1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS("DMA_BUF");
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
amdgpu_ttm_init_on_chip(struct amdgpu_device * adev,unsigned int type,uint64_t size_in_page)74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
amdgpu_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162 }
163
164 /**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
amdgpu_ttm_map_buffer(struct ttm_buffer_object * bo,struct ttm_resource * mem,struct amdgpu_res_cursor * mm_cur,unsigned int window,struct amdgpu_ring * ring,bool tmz,uint64_t * size,uint64_t * addr)178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, 0);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270 }
271
272 /**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device * adev,const struct amdgpu_copy_mem * src,const struct amdgpu_copy_mem * dst,uint64_t size,bool tmz,struct dma_resv * resv,struct dma_fence ** f)287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293 {
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298 uint32_t copy_flags = 0;
299 struct amdgpu_bo *abo_src, *abo_dst;
300
301 if (!adev->mman.buffer_funcs_enabled) {
302 dev_err(adev->dev,
303 "Trying to move memory with ring turned off.\n");
304 return -EINVAL;
305 }
306
307 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
308 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
309
310 mutex_lock(&adev->mman.gtt_window_lock);
311 while (src_mm.remaining) {
312 uint64_t from, to, cur_size, tiling_flags;
313 uint32_t num_type, data_format, max_com, write_compress_disable;
314 struct dma_fence *next;
315
316 /* Never copy more than 256MiB at once to avoid a timeout */
317 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
318
319 /* Map src to window 0 and dst to window 1. */
320 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
321 0, ring, tmz, &cur_size, &from);
322 if (r)
323 goto error;
324
325 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
326 1, ring, tmz, &cur_size, &to);
327 if (r)
328 goto error;
329
330 abo_src = ttm_to_amdgpu_bo(src->bo);
331 abo_dst = ttm_to_amdgpu_bo(dst->bo);
332 if (tmz)
333 copy_flags |= AMDGPU_COPY_FLAGS_TMZ;
334 if ((abo_src->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
335 (abo_src->tbo.resource->mem_type == TTM_PL_VRAM))
336 copy_flags |= AMDGPU_COPY_FLAGS_READ_DECOMPRESSED;
337 if ((abo_dst->flags & AMDGPU_GEM_CREATE_GFX12_DCC) &&
338 (dst->mem->mem_type == TTM_PL_VRAM)) {
339 copy_flags |= AMDGPU_COPY_FLAGS_WRITE_COMPRESSED;
340 amdgpu_bo_get_tiling_flags(abo_dst, &tiling_flags);
341 max_com = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_MAX_COMPRESSED_BLOCK);
342 num_type = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_NUMBER_TYPE);
343 data_format = AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_DATA_FORMAT);
344 write_compress_disable =
345 AMDGPU_TILING_GET(tiling_flags, GFX12_DCC_WRITE_COMPRESS_DISABLE);
346 copy_flags |= (AMDGPU_COPY_FLAGS_SET(MAX_COMPRESSED, max_com) |
347 AMDGPU_COPY_FLAGS_SET(NUMBER_TYPE, num_type) |
348 AMDGPU_COPY_FLAGS_SET(DATA_FORMAT, data_format) |
349 AMDGPU_COPY_FLAGS_SET(WRITE_COMPRESS_DISABLE,
350 write_compress_disable));
351 }
352
353 r = amdgpu_copy_buffer(ring, from, to, cur_size, resv,
354 &next, false, true, copy_flags);
355 if (r)
356 goto error;
357
358 dma_fence_put(fence);
359 fence = next;
360
361 amdgpu_res_next(&src_mm, cur_size);
362 amdgpu_res_next(&dst_mm, cur_size);
363 }
364 error:
365 mutex_unlock(&adev->mman.gtt_window_lock);
366 if (f)
367 *f = dma_fence_get(fence);
368 dma_fence_put(fence);
369 return r;
370 }
371
372 /*
373 * amdgpu_move_blit - Copy an entire buffer to another buffer
374 *
375 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
376 * help move buffers to and from VRAM.
377 */
amdgpu_move_blit(struct ttm_buffer_object * bo,bool evict,struct ttm_resource * new_mem,struct ttm_resource * old_mem)378 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
379 bool evict,
380 struct ttm_resource *new_mem,
381 struct ttm_resource *old_mem)
382 {
383 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
384 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
385 struct amdgpu_copy_mem src, dst;
386 struct dma_fence *fence = NULL;
387 int r;
388
389 src.bo = bo;
390 dst.bo = bo;
391 src.mem = old_mem;
392 dst.mem = new_mem;
393 src.offset = 0;
394 dst.offset = 0;
395
396 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
397 new_mem->size,
398 amdgpu_bo_encrypted(abo),
399 bo->base.resv, &fence);
400 if (r)
401 goto error;
402
403 /* clear the space being freed */
404 if (old_mem->mem_type == TTM_PL_VRAM &&
405 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
406 struct dma_fence *wipe_fence = NULL;
407
408 r = amdgpu_fill_buffer(abo, 0, NULL, &wipe_fence,
409 false);
410 if (r) {
411 goto error;
412 } else if (wipe_fence) {
413 amdgpu_vram_mgr_set_cleared(bo->resource);
414 dma_fence_put(fence);
415 fence = wipe_fence;
416 }
417 }
418
419 /* Always block for VM page tables before committing the new location */
420 if (bo->type == ttm_bo_type_kernel)
421 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
422 else
423 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
424 dma_fence_put(fence);
425 return r;
426
427 error:
428 if (fence)
429 dma_fence_wait(fence, false);
430 dma_fence_put(fence);
431 return r;
432 }
433
434 /**
435 * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
436 * @adev: amdgpu device
437 * @res: the resource to check
438 *
439 * Returns: true if the full resource is CPU visible, false otherwise.
440 */
amdgpu_res_cpu_visible(struct amdgpu_device * adev,struct ttm_resource * res)441 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
442 struct ttm_resource *res)
443 {
444 struct amdgpu_res_cursor cursor;
445
446 if (!res)
447 return false;
448
449 if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
450 res->mem_type == AMDGPU_PL_PREEMPT || res->mem_type == AMDGPU_PL_DOORBELL)
451 return true;
452
453 if (res->mem_type != TTM_PL_VRAM)
454 return false;
455
456 amdgpu_res_first(res, 0, res->size, &cursor);
457 while (cursor.remaining) {
458 if ((cursor.start + cursor.size) > adev->gmc.visible_vram_size)
459 return false;
460 amdgpu_res_next(&cursor, cursor.size);
461 }
462
463 return true;
464 }
465
466 /*
467 * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
468 *
469 * Called by amdgpu_bo_move()
470 */
amdgpu_res_copyable(struct amdgpu_device * adev,struct ttm_resource * mem)471 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
472 struct ttm_resource *mem)
473 {
474 if (!amdgpu_res_cpu_visible(adev, mem))
475 return false;
476
477 /* ttm_resource_ioremap only supports contiguous memory */
478 if (mem->mem_type == TTM_PL_VRAM &&
479 !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
480 return false;
481
482 return true;
483 }
484
485 /*
486 * amdgpu_bo_move - Move a buffer object to a new memory location
487 *
488 * Called by ttm_bo_handle_move_mem()
489 */
amdgpu_bo_move(struct ttm_buffer_object * bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)490 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
491 struct ttm_operation_ctx *ctx,
492 struct ttm_resource *new_mem,
493 struct ttm_place *hop)
494 {
495 struct amdgpu_device *adev;
496 struct amdgpu_bo *abo;
497 struct ttm_resource *old_mem = bo->resource;
498 int r;
499
500 if (new_mem->mem_type == TTM_PL_TT ||
501 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
502 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
503 if (r)
504 return r;
505 }
506
507 abo = ttm_to_amdgpu_bo(bo);
508 adev = amdgpu_ttm_adev(bo->bdev);
509
510 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
511 bo->ttm == NULL)) {
512 amdgpu_bo_move_notify(bo, evict, new_mem);
513 ttm_bo_move_null(bo, new_mem);
514 return 0;
515 }
516 if (old_mem->mem_type == TTM_PL_SYSTEM &&
517 (new_mem->mem_type == TTM_PL_TT ||
518 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
519 amdgpu_bo_move_notify(bo, evict, new_mem);
520 ttm_bo_move_null(bo, new_mem);
521 return 0;
522 }
523 if ((old_mem->mem_type == TTM_PL_TT ||
524 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
525 new_mem->mem_type == TTM_PL_SYSTEM) {
526 r = ttm_bo_wait_ctx(bo, ctx);
527 if (r)
528 return r;
529
530 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
531 amdgpu_bo_move_notify(bo, evict, new_mem);
532 ttm_resource_free(bo, &bo->resource);
533 ttm_bo_assign_mem(bo, new_mem);
534 return 0;
535 }
536
537 if (old_mem->mem_type == AMDGPU_PL_GDS ||
538 old_mem->mem_type == AMDGPU_PL_GWS ||
539 old_mem->mem_type == AMDGPU_PL_OA ||
540 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
541 new_mem->mem_type == AMDGPU_PL_GDS ||
542 new_mem->mem_type == AMDGPU_PL_GWS ||
543 new_mem->mem_type == AMDGPU_PL_OA ||
544 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
545 /* Nothing to save here */
546 amdgpu_bo_move_notify(bo, evict, new_mem);
547 ttm_bo_move_null(bo, new_mem);
548 return 0;
549 }
550
551 if (bo->type == ttm_bo_type_device &&
552 new_mem->mem_type == TTM_PL_VRAM &&
553 old_mem->mem_type != TTM_PL_VRAM) {
554 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
555 * accesses the BO after it's moved.
