1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2012
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 *
10 * Adjunct processor bus.
11 */
12
13 #define KMSG_COMPONENT "ap"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/kernel_stat.h>
17 #include <linux/moduleparam.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/freezer.h>
22 #include <linux/interrupt.h>
23 #include <linux/workqueue.h>
24 #include <linux/slab.h>
25 #include <linux/notifier.h>
26 #include <linux/kthread.h>
27 #include <linux/mutex.h>
28 #include <asm/airq.h>
29 #include <linux/atomic.h>
30 #include <asm/isc.h>
31 #include <linux/hrtimer.h>
32 #include <linux/ktime.h>
33 #include <asm/facility.h>
34 #include <linux/crypto.h>
35 #include <linux/mod_devicetable.h>
36 #include <linux/debugfs.h>
37 #include <linux/ctype.h>
38
39 #include "ap_bus.h"
40 #include "ap_debug.h"
41
42 /*
43 * Module parameters; note though this file itself isn't modular.
44 */
45 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
46 static DEFINE_SPINLOCK(ap_domain_lock);
47 module_param_named(domain, ap_domain_index, int, 0440);
48 MODULE_PARM_DESC(domain, "domain index for ap devices");
49 EXPORT_SYMBOL(ap_domain_index);
50
51 static int ap_thread_flag;
52 module_param_named(poll_thread, ap_thread_flag, int, 0440);
53 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54
55 static char *apm_str;
56 module_param_named(apmask, apm_str, charp, 0440);
57 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
58
59 static char *aqm_str;
60 module_param_named(aqmask, aqm_str, charp, 0440);
61 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
62
63 static struct device *ap_root_device;
64
65 /* Hashtable of all queue devices on the AP bus */
66 DEFINE_HASHTABLE(ap_queues, 8);
67 /* lock used for the ap_queues hashtable */
68 DEFINE_SPINLOCK(ap_queues_lock);
69
70 /* Default permissions (ioctl, card and domain masking) */
71 struct ap_perms ap_perms;
72 EXPORT_SYMBOL(ap_perms);
73 DEFINE_MUTEX(ap_perms_mutex);
74 EXPORT_SYMBOL(ap_perms_mutex);
75
76 static struct ap_config_info *ap_qci_info;
77
78 /*
79 * AP bus related debug feature things.
80 */
81 debug_info_t *ap_dbf_info;
82
83 /*
84 * Workqueue timer for bus rescan.
85 */
86 static struct timer_list ap_config_timer;
87 static int ap_config_time = AP_CONFIG_TIME;
88 static void ap_scan_bus(struct work_struct *);
89 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
90
91 /*
92 * Tasklet & timer for AP request polling and interrupts
93 */
94 static void ap_tasklet_fn(unsigned long);
95 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
96 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
97 static struct task_struct *ap_poll_kthread;
98 static DEFINE_MUTEX(ap_poll_thread_mutex);
99 static DEFINE_SPINLOCK(ap_poll_timer_lock);
100 static struct hrtimer ap_poll_timer;
101 /*
102 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
103 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
104 */
105 static unsigned long long poll_timeout = 250000;
106
107 /* Maximum domain id, if not given via qci */
108 static int ap_max_domain_id = 15;
109 /* Maximum adapter id, if not given via qci */
110 static int ap_max_adapter_id = 63;
111
112 static struct bus_type ap_bus_type;
113
114 /* Adapter interrupt definitions */
115 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
116
117 static int ap_airq_flag;
118
119 static struct airq_struct ap_airq = {
120 .handler = ap_interrupt_handler,
121 .isc = AP_ISC,
122 };
123
124 /**
125 * ap_using_interrupts() - Returns non-zero if interrupt support is
126 * available.
127 */
ap_using_interrupts(void)128 static inline int ap_using_interrupts(void)
129 {
130 return ap_airq_flag;
131 }
132
133 /**
134 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
135 *
136 * Returns the address of the local-summary-indicator of the adapter
137 * interrupt handler for AP, or NULL if adapter interrupts are not
138 * available.
139 */
ap_airq_ptr(void)140 void *ap_airq_ptr(void)
141 {
142 if (ap_using_interrupts())
143 return ap_airq.lsi_ptr;
144 return NULL;
145 }
146
147 /**
148 * ap_interrupts_available(): Test if AP interrupts are available.
149 *
150 * Returns 1 if AP interrupts are available.
151 */
ap_interrupts_available(void)152 static int ap_interrupts_available(void)
153 {
154 return test_facility(65);
155 }
156
157 /**
158 * ap_qci_available(): Test if AP configuration
159 * information can be queried via QCI subfunction.
160 *
161 * Returns 1 if subfunction PQAP(QCI) is available.
162 */
ap_qci_available(void)163 static int ap_qci_available(void)
164 {
165 return test_facility(12);
166 }
167
168 /**
169 * ap_apft_available(): Test if AP facilities test (APFT)
170 * facility is available.
171 *
172 * Returns 1 if APFT is is available.
173 */
ap_apft_available(void)174 static int ap_apft_available(void)
175 {
176 return test_facility(15);
177 }
178
179 /*
180 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
181 *
182 * Returns 1 if the QACT subfunction is available.
183 */
ap_qact_available(void)184 static inline int ap_qact_available(void)
185 {
186 if (ap_qci_info)
187 return ap_qci_info->qact;
188 return 0;
189 }
190
191 /*
192 * ap_fetch_qci_info(): Fetch cryptographic config info
193 *
194 * Returns the ap configuration info fetched via PQAP(QCI).
195 * On success 0 is returned, on failure a negative errno
196 * is returned, e.g. if the PQAP(QCI) instruction is not
197 * available, the return value will be -EOPNOTSUPP.
198 */
ap_fetch_qci_info(struct ap_config_info * info)199 static inline int ap_fetch_qci_info(struct ap_config_info *info)
200 {
201 if (!ap_qci_available())
202 return -EOPNOTSUPP;
203 if (!info)
204 return -EINVAL;
205 return ap_qci(info);
206 }
207
208 /**
209 * ap_init_qci_info(): Allocate and query qci config info.
210 * Does also update the static variables ap_max_domain_id
211 * and ap_max_adapter_id if this info is available.
212
213 */
ap_init_qci_info(void)214 static void __init ap_init_qci_info(void)
215 {
216 if (!ap_qci_available()) {
217 AP_DBF_INFO("%s QCI not supported\n", __func__);
218 return;
219 }
220
221 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
222 if (!ap_qci_info)
223 return;
224 if (ap_fetch_qci_info(ap_qci_info) != 0) {
225 kfree(ap_qci_info);
226 ap_qci_info = NULL;
227 return;
228 }
229 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
230
231 if (ap_qci_info->apxa) {
232 if (ap_qci_info->Na) {
233 ap_max_adapter_id = ap_qci_info->Na;
234 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
235 __func__, ap_max_adapter_id);
236 }
237 if (ap_qci_info->Nd) {
238 ap_max_domain_id = ap_qci_info->Nd;
239 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
240 __func__, ap_max_domain_id);
241 }
242 }
243 }
244
245 /*
246 * ap_test_config(): helper function to extract the nrth bit
247 * within the unsigned int array field.
