xref: /linux/drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44 
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50 
51 #include <drm/amdgpu_drm.h>
52 
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63 
64 MODULE_IMPORT_NS("DMA_BUF");
65 
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ	((size_t)128)
67 
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 				   struct ttm_tt *ttm,
70 				   struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 				      struct ttm_tt *ttm);
73 
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 				    unsigned int type,
76 				    uint64_t size_in_page)
77 {
78 	return ttm_range_man_init(&adev->mman.bdev, type,
79 				  false, size_in_page);
80 }
81 
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 				struct ttm_placement *placement)
92 {
93 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 	struct amdgpu_bo *abo;
95 	static const struct ttm_place placements = {
96 		.fpfn = 0,
97 		.lpfn = 0,
98 		.mem_type = TTM_PL_SYSTEM,
99 		.flags = 0
100 	};
101 
102 	/* Don't handle scatter gather BOs */
103 	if (bo->type == ttm_bo_type_sg) {
104 		placement->num_placement = 0;
105 		return;
106 	}
107 
108 	/* Object isn't an AMDGPU object so ignore */
109 	if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 		placement->placement = &placements;
111 		placement->num_placement = 1;
112 		return;
113 	}
114 
115 	abo = ttm_to_amdgpu_bo(bo);
116 	if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 		placement->num_placement = 0;
118 		return;
119 	}
120 
121 	switch (bo->resource->mem_type) {
122 	case AMDGPU_PL_GDS:
123 	case AMDGPU_PL_GWS:
124 	case AMDGPU_PL_OA:
125 	case AMDGPU_PL_DOORBELL:
126 		placement->num_placement = 0;
127 		return;
128 
129 	case TTM_PL_VRAM:
130 		if (!adev->mman.buffer_funcs_enabled) {
131 			/* Move to system memory */
132 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133 
134 		} else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 			   !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 			   amdgpu_res_cpu_visible(adev, bo->resource)) {
137 
138 			/* Try evicting to the CPU inaccessible part of VRAM
139 			 * first, but only set GTT as busy placement, so this
140 			 * BO will be evicted to GTT rather than causing other
141 			 * BOs to be evicted from VRAM
142 			 */
143 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 							AMDGPU_GEM_DOMAIN_GTT |
145 							AMDGPU_GEM_DOMAIN_CPU);
146 			abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 			abo->placements[0].lpfn = 0;
148 			abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 		} else {
150 			/* Move to GTT memory */
151 			amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 							AMDGPU_GEM_DOMAIN_CPU);
153 		}
154 		break;
155 	case TTM_PL_TT:
156 	case AMDGPU_PL_PREEMPT:
157 	default:
158 		amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 		break;
160 	}
161 	*placement = abo->placement;
162 }
163 
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 				 struct ttm_resource *mem,
180 				 struct amdgpu_res_cursor *mm_cur,
181 				 unsigned int window, struct amdgpu_ring *ring,
182 				 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 	struct amdgpu_device *adev = ring->adev;
185 	unsigned int offset, num_pages, num_dw, num_bytes;
186 	uint64_t src_addr, dst_addr;
187 	struct amdgpu_job *job;
188 	void *cpu_addr;
189 	uint64_t flags;
190 	unsigned int i;
191 	int r;
192 
193 	BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 	       AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195 
196 	if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 		return -EINVAL;
198 
199 	/* Map only what can't be accessed directly */
200 	if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 		*addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 			mm_cur->start;
203 		return 0;
204 	}
205 
206 
207 	/*
208 	 * If start begins at an offset inside the page, then adjust the size
209 	 * and addr accordingly
210 	 */
211 	offset = mm_cur->start & ~PAGE_MASK;
212 
213 	num_pages = PFN_UP(*size + offset);
214 	num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215 
216 	*size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217 
218 	*addr = adev->gmc.gart_start;
219 	*addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 		AMDGPU_GPU_PAGE_SIZE;
221 	*addr += offset;
222 
223 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 	num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225 
226 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 				     AMDGPU_FENCE_OWNER_UNDEFINED,
228 				     num_dw * 4 + num_bytes,
229 				     AMDGPU_IB_POOL_DELAYED, &job);
230 	if (r)
231 		return r;
232 
233 	src_addr = num_dw * 4;
234 	src_addr += job->ibs[0].gpu_addr;
235 
236 	dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 	dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 				dst_addr, num_bytes, 0);
240 
241 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 	WARN_ON(job->ibs[0].length_dw > num_dw);
243 
244 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 	if (tmz)
246 		flags |= AMDGPU_PTE_TMZ;
247 
248 	cpu_addr = &job->ibs[0].ptr[num_dw];
249 
250 	if (mem->mem_type == TTM_PL_TT) {
251 		dma_addr_t *dma_addr;
252 
253 		dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 		amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 	} else {
256 		dma_addr_t dma_address;
257 
258 		dma_address = mm_cur->start;
259 		dma_address += adev->vm_manager.vram_base_offset;
260 
261 		for (i = 0; i < num_pages; ++i) {
262 			amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 					flags, cpu_addr);
264 			dma_address += PAGE_SIZE;
265 		}
266 	}
267 
268 	dma_fence_put(amdgpu_job_submit(job));
269 	return 0;
270 }
271 
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 			       const struct amdgpu_copy_mem *src,
289 			       const struct amdgpu_copy_mem *dst,
290 			       uint64_t size, bool tmz,
291 			       struct dma_resv *resv,
292 			       struct dma_fence **f)
293 {
294 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 	struct amdgpu_res_cursor src_mm, dst_mm;
296 	struct dma_fence *fence = NULL;
297 	int r = 0;
298 	uint32_t copy_flags = 0;
299 	struct amdgpu_bo *abo_src, *abo_dst;
300 
301 	if (!adev->mman.buffer_funcs_enabled) {
302 		dev_err(adev->dev,
303 			"Trying to move memory with ring turned off.\n");
304 		return -EINVAL;
305 	}
306 
307 	amdgpu_res_first(src->mem, src->offset, size, &src_mm);
308 	amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
309 
310 	mutex_lock(&adev->mman.gtt_window_lock);
311 	while (src_mm.remaining) {
312 		uint64_t from, to, cur_size, tiling_flags;
313 		uint32_t num_type, data_format, max_com, write_compress_disable;
314 		struct dma_fence *next;
315 
316 		/* Never copy more than 256MiB at once to avoid a timeout */
317 		cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
318 
319 		/* Map src to window 0 and dst to window 1. */
320 		r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
321 					  0, ring, tmz, &cur_size, &from);
322 		if (r)
323 			goto error;
324 
325 		r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
326 					  1, ring, tmz, &cur_size, &to);
327 		if (r)
328 			goto error;
329 
330 		abo_src = ttm_to_amdgpu_bo(src->bo);
331 		abo_dst = ttm_to_amdgpu_bo(dst->bo);
332 		if (tmz)
333 			copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
334 		if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
335 		    (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
336 			copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
337 		if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
338 		    (dst->mem->mem_type == TTM_PL_VRAM)) {
339 			copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
340 			amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
341 			max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
342 			num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
343 			data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
344 			write_compress_disable =
345 				AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
346 			copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
347 				       AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
348 				       AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
349 				       AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
350 							     write_compress_disable));
351 		}
352 
353 		r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
354 				       &next, false, true, copy_flags);
355 		if (r)
356 			goto error;
357 
358 		dma_fence_put(fence);
359 		fence = next;
360 
361 		amdgpu_res_next(&src_mm, cur_size);
362 		amdgpu_res_next(&dst_mm, cur_size);
363 	}
364 error:
365 	mutex_unlock(&adev->mman.gtt_window_lock);
366 	if (f)
367 		*f = dma_fence_get(fence);
368 	dma_fence_put(fence);
369 	return r;
370 }
371 
372 /*
373  * amdgpu_move_blit - Copy an entire buffer to another buffer
374  *
375  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
376  * help move buffers to and from VRAM.
377  */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)378 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
379 			    bool evict,
380 			    struct ttm_resource *new_mem,
381 			    struct ttm_resource *old_mem)
382 {
383 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
384 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
385 	struct amdgpu_copy_mem src, dst;
386 	struct dma_fence *fence = NULL;
387 	int r;
388 
389 	src.bo = bo;
390 	dst.bo = bo;
391 	src.mem = old_mem;
392 	dst.mem = new_mem;
393 	src.offset = 0;
394 	dst.offset = 0;
395 
396 	r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
397 				       new_mem->size,
398 				       amdgpu_bo_encrypted(abo),
399 				       bo->base.resv, &fence);
400 	if (r)
401 		goto error;
402 
403 	/* clear the space being freed */
404 	if (old_mem->mem_type == TTM_PL_VRAM &&
405 	    (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
406 		struct dma_fence *wipe_fence = NULL;
407 
408 		r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
409 				       false);
410 		if (r) {
411 			goto error;
412 		} else if (wipe_fence) {
413 			amdgpu_vram_mgr_set_cleared(bo->resource);
414 			dma_fence_put(fence);
415 			fence = wipe_fence;
416 		}
417 	}
418 
419 	/* Always block for VM page tables before committing the new location */
420 	if (bo->type == ttm_bo_type_kernel)
421 		r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
422 	else
423 		r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
424 	dma_fence_put(fence);
425 	return r;
426 
427 error:
428 	if (fence)
429 		dma_fence_wait(fence, false);
430 	dma_fence_put(fence);
431 	return r;
432 }
433 
434 /**
435  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
436  * @adev: amdgpu device
437  * @res: the resource to check
438  *
439  * Returns: true if the full resource is CPU visible, false otherwise.
