1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sysctl.h>
51 #include <asm/pgalloc.h>
52 #include <asm/tlbflush.h>
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/filemap.h>
57
58 /*
59 * FIXME: remove all knowledge of the buffer layer from the core VM
60 */
61 #include <linux/buffer_head.h> /* for try_to_free_buffers */
62
63 #include <asm/mman.h>
64
65 #include "swap.h"
66
67 /*
68 * Shared mappings implemented 30.11.1994. It's not fully working yet,
69 * though.
70 *
71 * Shared mappings now work. 15.8.1995 Bruno.
72 *
73 * finished 'unifying' the page and buffer cache and SMP-threaded the
74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
75 *
76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
77 */
78
79 /*
80 * Lock ordering:
81 *
82 * ->i_mmap_rwsem (truncate_pagecache)
83 * ->private_lock (__free_pte->block_dirty_folio)
84 * ->swap_lock (exclusive_swap_page, others)
85 * ->i_pages lock
86 *
87 * ->i_rwsem
88 * ->invalidate_lock (acquired by fs in truncate path)
89 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
90 *
91 * ->mmap_lock
92 * ->i_mmap_rwsem
93 * ->page_table_lock or pte_lock (various, mainly in memory.c)
94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
95 *
96 * ->mmap_lock
97 * ->invalidate_lock (filemap_fault)
98 * ->lock_page (filemap_fault, access_process_vm)
99 *
100 * ->i_rwsem (generic_perform_write)
101 * ->mmap_lock (fault_in_readable->do_page_fault)
102 *
103 * bdi->wb.list_lock
104 * sb_lock (fs/fs-writeback.c)
105 * ->i_pages lock (__sync_single_inode)
106 *
107 * ->i_mmap_rwsem
108 * ->anon_vma.lock (vma_merge)
109 *
110 * ->anon_vma.lock
111 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
112 *
113 * ->page_table_lock or pte_lock
114 * ->swap_lock (try_to_unmap_one)
115 * ->private_lock (try_to_unmap_one)
116 * ->i_pages lock (try_to_unmap_one)
117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed)
118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru)
119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty)
120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty)
121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty)
122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty)
123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
124 * ->inode->i_lock (zap_pte_range->set_page_dirty)
125 * ->private_lock (zap_pte_range->block_dirty_folio)
126 */
127
page_cache_delete(struct address_space * mapping,struct folio * folio,void * shadow)128 static void page_cache_delete(struct address_space *mapping,
129 struct folio *folio, void *shadow)
130 {
131 XA_STATE(xas, &mapping->i_pages, folio->index);
132 long nr = 1;
133
134 mapping_set_update(&xas, mapping);
135
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
138
139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
140
141 xas_store(&xas, shadow);
142 xas_init_marks(&xas);
143
144 folio->mapping = NULL;
145 /* Leave folio->index set: truncation lookup relies upon it */
146 mapping->nrpages -= nr;
147 }
148
filemap_unaccount_folio(struct address_space * mapping,struct folio * folio)149 static void filemap_unaccount_folio(struct address_space *mapping,
150 struct folio *folio)
151 {
152 long nr;
153
154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
157 current->comm, folio_pfn(folio));
158 dump_page(&folio->page, "still mapped when deleted");
159 dump_stack();
160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
161
162 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
163 int mapcount = folio_mapcount(folio);
164
165 if (folio_ref_count(folio) >= mapcount + 2) {
166 /*
167 * All vmas have already been torn down, so it's
168 * a good bet that actually the page is unmapped
169 * and we'd rather not leak it: if we're wrong,
170 * another bad page check should catch it later.
171 */
172 atomic_set(&folio->_mapcount, -1);
173 folio_ref_sub(folio, mapcount);
174 }
175 }
176 }
177
178 /* hugetlb folios do not participate in page cache accounting. */
179 if (folio_test_hugetlb(folio))
180 return;
181
182 nr = folio_nr_pages(folio);
183
184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
185 if (folio_test_swapbacked(folio)) {
186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
187 if (folio_test_pmd_mappable(folio))
188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
189 } else if (folio_test_pmd_mappable(folio)) {
190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
191 filemap_nr_thps_dec(mapping);
192 }
193
194 /*
195 * At this point folio must be either written or cleaned by
196 * truncate. Dirty folio here signals a bug and loss of
197 * unwritten data - on ordinary filesystems.
198 *
199 * But it's harmless on in-memory filesystems like tmpfs; and can
200 * occur when a driver which did get_user_pages() sets page dirty
201 * before putting it, while the inode is being finally evicted.
202 *
203 * Below fixes dirty accounting after removing the folio entirely
204 * but leaves the dirty flag set: it has no effect for truncated
205 * folio and anyway will be cleared before returning folio to
206 * buddy allocator.
207 */
208 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
209 mapping_can_writeback(mapping)))
210 folio_account_cleaned(folio, inode_to_wb(mapping->host));
211 }
212
213 /*
214 * Delete a page from the page cache and free it. Caller has to make
215 * sure the page is locked and that nobody else uses it - or that usage
216 * is safe. The caller must hold the i_pages lock.
217 */
__filemap_remove_folio(struct folio * folio,void * shadow)218 void __filemap_remove_folio(struct folio *folio, void *shadow)
219 {
220 struct address_space *mapping = folio->mapping;
221
222 trace_mm_filemap_delete_from_page_cache(folio);
223 filemap_unaccount_folio(mapping, folio);
224 page_cache_delete(mapping, folio, shadow);
225 }
226
filemap_free_folio(struct address_space * mapping,struct folio * folio)227 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
228 {
229 void (*free_folio)(struct folio *);
230
231 free_folio = mapping->a_ops->free_folio;
232 if (free_folio)
233 free_folio(folio);
234
235 folio_put_refs(folio, folio_nr_pages(folio));
236 }
237
238 /**
239 * filemap_remove_folio - Remove folio from page cache.
