1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #ifdef CONFIG_X86
29 #include <asm/hypervisor.h>
30 #endif
31
32 #include "amdgpu.h"
33 #include "amdgpu_gmc.h"
34 #include "amdgpu_ras.h"
35 #include "amdgpu_reset.h"
36 #include "amdgpu_xgmi.h"
37
38 #include <drm/drm_drv.h>
39 #include <drm/ttm/ttm_tt.h>
40
41 static const u64 four_gb = 0x100000000ULL;
42
amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device * adev)43 bool amdgpu_gmc_is_pdb0_enabled(struct amdgpu_device *adev)
44 {
45 return adev->gmc.xgmi.connected_to_cpu || amdgpu_virt_xgmi_migrate_enabled(adev);
46 }
47
48 /**
49 * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0
50 *
51 * @adev: amdgpu_device pointer
52 *
53 * Allocate video memory for pdb0 and map it for CPU access
54 * Returns 0 for success, error for failure.
55 */
amdgpu_gmc_pdb0_alloc(struct amdgpu_device * adev)56 int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev)
57 {
58 int r;
59 struct amdgpu_bo_param bp;
60 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
61 uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21;
62 uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) - 1) >> pde0_page_shift;
63
64 memset(&bp, 0, sizeof(bp));
65 bp.size = PAGE_ALIGN((npdes + 1) * 8);
66 bp.byte_align = PAGE_SIZE;
67 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
68 bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
69 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
70 bp.type = ttm_bo_type_kernel;
71 bp.resv = NULL;
72 bp.bo_ptr_size = sizeof(struct amdgpu_bo);
73
74 r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo);
75 if (r)
76 return r;
77
78 r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false);
79 if (unlikely(r != 0))
80 goto bo_reserve_failure;
81
82 r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM);
83 if (r)
84 goto bo_pin_failure;
85 r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0);
86 if (r)
87 goto bo_kmap_failure;
88
89 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
90 return 0;
91
92 bo_kmap_failure:
93 amdgpu_bo_unpin(adev->gmc.pdb0_bo);
94 bo_pin_failure:
95 amdgpu_bo_unreserve(adev->gmc.pdb0_bo);
96 bo_reserve_failure:
97 amdgpu_bo_unref(&adev->gmc.pdb0_bo);
98 return r;
99 }
100
101 /**
102 * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO
103 *
104 * @bo: the BO to get the PDE for
105 * @level: the level in the PD hirarchy
106 * @addr: resulting addr
107 * @flags: resulting flags
108 *
109 * Get the address and flags to be used for a PDE (Page Directory Entry).
110 */
amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo * bo,int level,uint64_t * addr,uint64_t * flags)111 void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level,
112 uint64_t *addr, uint64_t *flags)
113 {
114 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
115
116 switch (bo->tbo.resource->mem_type) {
117 case TTM_PL_TT:
118 *addr = bo->tbo.ttm->dma_address[0];
119 break;
120 case TTM_PL_VRAM:
121 *addr = amdgpu_bo_gpu_offset(bo);
122 break;
123 default:
124 *addr = 0;
125 break;
126 }
127 *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource);
128 amdgpu_gmc_get_vm_pde(adev, level, addr, flags);
129 }
130
131 /*
132 * amdgpu_gmc_pd_addr - return the address of the root directory
133 */
amdgpu_gmc_pd_addr(struct amdgpu_bo * bo)134 uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo)
135 {
136 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
137 uint64_t pd_addr;
138
139 /* TODO: move that into ASIC specific code */
140 if (adev->asic_type >= CHIP_VEGA10) {
141 uint64_t flags = AMDGPU_PTE_VALID;
142
143 amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags);
144 pd_addr |= flags;
145 } else {
146 pd_addr = amdgpu_bo_gpu_offset(bo);
147 }
148 return pd_addr;
149 }
150
151 /**
152 * amdgpu_gmc_set_pte_pde - update the page tables using CPU
153 *
154 * @adev: amdgpu_device pointer
155 * @cpu_pt_addr: cpu address of the page table
156 * @gpu_page_idx: entry in the page table to update
157 * @addr: dst addr to write into pte/pde
158 * @flags: access flags
159 *
160 * Update the page tables using CPU.
161 */
amdgpu_gmc_set_pte_pde(struct amdgpu_device * adev,void * cpu_pt_addr,uint32_t gpu_page_idx,uint64_t addr,uint64_t flags)162 int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr,
163 uint32_t gpu_page_idx, uint64_t addr,
164 uint64_t flags)
165 {
166 void __iomem *ptr = (void *)cpu_pt_addr;
167 uint64_t value;
168
169 /*
170 * The following is for PTE only. GART does not have PDEs.
171 */
172 value = addr & 0x0000FFFFFFFFF000ULL;
173 value |= flags;
174 writeq(value, ptr + (gpu_page_idx * 8));
175
176 return 0;
177 }
178
179 /**
180 * amdgpu_gmc_agp_addr - return the address in the AGP address space
181 *
182 * @bo: TTM BO which needs the address, must be in GTT domain
183 *
184 * Tries to figure out how to access the BO through the AGP aperture. Returns
185 * AMDGPU_BO_INVALID_OFFSET if that is not possible.
186 */
amdgpu_gmc_agp_addr(struct ttm_buffer_object * bo)187 uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo)
188 {
189 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
190
191 if (!bo->ttm)
192 return AMDGPU_BO_INVALID_OFFSET;
193
194 if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached)
195 return AMDGPU_BO_INVALID_OFFSET;
196
197 if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size)
198 return AMDGPU_BO_INVALID_OFFSET;
199
200 return adev->gmc.agp_start + bo->ttm->dma_address[0];
201 }
202
203 /**
204 * amdgpu_gmc_vram_location - try to find VRAM location
205 *
206 * @adev: amdgpu device structure holding all necessary information
207 * @mc: memory controller structure holding memory information
208 * @base: base address at which to put VRAM
209 *
210 * Function will try to place VRAM at base address provided
211 * as parameter.
212 */
amdgpu_gmc_vram_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,u64 base)213 void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
214 u64 base)
215 {
216 uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20;
217 uint64_t limit = (uint64_t)amdgpu_vram_limit << 20;
218
219 mc->vram_start = base;
220 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
221 if (limit < mc->real_vram_size)
222 mc->real_vram_size = limit;
223
224 if (vis_limit && vis_limit < mc->visible_vram_size)
225 mc->visible_vram_size = vis_limit;
226
227 if (mc->real_vram_size < mc->visible_vram_size)
228 mc->visible_vram_size = mc->real_vram_size;
229
230 if (mc->xgmi.num_physical_nodes == 0) {
231 mc->fb_start = mc->vram_start;
232 mc->fb_end = mc->vram_end;
233 }
234 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
235 mc->mc_vram_size >> 20, mc->vram_start,
236 mc->vram_end, mc->real_vram_size >> 20);
237 }
238
239 /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture
240 *
241 * @adev: amdgpu device structure holding all necessary information
242 * @mc: memory controller structure holding memory information
243 *
244 * This function is only used if use GART for FB translation. In such
245 * case, we use sysvm aperture (vmid0 page tables) for both vram
246 * and gart (aka system memory) access.
247 *
248 * GPUVM (and our organization of vmid0 page tables) require sysvm
249 * aperture to be placed at a location aligned with 8 times of native
250 * page size. For example, if vm_context0_cntl.page_table_block_size
251 * is 12, then native page size is 8G (2M*2^12), sysvm should start
252 * with a 64G aligned address. For simplicity, we just put sysvm at
253 * address 0. So vram start at address 0 and gart is right after vram.