440  */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)441 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
442 			    struct ttm_resource *res)
443 {
444 	struct amdgpu_res_cursor cursor;
445 
446 	if (!res)
447 		return false;
448 
449 	if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
450 	    res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
451 		return true;
452 
453 	if (res->mem_type != TTM_PL_VRAM)
454 		return false;
455 
456 	amdgpu_res_first(res, 0, res->size, &cursor);
457 	while (cursor.remaining) {
458 		if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
459 			return false;
460 		amdgpu_res_next(&cursor, cursor.size);
461 	}
462 
463 	return true;
464 }
465 
466 /*
467  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
468  *
469  * Called by amdgpu_bo_move()
470  */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)471 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
472 				struct ttm_resource *mem)
473 {
474 	if (!amdgpu_res_cpu_visible(adev, mem))
475 		return false;
476 
477 	/* ttm_resource_ioremap only supports contiguous memory */
478 	if (mem->mem_type == TTM_PL_VRAM &&
479 	    !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
480 		return false;
481 
482 	return true;
483 }
484 
485 /*
486  * amdgpu_bo_move - Move a buffer object to a new memory location
487  *
488  * Called by ttm_bo_handle_move_mem()
489  */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)490 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
491 			  struct ttm_operation_ctx *ctx,
492 			  struct ttm_resource *new_mem,
493 			  struct ttm_place *hop)
494 {
495 	struct amdgpu_device *adev;
496 	struct amdgpu_bo *abo;
497 	struct ttm_resource *old_mem = bo->resource;
498 	int r;
499 
500 	if (new_mem->mem_type == TTM_PL_TT ||
501 	    new_mem->mem_type == AMDGPU_PL_PREEMPT) {
502 		r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
503 		if (r)
504 			return r;
505 	}
506 
507 	abo = ttm_to_amdgpu_bo(bo);
508 	adev = amdgpu_ttm_adev(bo->bdev);
509 
510 	if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
511 			 bo->ttm == NULL)) {
512 		amdgpu_bo_move_notify(bo, evict, new_mem);
513 		ttm_bo_move_null(bo, new_mem);
514 		return 0;
515 	}
516 	if (old_mem->mem_type == TTM_PL_SYSTEM &&
517 	    (new_mem->mem_type == TTM_PL_TT ||
518 	     new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
519 		amdgpu_bo_move_notify(bo, evict, new_mem);
520 		ttm_bo_move_null(bo, new_mem);
521 		return 0;
522 	}
523 	if ((old_mem->mem_type == TTM_PL_TT ||
524 	     old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
525 	    new_mem->mem_type == TTM_PL_SYSTEM) {
526 		r = ttm_bo_wait_ctx(bo, ctx);
527 		if (r)
528 			return r;
529 
530 		amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
531 		amdgpu_bo_move_notify(bo, evict, new_mem);
532 		ttm_resource_free(bo, &bo->resource);
533 		ttm_bo_assign_mem(bo, new_mem);
534 		return 0;
535 	}
536 
537 	if (old_mem->mem_type == AMDGPU_PL_GDS ||
538 	    old_mem->mem_type == AMDGPU_PL_GWS ||
539 	    old_mem->mem_type == AMDGPU_PL_OA ||
540 	    old_mem->mem_type == AMDGPU_PL_DOORBELL ||
541 	    new_mem->mem_type == AMDGPU_PL_GDS ||
542 	    new_mem->mem_type == AMDGPU_PL_GWS ||
543 	    new_mem->mem_type == AMDGPU_PL_OA ||
544 	    new_mem->mem_type == AMDGPU_PL_DOORBELL) {
545 		/* Nothing to save here */
546 		amdgpu_bo_move_notify(bo, evict, new_mem);
547 		ttm_bo_move_null(bo, new_mem);
548 		return 0;
549 	}
550 
551 	if (bo->type == ttm_bo_type_device &&
552 	    new_mem->mem_type == TTM_PL_VRAM &&
553 	    old_mem->mem_type != TTM_PL_VRAM) {
554 		/* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
555 		 * accesses the BO after it's moved.
556 		 */
557 		abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
558 	}
559 
560 	if (adev->mman.buffer_funcs_enabled &&
561 	    ((old_mem->mem_type == TTM_PL_SYSTEM &&
562 	      new_mem->mem_type == TTM_PL_VRAM) ||
563 	     (old_mem->mem_type == TTM_PL_VRAM &&
564 	      new_mem->mem_type == TTM_PL_SYSTEM))) {
565 		hop->fpfn = 0;
566 		hop->lpfn = 0;
567 		hop->mem_type = TTM_PL_TT;
568 		hop->flags = TTM_PL_FLAG_TEMPORARY;
569 		return -EMULTIHOP;
570 	}
571 
572 	amdgpu_bo_move_notify(bo, evict, new_mem);
573 	if (adev->mman.buffer_funcs_enabled)
574 		r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
575 	else
576 		r = -ENODEV;
577 
578 	if (r) {
579 		/* Check that all memory is CPU accessible */
580 		if (!amdgpu_res_copyable(adev, old_mem) ||
581 		    !amdgpu_res_copyable(adev, new_mem)) {
582 			pr_err("Move buffer fallback to memcpy unavailable\n");
583 			return r;
584 		}
585 
586 		r = ttm_bo_move_memcpy(bo, ctx, new_mem);
587 		if (r)
588 			return r;
589 	}
590 
591 	/* update statistics after the move */
592 	if (evict)
593 		atomic64_inc(&adev->num_evictions);
594 	atomic64_add(bo->base.size, &adev->num_bytes_moved);
595 	return 0;
596 }
597 
598 /*
599  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
600  *
601  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
602  */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)603 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
604 				     struct ttm_resource *mem)
605 {
606 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
607 
608 	switch (mem->mem_type) {
609 	case TTM_PL_SYSTEM:
610 		/* system memory */
611 		return 0;
612 	case TTM_PL_TT:
613 	case AMDGPU_PL_PREEMPT:
614 		break;
615 	case TTM_PL_VRAM:
616 		mem->bus.offset = mem->start << PAGE_SHIFT;
617 
618 		if (adev->mman.aper_base_kaddr &&
619 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
620 			mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
621 					mem->bus.offset;
622 
623 		mem->bus.offset += adev->gmc.aper_base;
624 		mem->bus.is_iomem = true;
625 		break;
626 	case AMDGPU_PL_DOORBELL:
627 		mem->bus.offset = mem->start << PAGE_SHIFT;
628 		mem->bus.offset += adev->doorbell.base;
629 		mem->bus.is_iomem = true;
630 		mem->bus.caching = ttm_uncached;
631 		break;
632 	default:
633 		return -EINVAL;
634 	}
635 	return 0;
636 }
637 
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)638 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
639 					   unsigned long page_offset)
640 {
641 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
642 	struct amdgpu_res_cursor cursor;
643 
644 	amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
645 			 &cursor);
646 
647 	if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
648 		return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
649 
650 	return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
651 }
652 
653 /**
654  * amdgpu_ttm_domain_start - Returns GPU start address
655  * @adev: amdgpu device object
656  * @type: type of the memory
657  *
658  * Returns:
659  * GPU start address of a memory domain
660  */
661 
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)662 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
663 {
664 	switch (type) {
665 	case TTM_PL_TT:
666 		return adev->gmc.gart_start;
667 	case TTM_PL_VRAM:
668 		return adev->gmc.vram_start;
669 	}
670 
671 	return 0;
672 }
673 
674 /*
675  * TTM backend functions.
676  */
677 struct amdgpu_ttm_tt {
678 	struct ttm_tt	ttm;
679 	struct drm_gem_object	*gobj;
680 	u64			offset;
681 	uint64_t		userptr;
682 	struct task_struct	*usertask;
683 	uint32_t		userflags;
684 	bool			bound;
685 	int32_t			pool_id;
686 };
687 
688 #define ttm_to_amdgpu_ttm_tt(ptr)	container_of(ptr, struct amdgpu_ttm_tt, ttm)
689 
690 #ifdef CONFIG_DRM_AMDGPU_USERPTR
691 /*
692  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
693  * memory and start HMM tracking CPU page table update
694  *
695  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
696  * once afterwards to stop HMM tracking
697  */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)698 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
699 				 struct hmm_range **range)
700 {
701 	struct ttm_tt *ttm = bo->tbo.ttm;
702 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
703 	unsigned long start = gtt->userptr;
704 	struct vm_area_struct *vma;
705 	struct mm_struct *mm;
706 	bool readonly;
707 	int r = 0;
708 
709 	/* Make sure get_user_pages_done() can cleanup gracefully */
710 	*range = NULL;
711 
712 	mm = bo->notifier.mm;
713 	if (unlikely(!mm)) {
714 		DRM_DEBUG_DRIVER("BO is not registered?\n");
715 		return -EFAULT;
716 	}
717 
718 	if (!mmget_not_zero(mm)) /* Happens during process shutdown */
719 		return -ESRCH;
720 
721 	mmap_read_lock(mm);
722 	vma = vma_lookup(mm, start);
723 	if (unlikely(!vma)) {
724 		r = -EFAULT;
725 		goto out_unlock;
726 	}
727 	if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
728 		vma->vm_file)) {
729 		r = -EPERM;
730 		goto out_unlock;
731 	}
732 
733 	readonly = amdgpu_ttm_tt_is_readonly(ttm);
734 	r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
735 				       readonly, NULL, pages, range);
736 out_unlock:
737 	mmap_read_unlock(mm);
738 	if (r)
739 		pr_debug("failed %d to get user pages 0x%lx\n", r, start);
740 
741 	mmput(mm);
742 
743 	return r;
744 }
745 
746 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
747  */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)748 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
749 				      struct hmm_range *range)
750 {
751 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
752 
753 	if (gtt && gtt->userptr && range)
754 		amdgpu_hmm_range_get_pages_done(range);
755 }
756 
757 /*
758  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
759  * Check if the pages backing this ttm range have been invalidated
760  *
761  * Returns: true if pages are still valid
762  */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)763 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
764 				       struct hmm_range *range)
765 {
766 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767 
768 	if (!gtt || !gtt->userptr || !range)
769 		return false;
770 
771 	DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
772 		gtt->userptr, ttm->num_pages);
773 
774 	WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
775 
776 	return !amdgpu_hmm_range_get_pages_done(range);
777 }
778 #endif
779 
780 /*
781  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
782  *
783  * Called by amdgpu_cs_list_validate(). This creates the page list
784  * that backs user memory and will ultimately be mapped into the device
785  * address space.
