size,
229 size_t offset,
230 u32 opt_flags)
231 {
232 struct fw_priv *tmp;
233
234 spin_lock(&fwc->lock);
235 /*
236 * Do not merge requests that are marked to be non-cached or
237 * are performing partial reads.
238 */
239 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
240 tmp = __lookup_fw_priv(fw_name);
241 if (tmp) {
242 kref_get(&tmp->ref);
243 spin_unlock(&fwc->lock);
244 *fw_priv = tmp;
245 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
246 return 1;
247 }
248 }
249
250 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
251 if (tmp) {
252 INIT_LIST_HEAD(&tmp->list);
253 if (!(opt_flags & FW_OPT_NOCACHE))
254 list_add(&tmp->list, &fwc->head);
255 }
256 spin_unlock(&fwc->lock);
257
258 *fw_priv = tmp;
259
260 return tmp ? 0 : -ENOMEM;
261 }
262
__free_fw_priv(struct kref * ref)263 static void __free_fw_priv(struct kref *ref)
264 __releases(&fwc->lock)
265 {
266 struct fw_priv *fw_priv = to_fw_priv(ref);
267 struct firmware_cache *fwc = fw_priv->fwc;
268
269 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
270 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
271 (unsigned int)fw_priv->size);
272
273 list_del(&fw_priv->list);
274 spin_unlock(&fwc->lock);
275
276 if (fw_is_paged_buf(fw_priv))
277 fw_free_paged_buf(fw_priv);
278 else if (!fw_priv->allocated_size)
279 vfree(fw_priv->data);
280
281 kfree_const(fw_priv->fw_name);
282 kfree(fw_priv);
283 }
284
free_fw_priv(struct fw_priv * fw_priv)285 static void free_fw_priv(struct fw_priv *fw_priv)
286 {
287 struct firmware_cache *fwc = fw_priv->fwc;
288 spin_lock(&fwc->lock);
289 if (!kref_put(&fw_priv->ref, __free_fw_priv))
290 spin_unlock(&fwc->lock);
291 }
292
293 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)294 bool fw_is_paged_buf(struct fw_priv *fw_priv)
295 {
296 return fw_priv->is_paged_buf;
297 }
298
fw_free_paged_buf(struct fw_priv * fw_priv)299 void fw_free_paged_buf(struct fw_priv *fw_priv)
300 {
301 int i;
302
303 if (!fw_priv->pages)
304 return;
305
306 vunmap(fw_priv->data);
307
308 for (i = 0; i < fw_priv->nr_pages; i++)
309 __free_page(fw_priv->pages[i]);
310 kvfree(fw_priv->pages);
311 fw_priv->pages = NULL;
312 fw_priv->page_array_size = 0;
313 fw_priv->nr_pages = 0;
314 }
315
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)316 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
317 {
318 /* If the array of pages is too small, grow it */
319 if (fw_priv->page_array_size < pages_needed) {
320 int new_array_size = max(pages_needed,
321 fw_priv->page_array_size * 2);
322 struct page **new_pages;
323
324 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
325 GFP_KERNEL);
326 if (!new_pages)
327 return -ENOMEM;
328 memcpy(new_pages, fw_priv->pages,
329 fw_priv->page_array_size * sizeof(void *));
330 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
331 (new_array_size - fw_priv->page_array_size));
332 kvfree(fw_priv->pages);
333 fw_priv->pages = new_pages;
334 fw_priv->page_array_size = new_array_size;
335 }
336
337 while (fw_priv->nr_pages < pages_needed) {
338 fw_priv->pages[fw_priv->nr_pages] =
339 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
340
341 if (!fw_priv->pages[fw_priv->nr_pages])
342 return -ENOMEM;
343 fw_priv->nr_pages++;
344 }
345
346 return 0;
347 }
348
fw_map_paged_buf(struct fw_priv * fw_priv)349 int fw_map_paged_buf(struct fw_priv *fw_priv)
350 {
351 /* one pages buffer should be mapped/unmapped only once */
352 if (!fw_priv->pages)
353 return 0;
354
355 vunmap(fw_priv->data);
356 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
357 PAGE_KERNEL_RO);
358 if (!fw_priv->data)
359 return -ENOMEM;
360
361 return 0;
362 }
363 #endif
364
365 /*
366 * XZ-compressed firmware support
367 */
368 #ifdef CONFIG_FW_LOADER_COMPRESS
369 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)370 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
371 {
372 if (xz_ret != XZ_STREAM_END) {
373 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
374 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
375 }
376 return 0;
377 }
378
379 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)380 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
381 size_t in_size, const void *in_buffer)
382 {
383 struct xz_dec *xz_dec;
384 struct xz_buf xz_buf;
385 enum xz_ret xz_ret;
386
387 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
388 if (!xz_dec)
389 return -ENOMEM;
390
391 xz_buf.in_size = in_size;
392 xz_buf.in = in_buffer;
393 xz_buf.in_pos = 0;
394 xz_buf.out_size = fw_priv->allocated_size;
395 xz_buf.out = fw_priv->data;
396 xz_buf.out_pos = 0;
397
398 xz_ret = xz_dec_run(xz_dec, &xz_buf);
399 xz_dec_end(xz_dec);
400
401 fw_priv->size = xz_buf.out_pos;
402 return fw_decompress_xz_error(dev, xz_ret);
403 }
404
405 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)406 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
407 size_t in_size, const void *in_buffer)
408 {
409 struct xz_dec *xz_dec;
410 struct xz_buf xz_buf;
411 enum xz_ret xz_ret;
412 struct page *page;