254 */
amdgpu_gmc_sysvm_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)255 void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
256 {
257 u64 hive_vram_start = 0;
258 u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1;
259 mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id;
260 mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1;
261 /* node_segment_size may not 4GB aligned on SRIOV, align up is needed. */
262 mc->gart_start = ALIGN(hive_vram_end + 1, four_gb);
263 mc->gart_end = mc->gart_start + mc->gart_size - 1;
264 if (amdgpu_virt_xgmi_migrate_enabled(adev)) {
265 /* set mc->vram_start to 0 to switch the returned GPU address of
266 * amdgpu_bo_create_reserved() from FB aperture to GART aperture.
267 */
268 mc->vram_start = 0;
269 mc->vram_end = mc->vram_start + mc->mc_vram_size - 1;
270 mc->visible_vram_size = min(mc->visible_vram_size, mc->real_vram_size);
271 } else {
272 mc->fb_start = hive_vram_start;
273 mc->fb_end = hive_vram_end;
274 }
275 dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n",
276 mc->mc_vram_size >> 20, mc->vram_start,
277 mc->vram_end, mc->real_vram_size >> 20);
278 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
279 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
280 }
281
282 /**
283 * amdgpu_gmc_gart_location - try to find GART location
284 *
285 * @adev: amdgpu device structure holding all necessary information
286 * @mc: memory controller structure holding memory information
287 * @gart_placement: GART placement policy with respect to VRAM
288 *
289 * Function will try to place GART before or after VRAM.
290 * If GART size is bigger than space left then we ajust GART size.
291 * Thus function will never fails.
292 */
amdgpu_gmc_gart_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc,enum amdgpu_gart_placement gart_placement)293 void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc,
294 enum amdgpu_gart_placement gart_placement)
295 {
296 u64 size_af, size_bf;
297 /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/
298 u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1);
299
300 /* VCE doesn't like it when BOs cross a 4GB segment, so align
301 * the GART base on a 4GB boundary as well.
302 */
303 size_bf = mc->fb_start;
304 size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb);
305
306 if (mc->gart_size > max(size_bf, size_af)) {
307 dev_warn(adev->dev, "limiting GART\n");
308 mc->gart_size = max(size_bf, size_af);
309 }
310
311 switch (gart_placement) {
312 case AMDGPU_GART_PLACEMENT_HIGH:
313 mc->gart_start = max_mc_address - mc->gart_size + 1;
314 break;
315 case AMDGPU_GART_PLACEMENT_LOW:
316 mc->gart_start = 0;
317 break;
318 case AMDGPU_GART_PLACEMENT_BEST_FIT:
319 default:
320 if ((size_bf >= mc->gart_size && size_bf < size_af) ||
321 (size_af < mc->gart_size))
322 mc->gart_start = 0;
323 else
324 mc->gart_start = max_mc_address - mc->gart_size + 1;
325 break;
326 }
327
328 mc->gart_start &= ~(four_gb - 1);
329 mc->gart_end = mc->gart_start + mc->gart_size - 1;
330 dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n",
331 mc->gart_size >> 20, mc->gart_start, mc->gart_end);
332 }
333
334 /**
335 * amdgpu_gmc_agp_location - try to find AGP location
336 * @adev: amdgpu device structure holding all necessary information
337 * @mc: memory controller structure holding memory information
338 *
339 * Function will place try to find a place for the AGP BAR in the MC address
340 * space.
341 *
342 * AGP BAR will be assigned the largest available hole in the address space.
343 * Should be called after VRAM and GART locations are setup.
344 */
amdgpu_gmc_agp_location(struct amdgpu_device * adev,struct amdgpu_gmc * mc)345 void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc)
346 {
347 const uint64_t sixteen_gb = 1ULL << 34;
348 const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1);
349 u64 size_af, size_bf;
350
351 if (mc->fb_start > mc->gart_start) {
352 size_bf = (mc->fb_start & sixteen_gb_mask) -
353 ALIGN(mc->gart_end + 1, sixteen_gb);
354 size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb);
355 } else {
356 size_bf = mc->fb_start & sixteen_gb_mask;
357 size_af = (mc->gart_start & sixteen_gb_mask) -
358 ALIGN(mc->fb_end + 1, sixteen_gb);
359 }
360
361 if (size_bf > size_af) {
362 mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask;
363 mc->agp_size = size_bf;
364 } else {
365 mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb);
366 mc->agp_size = size_af;
367 }
368
369 mc->agp_end = mc->agp_start + mc->agp_size - 1;
370 dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n",
371 mc->agp_size >> 20, mc->agp_start, mc->agp_end);
372 }
373
374 /**
375 * amdgpu_gmc_set_agp_default - Set the default AGP aperture value.
376 * @adev: amdgpu device structure holding all necessary information
377 * @mc: memory controller structure holding memory information
378 *
379 * To disable the AGP aperture, you need to set the start to a larger
380 * value than the end. This function sets the default value which
381 * can then be overridden using amdgpu_gmc_agp_location() if you want
382 * to enable the AGP aperture on a specific chip.
383 *
384 */
amdgpu_gmc_set_agp_default(struct amdgpu_device * adev,struct amdgpu_gmc * mc)385 void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev,
386 struct amdgpu_gmc *mc)
387 {
388 mc->agp_start = 0xffffffffffff;
389 mc->agp_end = 0;
390 mc->agp_size = 0;
391 }
392
393 /**
394 * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid
395 *
396 * @addr: 48 bit physical address, page aligned (36 significant bits)
397 * @pasid: 16 bit process address space identifier
398 */
amdgpu_gmc_fault_key(uint64_t addr,uint16_t pasid)399 static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid)
400 {
401 return addr << 4 | pasid;
402 }
403
404 /**
405 * amdgpu_gmc_filter_faults - filter VM faults
406 *
407 * @adev: amdgpu device structure
408 * @ih: interrupt ring that the fault received from
409 * @addr: address of the VM fault
410 * @pasid: PASID of the process causing the fault
411 * @timestamp: timestamp of the fault
412 *
413 * Returns:
414 * True if the fault was filtered and should not be processed further.
415 * False if the fault is a new one and needs to be handled.
416 */
amdgpu_gmc_filter_faults(struct amdgpu_device * adev,struct amdgpu_ih_ring * ih,uint64_t addr,uint16_t pasid,uint64_t timestamp)417 bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev,
418 struct amdgpu_ih_ring *ih, uint64_t addr,
419 uint16_t pasid, uint64_t timestamp)
420 {
421 struct amdgpu_gmc *gmc = &adev->gmc;
422 uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid);
423 struct amdgpu_gmc_fault *fault;
424 uint32_t hash;
425
426 /* Stale retry fault if timestamp goes backward */
427 if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp))
428 return true;
429
430 /* If we don't have space left in the ring buffer return immediately */
431 stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) -
432 AMDGPU_GMC_FAULT_TIMEOUT;
433 if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp)
434 return true;
435
436 /* Try to find the fault in the hash */
437 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
438 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
439 while (fault->timestamp >= stamp) {
440 uint64_t tmp;
441
442 if (atomic64_read(&fault->key) == key) {
443 /*
444 * if we get a fault which is already present in
445 * the fault_ring and the timestamp of
446 * the fault is after the expired timestamp,
447 * then this is a new fault that needs to be added
448 * into the fault ring.