786  */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)787 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
788 {
789 	unsigned long i;
790 
791 	for (i = 0; i < ttm->num_pages; ++i)
792 		ttm->pages[i] = pages ? pages[i] : NULL;
793 }
794 
795 /*
796  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
797  *
798  * Called by amdgpu_ttm_backend_bind()
799  **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)800 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
801 				     struct ttm_tt *ttm)
802 {
803 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
804 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
805 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
806 	enum dma_data_direction direction = write ?
807 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
808 	int r;
809 
810 	/* Allocate an SG array and squash pages into it */
811 	r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
812 				      (u64)ttm->num_pages << PAGE_SHIFT,
813 				      GFP_KERNEL);
814 	if (r)
815 		goto release_sg;
816 
817 	/* Map SG to device */
818 	r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
819 	if (r)
820 		goto release_sg_table;
821 
822 	/* convert SG to linear array of pages and dma addresses */
823 	drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
824 				       ttm->num_pages);
825 
826 	return 0;
827 
828 release_sg_table:
829 	sg_free_table(ttm->sg);
830 release_sg:
831 	kfree(ttm->sg);
832 	ttm->sg = NULL;
833 	return r;
834 }
835 
836 /*
837  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
838  */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)839 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
840 					struct ttm_tt *ttm)
841 {
842 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
843 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
844 	int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
845 	enum dma_data_direction direction = write ?
846 		DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
847 
848 	/* double check that we don't free the table twice */
849 	if (!ttm->sg || !ttm->sg->sgl)
850 		return;
851 
852 	/* unmap the pages mapped to the device */
853 	dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
854 	sg_free_table(ttm->sg);
855 }
856 
857 /*
858  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
859  * MQDn+CtrlStackn where n is the number of XCCs per partition.
860  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
861  * and uses memory type default, UC. The rest of pages_per_xcc are
862  * Ctrl stack and modify their memory type to NC.
863  */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)864 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
865 				struct ttm_tt *ttm, uint64_t flags)
866 {
867 	struct amdgpu_ttm_tt *gtt = (void *)ttm;
868 	uint64_t total_pages = ttm->num_pages;
869 	int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
870 	uint64_t page_idx, pages_per_xcc;
871 	int i;
872 	uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
873 
874 	pages_per_xcc = total_pages;
875 	do_div(pages_per_xcc, num_xcc);
876 
877 	for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
878 		/* MQD page: use default flags */
879 		amdgpu_gart_bind(adev,
880 				gtt->offset + (page_idx << PAGE_SHIFT),
881 				1, &gtt->ttm.dma_address[page_idx], flags);
882 		/*
883 		 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
884 		 * the second page of the BO onward.
885 		 */
886 		amdgpu_gart_bind(adev,
887 				gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
888 				pages_per_xcc - 1,
889 				&gtt->ttm.dma_address[page_idx + 1],
890 				ctrl_flags);
891 	}
892 }
893 
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)894 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
895 				 struct ttm_buffer_object *tbo,
896 				 uint64_t flags)
897 {
898 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
899 	struct ttm_tt *ttm = tbo->ttm;
900 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
901 
902 	if (amdgpu_bo_encrypted(abo))
903 		flags |= AMDGPU_PTE_TMZ;
904 
905 	if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
906 		amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
907 	} else {
908 		amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
909 				 gtt->ttm.dma_address, flags);
910 	}
911 	gtt->bound = true;
912 }
913 
914 /*
915  * amdgpu_ttm_backend_bind - Bind GTT memory
916  *
917  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
918  * This handles binding GTT memory to the device address space.
919  */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)920 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
921 				   struct ttm_tt *ttm,
922 				   struct ttm_resource *bo_mem)
923 {
924 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
925 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
926 	uint64_t flags;
927 	int r;
928 
929 	if (!bo_mem)
930 		return -EINVAL;
931 
932 	if (gtt->bound)
933 		return 0;
934 
935 	if (gtt->userptr) {
936 		r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
937 		if (r) {
938 			dev_err(adev->dev, "failed to pin userptr\n");
939 			return r;
940 		}
941 	} else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
942 		if (!ttm->sg) {
943 			struct dma_buf_attachment *attach;
944 			struct sg_table *sgt;
945 
946 			attach = gtt->gobj->import_attach;
947 			sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
948 			if (IS_ERR(sgt))
949 				return PTR_ERR(sgt);
950 
951 			ttm->sg = sgt;
952 		}
953 
954 		drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
955 					       ttm->num_pages);
956 	}
957 
958 	if (!ttm->num_pages) {
959 		WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
960 		     ttm->num_pages, bo_mem, ttm);
961 	}
962 
963 	if (bo_mem->mem_type != TTM_PL_TT ||
964 	    !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
965 		gtt->offset = AMDGPU_BO_INVALID_OFFSET;
966 		return 0;
967 	}
968 
969 	/* compute PTE flags relevant to this BO memory */
970 	flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
971 
972 	/* bind pages into GART page tables */
973 	gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
974 	amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
975 			 gtt->ttm.dma_address, flags);
976 	gtt->bound = true;
977 	return 0;
978 }
979 
980 /*
981  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
982  * through AGP or GART aperture.
983  *
984  * If bo is accessible through AGP aperture, then use AGP aperture
985  * to access bo; otherwise allocate logical space in GART aperture
986  * and map bo to GART aperture.
987  */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)988 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
989 {
990 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
991 	struct ttm_operation_ctx ctx = { false, false };
992 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
993 	struct ttm_placement placement;
994 	struct ttm_place placements;
995 	struct ttm_resource *tmp;
996 	uint64_t addr, flags;
997 	int r;
998 
999 	if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
1000 		return 0;
1001 
1002 	addr = amdgpu_gmc_agp_addr(bo);
1003 	if (addr != AMDGPU_BO_INVALID_OFFSET)
1004 		return 0;
1005 
1006 	/* allocate GART space */
1007 	placement.num_placement = 1;
1008 	placement.placement = &placements;
1009 	placements.fpfn = 0;
1010 	placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1011 	placements.mem_type = TTM_PL_TT;
1012 	placements.flags = bo->resource->placement;
1013 
1014 	r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1015 	if (unlikely(r))
1016 		return r;
1017 
1018 	/* compute PTE flags for this buffer object */
1019 	flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1020 
1021 	/* Bind pages */
1022 	gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1023 	amdgpu_ttm_gart_bind(adev, bo, flags);
1024 	amdgpu_gart_invalidate_tlb(adev);
1025 	ttm_resource_free(bo, &bo->resource);
1026 	ttm_bo_assign_mem(bo, tmp);
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * amdgpu_ttm_recover_gart - Rebind GTT pages
1033  *
1034  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1035  * rebind GTT pages during a GPU reset.
1036  */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1037 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1038 {
1039 	struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1040 	uint64_t flags;
1041 
1042 	if (!tbo->ttm)
1043 		return;
1044 
1045 	flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1046 	amdgpu_ttm_gart_bind(adev, tbo, flags);
1047 }
1048 
1049 /*
1050  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1051  *
1052  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1053  * ttm_tt_destroy().
1054  */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1055 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1056 				      struct ttm_tt *ttm)
1057 {
1058 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1059 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1060 
1061 	/* if the pages have userptr pinning then clear that first */
1062 	if (gtt->userptr) {
1063 		amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1064 	} else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) {
1065 		struct dma_buf_attachment *attach;
1066 
1067 		attach = gtt->gobj->import_attach;
1068 		dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1069 		ttm->sg = NULL;
1070 	}
1071 
1072 	if (!gtt->bound)
1073 		return;
1074 
1075 	if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1076 		return;
1077 
1078 	/* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1079 	amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1080 	gtt->bound = false;
1081 }
1082 
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1083 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1084 				       struct ttm_tt *ttm)
1085 {
1086 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1087 
1088 	if (gtt->usertask)
1089 		put_task_struct(gtt->usertask);
1090 
1091 	ttm_tt_fini(&gtt->ttm);
1092 	kfree(gtt);
1093 }
1094 
1095 /**
1096  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1097  *
1098  * @bo: The buffer object to create a GTT ttm_tt object around
1099  * @page_flags: Page flags to be added to the ttm_tt object
1100  *
1101  * Called by ttm_tt_create().