248 */
ap_test_config(unsigned int * field,unsigned int nr)249 static inline int ap_test_config(unsigned int *field, unsigned int nr)
250 {
251 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
252 }
253
254 /*
255 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
256 *
257 * Returns 0 if the card is not configured
258 * 1 if the card is configured or
259 * if the configuration information is not available
260 */
ap_test_config_card_id(unsigned int id)261 static inline int ap_test_config_card_id(unsigned int id)
262 {
263 if (id > ap_max_adapter_id)
264 return 0;
265 if (ap_qci_info)
266 return ap_test_config(ap_qci_info->apm, id);
267 return 1;
268 }
269
270 /*
271 * ap_test_config_usage_domain(): Test, whether an AP usage domain
272 * is configured.
273 *
274 * Returns 0 if the usage domain is not configured
275 * 1 if the usage domain is configured or
276 * if the configuration information is not available
277 */
ap_test_config_usage_domain(unsigned int domain)278 int ap_test_config_usage_domain(unsigned int domain)
279 {
280 if (domain > ap_max_domain_id)
281 return 0;
282 if (ap_qci_info)
283 return ap_test_config(ap_qci_info->aqm, domain);
284 return 1;
285 }
286 EXPORT_SYMBOL(ap_test_config_usage_domain);
287
288 /*
289 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
290 * is configured.
291 * @domain AP control domain ID
292 *
293 * Returns 1 if the control domain is configured
294 * 0 in all other cases
295 */
ap_test_config_ctrl_domain(unsigned int domain)296 int ap_test_config_ctrl_domain(unsigned int domain)
297 {
298 if (!ap_qci_info || domain > ap_max_domain_id)
299 return 0;
300 return ap_test_config(ap_qci_info->adm, domain);
301 }
302 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
303
304 /*
305 * ap_queue_info(): Check and get AP queue info.
306 * Returns true if TAPQ succeeded and the info is filled or
307 * false otherwise.
308 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,bool * q_decfg)309 static bool ap_queue_info(ap_qid_t qid, int *q_type,
310 unsigned int *q_fac, int *q_depth, bool *q_decfg)
311 {
312 struct ap_queue_status status;
313 unsigned long info = 0;
314
315 /* make sure we don't run into a specifiation exception */
316 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
317 AP_QID_QUEUE(qid) > ap_max_domain_id)
318 return false;
319
320 /* call TAPQ on this APQN */
321 status = ap_test_queue(qid, ap_apft_available(), &info);
322 switch (status.response_code) {
323 case AP_RESPONSE_NORMAL:
324 case AP_RESPONSE_RESET_IN_PROGRESS:
325 case AP_RESPONSE_DECONFIGURED:
326 case AP_RESPONSE_CHECKSTOPPED:
327 case AP_RESPONSE_BUSY:
328 /*
329 * According to the architecture in all these cases the
330 * info should be filled. All bits 0 is not possible as
331 * there is at least one of the mode bits set.
332 */
333 if (WARN_ON_ONCE(!info))
334 return false;
335 *q_type = (int)((info >> 24) & 0xff);
336 *q_fac = (unsigned int)(info >> 32);
337 *q_depth = (int)(info & 0xff);
338 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
339 switch (*q_type) {
340 /* For CEX2 and CEX3 the available functions
341 * are not reflected by the facilities bits.
342 * Instead it is coded into the type. So here
343 * modify the function bits based on the type.
344 */
345 case AP_DEVICE_TYPE_CEX2A:
346 case AP_DEVICE_TYPE_CEX3A:
347 *q_fac |= 0x08000000;
348 break;
349 case AP_DEVICE_TYPE_CEX2C:
350 case AP_DEVICE_TYPE_CEX3C:
351 *q_fac |= 0x10000000;
352 break;
353 default:
354 break;
355 }
356 return true;
357 default:
358 /*
359 * A response code which indicates, there is no info available.
360 */
361 return false;
362 }
363 }
364
ap_wait(enum ap_sm_wait wait)365 void ap_wait(enum ap_sm_wait wait)
366 {
367 ktime_t hr_time;
368
369 switch (wait) {
370 case AP_SM_WAIT_AGAIN:
371 case AP_SM_WAIT_INTERRUPT:
372 if (ap_using_interrupts())
373 break;
374 if (ap_poll_kthread) {
375 wake_up(&ap_poll_wait);
376 break;
377 }
378 fallthrough;
379 case AP_SM_WAIT_TIMEOUT:
380 spin_lock_bh(&ap_poll_timer_lock);
381 if (!hrtimer_is_queued(&ap_poll_timer)) {
382 hr_time = poll_timeout;
383 hrtimer_forward_now(&ap_poll_timer, hr_time);
384 hrtimer_restart(&ap_poll_timer);
385 }
386 spin_unlock_bh(&ap_poll_timer_lock);
387 break;
388 case AP_SM_WAIT_NONE:
389 default:
390 break;
391 }
392 }
393
394 /**
395 * ap_request_timeout(): Handling of request timeouts
396 * @t: timer making this callback
397 *
398 * Handles request timeouts.
399 */
ap_request_timeout(struct timer_list * t)400 void ap_request_timeout(struct timer_list *t)
401 {
402 struct ap_queue *aq = from_timer(aq, t, timeout);
403
404 spin_lock_bh(&aq->lock);
405 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
406 spin_unlock_bh(&aq->lock);
407 }
408
409 /**
410 * ap_poll_timeout(): AP receive polling for finished AP requests.
411 * @unused: Unused pointer.
412 *
413 * Schedules the AP tasklet using a high resolution timer.
414 */
ap_poll_timeout(struct hrtimer * unused)415 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
416 {
417 tasklet_schedule(&ap_tasklet);
418 return HRTIMER_NORESTART;
419 }
420
421 /**
422 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
423 * @airq: pointer to adapter interrupt descriptor
424 */
ap_interrupt_handler(struct airq_struct * airq,bool floating)425 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
426 {
427 inc_irq_stat(IRQIO_APB);
428 tasklet_schedule(&ap_tasklet);
429 }
430
431 /**
432 * ap_tasklet_fn(): Tasklet to poll all AP devices.
433 * @dummy: Unused variable
434 *
435 * Poll all AP devices on the bus.
436 */
ap_tasklet_fn(unsigned long dummy)437 static void ap_tasklet_fn(unsigned long dummy)
438 {
439 int bkt;
440 struct ap_queue *aq;
441 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
442
443 /* Reset the indicator if interrupts are used. Thus new interrupts can
444 * be received. Doing it in the beginning of the tasklet is therefor
445 * important that no requests on any AP get lost.
