1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26  *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
27  * 2005-Mar	Roland McGrath <roland@redhat.com>
28  *		Fixed to handle %rip-relative addressing mode correctly.
29  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31  *		<prasanna@in.ibm.com> added function-return probes.
32  * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
33  * 		Added function return probes functionality
34  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35  * 		kprobe-booster and kretprobe-booster for i386.
36  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37  * 		and kretprobe-booster for x86-64
38  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39  * 		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40  * 		unified x86 kprobes code.
41  */
42 
43 #include <linux/kprobes.h>
44 #include <linux/ptrace.h>
45 #include <linux/string.h>
46 #include <linux/slab.h>
47 #include <linux/hardirq.h>
48 #include <linux/preempt.h>
49 #include <linux/module.h>
50 #include <linux/kdebug.h>
51 #include <linux/kallsyms.h>
52 #include <linux/ftrace.h>
53 
54 #include <asm/cacheflush.h>
55 #include <asm/desc.h>
56 #include <asm/pgtable.h>
57 #include <asm/uaccess.h>
58 #include <asm/alternative.h>
59 #include <asm/insn.h>
60 #include <asm/debugreg.h>
61 
62 void jprobe_return_end(void);
63 
64 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
65 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
66 
67 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
68 
69 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
70 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
71 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
72 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
73 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
74 	 << (row % 32))
75 	/*
76 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
77 	 * Groups, and some special opcodes can not boost.
78 	 * This is non-const and volatile to keep gcc from statically
79 	 * optimizing it out, as variable_test_bit makes gcc think only
80 	 * *(unsigned long*) is used.
81 	 */
82 static volatile u32 twobyte_is_boostable[256 / 32] = {
83 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
84 	/*      ----------------------------------------------          */
85 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
86 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
87 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
88 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
89 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
90 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
91 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
92 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
93 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
94 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
95 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
96 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
97 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
98 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
99 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
100 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
101 	/*      -----------------------------------------------         */
102 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
103 };
104 #undef W
105 
106 struct kretprobe_blackpoint kretprobe_blacklist[] = {
107 	{"__switch_to", }, /* This function switches only current task, but
108 			      doesn't switch kernel stack.*/
109 	{NULL, NULL}	/* Terminator */
110 };
111 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
112 
__synthesize_relative_insn(void * from,void * to,u8 op)113 static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
114 {
115 	struct __arch_relative_insn {
116 		u8 op;
117 		s32 raddr;
118 	} __attribute__((packed)) *insn;
119 
120 	insn = (struct __arch_relative_insn *)from;
121 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
122 	insn->op = op;
123 }
124 
125 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
synthesize_reljump(void * from,void * to)126 static void __kprobes synthesize_reljump(void *from, void *to)
127 {
128 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
129 }
130 
131 /*
132  * Skip the prefixes of the instruction.
133  */
skip_prefixes(kprobe_opcode_t * insn)134 static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
135 {
136 	insn_attr_t attr;
137 
138 	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
139 	while (inat_is_legacy_prefix(attr)) {
140 		insn++;
141 		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
142 	}
143 #ifdef CONFIG_X86_64
144 	if (inat_is_rex_prefix(attr))
145 		insn++;
146 #endif
147 	return insn;
148 }
149 
150 /*
151  * Returns non-zero if opcode is boostable.
152  * RIP relative instructions are adjusted at copying time in 64 bits mode
153  */
can_boost(kprobe_opcode_t * opcodes)154 static int __kprobes can_boost(kprobe_opcode_t *opcodes)
155 {
156 	kprobe_opcode_t opcode;
157 	kprobe_opcode_t *orig_opcodes = opcodes;
158 
159 	if (search_exception_tables((unsigned long)opcodes))
160 		return 0;	/* Page fault may occur on this address. */
161 
162 retry:
163 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
164 		return 0;
165 	opcode = *(opcodes++);
166 
167 	/* 2nd-byte opcode */
168 	if (opcode == 0x0f) {
169 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
170 			return 0;
171 		return test_bit(*opcodes,
172 				(unsigned long *)twobyte_is_boostable);
173 	}
174 
175 	switch (opcode & 0xf0) {
176 #ifdef CONFIG_X86_64
177 	case 0x40:
178 		goto retry; /* REX prefix is boostable */
179 #endif
180 	case 0x60:
181 		if (0x63 < opcode && opcode < 0x67)
182 			goto retry; /* prefixes */
183 		/* can't boost Address-size override and bound */
184 		return (opcode != 0x62 && opcode != 0x67);
185 	case 0x70:
186 		return 0; /* can't boost conditional jump */
187 	case 0xc0:
188 		/* can't boost software-interruptions */
189 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
190 	case 0xd0:
191 		/* can boost AA* and XLAT */
192 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
193 	case 0xe0:
194 		/* can boost in/out and absolute jmps */
195 		return ((opcode & 0x04) || opcode == 0xea);
196 	case 0xf0:
197 		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
198 			goto retry; /* lock/rep(ne) prefix */
199 		/* clear and set flags are boostable */
200 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
201 	default:
202 		/* segment override prefixes are boostable */
203 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
204 			goto retry; /* prefixes */
205 		/* CS override prefix and call are not boostable */
206 		return (opcode != 0x2e && opcode != 0x9a);
207 	}
208 }
209 
210 /* Recover the probed instruction at addr for further analysis. */
recover_probed_instruction(kprobe_opcode_t * buf,unsigned long addr)211 static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
212 {
213 	struct kprobe *kp;
214 	kp = get_kprobe((void *)addr);
215 	if (!kp)
216 		return -EINVAL;
217 
218 	/*
219 	 *  Basically, kp->ainsn.insn has an original instruction.
220 	 *  However, RIP-relative instruction can not do single-stepping
221 	 *  at different place, __copy_instruction() tweaks the displacement of
222 	 *  that instruction. In that case, we can't recover the instruction
223 	 *  from the kp->ainsn.insn.
224 	 *
225 	 *  On the other hand, kp->opcode has a copy of the first byte of
226 	 *  the probed instruction, which is overwritten by int3. And
227 	 *  the instruction at kp->addr is not modified by kprobes except
228 	 *  for the first byte, we can recover the original instruction
229 	 *  from it and kp->opcode.
230 	 */
231 	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
232 	buf[0] = kp->opcode;
233 	return 0;
234 }
235 
236 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)237 static int __kprobes can_probe(unsigned long paddr)
238 {
239 	int ret;
240 	unsigned long addr, offset = 0;
241 	struct insn insn;
242 	kprobe_opcode_t buf[MAX_INSN_SIZE];
243 
244 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
245 		return 0;
246 
247 	/* Decode instructions */
248 	addr = paddr - offset;
249 	while (addr < paddr) {
250 		kernel_insn_init(&insn, (void *)addr);
251 		insn_get_opcode(&insn);
252 
253 		/*
254 		 * Check if the instruction has been modified by another
255 		 * kprobe, in which case we replace the breakpoint by the
256 		 * original instruction in our buffer.