1102  */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1103 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1104 					   uint32_t page_flags)
1105 {
1106 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1107 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1108 	struct amdgpu_ttm_tt *gtt;
1109 	enum ttm_caching caching;
1110 
1111 	gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1112 	if (!gtt)
1113 		return NULL;
1114 
1115 	gtt->gobj = &bo->base;
1116 	if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1117 		gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1118 	else
1119 		gtt->pool_id = abo->xcp_id;
1120 
1121 	if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1122 		caching = ttm_write_combined;
1123 	else
1124 		caching = ttm_cached;
1125 
1126 	/* allocate space for the uninitialized page entries */
1127 	if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1128 		kfree(gtt);
1129 		return NULL;
1130 	}
1131 	return &gtt->ttm;
1132 }
1133 
1134 /*
1135  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1136  *
1137  * Map the pages of a ttm_tt object to an address space visible
1138  * to the underlying device.
1139  */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1140 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1141 				  struct ttm_tt *ttm,
1142 				  struct ttm_operation_ctx *ctx)
1143 {
1144 	struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1145 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1146 	struct ttm_pool *pool;
1147 	pgoff_t i;
1148 	int ret;
1149 
1150 	/* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1151 	if (gtt->userptr) {
1152 		ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1153 		if (!ttm->sg)
1154 			return -ENOMEM;
1155 		return 0;
1156 	}
1157 
1158 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1159 		return 0;
1160 
1161 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1163 	else
1164 		pool = &adev->mman.bdev.pool;
1165 	ret = ttm_pool_alloc(pool, ttm, ctx);
1166 	if (ret)
1167 		return ret;
1168 
1169 	for (i = 0; i < ttm->num_pages; ++i)
1170 		ttm->pages[i]->mapping = bdev->dev_mapping;
1171 
1172 	return 0;
1173 }
1174 
1175 /*
1176  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1177  *
1178  * Unmaps pages of a ttm_tt object from the device address space and
1179  * unpopulates the page array backing it.
1180  */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1181 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1182 				     struct ttm_tt *ttm)
1183 {
1184 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1185 	struct amdgpu_device *adev;
1186 	struct ttm_pool *pool;
1187 	pgoff_t i;
1188 
1189 	amdgpu_ttm_backend_unbind(bdev, ttm);
1190 
1191 	if (gtt->userptr) {
1192 		amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1193 		kfree(ttm->sg);
1194 		ttm->sg = NULL;
1195 		return;
1196 	}
1197 
1198 	if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1199 		return;
1200 
1201 	for (i = 0; i < ttm->num_pages; ++i)
1202 		ttm->pages[i]->mapping = NULL;
1203 
1204 	adev = amdgpu_ttm_adev(bdev);
1205 
1206 	if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1207 		pool = &adev->mman.ttm_pools[gtt->pool_id];
1208 	else
1209 		pool = &adev->mman.bdev.pool;
1210 
1211 	return ttm_pool_free(pool, ttm);
1212 }
1213 
1214 /**
1215  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1216  * task
1217  *
1218  * @tbo: The ttm_buffer_object that contains the userptr
1219  * @user_addr:  The returned value
1220  */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1221 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1222 			      uint64_t *user_addr)
1223 {
1224 	struct amdgpu_ttm_tt *gtt;
1225 
1226 	if (!tbo->ttm)
1227 		return -EINVAL;
1228 
1229 	gtt = (void *)tbo->ttm;
1230 	*user_addr = gtt->userptr;
1231 	return 0;
1232 }
1233 
1234 /**
1235  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1236  * task
1237  *
1238  * @bo: The ttm_buffer_object to bind this userptr to
1239  * @addr:  The address in the current tasks VM space to use
1240  * @flags: Requirements of userptr object.
1241  *
1242  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1243  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1244  * initialize GPU VM for a KFD process.
1245  */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1246 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1247 			      uint64_t addr, uint32_t flags)
1248 {
1249 	struct amdgpu_ttm_tt *gtt;
1250 
1251 	if (!bo->ttm) {
1252 		/* TODO: We want a separate TTM object type for userptrs */
1253 		bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1254 		if (bo->ttm == NULL)
1255 			return -ENOMEM;
1256 	}
1257 
1258 	/* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1259 	bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1260 
1261 	gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1262 	gtt->userptr = addr;
1263 	gtt->userflags = flags;
1264 
1265 	if (gtt->usertask)
1266 		put_task_struct(gtt->usertask);
1267 	gtt->usertask = current->group_leader;
1268 	get_task_struct(gtt->usertask);
1269 
1270 	return 0;
1271 }
1272 
1273 /*
1274  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1275  */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1276 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1277 {
1278 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1279 
1280 	if (gtt == NULL)
1281 		return NULL;
1282 
1283 	if (gtt->usertask == NULL)
1284 		return NULL;
1285 
1286 	return gtt->usertask->mm;
1287 }
1288 
1289 /*
1290  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1291  * address range for the current task.
1292  *
1293  */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1294 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1295 				  unsigned long end, unsigned long *userptr)
1296 {
1297 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1298 	unsigned long size;
1299 
1300 	if (gtt == NULL || !gtt->userptr)
1301 		return false;
1302 
1303 	/* Return false if no part of the ttm_tt object lies within
1304 	 * the range
1305 	 */
1306 	size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1307 	if (gtt->userptr > end || gtt->userptr + size <= start)
1308 		return false;
1309 
1310 	if (userptr)
1311 		*userptr = gtt->userptr;
1312 	return true;
1313 }
1314 
1315 /*
1316  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1317  */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1318 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1319 {
1320 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1321 
1322 	if (gtt == NULL || !gtt->userptr)
1323 		return false;
1324 
1325 	return true;
1326 }
1327 
1328 /*
1329  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1330  */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1331 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1332 {
1333 	struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1334 
1335 	if (gtt == NULL)
1336 		return false;
1337 
1338 	return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1339 }
1340 
1341 /**
1342  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1343  *
1344  * @ttm: The ttm_tt object to compute the flags for
1345  * @mem: The memory registry backing this ttm_tt object
1346  *
1347  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1348  */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1349 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1350 {
1351 	uint64_t flags = 0;
1352 
1353 	if (mem && mem->mem_type != TTM_PL_SYSTEM)
1354 		flags |= AMDGPU_PTE_VALID;
1355 
1356 	if (mem && (mem->mem_type == TTM_PL_TT ||
1357 		    mem->mem_type == AMDGPU_PL_DOORBELL ||
1358 		    mem->mem_type == AMDGPU_PL_PREEMPT)) {
1359 		flags |= AMDGPU_PTE_SYSTEM;
1360 
1361 		if (ttm->caching == ttm_cached)
1362 			flags |= AMDGPU_PTE_SNOOPED;
1363 	}
1364 
1365 	if (mem && mem->mem_type == TTM_PL_VRAM &&
1366 			mem->bus.caching == ttm_cached)
1367 		flags |= AMDGPU_PTE_SNOOPED;
1368 
1369 	return flags;
1370 }
1371 
1372 /**
1373  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1374  *
1375  * @adev: amdgpu_device pointer
1376  * @ttm: The ttm_tt object to compute the flags for
1377  * @mem: The memory registry backing this ttm_tt object
1378  *
1379  * Figure out the flags to use for a VM PTE (Page Table Entry).
1380  */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1381 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1382 				 struct ttm_resource *mem)
1383 {
1384 	uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1385 
1386 	flags |= adev->gart.gart_pte_flags;
1387 	flags |= AMDGPU_PTE_READABLE;
1388 
1389 	if (!amdgpu_ttm_tt_is_readonly(ttm))
1390 		flags |= AMDGPU_PTE_WRITEABLE;
1391 
1392 	return flags;
1393 }
1394 
1395 /*
1396  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1397  * object.
1398  *
1399  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1400  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1401  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1402  * used to clean out a memory space.
1403  */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1404 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1405 					    const struct ttm_place *place)
1406 {
1407 	struct dma_resv_iter resv_cursor;
1408 	struct dma_fence *f;
1409 
1410 	if (!amdgpu_bo_is_amdgpu_bo(bo))
1411 		return ttm_bo_eviction_valuable(bo, place);
1412 
1413 	/* Swapout? */
1414 	if (bo->resource->mem_type == TTM_PL_SYSTEM)
1415 		return true;
1416 
1417 	if (bo->type == ttm_bo_type_kernel &&
1418 	    !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1419 		return false;
1420 
1421 	/* If bo is a KFD BO, check if the bo belongs to the current process.
1422 	 * If true, then return false as any KFD process needs all its BOs to
1423 	 * be resident to run successfully
1424 	 */
1425 	dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1426 				DMA_RESV_USAGE_BOOKKEEP, f) {
1427 		if (amdkfd_fence_check_mm(f, current->mm) &&
1428 		    !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1429 			return false;
1430 	}
1431 
1432 	/* Preemptible BOs don't own system resources managed by the
1433 	 * driver (pages, VRAM, GART space). They point to resources
1434 	 * owned by someone else (e.g. pageable memory in user mode
1435 	 * or a DMABuf). They are used in a preemptible context so we
1436 	 * can guarantee no deadlocks and good QoS in case of MMU
1437 	 * notifiers or DMABuf move notifiers from the resource owner.