413 int err = 0;
414
415 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
416 if (!xz_dec)
417 return -ENOMEM;
418
419 xz_buf.in_size = in_size;
420 xz_buf.in = in_buffer;
421 xz_buf.in_pos = 0;
422
423 fw_priv->is_paged_buf = true;
424 fw_priv->size = 0;
425 do {
426 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
427 err = -ENOMEM;
428 goto out;
429 }
430
431 /* decompress onto the new allocated page */
432 page = fw_priv->pages[fw_priv->nr_pages - 1];
433 xz_buf.out = kmap(page);
434 xz_buf.out_pos = 0;
435 xz_buf.out_size = PAGE_SIZE;
436 xz_ret = xz_dec_run(xz_dec, &xz_buf);
437 kunmap(page);
438 fw_priv->size += xz_buf.out_pos;
439 /* partial decompression means either end or error */
440 if (xz_buf.out_pos != PAGE_SIZE)
441 break;
442 } while (xz_ret == XZ_OK);
443
444 err = fw_decompress_xz_error(dev, xz_ret);
445 if (!err)
446 err = fw_map_paged_buf(fw_priv);
447
448 out:
449 xz_dec_end(xz_dec);
450 return err;
451 }
452
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)453 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
454 size_t in_size, const void *in_buffer)
455 {
456 /* if the buffer is pre-allocated, we can perform in single-shot mode */
457 if (fw_priv->data)
458 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
459 else
460 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
461 }
462 #endif /* CONFIG_FW_LOADER_COMPRESS */
463
464 /* direct firmware loading support */
465 static char fw_path_para[256];
466 static const char * const fw_path[] = {
467 fw_path_para,
468 "/lib/firmware/updates/" UTS_RELEASE,
469 "/lib/firmware/updates",
470 "/lib/firmware/" UTS_RELEASE,
471 "/lib/firmware"
472 };
473
474 /*
475 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
476 * from kernel command line because firmware_class is generally built in
477 * kernel instead of module.
478 */
479 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
480 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
481
482 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))483 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
484 const char *suffix,
485 int (*decompress)(struct device *dev,
486 struct fw_priv *fw_priv,
487 size_t in_size,
488 const void *in_buffer))
489 {
490 size_t size;
491 int i, len;
492 int rc = -ENOENT;
493 char *path;
494 size_t msize = INT_MAX;
495 void *buffer = NULL;
496
497 /* Already populated data member means we're loading into a buffer */
498 if (!decompress && fw_priv->data) {
499 buffer = fw_priv->data;
500 msize = fw_priv->allocated_size;
501 }
502
503 path = __getname();
504 if (!path)
505 return -ENOMEM;
506
507 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
508 size_t file_size = 0;
509 size_t *file_size_ptr = NULL;
510
511 /* skip the unset customized path */
512 if (!fw_path[i][0])
513 continue;
514
515 len = snprintf(path, PATH_MAX, "%s/%s%s",
516 fw_path[i], fw_priv->fw_name, suffix);
517 if (len >= PATH_MAX) {
518 rc = -ENAMETOOLONG;
519 break;
520 }
521
522 fw_priv->size = 0;
523
524 /*
525 * The total file size is only examined when doing a partial
526 * read; the "full read" case needs to fail if the whole
527 * firmware was not completely loaded.
528 */
529 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
530 file_size_ptr = &file_size;
531
532 /* load firmware files from the mount namespace of init */
533 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
534 &buffer, msize,
535 file_size_ptr,
536 READING_FIRMWARE);
537 if (rc < 0) {
538 if (rc != -ENOENT)
539 dev_warn(device, "loading %s failed with error %d\n",
540 path, rc);
541 else
542 dev_dbg(device, "loading %s failed for no such file or directory.\n",
543 path);
544 continue;
545 }
546 size = rc;
547 rc = 0;
548
549 dev_dbg(device, "Loading firmware from %s\n", path);
550 if (decompress) {
551 dev_dbg(device, "f/w decompressing %s\n",
552 fw_priv->fw_name);
553 rc = decompress(device, fw_priv, size, buffer);
554 /* discard the superfluous original content */
555 vfree(buffer);
556 buffer = NULL;
557 if (rc) {
558 fw_free_paged_buf(fw_priv);
559 continue;
560 }
561 } else {
562 dev_dbg(device, "direct-loading %s\n",
563 fw_priv->fw_name);
564 if (!fw_priv->data)
565 fw_priv->data = buffer;
566 fw_priv->size = size;
567 }
568 fw_state_done(fw_priv);
569 break;
570 }
571 __putname(path);
572
573 return rc;
574 }
575
576 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)577 static void firmware_free_data(const struct firmware *fw)
578 {
579 /* Loaded directly? */
580 if (!fw->priv) {
581 vfree(fw->data);
582 return;
583 }
584 free_fw_priv(fw->priv);
585 }
586
587 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)588 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
589 {
590 fw->priv = fw_priv;
591 fw->size = fw_priv->size;
592 fw->data = fw_priv->data;
593
594 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
595 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
596 (unsigned int)fw_priv->size);
597 }
598
