xref: /qemu/target/arm/cpu.h (revision 7698afc42b5af9e55f12ab2236618e38e5a1c23f)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-common.h"
28 #include "exec/cpu-defs.h"
29 #include "exec/cpu-interrupt.h"
30 #include "exec/gdbstub.h"
31 #include "exec/page-protection.h"
32 #include "qapi/qapi-types-common.h"
33 #include "target/arm/multiprocessing.h"
34 #include "target/arm/gtimer.h"
35 #include "target/arm/cpu-sysregs.h"
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
61 #define EXCP_NMI            26
62 #define EXCP_VINMI          27
63 #define EXCP_VFNMI          28
64 #define EXCP_MON_TRAP       29   /* AArch32 trap to Monitor mode */
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* The 2nd extra word holding syndrome info for data aborts does not use
103  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
104  * help the sleb128 encoder do a better job.
105  * When restoring the CPU state, we shift it back up.
106  */
107 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
108 #define ARM_INSN_START_WORD2_SHIFT 13
109 
110 /* We currently assume float and double are IEEE single and double
111    precision respectively.
112    Doing runtime conversions is tricky because VFP registers may contain
113    integer values (eg. as the result of a FTOSI instruction).
114    s<2n> maps to the least significant half of d<n>
115    s<2n+1> maps to the most significant half of d<n>
116  */
117 
118 /**
119  * DynamicGDBFeatureInfo:
120  * @desc: Contains the feature descriptions.
121  * @data: A union with data specific to the set of registers
122  *    @cpregs_keys: Array that contains the corresponding Key of
123  *                  a given cpreg with the same order of the cpreg
124  *                  in the XML description.
125  */
126 typedef struct DynamicGDBFeatureInfo {
127     GDBFeature desc;
128     union {
129         struct {
130             uint32_t *keys;
131         } cpregs;
132     } data;
133 } DynamicGDBFeatureInfo;
134 
135 /* CPU state for each instance of a generic timer (in cp15 c14) */
136 typedef struct ARMGenericTimer {
137     uint64_t cval; /* Timer CompareValue register */
138     uint64_t ctl; /* Timer Control register */
139 } ARMGenericTimer;
140 
141 /* Define a maximum sized vector register.
142  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
143  * For 64-bit, this is a 2048-bit SVE register.
144  *
145  * Note that the mapping between S, D, and Q views of the register bank
146  * differs between AArch64 and AArch32.
147  * In AArch32:
148  *  Qn = regs[n].d[1]:regs[n].d[0]
149  *  Dn = regs[n / 2].d[n & 1]
150  *  Sn = regs[n / 4].d[n % 4 / 2],
151  *       bits 31..0 for even n, and bits 63..32 for odd n
152  *       (and regs[16] to regs[31] are inaccessible)
153  * In AArch64:
154  *  Zn = regs[n].d[*]
155  *  Qn = regs[n].d[1]:regs[n].d[0]
156  *  Dn = regs[n].d[0]
157  *  Sn = regs[n].d[0] bits 31..0
158  *  Hn = regs[n].d[0] bits 15..0
159  *
160  * This corresponds to the architecturally defined mapping between
161  * the two execution states, and means we do not need to explicitly
162  * map these registers when changing states.
163  *
164  * Align the data for use with TCG host vector operations.
165  */
166 
167 #define ARM_MAX_VQ    16
168 
169 typedef struct ARMVectorReg {
170     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
171 } ARMVectorReg;
172 
173 /* In AArch32 mode, predicate registers do not exist at all.  */
174 typedef struct ARMPredicateReg {
175     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
176 } ARMPredicateReg;
177 
178 /* In AArch32 mode, PAC keys do not exist at all.  */
179 typedef struct ARMPACKey {
180     uint64_t lo, hi;
181 } ARMPACKey;
182 
183 /* See the commentary above the TBFLAG field definitions.  */
184 typedef struct CPUARMTBFlags {
185     uint32_t flags;
186     uint64_t flags2;
187 } CPUARMTBFlags;
188 
189 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
190 
191 typedef struct NVICState NVICState;
192 
193 /*
194  * Enum for indexing vfp.fp_status[].
195  *
196  * FPST_A32: is the "normal" fp status for AArch32 insns
197  * FPST_A64: is the "normal" fp status for AArch64 insns
198  * FPST_A32_F16: used for AArch32 half-precision calculations
199  * FPST_A64_F16: used for AArch64 half-precision calculations
200  * FPST_STD: the ARM "Standard FPSCR Value"
201  * FPST_STD_F16: used for half-precision
202  *       calculations with the ARM "Standard FPSCR Value"
203  * FPST_AH: used for the A64 insns which change behaviour
204  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
205  *       and the reciprocal and square root estimate/step insns)
206  * FPST_AH_F16: used for the A64 insns which change behaviour
207  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
208  *       and the reciprocal and square root estimate/step insns);
209  *       for half-precision
210  *
211  * Half-precision operations are governed by a separate
212  * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
213  * status structure to control this.
214  *
215  * The "Standard FPSCR", ie default-NaN, flush-to-zero,
216  * round-to-nearest and is used by any operations (generally
217  * Neon) which the architecture defines as controlled by the
218  * standard FPSCR value rather than the FPSCR.
219  *
220  * The "standard FPSCR but for fp16 ops" is needed because
221  * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
222  * using a fixed value for it.
223  *
224  * FPST_AH is needed because some insns have different
225  * behaviour when FPCR.AH == 1: they don't update cumulative
226  * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and
227  * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16,
228  * which means we need an FPST_AH_F16 as well.
229  *
230  * To avoid having to transfer exception bits around, we simply
231  * say that the FPSCR cumulative exception flags are the logical
232  * OR of the flags in the four fp statuses. This relies on the
233  * only thing which needs to read the exception flags being
234  * an explicit FPSCR read.
235  */
236 typedef enum ARMFPStatusFlavour {
237     FPST_A32,
238     FPST_A64,
239     FPST_A32_F16,
240     FPST_A64_F16,
241     FPST_AH,
242     FPST_AH_F16,
243     FPST_STD,
244     FPST_STD_F16,
245 } ARMFPStatusFlavour;
246 #define FPST_COUNT  8
247 
248 typedef struct CPUArchState {
249     /* Regs for current mode.  */
250     uint32_t regs[16];
251 
252     /* 32/64 switch only happens when taking and returning from
253      * exceptions so the overlap semantics are taken care of then
254      * instead of having a complicated union.
255      */
256     /* Regs for A64 mode.  */
257     uint64_t xregs[32];
258     uint64_t pc;
259     /* PSTATE isn't an architectural register for ARMv8. However, it is
260      * convenient for us to assemble the underlying state into a 32 bit format
261      * identical to the architectural format used for the SPSR. (This is also
262      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
263      * 'pstate' register are.) Of the PSTATE bits:
264      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
265      *    semantics as for AArch32, as described in the comments on each field)
266      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
267      *  DAIF (exception masks) are kept in env->daif
268      *  BTYPE is kept in env->btype
269      *  SM and ZA are kept in env->svcr
270      *  all other bits are stored in their correct places in env->pstate
271      */
272     uint32_t pstate;
273     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
274     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
275 
276     /* Cached TBFLAGS state.  See below for which bits are included.  */
277     CPUARMTBFlags hflags;
278 
279     /* Frequently accessed CPSR bits are stored separately for efficiency.
280        This contains all the other bits.  Use cpsr_{read,write} to access
281        the whole CPSR.  */
282     uint32_t uncached_cpsr;
283     uint32_t spsr;
284 
285     /* Banked registers.  */
286     uint64_t banked_spsr[8];
287     uint32_t banked_r13[8];
288     uint32_t banked_r14[8];
289 
290     /* These hold r8-r12.  */
291     uint32_t usr_regs[5];
292     uint32_t fiq_regs[5];
293 
294     /* cpsr flag cache for faster execution */
295     uint32_t CF; /* 0 or 1 */
296     uint32_t VF; /* V is the bit 31. All other bits are undefined */
297     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
298     uint32_t ZF; /* Z set if zero.  */
299     uint32_t QF; /* 0 or 1 */
300     uint32_t GE; /* cpsr[19:16] */
301     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
302     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
303     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
304     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
305 
306     uint64_t elr_el[4]; /* AArch64 exception link regs  */
307     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
308 
309     /* System control coprocessor (cp15) */
310     struct {
311         uint32_t c0_cpuid;
312         union { /* Cache size selection */
313             struct {
314                 uint64_t _unused_csselr0;
315                 uint64_t csselr_ns;
316                 uint64_t _unused_csselr1;
317                 uint64_t csselr_s;
318             };
319             uint64_t csselr_el[4];
320         };
321         union { /* System control register. */
322             struct {
323                 uint64_t _unused_sctlr;
324                 uint64_t sctlr_ns;
325                 uint64_t hsctlr;
326                 uint64_t sctlr_s;
327             };
328             uint64_t sctlr_el[4];
329         };
330         uint64_t vsctlr; /* Virtualization System control register. */
331         uint64_t cpacr_el1; /* Architectural feature access control register */
332         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
333         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
334         uint64_t sder; /* Secure debug enable register. */
335         uint32_t nsacr; /* Non-secure access control register. */
336         union { /* MMU translation table base 0. */
337             struct {
338                 uint64_t _unused_ttbr0_0;
339                 uint64_t ttbr0_ns;
340                 uint64_t _unused_ttbr0_1;
341                 uint64_t ttbr0_s;
342             };
343             uint64_t ttbr0_el[4];
344         };
345         union { /* MMU translation table base 1. */
346             struct {
347                 uint64_t _unused_ttbr1_0;
348                 uint64_t ttbr1_ns;
349                 uint64_t _unused_ttbr1_1;
350                 uint64_t ttbr1_s;
351             };
352             uint64_t ttbr1_el[4];
353         };
354         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
355         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
356         /* MMU translation table base control. */
357         uint64_t tcr_el[4];
358         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
359         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
360         uint32_t c2_data; /* MPU data cacheable bits.  */
361         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
362         union { /* MMU domain access control register
363                  * MPU write buffer control.
364                  */
365             struct {
366                 uint64_t dacr_ns;
367                 uint64_t dacr_s;
368             };
369             struct {
370                 uint64_t dacr32_el2;
371             };
372         };
373         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
374         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
375         uint64_t hcr_el2; /* Hypervisor configuration register */
376         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
377         uint64_t scr_el3; /* Secure configuration register.  */
378         union { /* Fault status registers.  */
379             struct {
380                 uint64_t ifsr_ns;
381                 uint64_t ifsr_s;
382             };
383             struct {
384                 uint64_t ifsr32_el2;
385             };
386         };
387         union {
388             struct {
389                 uint64_t _unused_dfsr;
390                 uint64_t dfsr_ns;
391                 uint64_t hsr;
392                 uint64_t dfsr_s;
393             };
394             uint64_t esr_el[4];
395         };
396         uint32_t c6_region[8]; /* MPU base/size registers.  */
397         union { /* Fault address registers. */
398             struct {
399                 uint64_t _unused_far0;
400 #if HOST_BIG_ENDIAN
401                 uint32_t ifar_ns;
402                 uint32_t dfar_ns;
403                 uint32_t ifar_s;
404                 uint32_t dfar_s;
405 #else
406                 uint32_t dfar_ns;
407                 uint32_t ifar_ns;
408                 uint32_t dfar_s;
409                 uint32_t ifar_s;
410 #endif
411                 uint64_t _unused_far3;
412             };
413             uint64_t far_el[4];
414         };
415         uint64_t hpfar_el2;
416         uint64_t hstr_el2;
417         union { /* Translation result. */
418             struct {
419                 uint64_t _unused_par_0;
420                 uint64_t par_ns;
421                 uint64_t _unused_par_1;
422                 uint64_t par_s;
423             };
424             uint64_t par_el[4];
425         };
426 
427         uint32_t c9_insn; /* Cache lockdown registers.  */
428         uint32_t c9_data;
429         uint64_t c9_pmcr; /* performance monitor control register */
430         uint64_t c9_pmcnten; /* perf monitor counter enables */
431         uint64_t c9_pmovsr; /* perf monitor overflow status */
432         uint64_t c9_pmuserenr; /* perf monitor user enable */
433         uint64_t c9_pmselr; /* perf monitor counter selection register */
434         uint64_t c9_pminten; /* perf monitor interrupt enables */
435         union { /* Memory attribute redirection */
436             struct {
437 #if HOST_BIG_ENDIAN
438                 uint64_t _unused_mair_0;
439                 uint32_t mair1_ns;
440                 uint32_t mair0_ns;
441                 uint64_t _unused_mair_1;
442                 uint32_t mair1_s;
443                 uint32_t mair0_s;
444 #else
445                 uint64_t _unused_mair_0;
446                 uint32_t mair0_ns;
447                 uint32_t mair1_ns;
448                 uint64_t _unused_mair_1;
449                 uint32_t mair0_s;
450                 uint32_t mair1_s;
451 #endif
452             };
453             uint64_t mair_el[4];
454         };
455         union { /* vector base address register */
456             struct {
457                 uint64_t _unused_vbar;
458                 uint64_t vbar_ns;
459                 uint64_t hvbar;
460                 uint64_t vbar_s;
461             };
462             uint64_t vbar_el[4];
463         };
464         uint32_t mvbar; /* (monitor) vector base address register */
465         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
466         struct { /* FCSE PID. */
467             uint32_t fcseidr_ns;
468             uint32_t fcseidr_s;
469         };
470         union { /* Context ID. */
471             struct {
472                 uint64_t _unused_contextidr_0;
473                 uint64_t contextidr_ns;
474                 uint64_t _unused_contextidr_1;
475                 uint64_t contextidr_s;
476             };
477             uint64_t contextidr_el[4];
478         };
479         union { /* User RW Thread register. */
480             struct {
481                 uint64_t tpidrurw_ns;
482                 uint64_t tpidrprw_ns;
483                 uint64_t htpidr;
484                 uint64_t _tpidr_el3;
485             };
486             uint64_t tpidr_el[4];
487         };
488         uint64_t tpidr2_el0;
489         /* The secure banks of these registers don't map anywhere */
490         uint64_t tpidrurw_s;
491         uint64_t tpidrprw_s;
492         uint64_t tpidruro_s;
493 
494         union { /* User RO Thread register. */
495             uint64_t tpidruro_ns;
496             uint64_t tpidrro_el[1];
497         };
498         uint64_t c14_cntfrq; /* Counter Frequency register */
499         uint64_t c14_cntkctl; /* Timer Control register */
500         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
501         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
502         uint64_t cntpoff_el2; /* Counter Physical Offset register */
503         ARMGenericTimer c14_timer[NUM_GTIMERS];
504         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
505         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
506         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
507         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
508         uint32_t c15_threadid; /* TI debugger thread-ID.  */
509         uint32_t c15_config_base_address; /* SCU base address.  */
510         uint32_t c15_diagnostic; /* diagnostic register */
511         uint32_t c15_power_diagnostic;
512         uint32_t c15_power_control; /* power control */
513         uint64_t dbgbvr[16]; /* breakpoint value registers */
514         uint64_t dbgbcr[16]; /* breakpoint control registers */
515         uint64_t dbgwvr[16]; /* watchpoint value registers */
516         uint64_t dbgwcr[16]; /* watchpoint control registers */
517         uint64_t dbgclaim;   /* DBGCLAIM bits */
518         uint64_t mdscr_el1;
519         uint64_t oslsr_el1; /* OS Lock Status */
520         uint64_t osdlr_el1; /* OS DoubleLock status */
521         uint64_t mdcr_el2;
522         uint64_t mdcr_el3;
523         /* Stores the architectural value of the counter *the last time it was
524          * updated* by pmccntr_op_start. Accesses should always be surrounded
525          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
526          * architecturally-correct value is being read/set.