257 		 */
258 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
259 			ret = recover_probed_instruction(buf, addr);
260 			if (ret)
261 				/*
262 				 * Another debugging subsystem might insert
263 				 * this breakpoint. In that case, we can't
264 				 * recover it.
265 				 */
266 				return 0;
267 			kernel_insn_init(&insn, buf);
268 		}
269 		insn_get_length(&insn);
270 		addr += insn.length;
271 	}
272 
273 	return (addr == paddr);
274 }
275 
276 /*
277  * Returns non-zero if opcode modifies the interrupt flag.
278  */
is_IF_modifier(kprobe_opcode_t * insn)279 static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
280 {
281 	/* Skip prefixes */
282 	insn = skip_prefixes(insn);
283 
284 	switch (*insn) {
285 	case 0xfa:		/* cli */
286 	case 0xfb:		/* sti */
287 	case 0xcf:		/* iret/iretd */
288 	case 0x9d:		/* popf/popfd */
289 		return 1;
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * Copy an instruction and adjust the displacement if the instruction
297  * uses the %rip-relative addressing mode.
298  * If it does, Return the address of the 32-bit displacement word.
299  * If not, return null.
300  * Only applicable to 64-bit x86.
301  */
__copy_instruction(u8 * dest,u8 * src,int recover)302 static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
303 {
304 	struct insn insn;
305 	int ret;
306 	kprobe_opcode_t buf[MAX_INSN_SIZE];
307 
308 	kernel_insn_init(&insn, src);
309 	if (recover) {
310 		insn_get_opcode(&insn);
311 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
312 			ret = recover_probed_instruction(buf,
313 							 (unsigned long)src);
314 			if (ret)
315 				return 0;
316 			kernel_insn_init(&insn, buf);
317 		}
318 	}
319 	insn_get_length(&insn);
320 	memcpy(dest, insn.kaddr, insn.length);
321 
322 #ifdef CONFIG_X86_64
323 	if (insn_rip_relative(&insn)) {
324 		s64 newdisp;
325 		u8 *disp;
326 		kernel_insn_init(&insn, dest);
327 		insn_get_displacement(&insn);
328 		/*
329 		 * The copied instruction uses the %rip-relative addressing
330 		 * mode.  Adjust the displacement for the difference between
331 		 * the original location of this instruction and the location
332 		 * of the copy that will actually be run.  The tricky bit here
333 		 * is making sure that the sign extension happens correctly in
334 		 * this calculation, since we need a signed 32-bit result to
335 		 * be sign-extended to 64 bits when it's added to the %rip
336 		 * value and yield the same 64-bit result that the sign-
337 		 * extension of the original signed 32-bit displacement would
338 		 * have given.
339 		 */
340 		newdisp = (u8 *) src + (s64) insn.displacement.value -
341 			  (u8 *) dest;
342 		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
343 		disp = (u8 *) dest + insn_offset_displacement(&insn);
344 		*(s32 *) disp = (s32) newdisp;
345 	}
346 #endif
347 	return insn.length;
348 }
349 
arch_copy_kprobe(struct kprobe * p)350 static void __kprobes arch_copy_kprobe(struct kprobe *p)
351 {
352 	/*
353 	 * Copy an instruction without recovering int3, because it will be
354 	 * put by another subsystem.
355 	 */
356 	__copy_instruction(p->ainsn.insn, p->addr, 0);
357 
358 	if (can_boost(p->addr))
359 		p->ainsn.boostable = 0;
360 	else
361 		p->ainsn.boostable = -1;
362 
363 	p->opcode = *p->addr;
364 }
365 
arch_prepare_kprobe(struct kprobe * p)366 int __kprobes arch_prepare_kprobe(struct kprobe *p)
367 {
368 	if (alternatives_text_reserved(p->addr, p->addr))
369 		return -EINVAL;
370 
371 	if (!can_probe((unsigned long)p->addr))
372 		return -EILSEQ;
373 	/* insn: must be on special executable page on x86. */
374 	p->ainsn.insn = get_insn_slot();
375 	if (!p->ainsn.insn)
376 		return -ENOMEM;
377 	arch_copy_kprobe(p);
378 	return 0;
379 }
380 
arch_arm_kprobe(struct kprobe * p)381 void __kprobes arch_arm_kprobe(struct kprobe *p)
382 {
383 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
384 }
385 
arch_disarm_kprobe(struct kprobe * p)386 void __kprobes arch_disarm_kprobe(struct kprobe *p)
387 {
388 	text_poke(p->addr, &p->opcode, 1);
389 }
390 
arch_remove_kprobe(struct kprobe * p)391 void __kprobes arch_remove_kprobe(struct kprobe *p)
392 {
393 	if (p->ainsn.insn) {
394 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
395 		p->ainsn.insn = NULL;
396 	}
397 }
398 
save_previous_kprobe(struct kprobe_ctlblk * kcb)399 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
400 {
401 	kcb->prev_kprobe.kp = kprobe_running();
402 	kcb->prev_kprobe.status = kcb->kprobe_status;
403 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
404 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
405 }
406 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)407 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
408 {
409 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
410 	kcb->kprobe_status = kcb->prev_kprobe.status;
411 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
412 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
413 }
414 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)415 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
416 				struct kprobe_ctlblk *kcb)
417 {
418 	__this_cpu_write(current_kprobe, p);
419 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
420 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
421 	if (is_IF_modifier(p->ainsn.insn))
422 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
423 }
424 
clear_btf(void)425 static void __kprobes clear_btf(void)
426 {
427 	if (test_thread_flag(TIF_BLOCKSTEP)) {
428 		unsigned long debugctl = get_debugctlmsr();
429 
430 		debugctl &= ~DEBUGCTLMSR_BTF;
431 		update_debugctlmsr(debugctl);
432 	}
433 }
434 
restore_btf(void)435 static void __kprobes restore_btf(void)
436 {
437 	if (test_thread_flag(TIF_BLOCKSTEP)) {
438 		unsigned long debugctl = get_debugctlmsr();
439 
440 		debugctl |= DEBUGCTLMSR_BTF;
441 		update_debugctlmsr(debugctl);
442 	}
443 }
444 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)445 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
446 				      struct pt_regs *regs)
447 {
448 	unsigned long *sara = stack_addr(regs);
449 
450 	ri->ret_addr = (kprobe_opcode_t *) *sara;
451 
452 	/* Replace the return addr with trampoline addr */
453 	*sara = (unsigned long) &kretprobe_trampoline;
454 }
455 
456 #ifdef CONFIG_OPTPROBES
457 static int  __kprobes setup_detour_execution(struct kprobe *p,
458 					     struct pt_regs *regs,
459 					     int reenter);
460 #else
461 #define setup_detour_execution(p, regs, reenter) (0)
462 #endif
463 
setup_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb,int reenter)464 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
465 				       struct kprobe_ctlblk *kcb, int reenter)
466 {
467 	if (setup_detour_execution(p, regs, reenter))
468 		return;
469 
470 #if !defined(CONFIG_PREEMPT)
471 	if (p->ainsn.boostable == 1 && !p->post_handler) {
472 		/* Boost up -- we can execute copied instructions directly */
473 		if (!reenter)
474 			reset_current_kprobe();
475 		/*
476 		 * Reentering boosted probe doesn't reset current_kprobe,
477 		 * nor set current_kprobe, because it doesn't use single
478 		 * stepping.