599 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)600 static void fw_name_devm_release(struct device *dev, void *res)
601 {
602 struct fw_name_devm *fwn = res;
603
604 if (fwn->magic == (unsigned long)&fw_cache)
605 pr_debug("%s: fw_name-%s devm-%p released\n",
606 __func__, fwn->name, res);
607 kfree_const(fwn->name);
608 }
609
fw_devm_match(struct device * dev,void * res,void * match_data)610 static int fw_devm_match(struct device *dev, void *res,
611 void *match_data)
612 {
613 struct fw_name_devm *fwn = res;
614
615 return (fwn->magic == (unsigned long)&fw_cache) &&
616 !strcmp(fwn->name, match_data);
617 }
618
fw_find_devm_name(struct device * dev,const char * name)619 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
620 const char *name)
621 {
622 struct fw_name_devm *fwn;
623
624 fwn = devres_find(dev, fw_name_devm_release,
625 fw_devm_match, (void *)name);
626 return fwn;
627 }
628
fw_cache_is_setup(struct device * dev,const char * name)629 static bool fw_cache_is_setup(struct device *dev, const char *name)
630 {
631 struct fw_name_devm *fwn;
632
633 fwn = fw_find_devm_name(dev, name);
634 if (fwn)
635 return true;
636
637 return false;
638 }
639
640 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)641 static int fw_add_devm_name(struct device *dev, const char *name)
642 {
643 struct fw_name_devm *fwn;
644
645 if (fw_cache_is_setup(dev, name))
646 return 0;
647
648 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
649 GFP_KERNEL);
650 if (!fwn)
651 return -ENOMEM;
652 fwn->name = kstrdup_const(name, GFP_KERNEL);
653 if (!fwn->name) {
654 devres_free(fwn);
655 return -ENOMEM;
656 }
657
658 fwn->magic = (unsigned long)&fw_cache;
659 devres_add(dev, fwn);
660
661 return 0;
662 }
663 #else
fw_cache_is_setup(struct device * dev,const char * name)664 static bool fw_cache_is_setup(struct device *dev, const char *name)
665 {
666 return false;
667 }
668
fw_add_devm_name(struct device * dev,const char * name)669 static int fw_add_devm_name(struct device *dev, const char *name)
670 {
671 return 0;
672 }
673 #endif
674
assign_fw(struct firmware * fw,struct device * device)675 int assign_fw(struct firmware *fw, struct device *device)
676 {
677 struct fw_priv *fw_priv = fw->priv;
678 int ret;
679
680 mutex_lock(&fw_lock);
681 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
682 mutex_unlock(&fw_lock);
683 return -ENOENT;
684 }
685
686 /*
687 * add firmware name into devres list so that we can auto cache
688 * and uncache firmware for device.
689 *
690 * device may has been deleted already, but the problem
691 * should be fixed in devres or driver core.
692 */
693 /* don't cache firmware handled without uevent */
694 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
695 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
696 ret = fw_add_devm_name(device, fw_priv->fw_name);
697 if (ret) {
698 mutex_unlock(&fw_lock);
699 return ret;
700 }
701 }
702
703 /*
704 * After caching firmware image is started, let it piggyback
705 * on request firmware.
706 */
707 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
708 fw_priv->fwc->state == FW_LOADER_START_CACHE) {
709 if (fw_cache_piggyback_on_request(fw_priv->fw_name))
710 kref_get(&fw_priv->ref);
711 }
712
713 /* pass the pages buffer to driver at the last minute */
714 fw_set_page_data(fw_priv, fw);
715 mutex_unlock(&fw_lock);
716 return 0;
717 }
718
719 /* prepare firmware and firmware_buf structs;
720 * return 0 if a firmware is already assigned, 1 if need to load one,
721 * or a negative error code
722 */
723 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)724 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
725 struct device *device, void *dbuf, size_t size,
726 size_t offset, u32 opt_flags)
727 {
728 struct firmware *firmware;
729 struct fw_priv *fw_priv;
730 int ret;
731
732 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
733 if (!firmware) {
734 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
735 __func__);
736 return -ENOMEM;
737 }
738
739 if (fw_get_builtin_firmware(firmware, name, dbuf, size)) {
740 dev_dbg(device, "using built-in %s\n", name);
741 return 0; /* assigned */
742 }
743
744 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
745 offset, opt_flags);
746
747 /*
748 * bind with 'priv' now to avoid warning in failure path
749 * of requesting firmware.
750 */
751 firmware->priv = fw_priv;
752
753 if (ret > 0) {
754 ret = fw_state_wait(fw_priv);
755 if (!ret) {
756 fw_set_page_data(fw_priv, firmware);
757 return 0; /* assigned */
758 }
759 }
760
761 if (ret < 0)
762 return ret;
763 return 1; /* need to load */
764 }
765
766 /*
767 * Batched requests need only one wake, we need to do this step last due to the
768 * fallback mechanism. The buf is protected with kref_get(), and it won't be
769 * released until the last user calls release_firmware().
770 *
771 * Failed batched requests are possible as well, in such cases we just share
772 * the struct fw_priv and won't release it until all requests are woken
773 * and have gone through this same path.