446 */
447 if (ap_using_interrupts())
448 xchg(ap_airq.lsi_ptr, 0);
449
450 spin_lock_bh(&ap_queues_lock);
451 hash_for_each(ap_queues, bkt, aq, hnode) {
452 spin_lock_bh(&aq->lock);
453 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
454 spin_unlock_bh(&aq->lock);
455 }
456 spin_unlock_bh(&ap_queues_lock);
457
458 ap_wait(wait);
459 }
460
ap_pending_requests(void)461 static int ap_pending_requests(void)
462 {
463 int bkt;
464 struct ap_queue *aq;
465
466 spin_lock_bh(&ap_queues_lock);
467 hash_for_each(ap_queues, bkt, aq, hnode) {
468 if (aq->queue_count == 0)
469 continue;
470 spin_unlock_bh(&ap_queues_lock);
471 return 1;
472 }
473 spin_unlock_bh(&ap_queues_lock);
474 return 0;
475 }
476
477 /**
478 * ap_poll_thread(): Thread that polls for finished requests.
479 * @data: Unused pointer
480 *
481 * AP bus poll thread. The purpose of this thread is to poll for
482 * finished requests in a loop if there is a "free" cpu - that is
483 * a cpu that doesn't have anything better to do. The polling stops
484 * as soon as there is another task or if all messages have been
485 * delivered.
486 */
ap_poll_thread(void * data)487 static int ap_poll_thread(void *data)
488 {
489 DECLARE_WAITQUEUE(wait, current);
490
491 set_user_nice(current, MAX_NICE);
492 set_freezable();
493 while (!kthread_should_stop()) {
494 add_wait_queue(&ap_poll_wait, &wait);
495 set_current_state(TASK_INTERRUPTIBLE);
496 if (!ap_pending_requests()) {
497 schedule();
498 try_to_freeze();
499 }
500 set_current_state(TASK_RUNNING);
501 remove_wait_queue(&ap_poll_wait, &wait);
502 if (need_resched()) {
503 schedule();
504 try_to_freeze();
505 continue;
506 }
507 ap_tasklet_fn(0);
508 }
509
510 return 0;
511 }
512
ap_poll_thread_start(void)513 static int ap_poll_thread_start(void)
514 {
515 int rc;
516
517 if (ap_using_interrupts() || ap_poll_kthread)
518 return 0;
519 mutex_lock(&ap_poll_thread_mutex);
520 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
521 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
522 if (rc)
523 ap_poll_kthread = NULL;
524 mutex_unlock(&ap_poll_thread_mutex);
525 return rc;
526 }
527
ap_poll_thread_stop(void)528 static void ap_poll_thread_stop(void)
529 {
530 if (!ap_poll_kthread)
531 return;
532 mutex_lock(&ap_poll_thread_mutex);
533 kthread_stop(ap_poll_kthread);
534 ap_poll_kthread = NULL;
535 mutex_unlock(&ap_poll_thread_mutex);
536 }
537
538 #define is_card_dev(x) ((x)->parent == ap_root_device)
539 #define is_queue_dev(x) ((x)->parent != ap_root_device)
540
541 /**
542 * ap_bus_match()
543 * @dev: Pointer to device
544 * @drv: Pointer to device_driver
545 *
546 * AP bus driver registration/unregistration.
547 */
ap_bus_match(struct device * dev,struct device_driver * drv)548 static int ap_bus_match(struct device *dev, struct device_driver *drv)
549 {
550 struct ap_driver *ap_drv = to_ap_drv(drv);
551 struct ap_device_id *id;
552
553 /*
554 * Compare device type of the device with the list of
555 * supported types of the device_driver.
556 */
557 for (id = ap_drv->ids; id->match_flags; id++) {
558 if (is_card_dev(dev) &&
559 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
560 id->dev_type == to_ap_dev(dev)->device_type)
561 return 1;
562 if (is_queue_dev(dev) &&
563 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
564 id->dev_type == to_ap_dev(dev)->device_type)
565 return 1;
566 }
567 return 0;
568 }
569
570 /**
571 * ap_uevent(): Uevent function for AP devices.
572 * @dev: Pointer to device
573 * @env: Pointer to kobj_uevent_env
574 *
575 * It sets up a single environment variable DEV_TYPE which contains the
576 * hardware device type.
577 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)578 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
579 {
580 struct ap_device *ap_dev = to_ap_dev(dev);
581 int retval = 0;
582
583 if (!ap_dev)
584 return -ENODEV;
585
586 /* Set up DEV_TYPE environment variable. */
587 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
588 if (retval)
589 return retval;
590
591 /* Add MODALIAS= */
592 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
593
594 return retval;
595 }
596
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)597 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
598 {
599 if (is_queue_dev(dev) &&
600 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
601 device_unregister(dev);
602 return 0;
603 }
604
605 static struct bus_type ap_bus_type = {
606 .name = "ap",
607 .match = &ap_bus_match,
608 .uevent = &ap_uevent,
609 };
610
__ap_revise_reserved(struct device * dev,void * dummy)611 static int __ap_revise_reserved(struct device *dev, void *dummy)
612 {
613 int rc, card, queue, devres, drvres;
614
615 if (is_queue_dev(dev)) {
616 card = AP_QID_CARD(to_ap_queue(dev)->qid);
617 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
618 mutex_lock(&ap_perms_mutex);
619 devres = test_bit_inv(card, ap_perms.apm)
620 && test_bit_inv(queue, ap_perms.aqm);
621 mutex_unlock(&ap_perms_mutex);
622 drvres = to_ap_drv(dev->driver)->flags
623 & AP_DRIVER_FLAG_DEFAULT;
624 if (!!devres != !!drvres) {
625 AP_DBF_DBG("reprobing queue=%02x.%04x\n",
626 card, queue);
627 rc = device_reprobe(dev);
628 }
629 }
630
631 return 0;
632 }
633
ap_bus_revise_bindings(void)634 static void ap_bus_revise_bindings(void)
635 {
636 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
637 }
638
ap_owned_by_def_drv(int card,int queue)639 int ap_owned_by_def_drv(int card, int queue)
640 {
641 int rc = 0;
642
643 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
644 return -EINVAL;
645
646 mutex_lock(&ap_perms_mutex);
647
648 if (test_bit_inv(card, ap_perms.apm)
649 && test_bit_inv(queue, ap_perms.aqm))
650 rc = 1;
651
652 mutex_unlock(&ap_perms_mutex);
653
654 return rc;
655 }
656 EXPORT_SYMBOL(ap_owned_by_def_drv);
657
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)658 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
659 unsigned long *aqm)
660 {
661 int card, queue, rc = 0;
662
663 mutex_lock(&ap_perms_mutex);
664
665 for (card = 0; !rc && card < AP_DEVICES; card++)
666 if (test_bit_inv(card, apm) &&
667 test_bit_inv(card, ap_perms.apm))
668 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
669 if (test_bit_inv(queue, aqm) &&
670 test_bit_inv(queue, ap_perms.aqm))
671 rc = 1;
672
673 mutex_unlock(&ap_perms_mutex);
674
675 return rc;
676 }
677 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
678
ap_device_probe(struct device * dev)679 static int ap_device_probe(struct device *dev)
680 {
681 struct ap_device *ap_dev = to_ap_dev(dev);
682 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
683 int card, queue, devres, drvres, rc = -ENODEV;
684
685 if (!get_device(dev))
686 return rc;
687
688 if (is_queue_dev(dev)) {
689 /*
690 * If the apqn is marked as reserved/used by ap bus and
691 * default drivers, only probe with drivers with the default
692 * flag set. If it is not marked, only probe with drivers
693 * with the default flag not set.