556 */
557 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
558 }
559
560 if (adev->mman.buffer_funcs_enabled &&
561 ((old_mem->mem_type == TTM_PL_SYSTEM &&
562 new_mem->mem_type == TTM_PL_VRAM) ||
563 (old_mem->mem_type == TTM_PL_VRAM &&
564 new_mem->mem_type == TTM_PL_SYSTEM))) {
565 hop->fpfn = 0;
566 hop->lpfn = 0;
567 hop->mem_type = TTM_PL_TT;
568 hop->flags = TTM_PL_FLAG_TEMPORARY;
569 return -EMULTIHOP;
570 }
571
572 amdgpu_bo_move_notify(bo, evict, new_mem);
573 if (adev->mman.buffer_funcs_enabled)
574 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
575 else
576 r = -ENODEV;
577
578 if (r) {
579 /* Check that all memory is CPU accessible */
580 if (!amdgpu_res_copyable(adev, old_mem) ||
581 !amdgpu_res_copyable(adev, new_mem)) {
582 pr_err("Move buffer fallback to memcpy unavailable\n");
583 return r;
584 }
585
586 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
587 if (r)
588 return r;
589 }
590
591 /* update statistics after the move */
592 if (evict)
593 atomic64_inc(&adev->num_evictions);
594 atomic64_add(bo->base.size, &adev->num_bytes_moved);
595 return 0;
596 }
597
598 /*
599 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
600 *
601 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
602 */
amdgpu_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)603 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
604 struct ttm_resource *mem)
605 {
606 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
607
608 switch (mem->mem_type) {
609 case TTM_PL_SYSTEM:
610 /* system memory */
611 return 0;
612 case TTM_PL_TT:
613 case AMDGPU_PL_PREEMPT:
614 break;
615 case TTM_PL_VRAM:
616 mem->bus.offset = mem->start << PAGE_SHIFT;
617
618 if (adev->mman.aper_base_kaddr &&
619 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
620 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
621 mem->bus.offset;
622
623 mem->bus.offset += adev->gmc.aper_base;
624 mem->bus.is_iomem = true;
625 break;
626 case AMDGPU_PL_DOORBELL:
627 mem->bus.offset = mem->start << PAGE_SHIFT;
628 mem->bus.offset += adev->doorbell.base;
629 mem->bus.is_iomem = true;
630 mem->bus.caching = ttm_uncached;
631 break;
632 default:
633 return -EINVAL;
634 }
635 return 0;
636 }
637
amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)638 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
639 unsigned long page_offset)
640 {
641 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
642 struct amdgpu_res_cursor cursor;
643
644 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
645 &cursor);
646
647 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
648 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
649
650 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
651 }
652
653 /**
654 * amdgpu_ttm_domain_start - Returns GPU start address
655 * @adev: amdgpu device object
656 * @type: type of the memory
657 *
658 * Returns:
659 * GPU start address of a memory domain
660 */
661
amdgpu_ttm_domain_start(struct amdgpu_device * adev,uint32_t type)662 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
663 {
664 switch (type) {
665 case TTM_PL_TT:
666 return adev->gmc.gart_start;
667 case TTM_PL_VRAM:
668 return adev->gmc.vram_start;
669 }
670
671 return 0;
672 }
673
674 /*
675 * TTM backend functions.
676 */
677 struct amdgpu_ttm_tt {
678 struct ttm_tt ttm;
679 struct drm_gem_object *gobj;
680 u64 offset;
681 uint64_t userptr;
682 struct task_struct *usertask;
683 uint32_t userflags;
684 bool bound;
685 int32_t pool_id;
686 };
687
688 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
689
690 #ifdef CONFIG_DRM_AMDGPU_USERPTR
691 /*
692 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
693 * memory and start HMM tracking CPU page table update
694 *
695 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
696 * once afterwards to stop HMM tracking
697 */
amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo * bo,struct page ** pages,struct hmm_range ** range)698 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
699 struct hmm_range **range)
700 {
701 struct ttm_tt *ttm = bo->tbo.ttm;
702 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
703 unsigned long start = gtt->userptr;
704 struct vm_area_struct *vma;
705 struct mm_struct *mm;
706 bool readonly;
707 int r = 0;
708
709 /* Make sure get_user_pages_done() can cleanup gracefully */
710 *range = NULL;
711
712 mm = bo->notifier.mm;
713 if (unlikely(!mm)) {
714 DRM_DEBUG_DRIVER("BO is not registered?\n");
715 return -EFAULT;
716 }
717
718 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
719 return -ESRCH;
720
721 mmap_read_lock(mm);
722 vma = vma_lookup(mm, start);
723 if (unlikely(!vma)) {
724 r = -EFAULT;
725 goto out_unlock;
726 }
727 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
728 vma->vm_file)) {
729 r = -EPERM;
730 goto out_unlock;
731 }
732
733 readonly = amdgpu_ttm_tt_is_readonly(ttm);
734 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
735 readonly, NULL, pages, range);
736 out_unlock:
737 mmap_read_unlock(mm);
738 if (r)
739 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
740
741 mmput(mm);
742
743 return r;
744 }
745
746 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
747 */
amdgpu_ttm_tt_discard_user_pages(struct ttm_tt * ttm,struct hmm_range * range)748 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
749 struct hmm_range *range)
750 {
751 struct amdgpu_ttm_tt *gtt = (void *)ttm;
752
753 if (gtt && gtt->userptr && range)
754 amdgpu_hmm_range_get_pages_done(range);
755 }
756
757 /*
758 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
759 * Check if the pages backing this ttm range have been invalidated
760 *
761 * Returns: true if pages are still valid
762 */
amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt * ttm,struct hmm_range * range)763 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
764 struct hmm_range *range)
765 {
766 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
767
768 if (!gtt || !gtt->userptr || !range)
769 return false;
770
771 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
772 gtt->userptr, ttm->num_pages);
773
774 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
775
776 return !amdgpu_hmm_range_get_pages_done(range);
777 }
778 #endif
779
780 /*
781 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
782 *
783 * Called by amdgpu_cs_list_validate(). This creates the page list
784 * that backs user memory and will ultimately be mapped into the device
785 * address space.
786 */
amdgpu_ttm_tt_set_user_pages(struct ttm_tt * ttm,struct page ** pages)787 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
788 {
789 unsigned long i;
790
791 for (i = 0; i < ttm->num_pages; ++i)
792 ttm->pages[i] = pages ? pages[i] : NULL;
793 }
794
795 /*
796 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
797 *
798 * Called by amdgpu_ttm_backend_bind()
799 **/
amdgpu_ttm_tt_pin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)800 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
801 struct ttm_tt *ttm)
802 {
803 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
804 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
805 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
806 enum dma_data_direction direction = write ?
807 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
808 int r;
809
810 /* Allocate an SG array and squash pages into it */
811 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
812 (u64)ttm->num_pages << PAGE_SHIFT,
813 GFP_KERNEL);
814 if (r)
815 goto release_sg;
816
817 /* Map SG to device */
818 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
819 if (r)
820 goto release_sg_table;
821
822 /* convert SG to linear array of pages and dma addresses */
823 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
824 ttm->num_pages);
825
826 return 0;
827
828 release_sg_table:
829 sg_free_table(ttm->sg);
830 release_sg:
831 kfree(ttm->sg);
832 ttm->sg = NULL;
833 return r;
834 }
835
836 /*
837 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
838 */
amdgpu_ttm_tt_unpin_userptr(struct ttm_device * bdev,struct ttm_tt * ttm)839 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
840 struct ttm_tt *ttm)
841 {
842 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
843 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
844 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
845 enum dma_data_direction direction = write ?
846 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
847
848 /* double check that we don't free the table twice */
849 if (!ttm->sg || !ttm->sg->sgl)
850 return;
851
852 /* unmap the pages mapped to the device */
853 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
854 sg_free_table(ttm->sg);
855 }
856
857 /*
858 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
859 * MQDn+CtrlStackn where n is the number of XCCs per partition.
860 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
861 * and uses memory type default, UC. The rest of pages_per_xcc are
862 * Ctrl stack and modify their memory type to NC.