1438 	 */
1439 	if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1440 		return false;
1441 
1442 	if (bo->resource->mem_type == TTM_PL_TT &&
1443 	    amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1444 		return false;
1445 
1446 	return ttm_bo_eviction_valuable(bo, place);
1447 }
1448 
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1449 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1450 				      void *buf, size_t size, bool write)
1451 {
1452 	while (size) {
1453 		uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1454 		uint64_t bytes = 4 - (pos & 0x3);
1455 		uint32_t shift = (pos & 0x3) * 8;
1456 		uint32_t mask = 0xffffffff << shift;
1457 		uint32_t value = 0;
1458 
1459 		if (size < bytes) {
1460 			mask &= 0xffffffff >> (bytes - size) * 8;
1461 			bytes = size;
1462 		}
1463 
1464 		if (mask != 0xffffffff) {
1465 			amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1466 			if (write) {
1467 				value &= ~mask;
1468 				value |= (*(uint32_t *)buf << shift) & mask;
1469 				amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1470 			} else {
1471 				value = (value & mask) >> shift;
1472 				memcpy(buf, &value, bytes);
1473 			}
1474 		} else {
1475 			amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1476 		}
1477 
1478 		pos += bytes;
1479 		buf += bytes;
1480 		size -= bytes;
1481 	}
1482 }
1483 
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1484 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1485 					unsigned long offset, void *buf,
1486 					int len, int write)
1487 {
1488 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1489 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1490 	struct amdgpu_res_cursor src_mm;
1491 	struct amdgpu_job *job;
1492 	struct dma_fence *fence;
1493 	uint64_t src_addr, dst_addr;
1494 	unsigned int num_dw;
1495 	int r, idx;
1496 
1497 	if (len != PAGE_SIZE)
1498 		return -EINVAL;
1499 
1500 	if (!adev->mman.sdma_access_ptr)
1501 		return -EACCES;
1502 
1503 	if (!drm_dev_enter(adev_to_drm(adev), &idx))
1504 		return -ENODEV;
1505 
1506 	if (write)
1507 		memcpy(adev->mman.sdma_access_ptr, buf, len);
1508 
1509 	num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1510 	r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1511 				     AMDGPU_FENCE_OWNER_UNDEFINED,
1512 				     num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1513 				     &job);
1514 	if (r)
1515 		goto out;
1516 
1517 	amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1518 	src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1519 		src_mm.start;
1520 	dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1521 	if (write)
1522 		swap(src_addr, dst_addr);
1523 
1524 	amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1525 				PAGE_SIZE, 0);
1526 
1527 	amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1528 	WARN_ON(job->ibs[0].length_dw > num_dw);
1529 
1530 	fence = amdgpu_job_submit(job);
1531 
1532 	if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1533 		r = -ETIMEDOUT;
1534 	dma_fence_put(fence);
1535 
1536 	if (!(r || write))
1537 		memcpy(buf, adev->mman.sdma_access_ptr, len);
1538 out:
1539 	drm_dev_exit(idx);
1540 	return r;
1541 }
1542 
1543 /**
1544  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1545  *
1546  * @bo:  The buffer object to read/write
1547  * @offset:  Offset into buffer object
1548  * @buf:  Secondary buffer to write/read from
1549  * @len: Length in bytes of access
1550  * @write:  true if writing
1551  *
1552  * This is used to access VRAM that backs a buffer object via MMIO
1553  * access for debugging purposes.
1554  */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1555 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1556 				    unsigned long offset, void *buf, int len,
1557 				    int write)
1558 {
1559 	struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1560 	struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1561 	struct amdgpu_res_cursor cursor;
1562 	int ret = 0;
1563 
1564 	if (bo->resource->mem_type != TTM_PL_VRAM)
1565 		return -EIO;
1566 
1567 	if (amdgpu_device_has_timeouts_enabled(adev) &&
1568 			!amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1569 		return len;
1570 
1571 	amdgpu_res_first(bo->resource, offset, len, &cursor);
1572 	while (cursor.remaining) {
1573 		size_t count, size = cursor.size;
1574 		loff_t pos = cursor.start;
1575 
1576 		count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1577 		size -= count;
1578 		if (size) {
1579 			/* using MM to access rest vram and handle un-aligned address */
1580 			pos += count;
1581 			buf += count;
1582 			amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1583 		}
1584 
1585 		ret += cursor.size;
1586 		buf += cursor.size;
1587 		amdgpu_res_next(&cursor, cursor.size);
1588 	}
1589 
1590 	return ret;
1591 }
1592 
1593 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1594 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1595 {
1596 	amdgpu_bo_move_notify(bo, false, NULL);
1597 }
1598 
1599 static struct ttm_device_funcs amdgpu_bo_driver = {
1600 	.ttm_tt_create = &amdgpu_ttm_tt_create,
1601 	.ttm_tt_populate = &amdgpu_ttm_tt_populate,
1602 	.ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1603 	.ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1604 	.eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1605 	.evict_flags = &amdgpu_evict_flags,
1606 	.move = &amdgpu_bo_move,
1607 	.delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1608 	.release_notify = &amdgpu_bo_release_notify,
1609 	.io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1610 	.io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1611 	.access_memory = &amdgpu_ttm_access_memory,
1612 };
1613 
1614 /*
1615  * Firmware Reservation functions
1616  */
1617 /**
1618  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1619  *
1620  * @adev: amdgpu_device pointer
1621  *
1622  * free fw reserved vram if it has been reserved.
1623  */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1624 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1625 {
1626 	amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1627 		NULL, &adev->mman.fw_vram_usage_va);
1628 }
1629 
1630 /*
1631  * Driver Reservation functions
1632  */
1633 /**
1634  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1635  *
1636  * @adev: amdgpu_device pointer
1637  *
1638  * free drv reserved vram if it has been reserved.
1639  */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1640 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1641 {
1642 	amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1643 						  NULL,
1644 						  &adev->mman.drv_vram_usage_va);
1645 }
1646 
1647 /**
1648  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1649  *
1650  * @adev: amdgpu_device pointer
1651  *
1652  * create bo vram reservation from fw.
1653  */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1654 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1655 {
1656 	uint64_t vram_size = adev->gmc.visible_vram_size;
1657 
1658 	adev->mman.fw_vram_usage_va = NULL;
1659 	adev->mman.fw_vram_usage_reserved_bo = NULL;
1660 
1661 	if (adev->mman.fw_vram_usage_size == 0 ||
1662 	    adev->mman.fw_vram_usage_size > vram_size)
1663 		return 0;
1664 
1665 	return amdgpu_bo_create_kernel_at(adev,
1666 					  adev->mman.fw_vram_usage_start_offset,
1667 					  adev->mman.fw_vram_usage_size,
1668 					  &adev->mman.fw_vram_usage_reserved_bo,
1669 					  &adev->mman.fw_vram_usage_va);
1670 }
1671 
1672 /**
1673  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1674  *
1675  * @adev: amdgpu_device pointer
1676  *
1677  * create bo vram reservation from drv.
1678  */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1679 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1680 {
1681 	u64 vram_size = adev->gmc.visible_vram_size;
1682 
1683 	adev->mman.drv_vram_usage_va = NULL;
1684 	adev->mman.drv_vram_usage_reserved_bo = NULL;
1685 
1686 	if (adev->mman.drv_vram_usage_size == 0 ||
1687 	    adev->mman.drv_vram_usage_size > vram_size)
1688 		return 0;
1689 
1690 	return amdgpu_bo_create_kernel_at(adev,
1691 					  adev->mman.drv_vram_usage_start_offset,
1692 					  adev->mman.drv_vram_usage_size,
1693 					  &adev->mman.drv_vram_usage_reserved_bo,
1694 					  &adev->mman.drv_vram_usage_va);
1695 }
1696 
1697 /*
1698  * Memoy training reservation functions
1699  */
1700 
1701 /**
1702  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1703  *
1704  * @adev: amdgpu_device pointer
1705  *
1706  * free memory training reserved vram if it has been reserved.
1707  */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1708 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1709 {
1710 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1711 
1712 	ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1713 	amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1714 	ctx->c2p_bo = NULL;
1715 
1716 	return 0;
1717 }
1718 
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1719 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1720 						uint32_t reserve_size)
1721 {
1722 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1723 
1724 	memset(ctx, 0, sizeof(*ctx));
1725 
1726 	ctx->c2p_train_data_offset =
1727 		ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1728 	ctx->p2c_train_data_offset =
1729 		(adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1730 	ctx->train_data_size =
1731 		GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1732 
1733 	DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1734 			ctx->train_data_size,
1735 			ctx->p2c_train_data_offset,
1736 			ctx->c2p_train_data_offset);
1737 }
1738 
1739 /*
1740  * reserve TMR memory at the top of VRAM which holds
1741  * IP Discovery data and is protected by PSP.