527          */
528         uint64_t c15_ccnt;
529         /* Stores the delta between the architectural value and the underlying
530          * cycle count during normal operation. It is used to update c15_ccnt
531          * to be the correct architectural value before accesses. During
532          * accesses, c15_ccnt_delta contains the underlying count being used
533          * for the access, after which it reverts to the delta value in
534          * pmccntr_op_finish.
535          */
536         uint64_t c15_ccnt_delta;
537         uint64_t c14_pmevcntr[31];
538         uint64_t c14_pmevcntr_delta[31];
539         uint64_t c14_pmevtyper[31];
540         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
541         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
542         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
543         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
544         uint64_t gcr_el1;
545         uint64_t rgsr_el1;
546 
547         /* Minimal RAS registers */
548         uint64_t disr_el1;
549         uint64_t vdisr_el2;
550         uint64_t vsesr_el2;
551 
552         /*
553          * Fine-Grained Trap registers. We store these as arrays so the
554          * access checking code doesn't have to manually select
555          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
556          * FEAT_FGT2 will add more elements to these arrays.
557          */
558         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
559         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
560         uint64_t fgt_exec[1]; /* HFGITR */
561 
562         /* RME registers */
563         uint64_t gpccr_el3;
564         uint64_t gptbr_el3;
565         uint64_t mfar_el3;
566 
567         /* NV2 register */
568         uint64_t vncr_el2;
569     } cp15;
570 
571     struct {
572         /* M profile has up to 4 stack pointers:
573          * a Main Stack Pointer and a Process Stack Pointer for each
574          * of the Secure and Non-Secure states. (If the CPU doesn't support
575          * the security extension then it has only two SPs.)
576          * In QEMU we always store the currently active SP in regs[13],
577          * and the non-active SP for the current security state in
578          * v7m.other_sp. The stack pointers for the inactive security state
579          * are stored in other_ss_msp and other_ss_psp.
580          * switch_v7m_security_state() is responsible for rearranging them
581          * when we change security state.
582          */
583         uint32_t other_sp;
584         uint32_t other_ss_msp;
585         uint32_t other_ss_psp;
586         uint32_t vecbase[M_REG_NUM_BANKS];
587         uint32_t basepri[M_REG_NUM_BANKS];
588         uint32_t control[M_REG_NUM_BANKS];
589         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
590         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
591         uint32_t hfsr; /* HardFault Status */
592         uint32_t dfsr; /* Debug Fault Status Register */
593         uint32_t sfsr; /* Secure Fault Status Register */
594         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
595         uint32_t bfar; /* BusFault Address */
596         uint32_t sfar; /* Secure Fault Address Register */
597         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
598         int exception;
599         uint32_t primask[M_REG_NUM_BANKS];
600         uint32_t faultmask[M_REG_NUM_BANKS];
601         uint32_t aircr; /* only holds r/w state if security extn implemented */
602         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
603         uint32_t csselr[M_REG_NUM_BANKS];
604         uint32_t scr[M_REG_NUM_BANKS];
605         uint32_t msplim[M_REG_NUM_BANKS];
606         uint32_t psplim[M_REG_NUM_BANKS];
607         uint32_t fpcar[M_REG_NUM_BANKS];
608         uint32_t fpccr[M_REG_NUM_BANKS];
609         uint32_t fpdscr[M_REG_NUM_BANKS];
610         uint32_t cpacr[M_REG_NUM_BANKS];
611         uint32_t nsacr;
612         uint32_t ltpsize;
613         uint32_t vpr;
614     } v7m;
615 
616     /* Information associated with an exception about to be taken:
617      * code which raises an exception must set cs->exception_index and
618      * the relevant parts of this structure; the cpu_do_interrupt function
619      * will then set the guest-visible registers as part of the exception
620      * entry process.
621      */
622     struct {
623         uint32_t syndrome; /* AArch64 format syndrome register */
624         uint32_t fsr; /* AArch32 format fault status register info */
625         uint64_t vaddress; /* virtual addr associated with exception, if any */
626         uint32_t target_el; /* EL the exception should be targeted for */
627         /* If we implement EL2 we will also need to store information
628          * about the intermediate physical address for stage 2 faults.
629          */
630     } exception;
631 
632     /* Information associated with an SError */
633     struct {
634         uint8_t pending;
635         uint8_t has_esr;
636         uint64_t esr;
637     } serror;
638 
639     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
640 
641     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
642     uint32_t irq_line_state;
643 
644     /* Thumb-2 EE state.  */
645     uint32_t teecr;
646     uint32_t teehbr;
647 
648     /* VFP coprocessor state.  */
649     struct {
650         ARMVectorReg zregs[32];
651 
652         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
653 #define FFR_PRED_NUM 16
654         ARMPredicateReg pregs[17];
655         /* Scratch space for aa64 sve predicate temporary.  */
656         ARMPredicateReg preg_tmp;
657 
658         /* We store these fpcsr fields separately for convenience.  */
659         uint32_t qc[4] QEMU_ALIGNED(16);
660         int vec_len;
661         int vec_stride;
662 
663         /*
664          * Floating point status and control registers. Some bits are
665          * stored separately in other fields or in the float_status below.
666          */
667         uint64_t fpsr;
668         uint64_t fpcr;
669 
670         uint32_t xregs[16];
671 
672         /* Scratch space for aa32 neon expansion.  */
673         uint32_t scratch[8];
674 
675         /* There are a number of distinct float control structures. */
676         float_status fp_status[FPST_COUNT];
677 
678         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
679         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
680     } vfp;
681 
682     uint64_t exclusive_addr;
683     uint64_t exclusive_val;
684     /*
685      * Contains the 'val' for the second 64-bit register of LDXP, which comes
686      * from the higher address, not the high part of a complete 128-bit value.
687      * In some ways it might be more convenient to record the exclusive value
688      * as the low and high halves of a 128 bit data value, but the current
689      * semantics of these fields are baked into the migration format.
690      */
691     uint64_t exclusive_high;
692 
693     /* iwMMXt coprocessor state.  */
694     struct {
695         uint64_t regs[16];
696         uint64_t val;
697 
698         uint32_t cregs[16];
699     } iwmmxt;
700 
701     struct {
702         ARMPACKey apia;
703         ARMPACKey apib;
704         ARMPACKey apda;
705         ARMPACKey apdb;
706         ARMPACKey apga;
707     } keys;
708 
709     uint64_t scxtnum_el[4];
710 
711     /*
712      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
713      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
714      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
715      * When SVL is less than the architectural maximum, the accessible
716      * storage is restricted, such that if the SVL is X bytes the guest can
717      * see only the bottom X elements of zarray[], and only the least
718      * significant X bytes of each element of the array. (In other words,
719      * the observable part is always square.)
720      *
721      * The ZA storage can also be considered as a set of square tiles of
722      * elements of different sizes. The mapping from tiles to the ZA array
723      * is architecturally defined, such that for tiles of elements of esz
724      * bytes, the Nth row (or "horizontal slice") of tile T is in
725      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
726      * in the ZA storage, because its rows are striped through the ZA array.
727      *
728      * Because this is so large, keep this toward the end of the reset area,
729      * to keep the offsets into the rest of the structure smaller.
730      */
731     ARMVectorReg zarray[ARM_MAX_VQ * 16];
732 
733     struct CPUBreakpoint *cpu_breakpoint[16];
734     struct CPUWatchpoint *cpu_watchpoint[16];
735 
736     /* Optional fault info across tlb lookup. */
737     ARMMMUFaultInfo *tlb_fi;
738 
739     /* Fields up to this point are cleared by a CPU reset */
740     struct {} end_reset_fields;
741 
742     /* Fields after this point are preserved across CPU reset. */
743 
744     /* Internal CPU feature flags.  */
745     uint64_t features;
746 
747     /* PMSAv7 MPU */
748     struct {
749         uint32_t *drbar;
750         uint32_t *drsr;
751         uint32_t *dracr;
752         uint32_t rnr[M_REG_NUM_BANKS];
753     } pmsav7;
754 
755     /* PMSAv8 MPU */
756     struct {
757         /* The PMSAv8 implementation also shares some PMSAv7 config
758          * and state:
759          *  pmsav7.rnr (region number register)
760          *  pmsav7_dregion (number of configured regions)
761          */
762         uint32_t *rbar[M_REG_NUM_BANKS];
763         uint32_t *rlar[M_REG_NUM_BANKS];
764         uint32_t *hprbar;
765         uint32_t *hprlar;
766         uint32_t mair0[M_REG_NUM_BANKS];
767         uint32_t mair1[M_REG_NUM_BANKS];
768         uint32_t hprselr;
769     } pmsav8;
770 
771     /* v8M SAU */
772     struct {
773         uint32_t *rbar;
774         uint32_t *rlar;
775         uint32_t rnr;
776         uint32_t ctrl;
777     } sau;
778 
779 #if !defined(CONFIG_USER_ONLY)
780     NVICState *nvic;
781     const struct arm_boot_info *boot_info;
782     /* Store GICv3CPUState to access from this struct */
783     void *gicv3state;
784 #else /* CONFIG_USER_ONLY */
785     /* For usermode syscall translation.  */
786     bool eabi;
787     /* Linux syscall tagged address support */
788     bool tagged_addr_enable;
789 #endif /* CONFIG_USER_ONLY */
790 } CPUARMState;
791 
set_feature(CPUARMState * env,int feature)792 static inline void set_feature(CPUARMState *env, int feature)
793 {
794     env->features |= 1ULL << feature;
795 }
796 
unset_feature(CPUARMState * env,int feature)797 static inline void unset_feature(CPUARMState *env, int feature)
798 {
799     env->features &= ~(1ULL << feature);
800 }
801 
802 /**
803  * ARMELChangeHookFn:
804  * type of a function which can be registered via arm_register_el_change_hook()
805  * to get callbacks when the CPU changes its exception level or mode.
806  */
807 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
808 typedef struct ARMELChangeHook ARMELChangeHook;
809 struct ARMELChangeHook {
810     ARMELChangeHookFn *hook;
811     void *opaque;
812     QLIST_ENTRY(ARMELChangeHook) node;
813 };
814 
815 /* These values map onto the return values for
816  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
817 typedef enum ARMPSCIState {
818     PSCI_ON = 0,
819     PSCI_OFF = 1,
820     PSCI_ON_PENDING = 2
821 } ARMPSCIState;
822 
823 typedef struct ARMISARegisters ARMISARegisters;
824 
825 /*
826  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
827  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
828  *
829  * While processing properties during initialization, corresponding init bits
830  * are set for bits in sve_vq_map that have been set by properties.
831  *
832  * Bits set in supported represent valid vector lengths for the CPU type.