694 */
695 card = AP_QID_CARD(to_ap_queue(dev)->qid);
696 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
697 mutex_lock(&ap_perms_mutex);
698 devres = test_bit_inv(card, ap_perms.apm)
699 && test_bit_inv(queue, ap_perms.aqm);
700 mutex_unlock(&ap_perms_mutex);
701 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
702 if (!!devres != !!drvres)
703 goto out;
704 }
705
706 /* Add queue/card to list of active queues/cards */
707 spin_lock_bh(&ap_queues_lock);
708 if (is_queue_dev(dev))
709 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
710 to_ap_queue(dev)->qid);
711 spin_unlock_bh(&ap_queues_lock);
712
713 ap_dev->drv = ap_drv;
714 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
715
716 if (rc) {
717 spin_lock_bh(&ap_queues_lock);
718 if (is_queue_dev(dev))
719 hash_del(&to_ap_queue(dev)->hnode);
720 spin_unlock_bh(&ap_queues_lock);
721 ap_dev->drv = NULL;
722 }
723
724 out:
725 if (rc)
726 put_device(dev);
727 return rc;
728 }
729
ap_device_remove(struct device * dev)730 static int ap_device_remove(struct device *dev)
731 {
732 struct ap_device *ap_dev = to_ap_dev(dev);
733 struct ap_driver *ap_drv = ap_dev->drv;
734
735 /* prepare ap queue device removal */
736 if (is_queue_dev(dev))
737 ap_queue_prepare_remove(to_ap_queue(dev));
738
739 /* driver's chance to clean up gracefully */
740 if (ap_drv->remove)
741 ap_drv->remove(ap_dev);
742
743 /* now do the ap queue device remove */
744 if (is_queue_dev(dev))
745 ap_queue_remove(to_ap_queue(dev));
746
747 /* Remove queue/card from list of active queues/cards */
748 spin_lock_bh(&ap_queues_lock);
749 if (is_queue_dev(dev))
750 hash_del(&to_ap_queue(dev)->hnode);
751 spin_unlock_bh(&ap_queues_lock);
752
753 put_device(dev);
754
755 return 0;
756 }
757
ap_get_qdev(ap_qid_t qid)758 struct ap_queue *ap_get_qdev(ap_qid_t qid)
759 {
760 int bkt;
761 struct ap_queue *aq;
762
763 spin_lock_bh(&ap_queues_lock);
764 hash_for_each(ap_queues, bkt, aq, hnode) {
765 if (aq->qid == qid) {
766 get_device(&aq->ap_dev.device);
767 spin_unlock_bh(&ap_queues_lock);
768 return aq;
769 }
770 }
771 spin_unlock_bh(&ap_queues_lock);
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(ap_get_qdev);
776
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)777 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
778 char *name)
779 {
780 struct device_driver *drv = &ap_drv->driver;
781
782 drv->bus = &ap_bus_type;
783 drv->probe = ap_device_probe;
784 drv->remove = ap_device_remove;
785 drv->owner = owner;
786 drv->name = name;
787 return driver_register(drv);
788 }
789 EXPORT_SYMBOL(ap_driver_register);
790
ap_driver_unregister(struct ap_driver * ap_drv)791 void ap_driver_unregister(struct ap_driver *ap_drv)
792 {
793 driver_unregister(&ap_drv->driver);
794 }
795 EXPORT_SYMBOL(ap_driver_unregister);
796
ap_bus_force_rescan(void)797 void ap_bus_force_rescan(void)
798 {
799 /* processing a asynchronous bus rescan */
800 del_timer(&ap_config_timer);
801 queue_work(system_long_wq, &ap_scan_work);
802 flush_work(&ap_scan_work);
803 }
804 EXPORT_SYMBOL(ap_bus_force_rescan);
805
806 /*
807 * A config change has happened, force an ap bus rescan.
808 */
ap_bus_cfg_chg(void)809 void ap_bus_cfg_chg(void)
810 {
811 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
812
813 ap_bus_force_rescan();
814 }
815
816 /*
817 * hex2bitmap() - parse hex mask string and set bitmap.
818 * Valid strings are "0x012345678" with at least one valid hex number.
819 * Rest of the bitmap to the right is padded with 0. No spaces allowed
820 * within the string, the leading 0x may be omitted.
821 * Returns the bitmask with exactly the bits set as given by the hex
822 * string (both in big endian order).
823 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)824 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
825 {
826 int i, n, b;
827
828 /* bits needs to be a multiple of 8 */
829 if (bits & 0x07)
830 return -EINVAL;
831
832 if (str[0] == '0' && str[1] == 'x')
833 str++;
834 if (*str == 'x')
835 str++;
836
837 for (i = 0; isxdigit(*str) && i < bits; str++) {
838 b = hex_to_bin(*str);
839 for (n = 0; n < 4; n++)
840 if (b & (0x08 >> n))
841 set_bit_inv(i + n, bitmap);
842 i += 4;
843 }
844
845 if (*str == '\n')
846 str++;
847 if (*str)
848 return -EINVAL;
849 return 0;
850 }
851
852 /*
853 * modify_bitmap() - parse bitmask argument and modify an existing
854 * bit mask accordingly. A concatenation (done with ',') of these
855 * terms is recognized:
856 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
857 * <bitnr> may be any valid number (hex, decimal or octal) in the range
858 * 0...bits-1; the leading + or - is required. Here are some examples:
859 * +0-15,+32,-128,-0xFF
860 * -0-255,+1-16,+0x128
861 * +1,+2,+3,+4,-5,-7-10
862 * Returns the new bitmap after all changes have been applied. Every
863 * positive value in the string will set a bit and every negative value
864 * in the string will clear a bit. As a bit may be touched more than once,
865 * the last 'operation' wins:
866 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
867 * cleared again. All other bits are unmodified.