479 		 */
480 		regs->ip = (unsigned long)p->ainsn.insn;
481 		preempt_enable_no_resched();
482 		return;
483 	}
484 #endif
485 	if (reenter) {
486 		save_previous_kprobe(kcb);
487 		set_current_kprobe(p, regs, kcb);
488 		kcb->kprobe_status = KPROBE_REENTER;
489 	} else
490 		kcb->kprobe_status = KPROBE_HIT_SS;
491 	/* Prepare real single stepping */
492 	clear_btf();
493 	regs->flags |= X86_EFLAGS_TF;
494 	regs->flags &= ~X86_EFLAGS_IF;
495 	/* single step inline if the instruction is an int3 */
496 	if (p->opcode == BREAKPOINT_INSTRUCTION)
497 		regs->ip = (unsigned long)p->addr;
498 	else
499 		regs->ip = (unsigned long)p->ainsn.insn;
500 }
501 
502 /*
503  * We have reentered the kprobe_handler(), since another probe was hit while
504  * within the handler. We save the original kprobes variables and just single
505  * step on the instruction of the new probe without calling any user handlers.
506  */
reenter_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)507 static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
508 				    struct kprobe_ctlblk *kcb)
509 {
510 	switch (kcb->kprobe_status) {
511 	case KPROBE_HIT_SSDONE:
512 	case KPROBE_HIT_ACTIVE:
513 		kprobes_inc_nmissed_count(p);
514 		setup_singlestep(p, regs, kcb, 1);
515 		break;
516 	case KPROBE_HIT_SS:
517 		/* A probe has been hit in the codepath leading up to, or just
518 		 * after, single-stepping of a probed instruction. This entire
519 		 * codepath should strictly reside in .kprobes.text section.
520 		 * Raise a BUG or we'll continue in an endless reentering loop
521 		 * and eventually a stack overflow.
522 		 */
523 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
524 		       p->addr);
525 		dump_kprobe(p);
526 		BUG();
527 	default:
528 		/* impossible cases */
529 		WARN_ON(1);
530 		return 0;
531 	}
532 
533 	return 1;
534 }
535 
536 /*
537  * Interrupts are disabled on entry as trap3 is an interrupt gate and they
538  * remain disabled throughout this function.
539  */
kprobe_handler(struct pt_regs * regs)540 static int __kprobes kprobe_handler(struct pt_regs *regs)
541 {
542 	kprobe_opcode_t *addr;
543 	struct kprobe *p;
544 	struct kprobe_ctlblk *kcb;
545 
546 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
547 	/*
548 	 * We don't want to be preempted for the entire
549 	 * duration of kprobe processing. We conditionally
550 	 * re-enable preemption at the end of this function,
551 	 * and also in reenter_kprobe() and setup_singlestep().
552 	 */
553 	preempt_disable();
554 
555 	kcb = get_kprobe_ctlblk();
556 	p = get_kprobe(addr);
557 
558 	if (p) {
559 		if (kprobe_running()) {
560 			if (reenter_kprobe(p, regs, kcb))
561 				return 1;
562 		} else {
563 			set_current_kprobe(p, regs, kcb);
564 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
565 
566 			/*
567 			 * If we have no pre-handler or it returned 0, we
568 			 * continue with normal processing.  If we have a
569 			 * pre-handler and it returned non-zero, it prepped
570 			 * for calling the break_handler below on re-entry
571 			 * for jprobe processing, so get out doing nothing
572 			 * more here.
573 			 */
574 			if (!p->pre_handler || !p->pre_handler(p, regs))
575 				setup_singlestep(p, regs, kcb, 0);
576 			return 1;
577 		}
578 	} else if (*addr != BREAKPOINT_INSTRUCTION) {
579 		/*
580 		 * The breakpoint instruction was removed right
581 		 * after we hit it.  Another cpu has removed
582 		 * either a probepoint or a debugger breakpoint
583 		 * at this address.  In either case, no further
584 		 * handling of this interrupt is appropriate.
585 		 * Back up over the (now missing) int3 and run
586 		 * the original instruction.
587 		 */
588 		regs->ip = (unsigned long)addr;
589 		preempt_enable_no_resched();
590 		return 1;
591 	} else if (kprobe_running()) {
592 		p = __this_cpu_read(current_kprobe);
593 		if (p->break_handler && p->break_handler(p, regs)) {
594 			setup_singlestep(p, regs, kcb, 0);
595 			return 1;
596 		}
597 	} /* else: not a kprobe fault; let the kernel handle it */
598 
599 	preempt_enable_no_resched();
600 	return 0;
601 }
602 
603 #ifdef CONFIG_X86_64
604 #define SAVE_REGS_STRING		\
605 	/* Skip cs, ip, orig_ax. */	\
606 	"	subq $24, %rsp\n"	\
607 	"	pushq %rdi\n"		\
608 	"	pushq %rsi\n"		\
609 	"	pushq %rdx\n"		\
610 	"	pushq %rcx\n"		\
611 	"	pushq %rax\n"		\
612 	"	pushq %r8\n"		\
613 	"	pushq %r9\n"		\
614 	"	pushq %r10\n"		\
615 	"	pushq %r11\n"		\
616 	"	pushq %rbx\n"		\
617 	"	pushq %rbp\n"		\
618 	"	pushq %r12\n"		\
619 	"	pushq %r13\n"		\
620 	"	pushq %r14\n"		\
621 	"	pushq %r15\n"
622 #define RESTORE_REGS_STRING		\
623 	"	popq %r15\n"		\
624 	"	popq %r14\n"		\
625 	"	popq %r13\n"		\
626 	"	popq %r12\n"		\
627 	"	popq %rbp\n"		\
628 	"	popq %rbx\n"		\
629 	"	popq %r11\n"		\
630 	"	popq %r10\n"		\
631 	"	popq %r9\n"		\
632 	"	popq %r8\n"		\
633 	"	popq %rax\n"		\
634 	"	popq %rcx\n"		\
635 	"	popq %rdx\n"		\
636 	"	popq %rsi\n"		\
637 	"	popq %rdi\n"		\
638 	/* Skip orig_ax, ip, cs */	\
639 	"	addq $24, %rsp\n"
640 #else
641 #define SAVE_REGS_STRING		\
642 	/* Skip cs, ip, orig_ax and gs. */	\
643 	"	subl $16, %esp\n"	\
644 	"	pushl %fs\n"		\
645 	"	pushl %es\n"		\
646 	"	pushl %ds\n"		\
647 	"	pushl %eax\n"		\
648 	"	pushl %ebp\n"		\
649 	"	pushl %edi\n"		\
650 	"	pushl %esi\n"		\
651 	"	pushl %edx\n"		\
652 	"	pushl %ecx\n"		\
653 	"	pushl %ebx\n"
654 #define RESTORE_REGS_STRING		\
655 	"	popl %ebx\n"		\
656 	"	popl %ecx\n"		\
657 	"	popl %edx\n"		\
658 	"	popl %esi\n"		\
659 	"	popl %edi\n"		\
660 	"	popl %ebp\n"		\
661 	"	popl %eax\n"		\
662 	/* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
663 	"	addl $24, %esp\n"
664 #endif
665 
666 /*
667  * When a retprobed function returns, this code saves registers and
668  * calls trampoline_handler() runs, which calls the kretprobe's handler.