449 */
450 if (fault->timestamp_expiry != 0 &&
451 amdgpu_ih_ts_after(fault->timestamp_expiry,
452 timestamp))
453 break;
454 else
455 return true;
456 }
457
458 tmp = fault->timestamp;
459 fault = &gmc->fault_ring[fault->next];
460
461 /* Check if the entry was reused */
462 if (fault->timestamp >= tmp)
463 break;
464 }
465
466 /* Add the fault to the ring */
467 fault = &gmc->fault_ring[gmc->last_fault];
468 atomic64_set(&fault->key, key);
469 fault->timestamp = timestamp;
470
471 /* And update the hash */
472 fault->next = gmc->fault_hash[hash].idx;
473 gmc->fault_hash[hash].idx = gmc->last_fault++;
474 return false;
475 }
476
477 /**
478 * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter
479 *
480 * @adev: amdgpu device structure
481 * @addr: address of the VM fault
482 * @pasid: PASID of the process causing the fault
483 *
484 * Remove the address from fault filter, then future vm fault on this address
485 * will pass to retry fault handler to recover.
486 */
amdgpu_gmc_filter_faults_remove(struct amdgpu_device * adev,uint64_t addr,uint16_t pasid)487 void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr,
488 uint16_t pasid)
489 {
490 struct amdgpu_gmc *gmc = &adev->gmc;
491 uint64_t key = amdgpu_gmc_fault_key(addr, pasid);
492 struct amdgpu_ih_ring *ih;
493 struct amdgpu_gmc_fault *fault;
494 uint32_t last_wptr;
495 uint64_t last_ts;
496 uint32_t hash;
497 uint64_t tmp;
498
499 if (adev->irq.retry_cam_enabled)
500 return;
501
502 ih = &adev->irq.ih1;
503 /* Get the WPTR of the last entry in IH ring */
504 last_wptr = amdgpu_ih_get_wptr(adev, ih);
505 /* Order wptr with ring data. */
506 rmb();
507 /* Get the timetamp of the last entry in IH ring */
508 last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1);
509
510 hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER);
511 fault = &gmc->fault_ring[gmc->fault_hash[hash].idx];
512 do {
513 if (atomic64_read(&fault->key) == key) {
514 /*
515 * Update the timestamp when this fault
516 * expired.
517 */
518 fault->timestamp_expiry = last_ts;
519 break;
520 }
521
522 tmp = fault->timestamp;
523 fault = &gmc->fault_ring[fault->next];
524 } while (fault->timestamp < tmp);
525 }
526
amdgpu_gmc_ras_sw_init(struct amdgpu_device * adev)527 int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev)
528 {
529 int r;
530
531 /* umc ras block */
532 r = amdgpu_umc_ras_sw_init(adev);
533 if (r)
534 return r;
535
536 /* mmhub ras block */
537 r = amdgpu_mmhub_ras_sw_init(adev);
538 if (r)
539 return r;
540
541 /* hdp ras block */
542 r = amdgpu_hdp_ras_sw_init(adev);
543 if (r)
544 return r;
545
546 /* mca.x ras block */
547 r = amdgpu_mca_mp0_ras_sw_init(adev);
548 if (r)
549 return r;
550
551 r = amdgpu_mca_mp1_ras_sw_init(adev);
552 if (r)
553 return r;
554
555 r = amdgpu_mca_mpio_ras_sw_init(adev);
556 if (r)
557 return r;
558
559 /* xgmi ras block */
560 r = amdgpu_xgmi_ras_sw_init(adev);
561 if (r)
562 return r;
563
564 return 0;
565 }
566
amdgpu_gmc_ras_late_init(struct amdgpu_device * adev)567 int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev)
568 {
569 return 0;
570 }
571
amdgpu_gmc_ras_fini(struct amdgpu_device * adev)572 void amdgpu_gmc_ras_fini(struct amdgpu_device *adev)
573 {
574
575 }
576
577 /*
578 * The latest engine allocation on gfx9/10 is:
579 * Engine 2, 3: firmware
580 * Engine 0, 1, 4~16: amdgpu ring,
581 * subject to change when ring number changes
582 * Engine 17: Gart flushes
583 */
584 #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3
585
amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device * adev)586 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev)
587 {
588 struct amdgpu_ring *ring;
589 unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0};
590 unsigned i;
591 unsigned vmhub, inv_eng;
592 struct amdgpu_ring *shared_ring;
593
594 /* init the vm inv eng for all vmhubs */
595 for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) {
596 vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP;
597 /* reserve engine 5 for firmware */
598 if (adev->enable_mes)
599 vm_inv_engs[i] &= ~(1 << 5);
600 /* reserve mmhub engine 3 for firmware */
601 if (adev->enable_umsch_mm)
602 vm_inv_engs[i] &= ~(1 << 3);
603 }
604
605 for (i = 0; i < adev->num_rings; ++i) {
606 ring = adev->rings[i];
607 vmhub = ring->vm_hub;
608
609 if (ring == &adev->mes.ring[0] ||
610 ring == &adev->mes.ring[1] ||
611 ring == &adev->umsch_mm.ring ||
612 ring == &adev->cper.ring_buf)
613 continue;
614
615 /* Skip if the ring is a shared ring */
616 if (amdgpu_sdma_is_shared_inv_eng(adev, ring))
617 continue;
618
619 inv_eng = ffs(vm_inv_engs[vmhub]);
620 if (!inv_eng) {
621 dev_err(adev->dev, "no VM inv eng for ring %s\n",
622 ring->name);
623 return -EINVAL;
624 }
625
626 ring->vm_inv_eng = inv_eng - 1;
627 vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng);
628
629 dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n",
630 ring->name, ring->vm_inv_eng, ring->vm_hub);
631 /* SDMA has a special packet which allows it to use the same
632 * invalidation engine for all the rings in one instance.
633 * Therefore, we do not allocate a separate VM invalidation engine
634 * for SDMA page rings. Instead, they share the VM invalidation
635 * engine with the SDMA gfx ring. This change ensures efficient
636 * resource management and avoids the issue of insufficient VM
637 * invalidation engines.
638 */
639 shared_ring = amdgpu_sdma_get_shared_ring(adev, ring);
640 if (shared_ring) {
641 shared_ring->vm_inv_eng = ring->vm_inv_eng;
642 dev_info(adev->dev, "ring %s shares VM invalidation engine %u with ring %s on hub %u\n",
643 ring->name, ring->vm_inv_eng, shared_ring->name, ring->vm_hub);
644 continue;
645 }
646 }
647
648 return 0;
649 }
650
amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device * adev,uint32_t vmid,uint32_t vmhub,uint32_t flush_type)651 void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid,
652 uint32_t vmhub, uint32_t flush_type)
653 {
654 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
655 struct amdgpu_vmhub *hub = &adev->vmhub[vmhub];
656 struct dma_fence *fence;
657 struct amdgpu_job *job;
658 int r;
659
660 if (!hub->sdma_invalidation_workaround || vmid ||
661 !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready ||
662 !ring->sched.ready) {
663 /*
664 * A GPU reset should flush all TLBs anyway, so no need to do
665 * this while one is ongoing.
666 */
667 if (!down_read_trylock(&adev->reset_domain->sem))
668 return;
669
670 if (adev->gmc.flush_tlb_needs_extra_type_2)
671 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
672 vmhub, 2);
673
674 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
675 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid,
676 vmhub, 0);
677
678 adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub,
679 flush_type);
680 up_read(&adev->reset_domain->sem);
681 return;
682 }
683
684 /* The SDMA on Navi 1x has a bug which can theoretically result in memory
685 * corruption if an invalidation happens at the same time as an VA
686 * translation. Avoid this by doing the invalidation from the SDMA
687 * itself at least for GART.