774 */
fw_abort_batch_reqs(struct firmware * fw)775 static void fw_abort_batch_reqs(struct firmware *fw)
776 {
777 struct fw_priv *fw_priv;
778
779 /* Loaded directly? */
780 if (!fw || !fw->priv)
781 return;
782
783 fw_priv = fw->priv;
784 if (!fw_state_is_aborted(fw_priv))
785 fw_state_aborted(fw_priv);
786 }
787
788 /* called from request_firmware() and request_firmware_work_func() */
789 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)790 _request_firmware(const struct firmware **firmware_p, const char *name,
791 struct device *device, void *buf, size_t size,
792 size_t offset, u32 opt_flags)
793 {
794 struct firmware *fw = NULL;
795 bool nondirect = false;
796 int ret;
797
798 if (!firmware_p)
799 return -EINVAL;
800
801 if (!name || name[0] == '\0') {
802 ret = -EINVAL;
803 goto out;
804 }
805
806 ret = _request_firmware_prepare(&fw, name, device, buf, size,
807 offset, opt_flags);
808 if (ret <= 0) /* error or already assigned */
809 goto out;
810
811 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
812
813 /* Only full reads can support decompression, platform, and sysfs. */
814 if (!(opt_flags & FW_OPT_PARTIAL))
815 nondirect = true;
816
817 #ifdef CONFIG_FW_LOADER_COMPRESS
818 if (ret == -ENOENT && nondirect)
819 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
820 fw_decompress_xz);
821 #endif
822 if (ret == -ENOENT && nondirect)
823 ret = firmware_fallback_platform(fw->priv);
824
825 if (ret) {
826 if (!(opt_flags & FW_OPT_NO_WARN))
827 dev_warn(device,
828 "Direct firmware load for %s failed with error %d\n",
829 name, ret);
830 if (nondirect)
831 ret = firmware_fallback_sysfs(fw, name, device,
832 opt_flags, ret);
833 } else
834 ret = assign_fw(fw, device);
835
836 out:
837 if (ret < 0) {
838 fw_abort_batch_reqs(fw);
839 release_firmware(fw);
840 fw = NULL;
841 }
842
843 *firmware_p = fw;
844 return ret;
845 }
846
847 /**
848 * request_firmware() - send firmware request and wait for it
849 * @firmware_p: pointer to firmware image
850 * @name: name of firmware file
851 * @device: device for which firmware is being loaded
852 *
853 * @firmware_p will be used to return a firmware image by the name
854 * of @name for device @device.
855 *
856 * Should be called from user context where sleeping is allowed.
857 *
858 * @name will be used as $FIRMWARE in the uevent environment and
859 * should be distinctive enough not to be confused with any other
860 * firmware image for this or any other device.
861 *
862 * Caller must hold the reference count of @device.
863 *
864 * The function can be called safely inside device's suspend and
865 * resume callback.
866 **/
867 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)868 request_firmware(const struct firmware **firmware_p, const char *name,
869 struct device *device)
870 {
871 int ret;
872
873 /* Need to pin this module until return */
874 __module_get(THIS_MODULE);
875 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
876 FW_OPT_UEVENT);
877 module_put(THIS_MODULE);
878 return ret;
879 }
880 EXPORT_SYMBOL(request_firmware);
881
882 /**
883 * firmware_request_nowarn() - request for an optional fw module
884 * @firmware: pointer to firmware image
885 * @name: name of firmware file
886 * @device: device for which firmware is being loaded
887 *
888 * This function is similar in behaviour to request_firmware(), except it
889 * doesn't produce warning messages when the file is not found. The sysfs
890 * fallback mechanism is enabled if direct filesystem lookup fails. However,
891 * failures to find the firmware file with it are still suppressed. It is
892 * therefore up to the driver to check for the return value of this call and to
893 * decide when to inform the users of errors.
894 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)895 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
896 struct device *device)
897 {
898 int ret;
899
900 /* Need to pin this module until return */
901 __module_get(THIS_MODULE);
902 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
903 FW_OPT_UEVENT | FW_OPT_NO_WARN);
904 module_put(THIS_MODULE);
905 return ret;
906 }
907 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
908
909 /**
910 * request_firmware_direct() - load firmware directly without usermode helper
911 * @firmware_p: pointer to firmware image
912 * @name: name of firmware file
913 * @device: device for which firmware is being loaded
914 *
915 * This function works pretty much like request_firmware(), but this doesn't
916 * fall back to usermode helper even if the firmware couldn't be loaded
917 * directly from fs. Hence it's useful for loading optional firmwares, which
918 * aren't always present, without extra long timeouts of udev.