863 */
amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device * adev,struct ttm_tt * ttm,uint64_t flags)864 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
865 struct ttm_tt *ttm, uint64_t flags)
866 {
867 struct amdgpu_ttm_tt *gtt = (void *)ttm;
868 uint64_t total_pages = ttm->num_pages;
869 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
870 uint64_t page_idx, pages_per_xcc;
871 int i;
872 uint64_t ctrl_flags = AMDGPU_PTE_MTYPE_VG10(flags, AMDGPU_MTYPE_NC);
873
874 pages_per_xcc = total_pages;
875 do_div(pages_per_xcc, num_xcc);
876
877 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
878 /* MQD page: use default flags */
879 amdgpu_gart_bind(adev,
880 gtt->offset + (page_idx << PAGE_SHIFT),
881 1, >t->ttm.dma_address[page_idx], flags);
882 /*
883 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
884 * the second page of the BO onward.
885 */
886 amdgpu_gart_bind(adev,
887 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
888 pages_per_xcc - 1,
889 >t->ttm.dma_address[page_idx + 1],
890 ctrl_flags);
891 }
892 }
893
amdgpu_ttm_gart_bind(struct amdgpu_device * adev,struct ttm_buffer_object * tbo,uint64_t flags)894 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
895 struct ttm_buffer_object *tbo,
896 uint64_t flags)
897 {
898 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
899 struct ttm_tt *ttm = tbo->ttm;
900 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
901
902 if (amdgpu_bo_encrypted(abo))
903 flags |= AMDGPU_PTE_TMZ;
904
905 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
906 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
907 } else {
908 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
909 gtt->ttm.dma_address, flags);
910 }
911 gtt->bound = true;
912 }
913
914 /*
915 * amdgpu_ttm_backend_bind - Bind GTT memory
916 *
917 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
918 * This handles binding GTT memory to the device address space.
919 */
amdgpu_ttm_backend_bind(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_resource * bo_mem)920 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
921 struct ttm_tt *ttm,
922 struct ttm_resource *bo_mem)
923 {
924 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
925 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
926 uint64_t flags;
927 int r;
928
929 if (!bo_mem)
930 return -EINVAL;
931
932 if (gtt->bound)
933 return 0;
934
935 if (gtt->userptr) {
936 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
937 if (r) {
938 dev_err(adev->dev, "failed to pin userptr\n");
939 return r;
940 }
941 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
942 if (!ttm->sg) {
943 struct dma_buf_attachment *attach;
944 struct sg_table *sgt;
945
946 attach = gtt->gobj->import_attach;
947 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
948 if (IS_ERR(sgt))
949 return PTR_ERR(sgt);
950
951 ttm->sg = sgt;
952 }
953
954 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
955 ttm->num_pages);
956 }
957
958 if (!ttm->num_pages) {
959 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
960 ttm->num_pages, bo_mem, ttm);
961 }
962
963 if (bo_mem->mem_type != TTM_PL_TT ||
964 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
965 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
966 return 0;
967 }
968
969 /* compute PTE flags relevant to this BO memory */
970 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
971
972 /* bind pages into GART page tables */
973 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
974 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
975 gtt->ttm.dma_address, flags);
976 gtt->bound = true;
977 return 0;
978 }
979
980 /*
981 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
982 * through AGP or GART aperture.
983 *
984 * If bo is accessible through AGP aperture, then use AGP aperture
985 * to access bo; otherwise allocate logical space in GART aperture
986 * and map bo to GART aperture.
987 */
amdgpu_ttm_alloc_gart(struct ttm_buffer_object * bo)988 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
989 {
990 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
991 struct ttm_operation_ctx ctx = { false, false };
992 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
993 struct ttm_placement placement;
994 struct ttm_place placements;
995 struct ttm_resource *tmp;
996 uint64_t addr, flags;
997 int r;
998
999 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
1000 return 0;
1001
1002 addr = amdgpu_gmc_agp_addr(bo);
1003 if (addr != AMDGPU_BO_INVALID_OFFSET)
1004 return 0;
1005
1006 /* allocate GART space */
1007 placement.num_placement = 1;
1008 placement.placement = &placements;
1009 placements.fpfn = 0;
1010 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1011 placements.mem_type = TTM_PL_TT;
1012 placements.flags = bo->resource->placement;
1013
1014 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1015 if (unlikely(r))
1016 return r;
1017
1018 /* compute PTE flags for this buffer object */
1019 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
1020
1021 /* Bind pages */
1022 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
1023 amdgpu_ttm_gart_bind(adev, bo, flags);
1024 amdgpu_gart_invalidate_tlb(adev);
1025 ttm_resource_free(bo, &bo->resource);
1026 ttm_bo_assign_mem(bo, tmp);
1027
1028 return 0;
1029 }
1030
1031 /*
1032 * amdgpu_ttm_recover_gart - Rebind GTT pages
1033 *
1034 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1035 * rebind GTT pages during a GPU reset.
1036 */
amdgpu_ttm_recover_gart(struct ttm_buffer_object * tbo)1037 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1038 {
1039 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1040 uint64_t flags;
1041
1042 if (!tbo->ttm)
1043 return;
1044
1045 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1046 amdgpu_ttm_gart_bind(adev, tbo, flags);
1047 }
1048
1049 /*
1050 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1051 *
1052 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1053 * ttm_tt_destroy().
1054 */
amdgpu_ttm_backend_unbind(struct ttm_device * bdev,struct ttm_tt * ttm)1055 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1056 struct ttm_tt *ttm)
1057 {
1058 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1059 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1060
1061 /* if the pages have userptr pinning then clear that first */
1062 if (gtt->userptr) {
1063 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1064 } else if (ttm->sg && drm_gem_is_imported(gtt->gobj)) {
1065 struct dma_buf_attachment *attach;
1066
1067 attach = gtt->gobj->import_attach;
1068 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1069 ttm->sg = NULL;
1070 }
1071
1072 if (!gtt->bound)
1073 return;
1074
1075 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1076 return;
1077
1078 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1079 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1080 gtt->bound = false;
1081 }
1082
amdgpu_ttm_backend_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)1083 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1084 struct ttm_tt *ttm)
1085 {
1086 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1087
1088 if (gtt->usertask)
1089 put_task_struct(gtt->usertask);
1090
1091 ttm_tt_fini(>t->ttm);
1092 kfree(gtt);
1093 }
1094
1095 /**
1096 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1097 *
1098 * @bo: The buffer object to create a GTT ttm_tt object around
1099 * @page_flags: Page flags to be added to the ttm_tt object
1100 *
1101 * Called by ttm_tt_create().
1102 */
amdgpu_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)1103 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1104 uint32_t page_flags)
1105 {
1106 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1107 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1108 struct amdgpu_ttm_tt *gtt;
1109 enum ttm_caching caching;
1110
1111 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1112 if (!gtt)
1113 return NULL;
1114
1115 gtt->gobj = &bo->base;
1116 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1117 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1118 else
1119 gtt->pool_id = abo->xcp_id;
1120
1121 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1122 caching = ttm_write_combined;
1123 else
1124 caching = ttm_cached;
1125
1126 /* allocate space for the uninitialized page entries */
1127 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1128 kfree(gtt);
1129 return NULL;
1130 }
1131 return >t->ttm;
1132 }
1133
1134 /*
1135 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1136 *
1137 * Map the pages of a ttm_tt object to an address space visible
1138 * to the underlying device.
1139 */
amdgpu_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)1140 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1141 struct ttm_tt *ttm,
1142 struct ttm_operation_ctx *ctx)
1143 {
1144 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1145 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1146 struct ttm_pool *pool;
1147 pgoff_t i;
1148 int ret;
1149
1150 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1151 if (gtt->userptr) {
1152 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1153 if (!ttm->sg)
1154 return -ENOMEM;
1155 return 0;
1156 }
1157
1158 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1159 return 0;
1160
1161 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 pool = &adev->mman.ttm_pools[gtt->pool_id];
1163 else
1164 pool = &adev->mman.bdev.pool;
1165 ret = ttm_pool_alloc(pool, ttm, ctx);
1166 if (ret)
1167 return ret;
1168
1169 for (i = 0; i < ttm->num_pages; ++i)
1170 ttm->pages[i]->mapping = bdev->dev_mapping;
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1177 *
1178 * Unmaps pages of a ttm_tt object from the device address space and
1179 * unpopulates the page array backing it.