688 */
689 mutex_lock(&adev->mman.gtt_window_lock);
690 r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr,
691 AMDGPU_FENCE_OWNER_UNDEFINED,
692 16 * 4, AMDGPU_IB_POOL_IMMEDIATE,
693 &job);
694 if (r)
695 goto error_alloc;
696
697 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
698 job->vm_needs_flush = true;
699 job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop;
700 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
701 fence = amdgpu_job_submit(job);
702 mutex_unlock(&adev->mman.gtt_window_lock);
703
704 dma_fence_wait(fence, false);
705 dma_fence_put(fence);
706
707 return;
708
709 error_alloc:
710 mutex_unlock(&adev->mman.gtt_window_lock);
711 dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r);
712 }
713
amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device * adev,uint16_t pasid,uint32_t flush_type,bool all_hub,uint32_t inst)714 int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid,
715 uint32_t flush_type, bool all_hub,
716 uint32_t inst)
717 {
718 struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring;
719 struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst];
720 unsigned int ndw;
721 int r, cnt = 0;
722 uint32_t seq;
723
724 /*
725 * A GPU reset should flush all TLBs anyway, so no need to do
726 * this while one is ongoing.
727 */
728 if (!down_read_trylock(&adev->reset_domain->sem))
729 return 0;
730
731 if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready) {
732 if (adev->gmc.flush_tlb_needs_extra_type_2)
733 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
734 2, all_hub,
735 inst);
736
737 if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2)
738 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
739 0, all_hub,
740 inst);
741
742 adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid,
743 flush_type, all_hub,
744 inst);
745 r = 0;
746 } else {
747 /* 2 dwords flush + 8 dwords fence */
748 ndw = kiq->pmf->invalidate_tlbs_size + 8;
749
750 if (adev->gmc.flush_tlb_needs_extra_type_2)
751 ndw += kiq->pmf->invalidate_tlbs_size;
752
753 if (adev->gmc.flush_tlb_needs_extra_type_0)
754 ndw += kiq->pmf->invalidate_tlbs_size;
755
756 spin_lock(&adev->gfx.kiq[inst].ring_lock);
757 r = amdgpu_ring_alloc(ring, ndw);
758 if (r) {
759 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
760 goto error_unlock_reset;
761 }
762 if (adev->gmc.flush_tlb_needs_extra_type_2)
763 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub);
764
765 if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0)
766 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub);
767
768 kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub);
769 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
770 if (r) {
771 amdgpu_ring_undo(ring);
772 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
773 goto error_unlock_reset;
774 }
775
776 amdgpu_ring_commit(ring);
777 spin_unlock(&adev->gfx.kiq[inst].ring_lock);
778
779 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
780
781 might_sleep();
782 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
783 !amdgpu_reset_pending(adev->reset_domain)) {
784 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
785 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
786 }
787
788 if (cnt > MAX_KIQ_REG_TRY) {
789 dev_err(adev->dev, "timeout waiting for kiq fence\n");
790 r = -ETIME;
791 } else
792 r = 0;
793 }
794
795 error_unlock_reset:
796 up_read(&adev->reset_domain->sem);
797 return r;
798 }
799
amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device * adev,uint32_t reg0,uint32_t reg1,uint32_t ref,uint32_t mask,uint32_t xcc_inst)800 void amdgpu_gmc_fw_reg_write_reg_wait(struct amdgpu_device *adev,
801 uint32_t reg0, uint32_t reg1,
802 uint32_t ref, uint32_t mask,
803 uint32_t xcc_inst)
804 {
805 struct amdgpu_kiq *kiq = &adev->gfx.kiq[xcc_inst];
806 struct amdgpu_ring *ring = &kiq->ring;
807 signed long r, cnt = 0;
808 unsigned long flags;
809 uint32_t seq;
810
811 if (adev->mes.ring[0].sched.ready) {
812 amdgpu_mes_reg_write_reg_wait(adev, reg0, reg1,
813 ref, mask);
814 return;
815 }
816
817 spin_lock_irqsave(&kiq->ring_lock, flags);
818 amdgpu_ring_alloc(ring, 32);
819 amdgpu_ring_emit_reg_write_reg_wait(ring, reg0, reg1,
820 ref, mask);
821 r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT);
822 if (r)
823 goto failed_undo;
824
825 amdgpu_ring_commit(ring);
826 spin_unlock_irqrestore(&kiq->ring_lock, flags);
827
828 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
829
830 /* don't wait anymore for IRQ context */
831 if (r < 1 && in_interrupt())
832 goto failed_kiq;
833
834 might_sleep();
835 while (r < 1 && cnt++ < MAX_KIQ_REG_TRY &&
836 !amdgpu_reset_pending(adev->reset_domain)) {
837
838 msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
839 r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
840 }
841
842 if (cnt > MAX_KIQ_REG_TRY)
843 goto failed_kiq;
844
845 return;
846
847 failed_undo:
848 amdgpu_ring_undo(ring);
849 spin_unlock_irqrestore(&kiq->ring_lock, flags);
850 failed_kiq:
851 dev_err(adev->dev, "failed to write reg %x wait reg %x\n", reg0, reg1);
852 }
853
854 /**
855 * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ
856 * @adev: amdgpu_device pointer
857 *
858 * Check and set if an the device @adev supports Trusted Memory
859 * Zones (TMZ).
860 */
amdgpu_gmc_tmz_set(struct amdgpu_device * adev)861 void amdgpu_gmc_tmz_set(struct amdgpu_device *adev)
862 {
863 switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
864 /* RAVEN */
865 case IP_VERSION(9, 2, 2):
866 case IP_VERSION(9, 1, 0):
867 /* RENOIR looks like RAVEN */
868 case IP_VERSION(9, 3, 0):
869 /* GC 10.3.7 */
870 case IP_VERSION(10, 3, 7):
871 /* GC 11.0.1 */
872 case IP_VERSION(11, 0, 1):
873 if (amdgpu_tmz == 0) {
874 adev->gmc.tmz_enabled = false;
875 dev_info(adev->dev,
876 "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n");
877 } else {
878 adev->gmc.tmz_enabled = true;
879 dev_info(adev->dev,
880 "Trusted Memory Zone (TMZ) feature enabled\n");
881 }
882 break;
883 case IP_VERSION(10, 1, 10):
884 case IP_VERSION(10, 1, 1):
885 case IP_VERSION(10, 1, 2):
886 case IP_VERSION(10, 1, 3):
887 case IP_VERSION(10, 3, 0):
888 case IP_VERSION(10, 3, 2):
889 case IP_VERSION(10, 3, 4):
890 case IP_VERSION(10, 3, 5):
891 case IP_VERSION(10, 3, 6):
892 /* VANGOGH */
893 case IP_VERSION(10, 3, 1):
894 /* YELLOW_CARP*/
895 case IP_VERSION(10, 3, 3):
896 case IP_VERSION(11, 0, 4):
897 case IP_VERSION(11, 5, 0):
898 case IP_VERSION(11, 5, 1):
899 case IP_VERSION(11, 5, 2):
900 case IP_VERSION(11, 5, 3):
901 /* Don't enable it by default yet.
902 */
903 if (amdgpu_tmz < 1) {
904 adev->gmc.tmz_enabled = false;
905 dev_info(adev->dev,
906 "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n");
907 } else {
908 adev->gmc.tmz_enabled = true;
909 dev_info(adev->dev,
910 "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n");
911 }
912 break;
913 default:
914 adev->gmc.tmz_enabled = false;
915 dev_info(adev->dev,
916 "Trusted Memory Zone (TMZ) feature not supported\n");
917 break;
918 }
919 }
920
921 /**
922 * amdgpu_gmc_noretry_set -- set per asic noretry defaults
923 * @adev: amdgpu_device pointer
924 *
925 * Set a per asic default for the no-retry parameter.