1742  */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1743 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1744 {
1745 	struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1746 	bool mem_train_support = false;
1747 	uint32_t reserve_size = 0;
1748 	int ret;
1749 
1750 	if (adev->bios && !amdgpu_sriov_vf(adev)) {
1751 		if (amdgpu_atomfirmware_mem_training_supported(adev))
1752 			mem_train_support = true;
1753 		else
1754 			DRM_DEBUG("memory training does not support!\n");
1755 	}
1756 
1757 	/*
1758 	 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1759 	 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1760 	 *
1761 	 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1762 	 * discovery data and G6 memory training data respectively
1763 	 */
1764 	if (adev->bios)
1765 		reserve_size =
1766 			amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1767 
1768 	if (!adev->bios &&
1769 	    (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1770 	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) ||
1771 	     amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0)))
1772 		reserve_size = max(reserve_size, (uint32_t)280 << 20);
1773 	else if (!reserve_size)
1774 		reserve_size = DISCOVERY_TMR_OFFSET;
1775 
1776 	if (mem_train_support) {
1777 		/* reserve vram for mem train according to TMR location */
1778 		amdgpu_ttm_training_data_block_init(adev, reserve_size);
1779 		ret = amdgpu_bo_create_kernel_at(adev,
1780 						 ctx->c2p_train_data_offset,
1781 						 ctx->train_data_size,
1782 						 &ctx->c2p_bo,
1783 						 NULL);
1784 		if (ret) {
1785 			dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret);
1786 			amdgpu_ttm_training_reserve_vram_fini(adev);
1787 			return ret;
1788 		}
1789 		ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1790 	}
1791 
1792 	if (!adev->gmc.is_app_apu) {
1793 		ret = amdgpu_bo_create_kernel_at(
1794 			adev, adev->gmc.real_vram_size - reserve_size,
1795 			reserve_size, &adev->mman.fw_reserved_memory, NULL);
1796 		if (ret) {
1797 			dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret);
1798 			amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1799 					      NULL, NULL);
1800 			return ret;
1801 		}
1802 	} else {
1803 		DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1804 	}
1805 
1806 	return 0;
1807 }
1808 
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1809 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1810 {
1811 	int i;
1812 
1813 	if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1814 		return 0;
1815 
1816 	adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1817 				       sizeof(*adev->mman.ttm_pools),
1818 				       GFP_KERNEL);
1819 	if (!adev->mman.ttm_pools)
1820 		return -ENOMEM;
1821 
1822 	for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1823 		ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1824 			      adev->gmc.mem_partitions[i].numa.node,
1825 			      false, false);
1826 	}
1827 	return 0;
1828 }
1829 
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1830 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1831 {
1832 	int i;
1833 
1834 	if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1835 		return;
1836 
1837 	for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1838 		ttm_pool_fini(&adev->mman.ttm_pools[i]);
1839 
1840 	kfree(adev->mman.ttm_pools);
1841 	adev->mman.ttm_pools = NULL;
1842 }
1843 
1844 /*
1845  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1846  * gtt/vram related fields.
1847  *
1848  * This initializes all of the memory space pools that the TTM layer
1849  * will need such as the GTT space (system memory mapped to the device),
1850  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1851  * can be mapped per VMID.
1852  */
amdgpu_ttm_init(struct amdgpu_device * adev)1853 int amdgpu_ttm_init(struct amdgpu_device *adev)
1854 {
1855 	uint64_t gtt_size;
1856 	int r;
1857 
1858 	mutex_init(&adev->mman.gtt_window_lock);
1859 
1860 	dma_set_max_seg_size(adev->dev, UINT_MAX);
1861 	/* No others user of address space so set it to 0 */
1862 	r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1863 			       adev_to_drm(adev)->anon_inode->i_mapping,
1864 			       adev_to_drm(adev)->vma_offset_manager,
1865 			       adev->need_swiotlb,
1866 			       dma_addressing_limited(adev->dev));
1867 	if (r) {
1868 		dev_err(adev->dev,
1869 			"failed initializing buffer object driver(%d).\n", r);
1870 		return r;
1871 	}
1872 
1873 	r = amdgpu_ttm_pools_init(adev);
1874 	if (r) {
1875 		dev_err(adev->dev, "failed to init ttm pools(%d).\n", r);
1876 		return r;
1877 	}
1878 	adev->mman.initialized = true;
1879 
1880 	/* Initialize VRAM pool with all of VRAM divided into pages */
1881 	r = amdgpu_vram_mgr_init(adev);
1882 	if (r) {
1883 		dev_err(adev->dev, "Failed initializing VRAM heap.\n");
1884 		return r;
1885 	}
1886 
1887 	/* Change the size here instead of the init above so only lpfn is affected */
1888 	amdgpu_ttm_set_buffer_funcs_status(adev, false);
1889 #ifdef CONFIG_64BIT
1890 #ifdef CONFIG_X86
1891 	if (adev->gmc.xgmi.connected_to_cpu)
1892 		adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1893 				adev->gmc.visible_vram_size);
1894 
1895 	else if (adev->gmc.is_app_apu)
1896 		DRM_DEBUG_DRIVER(
1897 			"No need to ioremap when real vram size is 0\n");
1898 	else
1899 #endif
1900 		adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1901 				adev->gmc.visible_vram_size);
1902 #endif
1903 
1904 	/*
1905 	 *The reserved vram for firmware must be pinned to the specified
1906 	 *place on the VRAM, so reserve it early.
1907 	 */
1908 	r = amdgpu_ttm_fw_reserve_vram_init(adev);
1909 	if (r)
1910 		return r;
1911 
1912 	/*
1913 	 *The reserved vram for driver must be pinned to the specified
1914 	 *place on the VRAM, so reserve it early.
1915 	 */
1916 	r = amdgpu_ttm_drv_reserve_vram_init(adev);
1917 	if (r)
1918 		return r;
1919 
1920 	/*
1921 	 * only NAVI10 and onwards ASIC support for IP discovery.
1922 	 * If IP discovery enabled, a block of memory should be
1923 	 * reserved for IP discovey.
1924 	 */
1925 	if (adev->mman.discovery_bin) {
1926 		r = amdgpu_ttm_reserve_tmr(adev);
1927 		if (r)
1928 			return r;
1929 	}
1930 
1931 	/* allocate memory as required for VGA
1932 	 * This is used for VGA emulation and pre-OS scanout buffers to
1933 	 * avoid display artifacts while transitioning between pre-OS
1934 	 * and driver.
1935 	 */
1936 	if (!adev->gmc.is_app_apu) {
1937 		r = amdgpu_bo_create_kernel_at(adev, 0,
1938 					       adev->mman.stolen_vga_size,
1939 					       &adev->mman.stolen_vga_memory,
1940 					       NULL);
1941 		if (r)
1942 			return r;
1943 
1944 		r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1945 					       adev->mman.stolen_extended_size,
1946 					       &adev->mman.stolen_extended_memory,
1947 					       NULL);
1948 
1949 		if (r)
1950 			return r;
1951 
1952 		r = amdgpu_bo_create_kernel_at(adev,
1953 					       adev->mman.stolen_reserved_offset,
1954 					       adev->mman.stolen_reserved_size,
1955 					       &adev->mman.stolen_reserved_memory,
1956 					       NULL);
1957 		if (r)
1958 			return r;
1959 	} else {
1960 		DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1961 	}
1962 
1963 	dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n",
1964 		 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1965 
1966 	/* Compute GTT size, either based on TTM limit
1967 	 * or whatever the user passed on module init.
1968 	 */
1969 	gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1970 	if (amdgpu_gtt_size != -1) {
1971 		uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20;
1972 
1973 		drm_warn(&adev->ddev,
1974 			"Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n");
1975 		if (gtt_size != configured_size)
1976 			drm_warn(&adev->ddev,
1977 				"GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n",
1978 				configured_size, gtt_size);
1979 
1980 		gtt_size = configured_size;
1981 	}
1982 
1983 	/* Initialize GTT memory pool */
1984 	r = amdgpu_gtt_mgr_init(adev, gtt_size);
1985 	if (r) {
1986 		dev_err(adev->dev, "Failed initializing GTT heap.\n");
1987 		return r;
1988 	}
1989 	dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n",
1990 		 (unsigned int)(gtt_size / (1024 * 1024)));
1991 
1992 	if (adev->flags & AMD_IS_APU) {
1993 		if (adev->gmc.real_vram_size < gtt_size)
1994 			adev->apu_prefer_gtt = true;
1995 	}
1996 
1997 	/* Initialize doorbell pool on PCI BAR */
1998 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1999 	if (r) {
2000 		dev_err(adev->dev, "Failed initializing doorbell heap.\n");
2001 		return r;
2002 	}
2003 
2004 	/* Create a boorbell page for kernel usages */
2005 	r = amdgpu_doorbell_create_kernel_doorbells(adev);
2006 	if (r) {
2007 		dev_err(adev->dev, "Failed to initialize kernel doorbells.\n");
2008 		return r;
2009 	}
2010 
2011 	/* Initialize preemptible memory pool */
2012 	r = amdgpu_preempt_mgr_init(adev);
2013 	if (r) {
2014 		dev_err(adev->dev, "Failed initializing PREEMPT heap.\n");
2015 		return r;
2016 	}
2017 
2018 	/* Initialize various on-chip memory pools */
2019 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2020 	if (r) {
2021 		dev_err(adev->dev, "Failed initializing GDS heap.\n");
2022 		return r;
2023 	}
2024 
2025 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2026 	if (r) {
2027 		dev_err(adev->dev, "Failed initializing gws heap.\n");
2028 		return r;
2029 	}
2030 
2031 	r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2032 	if (r) {
2033 		dev_err(adev->dev, "Failed initializing oa heap.\n");
2034 		return r;
2035 	}
2036 	if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2037 				AMDGPU_GEM_DOMAIN_GTT,
2038 				&adev->mman.sdma_access_bo, NULL,
2039 				&adev->mman.sdma_access_ptr))
2040 		DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * amdgpu_ttm_fini - De-initialize the TTM memory pools
2047  */
amdgpu_ttm_fini(struct amdgpu_device * adev)2048 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2049 {
2050 	int idx;
2051 
2052 	if (!adev->mman.initialized)
2053 		return;
2054 
2055 	amdgpu_ttm_pools_fini(adev);
2056 
2057 	amdgpu_ttm_training_reserve_vram_fini(adev);
2058 	/* return the stolen vga memory back to VRAM */
2059 	if (!adev->gmc.is_app_apu) {
2060 		amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2061 		amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2062 		/* return the FW reserved memory back to VRAM */
2063 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2064 				      NULL);
2065 		amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL,
2066 				      NULL);
2067 		if (adev->mman.stolen_reserved_size)
2068 			amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2069 					      NULL, NULL);
2070 	}
2071 	amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2072 					&adev->mman.sdma_access_ptr);
2073 	amdgpu_ttm_fw_reserve_vram_fini(adev);
2074 	amdgpu_ttm_drv_reserve_vram_fini(adev);
2075 
2076 	if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2077 
2078 		if (adev->mman.aper_base_kaddr)
2079 			iounmap(adev->mman.aper_base_kaddr);
2080 		adev->mman.aper_base_kaddr = NULL;
2081 
2082 		drm_dev_exit(idx);
2083 	}
2084 
2085 	amdgpu_vram_mgr_fini(adev);
2086 	amdgpu_gtt_mgr_fini(adev);
2087 	amdgpu_preempt_mgr_fini(adev);
2088 	amdgpu_doorbell_fini(adev);
2089 
2090 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2091 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2092 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2093 	ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2094 	ttm_device_fini(&adev->mman.bdev);
2095 	adev->mman.initialized = false;
2096 	dev_info(adev->dev, "amdgpu: ttm finalized\n");
2097 }
2098 
2099 /**
2100  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2101  *
2102  * @adev: amdgpu_device pointer
2103  * @enable: true when we can use buffer functions.