669  */
kretprobe_trampoline_holder(void)670 static void __used __kprobes kretprobe_trampoline_holder(void)
671 {
672 	asm volatile (
673 			".global kretprobe_trampoline\n"
674 			"kretprobe_trampoline: \n"
675 #ifdef CONFIG_X86_64
676 			/* We don't bother saving the ss register */
677 			"	pushq %rsp\n"
678 			"	pushfq\n"
679 			SAVE_REGS_STRING
680 			"	movq %rsp, %rdi\n"
681 			"	call trampoline_handler\n"
682 			/* Replace saved sp with true return address. */
683 			"	movq %rax, 152(%rsp)\n"
684 			RESTORE_REGS_STRING
685 			"	popfq\n"
686 #else
687 			"	pushf\n"
688 			SAVE_REGS_STRING
689 			"	movl %esp, %eax\n"
690 			"	call trampoline_handler\n"
691 			/* Move flags to cs */
692 			"	movl 56(%esp), %edx\n"
693 			"	movl %edx, 52(%esp)\n"
694 			/* Replace saved flags with true return address. */
695 			"	movl %eax, 56(%esp)\n"
696 			RESTORE_REGS_STRING
697 			"	popf\n"
698 #endif
699 			"	ret\n");
700 }
701 
702 /*
703  * Called from kretprobe_trampoline
704  */
trampoline_handler(struct pt_regs * regs)705 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
706 {
707 	struct kretprobe_instance *ri = NULL;
708 	struct hlist_head *head, empty_rp;
709 	struct hlist_node *node, *tmp;
710 	unsigned long flags, orig_ret_address = 0;
711 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
712 	kprobe_opcode_t *correct_ret_addr = NULL;
713 
714 	INIT_HLIST_HEAD(&empty_rp);
715 	kretprobe_hash_lock(current, &head, &flags);
716 	/* fixup registers */
717 #ifdef CONFIG_X86_64
718 	regs->cs = __KERNEL_CS;
719 #else
720 	regs->cs = __KERNEL_CS | get_kernel_rpl();
721 	regs->gs = 0;
722 #endif
723 	regs->ip = trampoline_address;
724 	regs->orig_ax = ~0UL;
725 
726 	/*
727 	 * It is possible to have multiple instances associated with a given
728 	 * task either because multiple functions in the call path have
729 	 * return probes installed on them, and/or more than one
730 	 * return probe was registered for a target function.
731 	 *
732 	 * We can handle this because:
733 	 *     - instances are always pushed into the head of the list
734 	 *     - when multiple return probes are registered for the same
735 	 *	 function, the (chronologically) first instance's ret_addr
736 	 *	 will be the real return address, and all the rest will
737 	 *	 point to kretprobe_trampoline.
738 	 */
739 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
740 		if (ri->task != current)
741 			/* another task is sharing our hash bucket */
742 			continue;
743 
744 		orig_ret_address = (unsigned long)ri->ret_addr;
745 
746 		if (orig_ret_address != trampoline_address)
747 			/*
748 			 * This is the real return address. Any other
749 			 * instances associated with this task are for
750 			 * other calls deeper on the call stack
751 			 */
752 			break;
753 	}
754 
755 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
756 
757 	correct_ret_addr = ri->ret_addr;
758 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
759 		if (ri->task != current)
760 			/* another task is sharing our hash bucket */
761 			continue;
762 
763 		orig_ret_address = (unsigned long)ri->ret_addr;
764 		if (ri->rp && ri->rp->handler) {
765 			__this_cpu_write(current_kprobe, &ri->rp->kp);
766 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
767 			ri->ret_addr = correct_ret_addr;
768 			ri->rp->handler(ri, regs);
769 			__this_cpu_write(current_kprobe, NULL);
770 		}
771 
772 		recycle_rp_inst(ri, &empty_rp);
773 
774 		if (orig_ret_address != trampoline_address)
775 			/*
776 			 * This is the real return address. Any other
777 			 * instances associated with this task are for
778 			 * other calls deeper on the call stack
779 			 */
780 			break;
781 	}
782 
783 	kretprobe_hash_unlock(current, &flags);
784 
785 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
786 		hlist_del(&ri->hlist);
787 		kfree(ri);
788 	}
789 	return (void *)orig_ret_address;
790 }
791 
792 /*
793  * Called after single-stepping.  p->addr is the address of the
794  * instruction whose first byte has been replaced by the "int 3"
795  * instruction.  To avoid the SMP problems that can occur when we
796  * temporarily put back the original opcode to single-step, we
797  * single-stepped a copy of the instruction.  The address of this
798  * copy is p->ainsn.insn.
799  *
800  * This function prepares to return from the post-single-step
801  * interrupt.  We have to fix up the stack as follows:
802  *
803  * 0) Except in the case of absolute or indirect jump or call instructions,
804  * the new ip is relative to the copied instruction.  We need to make
805  * it relative to the original instruction.
806  *
807  * 1) If the single-stepped instruction was pushfl, then the TF and IF
808  * flags are set in the just-pushed flags, and may need to be cleared.
809  *
810  * 2) If the single-stepped instruction was a call, the return address
811  * that is atop the stack is the address following the copied instruction.
812  * We need to make it the address following the original instruction.
813  *
814  * If this is the first time we've single-stepped the instruction at
815  * this probepoint, and the instruction is boostable, boost it: add a
816  * jump instruction after the copied instruction, that jumps to the next
817  * instruction after the probepoint.