868 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)869 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
870 {
871 int a, i, z;
872 char *np, sign;
873
874 /* bits needs to be a multiple of 8 */
875 if (bits & 0x07)
876 return -EINVAL;
877
878 while (*str) {
879 sign = *str++;
880 if (sign != '+' && sign != '-')
881 return -EINVAL;
882 a = z = simple_strtoul(str, &np, 0);
883 if (str == np || a >= bits)
884 return -EINVAL;
885 str = np;
886 if (*str == '-') {
887 z = simple_strtoul(++str, &np, 0);
888 if (str == np || a > z || z >= bits)
889 return -EINVAL;
890 str = np;
891 }
892 for (i = a; i <= z; i++)
893 if (sign == '+')
894 set_bit_inv(i, bitmap);
895 else
896 clear_bit_inv(i, bitmap);
897 while (*str == ',' || *str == '\n')
898 str++;
899 }
900
901 return 0;
902 }
903
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)904 int ap_parse_mask_str(const char *str,
905 unsigned long *bitmap, int bits,
906 struct mutex *lock)
907 {
908 unsigned long *newmap, size;
909 int rc;
910
911 /* bits needs to be a multiple of 8 */
912 if (bits & 0x07)
913 return -EINVAL;
914
915 size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
916 newmap = kmalloc(size, GFP_KERNEL);
917 if (!newmap)
918 return -ENOMEM;
919 if (mutex_lock_interruptible(lock)) {
920 kfree(newmap);
921 return -ERESTARTSYS;
922 }
923
924 if (*str == '+' || *str == '-') {
925 memcpy(newmap, bitmap, size);
926 rc = modify_bitmap(str, newmap, bits);
927 } else {
928 memset(newmap, 0, size);
929 rc = hex2bitmap(str, newmap, bits);
930 }
931 if (rc == 0)
932 memcpy(bitmap, newmap, size);
933 mutex_unlock(lock);
934 kfree(newmap);
935 return rc;
936 }
937 EXPORT_SYMBOL(ap_parse_mask_str);
938
939 /*
940 * AP bus attributes.
941 */
942
ap_domain_show(struct bus_type * bus,char * buf)943 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
944 {
945 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
946 }
947
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)948 static ssize_t ap_domain_store(struct bus_type *bus,
949 const char *buf, size_t count)
950 {
951 int domain;
952
953 if (sscanf(buf, "%i\n", &domain) != 1 ||
954 domain < 0 || domain > ap_max_domain_id ||
955 !test_bit_inv(domain, ap_perms.aqm))
956 return -EINVAL;
957
958 spin_lock_bh(&ap_domain_lock);
959 ap_domain_index = domain;
960 spin_unlock_bh(&ap_domain_lock);
961
962 AP_DBF_INFO("stored new default domain=%d\n", domain);
963
964 return count;
965 }
966
967 static BUS_ATTR_RW(ap_domain);
968
ap_control_domain_mask_show(struct bus_type * bus,char * buf)969 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
970 {
971 if (!ap_qci_info) /* QCI not supported */
972 return scnprintf(buf, PAGE_SIZE, "not supported\n");
973
974 return scnprintf(buf, PAGE_SIZE,
975 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
976 ap_qci_info->adm[0], ap_qci_info->adm[1],
977 ap_qci_info->adm[2], ap_qci_info->adm[3],
978 ap_qci_info->adm[4], ap_qci_info->adm[5],
979 ap_qci_info->adm[6], ap_qci_info->adm[7]);
980 }
981
982 static BUS_ATTR_RO(ap_control_domain_mask);
983
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)984 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
985 {
986 if (!ap_qci_info) /* QCI not supported */
987 return scnprintf(buf, PAGE_SIZE, "not supported\n");
988
989 return scnprintf(buf, PAGE_SIZE,
990 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
991 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
992 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
993 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
994 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
995 }
996
997 static BUS_ATTR_RO(ap_usage_domain_mask);
998
ap_adapter_mask_show(struct bus_type * bus,char * buf)999 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1000 {
1001 if (!ap_qci_info) /* QCI not supported */
1002 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1003
1004 return scnprintf(buf, PAGE_SIZE,
1005 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1006 ap_qci_info->apm[0], ap_qci_info->apm[1],
1007 ap_qci_info->apm[2], ap_qci_info->apm[3],
1008 ap_qci_info->apm[4], ap_qci_info->apm[5],
1009 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1010 }
1011
1012 static BUS_ATTR_RO(ap_adapter_mask);
1013
ap_interrupts_show(struct bus_type * bus,char * buf)1014 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1015 {
1016 return scnprintf(buf, PAGE_SIZE, "%d\n",
1017 ap_using_interrupts() ? 1 : 0);
1018 }
1019
1020 static BUS_ATTR_RO(ap_interrupts);
1021
config_time_show(struct bus_type * bus,char * buf)1022 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1023 {
1024 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1025 }
1026
config_time_store(struct bus_type * bus,const char * buf,size_t count)1027 static ssize_t config_time_store(struct bus_type *bus,
1028 const char *buf, size_t count)
1029 {
1030 int time;
1031
1032 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1033 return -EINVAL;
1034 ap_config_time = time;
1035 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1036 return count;
1037 }
1038
1039 static BUS_ATTR_RW(config_time);
1040
poll_thread_show(struct bus_type * bus,char * buf)1041 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1042 {
1043 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1044 }
1045
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1046 static ssize_t poll_thread_store(struct bus_type *bus,
1047 const char *buf, size_t count)
1048 {
1049 int flag, rc;
1050
1051 if (sscanf(buf, "%d\n", &flag) != 1)
1052 return -EINVAL;
1053 if (flag) {
1054 rc = ap_poll_thread_start();
1055 if (rc)
1056 count = rc;
1057 } else
1058 ap_poll_thread_stop();
1059 return count;
1060 }
1061
1062 static BUS_ATTR_RW(poll_thread);
1063
poll_timeout_show(struct bus_type * bus,char * buf)1064 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1065 {
1066 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1067 }
1068
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1069 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1070 size_t count)
1071 {
1072 unsigned long long time;
1073 ktime_t hr_time;
1074
1075 /* 120 seconds = maximum poll interval */
1076 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1077 time > 120000000000ULL)
1078 return -EINVAL;
1079 poll_timeout = time;
1080 hr_time = poll_timeout;
1081
1082 spin_lock_bh(&ap_poll_timer_lock);
1083 hrtimer_cancel(&ap_poll_timer);
1084 hrtimer_set_expires(&ap_poll_timer, hr_time);
1085 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1086 spin_unlock_bh(&ap_poll_timer_lock);
1087
1088 return count;
1089 }
1090
1091 static BUS_ATTR_RW(poll_timeout);
1092
ap_max_domain_id_show(struct bus_type * bus,char * buf)1093 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1094 {
1095 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1096 }
1097
1098 static BUS_ATTR_RO(ap_max_domain_id);
1099
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1100 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1101 {
1102 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1103 }