2104  *
2105  * Enable/disable use of buffer functions during suspend/resume. This should
2106  * only be called at bootup or when userspace isn't running.
2107  */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2108 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2109 {
2110 	struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2111 	uint64_t size;
2112 	int r;
2113 
2114 	if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2115 	    adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2116 		return;
2117 
2118 	if (enable) {
2119 		struct amdgpu_ring *ring;
2120 		struct drm_gpu_scheduler *sched;
2121 
2122 		ring = adev->mman.buffer_funcs_ring;
2123 		sched = &ring->sched;
2124 		r = drm_sched_entity_init(&adev->mman.high_pr,
2125 					  DRM_SCHED_PRIORITY_KERNEL, &sched,
2126 					  1, NULL);
2127 		if (r) {
2128 			dev_err(adev->dev,
2129 				"Failed setting up TTM BO move entity (%d)\n",
2130 				r);
2131 			return;
2132 		}
2133 
2134 		r = drm_sched_entity_init(&adev->mman.low_pr,
2135 					  DRM_SCHED_PRIORITY_NORMAL, &sched,
2136 					  1, NULL);
2137 		if (r) {
2138 			dev_err(adev->dev,
2139 				"Failed setting up TTM BO move entity (%d)\n",
2140 				r);
2141 			goto error_free_entity;
2142 		}
2143 	} else {
2144 		drm_sched_entity_destroy(&adev->mman.high_pr);
2145 		drm_sched_entity_destroy(&adev->mman.low_pr);
2146 		dma_fence_put(man->move);
2147 		man->move = NULL;
2148 	}
2149 
2150 	/* this just adjusts TTM size idea, which sets lpfn to the correct value */
2151 	if (enable)
2152 		size = adev->gmc.real_vram_size;
2153 	else
2154 		size = adev->gmc.visible_vram_size;
2155 	man->size = size;
2156 	adev->mman.buffer_funcs_enabled = enable;
2157 
2158 	return;
2159 
2160 error_free_entity:
2161 	drm_sched_entity_destroy(&adev->mman.high_pr);
2162 }
2163 
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2164 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2165 				  bool direct_submit,
2166 				  unsigned int num_dw,
2167 				  struct dma_resv *resv,
2168 				  bool vm_needs_flush,
2169 				  struct amdgpu_job **job,
2170 				  bool delayed)
2171 {
2172 	enum amdgpu_ib_pool_type pool = direct_submit ?
2173 		AMDGPU_IB_POOL_DIRECT :
2174 		AMDGPU_IB_POOL_DELAYED;
2175 	int r;
2176 	struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2177 						    &adev->mman.high_pr;
2178 	r = amdgpu_job_alloc_with_ib(adev, entity,
2179 				     AMDGPU_FENCE_OWNER_UNDEFINED,
2180 				     num_dw * 4, pool, job);
2181 	if (r)
2182 		return r;
2183 
2184 	if (vm_needs_flush) {
2185 		(*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2186 							adev->gmc.pdb0_bo :
2187 							adev->gart.bo);
2188 		(*job)->vm_needs_flush = true;
2189 	}
2190 	if (!resv)
2191 		return 0;
2192 
2193 	return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2194 						   DMA_RESV_USAGE_BOOKKEEP);
2195 }
2196 
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,uint32_t copy_flags)2197 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2198 		       uint64_t dst_offset, uint32_t byte_count,
2199 		       struct dma_resv *resv,
2200 		       struct dma_fence **fence, bool direct_submit,
2201 		       bool vm_needs_flush, uint32_t copy_flags)
2202 {
2203 	struct amdgpu_device *adev = ring->adev;
2204 	unsigned int num_loops, num_dw;
2205 	struct amdgpu_job *job;
2206 	uint32_t max_bytes;
2207 	unsigned int i;
2208 	int r;
2209 
2210 	if (!direct_submit && !ring->sched.ready) {
2211 		dev_err(adev->dev,
2212 			"Trying to move memory with ring turned off.\n");
2213 		return -EINVAL;
2214 	}
2215 
2216 	max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2217 	num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2218 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2219 	r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2220 				   resv, vm_needs_flush, &job, false);
2221 	if (r)
2222 		return r;
2223 
2224 	for (i = 0; i < num_loops; i++) {
2225 		uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2226 
2227 		amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2228 					dst_offset, cur_size_in_bytes, copy_flags);
2229 		src_offset += cur_size_in_bytes;
2230 		dst_offset += cur_size_in_bytes;
2231 		byte_count -= cur_size_in_bytes;
2232 	}
2233 
2234 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2235 	WARN_ON(job->ibs[0].length_dw > num_dw);
2236 	if (direct_submit)
2237 		r = amdgpu_job_submit_direct(job, ring, fence);
2238 	else
2239 		*fence = amdgpu_job_submit(job);
2240 	if (r)
2241 		goto error_free;
2242 
2243 	return r;
2244 
2245 error_free:
2246 	amdgpu_job_free(job);
2247 	dev_err(adev->dev, "Error scheduling IBs (%d)\n", r);
2248 	return r;
2249 }
2250 
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2251 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2252 			       uint64_t dst_addr, uint32_t byte_count,
2253 			       struct dma_resv *resv,
2254 			       struct dma_fence **fence,
2255 			       bool vm_needs_flush, bool delayed)
2256 {
2257 	struct amdgpu_device *adev = ring->adev;
2258 	unsigned int num_loops, num_dw;
2259 	struct amdgpu_job *job;
2260 	uint32_t max_bytes;
2261 	unsigned int i;
2262 	int r;
2263 
2264 	max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2265 	num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2266 	num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2267 	r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2268 				   &job, delayed);
2269 	if (r)
2270 		return r;
2271 
2272 	for (i = 0; i < num_loops; i++) {
2273 		uint32_t cur_size = min(byte_count, max_bytes);
2274 
2275 		amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2276 					cur_size);
2277 
2278 		dst_addr += cur_size;
2279 		byte_count -= cur_size;
2280 	}
2281 
2282 	amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2283 	WARN_ON(job->ibs[0].length_dw > num_dw);
2284 	*fence = amdgpu_job_submit(job);
2285 	return 0;
2286 }
2287 
2288 /**
2289  * amdgpu_ttm_clear_buffer - clear memory buffers
2290  * @bo: amdgpu buffer object
2291  * @resv: reservation object
2292  * @fence: dma_fence associated with the operation
2293  *
2294  * Clear the memory buffer resource.
2295  *
2296  * Returns:
2297  * 0 for success or a negative error code on failure.
2298  */
amdgpu_ttm_clear_buffer(struct amdgpu_bo * bo,struct dma_resv * resv,struct dma_fence ** fence)2299 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2300 			    struct dma_resv *resv,
2301 			    struct dma_fence **fence)
2302 {
2303 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2304 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2305 	struct amdgpu_res_cursor cursor;
2306 	u64 addr;
2307 	int r = 0;
2308 
2309 	if (!adev->mman.buffer_funcs_enabled)
2310 		return -EINVAL;
2311 
2312 	if (!fence)
2313 		return -EINVAL;
2314 
2315 	*fence = dma_fence_get_stub();
2316 
2317 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2318 
2319 	mutex_lock(&adev->mman.gtt_window_lock);
2320 	while (cursor.remaining) {
2321 		struct dma_fence *next = NULL;
2322 		u64 size;
2323 
2324 		if (amdgpu_res_cleared(&cursor)) {
2325 			amdgpu_res_next(&cursor, cursor.size);
2326 			continue;
2327 		}
2328 
2329 		/* Never clear more than 256MiB at once to avoid timeouts */
2330 		size = min(cursor.size, 256ULL << 20);
2331 
2332 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2333 					  1, ring, false, &size, &addr);
2334 		if (r)
2335 			goto err;
2336 
2337 		r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2338 					&next, true, true);
2339 		if (r)
2340 			goto err;
2341 
2342 		dma_fence_put(*fence);
2343 		*fence = next;
2344 
2345 		amdgpu_res_next(&cursor, size);
2346 	}
2347 err:
2348 	mutex_unlock(&adev->mman.gtt_window_lock);
2349 
2350 	return r;
2351 }
2352 
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2353 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2354 			uint32_t src_data,
2355 			struct dma_resv *resv,
2356 			struct dma_fence **f,
2357 			bool delayed)
2358 {
2359 	struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2360 	struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2361 	struct dma_fence *fence = NULL;
2362 	struct amdgpu_res_cursor dst;
2363 	int r;
2364 
2365 	if (!adev->mman.buffer_funcs_enabled) {
2366 		dev_err(adev->dev,
2367 			"Trying to clear memory with ring turned off.\n");
2368 		return -EINVAL;
2369 	}
2370 
2371 	amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2372 
2373 	mutex_lock(&adev->mman.gtt_window_lock);
2374 	while (dst.remaining) {
2375 		struct dma_fence *next;
2376 		uint64_t cur_size, to;
2377 
2378 		/* Never fill more than 256MiB at once to avoid timeouts */
2379 		cur_size = min(dst.size, 256ULL << 20);
2380 
2381 		r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2382 					  1, ring, false, &cur_size, &to);
2383 		if (r)
2384 			goto error;
2385 
2386 		r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2387 					&next, true, delayed);
2388 		if (r)
2389 			goto error;
2390 
2391 		dma_fence_put(fence);
2392 		fence = next;
2393 
2394 		amdgpu_res_next(&dst, cur_size);
2395 	}
2396 error:
2397 	mutex_unlock(&adev->mman.gtt_window_lock);
2398 	if (f)
2399 		*f = dma_fence_get(fence);
2400 	dma_fence_put(fence);
2401 	return r;
2402 }
2403 
2404 /**
2405  * amdgpu_ttm_evict_resources - evict memory buffers
2406  * @adev: amdgpu device object
2407  * @mem_type: evicted BO's memory type
2408  *
2409  * Evicts all @mem_type buffers on the lru list of the memory type.