833  */
834 typedef struct {
835     uint32_t map, init, supported;
836 } ARMVQMap;
837 
838 /* REG is ID_XXX */
839 #define FIELD_DP64_IDREG(ISAR, REG, FIELD, VALUE)                       \
840     ({                                                                  \
841         ARMISARegisters *i_ = (ISAR);                                   \
842         uint64_t regval = i_->idregs[REG ## _EL1_IDX];                  \
843         regval = FIELD_DP64(regval, REG, FIELD, VALUE);                 \
844         i_->idregs[REG ## _EL1_IDX] = regval;                           \
845     })
846 
847 #define FIELD_DP32_IDREG(ISAR, REG, FIELD, VALUE)                       \
848     ({                                                                  \
849         ARMISARegisters *i_ = (ISAR);                                   \
850         uint64_t regval = i_->idregs[REG ## _EL1_IDX];                  \
851         regval = FIELD_DP32(regval, REG, FIELD, VALUE);                 \
852         i_->idregs[REG ## _EL1_IDX] = regval;                           \
853     })
854 
855 #define FIELD_EX64_IDREG(ISAR, REG, FIELD)                              \
856     ({                                                                  \
857         const ARMISARegisters *i_ = (ISAR);                             \
858         FIELD_EX64(i_->idregs[REG ## _EL1_IDX], REG, FIELD);            \
859     })
860 
861 #define FIELD_EX32_IDREG(ISAR, REG, FIELD)                              \
862     ({                                                                  \
863         const ARMISARegisters *i_ = (ISAR);                             \
864         FIELD_EX32(i_->idregs[REG ## _EL1_IDX], REG, FIELD);            \
865     })
866 
867 #define FIELD_SEX64_IDREG(ISAR, REG, FIELD)                             \
868     ({                                                                  \
869         const ARMISARegisters *i_ = (ISAR);                             \
870         FIELD_SEX64(i_->idregs[REG ## _EL1_IDX], REG, FIELD);           \
871     })
872 
873 #define SET_IDREG(ISAR, REG, VALUE)                                     \
874     ({                                                                  \
875         ARMISARegisters *i_ = (ISAR);                                   \
876         i_->idregs[REG ## _EL1_IDX] = VALUE;                            \
877     })
878 
879 #define GET_IDREG(ISAR, REG)                                            \
880     ({                                                                  \
881         const ARMISARegisters *i_ = (ISAR);                             \
882         i_->idregs[REG ## _EL1_IDX];                                    \
883     })
884 
885 /**
886  * ARMCPU:
887  * @env: #CPUARMState
888  *
889  * An ARM CPU core.
890  */
891 struct ArchCPU {
892     CPUState parent_obj;
893 
894     CPUARMState env;
895 
896     /* Coprocessor information */
897     GHashTable *cp_regs;
898     /* For marshalling (mostly coprocessor) register state between the
899      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
900      * we use these arrays.
901      */
902     /* List of register indexes managed via these arrays; (full KVM style
903      * 64 bit indexes, not CPRegInfo 32 bit indexes)
904      */
905     uint64_t *cpreg_indexes;
906     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
907     uint64_t *cpreg_values;
908     /* Length of the indexes, values, reset_values arrays */
909     int32_t cpreg_array_len;
910     /* These are used only for migration: incoming data arrives in
911      * these fields and is sanity checked in post_load before copying
912      * to the working data structures above.
913      */
914     uint64_t *cpreg_vmstate_indexes;
915     uint64_t *cpreg_vmstate_values;
916     int32_t cpreg_vmstate_array_len;
917 
918     DynamicGDBFeatureInfo dyn_sysreg_feature;
919     DynamicGDBFeatureInfo dyn_svereg_feature;
920     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
921     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
922 
923     /* Timers used by the generic (architected) timer */
924     QEMUTimer *gt_timer[NUM_GTIMERS];
925     /*
926      * Timer used by the PMU. Its state is restored after migration by
927      * pmu_op_finish() - it does not need other handling during migration
928      */
929     QEMUTimer *pmu_timer;
930     /* Timer used for WFxT timeouts */
931     QEMUTimer *wfxt_timer;
932 
933     /* GPIO outputs for generic timer */
934     qemu_irq gt_timer_outputs[NUM_GTIMERS];
935     /* GPIO output for GICv3 maintenance interrupt signal */
936     qemu_irq gicv3_maintenance_interrupt;
937     /* GPIO output for the PMU interrupt */
938     qemu_irq pmu_interrupt;
939 
940     /* MemoryRegion to use for secure physical accesses */
941     MemoryRegion *secure_memory;
942 
943     /* MemoryRegion to use for allocation tag accesses */
944     MemoryRegion *tag_memory;
945     MemoryRegion *secure_tag_memory;
946 
947     /* For v8M, pointer to the IDAU interface provided by board/SoC */
948     Object *idau;
949 
950     /* 'compatible' string for this CPU for Linux device trees */
951     const char *dtb_compatible;
952 
953     /* PSCI version for this CPU
954      * Bits[31:16] = Major Version
955      * Bits[15:0] = Minor Version
956      */
957     uint32_t psci_version;
958 
959     /* Current power state, access guarded by BQL */
960     ARMPSCIState power_state;
961 
962     /* CPU has virtualization extension */
963     bool has_el2;
964     /* CPU has security extension */
965     bool has_el3;
966     /* CPU has PMU (Performance Monitor Unit) */
967     bool has_pmu;
968     /* CPU has VFP */
969     bool has_vfp;
970     /* CPU has 32 VFP registers */
971     bool has_vfp_d32;
972     /* CPU has Neon */
973     bool has_neon;
974     /* CPU has M-profile DSP extension */
975     bool has_dsp;
976 
977     /* CPU has memory protection unit */
978     bool has_mpu;
979     /* CPU has MTE enabled in KVM mode */
980     bool kvm_mte;
981     /* PMSAv7 MPU number of supported regions */
982     uint32_t pmsav7_dregion;
983     /* PMSAv8 MPU number of supported hyp regions */
984     uint32_t pmsav8r_hdregion;
985     /* v8M SAU number of supported regions */
986     uint32_t sau_sregion;
987 
988     /* PSCI conduit used to invoke PSCI methods
989      * 0 - disabled, 1 - smc, 2 - hvc
990      */
991     uint32_t psci_conduit;
992 
993     /* For v8M, initial value of the Secure VTOR */
994     uint32_t init_svtor;
995     /* For v8M, initial value of the Non-secure VTOR */
996     uint32_t init_nsvtor;
997 
998     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
999      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
1000      */
1001     uint32_t kvm_target;
1002 
1003     /* KVM init features for this CPU */
1004     uint32_t kvm_init_features[7];
1005 
1006     /* KVM CPU state */
1007 
1008     /* KVM virtual time adjustment */
1009     bool kvm_adjvtime;
1010     bool kvm_vtime_dirty;
1011     uint64_t kvm_vtime;
1012 
1013     /* KVM steal time */
1014     OnOffAuto kvm_steal_time;
1015 
1016     /* Uniprocessor system with MP extensions */
1017     bool mp_is_up;
1018 
1019     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
1020      * and the probe failed (so we need to report the error in realize)
1021      */
1022     bool host_cpu_probe_failed;
1023 
1024     /* QOM property to indicate we should use the back-compat CNTFRQ default */
1025     bool backcompat_cntfrq;
1026 
1027     /* QOM property to indicate we should use the back-compat QARMA5 default */
1028     bool backcompat_pauth_default_use_qarma5;
1029 
1030     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
1031      * register.
1032      */
1033     int32_t core_count;
1034 
1035     /* The instance init functions for implementation-specific subclasses
1036      * set these fields to specify the implementation-dependent values of
1037      * various constant registers and reset values of non-constant
1038      * registers.
1039      * Some of these might become QOM properties eventually.
1040      * Field names match the official register names as defined in the
1041      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
1042      * is used for reset values of non-constant registers; no reset_
1043      * prefix means a constant register.
1044      * Some of these registers are split out into a substructure that
1045      * is shared with the translators to control the ISA.
1046      *
1047      * Note that if you add an ID register to the ARMISARegisters struct
1048      * you need to also update the 32-bit and 64-bit versions of the
1049      * kvm_arm_get_host_cpu_features() function to correctly populate the
1050      * field by reading the value from the KVM vCPU.
1051      */
1052     struct ARMISARegisters {
1053         uint32_t mvfr0;
1054         uint32_t mvfr1;
1055         uint32_t mvfr2;
1056         uint32_t dbgdidr;
1057         uint32_t dbgdevid;
1058         uint32_t dbgdevid1;
1059         uint64_t reset_pmcr_el0;
1060         uint64_t idregs[NUM_ID_IDX];
1061     } isar;
1062     uint64_t midr;
1063     uint32_t revidr;
1064     uint32_t reset_fpsid;
1065     uint64_t ctr;
1066     uint32_t reset_sctlr;
1067     uint64_t pmceid0;
1068     uint64_t pmceid1;
1069     uint32_t id_afr0;
1070     uint64_t id_aa64afr0;
1071     uint64_t id_aa64afr1;
1072     uint64_t clidr;
1073     uint64_t mp_affinity; /* MP ID without feature bits */
1074     /* The elements of this array are the CCSIDR values for each cache,
1075      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1076      */
1077     uint64_t ccsidr[16];
1078     uint64_t reset_cbar;
1079     uint32_t reset_auxcr;
1080     bool reset_hivecs;
1081     uint8_t reset_l0gptsz;
1082 
1083     /*
1084      * Intermediate values used during property parsing.
1085      * Once finalized, the values should be read from ID_AA64*.
1086      */
1087     bool prop_pauth;
1088     bool prop_pauth_impdef;
1089     bool prop_pauth_qarma3;
1090     bool prop_pauth_qarma5;
1091     bool prop_lpa2;
1092 
1093     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1094     uint8_t dcz_blocksize;
1095     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1096     uint8_t gm_blocksize;
1097 
1098     uint64_t rvbar_prop; /* Property/input signals.  */
1099 
1100     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1101     int gic_num_lrs; /* number of list registers */
1102     int gic_vpribits; /* number of virtual priority bits */
1103     int gic_vprebits; /* number of virtual preemption bits */
1104     int gic_pribits; /* number of physical priority bits */
1105 
1106     /* Whether the cfgend input is high (i.e. this CPU should reset into
1107      * big-endian mode).  This setting isn't used directly: instead it modifies
1108      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1109      * architecture version.
1110      */
1111     bool cfgend;
1112 
1113     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1114     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1115 
1116     int32_t node_id; /* NUMA node this CPU belongs to */
1117 
1118     /* Used to synchronize KVM and QEMU in-kernel device levels */
1119     uint8_t device_irq_level;
1120 
1121     /* Used to set the maximum vector length the cpu will support.  */
1122     uint32_t sve_max_vq;
1123 
1124 #ifdef CONFIG_USER_ONLY
1125     /* Used to set the default vector length at process start. */
1126     uint32_t sve_default_vq;
1127     uint32_t sme_default_vq;
1128 #endif
1129 
1130     ARMVQMap sve_vq;
1131     ARMVQMap sme_vq;
1132 
1133     /* Generic timer counter frequency, in Hz */
1134     uint64_t gt_cntfrq_hz;
1135 };
1136 
1137 typedef struct ARMCPUInfo {
1138     const char *name;
1139     const char *deprecation_note;
1140     void (*initfn)(Object *obj);
1141     void (*class_init)(ObjectClass *oc, const void *data);
1142 } ARMCPUInfo;
1143 
1144 /**
1145  * ARMCPUClass:
1146  * @parent_realize: The parent class' realize handler.
1147  * @parent_phases: The parent class' reset phase handlers.
1148  *
1149  * An ARM CPU model.
1150  */
1151 struct ARMCPUClass {
1152     CPUClass parent_class;
1153 
1154     const ARMCPUInfo *info;
1155     DeviceRealize parent_realize;
1156     ResettablePhases parent_phases;
1157 };
1158 
1159 /* Callback functions for the generic timer's timers. */
1160 void arm_gt_ptimer_cb(void *opaque);
1161 void arm_gt_vtimer_cb(void *opaque);
1162 void arm_gt_htimer_cb(void *opaque);
1163 void arm_gt_stimer_cb(void *opaque);
1164 void arm_gt_hvtimer_cb(void *opaque);
1165 void arm_gt_sel2timer_cb(void *opaque);
1166 void arm_gt_sel2vtimer_cb(void *opaque);
1167 
1168 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1169 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1170 
1171 #define ARM_AFF0_SHIFT 0
1172 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1173 #define ARM_AFF1_SHIFT 8
1174 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1175 #define ARM_AFF2_SHIFT 16
1176 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1177 #define ARM_AFF3_SHIFT 32
1178 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1179 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1180 
1181 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1182 #define ARM64_AFFINITY_MASK \
1183     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1184 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1185 
1186 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1187 
1188 #ifndef CONFIG_USER_ONLY
1189 extern const VMStateDescription vmstate_arm_cpu;
1190 
1191 void arm_cpu_do_interrupt(CPUState *cpu);
1192 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1193 
1194 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1195                                          MemTxAttrs *attrs);
1196 #endif /* !CONFIG_USER_ONLY */
1197 
1198 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1199 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1200 
1201 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1202                              int cpuid, DumpState *s);
1203 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1204                              int cpuid, DumpState *s);
1205 
1206 /**
1207  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1208  * @cpu: CPU (which must have been freshly reset)
1209  * @target_el: exception level to put the CPU into
1210  * @secure: whether to put the CPU in secure state
1211  *
1212  * When QEMU is directly running a guest kernel at a lower level than
1213  * EL3 it implicitly emulates some aspects of the guest firmware.