1180 */
amdgpu_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)1181 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1182 struct ttm_tt *ttm)
1183 {
1184 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1185 struct amdgpu_device *adev;
1186 struct ttm_pool *pool;
1187 pgoff_t i;
1188
1189 amdgpu_ttm_backend_unbind(bdev, ttm);
1190
1191 if (gtt->userptr) {
1192 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1193 kfree(ttm->sg);
1194 ttm->sg = NULL;
1195 return;
1196 }
1197
1198 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1199 return;
1200
1201 for (i = 0; i < ttm->num_pages; ++i)
1202 ttm->pages[i]->mapping = NULL;
1203
1204 adev = amdgpu_ttm_adev(bdev);
1205
1206 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1207 pool = &adev->mman.ttm_pools[gtt->pool_id];
1208 else
1209 pool = &adev->mman.bdev.pool;
1210
1211 return ttm_pool_free(pool, ttm);
1212 }
1213
1214 /**
1215 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1216 * task
1217 *
1218 * @tbo: The ttm_buffer_object that contains the userptr
1219 * @user_addr: The returned value
1220 */
amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object * tbo,uint64_t * user_addr)1221 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1222 uint64_t *user_addr)
1223 {
1224 struct amdgpu_ttm_tt *gtt;
1225
1226 if (!tbo->ttm)
1227 return -EINVAL;
1228
1229 gtt = (void *)tbo->ttm;
1230 *user_addr = gtt->userptr;
1231 return 0;
1232 }
1233
1234 /**
1235 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1236 * task
1237 *
1238 * @bo: The ttm_buffer_object to bind this userptr to
1239 * @addr: The address in the current tasks VM space to use
1240 * @flags: Requirements of userptr object.
1241 *
1242 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1243 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1244 * initialize GPU VM for a KFD process.
1245 */
amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object * bo,uint64_t addr,uint32_t flags)1246 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1247 uint64_t addr, uint32_t flags)
1248 {
1249 struct amdgpu_ttm_tt *gtt;
1250
1251 if (!bo->ttm) {
1252 /* TODO: We want a separate TTM object type for userptrs */
1253 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1254 if (bo->ttm == NULL)
1255 return -ENOMEM;
1256 }
1257
1258 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1259 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1260
1261 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1262 gtt->userptr = addr;
1263 gtt->userflags = flags;
1264
1265 if (gtt->usertask)
1266 put_task_struct(gtt->usertask);
1267 gtt->usertask = current->group_leader;
1268 get_task_struct(gtt->usertask);
1269
1270 return 0;
1271 }
1272
1273 /*
1274 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1275 */
amdgpu_ttm_tt_get_usermm(struct ttm_tt * ttm)1276 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1277 {
1278 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1279
1280 if (gtt == NULL)
1281 return NULL;
1282
1283 if (gtt->usertask == NULL)
1284 return NULL;
1285
1286 return gtt->usertask->mm;
1287 }
1288
1289 /*
1290 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1291 * address range for the current task.
1292 *
1293 */
amdgpu_ttm_tt_affect_userptr(struct ttm_tt * ttm,unsigned long start,unsigned long end,unsigned long * userptr)1294 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1295 unsigned long end, unsigned long *userptr)
1296 {
1297 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1298 unsigned long size;
1299
1300 if (gtt == NULL || !gtt->userptr)
1301 return false;
1302
1303 /* Return false if no part of the ttm_tt object lies within
1304 * the range
1305 */
1306 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1307 if (gtt->userptr > end || gtt->userptr + size <= start)
1308 return false;
1309
1310 if (userptr)
1311 *userptr = gtt->userptr;
1312 return true;
1313 }
1314
1315 /*
1316 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1317 */
amdgpu_ttm_tt_is_userptr(struct ttm_tt * ttm)1318 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1319 {
1320 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1321
1322 if (gtt == NULL || !gtt->userptr)
1323 return false;
1324
1325 return true;
1326 }
1327
1328 /*
1329 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1330 */
amdgpu_ttm_tt_is_readonly(struct ttm_tt * ttm)1331 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1332 {
1333 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1334
1335 if (gtt == NULL)
1336 return false;
1337
1338 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1339 }
1340
1341 /**
1342 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1343 *
1344 * @ttm: The ttm_tt object to compute the flags for
1345 * @mem: The memory registry backing this ttm_tt object
1346 *
1347 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1348 */
amdgpu_ttm_tt_pde_flags(struct ttm_tt * ttm,struct ttm_resource * mem)1349 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1350 {
1351 uint64_t flags = 0;
1352
1353 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1354 flags |= AMDGPU_PTE_VALID;
1355
1356 if (mem && (mem->mem_type == TTM_PL_TT ||
1357 mem->mem_type == AMDGPU_PL_DOORBELL ||
1358 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1359 flags |= AMDGPU_PTE_SYSTEM;
1360
1361 if (ttm->caching == ttm_cached)
1362 flags |= AMDGPU_PTE_SNOOPED;
1363 }
1364
1365 if (mem && mem->mem_type == TTM_PL_VRAM &&
1366 mem->bus.caching == ttm_cached)
1367 flags |= AMDGPU_PTE_SNOOPED;
1368
1369 return flags;
1370 }
1371
1372 /**
1373 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1374 *
1375 * @adev: amdgpu_device pointer
1376 * @ttm: The ttm_tt object to compute the flags for
1377 * @mem: The memory registry backing this ttm_tt object
1378 *
1379 * Figure out the flags to use for a VM PTE (Page Table Entry).
1380 */
amdgpu_ttm_tt_pte_flags(struct amdgpu_device * adev,struct ttm_tt * ttm,struct ttm_resource * mem)1381 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1382 struct ttm_resource *mem)
1383 {
1384 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1385
1386 flags |= adev->gart.gart_pte_flags;
1387 flags |= AMDGPU_PTE_READABLE;
1388
1389 if (!amdgpu_ttm_tt_is_readonly(ttm))
1390 flags |= AMDGPU_PTE_WRITEABLE;
1391
1392 return flags;
1393 }
1394
1395 /*
1396 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1397 * object.
1398 *
1399 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1400 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1401 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1402 * used to clean out a memory space.
1403 */
amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)1404 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1405 const struct ttm_place *place)
1406 {
1407 struct dma_resv_iter resv_cursor;
1408 struct dma_fence *f;
1409
1410 if (!amdgpu_bo_is_amdgpu_bo(bo))
1411 return ttm_bo_eviction_valuable(bo, place);
1412
1413 /* Swapout? */
1414 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1415 return true;
1416
1417 if (bo->type == ttm_bo_type_kernel &&
1418 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1419 return false;
1420
1421 /* If bo is a KFD BO, check if the bo belongs to the current process.
1422 * If true, then return false as any KFD process needs all its BOs to
1423 * be resident to run successfully
1424 */
1425 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1426 DMA_RESV_USAGE_BOOKKEEP, f) {
1427 if (amdkfd_fence_check_mm(f, current->mm) &&
1428 !(place->flags & TTM_PL_FLAG_CONTIGUOUS))
1429 return false;
1430 }
1431
1432 /* Preemptible BOs don't own system resources managed by the
1433 * driver (pages, VRAM, GART space). They point to resources
1434 * owned by someone else (e.g. pageable memory in user mode
1435 * or a DMABuf). They are used in a preemptible context so we
1436 * can guarantee no deadlocks and good QoS in case of MMU
1437 * notifiers or DMABuf move notifiers from the resource owner.
1438 */
1439 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1440 return false;
1441
1442 if (bo->resource->mem_type == TTM_PL_TT &&
1443 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1444 return false;
1445
1446 return ttm_bo_eviction_valuable(bo, place);
1447 }
1448
amdgpu_ttm_vram_mm_access(struct amdgpu_device * adev,loff_t pos,void * buf,size_t size,bool write)1449 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1450 void *buf, size_t size, bool write)
1451 {
1452 while (size) {
1453 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1454 uint64_t bytes = 4 - (pos & 0x3);
1455 uint32_t shift = (pos & 0x3) * 8;
1456 uint32_t mask = 0xffffffff << shift;
1457 uint32_t value = 0;
1458
1459 if (size < bytes) {
1460 mask &= 0xffffffff >> (bytes - size) * 8;
1461 bytes = size;
1462 }
1463
1464 if (mask != 0xffffffff) {
1465 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1466 if (write) {
1467 value &= ~mask;
1468 value |= (*(uint32_t *)buf << shift) & mask;
1469 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1470 } else {
1471 value = (value & mask) >> shift;
1472 memcpy(buf, &value, bytes);
1473 }
1474 } else {
1475 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1476 }
1477
1478 pos += bytes;
1479 buf += bytes;
1480 size -= bytes;
1481 }
1482 }
1483
amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1484 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1485 unsigned long offset, void *buf,
1486 int len, int write)
1487 {
1488 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1489 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1490 struct amdgpu_res_cursor src_mm;
1491 struct amdgpu_job *job;
1492 struct dma_fence *fence;
1493 uint64_t src_addr, dst_addr;
1494 unsigned int num_dw;
1495 int r, idx;
1496
1497 if (len != PAGE_SIZE)
1498 return -EINVAL;
1499
1500 if (!adev->mman.sdma_access_ptr)
1501 return -EACCES;
1502
1503 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1504 return -ENODEV;
1505
1506 if (write)
1507 memcpy(adev->mman.sdma_access_ptr, buf, len);
1508
1509 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1510 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1511 AMDGPU_FENCE_OWNER_UNDEFINED,
1512 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1513 &job);
1514 if (r)
1515 goto out;
1516
1517 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1518 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1519 src_mm.start;
1520 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1521 if (write)
1522 swap(src_addr, dst_addr);
1523
1524 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1525 PAGE_SIZE, 0);
1526
1527 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1528 WARN_ON(job->ibs[0].length_dw > num_dw);
1529
1530 fence = amdgpu_job_submit(job);
1531
1532 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1533 r = -ETIMEDOUT;
1534 dma_fence_put(fence);
1535
1536 if (!(r || write))
1537 memcpy(buf, adev->mman.sdma_access_ptr, len);
1538 out:
1539 drm_dev_exit(idx);
1540 return r;
1541 }
1542
1543 /**
1544 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1545 *
1546 * @bo: The buffer object to read/write
1547 * @offset: Offset into buffer object
1548 * @buf: Secondary buffer to write/read from
1549 * @len: Length in bytes of access
1550 * @write: true if writing
1551 *
1552 * This is used to access VRAM that backs a buffer object via MMIO
1553 * access for debugging purposes.