919 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)920 int request_firmware_direct(const struct firmware **firmware_p,
921 const char *name, struct device *device)
922 {
923 int ret;
924
925 __module_get(THIS_MODULE);
926 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
927 FW_OPT_UEVENT | FW_OPT_NO_WARN |
928 FW_OPT_NOFALLBACK_SYSFS);
929 module_put(THIS_MODULE);
930 return ret;
931 }
932 EXPORT_SYMBOL_GPL(request_firmware_direct);
933
934 /**
935 * firmware_request_platform() - request firmware with platform-fw fallback
936 * @firmware: pointer to firmware image
937 * @name: name of firmware file
938 * @device: device for which firmware is being loaded
939 *
940 * This function is similar in behaviour to request_firmware, except that if
941 * direct filesystem lookup fails, it will fallback to looking for a copy of the
942 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
943 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)944 int firmware_request_platform(const struct firmware **firmware,
945 const char *name, struct device *device)
946 {
947 int ret;
948
949 /* Need to pin this module until return */
950 __module_get(THIS_MODULE);
951 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
952 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
953 module_put(THIS_MODULE);
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(firmware_request_platform);
957
958 /**
959 * firmware_request_cache() - cache firmware for suspend so resume can use it
960 * @name: name of firmware file
961 * @device: device for which firmware should be cached for
962 *
963 * There are some devices with an optimization that enables the device to not
964 * require loading firmware on system reboot. This optimization may still
965 * require the firmware present on resume from suspend. This routine can be
966 * used to ensure the firmware is present on resume from suspend in these
967 * situations. This helper is not compatible with drivers which use
968 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
969 **/
firmware_request_cache(struct device * device,const char * name)970 int firmware_request_cache(struct device *device, const char *name)
971 {
972 int ret;
973
974 mutex_lock(&fw_lock);
975 ret = fw_add_devm_name(device, name);
976 mutex_unlock(&fw_lock);
977
978 return ret;
979 }
980 EXPORT_SYMBOL_GPL(firmware_request_cache);
981
982 /**
983 * request_firmware_into_buf() - load firmware into a previously allocated buffer
984 * @firmware_p: pointer to firmware image
985 * @name: name of firmware file
986 * @device: device for which firmware is being loaded and DMA region allocated
987 * @buf: address of buffer to load firmware into
988 * @size: size of buffer
989 *
990 * This function works pretty much like request_firmware(), but it doesn't
991 * allocate a buffer to hold the firmware data. Instead, the firmware
992 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
993 * data member is pointed at @buf.
994 *
995 * This function doesn't cache firmware either.
996 */
997 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)998 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
999 struct device *device, void *buf, size_t size)
1000 {
1001 int ret;
1002
1003 if (fw_cache_is_setup(device, name))
1004 return -EOPNOTSUPP;
1005
1006 __module_get(THIS_MODULE);
1007 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1008 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1009 module_put(THIS_MODULE);
1010 return ret;
1011 }
1012 EXPORT_SYMBOL(request_firmware_into_buf);
1013
1014 /**
1015 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1016 * @firmware_p: pointer to firmware image
1017 * @name: name of firmware file
1018 * @device: device for which firmware is being loaded and DMA region allocated
1019 * @buf: address of buffer to load firmware into
1020 * @size: size of buffer
1021 * @offset: offset into file to read
1022 *
1023 * This function works pretty much like request_firmware_into_buf except
1024 * it allows a partial read of the file.
1025 */
1026 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1027 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1028 const char *name, struct device *device,
1029 void *buf, size_t size, size_t offset)
1030 {
1031 int ret;
1032
1033 if (fw_cache_is_setup(device, name))
1034 return -EOPNOTSUPP;
1035
1036 __module_get(THIS_MODULE);
1037 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1038 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1039 FW_OPT_PARTIAL);
1040 module_put(THIS_MODULE);
1041 return ret;
1042 }
1043 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1044
1045 /**
1046 * release_firmware() - release the resource associated with a firmware image
1047 * @fw: firmware resource to release
1048 **/
release_firmware(const struct firmware * fw)1049 void release_firmware(const struct firmware *fw)
1050 {
1051 if (fw) {
1052 if (!fw_is_builtin_firmware(fw))
1053 firmware_free_data(fw);
1054 kfree(fw);
1055 }
1056 }
1057 EXPORT_SYMBOL(release_firmware);
1058
1059 /* Async support */
1060 struct firmware_work {
1061 struct work_struct work;
1062 struct module *module;
1063 const char *name;
1064 struct device *device;
1065 void *context;
1066 void (*cont)(const struct firmware *fw, void *context);
1067 u32 opt_flags;
1068 };
1069
request_firmware_work_func(struct work_struct * work)1070 static void request_firmware_work_func(struct work_struct *work)
1071 {
1072 struct firmware_work *fw_work;
1073 const struct firmware *fw;
1074
1075 fw_work = container_of(work, struct firmware_work, work);
1076
1077 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1078 fw_work->opt_flags);
1079 fw_work->cont(fw, fw_work->context);
1080 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1081
1082 module_put(fw_work->module);
1083 kfree_const(fw_work->name);
1084 kfree(fw_work);
1085 }
1086
1087 /**
1088 * request_firmware_nowait() - asynchronous version of request_firmware
1089 * @module: module requesting the firmware
1090 * @uevent: sends uevent to copy the firmware image if this flag
1091 * is non-zero else the firmware copy must be done manually.
1092 * @name: name of firmware file
1093 * @device: device for which firmware is being loaded
1094 * @gfp: allocation flags
1095 * @context: will be passed over to @cont, and
1096 * @fw may be %NULL if firmware request fails.
1097 * @cont: function will be called asynchronously when the firmware
1098 * request is over.
1099 *
1100 * Caller must hold the reference count of @device.