1214  * This includes that on reset we need to configure the parts of the
1215  * CPU corresponding to EL3 so that the real guest code can run at its
1216  * lower exception level. This function does that post-reset CPU setup,
1217  * for when we do direct boot of a guest kernel, and for when we
1218  * emulate PSCI and similar firmware interfaces starting a CPU at a
1219  * lower exception level.
1220  *
1221  * @target_el must be an EL implemented by the CPU between 1 and 3.
1222  * We do not support dropping into a Secure EL other than 3.
1223  *
1224  * It is the responsibility of the caller to call arm_rebuild_hflags().
1225  */
1226 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1227 
1228 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1229 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1230 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1231 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1232                            int new_el, bool el0_a64);
1233 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1234 
1235 /*
1236  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1237  * The byte at offset i from the start of the in-memory representation contains
1238  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1239  * lowest offsets are stored in the lowest memory addresses, then that nearly
1240  * matches QEMU's representation, which is to use an array of host-endian
1241  * uint64_t's, where the lower offsets are at the lower indices. To complete
1242  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1243  */
sve_bswap64(uint64_t * dst,uint64_t * src,int nr)1244 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1245 {
1246 #if HOST_BIG_ENDIAN
1247     int i;
1248 
1249     for (i = 0; i < nr; ++i) {
1250         dst[i] = bswap64(src[i]);
1251     }
1252 
1253     return dst;
1254 #else
1255     return src;
1256 #endif
1257 }
1258 
1259 void aarch64_sync_32_to_64(CPUARMState *env);
1260 void aarch64_sync_64_to_32(CPUARMState *env);
1261 
1262 int fp_exception_el(CPUARMState *env, int cur_el);
1263 int sve_exception_el(CPUARMState *env, int cur_el);
1264 int sme_exception_el(CPUARMState *env, int cur_el);
1265 
1266 /**
1267  * sve_vqm1_for_el_sm:
1268  * @env: CPUARMState
1269  * @el: exception level
1270  * @sm: streaming mode
1271  *
1272  * Compute the current vector length for @el & @sm, in units of
1273  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1274  * If @sm, compute for SVL, otherwise NVL.
1275  */
1276 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1277 
1278 /* Likewise, but using @sm = PSTATE.SM. */
1279 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1280 
is_a64(CPUARMState * env)1281 static inline bool is_a64(CPUARMState *env)
1282 {
1283     return env->aarch64;
1284 }
1285 
1286 /**
1287  * pmu_op_start/finish
1288  * @env: CPUARMState
1289  *
1290  * Convert all PMU counters between their delta form (the typical mode when
1291  * they are enabled) and the guest-visible values. These two calls must
1292  * surround any action which might affect the counters.
1293  */
1294 void pmu_op_start(CPUARMState *env);
1295 void pmu_op_finish(CPUARMState *env);
1296 
1297 /*
1298  * Called when a PMU counter is due to overflow
1299  */
1300 void arm_pmu_timer_cb(void *opaque);
1301 
1302 /**
1303  * Functions to register as EL change hooks for PMU mode filtering
1304  */
1305 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1306 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1307 
1308 /*
1309  * pmu_init
1310  * @cpu: ARMCPU
1311  *
1312  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1313  * for the current configuration
1314  */
1315 void pmu_init(ARMCPU *cpu);
1316 
1317 /* SCTLR bit meanings. Several bits have been reused in newer
1318  * versions of the architecture; in that case we define constants
1319  * for both old and new bit meanings. Code which tests against those
1320  * bits should probably check or otherwise arrange that the CPU
1321  * is the architectural version it expects.
1322  */
1323 #define SCTLR_M       (1U << 0)
1324 #define SCTLR_A       (1U << 1)
1325 #define SCTLR_C       (1U << 2)
1326 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1327 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1328 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1329 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1330 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1331 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1332 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1333 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1334 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1335 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1336 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1337 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1338 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1339 #define SCTLR_SED     (1U << 8) /* v8 onward */
1340 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1341 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1342 #define SCTLR_F       (1U << 10) /* up to v6 */
1343 #define SCTLR_SW      (1U << 10) /* v7 */
1344 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1345 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1346 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1347 #define SCTLR_I       (1U << 12)
1348 #define SCTLR_V       (1U << 13) /* AArch32 only */
1349 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1350 #define SCTLR_RR      (1U << 14) /* up to v7 */
1351 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1352 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1353 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1354 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1355 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1356 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1357 #define SCTLR_BR      (1U << 17) /* PMSA only */
1358 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1359 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1360 #define SCTLR_WXN     (1U << 19)
1361 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1362 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1363 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1364 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1365 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1366 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1367 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1368 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1369 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1370 #define SCTLR_VE      (1U << 24) /* up to v7 */
1371 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1372 #define SCTLR_EE      (1U << 25)
1373 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1374 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1375 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1376 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1377 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1378 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1379 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1380 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1381 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1382 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1383 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1384 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1385 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1386 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1387 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1388 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1389 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1390 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1391 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1392 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1393 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1394 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1395 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1396 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1397 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1398 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1399 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1400 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1401 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1402 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1403 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1404 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1405 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1406 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1407 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1408 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1409 
1410 #define CPSR_M (0x1fU)
1411 #define CPSR_T (1U << 5)
1412 #define CPSR_F (1U << 6)
1413 #define CPSR_I (1U << 7)
1414 #define CPSR_A (1U << 8)
1415 #define CPSR_E (1U << 9)
1416 #define CPSR_IT_2_7 (0xfc00U)
1417 #define CPSR_GE (0xfU << 16)
1418 #define CPSR_IL (1U << 20)
1419 #define CPSR_DIT (1U << 21)
1420 #define CPSR_PAN (1U << 22)
1421 #define CPSR_SSBS (1U << 23)
1422 #define CPSR_J (1U << 24)
1423 #define CPSR_IT_0_1 (3U << 25)
1424 #define CPSR_Q (1U << 27)
1425 #define CPSR_V (1U << 28)
1426 #define CPSR_C (1U << 29)
1427 #define CPSR_Z (1U << 30)
1428 #define CPSR_N (1U << 31)
1429 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1430 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1431 #define ISR_FS (1U << 9)
1432 #define ISR_IS (1U << 10)
1433 
1434 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1435 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1436     | CPSR_NZCV)
1437 /* Bits writable in user mode.  */
1438 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1439 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1440 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1441 
1442 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1443 #define XPSR_EXCP 0x1ffU
1444 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1445 #define XPSR_IT_2_7 CPSR_IT_2_7
1446 #define XPSR_GE CPSR_GE
1447 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1448 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1449 #define XPSR_IT_0_1 CPSR_IT_0_1
1450 #define XPSR_Q CPSR_Q
1451 #define XPSR_V CPSR_V
1452 #define XPSR_C CPSR_C
1453 #define XPSR_Z CPSR_Z
1454 #define XPSR_N CPSR_N
1455 #define XPSR_NZCV CPSR_NZCV
1456 #define XPSR_IT CPSR_IT
1457 
1458 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1459  * Only these are valid when in AArch64 mode; in
1460  * AArch32 mode SPSRs are basically CPSR-format.
1461  */
1462 #define PSTATE_SP (1U)
1463 #define PSTATE_M (0xFU)
1464 #define PSTATE_nRW (1U << 4)
1465 #define PSTATE_F (1U << 6)
1466 #define PSTATE_I (1U << 7)
1467 #define PSTATE_A (1U << 8)
1468 #define PSTATE_D (1U << 9)
1469 #define PSTATE_BTYPE (3U << 10)
1470 #define PSTATE_SSBS (1U << 12)
1471 #define PSTATE_ALLINT (1U << 13)
1472 #define PSTATE_IL (1U << 20)
1473 #define PSTATE_SS (1U << 21)
1474 #define PSTATE_PAN (1U << 22)
1475 #define PSTATE_UAO (1U << 23)
1476 #define PSTATE_DIT (1U << 24)
1477 #define PSTATE_TCO (1U << 25)
1478 #define PSTATE_V (1U << 28)
1479 #define PSTATE_C (1U << 29)
1480 #define PSTATE_Z (1U << 30)
1481 #define PSTATE_N (1U << 31)
1482 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1483 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1484 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1485 /* Mode values for AArch64 */
1486 #define PSTATE_MODE_EL3h 13
1487 #define PSTATE_MODE_EL3t 12
1488 #define PSTATE_MODE_EL2h 9
1489 #define PSTATE_MODE_EL2t 8
1490 #define PSTATE_MODE_EL1h 5
1491 #define PSTATE_MODE_EL1t 4
1492 #define PSTATE_MODE_EL0t 0
1493 
1494 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1495 FIELD(SVCR, SM, 0, 1)
1496 FIELD(SVCR, ZA, 1, 1)
1497 
1498 /* Fields for SMCR_ELx. */
1499 FIELD(SMCR, LEN, 0, 4)
1500 FIELD(SMCR, FA64, 31, 1)
1501 
1502 /* Write a new value to v7m.exception, thus transitioning into or out
1503  * of Handler mode; this may result in a change of active stack pointer.
1504  */
1505 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1506 
1507 /* Map EL and handler into a PSTATE_MODE.  */
aarch64_pstate_mode(unsigned int el,bool handler)1508 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1509 {
1510     return (el << 2) | handler;
1511 }
1512 
1513 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1514  * interprocessing, so we don't attempt to sync with the cpsr state used by
1515  * the 32 bit decoder.
1516  */
pstate_read(CPUARMState * env)1517 static inline uint32_t pstate_read(CPUARMState *env)
1518 {
1519     int ZF;
1520 
1521     ZF = (env->ZF == 0);
1522     return (env->NF & 0x80000000) | (ZF << 30)
1523         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1524         | env->pstate | env->daif | (env->btype << 10);
1525 }
1526 
pstate_write(CPUARMState * env,uint32_t val)1527 static inline void pstate_write(CPUARMState *env, uint32_t val)
1528 {
1529     env->ZF = (~val) & PSTATE_Z;
1530     env->NF = val;
1531     env->CF = (val >> 29) & 1;
1532     env->VF = (val << 3) & 0x80000000;
1533     env->daif = val & PSTATE_DAIF;
1534     env->btype = (val >> 10) & 3;
1535     env->pstate = val & ~CACHED_PSTATE_BITS;
1536 }
1537 
1538 /* Return the current CPSR value.  */
1539 uint32_t cpsr_read(CPUARMState *env);
1540 
1541 typedef enum CPSRWriteType {
1542     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1543     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1544     CPSRWriteRaw = 2,
1545         /* trust values, no reg bank switch, no hflags rebuild */
1546     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1547 } CPSRWriteType;
1548 
1549 /*
1550  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1551  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1552  * correspond to TB flags bits cached in the hflags, unless @write_type
1553  * is CPSRWriteRaw.