1104
1105 static BUS_ATTR_RO(ap_max_adapter_id);
1106
apmask_show(struct bus_type * bus,char * buf)1107 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1108 {
1109 int rc;
1110
1111 if (mutex_lock_interruptible(&ap_perms_mutex))
1112 return -ERESTARTSYS;
1113 rc = scnprintf(buf, PAGE_SIZE,
1114 "0x%016lx%016lx%016lx%016lx\n",
1115 ap_perms.apm[0], ap_perms.apm[1],
1116 ap_perms.apm[2], ap_perms.apm[3]);
1117 mutex_unlock(&ap_perms_mutex);
1118
1119 return rc;
1120 }
1121
apmask_store(struct bus_type * bus,const char * buf,size_t count)1122 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1123 size_t count)
1124 {
1125 int rc;
1126
1127 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1128 if (rc)
1129 return rc;
1130
1131 ap_bus_revise_bindings();
1132
1133 return count;
1134 }
1135
1136 static BUS_ATTR_RW(apmask);
1137
aqmask_show(struct bus_type * bus,char * buf)1138 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1139 {
1140 int rc;
1141
1142 if (mutex_lock_interruptible(&ap_perms_mutex))
1143 return -ERESTARTSYS;
1144 rc = scnprintf(buf, PAGE_SIZE,
1145 "0x%016lx%016lx%016lx%016lx\n",
1146 ap_perms.aqm[0], ap_perms.aqm[1],
1147 ap_perms.aqm[2], ap_perms.aqm[3]);
1148 mutex_unlock(&ap_perms_mutex);
1149
1150 return rc;
1151 }
1152
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1153 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1154 size_t count)
1155 {
1156 int rc;
1157
1158 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1159 if (rc)
1160 return rc;
1161
1162 ap_bus_revise_bindings();
1163
1164 return count;
1165 }
1166
1167 static BUS_ATTR_RW(aqmask);
1168
1169 static struct bus_attribute *const ap_bus_attrs[] = {
1170 &bus_attr_ap_domain,
1171 &bus_attr_ap_control_domain_mask,
1172 &bus_attr_ap_usage_domain_mask,
1173 &bus_attr_ap_adapter_mask,
1174 &bus_attr_config_time,
1175 &bus_attr_poll_thread,
1176 &bus_attr_ap_interrupts,
1177 &bus_attr_poll_timeout,
1178 &bus_attr_ap_max_domain_id,
1179 &bus_attr_ap_max_adapter_id,
1180 &bus_attr_apmask,
1181 &bus_attr_aqmask,
1182 NULL,
1183 };
1184
1185 /**
1186 * ap_select_domain(): Select an AP domain if possible and we haven't
1187 * already done so before.
1188 */
ap_select_domain(void)1189 static void ap_select_domain(void)
1190 {
1191 struct ap_queue_status status;
1192 int card, dom;
1193
1194 /*
1195 * Choose the default domain. Either the one specified with
1196 * the "domain=" parameter or the first domain with at least
1197 * one valid APQN.
1198 */
1199 spin_lock_bh(&ap_domain_lock);
1200 if (ap_domain_index >= 0) {
1201 /* Domain has already been selected. */
1202 goto out;
1203 }
1204 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1205 if (!ap_test_config_usage_domain(dom) ||
1206 !test_bit_inv(dom, ap_perms.aqm))
1207 continue;
1208 for (card = 0; card <= ap_max_adapter_id; card++) {
1209 if (!ap_test_config_card_id(card) ||
1210 !test_bit_inv(card, ap_perms.apm))
1211 continue;
1212 status = ap_test_queue(AP_MKQID(card, dom),
1213 ap_apft_available(),
1214 NULL);
1215 if (status.response_code == AP_RESPONSE_NORMAL)
1216 break;
1217 }
1218 if (card <= ap_max_adapter_id)
1219 break;
1220 }
1221 if (dom <= ap_max_domain_id) {
1222 ap_domain_index = dom;
1223 AP_DBF_INFO("%s new default domain is %d\n",
1224 __func__, ap_domain_index);
1225 }
1226 out:
1227 spin_unlock_bh(&ap_domain_lock);
1228 }
1229
1230 /*
1231 * This function checks the type and returns either 0 for not
1232 * supported or the highest compatible type value (which may
1233 * include the input type value).
1234 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1235 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1236 {
1237 int comp_type = 0;
1238
1239 /* < CEX2A is not supported */
1240 if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1241 AP_DBF_WARN("get_comp_type queue=%02x.%04x unsupported type %d\n",
1242 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1243 return 0;
1244 }
1245 /* up to CEX7 known and fully supported */
1246 if (rawtype <= AP_DEVICE_TYPE_CEX7)
1247 return rawtype;
1248 /*
1249 * unknown new type > CEX7, check for compatibility
1250 * to the highest known and supported type which is
1251 * currently CEX7 with the help of the QACT function.
1252 */
1253 if (ap_qact_available()) {
1254 struct ap_queue_status status;
1255 union ap_qact_ap_info apinfo = {0};
1256
1257 apinfo.mode = (func >> 26) & 0x07;
1258 apinfo.cat = AP_DEVICE_TYPE_CEX7;
1259 status = ap_qact(qid, 0, &apinfo);
1260 if (status.response_code == AP_RESPONSE_NORMAL
1261 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1262 && apinfo.cat <= AP_DEVICE_TYPE_CEX7)
1263 comp_type = apinfo.cat;
1264 }
1265 if (!comp_type)
1266 AP_DBF_WARN("get_comp_type queue=%02x.%04x unable to map type %d\n",
1267 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1268 else if (comp_type != rawtype)
1269 AP_DBF_INFO("get_comp_type queue=%02x.%04x map type %d to %d\n",
1270 AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1271 rawtype, comp_type);
1272 return comp_type;
1273 }
1274
1275 /*
1276 * Helper function to be used with bus_find_dev
1277 * matches for the card device with the given id
1278 */
__match_card_device_with_id(struct device * dev,const void * data)1279 static int __match_card_device_with_id(struct device *dev, const void *data)
1280 {
1281 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1282 }
1283
1284 /*
1285 * Helper function to be used with bus_find_dev
1286 * matches for the queue device with a given qid
1287 */
__match_queue_device_with_qid(struct device * dev,const void * data)1288 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1289 {
1290 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1291 }
1292
1293 /*
1294 * Helper function to be used with bus_find_dev
1295 * matches any queue device with given queue id
1296 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1297 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1298 {
1299 return is_queue_dev(dev)
1300 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1301 }
1302
1303 /*
1304 * Helper function for ap_scan_bus().
1305 * Remove card device and associated queue devices.
1306 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1307 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1308 {
1309 bus_for_each_dev(&ap_bus_type, NULL,
1310 (void *)(long) ac->id,
1311 __ap_queue_devices_with_id_unregister);
1312 device_unregister(&ac->ap_dev.device);
1313 }
1314
1315 /*
1316 * Helper function for ap_scan_bus().
1317 * Does the scan bus job for all the domains within
1318 * a valid adapter given by an ap_card ptr.
1319 */
ap_scan_domains(struct ap_card * ac)1320 static inline void ap_scan_domains(struct ap_card *ac)
1321 {
1322 bool decfg;
1323 ap_qid_t qid;
1324 unsigned int func;
1325 struct device *dev;
1326 struct ap_queue *aq;
1327 int rc, dom, depth, type;
1328
1329 /*
1330 * Go through the configuration for the domains and compare them
1331 * to the existing queue devices. Also take care of the config
1332 * and error state for the queue devices.