818  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)819 static void __kprobes resume_execution(struct kprobe *p,
820 		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
821 {
822 	unsigned long *tos = stack_addr(regs);
823 	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
824 	unsigned long orig_ip = (unsigned long)p->addr;
825 	kprobe_opcode_t *insn = p->ainsn.insn;
826 
827 	/* Skip prefixes */
828 	insn = skip_prefixes(insn);
829 
830 	regs->flags &= ~X86_EFLAGS_TF;
831 	switch (*insn) {
832 	case 0x9c:	/* pushfl */
833 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
834 		*tos |= kcb->kprobe_old_flags;
835 		break;
836 	case 0xc2:	/* iret/ret/lret */
837 	case 0xc3:
838 	case 0xca:
839 	case 0xcb:
840 	case 0xcf:
841 	case 0xea:	/* jmp absolute -- ip is correct */
842 		/* ip is already adjusted, no more changes required */
843 		p->ainsn.boostable = 1;
844 		goto no_change;
845 	case 0xe8:	/* call relative - Fix return addr */
846 		*tos = orig_ip + (*tos - copy_ip);
847 		break;
848 #ifdef CONFIG_X86_32
849 	case 0x9a:	/* call absolute -- same as call absolute, indirect */
850 		*tos = orig_ip + (*tos - copy_ip);
851 		goto no_change;
852 #endif
853 	case 0xff:
854 		if ((insn[1] & 0x30) == 0x10) {
855 			/*
856 			 * call absolute, indirect
857 			 * Fix return addr; ip is correct.
858 			 * But this is not boostable
859 			 */
860 			*tos = orig_ip + (*tos - copy_ip);
861 			goto no_change;
862 		} else if (((insn[1] & 0x31) == 0x20) ||
863 			   ((insn[1] & 0x31) == 0x21)) {
864 			/*
865 			 * jmp near and far, absolute indirect
866 			 * ip is correct. And this is boostable
867 			 */
868 			p->ainsn.boostable = 1;
869 			goto no_change;
870 		}
871 	default:
872 		break;
873 	}
874 
875 	if (p->ainsn.boostable == 0) {
876 		if ((regs->ip > copy_ip) &&
877 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
878 			/*
879 			 * These instructions can be executed directly if it
880 			 * jumps back to correct address.
881 			 */
882 			synthesize_reljump((void *)regs->ip,
883 				(void *)orig_ip + (regs->ip - copy_ip));
884 			p->ainsn.boostable = 1;
885 		} else {
886 			p->ainsn.boostable = -1;
887 		}
888 	}
889 
890 	regs->ip += orig_ip - copy_ip;
891 
892 no_change:
893 	restore_btf();
894 }
895 
896 /*
897  * Interrupts are disabled on entry as trap1 is an interrupt gate and they
898  * remain disabled throughout this function.
899  */
post_kprobe_handler(struct pt_regs * regs)900 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
901 {
902 	struct kprobe *cur = kprobe_running();
903 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
904 
905 	if (!cur)
906 		return 0;
907 
908 	resume_execution(cur, regs, kcb);
909 	regs->flags |= kcb->kprobe_saved_flags;
910 
911 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
912 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
913 		cur->post_handler(cur, regs, 0);
914 	}
915 
916 	/* Restore back the original saved kprobes variables and continue. */
917 	if (kcb->kprobe_status == KPROBE_REENTER) {
918 		restore_previous_kprobe(kcb);
919 		goto out;
920 	}
921 	reset_current_kprobe();
922 out:
923 	preempt_enable_no_resched();
924 
925 	/*
926 	 * if somebody else is singlestepping across a probe point, flags
927 	 * will have TF set, in which case, continue the remaining processing
928 	 * of do_debug, as if this is not a probe hit.
929 	 */
930 	if (regs->flags & X86_EFLAGS_TF)
931 		return 0;
932 
933 	return 1;
934 }
935 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)936 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
937 {
938 	struct kprobe *cur = kprobe_running();
939 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
940 
941 	switch (kcb->kprobe_status) {
942 	case KPROBE_HIT_SS:
943 	case KPROBE_REENTER:
944 		/*
945 		 * We are here because the instruction being single
946 		 * stepped caused a page fault. We reset the current
947 		 * kprobe and the ip points back to the probe address
948 		 * and allow the page fault handler to continue as a
949 		 * normal page fault.
950 		 */
951 		regs->ip = (unsigned long)cur->addr;
952 		regs->flags |= kcb->kprobe_old_flags;
953 		if (kcb->kprobe_status == KPROBE_REENTER)
954 			restore_previous_kprobe(kcb);
955 		else
956 			reset_current_kprobe();
957 		preempt_enable_no_resched();
958 		break;
959 	case KPROBE_HIT_ACTIVE:
960 	case KPROBE_HIT_SSDONE:
961 		/*
962 		 * We increment the nmissed count for accounting,
963 		 * we can also use npre/npostfault count for accounting
964 		 * these specific fault cases.
965 		 */
966 		kprobes_inc_nmissed_count(cur);
967 
968 		/*
969 		 * We come here because instructions in the pre/post
970 		 * handler caused the page_fault, this could happen
971 		 * if handler tries to access user space by
972 		 * copy_from_user(), get_user() etc. Let the
973 		 * user-specified handler try to fix it first.
974 		 */
975 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
976 			return 1;
977 
978 		/*
979 		 * In case the user-specified fault handler returned
980 		 * zero, try to fix up.
981 		 */
982 		if (fixup_exception(regs))
983 			return 1;
984 
985 		/*
986 		 * fixup routine could not handle it,
987 		 * Let do_page_fault() fix it.
988 		 */
989 		break;
990 	default:
991 		break;
992 	}
993 	return 0;
994 }
995 
996 /*
997  * Wrapper routine for handling exceptions.
998  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)999 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
1000 				       unsigned long val, void *data)
1001 {
1002 	struct die_args *args = data;
1003 	int ret = NOTIFY_DONE;
1004 
1005 	if (args->regs && user_mode_vm(args->regs))
1006 		return ret;
1007 
1008 	switch (val) {
1009 	case DIE_INT3:
1010 		if (kprobe_handler(args->regs))
1011 			ret = NOTIFY_STOP;
1012 		break;
1013 	case DIE_DEBUG:
1014 		if (post_kprobe_handler(args->regs)) {
1015 			/*
1016 			 * Reset the BS bit in dr6 (pointed by args->err) to
1017 			 * denote completion of processing
1018 			 */
1019 			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
1020 			ret = NOTIFY_STOP;
1021 		}
1022 		break;
1023 	case DIE_GPF:
1024 		/*
1025 		 * To be potentially processing a kprobe fault and to
1026 		 * trust the result from kprobe_running(), we have
1027 		 * be non-preemptible.