1554  */
1555 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1556                 CPSRWriteType write_type);
1557 
1558 /* Return the current xPSR value.  */
xpsr_read(CPUARMState * env)1559 static inline uint32_t xpsr_read(CPUARMState *env)
1560 {
1561     int ZF;
1562     ZF = (env->ZF == 0);
1563     return (env->NF & 0x80000000) | (ZF << 30)
1564         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1565         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1566         | ((env->condexec_bits & 0xfc) << 8)
1567         | (env->GE << 16)
1568         | env->v7m.exception;
1569 }
1570 
1571 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)1572 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1573 {
1574     if (mask & XPSR_NZCV) {
1575         env->ZF = (~val) & XPSR_Z;
1576         env->NF = val;
1577         env->CF = (val >> 29) & 1;
1578         env->VF = (val << 3) & 0x80000000;
1579     }
1580     if (mask & XPSR_Q) {
1581         env->QF = ((val & XPSR_Q) != 0);
1582     }
1583     if (mask & XPSR_GE) {
1584         env->GE = (val & XPSR_GE) >> 16;
1585     }
1586 #ifndef CONFIG_USER_ONLY
1587     if (mask & XPSR_T) {
1588         env->thumb = ((val & XPSR_T) != 0);
1589     }
1590     if (mask & XPSR_IT_0_1) {
1591         env->condexec_bits &= ~3;
1592         env->condexec_bits |= (val >> 25) & 3;
1593     }
1594     if (mask & XPSR_IT_2_7) {
1595         env->condexec_bits &= 3;
1596         env->condexec_bits |= (val >> 8) & 0xfc;
1597     }
1598     if (mask & XPSR_EXCP) {
1599         /* Note that this only happens on exception exit */
1600         write_v7m_exception(env, val & XPSR_EXCP);
1601     }
1602 #endif
1603 }
1604 
1605 #define HCR_VM        (1ULL << 0)
1606 #define HCR_SWIO      (1ULL << 1)
1607 #define HCR_PTW       (1ULL << 2)
1608 #define HCR_FMO       (1ULL << 3)
1609 #define HCR_IMO       (1ULL << 4)
1610 #define HCR_AMO       (1ULL << 5)
1611 #define HCR_VF        (1ULL << 6)
1612 #define HCR_VI        (1ULL << 7)
1613 #define HCR_VSE       (1ULL << 8)
1614 #define HCR_FB        (1ULL << 9)
1615 #define HCR_BSU_MASK  (3ULL << 10)
1616 #define HCR_DC        (1ULL << 12)
1617 #define HCR_TWI       (1ULL << 13)
1618 #define HCR_TWE       (1ULL << 14)
1619 #define HCR_TID0      (1ULL << 15)
1620 #define HCR_TID1      (1ULL << 16)
1621 #define HCR_TID2      (1ULL << 17)
1622 #define HCR_TID3      (1ULL << 18)
1623 #define HCR_TSC       (1ULL << 19)
1624 #define HCR_TIDCP     (1ULL << 20)
1625 #define HCR_TACR      (1ULL << 21)
1626 #define HCR_TSW       (1ULL << 22)
1627 #define HCR_TPCP      (1ULL << 23)
1628 #define HCR_TPU       (1ULL << 24)
1629 #define HCR_TTLB      (1ULL << 25)
1630 #define HCR_TVM       (1ULL << 26)
1631 #define HCR_TGE       (1ULL << 27)
1632 #define HCR_TDZ       (1ULL << 28)
1633 #define HCR_HCD       (1ULL << 29)
1634 #define HCR_TRVM      (1ULL << 30)
1635 #define HCR_RW        (1ULL << 31)
1636 #define HCR_CD        (1ULL << 32)
1637 #define HCR_ID        (1ULL << 33)
1638 #define HCR_E2H       (1ULL << 34)
1639 #define HCR_TLOR      (1ULL << 35)
1640 #define HCR_TERR      (1ULL << 36)
1641 #define HCR_TEA       (1ULL << 37)
1642 #define HCR_MIOCNCE   (1ULL << 38)
1643 #define HCR_TME       (1ULL << 39)
1644 #define HCR_APK       (1ULL << 40)
1645 #define HCR_API       (1ULL << 41)
1646 #define HCR_NV        (1ULL << 42)
1647 #define HCR_NV1       (1ULL << 43)
1648 #define HCR_AT        (1ULL << 44)
1649 #define HCR_NV2       (1ULL << 45)
1650 #define HCR_FWB       (1ULL << 46)
1651 #define HCR_FIEN      (1ULL << 47)
1652 #define HCR_GPF       (1ULL << 48)
1653 #define HCR_TID4      (1ULL << 49)
1654 #define HCR_TICAB     (1ULL << 50)
1655 #define HCR_AMVOFFEN  (1ULL << 51)
1656 #define HCR_TOCU      (1ULL << 52)
1657 #define HCR_ENSCXT    (1ULL << 53)
1658 #define HCR_TTLBIS    (1ULL << 54)
1659 #define HCR_TTLBOS    (1ULL << 55)
1660 #define HCR_ATA       (1ULL << 56)
1661 #define HCR_DCT       (1ULL << 57)
1662 #define HCR_TID5      (1ULL << 58)
1663 #define HCR_TWEDEN    (1ULL << 59)
1664 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1665 
1666 #define SCR_NS                (1ULL << 0)
1667 #define SCR_IRQ               (1ULL << 1)
1668 #define SCR_FIQ               (1ULL << 2)
1669 #define SCR_EA                (1ULL << 3)
1670 #define SCR_FW                (1ULL << 4)
1671 #define SCR_AW                (1ULL << 5)
1672 #define SCR_NET               (1ULL << 6)
1673 #define SCR_SMD               (1ULL << 7)
1674 #define SCR_HCE               (1ULL << 8)
1675 #define SCR_SIF               (1ULL << 9)
1676 #define SCR_RW                (1ULL << 10)
1677 #define SCR_ST                (1ULL << 11)
1678 #define SCR_TWI               (1ULL << 12)
1679 #define SCR_TWE               (1ULL << 13)
1680 #define SCR_TLOR              (1ULL << 14)
1681 #define SCR_TERR              (1ULL << 15)
1682 #define SCR_APK               (1ULL << 16)
1683 #define SCR_API               (1ULL << 17)
1684 #define SCR_EEL2              (1ULL << 18)
1685 #define SCR_EASE              (1ULL << 19)
1686 #define SCR_NMEA              (1ULL << 20)
1687 #define SCR_FIEN              (1ULL << 21)
1688 #define SCR_ENSCXT            (1ULL << 25)
1689 #define SCR_ATA               (1ULL << 26)
1690 #define SCR_FGTEN             (1ULL << 27)
1691 #define SCR_ECVEN             (1ULL << 28)
1692 #define SCR_TWEDEN            (1ULL << 29)
1693 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1694 #define SCR_TME               (1ULL << 34)
1695 #define SCR_AMVOFFEN          (1ULL << 35)
1696 #define SCR_ENAS0             (1ULL << 36)
1697 #define SCR_ADEN              (1ULL << 37)
1698 #define SCR_HXEN              (1ULL << 38)
1699 #define SCR_TRNDR             (1ULL << 40)
1700 #define SCR_ENTP2             (1ULL << 41)
1701 #define SCR_GPF               (1ULL << 48)
1702 #define SCR_NSE               (1ULL << 62)
1703 
1704 /* Return the current FPSCR value.  */
1705 uint32_t vfp_get_fpscr(CPUARMState *env);
1706 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1707 
1708 /*
1709  * FPCR, Floating Point Control Register
1710  * FPSR, Floating Point Status Register
1711  *
1712  * For A64 floating point control and status bits are stored in
1713  * two logically distinct registers, FPCR and FPSR. We store these
1714  * in QEMU in vfp.fpcr and vfp.fpsr.
1715  * For A32 there was only one register, FPSCR. The bits are arranged
1716  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1717  * so we can use appropriate masking to handle FPSCR reads and writes.
1718  * Note that the FPCR has some bits which are not visible in the
1719  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1720  */
1721 
1722 /* FPCR bits */
1723 #define FPCR_FIZ    (1 << 0)    /* Flush Inputs to Zero (FEAT_AFP) */
1724 #define FPCR_AH     (1 << 1)    /* Alternate Handling (FEAT_AFP) */
1725 #define FPCR_NEP    (1 << 2)    /* SIMD scalar ops preserve elts (FEAT_AFP) */
1726 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1727 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1728 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1729 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1730 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1731 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1732 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1733 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1734 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1735 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1736 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1737 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1738 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1739 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1740 
1741 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1742 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1743 #define FPCR_LTPSIZE_LENGTH 3
1744 
1745 /* Cumulative exception trap enable bits */
1746 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1747 
1748 /* FPSR bits */
1749 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1750 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1751 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1752 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1753 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1754 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1755 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1756 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1757 #define FPSR_C      (1 << 29)   /* FP carry flag */
1758 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1759 #define FPSR_N      (1 << 31)   /* FP negative flag */
1760 
1761 /* Cumulative exception status bits */
1762 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1763 
1764 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1765 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1766 
1767 /* A32 FPSCR bits which architecturally map to FPSR bits */
1768 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1769 /* A32 FPSCR bits which architecturally map to FPCR bits */
1770 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1771                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1772                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1773 /* These masks don't overlap: each bit lives in only one place */
1774 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1775 
1776 /**
1777  * vfp_get_fpsr: read the AArch64 FPSR
1778  * @env: CPU context
1779  *
1780  * Return the current AArch64 FPSR value
1781  */
1782 uint32_t vfp_get_fpsr(CPUARMState *env);
1783 
1784 /**
1785  * vfp_get_fpcr: read the AArch64 FPCR
1786  * @env: CPU context
1787  *
1788  * Return the current AArch64 FPCR value
1789  */
1790 uint32_t vfp_get_fpcr(CPUARMState *env);
1791 
1792 /**
1793  * vfp_set_fpsr: write the AArch64 FPSR
1794  * @env: CPU context
1795  * @value: new value
1796  */
1797 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1798 
1799 /**
1800  * vfp_set_fpcr: write the AArch64 FPCR
1801  * @env: CPU context
1802  * @value: new value
1803  */
1804 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1805 
1806 enum arm_cpu_mode {
1807   ARM_CPU_MODE_USR = 0x10,
1808   ARM_CPU_MODE_FIQ = 0x11,
1809   ARM_CPU_MODE_IRQ = 0x12,
1810   ARM_CPU_MODE_SVC = 0x13,
1811   ARM_CPU_MODE_MON = 0x16,
1812   ARM_CPU_MODE_ABT = 0x17,
1813   ARM_CPU_MODE_HYP = 0x1a,
1814   ARM_CPU_MODE_UND = 0x1b,
1815   ARM_CPU_MODE_SYS = 0x1f
1816 };
1817 
1818 /* VFP system registers.  */
1819 #define ARM_VFP_FPSID   0
1820 #define ARM_VFP_FPSCR   1
1821 #define ARM_VFP_MVFR2   5
1822 #define ARM_VFP_MVFR1   6
1823 #define ARM_VFP_MVFR0   7
1824 #define ARM_VFP_FPEXC   8
1825 #define ARM_VFP_FPINST  9
1826 #define ARM_VFP_FPINST2 10
1827 /* These ones are M-profile only */
1828 #define ARM_VFP_FPSCR_NZCVQC 2
1829 #define ARM_VFP_VPR 12
1830 #define ARM_VFP_P0 13
1831 #define ARM_VFP_FPCXT_NS 14
1832 #define ARM_VFP_FPCXT_S 15
1833 
1834 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1835 #define QEMU_VFP_FPSCR_NZCV 0xffff
1836 
1837 /* iwMMXt coprocessor control registers.  */
1838 #define ARM_IWMMXT_wCID  0
1839 #define ARM_IWMMXT_wCon  1
1840 #define ARM_IWMMXT_wCSSF 2
1841 #define ARM_IWMMXT_wCASF 3
1842 #define ARM_IWMMXT_wCGR0 8
1843 #define ARM_IWMMXT_wCGR1 9
1844 #define ARM_IWMMXT_wCGR2 10
1845 #define ARM_IWMMXT_wCGR3 11
1846 
1847 /* V7M CCR bits */
1848 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1849 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1850 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1851 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1852 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1853 FIELD(V7M_CCR, STKALIGN, 9, 1)
1854 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1855 FIELD(V7M_CCR, DC, 16, 1)
1856 FIELD(V7M_CCR, IC, 17, 1)
1857 FIELD(V7M_CCR, BP, 18, 1)
1858 FIELD(V7M_CCR, LOB, 19, 1)
1859 FIELD(V7M_CCR, TRD, 20, 1)
1860 
1861 /* V7M SCR bits */
1862 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1863 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1864 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1865 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1866 
1867 /* V7M AIRCR bits */
1868 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1869 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1870 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1871 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1872 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1873 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1874 FIELD(V7M_AIRCR, PRIS, 14, 1)
1875 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1876 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1877 
1878 /* V7M CFSR bits for MMFSR */
1879 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1880 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1881 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1882 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1883 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1884 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1885 
1886 /* V7M CFSR bits for BFSR */
1887 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1888 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1889 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1890 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1891 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1892 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1893 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1894 
1895 /* V7M CFSR bits for UFSR */
1896 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1897 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1898 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1899 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1900 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1901 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1902 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1903 
1904 /* V7M CFSR bit masks covering all of the subregister bits */
1905 FIELD(V7M_CFSR, MMFSR, 0, 8)
1906 FIELD(V7M_CFSR, BFSR, 8, 8)
1907 FIELD(V7M_CFSR, UFSR, 16, 16)
1908 
1909 /* V7M HFSR bits */
1910 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1911 FIELD(V7M_HFSR, FORCED, 30, 1)
1912 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1913 
1914 /* V7M DFSR bits */
1915 FIELD(V7M_DFSR, HALTED, 0, 1)
1916 FIELD(V7M_DFSR, BKPT, 1, 1)
1917 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1918 FIELD(V7M_DFSR, VCATCH, 3, 1)
1919 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1920 
1921 /* V7M SFSR bits */
1922 FIELD(V7M_SFSR, INVEP, 0, 1)
1923 FIELD(V7M_SFSR, INVIS, 1, 1)
1924 FIELD(V7M_SFSR, INVER, 2, 1)
1925 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1926 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1927 FIELD(V7M_SFSR, LSPERR, 5, 1)
1928 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1929 FIELD(V7M_SFSR, LSERR, 7, 1)
1930 
1931 /* v7M MPU_CTRL bits */
1932 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1933 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1934 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1935 
1936 /* v7M CLIDR bits */
1937 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1938 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1939 FIELD(V7M_CLIDR, LOC, 24, 3)
1940 FIELD(V7M_CLIDR, LOUU, 27, 3)
1941 FIELD(V7M_CLIDR, ICB, 30, 2)
1942 
1943 FIELD(V7M_CSSELR, IND, 0, 1)
1944 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1945 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1946  * define a mask for this and check that it doesn't permit running off
1947  * the end of the array.