1333 */
1334
1335 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1336 qid = AP_MKQID(ac->id, dom);
1337 dev = bus_find_device(&ap_bus_type, NULL,
1338 (void *)(long) qid,
1339 __match_queue_device_with_qid);
1340 aq = dev ? to_ap_queue(dev) : NULL;
1341 if (!ap_test_config_usage_domain(dom)) {
1342 if (dev) {
1343 AP_DBF_INFO("%s(%d,%d) not in config any more, rm queue device\n",
1344 __func__, ac->id, dom);
1345 device_unregister(dev);
1346 put_device(dev);
1347 }
1348 continue;
1349 }
1350 /* domain is valid, get info from this APQN */
1351 if (!ap_queue_info(qid, &type, &func, &depth, &decfg)) {
1352 if (aq) {
1353 AP_DBF_INFO(
1354 "%s(%d,%d) ap_queue_info() not successful, rm queue device\n",
1355 __func__, ac->id, dom);
1356 device_unregister(dev);
1357 put_device(dev);
1358 }
1359 continue;
1360 }
1361 /* if no queue device exists, create a new one */
1362 if (!aq) {
1363 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1364 if (!aq) {
1365 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1366 __func__, ac->id, dom);
1367 continue;
1368 }
1369 aq->card = ac;
1370 aq->config = !decfg;
1371 dev = &aq->ap_dev.device;
1372 dev->bus = &ap_bus_type;
1373 dev->parent = &ac->ap_dev.device;
1374 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1375 /* register queue device */
1376 rc = device_register(dev);
1377 if (rc) {
1378 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1379 __func__, ac->id, dom);
1380 goto put_dev_and_continue;
1381 }
1382 /* get it and thus adjust reference counter */
1383 get_device(dev);
1384 if (decfg)
1385 AP_DBF_INFO("%s(%d,%d) new (decfg) queue device created\n",
1386 __func__, ac->id, dom);
1387 else
1388 AP_DBF_INFO("%s(%d,%d) new queue device created\n",
1389 __func__, ac->id, dom);
1390 goto put_dev_and_continue;
1391 }
1392 /* Check config state on the already existing queue device */
1393 spin_lock_bh(&aq->lock);
1394 if (decfg && aq->config) {
1395 /* config off this queue device */
1396 aq->config = false;
1397 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1398 aq->dev_state = AP_DEV_STATE_ERROR;
1399 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1400 }
1401 spin_unlock_bh(&aq->lock);
1402 AP_DBF_INFO("%s(%d,%d) queue device config off\n",
1403 __func__, ac->id, dom);
1404 /* 'receive' pending messages with -EAGAIN */
1405 ap_flush_queue(aq);
1406 goto put_dev_and_continue;
1407 }
1408 if (!decfg && !aq->config) {
1409 /* config on this queue device */
1410 aq->config = true;
1411 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1412 aq->dev_state = AP_DEV_STATE_OPERATING;
1413 aq->sm_state = AP_SM_STATE_RESET_START;
1414 }
1415 spin_unlock_bh(&aq->lock);
1416 AP_DBF_INFO("%s(%d,%d) queue device config on\n",
1417 __func__, ac->id, dom);
1418 goto put_dev_and_continue;
1419 }
1420 /* handle other error states */
1421 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1422 spin_unlock_bh(&aq->lock);
1423 /* 'receive' pending messages with -EAGAIN */
1424 ap_flush_queue(aq);
1425 /* re-init (with reset) the queue device */
1426 ap_queue_init_state(aq);
1427 AP_DBF_INFO("%s(%d,%d) queue device reinit enforced\n",
1428 __func__, ac->id, dom);
1429 goto put_dev_and_continue;
1430 }
1431 spin_unlock_bh(&aq->lock);
1432 put_dev_and_continue:
1433 put_device(dev);
1434 }
1435 }
1436
1437 /*
1438 * Helper function for ap_scan_bus().
1439 * Does the scan bus job for the given adapter id.
1440 */
ap_scan_adapter(int ap)1441 static inline void ap_scan_adapter(int ap)
1442 {
1443 bool decfg;
1444 ap_qid_t qid;
1445 unsigned int func;
1446 struct device *dev;
1447 struct ap_card *ac;
1448 int rc, dom, depth, type, comp_type;
1449
1450 /* Is there currently a card device for this adapter ? */
1451 dev = bus_find_device(&ap_bus_type, NULL,
1452 (void *)(long) ap,
1453 __match_card_device_with_id);
1454 ac = dev ? to_ap_card(dev) : NULL;
1455
1456 /* Adapter not in configuration ? */
1457 if (!ap_test_config_card_id(ap)) {
1458 if (ac) {
1459 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devices\n",
1460 __func__, ap);
1461 ap_scan_rm_card_dev_and_queue_devs(ac);
1462 put_device(dev);
1463 }
1464 return;
1465 }
1466
1467 /*
1468 * Adapter ap is valid in the current configuration. So do some checks:
1469 * If no card device exists, build one. If a card device exists, check
1470 * for type and functions changed. For all this we need to find a valid
1471 * APQN first.