926 *
927 */
amdgpu_gmc_noretry_set(struct amdgpu_device * adev)928 void amdgpu_gmc_noretry_set(struct amdgpu_device *adev)
929 {
930 struct amdgpu_gmc *gmc = &adev->gmc;
931 uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0);
932 bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) ||
933 gc_ver == IP_VERSION(9, 4, 0) ||
934 gc_ver == IP_VERSION(9, 4, 1) ||
935 gc_ver == IP_VERSION(9, 4, 2) ||
936 gc_ver == IP_VERSION(9, 4, 3) ||
937 gc_ver == IP_VERSION(9, 4, 4) ||
938 gc_ver == IP_VERSION(9, 5, 0) ||
939 gc_ver >= IP_VERSION(10, 3, 0));
940
941 if (!amdgpu_sriov_xnack_support(adev))
942 gmc->noretry = 1;
943 else
944 gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry;
945 }
946
amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device * adev,int hub_type,bool enable)947 void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type,
948 bool enable)
949 {
950 struct amdgpu_vmhub *hub;
951 u32 tmp, reg, i;
952
953 hub = &adev->vmhub[hub_type];
954 for (i = 0; i < 16; i++) {
955 reg = hub->vm_context0_cntl + hub->ctx_distance * i;
956
957 tmp = (hub_type == AMDGPU_GFXHUB(0)) ?
958 RREG32_SOC15_IP(GC, reg) :
959 RREG32_SOC15_IP(MMHUB, reg);
960
961 if (enable)
962 tmp |= hub->vm_cntx_cntl_vm_fault;
963 else
964 tmp &= ~hub->vm_cntx_cntl_vm_fault;
965
966 (hub_type == AMDGPU_GFXHUB(0)) ?
967 WREG32_SOC15_IP(GC, reg, tmp) :
968 WREG32_SOC15_IP(MMHUB, reg, tmp);
969 }
970 }
971
amdgpu_gmc_get_vbios_allocations(struct amdgpu_device * adev)972 void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev)
973 {
974 unsigned size;
975
976 /*
977 * Some ASICs need to reserve a region of video memory to avoid access
978 * from driver
979 */
980 adev->mman.stolen_reserved_offset = 0;
981 adev->mman.stolen_reserved_size = 0;
982
983 /*
984 * TODO:
985 * Currently there is a bug where some memory client outside
986 * of the driver writes to first 8M of VRAM on S3 resume,
987 * this overrides GART which by default gets placed in first 8M and
988 * causes VM_FAULTS once GTT is accessed.
989 * Keep the stolen memory reservation until the while this is not solved.
990 */
991 switch (adev->asic_type) {
992 case CHIP_VEGA10:
993 adev->mman.keep_stolen_vga_memory = true;
994 /*
995 * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area.
996 */
997 #ifdef CONFIG_X86
998 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) {
999 adev->mman.stolen_reserved_offset = 0x500000;
1000 adev->mman.stolen_reserved_size = 0x200000;
1001 }
1002 #endif
1003 break;
1004 case CHIP_RAVEN:
1005 case CHIP_RENOIR:
1006 adev->mman.keep_stolen_vga_memory = true;
1007 break;
1008 default:
1009 adev->mman.keep_stolen_vga_memory = false;
1010 break;
1011 }
1012
1013 if (amdgpu_sriov_vf(adev) ||
1014 !amdgpu_device_has_display_hardware(adev)) {
1015 size = 0;
1016 } else {
1017 size = amdgpu_gmc_get_vbios_fb_size(adev);
1018
1019 if (adev->mman.keep_stolen_vga_memory)
1020 size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION);
1021 }
1022
1023 /* set to 0 if the pre-OS buffer uses up most of vram */
1024 if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024))
1025 size = 0;
1026
1027 if (size > AMDGPU_VBIOS_VGA_ALLOCATION) {
1028 adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION;
1029 adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size;
1030 } else {
1031 adev->mman.stolen_vga_size = size;
1032 adev->mman.stolen_extended_size = 0;
1033 }
1034 }
1035
1036 /**
1037 * amdgpu_gmc_init_pdb0 - initialize PDB0
1038 *
1039 * @adev: amdgpu_device pointer
1040 *
1041 * This function is only used when GART page table is used
1042 * for FB address translatioin. In such a case, we construct
1043 * a 2-level system VM page table: PDB0->PTB, to cover both
1044 * VRAM of the hive and system memory.
1045 *
1046 * PDB0 is static, initialized once on driver initialization.
1047 * The first n entries of PDB0 are used as PTE by setting
1048 * P bit to 1, pointing to VRAM. The n+1'th entry points
1049 * to a big PTB covering system memory.
1050 *
1051 */
amdgpu_gmc_init_pdb0(struct amdgpu_device * adev)1052 void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev)
1053 {
1054 int i;
1055 uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW?
1056 /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M
1057 */
1058 u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes;
1059 u64 pde0_page_size = (1ULL<<adev->gmc.vmid0_page_table_block_size)<<21;
1060 u64 vram_addr, vram_end;
1061 u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo);
1062 int idx;
1063
1064 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1065 return;
1066
1067 flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE;
1068 flags |= AMDGPU_PTE_WRITEABLE;
1069 flags |= AMDGPU_PTE_SNOOPED;
1070 flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1));
1071 flags |= AMDGPU_PDE_PTE_FLAG(adev);
1072
1073 vram_addr = adev->vm_manager.vram_base_offset;
1074 if (!amdgpu_virt_xgmi_migrate_enabled(adev))
1075 vram_addr -= adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size;
1076 vram_end = vram_addr + vram_size;
1077
1078 /* The first n PDE0 entries are used as PTE,
1079 * pointing to vram
1080 */
1081 for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size)
1082 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags);
1083
1084 /* The n+1'th PDE0 entry points to a huge
1085 * PTB who has more than 512 entries each
1086 * pointing to a 4K system page
1087 */
1088 flags = AMDGPU_PTE_VALID;
1089 flags |= AMDGPU_PTE_SNOOPED | AMDGPU_PDE_BFS_FLAG(adev, 0);
1090 /* Requires gart_ptb_gpu_pa to be 4K aligned */
1091 amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags);
1092 drm_dev_exit(idx);
1093 }
1094
1095 /**
1096 * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC
1097 * address
1098 *
1099 * @adev: amdgpu_device pointer
1100 * @mc_addr: MC address of buffer
1101 */
amdgpu_gmc_vram_mc2pa(struct amdgpu_device * adev,uint64_t mc_addr)1102 uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr)
1103 {
1104 return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset;
1105 }
1106
1107 /**
1108 * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from
1109 * GPU's view
1110 *
1111 * @adev: amdgpu_device pointer
1112 * @bo: amdgpu buffer object
1113 */
amdgpu_gmc_vram_pa(struct amdgpu_device * adev,struct amdgpu_bo * bo)1114 uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo)
1115 {
1116 return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo));
1117 }
1118
amdgpu_gmc_vram_checking(struct amdgpu_device * adev)1119 int amdgpu_gmc_vram_checking(struct amdgpu_device *adev)
1120 {
1121 struct amdgpu_bo *vram_bo = NULL;
1122 uint64_t vram_gpu = 0;
1123 void *vram_ptr = NULL;
1124
1125 int ret, size = 0x100000;
1126 uint8_t cptr[10];
1127
1128 ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE,
1129 AMDGPU_GEM_DOMAIN_VRAM,
1130 &vram_bo,
1131 &vram_gpu,
1132 &vram_ptr);
1133 if (ret)
1134 return ret;
1135
1136 memset(vram_ptr, 0x86, size);
1137 memset(cptr, 0x86, 10);
1138
1139 /**
1140 * Check the start, the mid, and the end of the memory if the content of
1141 * each byte is the pattern "0x86". If yes, we suppose the vram bo is
1142 * workable.