1028 		 */
1029 		if (!preemptible() && kprobe_running() &&
1030 		    kprobe_fault_handler(args->regs, args->trapnr))
1031 			ret = NOTIFY_STOP;
1032 		break;
1033 	default:
1034 		break;
1035 	}
1036 	return ret;
1037 }
1038 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)1039 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1040 {
1041 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1042 	unsigned long addr;
1043 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1044 
1045 	kcb->jprobe_saved_regs = *regs;
1046 	kcb->jprobe_saved_sp = stack_addr(regs);
1047 	addr = (unsigned long)(kcb->jprobe_saved_sp);
1048 
1049 	/*
1050 	 * As Linus pointed out, gcc assumes that the callee
1051 	 * owns the argument space and could overwrite it, e.g.
1052 	 * tailcall optimization. So, to be absolutely safe
1053 	 * we also save and restore enough stack bytes to cover
1054 	 * the argument area.
1055 	 */
1056 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1057 	       MIN_STACK_SIZE(addr));
1058 	regs->flags &= ~X86_EFLAGS_IF;
1059 	trace_hardirqs_off();
1060 	regs->ip = (unsigned long)(jp->entry);
1061 	return 1;
1062 }
1063 
jprobe_return(void)1064 void __kprobes jprobe_return(void)
1065 {
1066 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1067 
1068 	asm volatile (
1069 #ifdef CONFIG_X86_64
1070 			"       xchg   %%rbx,%%rsp	\n"
1071 #else
1072 			"       xchgl   %%ebx,%%esp	\n"
1073 #endif
1074 			"       int3			\n"
1075 			"       .globl jprobe_return_end\n"
1076 			"       jprobe_return_end:	\n"
1077 			"       nop			\n"::"b"
1078 			(kcb->jprobe_saved_sp):"memory");
1079 }
1080 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)1081 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1082 {
1083 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084 	u8 *addr = (u8 *) (regs->ip - 1);
1085 	struct jprobe *jp = container_of(p, struct jprobe, kp);
1086 
1087 	if ((addr > (u8 *) jprobe_return) &&
1088 	    (addr < (u8 *) jprobe_return_end)) {
1089 		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1090 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1091 			printk(KERN_ERR
1092 			       "current sp %p does not match saved sp %p\n",
1093 			       stack_addr(regs), kcb->jprobe_saved_sp);
1094 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1095 			show_registers(saved_regs);
1096 			printk(KERN_ERR "Current registers\n");
1097 			show_registers(regs);
1098 			BUG();
1099 		}
1100 		*regs = kcb->jprobe_saved_regs;
1101 		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1102 		       kcb->jprobes_stack,
1103 		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1104 		preempt_enable_no_resched();
1105 		return 1;
1106 	}
1107 	return 0;
1108 }
1109 
1110 
1111 #ifdef CONFIG_OPTPROBES
1112 
1113 /* Insert a call instruction at address 'from', which calls address 'to'.*/
synthesize_relcall(void * from,void * to)1114 static void __kprobes synthesize_relcall(void *from, void *to)
1115 {
1116 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1117 }
1118 
1119 /* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
synthesize_set_arg1(kprobe_opcode_t * addr,unsigned long val)1120 static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1121 					  unsigned long val)
1122 {
1123 #ifdef CONFIG_X86_64
1124 	*addr++ = 0x48;
1125 	*addr++ = 0xbf;
1126 #else
1127 	*addr++ = 0xb8;
1128 #endif
1129 	*(unsigned long *)addr = val;
1130 }
1131 
kprobes_optinsn_template_holder(void)1132 static void __used __kprobes kprobes_optinsn_template_holder(void)
1133 {
1134 	asm volatile (
1135 			".global optprobe_template_entry\n"
1136 			"optprobe_template_entry: \n"
1137 #ifdef CONFIG_X86_64
1138 			/* We don't bother saving the ss register */
1139 			"	pushq %rsp\n"
1140 			"	pushfq\n"
1141 			SAVE_REGS_STRING
1142 			"	movq %rsp, %rsi\n"
1143 			".global optprobe_template_val\n"
1144 			"optprobe_template_val: \n"
1145 			ASM_NOP5
1146 			ASM_NOP5
1147 			".global optprobe_template_call\n"
1148 			"optprobe_template_call: \n"
1149 			ASM_NOP5
1150 			/* Move flags to rsp */
1151 			"	movq 144(%rsp), %rdx\n"
1152 			"	movq %rdx, 152(%rsp)\n"
1153 			RESTORE_REGS_STRING
1154 			/* Skip flags entry */
1155 			"	addq $8, %rsp\n"
1156 			"	popfq\n"
1157 #else /* CONFIG_X86_32 */
1158 			"	pushf\n"
1159 			SAVE_REGS_STRING
1160 			"	movl %esp, %edx\n"
1161 			".global optprobe_template_val\n"
1162 			"optprobe_template_val: \n"
1163 			ASM_NOP5
1164 			".global optprobe_template_call\n"
1165 			"optprobe_template_call: \n"
1166 			ASM_NOP5
1167 			RESTORE_REGS_STRING
1168 			"	addl $4, %esp\n"	/* skip cs */
1169 			"	popf\n"
1170 #endif
1171 			".global optprobe_template_end\n"
1172 			"optprobe_template_end: \n");
1173 }
1174 
1175 #define TMPL_MOVE_IDX \
1176 	((long)&optprobe_template_val - (long)&optprobe_template_entry)
1177 #define TMPL_CALL_IDX \
1178 	((long)&optprobe_template_call - (long)&optprobe_template_entry)
1179 #define TMPL_END_IDX \
1180 	((long)&optprobe_template_end - (long)&optprobe_template_entry)
1181 
1182 #define INT3_SIZE sizeof(kprobe_opcode_t)
1183 
1184 /* Optimized kprobe call back function: called from optinsn */
optimized_callback(struct optimized_kprobe * op,struct pt_regs * regs)1185 static void __kprobes optimized_callback(struct optimized_kprobe *op,
1186 					 struct pt_regs *regs)
1187 {
1188 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1189 	unsigned long flags;
1190 
1191 	/* This is possible if op is under delayed unoptimizing */
1192 	if (kprobe_disabled(&op->kp))
1193 		return;
1194 
1195 	local_irq_save(flags);
1196 	if (kprobe_running()) {
1197 		kprobes_inc_nmissed_count(&op->kp);
1198 	} else {
1199 		/* Save skipped registers */
1200 #ifdef CONFIG_X86_64
1201 		regs->cs = __KERNEL_CS;
1202 #else
1203 		regs->cs = __KERNEL_CS | get_kernel_rpl();
1204 		regs->gs = 0;
1205 #endif
1206 		regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1207 		regs->orig_ax = ~0UL;