1472 */
1473
1474 for (dom = 0; dom <= ap_max_domain_id; dom++)
1475 if (ap_test_config_usage_domain(dom)) {
1476 qid = AP_MKQID(ap, dom);
1477 if (ap_queue_info(qid, &type, &func, &depth, &decfg))
1478 break;
1479 }
1480 if (dom > ap_max_domain_id) {
1481 /* Could not find a valid APQN for this adapter */
1482 if (ac) {
1483 AP_DBF_INFO(
1484 "%s(%d) no type info (no APQN found), rm card and queue devices\n",
1485 __func__, ap);
1486 ap_scan_rm_card_dev_and_queue_devs(ac);
1487 put_device(dev);
1488 } else {
1489 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1490 __func__, ap);
1491 }
1492 return;
1493 }
1494 if (!type) {
1495 /* No apdater type info available, an unusable adapter */
1496 if (ac) {
1497 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devices\n",
1498 __func__, ap);
1499 ap_scan_rm_card_dev_and_queue_devs(ac);
1500 put_device(dev);
1501 } else {
1502 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1503 __func__, ap);
1504 }
1505 return;
1506 }
1507
1508 if (ac) {
1509 /* Check APQN against existing card device for changes */
1510 if (ac->raw_hwtype != type) {
1511 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devices\n",
1512 __func__, ap, type);
1513 ap_scan_rm_card_dev_and_queue_devs(ac);
1514 put_device(dev);
1515 ac = NULL;
1516 } else if (ac->functions != func) {
1517 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devices\n",
1518 __func__, ap, type);
1519 ap_scan_rm_card_dev_and_queue_devs(ac);
1520 put_device(dev);
1521 ac = NULL;
1522 } else {
1523 if (decfg && ac->config) {
1524 ac->config = false;
1525 AP_DBF_INFO("%s(%d) card device config off\n",
1526 __func__, ap);
1527
1528 }
1529 if (!decfg && !ac->config) {
1530 ac->config = true;
1531 AP_DBF_INFO("%s(%d) card device config on\n",
1532 __func__, ap);
1533 }
1534 }
1535 }
1536
1537 if (!ac) {
1538 /* Build a new card device */
1539 comp_type = ap_get_compatible_type(qid, type, func);
1540 if (!comp_type) {
1541 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
1542 __func__, ap, type);
1543 return;
1544 }
1545 ac = ap_card_create(ap, depth, type, comp_type, func);
1546 if (!ac) {
1547 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
1548 __func__, ap);
1549 return;
1550 }
1551 ac->config = !decfg;
1552 dev = &ac->ap_dev.device;
1553 dev->bus = &ap_bus_type;
1554 dev->parent = ap_root_device;
1555 dev_set_name(dev, "card%02x", ap);
1556 /* Register the new card device with AP bus */
1557 rc = device_register(dev);
1558 if (rc) {
1559 AP_DBF_WARN("%s(%d) device_register() failed\n",
1560 __func__, ap);
1561 put_device(dev);
1562 return;
1563 }
1564 /* get it and thus adjust reference counter */
1565 get_device(dev);
1566 if (decfg)
1567 AP_DBF_INFO("%s(%d) new (decfg) card device type=%d func=0x%08x created\n",
1568 __func__, ap, type, func);
1569 else
1570 AP_DBF_INFO("%s(%d) new card device type=%d func=0x%08x created\n",
1571 __func__, ap, type, func);
1572 }
1573
1574 /* Verify the domains and the queue devices for this card */
1575 ap_scan_domains(ac);
1576
1577 /* release the card device */
1578 put_device(&ac->ap_dev.device);
1579 }
1580
1581 /**
1582 * ap_scan_bus(): Scan the AP bus for new devices
1583 * Runs periodically, workqueue timer (ap_config_time)
1584 */
ap_scan_bus(struct work_struct * unused)1585 static void ap_scan_bus(struct work_struct *unused)
1586 {
1587 int ap;
1588
1589 ap_fetch_qci_info(ap_qci_info);
1590 ap_select_domain();
1591
1592 AP_DBF_DBG("%s running\n", __func__);
1593
1594 /* loop over all possible adapters */
1595 for (ap = 0; ap <= ap_max_adapter_id; ap++)
1596 ap_scan_adapter(ap);
1597
1598 /* check if there is at least one queue available with default domain */
1599 if (ap_domain_index >= 0) {
1600 struct device *dev =
1601 bus_find_device(&ap_bus_type, NULL,
1602 (void *)(long) ap_domain_index,
1603 __match_queue_device_with_queue_id);
1604 if (dev)
1605 put_device(dev);
1606 else
1607 AP_DBF_INFO("no queue device with default domain %d available\n",
1608 ap_domain_index);
1609 }
1610
1611 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1612 }
1613
ap_config_timeout(struct timer_list * unused)1614 static void ap_config_timeout(struct timer_list *unused)
1615 {
1616 queue_work(system_long_wq, &ap_scan_work);
1617 }
1618
ap_debug_init(void)1619 static int __init ap_debug_init(void)
1620 {
1621 ap_dbf_info = debug_register("ap", 1, 1,
1622 DBF_MAX_SPRINTF_ARGS * sizeof(long));
1623 debug_register_view(ap_dbf_info, &debug_sprintf_view);
1624 debug_set_level(ap_dbf_info, DBF_ERR);
1625
1626 return 0;
1627 }
1628
ap_perms_init(void)1629 static void __init ap_perms_init(void)
1630 {
1631 /* all resources useable if no kernel parameter string given */
1632 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1633 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1634 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1635
1636 /* apm kernel parameter string */
1637 if (apm_str) {
1638 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1639 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1640 &ap_perms_mutex);
1641 }
1642
1643 /* aqm kernel parameter string */
1644 if (aqm_str) {
1645 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1646 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1647 &ap_perms_mutex);
1648 }
1649 }
1650
1651 /**
1652 * ap_module_init(): The module initialization code.
1653 *
1654 * Initializes the module.
1655 */
ap_module_init(void)1656 static int __init ap_module_init(void)
1657 {
1658 int rc, i;
1659
1660 rc = ap_debug_init();
1661 if (rc)
1662 return rc;
1663
1664 if (!ap_instructions_available()) {
1665 pr_warn("The hardware system does not support AP instructions\n");
1666 return -ENODEV;
1667 }
1668
1669 /* init ap_queue hashtable */
1670 hash_init(ap_queues);
1671
1672 /* set up the AP permissions (ioctls, ap and aq masks) */
1673 ap_perms_init();
1674
1675 /* Get AP configuration data if available */
1676 ap_init_qci_info();
1677
1678 /* check default domain setting */
1679 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
1680 (ap_domain_index >= 0 &&
1681 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1682 pr_warn("%d is not a valid cryptographic domain\n",
1683 ap_domain_index);
1684 ap_domain_index = -1;
1685 }
1686
1687 /* enable interrupts if available */
1688 if (ap_interrupts_available()) {
1689 rc = register_adapter_interrupt(&ap_airq);
1690 ap_airq_flag = (rc == 0);
1691 }
1692
1693 /* Create /sys/bus/ap. */
1694 rc = bus_register(&ap_bus_type);
1695 if (rc)
1696 goto out;
1697 for (i = 0; ap_bus_attrs[i]; i++) {
1698 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1699 if (rc)
1700 goto out_bus;
1701 }
1702
1703 /* Create /sys/devices/ap. */
1704 ap_root_device = root_device_register("ap");
1705 rc = PTR_ERR_OR_ZERO(ap_root_device);
1706 if (rc)
1707 goto out_bus;
1708
1709 /* Setup the AP bus rescan timer. */
1710 timer_setup(&ap_config_timer, ap_config_timeout, 0);
1711
1712 /*
1713 * Setup the high resultion poll timer.
1714 * If we are running under z/VM adjust polling to z/VM polling rate.
1715 */
1716 if (MACHINE_IS_VM)
1717 poll_timeout = 1500000;
1718 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1719 ap_poll_timer.function = ap_poll_timeout;
1720
1721 /* Start the low priority AP bus poll thread. */
1722 if (ap_thread_flag) {
1723 rc = ap_poll_thread_start();
1724 if (rc)
1725 goto out_work;
1726 }
1727
1728 queue_work(system_long_wq, &ap_scan_work);
1729
1730 return 0;
1731
1732 out_work:
1733 hrtimer_cancel(&ap_poll_timer);
1734 root_device_unregister(ap_root_device);
1735 out_bus:
1736 while (i--)
1737 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1738 bus_unregister(&ap_bus_type);
1739 out:
1740 if (ap_using_interrupts())
1741 unregister_adapter_interrupt(&ap_airq);
1742 kfree(ap_qci_info);
1743 return rc;
1744 }
1745 device_initcall(ap_module_init);
1746