1101 *
1102 * Asynchronous variant of request_firmware() for user contexts:
1103 * - sleep for as small periods as possible since it may
1104 * increase kernel boot time of built-in device drivers
1105 * requesting firmware in their ->probe() methods, if
1106 * @gfp is GFP_KERNEL.
1107 *
1108 * - can't sleep at all if @gfp is GFP_ATOMIC.
1109 **/
1110 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1111 request_firmware_nowait(
1112 struct module *module, bool uevent,
1113 const char *name, struct device *device, gfp_t gfp, void *context,
1114 void (*cont)(const struct firmware *fw, void *context))
1115 {
1116 struct firmware_work *fw_work;
1117
1118 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1119 if (!fw_work)
1120 return -ENOMEM;
1121
1122 fw_work->module = module;
1123 fw_work->name = kstrdup_const(name, gfp);
1124 if (!fw_work->name) {
1125 kfree(fw_work);
1126 return -ENOMEM;
1127 }
1128 fw_work->device = device;
1129 fw_work->context = context;
1130 fw_work->cont = cont;
1131 fw_work->opt_flags = FW_OPT_NOWAIT |
1132 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1133
1134 if (!uevent && fw_cache_is_setup(device, name)) {
1135 kfree_const(fw_work->name);
1136 kfree(fw_work);
1137 return -EOPNOTSUPP;
1138 }
1139
1140 if (!try_module_get(module)) {
1141 kfree_const(fw_work->name);
1142 kfree(fw_work);
1143 return -EFAULT;
1144 }
1145
1146 get_device(fw_work->device);
1147 INIT_WORK(&fw_work->work, request_firmware_work_func);
1148 schedule_work(&fw_work->work);
1149 return 0;
1150 }
1151 EXPORT_SYMBOL(request_firmware_nowait);
1152
1153 #ifdef CONFIG_FW_CACHE
1154 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1155
1156 /**
1157 * cache_firmware() - cache one firmware image in kernel memory space
1158 * @fw_name: the firmware image name
1159 *
1160 * Cache firmware in kernel memory so that drivers can use it when
1161 * system isn't ready for them to request firmware image from userspace.
1162 * Once it returns successfully, driver can use request_firmware or its
1163 * nowait version to get the cached firmware without any interacting
1164 * with userspace
1165 *
1166 * Return 0 if the firmware image has been cached successfully
1167 * Return !0 otherwise
1168 *
1169 */
cache_firmware(const char * fw_name)1170 static int cache_firmware(const char *fw_name)
1171 {
1172 int ret;
1173 const struct firmware *fw;
1174
1175 pr_debug("%s: %s\n", __func__, fw_name);
1176
1177 ret = request_firmware(&fw, fw_name, NULL);
1178 if (!ret)
1179 kfree(fw);
1180
1181 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1182
1183 return ret;
1184 }
1185
lookup_fw_priv(const char * fw_name)1186 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1187 {
1188 struct fw_priv *tmp;
1189 struct firmware_cache *fwc = &fw_cache;
1190
1191 spin_lock(&fwc->lock);
1192 tmp = __lookup_fw_priv(fw_name);
1193 spin_unlock(&fwc->lock);
1194
1195 return tmp;
1196 }
1197
1198 /**
1199 * uncache_firmware() - remove one cached firmware image
1200 * @fw_name: the firmware image name
1201 *
1202 * Uncache one firmware image which has been cached successfully
1203 * before.
1204 *
1205 * Return 0 if the firmware cache has been removed successfully
1206 * Return !0 otherwise
1207 *
1208 */
uncache_firmware(const char * fw_name)1209 static int uncache_firmware(const char *fw_name)
1210 {
1211 struct fw_priv *fw_priv;
1212 struct firmware fw;
1213
1214 pr_debug("%s: %s\n", __func__, fw_name);
1215
1216 if (fw_get_builtin_firmware(&fw, fw_name, NULL, 0))
1217 return 0;
1218
1219 fw_priv = lookup_fw_priv(fw_name);
1220 if (fw_priv) {
1221 free_fw_priv(fw_priv);
1222 return 0;
1223 }
1224
1225 return -EINVAL;
1226 }
1227
alloc_fw_cache_entry(const char * name)1228 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1229 {
1230 struct fw_cache_entry *fce;
1231
1232 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1233 if (!fce)
1234 goto exit;
1235
1236 fce->name = kstrdup_const(name, GFP_ATOMIC);
1237 if (!fce->name) {
1238 kfree(fce);
1239 fce = NULL;
1240 goto exit;
1241 }
1242 exit:
1243 return fce;
1244 }
1245
__fw_entry_found(const char * name)1246 static int __fw_entry_found(const char *name)
1247 {
1248 struct firmware_cache *fwc = &fw_cache;
1249 struct fw_cache_entry *fce;
1250
1251 list_for_each_entry(fce, &fwc->fw_names, list) {
1252 if (!strcmp(fce->name, name))
1253 return 1;
1254 }
1255 return 0;
1256 }
1257
fw_cache_piggyback_on_request(const char * name)1258 static int fw_cache_piggyback_on_request(const char *name)
1259 {
1260 struct firmware_cache *fwc = &fw_cache;
1261 struct fw_cache_entry *fce;
1262 int ret = 0;
1263
1264 spin_lock(&fwc->name_lock);
1265 if (__fw_entry_found(name))
1266 goto found;
1267
1268 fce = alloc_fw_cache_entry(name);
1269 if (fce) {
1270 ret = 1;
1271 list_add(&fce->list, &fwc->fw_names);