1143 *
1144 * Note: If check the each byte of whole 1M bo, it will cost too many
1145 * seconds, so here, we just pick up three parts for emulation.
1146 */
1147 ret = memcmp(vram_ptr, cptr, 10);
1148 if (ret) {
1149 ret = -EIO;
1150 goto release_buffer;
1151 }
1152
1153 ret = memcmp(vram_ptr + (size / 2), cptr, 10);
1154 if (ret) {
1155 ret = -EIO;
1156 goto release_buffer;
1157 }
1158
1159 ret = memcmp(vram_ptr + size - 10, cptr, 10);
1160 if (ret) {
1161 ret = -EIO;
1162 goto release_buffer;
1163 }
1164
1165 release_buffer:
1166 amdgpu_bo_free_kernel(&vram_bo, &vram_gpu,
1167 &vram_ptr);
1168
1169 return ret;
1170 }
1171
1172 static const char *nps_desc[] = {
1173 [AMDGPU_NPS1_PARTITION_MODE] = "NPS1",
1174 [AMDGPU_NPS2_PARTITION_MODE] = "NPS2",
1175 [AMDGPU_NPS3_PARTITION_MODE] = "NPS3",
1176 [AMDGPU_NPS4_PARTITION_MODE] = "NPS4",
1177 [AMDGPU_NPS6_PARTITION_MODE] = "NPS6",
1178 [AMDGPU_NPS8_PARTITION_MODE] = "NPS8",
1179 };
1180
available_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1181 static ssize_t available_memory_partition_show(struct device *dev,
1182 struct device_attribute *addr,
1183 char *buf)
1184 {
1185 struct drm_device *ddev = dev_get_drvdata(dev);
1186 struct amdgpu_device *adev = drm_to_adev(ddev);
1187 int size = 0, mode;
1188 char *sep = "";
1189
1190 for_each_inst(mode, adev->gmc.supported_nps_modes) {
1191 size += sysfs_emit_at(buf, size, "%s%s", sep, nps_desc[mode]);
1192 sep = ", ";
1193 }
1194 size += sysfs_emit_at(buf, size, "\n");
1195
1196 return size;
1197 }
1198
current_memory_partition_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1199 static ssize_t current_memory_partition_store(struct device *dev,
1200 struct device_attribute *attr,
1201 const char *buf, size_t count)
1202 {
1203 struct drm_device *ddev = dev_get_drvdata(dev);
1204 struct amdgpu_device *adev = drm_to_adev(ddev);
1205 enum amdgpu_memory_partition mode;
1206 struct amdgpu_hive_info *hive;
1207 int i;
1208
1209 mode = UNKNOWN_MEMORY_PARTITION_MODE;
1210 for_each_inst(i, adev->gmc.supported_nps_modes) {
1211 if (!strncasecmp(nps_desc[i], buf, strlen(nps_desc[i]))) {
1212 mode = i;
1213 break;
1214 }
1215 }
1216
1217 if (mode == UNKNOWN_MEMORY_PARTITION_MODE)
1218 return -EINVAL;
1219
1220 if (mode == adev->gmc.gmc_funcs->query_mem_partition_mode(adev)) {
1221 dev_info(
1222 adev->dev,
1223 "requested NPS mode is same as current NPS mode, skipping\n");
1224 return count;
1225 }
1226
1227 /* If device is part of hive, all devices in the hive should request the
1228 * same mode. Hence store the requested mode in hive.
1229 */
1230 hive = amdgpu_get_xgmi_hive(adev);
1231 if (hive) {
1232 atomic_set(&hive->requested_nps_mode, mode);
1233 amdgpu_put_xgmi_hive(hive);
1234 } else {
1235 adev->gmc.requested_nps_mode = mode;
1236 }
1237
1238 dev_info(
1239 adev->dev,
1240 "NPS mode change requested, please remove and reload the driver\n");
1241
1242 return count;
1243 }
1244
current_memory_partition_show(struct device * dev,struct device_attribute * addr,char * buf)1245 static ssize_t current_memory_partition_show(
1246 struct device *dev, struct device_attribute *addr, char *buf)
1247 {
1248 struct drm_device *ddev = dev_get_drvdata(dev);
1249 struct amdgpu_device *adev = drm_to_adev(ddev);
1250 enum amdgpu_memory_partition mode;
1251
1252 /* Only minimal precaution taken to reject requests while in reset */
1253 if (amdgpu_in_reset(adev))
1254 return -EPERM;
1255
1256 mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1257 if ((mode >= ARRAY_SIZE(nps_desc)) ||
1258 (BIT(mode) & AMDGPU_ALL_NPS_MASK) != BIT(mode))
1259 return sysfs_emit(buf, "UNKNOWN\n");
1260
1261 return sysfs_emit(buf, "%s\n", nps_desc[mode]);
1262 }
1263
1264 static DEVICE_ATTR_RW(current_memory_partition);
1265 static DEVICE_ATTR_RO(available_memory_partition);
1266
amdgpu_gmc_sysfs_init(struct amdgpu_device * adev)1267 int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev)
1268 {
1269 bool nps_switch_support;
1270 int r = 0;
1271
1272 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1273 return 0;
1274
1275 nps_switch_support = (hweight32(adev->gmc.supported_nps_modes &
1276 AMDGPU_ALL_NPS_MASK) > 1);
1277 if (!nps_switch_support)
1278 dev_attr_current_memory_partition.attr.mode &=
1279 ~(S_IWUSR | S_IWGRP | S_IWOTH);
1280 else
1281 r = device_create_file(adev->dev,
1282 &dev_attr_available_memory_partition);
1283
1284 if (r)
1285 return r;
1286
1287 return device_create_file(adev->dev,
1288 &dev_attr_current_memory_partition);
1289 }
1290
amdgpu_gmc_sysfs_fini(struct amdgpu_device * adev)1291 void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev)
1292 {
1293 if (!adev->gmc.gmc_funcs->query_mem_partition_mode)
1294 return;
1295
1296 device_remove_file(adev->dev, &dev_attr_current_memory_partition);
1297 device_remove_file(adev->dev, &dev_attr_available_memory_partition);
1298 }
1299
amdgpu_gmc_get_nps_memranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges,uint8_t * exp_ranges)1300 int amdgpu_gmc_get_nps_memranges(struct amdgpu_device *adev,
1301 struct amdgpu_mem_partition_info *mem_ranges,
1302 uint8_t *exp_ranges)
1303 {
1304 struct amdgpu_gmc_memrange *ranges;
1305 int range_cnt, ret, i, j;
1306 uint32_t nps_type;
1307 bool refresh;
1308
1309 if (!mem_ranges || !exp_ranges)
1310 return -EINVAL;
1311
1312 refresh = (adev->init_lvl->level != AMDGPU_INIT_LEVEL_MINIMAL_XGMI) &&
1313 (adev->gmc.reset_flags & AMDGPU_GMC_INIT_RESET_NPS);
1314 ret = amdgpu_discovery_get_nps_info(adev, &nps_type, &ranges,
1315 &range_cnt, refresh);
1316
1317 if (ret)
1318 return ret;
1319
1320 /* TODO: For now, expect ranges and partition count to be the same.
1321 * Adjust if there are holes expected in any NPS domain.