1554 */
amdgpu_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)1555 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1556 unsigned long offset, void *buf, int len,
1557 int write)
1558 {
1559 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1560 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1561 struct amdgpu_res_cursor cursor;
1562 int ret = 0;
1563
1564 if (bo->resource->mem_type != TTM_PL_VRAM)
1565 return -EIO;
1566
1567 if (amdgpu_device_has_timeouts_enabled(adev) &&
1568 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1569 return len;
1570
1571 amdgpu_res_first(bo->resource, offset, len, &cursor);
1572 while (cursor.remaining) {
1573 size_t count, size = cursor.size;
1574 loff_t pos = cursor.start;
1575
1576 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1577 size -= count;
1578 if (size) {
1579 /* using MM to access rest vram and handle un-aligned address */
1580 pos += count;
1581 buf += count;
1582 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1583 }
1584
1585 ret += cursor.size;
1586 buf += cursor.size;
1587 amdgpu_res_next(&cursor, cursor.size);
1588 }
1589
1590 return ret;
1591 }
1592
1593 static void
amdgpu_bo_delete_mem_notify(struct ttm_buffer_object * bo)1594 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1595 {
1596 amdgpu_bo_move_notify(bo, false, NULL);
1597 }
1598
1599 static struct ttm_device_funcs amdgpu_bo_driver = {
1600 .ttm_tt_create = &amdgpu_ttm_tt_create,
1601 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1602 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1603 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1604 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1605 .evict_flags = &amdgpu_evict_flags,
1606 .move = &amdgpu_bo_move,
1607 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1608 .release_notify = &amdgpu_bo_release_notify,
1609 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1610 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1611 .access_memory = &amdgpu_ttm_access_memory,
1612 };
1613
1614 /*
1615 * Firmware Reservation functions
1616 */
1617 /**
1618 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1619 *
1620 * @adev: amdgpu_device pointer
1621 *
1622 * free fw reserved vram if it has been reserved.
1623 */
amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device * adev)1624 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1625 {
1626 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1627 NULL, &adev->mman.fw_vram_usage_va);
1628 }
1629
1630 /*
1631 * Driver Reservation functions
1632 */
1633 /**
1634 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1635 *
1636 * @adev: amdgpu_device pointer
1637 *
1638 * free drv reserved vram if it has been reserved.
1639 */
amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device * adev)1640 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1641 {
1642 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1643 NULL,
1644 &adev->mman.drv_vram_usage_va);
1645 }
1646
1647 /**
1648 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1649 *
1650 * @adev: amdgpu_device pointer
1651 *
1652 * create bo vram reservation from fw.
1653 */
amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device * adev)1654 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1655 {
1656 uint64_t vram_size = adev->gmc.visible_vram_size;
1657
1658 adev->mman.fw_vram_usage_va = NULL;
1659 adev->mman.fw_vram_usage_reserved_bo = NULL;
1660
1661 if (adev->mman.fw_vram_usage_size == 0 ||
1662 adev->mman.fw_vram_usage_size > vram_size)
1663 return 0;
1664
1665 return amdgpu_bo_create_kernel_at(adev,
1666 adev->mman.fw_vram_usage_start_offset,
1667 adev->mman.fw_vram_usage_size,
1668 &adev->mman.fw_vram_usage_reserved_bo,
1669 &adev->mman.fw_vram_usage_va);
1670 }
1671
1672 /**
1673 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1674 *
1675 * @adev: amdgpu_device pointer
1676 *
1677 * create bo vram reservation from drv.
1678 */
amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device * adev)1679 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1680 {
1681 u64 vram_size = adev->gmc.visible_vram_size;
1682
1683 adev->mman.drv_vram_usage_va = NULL;
1684 adev->mman.drv_vram_usage_reserved_bo = NULL;
1685
1686 if (adev->mman.drv_vram_usage_size == 0 ||
1687 adev->mman.drv_vram_usage_size > vram_size)
1688 return 0;
1689
1690 return amdgpu_bo_create_kernel_at(adev,
1691 adev->mman.drv_vram_usage_start_offset,
1692 adev->mman.drv_vram_usage_size,
1693 &adev->mman.drv_vram_usage_reserved_bo,
1694 &adev->mman.drv_vram_usage_va);
1695 }
1696
1697 /*
1698 * Memoy training reservation functions
1699 */
1700
1701 /**
1702 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1703 *
1704 * @adev: amdgpu_device pointer
1705 *
1706 * free memory training reserved vram if it has been reserved.
1707 */
amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device * adev)1708 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1709 {
1710 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1711
1712 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1713 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1714 ctx->c2p_bo = NULL;
1715
1716 return 0;
1717 }
1718
amdgpu_ttm_training_data_block_init(struct amdgpu_device * adev,uint32_t reserve_size)1719 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1720 uint32_t reserve_size)
1721 {
1722 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1723
1724 memset(ctx, 0, sizeof(*ctx));
1725
1726 ctx->c2p_train_data_offset =
1727 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1728 ctx->p2c_train_data_offset =
1729 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1730 ctx->train_data_size =
1731 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1732
1733 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1734 ctx->train_data_size,
1735 ctx->p2c_train_data_offset,
1736 ctx->c2p_train_data_offset);
1737 }
1738
1739 /*
1740 * reserve TMR memory at the top of VRAM which holds
1741 * IP Discovery data and is protected by PSP.
1742 */
amdgpu_ttm_reserve_tmr(struct amdgpu_device * adev)1743 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1744 {
1745 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1746 bool mem_train_support = false;
1747 uint32_t reserve_size = 0;
1748 int ret;
1749
1750 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1751 if (amdgpu_atomfirmware_mem_training_supported(adev))
1752 mem_train_support = true;
1753 else
1754 DRM_DEBUG("memory training does not support!\n");
1755 }
1756
1757 /*
1758 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1759 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1760 *
1761 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1762 * discovery data and G6 memory training data respectively
1763 */
1764 if (adev->bios)
1765 reserve_size =
1766 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1767
1768 if (!adev->bios &&
1769 (amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3) ||
1770 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 4) ||
1771 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 5, 0)))
1772 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1773 else if (!reserve_size)
1774 reserve_size = DISCOVERY_TMR_OFFSET;
1775
1776 if (mem_train_support) {
1777 /* reserve vram for mem train according to TMR location */
1778 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1779 ret = amdgpu_bo_create_kernel_at(adev,
1780 ctx->c2p_train_data_offset,
1781 ctx->train_data_size,
1782 &ctx->c2p_bo,
1783 NULL);
1784 if (ret) {
1785 dev_err(adev->dev, "alloc c2p_bo failed(%d)!\n", ret);
1786 amdgpu_ttm_training_reserve_vram_fini(adev);
1787 return ret;
1788 }
1789 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1790 }
1791
1792 if (!adev->gmc.is_app_apu) {
1793 ret = amdgpu_bo_create_kernel_at(
1794 adev, adev->gmc.real_vram_size - reserve_size,
1795 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1796 if (ret) {
1797 dev_err(adev->dev, "alloc tmr failed(%d)!\n", ret);
1798 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1799 NULL, NULL);
1800 return ret;
1801 }
1802 } else {
1803 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1804 }
1805
1806 return 0;
1807 }
1808
amdgpu_ttm_pools_init(struct amdgpu_device * adev)1809 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1810 {
1811 int i;
1812
1813 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1814 return 0;
1815
1816 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1817 sizeof(*adev->mman.ttm_pools),
1818 GFP_KERNEL);
1819 if (!adev->mman.ttm_pools)
1820 return -ENOMEM;
1821
1822 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1823 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1824 adev->gmc.mem_partitions[i].numa.node,
1825 false, false);
1826 }
1827 return 0;
1828 }
1829
amdgpu_ttm_pools_fini(struct amdgpu_device * adev)1830 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1831 {
1832 int i;
1833
1834 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1835 return;
1836
1837 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1838 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1839
1840 kfree(adev->mman.ttm_pools);
1841 adev->mman.ttm_pools = NULL;
1842 }
1843
1844 /*
1845 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1846 * gtt/vram related fields.