1948  */
1949 FIELD(V7M_CSSELR, INDEX, 0, 4)
1950 
1951 /* v7M FPCCR bits */
1952 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1953 FIELD(V7M_FPCCR, USER, 1, 1)
1954 FIELD(V7M_FPCCR, S, 2, 1)
1955 FIELD(V7M_FPCCR, THREAD, 3, 1)
1956 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1957 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1958 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1959 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1960 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1961 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1962 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1963 FIELD(V7M_FPCCR, RES0, 11, 15)
1964 FIELD(V7M_FPCCR, TS, 26, 1)
1965 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1966 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1967 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1968 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1969 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1970 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1971 #define R_V7M_FPCCR_BANKED_MASK                 \
1972     (R_V7M_FPCCR_LSPACT_MASK |                  \
1973      R_V7M_FPCCR_USER_MASK |                    \
1974      R_V7M_FPCCR_THREAD_MASK |                  \
1975      R_V7M_FPCCR_MMRDY_MASK |                   \
1976      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1977      R_V7M_FPCCR_UFRDY_MASK |                   \
1978      R_V7M_FPCCR_ASPEN_MASK)
1979 
1980 /* v7M VPR bits */
1981 FIELD(V7M_VPR, P0, 0, 16)
1982 FIELD(V7M_VPR, MASK01, 16, 4)
1983 FIELD(V7M_VPR, MASK23, 20, 4)
1984 
1985 /*
1986  * System register ID fields.
1987  */
1988 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1989 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1990 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1991 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1992 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1993 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1994 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1995 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1996 FIELD(CLIDR_EL1, LOC, 24, 3)
1997 FIELD(CLIDR_EL1, LOUU, 27, 3)
1998 FIELD(CLIDR_EL1, ICB, 30, 3)
1999 
2000 /* When FEAT_CCIDX is implemented */
2001 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2002 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2003 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2004 
2005 /* When FEAT_CCIDX is not implemented */
2006 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2007 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2008 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2009 
2010 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2011 FIELD(CTR_EL0,  L1IP, 14, 2)
2012 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2013 FIELD(CTR_EL0,  ERG, 20, 4)
2014 FIELD(CTR_EL0,  CWG, 24, 4)
2015 FIELD(CTR_EL0,  IDC, 28, 1)
2016 FIELD(CTR_EL0,  DIC, 29, 1)
2017 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2018 
2019 FIELD(MIDR_EL1, REVISION, 0, 4)
2020 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2021 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2022 FIELD(MIDR_EL1, VARIANT, 20, 4)
2023 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2024 
2025 FIELD(ID_ISAR0, SWAP, 0, 4)
2026 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2027 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2028 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2029 FIELD(ID_ISAR0, COPROC, 16, 4)
2030 FIELD(ID_ISAR0, DEBUG, 20, 4)
2031 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2032 
2033 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2034 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2035 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2036 FIELD(ID_ISAR1, EXTEND, 12, 4)
2037 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2038 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2039 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2040 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2041 
2042 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2043 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2044 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2045 FIELD(ID_ISAR2, MULT, 12, 4)
2046 FIELD(ID_ISAR2, MULTS, 16, 4)
2047 FIELD(ID_ISAR2, MULTU, 20, 4)
2048 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2049 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2050 
2051 FIELD(ID_ISAR3, SATURATE, 0, 4)
2052 FIELD(ID_ISAR3, SIMD, 4, 4)
2053 FIELD(ID_ISAR3, SVC, 8, 4)
2054 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2055 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2056 FIELD(ID_ISAR3, T32COPY, 20, 4)
2057 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2058 FIELD(ID_ISAR3, T32EE, 28, 4)
2059 
2060 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2061 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2062 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2063 FIELD(ID_ISAR4, SMC, 12, 4)
2064 FIELD(ID_ISAR4, BARRIER, 16, 4)
2065 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2066 FIELD(ID_ISAR4, PSR_M, 24, 4)
2067 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2068 
2069 FIELD(ID_ISAR5, SEVL, 0, 4)
2070 FIELD(ID_ISAR5, AES, 4, 4)
2071 FIELD(ID_ISAR5, SHA1, 8, 4)
2072 FIELD(ID_ISAR5, SHA2, 12, 4)
2073 FIELD(ID_ISAR5, CRC32, 16, 4)
2074 FIELD(ID_ISAR5, RDM, 24, 4)
2075 FIELD(ID_ISAR5, VCMA, 28, 4)
2076 
2077 FIELD(ID_ISAR6, JSCVT, 0, 4)
2078 FIELD(ID_ISAR6, DP, 4, 4)
2079 FIELD(ID_ISAR6, FHM, 8, 4)
2080 FIELD(ID_ISAR6, SB, 12, 4)
2081 FIELD(ID_ISAR6, SPECRES, 16, 4)
2082 FIELD(ID_ISAR6, BF16, 20, 4)
2083 FIELD(ID_ISAR6, I8MM, 24, 4)
2084 
2085 FIELD(ID_MMFR0, VMSA, 0, 4)
2086 FIELD(ID_MMFR0, PMSA, 4, 4)
2087 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2088 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2089 FIELD(ID_MMFR0, TCM, 16, 4)
2090 FIELD(ID_MMFR0, AUXREG, 20, 4)
2091 FIELD(ID_MMFR0, FCSE, 24, 4)
2092 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2093 
2094 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2095 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2096 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2097 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2098 FIELD(ID_MMFR1, L1HVD, 16, 4)
2099 FIELD(ID_MMFR1, L1UNI, 20, 4)
2100 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2101 FIELD(ID_MMFR1, BPRED, 28, 4)
2102 
2103 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2104 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2105 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2106 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2107 FIELD(ID_MMFR2, UNITLB, 16, 4)
2108 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2109 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2110 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2111 
2112 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2113 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2114 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2115 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2116 FIELD(ID_MMFR3, PAN, 16, 4)
2117 FIELD(ID_MMFR3, COHWALK, 20, 4)
2118 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2119 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2120 
2121 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2122 FIELD(ID_MMFR4, AC2, 4, 4)
2123 FIELD(ID_MMFR4, XNX, 8, 4)
2124 FIELD(ID_MMFR4, CNP, 12, 4)
2125 FIELD(ID_MMFR4, HPDS, 16, 4)
2126 FIELD(ID_MMFR4, LSM, 20, 4)
2127 FIELD(ID_MMFR4, CCIDX, 24, 4)
2128 FIELD(ID_MMFR4, EVT, 28, 4)
2129 
2130 FIELD(ID_MMFR5, ETS, 0, 4)
2131 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2132 
2133 FIELD(ID_PFR0, STATE0, 0, 4)
2134 FIELD(ID_PFR0, STATE1, 4, 4)
2135 FIELD(ID_PFR0, STATE2, 8, 4)
2136 FIELD(ID_PFR0, STATE3, 12, 4)
2137 FIELD(ID_PFR0, CSV2, 16, 4)
2138 FIELD(ID_PFR0, AMU, 20, 4)
2139 FIELD(ID_PFR0, DIT, 24, 4)
2140 FIELD(ID_PFR0, RAS, 28, 4)
2141 
2142 FIELD(ID_PFR1, PROGMOD, 0, 4)
2143 FIELD(ID_PFR1, SECURITY, 4, 4)
2144 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2145 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2146 FIELD(ID_PFR1, GENTIMER, 16, 4)
2147 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2148 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2149 FIELD(ID_PFR1, GIC, 28, 4)
2150 
2151 FIELD(ID_PFR2, CSV3, 0, 4)
2152 FIELD(ID_PFR2, SSBS, 4, 4)
2153 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2154 
2155 FIELD(ID_AA64ISAR0, AES, 4, 4)
2156 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2157 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2158 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2159 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2160 FIELD(ID_AA64ISAR0, TME, 24, 4)
2161 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2162 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2163 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2164 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2165 FIELD(ID_AA64ISAR0, DP, 44, 4)
2166 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2167 FIELD(ID_AA64ISAR0, TS, 52, 4)
2168 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2169 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2170 
2171 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2172 FIELD(ID_AA64ISAR1, APA, 4, 4)
2173 FIELD(ID_AA64ISAR1, API, 8, 4)
2174 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2175 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2176 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2177 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2178 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2179 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2180 FIELD(ID_AA64ISAR1, SB, 36, 4)
2181 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2182 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2183 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2184 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2185 FIELD(ID_AA64ISAR1, XS, 56, 4)
2186 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2187 
2188 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2189 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2190 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2191 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2192 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2193 FIELD(ID_AA64ISAR2, BC, 20, 4)
2194 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2195 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2196 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2197 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2198 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2199 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2200 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2201 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2202 
2203 FIELD(ID_AA64PFR0, EL0, 0, 4)
2204 FIELD(ID_AA64PFR0, EL1, 4, 4)
2205 FIELD(ID_AA64PFR0, EL2, 8, 4)
2206 FIELD(ID_AA64PFR0, EL3, 12, 4)
2207 FIELD(ID_AA64PFR0, FP, 16, 4)
2208 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2209 FIELD(ID_AA64PFR0, GIC, 24, 4)
2210 FIELD(ID_AA64PFR0, RAS, 28, 4)
2211 FIELD(ID_AA64PFR0, SVE, 32, 4)
2212 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2213 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2214 FIELD(ID_AA64PFR0, AMU, 44, 4)
2215 FIELD(ID_AA64PFR0, DIT, 48, 4)
2216 FIELD(ID_AA64PFR0, RME, 52, 4)
2217 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2218 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2219 
2220 FIELD(ID_AA64PFR1, BT, 0, 4)
2221 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2222 FIELD(ID_AA64PFR1, MTE, 8, 4)
2223 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2224 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2225 FIELD(ID_AA64PFR1, SME, 24, 4)
2226 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2227 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2228 FIELD(ID_AA64PFR1, NMI, 36, 4)
2229 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2230 FIELD(ID_AA64PFR1, GCS, 44, 4)
2231 FIELD(ID_AA64PFR1, THE, 48, 4)
2232 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2233 FIELD(ID_AA64PFR1, DF2, 56, 4)
2234 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2235 
2236 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2237 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2238 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2239 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2240 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2241 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2242 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2243 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2244 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2245 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2246 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2247 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2248 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2249 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2250 
2251 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2252 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2253 FIELD(ID_AA64MMFR1, VH, 8, 4)
2254 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2255 FIELD(ID_AA64MMFR1, LO, 16, 4)
2256 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2257 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2258 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2259 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2260 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2261 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2262 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2263 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2264 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2265 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2266 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2267 
2268 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2269 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2270 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2271 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2272 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2273 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2274 FIELD(ID_AA64MMFR2, NV, 24, 4)
2275 FIELD(ID_AA64MMFR2, ST, 28, 4)
2276 FIELD(ID_AA64MMFR2, AT, 32, 4)
2277 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2278 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2279 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2280 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2281 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2282 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2283 
2284 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2285 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2286 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2287 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2288 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2289 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2290 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2291 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2292 FIELD(ID_AA64MMFR3, D128, 32, 4)
2293 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2294 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2295 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2296 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2297 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2298 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2299 
2300 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2301 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2302 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2303 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2304 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2305 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2306 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2307 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2308 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2309 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2310 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2311 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2312 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2313 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2314 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2315 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2316 
2317 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2318 FIELD(ID_AA64ZFR0, AES, 4, 4)
2319 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2320 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2321 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2322 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2323 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2324 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2325 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2326 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2327 
2328 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2329 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2330 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2331 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2332 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2333 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2334 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2335 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2336 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2337 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2338 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2339 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2340 
2341 FIELD(ID_DFR0, COPDBG, 0, 4)
2342 FIELD(ID_DFR0, COPSDBG, 4, 4)
2343 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2344 FIELD(ID_DFR0, COPTRC, 12, 4)
2345 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2346 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2347 FIELD(ID_DFR0, PERFMON, 24, 4)
2348 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2349 
2350 FIELD(ID_DFR1, MTPMU, 0, 4)
2351 FIELD(ID_DFR1, HPMN0, 4, 4)
2352 
2353 FIELD(DBGDIDR, SE_IMP, 12, 1)
2354 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2355 FIELD(DBGDIDR, VERSION, 16, 4)
2356 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2357 FIELD(DBGDIDR, BRPS, 24, 4)
2358 FIELD(DBGDIDR, WRPS, 28, 4)
2359 
2360 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2361 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2362 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2363 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2364 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2365 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2366 FIELD(DBGDEVID, AUXREGS, 24, 4)
2367 FIELD(DBGDEVID, CIDMASK, 28, 4)
2368 
2369 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2370 
2371 FIELD(MVFR0, SIMDREG, 0, 4)
2372 FIELD(MVFR0, FPSP, 4, 4)
2373 FIELD(MVFR0, FPDP, 8, 4)
2374 FIELD(MVFR0, FPTRAP, 12, 4)
2375 FIELD(MVFR0, FPDIVIDE, 16, 4)
2376 FIELD(MVFR0, FPSQRT, 20, 4)
2377 FIELD(MVFR0, FPSHVEC, 24, 4)
2378 FIELD(MVFR0, FPROUND, 28, 4)
2379 
2380 FIELD(MVFR1, FPFTZ, 0, 4)
2381 FIELD(MVFR1, FPDNAN, 4, 4)
2382 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2383 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2384 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2385 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2386 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2387 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2388 FIELD(MVFR1, FPHP, 24, 4)
2389 FIELD(MVFR1, SIMDFMAC, 28, 4)
2390 
2391 FIELD(MVFR2, SIMDMISC, 0, 4)
2392 FIELD(MVFR2, FPMISC, 4, 4)
2393 
2394 FIELD(GPCCR, PPS, 0, 3)
2395 FIELD(GPCCR, IRGN, 8, 2)
2396 FIELD(GPCCR, ORGN, 10, 2)
2397 FIELD(GPCCR, SH, 12, 2)
2398 FIELD(GPCCR, PGS, 14, 2)
2399 FIELD(GPCCR, GPC, 16, 1)
2400 FIELD(GPCCR, GPCP, 17, 1)
2401 FIELD(GPCCR, L0GPTSZ, 20, 4)
2402 
2403 FIELD(MFAR, FPA, 12, 40)
2404 FIELD(MFAR, NSE, 62, 1)
2405 FIELD(MFAR, NS, 63, 1)
2406 
2407 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2408 
2409 /* If adding a feature bit which corresponds to a Linux ELF
2410  * HWCAP bit, remember to update the feature-bit-to-hwcap
2411  * mapping in linux-user/elfload.c:get_elf_hwcap().