1322 */
1323 if (*exp_ranges && (range_cnt != *exp_ranges)) {
1324 dev_warn(
1325 adev->dev,
1326 "NPS config mismatch - expected ranges: %d discovery - nps mode: %d, nps ranges: %d",
1327 *exp_ranges, nps_type, range_cnt);
1328 ret = -EINVAL;
1329 goto err;
1330 }
1331
1332 for (i = 0; i < range_cnt; ++i) {
1333 if (ranges[i].base_address >= ranges[i].limit_address) {
1334 dev_warn(
1335 adev->dev,
1336 "Invalid NPS range - nps mode: %d, range[%d]: base: %llx limit: %llx",
1337 nps_type, i, ranges[i].base_address,
1338 ranges[i].limit_address);
1339 ret = -EINVAL;
1340 goto err;
1341 }
1342
1343 /* Check for overlaps, not expecting any now */
1344 for (j = i - 1; j >= 0; j--) {
1345 if (max(ranges[j].base_address,
1346 ranges[i].base_address) <=
1347 min(ranges[j].limit_address,
1348 ranges[i].limit_address)) {
1349 dev_warn(
1350 adev->dev,
1351 "overlapping ranges detected [ %llx - %llx ] | [%llx - %llx]",
1352 ranges[j].base_address,
1353 ranges[j].limit_address,
1354 ranges[i].base_address,
1355 ranges[i].limit_address);
1356 ret = -EINVAL;
1357 goto err;
1358 }
1359 }
1360
1361 mem_ranges[i].range.fpfn =
1362 (ranges[i].base_address -
1363 adev->vm_manager.vram_base_offset) >>
1364 AMDGPU_GPU_PAGE_SHIFT;
1365 mem_ranges[i].range.lpfn =
1366 (ranges[i].limit_address -
1367 adev->vm_manager.vram_base_offset) >>
1368 AMDGPU_GPU_PAGE_SHIFT;
1369 mem_ranges[i].size =
1370 ranges[i].limit_address - ranges[i].base_address + 1;
1371 }
1372
1373 if (!*exp_ranges)
1374 *exp_ranges = range_cnt;
1375 err:
1376 kfree(ranges);
1377
1378 return ret;
1379 }
1380
amdgpu_gmc_request_memory_partition(struct amdgpu_device * adev,int nps_mode)1381 int amdgpu_gmc_request_memory_partition(struct amdgpu_device *adev,
1382 int nps_mode)
1383 {
1384 /* Not supported on VF devices and APUs */
1385 if (amdgpu_sriov_vf(adev) || (adev->flags & AMD_IS_APU))
1386 return -EOPNOTSUPP;
1387
1388 if (!adev->psp.funcs) {
1389 dev_err(adev->dev,
1390 "PSP interface not available for nps mode change request");
1391 return -EINVAL;
1392 }
1393
1394 return psp_memory_partition(&adev->psp, nps_mode);
1395 }
1396
amdgpu_gmc_need_nps_switch_req(struct amdgpu_device * adev,int req_nps_mode,int cur_nps_mode)1397 static inline bool amdgpu_gmc_need_nps_switch_req(struct amdgpu_device *adev,
1398 int req_nps_mode,
1399 int cur_nps_mode)
1400 {
1401 return (((BIT(req_nps_mode) & adev->gmc.supported_nps_modes) ==
1402 BIT(req_nps_mode)) &&
1403 req_nps_mode != cur_nps_mode);
1404 }
1405
amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device * adev)1406 void amdgpu_gmc_prepare_nps_mode_change(struct amdgpu_device *adev)
1407 {
1408 int req_nps_mode, cur_nps_mode, r;
1409 struct amdgpu_hive_info *hive;
1410
1411 if (amdgpu_sriov_vf(adev) || !adev->gmc.supported_nps_modes ||
1412 !adev->gmc.gmc_funcs->request_mem_partition_mode)
1413 return;
1414
1415 cur_nps_mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev);
1416 hive = amdgpu_get_xgmi_hive(adev);
1417 if (hive) {
1418 req_nps_mode = atomic_read(&hive->requested_nps_mode);
1419 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode,
1420 cur_nps_mode)) {
1421 amdgpu_put_xgmi_hive(hive);
1422 return;
1423 }
1424 r = amdgpu_xgmi_request_nps_change(adev, hive, req_nps_mode);
1425 amdgpu_put_xgmi_hive(hive);
1426 goto out;
1427 }
1428
1429 req_nps_mode = adev->gmc.requested_nps_mode;
1430 if (!amdgpu_gmc_need_nps_switch_req(adev, req_nps_mode, cur_nps_mode))
1431 return;
1432
1433 /* even if this fails, we should let driver unload w/o blocking */
1434 r = adev->gmc.gmc_funcs->request_mem_partition_mode(adev, req_nps_mode);
1435 out:
1436 if (r)
1437 dev_err(adev->dev, "NPS mode change request failed\n");
1438 else
1439 dev_info(
1440 adev->dev,
1441 "NPS mode change request done, reload driver to complete the change\n");
1442 }
1443
amdgpu_gmc_need_reset_on_init(struct amdgpu_device * adev)1444 bool amdgpu_gmc_need_reset_on_init(struct amdgpu_device *adev)
1445 {
1446 if (adev->gmc.gmc_funcs->need_reset_on_init)
1447 return adev->gmc.gmc_funcs->need_reset_on_init(adev);
1448
1449 return false;
1450 }
1451
1452 enum amdgpu_memory_partition
amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device * adev)1453 amdgpu_gmc_get_vf_memory_partition(struct amdgpu_device *adev)
1454 {
1455 switch (adev->gmc.num_mem_partitions) {
1456 case 0:
1457 return UNKNOWN_MEMORY_PARTITION_MODE;
1458 case 1:
1459 return AMDGPU_NPS1_PARTITION_MODE;
1460 case 2:
1461 return AMDGPU_NPS2_PARTITION_MODE;
1462 case 4:
1463 return AMDGPU_NPS4_PARTITION_MODE;
1464 case 8:
1465 return AMDGPU_NPS8_PARTITION_MODE;
1466 default:
1467 return AMDGPU_NPS1_PARTITION_MODE;
1468 }
1469 }
1470
1471 enum amdgpu_memory_partition
amdgpu_gmc_get_memory_partition(struct amdgpu_device * adev,u32 * supp_modes)1472 amdgpu_gmc_get_memory_partition(struct amdgpu_device *adev, u32 *supp_modes)
1473 {
1474 enum amdgpu_memory_partition mode = UNKNOWN_MEMORY_PARTITION_MODE;
1475
1476 if (adev->nbio.funcs &&
1477 adev->nbio.funcs->get_memory_partition_mode)
1478 mode = adev->nbio.funcs->get_memory_partition_mode(adev,
1479 supp_modes);
1480 else
1481 dev_warn(adev->dev, "memory partition mode query is not supported\n");
1482
1483 return mode;
1484 }
1485
1486 enum amdgpu_memory_partition
amdgpu_gmc_query_memory_partition(struct amdgpu_device * adev)1487 amdgpu_gmc_query_memory_partition(struct amdgpu_device *adev)
1488 {
1489 if (amdgpu_sriov_vf(adev))
1490 return amdgpu_gmc_get_vf_memory_partition(adev);
1491 else
1492 return amdgpu_gmc_get_memory_partition(adev, NULL);
1493 }
1494