1208 
1209 		__this_cpu_write(current_kprobe, &op->kp);
1210 		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1211 		opt_pre_handler(&op->kp, regs);
1212 		__this_cpu_write(current_kprobe, NULL);
1213 	}
1214 	local_irq_restore(flags);
1215 }
1216 
copy_optimized_instructions(u8 * dest,u8 * src)1217 static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1218 {
1219 	int len = 0, ret;
1220 
1221 	while (len < RELATIVEJUMP_SIZE) {
1222 		ret = __copy_instruction(dest + len, src + len, 1);
1223 		if (!ret || !can_boost(dest + len))
1224 			return -EINVAL;
1225 		len += ret;
1226 	}
1227 	/* Check whether the address range is reserved */
1228 	if (ftrace_text_reserved(src, src + len - 1) ||
1229 	    alternatives_text_reserved(src, src + len - 1) ||
1230 	    jump_label_text_reserved(src, src + len - 1))
1231 		return -EBUSY;
1232 
1233 	return len;
1234 }
1235 
1236 /* Check whether insn is indirect jump */
insn_is_indirect_jump(struct insn * insn)1237 static int __kprobes insn_is_indirect_jump(struct insn *insn)
1238 {
1239 	return ((insn->opcode.bytes[0] == 0xff &&
1240 		(X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1241 		insn->opcode.bytes[0] == 0xea);	/* Segment based jump */
1242 }
1243 
1244 /* Check whether insn jumps into specified address range */
insn_jump_into_range(struct insn * insn,unsigned long start,int len)1245 static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1246 {
1247 	unsigned long target = 0;
1248 
1249 	switch (insn->opcode.bytes[0]) {
1250 	case 0xe0:	/* loopne */
1251 	case 0xe1:	/* loope */
1252 	case 0xe2:	/* loop */
1253 	case 0xe3:	/* jcxz */
1254 	case 0xe9:	/* near relative jump */
1255 	case 0xeb:	/* short relative jump */
1256 		break;
1257 	case 0x0f:
1258 		if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1259 			break;
1260 		return 0;
1261 	default:
1262 		if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1263 			break;
1264 		return 0;
1265 	}
1266 	target = (unsigned long)insn->next_byte + insn->immediate.value;
1267 
1268 	return (start <= target && target <= start + len);
1269 }
1270 
1271 /* Decode whole function to ensure any instructions don't jump into target */
can_optimize(unsigned long paddr)1272 static int __kprobes can_optimize(unsigned long paddr)
1273 {
1274 	int ret;
1275 	unsigned long addr, size = 0, offset = 0;
1276 	struct insn insn;
1277 	kprobe_opcode_t buf[MAX_INSN_SIZE];
1278 
1279 	/* Lookup symbol including addr */
1280 	if (!kallsyms_lookup_size_offset(paddr, &size, &offset))
1281 		return 0;
1282 
1283 	/*
1284 	 * Do not optimize in the entry code due to the unstable
1285 	 * stack handling.
1286 	 */
1287 	if ((paddr >= (unsigned long )__entry_text_start) &&
1288 	    (paddr <  (unsigned long )__entry_text_end))
1289 		return 0;
1290 
1291 	/* Check there is enough space for a relative jump. */
1292 	if (size - offset < RELATIVEJUMP_SIZE)
1293 		return 0;
1294 
1295 	/* Decode instructions */
1296 	addr = paddr - offset;
1297 	while (addr < paddr - offset + size) { /* Decode until function end */
1298 		if (search_exception_tables(addr))
1299 			/*
1300 			 * Since some fixup code will jumps into this function,
1301 			 * we can't optimize kprobe in this function.
1302 			 */
1303 			return 0;
1304 		kernel_insn_init(&insn, (void *)addr);
1305 		insn_get_opcode(&insn);
1306 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1307 			ret = recover_probed_instruction(buf, addr);
1308 			if (ret)
1309 				return 0;
1310 			kernel_insn_init(&insn, buf);
1311 		}
1312 		insn_get_length(&insn);
1313 		/* Recover address */
1314 		insn.kaddr = (void *)addr;
1315 		insn.next_byte = (void *)(addr + insn.length);
1316 		/* Check any instructions don't jump into target */
1317 		if (insn_is_indirect_jump(&insn) ||
1318 		    insn_jump_into_range(&insn, paddr + INT3_SIZE,
1319 					 RELATIVE_ADDR_SIZE))
1320 			return 0;
1321 		addr += insn.length;
1322 	}
1323 
1324 	return 1;
1325 }
1326 
1327 /* Check optimized_kprobe can actually be optimized. */
arch_check_optimized_kprobe(struct optimized_kprobe * op)1328 int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1329 {
1330 	int i;
1331 	struct kprobe *p;
1332 
1333 	for (i = 1; i < op->optinsn.size; i++) {
1334 		p = get_kprobe(op->kp.addr + i);
1335 		if (p && !kprobe_disabled(p))
1336 			return -EEXIST;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /* Check the addr is within the optimized instructions. */
arch_within_optimized_kprobe(struct optimized_kprobe * op,unsigned long addr)1343 int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1344 					   unsigned long addr)
1345 {
1346 	return ((unsigned long)op->kp.addr <= addr &&
1347 		(unsigned long)op->kp.addr + op->optinsn.size > addr);
1348 }
1349 
1350 /* Free optimized instruction slot */
1351 static __kprobes
__arch_remove_optimized_kprobe(struct optimized_kprobe * op,int dirty)1352 void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1353 {
1354 	if (op->optinsn.insn) {
1355 		free_optinsn_slot(op->optinsn.insn, dirty);
1356 		op->optinsn.insn = NULL;
1357 		op->optinsn.size = 0;
1358 	}
1359 }
1360 
arch_remove_optimized_kprobe(struct optimized_kprobe * op)1361 void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1362 {
1363 	__arch_remove_optimized_kprobe(op, 1);
1364 }
1365 
1366 /*
1367  * Copy replacing target instructions
1368  * Target instructions MUST be relocatable (checked inside)
1369  */
arch_prepare_optimized_kprobe(struct optimized_kprobe * op)1370 int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1371 {
1372 	u8 *buf;
1373 	int ret;
1374 	long rel;
1375 
1376 	if (!can_optimize((unsigned long)op->kp.addr))
1377 		return -EILSEQ;
1378 
1379 	op->optinsn.insn = get_optinsn_slot();
1380 	if (!op->optinsn.insn)
1381 		return -ENOMEM;
1382 
1383 	/*
1384 	 * Verify if the address gap is in 2GB range, because this uses
1385 	 * a relative jump.