2410  *
2411  * Returns:
2412  * 0 for success or a negative error code on failure.
2413  */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2414 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2415 {
2416 	struct ttm_resource_manager *man;
2417 
2418 	switch (mem_type) {
2419 	case TTM_PL_VRAM:
2420 	case TTM_PL_TT:
2421 	case AMDGPU_PL_GWS:
2422 	case AMDGPU_PL_GDS:
2423 	case AMDGPU_PL_OA:
2424 		man = ttm_manager_type(&adev->mman.bdev, mem_type);
2425 		break;
2426 	default:
2427 		dev_err(adev->dev, "Trying to evict invalid memory type\n");
2428 		return -EINVAL;
2429 	}
2430 
2431 	return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2432 }
2433 
2434 #if defined(CONFIG_DEBUG_FS)
2435 
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2436 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2437 {
2438 	struct amdgpu_device *adev = m->private;
2439 
2440 	return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2441 }
2442 
2443 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2444 
2445 /*
2446  * amdgpu_ttm_vram_read - Linear read access to VRAM
2447  *
2448  * Accesses VRAM via MMIO for debugging purposes.
2449  */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2450 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2451 				    size_t size, loff_t *pos)
2452 {
2453 	struct amdgpu_device *adev = file_inode(f)->i_private;
2454 	ssize_t result = 0;
2455 
2456 	if (size & 0x3 || *pos & 0x3)
2457 		return -EINVAL;
2458 
2459 	if (*pos >= adev->gmc.mc_vram_size)
2460 		return -ENXIO;
2461 
2462 	size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2463 	while (size) {
2464 		size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2465 		uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2466 
2467 		amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2468 		if (copy_to_user(buf, value, bytes))
2469 			return -EFAULT;
2470 
2471 		result += bytes;
2472 		buf += bytes;
2473 		*pos += bytes;
2474 		size -= bytes;
2475 	}
2476 
2477 	return result;
2478 }
2479 
2480 /*
2481  * amdgpu_ttm_vram_write - Linear write access to VRAM
2482  *
2483  * Accesses VRAM via MMIO for debugging purposes.
2484  */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2485 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2486 				    size_t size, loff_t *pos)
2487 {
2488 	struct amdgpu_device *adev = file_inode(f)->i_private;
2489 	ssize_t result = 0;
2490 	int r;
2491 
2492 	if (size & 0x3 || *pos & 0x3)
2493 		return -EINVAL;
2494 
2495 	if (*pos >= adev->gmc.mc_vram_size)
2496 		return -ENXIO;
2497 
2498 	while (size) {
2499 		uint32_t value;
2500 
2501 		if (*pos >= adev->gmc.mc_vram_size)
2502 			return result;
2503 
2504 		r = get_user(value, (uint32_t *)buf);
2505 		if (r)
2506 			return r;
2507 
2508 		amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2509 
2510 		result += 4;
2511 		buf += 4;
2512 		*pos += 4;
2513 		size -= 4;
2514 	}
2515 
2516 	return result;
2517 }
2518 
2519 static const struct file_operations amdgpu_ttm_vram_fops = {
2520 	.owner = THIS_MODULE,
2521 	.read = amdgpu_ttm_vram_read,
2522 	.write = amdgpu_ttm_vram_write,
2523 	.llseek = default_llseek,
2524 };
2525 
2526 /*
2527  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2528  *
2529  * This function is used to read memory that has been mapped to the
2530  * GPU and the known addresses are not physical addresses but instead
2531  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2532  */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2533 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2534 				 size_t size, loff_t *pos)
2535 {
2536 	struct amdgpu_device *adev = file_inode(f)->i_private;
2537 	struct iommu_domain *dom;
2538 	ssize_t result = 0;
2539 	int r;
2540 
2541 	/* retrieve the IOMMU domain if any for this device */
2542 	dom = iommu_get_domain_for_dev(adev->dev);
2543 
2544 	while (size) {
2545 		phys_addr_t addr = *pos & PAGE_MASK;
2546 		loff_t off = *pos & ~PAGE_MASK;
2547 		size_t bytes = PAGE_SIZE - off;
2548 		unsigned long pfn;
2549 		struct page *p;
2550 		void *ptr;
2551 
2552 		bytes = min(bytes, size);
2553 
2554 		/* Translate the bus address to a physical address.  If
2555 		 * the domain is NULL it means there is no IOMMU active
2556 		 * and the address translation is the identity
2557 		 */
2558 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2559 
2560 		pfn = addr >> PAGE_SHIFT;
2561 		if (!pfn_valid(pfn))
2562 			return -EPERM;
2563 
2564 		p = pfn_to_page(pfn);
2565 		if (p->mapping != adev->mman.bdev.dev_mapping)
2566 			return -EPERM;
2567 
2568 		ptr = kmap_local_page(p);
2569 		r = copy_to_user(buf, ptr + off, bytes);
2570 		kunmap_local(ptr);
2571 		if (r)
2572 			return -EFAULT;
2573 
2574 		size -= bytes;
2575 		*pos += bytes;
2576 		result += bytes;
2577 	}
2578 
2579 	return result;
2580 }
2581 
2582 /*
2583  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2584  *
2585  * This function is used to write memory that has been mapped to the
2586  * GPU and the known addresses are not physical addresses but instead
2587  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2588  */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2589 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2590 				 size_t size, loff_t *pos)
2591 {
2592 	struct amdgpu_device *adev = file_inode(f)->i_private;
2593 	struct iommu_domain *dom;
2594 	ssize_t result = 0;
2595 	int r;
2596 
2597 	dom = iommu_get_domain_for_dev(adev->dev);
2598 
2599 	while (size) {
2600 		phys_addr_t addr = *pos & PAGE_MASK;
2601 		loff_t off = *pos & ~PAGE_MASK;
2602 		size_t bytes = PAGE_SIZE - off;
2603 		unsigned long pfn;
2604 		struct page *p;
2605 		void *ptr;
2606 
2607 		bytes = min(bytes, size);
2608 
2609 		addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2610 
2611 		pfn = addr >> PAGE_SHIFT;
2612 		if (!pfn_valid(pfn))
2613 			return -EPERM;
2614 
2615 		p = pfn_to_page(pfn);
2616 		if (p->mapping != adev->mman.bdev.dev_mapping)
2617 			return -EPERM;
2618 
2619 		ptr = kmap_local_page(p);
2620 		r = copy_from_user(ptr + off, buf, bytes);
2621 		kunmap_local(ptr);
2622 		if (r)
2623 			return -EFAULT;
2624 
2625 		size -= bytes;
2626 		*pos += bytes;
2627 		result += bytes;
2628 	}
2629 
2630 	return result;
2631 }
2632 
2633 static const struct file_operations amdgpu_ttm_iomem_fops = {
2634 	.owner = THIS_MODULE,
2635 	.read = amdgpu_iomem_read,
2636 	.write = amdgpu_iomem_write,
2637 	.llseek = default_llseek
2638 };
2639 
2640 #endif
2641 
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2642 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2643 {
2644 #if defined(CONFIG_DEBUG_FS)
2645 	struct drm_minor *minor = adev_to_drm(adev)->primary;
2646 	struct dentry *root = minor->debugfs_root;
2647 
2648 	debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2649 				 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2650 	debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2651 			    &amdgpu_ttm_iomem_fops);
2652 	debugfs_create_file("ttm_page_pool", 0444, root, adev,
2653 			    &amdgpu_ttm_page_pool_fops);
2654 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2655 							     TTM_PL_VRAM),
2656 					    root, "amdgpu_vram_mm");
2657 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2658 							     TTM_PL_TT),
2659 					    root, "amdgpu_gtt_mm");
2660 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2661 							     AMDGPU_PL_GDS),
2662 					    root, "amdgpu_gds_mm");
2663 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2664 							     AMDGPU_PL_GWS),
2665 					    root, "amdgpu_gws_mm");
2666 	ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2667 							     AMDGPU_PL_OA),
2668 					    root, "amdgpu_oa_mm");
2669 
2670 #endif
2671 }
2672