1272 pr_debug("%s: fw: %s\n", __func__, name);
1273 }
1274 found:
1275 spin_unlock(&fwc->name_lock);
1276 return ret;
1277 }
1278
free_fw_cache_entry(struct fw_cache_entry * fce)1279 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1280 {
1281 kfree_const(fce->name);
1282 kfree(fce);
1283 }
1284
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1285 static void __async_dev_cache_fw_image(void *fw_entry,
1286 async_cookie_t cookie)
1287 {
1288 struct fw_cache_entry *fce = fw_entry;
1289 struct firmware_cache *fwc = &fw_cache;
1290 int ret;
1291
1292 ret = cache_firmware(fce->name);
1293 if (ret) {
1294 spin_lock(&fwc->name_lock);
1295 list_del(&fce->list);
1296 spin_unlock(&fwc->name_lock);
1297
1298 free_fw_cache_entry(fce);
1299 }
1300 }
1301
1302 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1303 static void dev_create_fw_entry(struct device *dev, void *res,
1304 void *data)
1305 {
1306 struct fw_name_devm *fwn = res;
1307 const char *fw_name = fwn->name;
1308 struct list_head *head = data;
1309 struct fw_cache_entry *fce;
1310
1311 fce = alloc_fw_cache_entry(fw_name);
1312 if (fce)
1313 list_add(&fce->list, head);
1314 }
1315
devm_name_match(struct device * dev,void * res,void * match_data)1316 static int devm_name_match(struct device *dev, void *res,
1317 void *match_data)
1318 {
1319 struct fw_name_devm *fwn = res;
1320 return (fwn->magic == (unsigned long)match_data);
1321 }
1322
dev_cache_fw_image(struct device * dev,void * data)1323 static void dev_cache_fw_image(struct device *dev, void *data)
1324 {
1325 LIST_HEAD(todo);
1326 struct fw_cache_entry *fce;
1327 struct fw_cache_entry *fce_next;
1328 struct firmware_cache *fwc = &fw_cache;
1329
1330 devres_for_each_res(dev, fw_name_devm_release,
1331 devm_name_match, &fw_cache,
1332 dev_create_fw_entry, &todo);
1333
1334 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1335 list_del(&fce->list);
1336
1337 spin_lock(&fwc->name_lock);
1338 /* only one cache entry for one firmware */
1339 if (!__fw_entry_found(fce->name)) {
1340 list_add(&fce->list, &fwc->fw_names);
1341 } else {
1342 free_fw_cache_entry(fce);
1343 fce = NULL;
1344 }
1345 spin_unlock(&fwc->name_lock);
1346
1347 if (fce)
1348 async_schedule_domain(__async_dev_cache_fw_image,
1349 (void *)fce,
1350 &fw_cache_domain);
1351 }
1352 }
1353
__device_uncache_fw_images(void)1354 static void __device_uncache_fw_images(void)
1355 {
1356 struct firmware_cache *fwc = &fw_cache;
1357 struct fw_cache_entry *fce;
1358
1359 spin_lock(&fwc->name_lock);
1360 while (!list_empty(&fwc->fw_names)) {
1361 fce = list_entry(fwc->fw_names.next,
1362 struct fw_cache_entry, list);
1363 list_del(&fce->list);
1364 spin_unlock(&fwc->name_lock);
1365
1366 uncache_firmware(fce->name);
1367 free_fw_cache_entry(fce);
1368
1369 spin_lock(&fwc->name_lock);
1370 }
1371 spin_unlock(&fwc->name_lock);
1372 }
1373
1374 /**
1375 * device_cache_fw_images() - cache devices' firmware
1376 *
1377 * If one device called request_firmware or its nowait version
1378 * successfully before, the firmware names are recored into the
1379 * device's devres link list, so device_cache_fw_images can call
1380 * cache_firmware() to cache these firmwares for the device,
1381 * then the device driver can load its firmwares easily at
1382 * time when system is not ready to complete loading firmware.
1383 */
device_cache_fw_images(void)1384 static void device_cache_fw_images(void)
1385 {
1386 struct firmware_cache *fwc = &fw_cache;
1387 DEFINE_WAIT(wait);
1388
1389 pr_debug("%s\n", __func__);
1390
1391 /* cancel uncache work */
1392 cancel_delayed_work_sync(&fwc->work);
1393
1394 fw_fallback_set_cache_timeout();
1395
1396 mutex_lock(&fw_lock);
1397 fwc->state = FW_LOADER_START_CACHE;
1398 dpm_for_each_dev(NULL, dev_cache_fw_image);
1399 mutex_unlock(&fw_lock);
1400
1401 /* wait for completion of caching firmware for all devices */
1402 async_synchronize_full_domain(&fw_cache_domain);
1403
1404 fw_fallback_set_default_timeout();
1405 }
1406
1407 /**
1408 * device_uncache_fw_images() - uncache devices' firmware
1409 *
1410 * uncache all firmwares which have been cached successfully
1411 * by device_uncache_fw_images earlier
1412 */
device_uncache_fw_images(void)1413 static void device_uncache_fw_images(void)
1414 {
1415 pr_debug("%s\n", __func__);
1416 __device_uncache_fw_images();
1417 }
1418
device_uncache_fw_images_work(struct work_struct * work)1419 static void device_uncache_fw_images_work(struct work_struct *work)
1420 {
1421 device_uncache_fw_images();
1422 }
1423
1424 /**
1425 * device_uncache_fw_images_delay() - uncache devices firmwares
1426 * @delay: number of milliseconds to delay uncache device firmwares
1427 *
1428 * uncache all devices's firmwares which has been cached successfully
1429 * by device_cache_fw_images after @delay milliseconds.