1386 	 */
1387 	rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1388 	if (abs(rel) > 0x7fffffff)
1389 		return -ERANGE;
1390 
1391 	buf = (u8 *)op->optinsn.insn;
1392 
1393 	/* Copy instructions into the out-of-line buffer */
1394 	ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1395 	if (ret < 0) {
1396 		__arch_remove_optimized_kprobe(op, 0);
1397 		return ret;
1398 	}
1399 	op->optinsn.size = ret;
1400 
1401 	/* Copy arch-dep-instance from template */
1402 	memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1403 
1404 	/* Set probe information */
1405 	synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1406 
1407 	/* Set probe function call */
1408 	synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1409 
1410 	/* Set returning jmp instruction at the tail of out-of-line buffer */
1411 	synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1412 			   (u8 *)op->kp.addr + op->optinsn.size);
1413 
1414 	flush_icache_range((unsigned long) buf,
1415 			   (unsigned long) buf + TMPL_END_IDX +
1416 			   op->optinsn.size + RELATIVEJUMP_SIZE);
1417 	return 0;
1418 }
1419 
1420 #define MAX_OPTIMIZE_PROBES 256
1421 static struct text_poke_param *jump_poke_params;
1422 static struct jump_poke_buffer {
1423 	u8 buf[RELATIVEJUMP_SIZE];
1424 } *jump_poke_bufs;
1425 
setup_optimize_kprobe(struct text_poke_param * tprm,u8 * insn_buf,struct optimized_kprobe * op)1426 static void __kprobes setup_optimize_kprobe(struct text_poke_param *tprm,
1427 					    u8 *insn_buf,
1428 					    struct optimized_kprobe *op)
1429 {
1430 	s32 rel = (s32)((long)op->optinsn.insn -
1431 			((long)op->kp.addr + RELATIVEJUMP_SIZE));
1432 
1433 	/* Backup instructions which will be replaced by jump address */
1434 	memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1435 	       RELATIVE_ADDR_SIZE);
1436 
1437 	insn_buf[0] = RELATIVEJUMP_OPCODE;
1438 	*(s32 *)(&insn_buf[1]) = rel;
1439 
1440 	tprm->addr = op->kp.addr;
1441 	tprm->opcode = insn_buf;
1442 	tprm->len = RELATIVEJUMP_SIZE;
1443 }
1444 
1445 /*
1446  * Replace breakpoints (int3) with relative jumps.
1447  * Caller must call with locking kprobe_mutex and text_mutex.
1448  */
arch_optimize_kprobes(struct list_head * oplist)1449 void __kprobes arch_optimize_kprobes(struct list_head *oplist)
1450 {
1451 	struct optimized_kprobe *op, *tmp;
1452 	int c = 0;
1453 
1454 	list_for_each_entry_safe(op, tmp, oplist, list) {
1455 		WARN_ON(kprobe_disabled(&op->kp));
1456 		/* Setup param */
1457 		setup_optimize_kprobe(&jump_poke_params[c],
1458 				      jump_poke_bufs[c].buf, op);
1459 		list_del_init(&op->list);
1460 		if (++c >= MAX_OPTIMIZE_PROBES)
1461 			break;
1462 	}
1463 
1464 	/*
1465 	 * text_poke_smp doesn't support NMI/MCE code modifying.
1466 	 * However, since kprobes itself also doesn't support NMI/MCE
1467 	 * code probing, it's not a problem.
1468 	 */
1469 	text_poke_smp_batch(jump_poke_params, c);
1470 }
1471 
setup_unoptimize_kprobe(struct text_poke_param * tprm,u8 * insn_buf,struct optimized_kprobe * op)1472 static void __kprobes setup_unoptimize_kprobe(struct text_poke_param *tprm,
1473 					      u8 *insn_buf,
1474 					      struct optimized_kprobe *op)
1475 {
1476 	/* Set int3 to first byte for kprobes */
1477 	insn_buf[0] = BREAKPOINT_INSTRUCTION;
1478 	memcpy(insn_buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1479 
1480 	tprm->addr = op->kp.addr;
1481 	tprm->opcode = insn_buf;
1482 	tprm->len = RELATIVEJUMP_SIZE;
1483 }
1484 
1485 /*
1486  * Recover original instructions and breakpoints from relative jumps.
1487  * Caller must call with locking kprobe_mutex.
1488  */
arch_unoptimize_kprobes(struct list_head * oplist,struct list_head * done_list)1489 extern void arch_unoptimize_kprobes(struct list_head *oplist,
1490 				    struct list_head *done_list)
1491 {
1492 	struct optimized_kprobe *op, *tmp;
1493 	int c = 0;
1494 
1495 	list_for_each_entry_safe(op, tmp, oplist, list) {
1496 		/* Setup param */
1497 		setup_unoptimize_kprobe(&jump_poke_params[c],
1498 					jump_poke_bufs[c].buf, op);
1499 		list_move(&op->list, done_list);
1500 		if (++c >= MAX_OPTIMIZE_PROBES)
1501 			break;
1502 	}
1503 
1504 	/*
1505 	 * text_poke_smp doesn't support NMI/MCE code modifying.
1506 	 * However, since kprobes itself also doesn't support NMI/MCE
1507 	 * code probing, it's not a problem.
1508 	 */
1509 	text_poke_smp_batch(jump_poke_params, c);
1510 }
1511 
1512 /* Replace a relative jump with a breakpoint (int3).  */
arch_unoptimize_kprobe(struct optimized_kprobe * op)1513 void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1514 {
1515 	u8 buf[RELATIVEJUMP_SIZE];
1516 
1517 	/* Set int3 to first byte for kprobes */
1518 	buf[0] = BREAKPOINT_INSTRUCTION;
1519 	memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1520 	text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1521 }
1522 
setup_detour_execution(struct kprobe * p,struct pt_regs * regs,int reenter)1523 static int  __kprobes setup_detour_execution(struct kprobe *p,
1524 					     struct pt_regs *regs,
1525 					     int reenter)
1526 {
1527 	struct optimized_kprobe *op;
1528 
1529 	if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1530 		/* This kprobe is really able to run optimized path. */
1531 		op = container_of(p, struct optimized_kprobe, kp);
1532 		/* Detour through copied instructions */
1533 		regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1534 		if (!reenter)
1535 			reset_current_kprobe();
1536 		preempt_enable_no_resched();
1537 		return 1;
1538 	}
1539 	return 0;
1540 }
1541 
init_poke_params(void)1542 static int __kprobes init_poke_params(void)
1543 {
1544 	/* Allocate code buffer and parameter array */
1545 	jump_poke_bufs = kmalloc(sizeof(struct jump_poke_buffer) *
1546 				 MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1547 	if (!jump_poke_bufs)
1548 		return -ENOMEM;
1549 
1550 	jump_poke_params = kmalloc(sizeof(struct text_poke_param) *
1551 				   MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1552 	if (!jump_poke_params) {
1553 		kfree(jump_poke_bufs);
1554 		jump_poke_bufs = NULL;
1555 		return -ENOMEM;
1556 	}
1557 
1558 	return 0;
1559 }
1560 #else	/* !CONFIG_OPTPROBES */
init_poke_params(void)1561 static int __kprobes init_poke_params(void)
1562 {
1563 	return 0;
1564 }
1565 #endif
1566 
arch_init_kprobes(void)1567 int __init arch_init_kprobes(void)
1568 {
1569 	return init_poke_params();
1570 }
1571 
arch_trampoline_kprobe(struct kprobe * p)1572 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1573 {
1574 	return 0;
1575 }
1576