amdgpu_gmc_validate_partition_info(struct amdgpu_device * adev)1495 static bool amdgpu_gmc_validate_partition_info(struct amdgpu_device *adev)
1496 {
1497 enum amdgpu_memory_partition mode;
1498 u32 supp_modes;
1499 bool valid;
1500
1501 mode = amdgpu_gmc_get_memory_partition(adev, &supp_modes);
1502
1503 /* Mode detected by hardware not present in supported modes */
1504 if ((mode != UNKNOWN_MEMORY_PARTITION_MODE) &&
1505 !(BIT(mode - 1) & supp_modes))
1506 return false;
1507
1508 switch (mode) {
1509 case UNKNOWN_MEMORY_PARTITION_MODE:
1510 case AMDGPU_NPS1_PARTITION_MODE:
1511 valid = (adev->gmc.num_mem_partitions == 1);
1512 break;
1513 case AMDGPU_NPS2_PARTITION_MODE:
1514 valid = (adev->gmc.num_mem_partitions == 2);
1515 break;
1516 case AMDGPU_NPS4_PARTITION_MODE:
1517 valid = (adev->gmc.num_mem_partitions == 3 ||
1518 adev->gmc.num_mem_partitions == 4);
1519 break;
1520 case AMDGPU_NPS8_PARTITION_MODE:
1521 valid = (adev->gmc.num_mem_partitions == 8);
1522 break;
1523 default:
1524 valid = false;
1525 }
1526
1527 return valid;
1528 }
1529
amdgpu_gmc_is_node_present(int * node_ids,int num_ids,int nid)1530 static bool amdgpu_gmc_is_node_present(int *node_ids, int num_ids, int nid)
1531 {
1532 int i;
1533
1534 /* Check if node with id 'nid' is present in 'node_ids' array */
1535 for (i = 0; i < num_ids; ++i)
1536 if (node_ids[i] == nid)
1537 return true;
1538
1539 return false;
1540 }
1541
1542 static void
amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1543 amdgpu_gmc_init_acpi_mem_ranges(struct amdgpu_device *adev,
1544 struct amdgpu_mem_partition_info *mem_ranges)
1545 {
1546 struct amdgpu_numa_info numa_info;
1547 int node_ids[AMDGPU_MAX_MEM_RANGES];
1548 int num_ranges = 0, ret;
1549 int num_xcc, xcc_id;
1550 uint32_t xcc_mask;
1551
1552 num_xcc = NUM_XCC(adev->gfx.xcc_mask);
1553 xcc_mask = (1U << num_xcc) - 1;
1554
1555 for_each_inst(xcc_id, xcc_mask) {
1556 ret = amdgpu_acpi_get_mem_info(adev, xcc_id, &numa_info);
1557 if (ret)
1558 continue;
1559
1560 if (numa_info.nid == NUMA_NO_NODE) {
1561 mem_ranges[0].size = numa_info.size;
1562 mem_ranges[0].numa.node = numa_info.nid;
1563 num_ranges = 1;
1564 break;
1565 }
1566
1567 if (amdgpu_gmc_is_node_present(node_ids, num_ranges,
1568 numa_info.nid))
1569 continue;
1570
1571 node_ids[num_ranges] = numa_info.nid;
1572 mem_ranges[num_ranges].numa.node = numa_info.nid;
1573 mem_ranges[num_ranges].size = numa_info.size;
1574 ++num_ranges;
1575 }
1576
1577 adev->gmc.num_mem_partitions = num_ranges;
1578 }
1579
amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device * adev,struct amdgpu_mem_partition_info * mem_ranges)1580 void amdgpu_gmc_init_sw_mem_ranges(struct amdgpu_device *adev,
1581 struct amdgpu_mem_partition_info *mem_ranges)
1582 {
1583 enum amdgpu_memory_partition mode;
1584 u32 start_addr = 0, size;
1585 int i, r, l;
1586
1587 mode = amdgpu_gmc_query_memory_partition(adev);
1588
1589 switch (mode) {
1590 case UNKNOWN_MEMORY_PARTITION_MODE:
1591 adev->gmc.num_mem_partitions = 0;
1592 break;
1593 case AMDGPU_NPS1_PARTITION_MODE:
1594 adev->gmc.num_mem_partitions = 1;
1595 break;
1596 case AMDGPU_NPS2_PARTITION_MODE:
1597 adev->gmc.num_mem_partitions = 2;
1598 break;
1599 case AMDGPU_NPS4_PARTITION_MODE:
1600 if (adev->flags & AMD_IS_APU)
1601 adev->gmc.num_mem_partitions = 3;
1602 else
1603 adev->gmc.num_mem_partitions = 4;
1604 break;
1605 case AMDGPU_NPS8_PARTITION_MODE:
1606 adev->gmc.num_mem_partitions = 8;
1607 break;
1608 default:
1609 adev->gmc.num_mem_partitions = 1;
1610 break;
1611 }
1612
1613 /* Use NPS range info, if populated */
1614 r = amdgpu_gmc_get_nps_memranges(adev, mem_ranges,
1615 &adev->gmc.num_mem_partitions);
1616 if (!r) {
1617 l = 0;
1618 for (i = 1; i < adev->gmc.num_mem_partitions; ++i) {
1619 if (mem_ranges[i].range.lpfn >
1620 mem_ranges[i - 1].range.lpfn)
1621 l = i;
1622 }
1623
1624 } else {
1625 if (!adev->gmc.num_mem_partitions) {
1626 dev_warn(adev->dev,
1627 "Not able to detect NPS mode, fall back to NPS1\n");
1628 adev->gmc.num_mem_partitions = 1;
1629 }
1630 /* Fallback to sw based calculation */
1631 size = (adev->gmc.real_vram_size + SZ_16M) >> AMDGPU_GPU_PAGE_SHIFT;
1632 size /= adev->gmc.num_mem_partitions;
1633
1634 for (i = 0; i < adev->gmc.num_mem_partitions; ++i) {
1635 mem_ranges[i].range.fpfn = start_addr;
1636 mem_ranges[i].size =
1637 ((u64)size << AMDGPU_GPU_PAGE_SHIFT);
1638 mem_ranges[i].range.lpfn = start_addr + size - 1;
1639 start_addr += size;
1640 }
1641
1642 l = adev->gmc.num_mem_partitions - 1;
1643 }
1644
1645 /* Adjust the last one */
1646 mem_ranges[l].range.lpfn =
1647 (adev->gmc.real_vram_size >> AMDGPU_GPU_PAGE_SHIFT) - 1;
1648 mem_ranges[l].size =
1649 adev->gmc.real_vram_size -
1650 ((u64)mem_ranges[l].range.fpfn << AMDGPU_GPU_PAGE_SHIFT);
1651 }
1652
amdgpu_gmc_init_mem_ranges(struct amdgpu_device * adev)1653 int amdgpu_gmc_init_mem_ranges(struct amdgpu_device *adev)
1654 {
1655 bool valid;
1656
1657 adev->gmc.mem_partitions = kcalloc(AMDGPU_MAX_MEM_RANGES,
1658 sizeof(struct amdgpu_mem_partition_info),
1659 GFP_KERNEL);
1660 if (!adev->gmc.mem_partitions)
1661 return -ENOMEM;
1662
1663 if (adev->gmc.is_app_apu)
1664 amdgpu_gmc_init_acpi_mem_ranges(adev, adev->gmc.mem_partitions);
1665 else
1666 amdgpu_gmc_init_sw_mem_ranges(adev, adev->gmc.mem_partitions);
1667
1668 if (amdgpu_sriov_vf(adev))
1669 valid = true;
1670 else
1671 valid = amdgpu_gmc_validate_partition_info(adev);
1672 if (!valid) {
1673 /* TODO: handle invalid case */
1674 dev_warn(adev->dev,
1675 "Mem ranges not matching with hardware config\n");
1676 }
1677
1678 return 0;
1679 }
1680