1847 *
1848 * This initializes all of the memory space pools that the TTM layer
1849 * will need such as the GTT space (system memory mapped to the device),
1850 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1851 * can be mapped per VMID.
1852 */
amdgpu_ttm_init(struct amdgpu_device * adev)1853 int amdgpu_ttm_init(struct amdgpu_device *adev)
1854 {
1855 uint64_t gtt_size;
1856 int r;
1857
1858 mutex_init(&adev->mman.gtt_window_lock);
1859
1860 dma_set_max_seg_size(adev->dev, UINT_MAX);
1861 /* No others user of address space so set it to 0 */
1862 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1863 adev_to_drm(adev)->anon_inode->i_mapping,
1864 adev_to_drm(adev)->vma_offset_manager,
1865 adev->need_swiotlb,
1866 dma_addressing_limited(adev->dev));
1867 if (r) {
1868 dev_err(adev->dev,
1869 "failed initializing buffer object driver(%d).\n", r);
1870 return r;
1871 }
1872
1873 r = amdgpu_ttm_pools_init(adev);
1874 if (r) {
1875 dev_err(adev->dev, "failed to init ttm pools(%d).\n", r);
1876 return r;
1877 }
1878 adev->mman.initialized = true;
1879
1880 /* Initialize VRAM pool with all of VRAM divided into pages */
1881 r = amdgpu_vram_mgr_init(adev);
1882 if (r) {
1883 dev_err(adev->dev, "Failed initializing VRAM heap.\n");
1884 return r;
1885 }
1886
1887 /* Change the size here instead of the init above so only lpfn is affected */
1888 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1889 #ifdef CONFIG_64BIT
1890 #ifdef CONFIG_X86
1891 if (adev->gmc.xgmi.connected_to_cpu)
1892 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1893 adev->gmc.visible_vram_size);
1894
1895 else if (adev->gmc.is_app_apu)
1896 DRM_DEBUG_DRIVER(
1897 "No need to ioremap when real vram size is 0\n");
1898 else
1899 #endif
1900 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1901 adev->gmc.visible_vram_size);
1902 #endif
1903
1904 /*
1905 *The reserved vram for firmware must be pinned to the specified
1906 *place on the VRAM, so reserve it early.
1907 */
1908 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1909 if (r)
1910 return r;
1911
1912 /*
1913 *The reserved vram for driver must be pinned to the specified
1914 *place on the VRAM, so reserve it early.
1915 */
1916 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1917 if (r)
1918 return r;
1919
1920 /*
1921 * only NAVI10 and onwards ASIC support for IP discovery.
1922 * If IP discovery enabled, a block of memory should be
1923 * reserved for IP discovey.
1924 */
1925 if (adev->mman.discovery_bin) {
1926 r = amdgpu_ttm_reserve_tmr(adev);
1927 if (r)
1928 return r;
1929 }
1930
1931 /* allocate memory as required for VGA
1932 * This is used for VGA emulation and pre-OS scanout buffers to
1933 * avoid display artifacts while transitioning between pre-OS
1934 * and driver.
1935 */
1936 if (!adev->gmc.is_app_apu) {
1937 r = amdgpu_bo_create_kernel_at(adev, 0,
1938 adev->mman.stolen_vga_size,
1939 &adev->mman.stolen_vga_memory,
1940 NULL);
1941 if (r)
1942 return r;
1943
1944 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1945 adev->mman.stolen_extended_size,
1946 &adev->mman.stolen_extended_memory,
1947 NULL);
1948
1949 if (r)
1950 return r;
1951
1952 r = amdgpu_bo_create_kernel_at(adev,
1953 adev->mman.stolen_reserved_offset,
1954 adev->mman.stolen_reserved_size,
1955 &adev->mman.stolen_reserved_memory,
1956 NULL);
1957 if (r)
1958 return r;
1959 } else {
1960 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1961 }
1962
1963 dev_info(adev->dev, "amdgpu: %uM of VRAM memory ready\n",
1964 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1965
1966 /* Compute GTT size, either based on TTM limit
1967 * or whatever the user passed on module init.
1968 */
1969 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1970 if (amdgpu_gtt_size != -1) {
1971 uint64_t configured_size = (uint64_t)amdgpu_gtt_size << 20;
1972
1973 drm_warn(&adev->ddev,
1974 "Configuring gttsize via module parameter is deprecated, please use ttm.pages_limit\n");
1975 if (gtt_size != configured_size)
1976 drm_warn(&adev->ddev,
1977 "GTT size has been set as %llu but TTM size has been set as %llu, this is unusual\n",
1978 configured_size, gtt_size);
1979
1980 gtt_size = configured_size;
1981 }
1982
1983 /* Initialize GTT memory pool */
1984 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1985 if (r) {
1986 dev_err(adev->dev, "Failed initializing GTT heap.\n");
1987 return r;
1988 }
1989 dev_info(adev->dev, "amdgpu: %uM of GTT memory ready.\n",
1990 (unsigned int)(gtt_size / (1024 * 1024)));
1991
1992 if (adev->flags & AMD_IS_APU) {
1993 if (adev->gmc.real_vram_size < gtt_size)
1994 adev->apu_prefer_gtt = true;
1995 }
1996
1997 /* Initialize doorbell pool on PCI BAR */
1998 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1999 if (r) {
2000 dev_err(adev->dev, "Failed initializing doorbell heap.\n");
2001 return r;
2002 }
2003
2004 /* Create a boorbell page for kernel usages */
2005 r = amdgpu_doorbell_create_kernel_doorbells(adev);
2006 if (r) {
2007 dev_err(adev->dev, "Failed to initialize kernel doorbells.\n");
2008 return r;
2009 }
2010
2011 /* Initialize preemptible memory pool */
2012 r = amdgpu_preempt_mgr_init(adev);
2013 if (r) {
2014 dev_err(adev->dev, "Failed initializing PREEMPT heap.\n");
2015 return r;
2016 }
2017
2018 /* Initialize various on-chip memory pools */
2019 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
2020 if (r) {
2021 dev_err(adev->dev, "Failed initializing GDS heap.\n");
2022 return r;
2023 }
2024
2025 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
2026 if (r) {
2027 dev_err(adev->dev, "Failed initializing gws heap.\n");
2028 return r;
2029 }
2030
2031 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
2032 if (r) {
2033 dev_err(adev->dev, "Failed initializing oa heap.\n");
2034 return r;
2035 }
2036 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
2037 AMDGPU_GEM_DOMAIN_GTT,
2038 &adev->mman.sdma_access_bo, NULL,
2039 &adev->mman.sdma_access_ptr))
2040 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
2041
2042 return 0;
2043 }
2044
2045 /*
2046 * amdgpu_ttm_fini - De-initialize the TTM memory pools
2047 */
amdgpu_ttm_fini(struct amdgpu_device * adev)2048 void amdgpu_ttm_fini(struct amdgpu_device *adev)
2049 {
2050 int idx;
2051
2052 if (!adev->mman.initialized)
2053 return;
2054
2055 amdgpu_ttm_pools_fini(adev);
2056
2057 amdgpu_ttm_training_reserve_vram_fini(adev);
2058 /* return the stolen vga memory back to VRAM */
2059 if (!adev->gmc.is_app_apu) {
2060 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2061 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2062 /* return the FW reserved memory back to VRAM */
2063 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2064 NULL);
2065 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory_extend, NULL,
2066 NULL);
2067 if (adev->mman.stolen_reserved_size)
2068 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2069 NULL, NULL);
2070 }
2071 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2072 &adev->mman.sdma_access_ptr);
2073 amdgpu_ttm_fw_reserve_vram_fini(adev);
2074 amdgpu_ttm_drv_reserve_vram_fini(adev);
2075
2076 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2077
2078 if (adev->mman.aper_base_kaddr)
2079 iounmap(adev->mman.aper_base_kaddr);
2080 adev->mman.aper_base_kaddr = NULL;
2081
2082 drm_dev_exit(idx);
2083 }
2084
2085 amdgpu_vram_mgr_fini(adev);
2086 amdgpu_gtt_mgr_fini(adev);
2087 amdgpu_preempt_mgr_fini(adev);
2088 amdgpu_doorbell_fini(adev);
2089
2090 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2091 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2092 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2093 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_DOORBELL);
2094 ttm_device_fini(&adev->mman.bdev);
2095 adev->mman.initialized = false;
2096 dev_info(adev->dev, "amdgpu: ttm finalized\n");
2097 }
2098
2099 /**
2100 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2101 *
2102 * @adev: amdgpu_device pointer
2103 * @enable: true when we can use buffer functions.