1430 */
device_uncache_fw_images_delay(unsigned long delay)1431 static void device_uncache_fw_images_delay(unsigned long delay)
1432 {
1433 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1434 msecs_to_jiffies(delay));
1435 }
1436
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1437 static int fw_pm_notify(struct notifier_block *notify_block,
1438 unsigned long mode, void *unused)
1439 {
1440 switch (mode) {
1441 case PM_HIBERNATION_PREPARE:
1442 case PM_SUSPEND_PREPARE:
1443 case PM_RESTORE_PREPARE:
1444 /*
1445 * kill pending fallback requests with a custom fallback
1446 * to avoid stalling suspend.
1447 */
1448 kill_pending_fw_fallback_reqs(true);
1449 device_cache_fw_images();
1450 break;
1451
1452 case PM_POST_SUSPEND:
1453 case PM_POST_HIBERNATION:
1454 case PM_POST_RESTORE:
1455 /*
1456 * In case that system sleep failed and syscore_suspend is
1457 * not called.
1458 */
1459 mutex_lock(&fw_lock);
1460 fw_cache.state = FW_LOADER_NO_CACHE;
1461 mutex_unlock(&fw_lock);
1462
1463 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1464 break;
1465 }
1466
1467 return 0;
1468 }
1469
1470 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1471 static int fw_suspend(void)
1472 {
1473 fw_cache.state = FW_LOADER_NO_CACHE;
1474 return 0;
1475 }
1476
1477 static struct syscore_ops fw_syscore_ops = {
1478 .suspend = fw_suspend,
1479 };
1480
register_fw_pm_ops(void)1481 static int __init register_fw_pm_ops(void)
1482 {
1483 int ret;
1484
1485 spin_lock_init(&fw_cache.name_lock);
1486 INIT_LIST_HEAD(&fw_cache.fw_names);
1487
1488 INIT_DELAYED_WORK(&fw_cache.work,
1489 device_uncache_fw_images_work);
1490
1491 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1492 ret = register_pm_notifier(&fw_cache.pm_notify);
1493 if (ret)
1494 return ret;
1495
1496 register_syscore_ops(&fw_syscore_ops);
1497
1498 return ret;
1499 }
1500
unregister_fw_pm_ops(void)1501 static inline void unregister_fw_pm_ops(void)
1502 {
1503 unregister_syscore_ops(&fw_syscore_ops);
1504 unregister_pm_notifier(&fw_cache.pm_notify);
1505 }
1506 #else
fw_cache_piggyback_on_request(const char * name)1507 static int fw_cache_piggyback_on_request(const char *name)
1508 {
1509 return 0;
1510 }
register_fw_pm_ops(void)1511 static inline int register_fw_pm_ops(void)
1512 {
1513 return 0;
1514 }
unregister_fw_pm_ops(void)1515 static inline void unregister_fw_pm_ops(void)
1516 {
1517 }
1518 #endif
1519
fw_cache_init(void)1520 static void __init fw_cache_init(void)
1521 {
1522 spin_lock_init(&fw_cache.lock);
1523 INIT_LIST_HEAD(&fw_cache.head);
1524 fw_cache.state = FW_LOADER_NO_CACHE;
1525 }
1526
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1527 static int fw_shutdown_notify(struct notifier_block *unused1,
1528 unsigned long unused2, void *unused3)
1529 {
1530 /*
1531 * Kill all pending fallback requests to avoid both stalling shutdown,
1532 * and avoid a deadlock with the usermode_lock.
1533 */
1534 kill_pending_fw_fallback_reqs(false);
1535
1536 return NOTIFY_DONE;
1537 }
1538
1539 static struct notifier_block fw_shutdown_nb = {
1540 .notifier_call = fw_shutdown_notify,
1541 };
1542
firmware_class_init(void)1543 static int __init firmware_class_init(void)
1544 {
1545 int ret;
1546
1547 /* No need to unfold these on exit */
1548 fw_cache_init();
1549
1550 ret = register_fw_pm_ops();
1551 if (ret)
1552 return ret;
1553
1554 ret = register_reboot_notifier(&fw_shutdown_nb);
1555 if (ret)
1556 goto out;
1557
1558 return register_sysfs_loader();
1559
1560 out:
1561 unregister_fw_pm_ops();
1562 return ret;
1563 }
1564
firmware_class_exit(void)1565 static void __exit firmware_class_exit(void)
1566 {
1567 unregister_fw_pm_ops();
1568 unregister_reboot_notifier(&fw_shutdown_nb);
1569 unregister_sysfs_loader();
1570 }
1571
1572 fs_initcall(firmware_class_init);
1573 module_exit(firmware_class_exit);
1574