2412  */
2413 enum arm_features {
2414     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2415     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2416     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2417     ARM_FEATURE_V6,
2418     ARM_FEATURE_V6K,
2419     ARM_FEATURE_V7,
2420     ARM_FEATURE_THUMB2,
2421     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2422     ARM_FEATURE_NEON,
2423     ARM_FEATURE_M, /* Microcontroller profile.  */
2424     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2425     ARM_FEATURE_THUMB2EE,
2426     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2427     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2428     ARM_FEATURE_V4T,
2429     ARM_FEATURE_V5,
2430     ARM_FEATURE_STRONGARM,
2431     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2432     ARM_FEATURE_GENERIC_TIMER,
2433     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2434     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2435     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2436     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2437     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2438     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2439     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2440     ARM_FEATURE_V8,
2441     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2442     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2443     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2444     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2445     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2446     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2447     ARM_FEATURE_PMU, /* has PMU support */
2448     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2449     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2450     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2451     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2452     /*
2453      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2454      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2455      * compatibility and used only with CPU definitions that were already
2456      * in QEMU before we changed the default. It should not be set on any
2457      * CPU types added in future.
2458      */
2459     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2460 };
2461 
arm_feature(CPUARMState * env,int feature)2462 static inline int arm_feature(CPUARMState *env, int feature)
2463 {
2464     return (env->features & (1ULL << feature)) != 0;
2465 }
2466 
2467 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2468 
2469 /*
2470  * ARM v9 security states.
2471  * The ordering of the enumeration corresponds to the low 2 bits
2472  * of the GPI value, and (except for Root) the concat of NSE:NS.
2473  */
2474 
2475 typedef enum ARMSecuritySpace {
2476     ARMSS_Secure     = 0,
2477     ARMSS_NonSecure  = 1,
2478     ARMSS_Root       = 2,
2479     ARMSS_Realm      = 3,
2480 } ARMSecuritySpace;
2481 
2482 /* Return true if @space is secure, in the pre-v9 sense. */
arm_space_is_secure(ARMSecuritySpace space)2483 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2484 {
2485     return space == ARMSS_Secure || space == ARMSS_Root;
2486 }
2487 
2488 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
arm_secure_to_space(bool secure)2489 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2490 {
2491     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2492 }
2493 
2494 #if !defined(CONFIG_USER_ONLY)
2495 /**
2496  * arm_security_space_below_el3:
2497  * @env: cpu context
2498  *
2499  * Return the security space of exception levels below EL3, following
2500  * an exception return to those levels.  Unlike arm_security_space,
2501  * this doesn't care about the current EL.
2502  */
2503 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2504 
2505 /**
2506  * arm_is_secure_below_el3:
2507  * @env: cpu context
2508  *
2509  * Return true if exception levels below EL3 are in secure state,
2510  * or would be following an exception return to those levels.
2511  */
arm_is_secure_below_el3(CPUARMState * env)2512 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2513 {
2514     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2515     return ss == ARMSS_Secure;
2516 }
2517 
2518 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
arm_is_el3_or_mon(CPUARMState * env)2519 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2520 {
2521     assert(!arm_feature(env, ARM_FEATURE_M));
2522     if (arm_feature(env, ARM_FEATURE_EL3)) {
2523         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2524             /* CPU currently in AArch64 state and EL3 */
2525             return true;
2526         } else if (!is_a64(env) &&
2527                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2528             /* CPU currently in AArch32 state and monitor mode */
2529             return true;
2530         }
2531     }
2532     return false;
2533 }
2534 
2535 /**
2536  * arm_security_space:
2537  * @env: cpu context
2538  *
2539  * Return the current security space of the cpu.
2540  */
2541 ARMSecuritySpace arm_security_space(CPUARMState *env);
2542 
2543 /**
2544  * arm_is_secure:
2545  * @env: cpu context
2546  *
2547  * Return true if the processor is in secure state.
2548  */
arm_is_secure(CPUARMState * env)2549 static inline bool arm_is_secure(CPUARMState *env)
2550 {
2551     return arm_space_is_secure(arm_security_space(env));
2552 }
2553 
2554 /*
2555  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2556  * This corresponds to the pseudocode EL2Enabled().
2557  */
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2558 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2559                                                ARMSecuritySpace space)
2560 {
2561     assert(space != ARMSS_Root);
2562     return arm_feature(env, ARM_FEATURE_EL2)
2563            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2564 }
2565 
arm_is_el2_enabled(CPUARMState * env)2566 static inline bool arm_is_el2_enabled(CPUARMState *env)
2567 {
2568     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2569 }
2570 
2571 #else
arm_security_space_below_el3(CPUARMState * env)2572 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2573 {
2574     return ARMSS_NonSecure;
2575 }
2576 
arm_is_secure_below_el3(CPUARMState * env)2577 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2578 {
2579     return false;
2580 }
2581 
arm_is_el3_or_mon(CPUARMState * env)2582 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2583 {
2584     return false;
2585 }
2586 
arm_security_space(CPUARMState * env)2587 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2588 {
2589     return ARMSS_NonSecure;
2590 }
2591 
arm_is_secure(CPUARMState * env)2592 static inline bool arm_is_secure(CPUARMState *env)
2593 {
2594     return false;
2595 }
2596 
arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2597 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2598                                                ARMSecuritySpace space)
2599 {
2600     return false;
2601 }
2602 
arm_is_el2_enabled(CPUARMState * env)2603 static inline bool arm_is_el2_enabled(CPUARMState *env)
2604 {
2605     return false;
2606 }
2607 #endif
2608 
2609 /**
2610  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2611  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2612  * "for all purposes other than a direct read or write access of HCR_EL2."
2613  * Not included here is HCR_RW.
2614  */
2615 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2616 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2617 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2618 
2619 /*
2620  * Function for determining whether guest cp register reads and writes should
2621  * access the secure or non-secure bank of a cp register.  When EL3 is
2622  * operating in AArch32 state, the NS-bit determines whether the secure
2623  * instance of a cp register should be used. When EL3 is AArch64 (or if
2624  * it doesn't exist at all) then there is no register banking, and all
2625  * accesses are to the non-secure version.
2626  */
2627 bool access_secure_reg(CPUARMState *env);
2628 
2629 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2630                                  uint32_t cur_el, bool secure);
2631 
2632 /* Return the highest implemented Exception Level */
arm_highest_el(CPUARMState * env)2633 static inline int arm_highest_el(CPUARMState *env)
2634 {
2635     if (arm_feature(env, ARM_FEATURE_EL3)) {
2636         return 3;
2637     }
2638     if (arm_feature(env, ARM_FEATURE_EL2)) {
2639         return 2;
2640     }
2641     return 1;
2642 }
2643 
2644 /* Return true if a v7M CPU is in Handler mode */
arm_v7m_is_handler_mode(CPUARMState * env)2645 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2646 {
2647     return env->v7m.exception != 0;
2648 }
2649 
2650 /**
2651  * write_list_to_cpustate
2652  * @cpu: ARMCPU
2653  *
2654  * For each register listed in the ARMCPU cpreg_indexes list, write
2655  * its value from the cpreg_values list into the ARMCPUState structure.
2656  * This updates TCG's working data structures from KVM data or
2657  * from incoming migration state.
2658  *
2659  * Returns: true if all register values were updated correctly,
2660  * false if some register was unknown or could not be written.
2661  * Note that we do not stop early on failure -- we will attempt
2662  * writing all registers in the list.
2663  */
2664 bool write_list_to_cpustate(ARMCPU *cpu);
2665 
2666 /**
2667  * write_cpustate_to_list:
2668  * @cpu: ARMCPU
2669  * @kvm_sync: true if this is for syncing back to KVM
2670  *
2671  * For each register listed in the ARMCPU cpreg_indexes list, write
2672  * its value from the ARMCPUState structure into the cpreg_values list.
2673  * This is used to copy info from TCG's working data structures into
2674  * KVM or for outbound migration.
2675  *
2676  * @kvm_sync is true if we are doing this in order to sync the
2677  * register state back to KVM. In this case we will only update
2678  * values in the list if the previous list->cpustate sync actually
2679  * successfully wrote the CPU state. Otherwise we will keep the value
2680  * that is in the list.
2681  *
2682  * Returns: true if all register values were read correctly,
2683  * false if some register was unknown or could not be read.
2684  * Note that we do not stop early on failure -- we will attempt
2685  * reading all registers in the list.
2686  */
2687 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2688 
2689 #define ARM_CPUID_TI915T      0x54029152
2690 #define ARM_CPUID_TI925T      0x54029252
2691 
2692 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2693 
2694 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2695 
2696 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2697  *
2698  * If EL3 is 64-bit:
2699  *  + NonSecure EL1 & 0 stage 1
2700  *  + NonSecure EL1 & 0 stage 2
2701  *  + NonSecure EL2
2702  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2703  *  + Secure EL1 & 0 stage 1
2704  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2705  *  + Secure EL2 (FEAT_SEL2)
2706  *  + Secure EL2 & 0 (FEAT_SEL2)
2707  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2708  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2709  *  + Realm EL2 (FEAT_RME)
2710  *  + EL3
2711  * If EL3 is 32-bit:
2712  *  + NonSecure PL1 & 0 stage 1
2713  *  + NonSecure PL1 & 0 stage 2
2714  *  + NonSecure PL2
2715  *  + Secure PL1 & 0
2716  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2717  *
2718  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2719  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2720  *     because they may differ in access permissions even if the VA->PA map is
2721  *     the same
2722  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2723  *     translation, which means that we have one mmu_idx that deals with two
2724  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2725  *     architecturally permitted]
2726  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2727  *     handling via the TLB. The only way to do a stage 1 translation without
2728  *     the immediate stage 2 translation is via the ATS or AT system insns,
2729  *     which can be slow-pathed and always do a page table walk.
2730  *     The only use of stage 2 translations is either as part of an s1+2
2731  *     lookup or when loading the descriptors during a stage 1 page table walk,
2732  *     and in both those cases we don't use the TLB.
2733  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2734  *     translation regimes, because they map reasonably well to each other
2735  *     and they can't both be active at the same time.
2736  *  5. we want to be able to use the TLB for accesses done as part of a
2737  *     stage1 page table walk, rather than having to walk the stage2 page
2738  *     table over and over.
2739  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2740  *     Never (PAN) bit within PSTATE.
2741  *  7. we fold together most secure and non-secure regimes for A-profile,
2742  *     because there are no banked system registers for aarch64, so the
2743  *     process of switching between secure and non-secure is
2744  *     already heavyweight.
2745  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2746  *     because both are in use simultaneously for Secure EL2.
2747  *
2748  * This gives us the following list of cases:
2749  *
2750  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2751  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2752  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2753  * EL0 EL2&0
2754  * EL2 EL2&0
2755  * EL2 EL2&0 +PAN
2756  * EL2 (aka NS PL2)
2757  * EL3 (aka AArch32 S PL1 PL1&0)
2758  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2759  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2760  * Stage2 Secure
2761  * Stage2 NonSecure
2762  * plus one TLB per Physical address space: S, NS, Realm, Root
2763  *
2764  * for a total of 16 different mmu_idx.
2765  *
2766  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2767  * as A profile. They only need to distinguish EL0 and EL1 (and
2768  * EL2 for cores like the Cortex-R52).
2769  *
2770  * M profile CPUs are rather different as they do not have a true MMU.
2771  * They have the following different MMU indexes:
2772  *  User
2773  *  Privileged
2774  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2775  *  Privileged, execution priority negative (ditto)
2776  * If the CPU supports the v8M Security Extension then there are also:
2777  *  Secure User
2778  *  Secure Privileged
2779  *  Secure User, execution priority negative
2780  *  Secure Privileged, execution priority negative
2781  *
2782  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2783  * are not quite the same -- different CPU types (most notably M profile
2784  * vs A/R profile) would like to use MMU indexes with different semantics,
2785  * but since we don't ever need to use all of those in a single CPU we
2786  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2787  * modes + total number of M profile MMU modes". The lower bits of
2788  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2789  * the same for any particular CPU.
2790  * Variables of type ARMMUIdx are always full values, and the core
2791  * index values are in variables of type 'int'.
2792  *
2793  * Our enumeration includes at the end some entries which are not "true"
2794  * mmu_idx values in that they don't have corresponding TLBs and are only
2795  * valid for doing slow path page table walks.
2796  *
2797  * The constant names here are patterned after the general style of the names
2798  * of the AT/ATS operations.
2799  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2800  * For M profile we arrange them to have a bit for priv, a bit for negpri
2801  * and a bit for secure.