2104 *
2105 * Enable/disable use of buffer functions during suspend/resume. This should
2106 * only be called at bootup or when userspace isn't running.
2107 */
amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device * adev,bool enable)2108 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2109 {
2110 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2111 uint64_t size;
2112 int r;
2113
2114 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2115 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2116 return;
2117
2118 if (enable) {
2119 struct amdgpu_ring *ring;
2120 struct drm_gpu_scheduler *sched;
2121
2122 ring = adev->mman.buffer_funcs_ring;
2123 sched = &ring->sched;
2124 r = drm_sched_entity_init(&adev->mman.high_pr,
2125 DRM_SCHED_PRIORITY_KERNEL, &sched,
2126 1, NULL);
2127 if (r) {
2128 dev_err(adev->dev,
2129 "Failed setting up TTM BO move entity (%d)\n",
2130 r);
2131 return;
2132 }
2133
2134 r = drm_sched_entity_init(&adev->mman.low_pr,
2135 DRM_SCHED_PRIORITY_NORMAL, &sched,
2136 1, NULL);
2137 if (r) {
2138 dev_err(adev->dev,
2139 "Failed setting up TTM BO move entity (%d)\n",
2140 r);
2141 goto error_free_entity;
2142 }
2143 } else {
2144 drm_sched_entity_destroy(&adev->mman.high_pr);
2145 drm_sched_entity_destroy(&adev->mman.low_pr);
2146 dma_fence_put(man->move);
2147 man->move = NULL;
2148 }
2149
2150 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2151 if (enable)
2152 size = adev->gmc.real_vram_size;
2153 else
2154 size = adev->gmc.visible_vram_size;
2155 man->size = size;
2156 adev->mman.buffer_funcs_enabled = enable;
2157
2158 return;
2159
2160 error_free_entity:
2161 drm_sched_entity_destroy(&adev->mman.high_pr);
2162 }
2163
amdgpu_ttm_prepare_job(struct amdgpu_device * adev,bool direct_submit,unsigned int num_dw,struct dma_resv * resv,bool vm_needs_flush,struct amdgpu_job ** job,bool delayed)2164 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2165 bool direct_submit,
2166 unsigned int num_dw,
2167 struct dma_resv *resv,
2168 bool vm_needs_flush,
2169 struct amdgpu_job **job,
2170 bool delayed)
2171 {
2172 enum amdgpu_ib_pool_type pool = direct_submit ?
2173 AMDGPU_IB_POOL_DIRECT :
2174 AMDGPU_IB_POOL_DELAYED;
2175 int r;
2176 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2177 &adev->mman.high_pr;
2178 r = amdgpu_job_alloc_with_ib(adev, entity,
2179 AMDGPU_FENCE_OWNER_UNDEFINED,
2180 num_dw * 4, pool, job);
2181 if (r)
2182 return r;
2183
2184 if (vm_needs_flush) {
2185 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2186 adev->gmc.pdb0_bo :
2187 adev->gart.bo);
2188 (*job)->vm_needs_flush = true;
2189 }
2190 if (!resv)
2191 return 0;
2192
2193 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2194 DMA_RESV_USAGE_BOOKKEEP);
2195 }
2196
amdgpu_copy_buffer(struct amdgpu_ring * ring,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool direct_submit,bool vm_needs_flush,uint32_t copy_flags)2197 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2198 uint64_t dst_offset, uint32_t byte_count,
2199 struct dma_resv *resv,
2200 struct dma_fence **fence, bool direct_submit,
2201 bool vm_needs_flush, uint32_t copy_flags)
2202 {
2203 struct amdgpu_device *adev = ring->adev;
2204 unsigned int num_loops, num_dw;
2205 struct amdgpu_job *job;
2206 uint32_t max_bytes;
2207 unsigned int i;
2208 int r;
2209
2210 if (!direct_submit && !ring->sched.ready) {
2211 dev_err(adev->dev,
2212 "Trying to move memory with ring turned off.\n");
2213 return -EINVAL;
2214 }
2215
2216 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2217 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2218 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2219 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2220 resv, vm_needs_flush, &job, false);
2221 if (r)
2222 return r;
2223
2224 for (i = 0; i < num_loops; i++) {
2225 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2226
2227 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2228 dst_offset, cur_size_in_bytes, copy_flags);
2229 src_offset += cur_size_in_bytes;
2230 dst_offset += cur_size_in_bytes;
2231 byte_count -= cur_size_in_bytes;
2232 }
2233
2234 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2235 WARN_ON(job->ibs[0].length_dw > num_dw);
2236 if (direct_submit)
2237 r = amdgpu_job_submit_direct(job, ring, fence);
2238 else
2239 *fence = amdgpu_job_submit(job);
2240 if (r)
2241 goto error_free;
2242
2243 return r;
2244
2245 error_free:
2246 amdgpu_job_free(job);
2247 dev_err(adev->dev, "Error scheduling IBs (%d)\n", r);
2248 return r;
2249 }
2250
amdgpu_ttm_fill_mem(struct amdgpu_ring * ring,uint32_t src_data,uint64_t dst_addr,uint32_t byte_count,struct dma_resv * resv,struct dma_fence ** fence,bool vm_needs_flush,bool delayed)2251 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2252 uint64_t dst_addr, uint32_t byte_count,
2253 struct dma_resv *resv,
2254 struct dma_fence **fence,
2255 bool vm_needs_flush, bool delayed)
2256 {
2257 struct amdgpu_device *adev = ring->adev;
2258 unsigned int num_loops, num_dw;
2259 struct amdgpu_job *job;
2260 uint32_t max_bytes;
2261 unsigned int i;
2262 int r;
2263
2264 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2265 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2266 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2267 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2268 &job, delayed);
2269 if (r)
2270 return r;
2271
2272 for (i = 0; i < num_loops; i++) {
2273 uint32_t cur_size = min(byte_count, max_bytes);
2274
2275 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2276 cur_size);
2277
2278 dst_addr += cur_size;
2279 byte_count -= cur_size;
2280 }
2281
2282 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2283 WARN_ON(job->ibs[0].length_dw > num_dw);
2284 *fence = amdgpu_job_submit(job);
2285 return 0;
2286 }
2287
2288 /**
2289 * amdgpu_ttm_clear_buffer - clear memory buffers
2290 * @bo: amdgpu buffer object
2291 * @resv: reservation object
2292 * @fence: dma_fence associated with the operation
2293 *
2294 * Clear the memory buffer resource.
2295 *
2296 * Returns:
2297 * 0 for success or a negative error code on failure.
2298 */
amdgpu_ttm_clear_buffer(struct amdgpu_bo * bo,struct dma_resv * resv,struct dma_fence ** fence)2299 int amdgpu_ttm_clear_buffer(struct amdgpu_bo *bo,
2300 struct dma_resv *resv,
2301 struct dma_fence **fence)
2302 {
2303 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2304 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2305 struct amdgpu_res_cursor cursor;
2306 u64 addr;
2307 int r = 0;
2308
2309 if (!adev->mman.buffer_funcs_enabled)
2310 return -EINVAL;
2311
2312 if (!fence)
2313 return -EINVAL;
2314
2315 *fence = dma_fence_get_stub();
2316
2317 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &cursor);
2318
2319 mutex_lock(&adev->mman.gtt_window_lock);
2320 while (cursor.remaining) {
2321 struct dma_fence *next = NULL;
2322 u64 size;
2323
2324 if (amdgpu_res_cleared(&cursor)) {
2325 amdgpu_res_next(&cursor, cursor.size);
2326 continue;
2327 }
2328
2329 /* Never clear more than 256MiB at once to avoid timeouts */
2330 size = min(cursor.size, 256ULL << 20);
2331
2332 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &cursor,
2333 1, ring, false, &size, &addr);
2334 if (r)
2335 goto err;
2336
2337 r = amdgpu_ttm_fill_mem(ring, 0, addr, size, resv,
2338 &next, true, true);
2339 if (r)
2340 goto err;
2341
2342 dma_fence_put(*fence);
2343 *fence = next;
2344
2345 amdgpu_res_next(&cursor, size);
2346 }
2347 err:
2348 mutex_unlock(&adev->mman.gtt_window_lock);
2349
2350 return r;
2351 }
2352
amdgpu_fill_buffer(struct amdgpu_bo * bo,uint32_t src_data,struct dma_resv * resv,struct dma_fence ** f,bool delayed)2353 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2354 uint32_t src_data,
2355 struct dma_resv *resv,
2356 struct dma_fence **f,
2357 bool delayed)
2358 {
2359 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2360 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2361 struct dma_fence *fence = NULL;
2362 struct amdgpu_res_cursor dst;
2363 int r;
2364
2365 if (!adev->mman.buffer_funcs_enabled) {
2366 dev_err(adev->dev,
2367 "Trying to clear memory with ring turned off.\n");
2368 return -EINVAL;
2369 }
2370
2371 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2372
2373 mutex_lock(&adev->mman.gtt_window_lock);
2374 while (dst.remaining) {
2375 struct dma_fence *next;
2376 uint64_t cur_size, to;
2377
2378 /* Never fill more than 256MiB at once to avoid timeouts */
2379 cur_size = min(dst.size, 256ULL << 20);
2380
2381 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2382 1, ring, false, &cur_size, &to);
2383 if (r)
2384 goto error;
2385
2386 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2387 &next, true, delayed);
2388 if (r)
2389 goto error;
2390
2391 dma_fence_put(fence);
2392 fence = next;
2393
2394 amdgpu_res_next(&dst, cur_size);
2395 }
2396 error:
2397 mutex_unlock(&adev->mman.gtt_window_lock);
2398 if (f)
2399 *f = dma_fence_get(fence);
2400 dma_fence_put(fence);
2401 return r;
2402 }
2403
2404 /**
2405 * amdgpu_ttm_evict_resources - evict memory buffers
2406 * @adev: amdgpu device object
2407 * @mem_type: evicted BO's memory type
2408 *
2409 * Evicts all @mem_type buffers on the lru list of the memory type.
2410 *
2411 * Returns:
2412 * 0 for success or a negative error code on failure.
2413 */
amdgpu_ttm_evict_resources(struct amdgpu_device * adev,int mem_type)2414 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2415 {
2416 struct ttm_resource_manager *man;
2417
2418 switch (mem_type) {
2419 case TTM_PL_VRAM:
2420 case TTM_PL_TT:
2421 case AMDGPU_PL_GWS:
2422 case AMDGPU_PL_GDS:
2423 case AMDGPU_PL_OA:
2424 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2425 break;
2426 default:
2427 dev_err(adev->dev, "Trying to evict invalid memory type\n");
2428 return -EINVAL;
2429 }
2430
2431 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2432 }
2433
2434 #if defined(CONFIG_DEBUG_FS)
2435
amdgpu_ttm_page_pool_show(struct seq_file * m,void * unused)2436 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2437 {
2438 struct amdgpu_device *adev = m->private;
2439
2440 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2441 }
2442
2443 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2444
2445 /*
2446 * amdgpu_ttm_vram_read - Linear read access to VRAM
2447 *
2448 * Accesses VRAM via MMIO for debugging purposes.
2449 */
amdgpu_ttm_vram_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2450 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2451 size_t size, loff_t *pos)
2452 {
2453 struct amdgpu_device *adev = file_inode(f)->i_private;
2454 ssize_t result = 0;
2455
2456 if (size & 0x3 || *pos & 0x3)
2457 return -EINVAL;
2458
2459 if (*pos >= adev->gmc.mc_vram_size)
2460 return -ENXIO;
2461
2462 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2463 while (size) {
2464 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2465 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2466
2467 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2468 if (copy_to_user(buf, value, bytes))
2469 return -EFAULT;
2470
2471 result += bytes;
2472 buf += bytes;
2473 *pos += bytes;
2474 size -= bytes;
2475 }
2476
2477 return result;
2478 }
2479
2480 /*
2481 * amdgpu_ttm_vram_write - Linear write access to VRAM
2482 *
2483 * Accesses VRAM via MMIO for debugging purposes.
2484 */
amdgpu_ttm_vram_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2485 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2486 size_t size, loff_t *pos)
2487 {
2488 struct amdgpu_device *adev = file_inode(f)->i_private;
2489 ssize_t result = 0;
2490 int r;
2491
2492 if (size & 0x3 || *pos & 0x3)
2493 return -EINVAL;
2494
2495 if (*pos >= adev->gmc.mc_vram_size)
2496 return -ENXIO;
2497
2498 while (size) {
2499 uint32_t value;
2500
2501 if (*pos >= adev->gmc.mc_vram_size)
2502 return result;
2503
2504 r = get_user(value, (uint32_t *)buf);
2505 if (r)
2506 return r;
2507
2508 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2509
2510 result += 4;
2511 buf += 4;
2512 *pos += 4;
2513 size -= 4;
2514 }
2515
2516 return result;
2517 }
2518
2519 static const struct file_operations amdgpu_ttm_vram_fops = {
2520 .owner = THIS_MODULE,
2521 .read = amdgpu_ttm_vram_read,
2522 .write = amdgpu_ttm_vram_write,
2523 .llseek = default_llseek,
2524 };
2525
2526 /*
2527 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2528 *
2529 * This function is used to read memory that has been mapped to the
2530 * GPU and the known addresses are not physical addresses but instead
2531 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2532 */
amdgpu_iomem_read(struct file * f,char __user * buf,size_t size,loff_t * pos)2533 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2534 size_t size, loff_t *pos)
2535 {
2536 struct amdgpu_device *adev = file_inode(f)->i_private;
2537 struct iommu_domain *dom;
2538 ssize_t result = 0;
2539 int r;
2540
2541 /* retrieve the IOMMU domain if any for this device */
2542 dom = iommu_get_domain_for_dev(adev->dev);
2543
2544 while (size) {
2545 phys_addr_t addr = *pos & PAGE_MASK;
2546 loff_t off = *pos & ~PAGE_MASK;
2547 size_t bytes = PAGE_SIZE - off;
2548 unsigned long pfn;
2549 struct page *p;
2550 void *ptr;
2551
2552 bytes = min(bytes, size);
2553
2554 /* Translate the bus address to a physical address. If
2555 * the domain is NULL it means there is no IOMMU active
2556 * and the address translation is the identity
2557 */
2558 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2559
2560 pfn = addr >> PAGE_SHIFT;
2561 if (!pfn_valid(pfn))
2562 return -EPERM;
2563
2564 p = pfn_to_page(pfn);
2565 if (p->mapping != adev->mman.bdev.dev_mapping)
2566 return -EPERM;
2567
2568 ptr = kmap_local_page(p);
2569 r = copy_to_user(buf, ptr + off, bytes);
2570 kunmap_local(ptr);
2571 if (r)
2572 return -EFAULT;
2573
2574 size -= bytes;
2575 *pos += bytes;
2576 result += bytes;
2577 }
2578
2579 return result;
2580 }
2581
2582 /*
2583 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2584 *
2585 * This function is used to write memory that has been mapped to the
2586 * GPU and the known addresses are not physical addresses but instead
2587 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2588 */
amdgpu_iomem_write(struct file * f,const char __user * buf,size_t size,loff_t * pos)2589 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2590 size_t size, loff_t *pos)
2591 {
2592 struct amdgpu_device *adev = file_inode(f)->i_private;
2593 struct iommu_domain *dom;
2594 ssize_t result = 0;
2595 int r;
2596
2597 dom = iommu_get_domain_for_dev(adev->dev);
2598
2599 while (size) {
2600 phys_addr_t addr = *pos & PAGE_MASK;
2601 loff_t off = *pos & ~PAGE_MASK;
2602 size_t bytes = PAGE_SIZE - off;
2603 unsigned long pfn;
2604 struct page *p;
2605 void *ptr;
2606
2607 bytes = min(bytes, size);
2608
2609 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2610
2611 pfn = addr >> PAGE_SHIFT;
2612 if (!pfn_valid(pfn))
2613 return -EPERM;
2614
2615 p = pfn_to_page(pfn);
2616 if (p->mapping != adev->mman.bdev.dev_mapping)
2617 return -EPERM;
2618
2619 ptr = kmap_local_page(p);
2620 r = copy_from_user(ptr + off, buf, bytes);
2621 kunmap_local(ptr);
2622 if (r)
2623 return -EFAULT;
2624
2625 size -= bytes;
2626 *pos += bytes;
2627 result += bytes;
2628 }
2629
2630 return result;
2631 }
2632
2633 static const struct file_operations amdgpu_ttm_iomem_fops = {
2634 .owner = THIS_MODULE,
2635 .read = amdgpu_iomem_read,
2636 .write = amdgpu_iomem_write,
2637 .llseek = default_llseek
2638 };
2639
2640 #endif
2641
amdgpu_ttm_debugfs_init(struct amdgpu_device * adev)2642 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2643 {
2644 #if defined(CONFIG_DEBUG_FS)
2645 struct drm_minor *minor = adev_to_drm(adev)->primary;
2646 struct dentry *root = minor->debugfs_root;
2647
2648 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2649 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2650 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2651 &amdgpu_ttm_iomem_fops);
2652 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2653 &amdgpu_ttm_page_pool_fops);
2654 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2655 TTM_PL_VRAM),
2656 root, "amdgpu_vram_mm");
2657 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2658 TTM_PL_TT),
2659 root, "amdgpu_gtt_mm");
2660 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2661 AMDGPU_PL_GDS),
2662 root, "amdgpu_gds_mm");
2663 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2664 AMDGPU_PL_GWS),
2665 root, "amdgpu_gws_mm");
2666 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2667 AMDGPU_PL_OA),
2668 root, "amdgpu_oa_mm");
2669
2670 #endif
2671 }
2672