2802  */
2803 #define ARM_MMU_IDX_A     0x10  /* A profile */
2804 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2805 #define ARM_MMU_IDX_M     0x40  /* M profile */
2806 
2807 /* Meanings of the bits for M profile mmu idx values */
2808 #define ARM_MMU_IDX_M_PRIV   0x1
2809 #define ARM_MMU_IDX_M_NEGPRI 0x2
2810 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2811 
2812 #define ARM_MMU_IDX_TYPE_MASK \
2813     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2814 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2815 
2816 typedef enum ARMMMUIdx {
2817     /*
2818      * A-profile.
2819      */
2820     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2821     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2822     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2823     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2824     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2825     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2826     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2827     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2828     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2829     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2830 
2831     /*
2832      * Used for second stage of an S12 page table walk, or for descriptor
2833      * loads during first stage of an S1 page table walk.  Note that both
2834      * are in use simultaneously for SecureEL2: the security state for
2835      * the S2 ptw is selected by the NS bit from the S1 ptw.
2836      */
2837     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2838     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2839 
2840     /* TLBs with 1-1 mapping to the physical address spaces. */
2841     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2842     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2843     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2844     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2845 
2846     /*
2847      * These are not allocated TLBs and are used only for AT system
2848      * instructions or for the first stage of an S12 page table walk.
2849      */
2850     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2851     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2852     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2853 
2854     /*
2855      * M-profile.
2856      */
2857     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2858     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2859     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2860     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2861     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2862     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2863     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2864     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2865 } ARMMMUIdx;
2866 
2867 /*
2868  * Bit macros for the core-mmu-index values for each index,
2869  * for use when calling tlb_flush_by_mmuidx() and friends.
2870  */
2871 #define TO_CORE_BIT(NAME) \
2872     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2873 
2874 typedef enum ARMMMUIdxBit {
2875     TO_CORE_BIT(E10_0),
2876     TO_CORE_BIT(E20_0),
2877     TO_CORE_BIT(E10_1),
2878     TO_CORE_BIT(E10_1_PAN),
2879     TO_CORE_BIT(E2),
2880     TO_CORE_BIT(E20_2),
2881     TO_CORE_BIT(E20_2_PAN),
2882     TO_CORE_BIT(E3),
2883     TO_CORE_BIT(E30_0),
2884     TO_CORE_BIT(E30_3_PAN),
2885     TO_CORE_BIT(Stage2),
2886     TO_CORE_BIT(Stage2_S),
2887 
2888     TO_CORE_BIT(MUser),
2889     TO_CORE_BIT(MPriv),
2890     TO_CORE_BIT(MUserNegPri),
2891     TO_CORE_BIT(MPrivNegPri),
2892     TO_CORE_BIT(MSUser),
2893     TO_CORE_BIT(MSPriv),
2894     TO_CORE_BIT(MSUserNegPri),
2895     TO_CORE_BIT(MSPrivNegPri),
2896 } ARMMMUIdxBit;
2897 
2898 #undef TO_CORE_BIT
2899 
2900 #define MMU_USER_IDX 0
2901 
2902 /* Indexes used when registering address spaces with cpu_address_space_init */
2903 typedef enum ARMASIdx {
2904     ARMASIdx_NS = 0,
2905     ARMASIdx_S = 1,
2906     ARMASIdx_TagNS = 2,
2907     ARMASIdx_TagS = 3,
2908 } ARMASIdx;
2909 
arm_space_to_phys(ARMSecuritySpace space)2910 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2911 {
2912     /* Assert the relative order of the physical mmu indexes. */
2913     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2914     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2915     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2916     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2917 
2918     return ARMMMUIdx_Phys_S + space;
2919 }
2920 
arm_phys_to_space(ARMMMUIdx idx)2921 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2922 {
2923     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2924     return idx - ARMMMUIdx_Phys_S;
2925 }
2926 
arm_v7m_csselr_razwi(ARMCPU * cpu)2927 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2928 {
2929     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2930      * CSSELR is RAZ/WI.
2931      */
2932     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2933 }
2934 
arm_sctlr_b(CPUARMState * env)2935 static inline bool arm_sctlr_b(CPUARMState *env)
2936 {
2937     return
2938         /* We need not implement SCTLR.ITD in user-mode emulation, so
2939          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2940          * This lets people run BE32 binaries with "-cpu any".
2941          */
2942 #ifndef CONFIG_USER_ONLY
2943         !arm_feature(env, ARM_FEATURE_V7) &&
2944 #endif
2945         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2946 }
2947 
2948 uint64_t arm_sctlr(CPUARMState *env, int el);
2949 
2950 /*
2951  * We have more than 32-bits worth of state per TB, so we split the data
2952  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2953  * We collect these two parts in CPUARMTBFlags where they are named
2954  * flags and flags2 respectively.
2955  *
2956  * The flags that are shared between all execution modes, TBFLAG_ANY, are stored
2957  * in flags. The flags that are specific to a given mode are stored in flags2.
2958  * flags2 always has 64-bits, even though only 32-bits are used for A32 and M32.
2959  *
2960  * The bits for 32-bit A-profile and M-profile partially overlap:
2961  *
2962  *  31         23         11 10             0
2963  * +-------------+----------+----------------+
2964  * |             |          |   TBFLAG_A32   |
2965  * | TBFLAG_AM32 |          +-----+----------+
2966  * |             |                |TBFLAG_M32|
2967  * +-------------+----------------+----------+
2968  *  31         23                6 5        0
2969  *
2970  * Unless otherwise noted, these bits are cached in env->hflags.
2971  */
2972 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
2973 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
2974 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
2975 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
2976 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
2977 /* Target EL if we take a floating-point-disabled exception */
2978 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
2979 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
2980 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
2981 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
2982 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
2983 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
2984 
2985 /*
2986  * Bit usage when in AArch32 state, both A- and M-profile.
2987  */
2988 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
2989 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
2990 
2991 /*
2992  * Bit usage when in AArch32 state, for A-profile only.
2993  */
2994 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
2995 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
2996 /*
2997  * We store the bottom two bits of the CPAR as TB flags and handle
2998  * checks on the other bits at runtime. This shares the same bits as
2999  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3000  * Not cached, because VECLEN+VECSTRIDE are not cached.
3001  */
3002 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3003 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3004 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3005 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3006 /*
3007  * Indicates whether cp register reads and writes by guest code should access
3008  * the secure or nonsecure bank of banked registers; note that this is not
3009  * the same thing as the current security state of the processor!
3010  */
3011 FIELD(TBFLAG_A32, NS, 10, 1)
3012 /*
3013  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3014  * This requires an SME trap from AArch32 mode when using NEON.
3015  */
3016 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3017 
3018 /*
3019  * Bit usage when in AArch32 state, for M-profile only.
3020  */
3021 /* Handler (ie not Thread) mode */
3022 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3023 /* Whether we should generate stack-limit checks */
3024 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3025 /* Set if FPCCR.LSPACT is set */
3026 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3027 /* Set if we must create a new FP context */
3028 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3029 /* Set if FPCCR.S does not match current security state */
3030 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3031 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3032 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3033 /* Set if in secure mode */
3034 FIELD(TBFLAG_M32, SECURE, 6, 1)
3035 
3036 /*
3037  * Bit usage when in AArch64 state
3038  */
3039 FIELD(TBFLAG_A64, TBII, 0, 2)
3040 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3041 /* The current vector length, either NVL or SVL. */
3042 FIELD(TBFLAG_A64, VL, 4, 4)
3043 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3044 FIELD(TBFLAG_A64, BT, 9, 1)
3045 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3046 FIELD(TBFLAG_A64, TBID, 12, 2)
3047 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3048 FIELD(TBFLAG_A64, ATA, 15, 1)
3049 FIELD(TBFLAG_A64, TCMA, 16, 2)
3050 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3051 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3052 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3053 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3054 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3055 FIELD(TBFLAG_A64, SVL, 24, 4)
3056 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3057 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3058 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3059 FIELD(TBFLAG_A64, NAA, 30, 1)
3060 FIELD(TBFLAG_A64, ATA0, 31, 1)
3061 FIELD(TBFLAG_A64, NV, 32, 1)
3062 FIELD(TBFLAG_A64, NV1, 33, 1)
3063 FIELD(TBFLAG_A64, NV2, 34, 1)
3064 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3065 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3066 /* Set if FEAT_NV2 RAM accesses are big-endian */
3067 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3068 FIELD(TBFLAG_A64, AH, 37, 1)   /* FPCR.AH */
3069 FIELD(TBFLAG_A64, NEP, 38, 1)   /* FPCR.NEP */
3070 
3071 /*
3072  * Helpers for using the above. Note that only the A64 accessors use
3073  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3074  * word either is or might be 32 bits only.
3075  */
3076 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3077     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3078 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3079     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3080 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3081     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3082 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3083     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3084 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3085     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3086 
3087 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3088 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3089 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3090 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3091 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3092 
3093 /**
3094  * sve_vq
3095  * @env: the cpu context
3096  *
3097  * Return the VL cached within env->hflags, in units of quadwords.
3098  */
sve_vq(CPUARMState * env)3099 static inline int sve_vq(CPUARMState *env)
3100 {
3101     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3102 }
3103 
3104 /**
3105  * sme_vq
3106  * @env: the cpu context
3107  *
3108  * Return the SVL cached within env->hflags, in units of quadwords.
3109  */
sme_vq(CPUARMState * env)3110 static inline int sme_vq(CPUARMState *env)
3111 {
3112     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3113 }
3114 
bswap_code(bool sctlr_b)3115 static inline bool bswap_code(bool sctlr_b)
3116 {
3117 #ifdef CONFIG_USER_ONLY
3118     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3119      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3120      * would also end up as a mixed-endian mode with BE code, LE data.
3121      */
3122     return TARGET_BIG_ENDIAN ^ sctlr_b;
3123 #else
3124     /* All code access in ARM is little endian, and there are no loaders
3125      * doing swaps that need to be reversed
3126      */
3127     return 0;
3128 #endif
3129 }
3130 
3131 enum {
3132     QEMU_PSCI_CONDUIT_DISABLED = 0,
3133     QEMU_PSCI_CONDUIT_SMC = 1,
3134     QEMU_PSCI_CONDUIT_HVC = 2,
3135 };
3136 
3137 #ifndef CONFIG_USER_ONLY
3138 /* Return the address space index to use for a memory access */
arm_asidx_from_attrs(CPUState * cs,MemTxAttrs attrs)3139 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3140 {
3141     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3142 }
3143 
3144 /* Return the AddressSpace to use for a memory access
3145  * (which depends on whether the access is S or NS, and whether
3146  * the board gave us a separate AddressSpace for S accesses).
3147  */
arm_addressspace(CPUState * cs,MemTxAttrs attrs)3148 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3149 {
3150     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3151 }
3152 #endif
3153 
3154 /**
3155  * arm_register_pre_el_change_hook:
3156  * Register a hook function which will be called immediately before this
3157  * CPU changes exception level or mode. The hook function will be
3158  * passed a pointer to the ARMCPU and the opaque data pointer passed
3159  * to this function when the hook was registered.
3160  *
3161  * Note that if a pre-change hook is called, any registered post-change hooks
3162  * are guaranteed to subsequently be called.
3163  */
3164 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3165                                  void *opaque);
3166 /**
3167  * arm_register_el_change_hook:
3168  * Register a hook function which will be called immediately after this
3169  * CPU changes exception level or mode. The hook function will be
3170  * passed a pointer to the ARMCPU and the opaque data pointer passed
3171  * to this function when the hook was registered.
3172  *
3173  * Note that any registered hooks registered here are guaranteed to be called
3174  * if pre-change hooks have been.
3175  */
3176 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3177         *opaque);
3178 
3179 /**
3180  * arm_rebuild_hflags:
3181  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3182  */
3183 void arm_rebuild_hflags(CPUARMState *env);
3184 
3185 /**
3186  * aa32_vfp_dreg:
3187  * Return a pointer to the Dn register within env in 32-bit mode.
3188  */
aa32_vfp_dreg(CPUARMState * env,unsigned regno)3189 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3190 {
3191     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3192 }
3193 
3194 /**
3195  * aa32_vfp_qreg:
3196  * Return a pointer to the Qn register within env in 32-bit mode.
3197  */
aa32_vfp_qreg(CPUARMState * env,unsigned regno)3198 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3199 {
3200     return &env->vfp.zregs[regno].d[0];
3201 }
3202 
3203 /**
3204  * aa64_vfp_qreg:
3205  * Return a pointer to the Qn register within env in 64-bit mode.
3206  */
aa64_vfp_qreg(CPUARMState * env,unsigned regno)3207 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3208 {
3209     return &env->vfp.zregs[regno].d[0];
3210 }
3211 
3212 /* Shared between translate-sve.c and sve_helper.c.  */
3213 extern const uint64_t pred_esz_masks[5];
3214 
3215 /*
3216  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3217  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3218  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3219  */
3220 #define PAGE_BTI            PAGE_TARGET_1
3221 #define PAGE_MTE            PAGE_TARGET_2
3222 #define PAGE_TARGET_STICKY  PAGE_MTE
3223 
3224 /* We associate one allocation tag per 16 bytes, the minimum.  */
3225 #define LOG2_TAG_GRANULE 4
3226 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3227 
3228 #endif
3229