240 * @folio: The folio.
241 *
242 * This must be called only on folios that are locked and have been
243 * verified to be in the page cache. It will never put the folio into
244 * the free list because the caller has a reference on the page.
245 */
filemap_remove_folio(struct folio * folio)246 void filemap_remove_folio(struct folio *folio)
247 {
248 struct address_space *mapping = folio->mapping;
249
250 BUG_ON(!folio_test_locked(folio));
251 spin_lock(&mapping->host->i_lock);
252 xa_lock_irq(&mapping->i_pages);
253 __filemap_remove_folio(folio, NULL);
254 xa_unlock_irq(&mapping->i_pages);
255 if (mapping_shrinkable(mapping))
256 inode_add_lru(mapping->host);
257 spin_unlock(&mapping->host->i_lock);
258
259 filemap_free_folio(mapping, folio);
260 }
261
262 /*
263 * page_cache_delete_batch - delete several folios from page cache
264 * @mapping: the mapping to which folios belong
265 * @fbatch: batch of folios to delete
266 *
267 * The function walks over mapping->i_pages and removes folios passed in
268 * @fbatch from the mapping. The function expects @fbatch to be sorted
269 * by page index and is optimised for it to be dense.
270 * It tolerates holes in @fbatch (mapping entries at those indices are not
271 * modified).
272 *
273 * The function expects the i_pages lock to be held.
274 */
page_cache_delete_batch(struct address_space * mapping,struct folio_batch * fbatch)275 static void page_cache_delete_batch(struct address_space *mapping,
276 struct folio_batch *fbatch)
277 {
278 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
279 long total_pages = 0;
280 int i = 0;
281 struct folio *folio;
282
283 mapping_set_update(&xas, mapping);
284 xas_for_each(&xas, folio, ULONG_MAX) {
285 if (i >= folio_batch_count(fbatch))
286 break;
287
288 /* A swap/dax/shadow entry got inserted? Skip it. */
289 if (xa_is_value(folio))
290 continue;
291 /*
292 * A page got inserted in our range? Skip it. We have our
293 * pages locked so they are protected from being removed.
294 * If we see a page whose index is higher than ours, it
295 * means our page has been removed, which shouldn't be
296 * possible because we're holding the PageLock.
297 */
298 if (folio != fbatch->folios[i]) {
299 VM_BUG_ON_FOLIO(folio->index >
300 fbatch->folios[i]->index, folio);
301 continue;
302 }
303
304 WARN_ON_ONCE(!folio_test_locked(folio));
305
306 folio->mapping = NULL;
307 /* Leave folio->index set: truncation lookup relies on it */
308
309 i++;
310 xas_store(&xas, NULL);
311 total_pages += folio_nr_pages(folio);
312 }
313 mapping->nrpages -= total_pages;
314 }
315
delete_from_page_cache_batch(struct address_space * mapping,struct folio_batch * fbatch)316 void delete_from_page_cache_batch(struct address_space *mapping,
317 struct folio_batch *fbatch)
318 {
319 int i;
320
321 if (!folio_batch_count(fbatch))
322 return;
323
324 spin_lock(&mapping->host->i_lock);
325 xa_lock_irq(&mapping->i_pages);
326 for (i = 0; i < folio_batch_count(fbatch); i++) {
327 struct folio *folio = fbatch->folios[i];
328
329 trace_mm_filemap_delete_from_page_cache(folio);
330 filemap_unaccount_folio(mapping, folio);
331 }
332 page_cache_delete_batch(mapping, fbatch);
333 xa_unlock_irq(&mapping->i_pages);
334 if (mapping_shrinkable(mapping))
335 inode_add_lru(mapping->host);
336 spin_unlock(&mapping->host->i_lock);
337
338 for (i = 0; i < folio_batch_count(fbatch); i++)
339 filemap_free_folio(mapping, fbatch->folios[i]);
340 }
341
filemap_check_errors(struct address_space * mapping)342 int filemap_check_errors(struct address_space *mapping)
343 {
344 int ret = 0;
345 /* Check for outstanding write errors */
346 if (test_bit(AS_ENOSPC, &mapping->flags) &&
347 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
348 ret = -ENOSPC;
349 if (test_bit(AS_EIO, &mapping->flags) &&
350 test_and_clear_bit(AS_EIO, &mapping->flags))
351 ret = -EIO;
352 return ret;
353 }
354 EXPORT_SYMBOL(filemap_check_errors);
355
filemap_check_and_keep_errors(struct address_space * mapping)356 static int filemap_check_and_keep_errors(struct address_space *mapping)
357 {
358 /* Check for outstanding write errors */
359 if (test_bit(AS_EIO, &mapping->flags))
360 return -EIO;
361 if (test_bit(AS_ENOSPC, &mapping->flags))
362 return -ENOSPC;
363 return 0;
364 }
365
366 /**
367 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
368 * @mapping: address space structure to write
369 * @wbc: the writeback_control controlling the writeout
370 *
371 * Call writepages on the mapping using the provided wbc to control the
372 * writeout.
373 *
374 * Return: %0 on success, negative error code otherwise.
375 */
filemap_fdatawrite_wbc(struct address_space * mapping,struct writeback_control * wbc)376 int filemap_fdatawrite_wbc(struct address_space *mapping,
377 struct writeback_control *wbc)
378 {
379 int ret;
380
381 if (!mapping_can_writeback(mapping) ||
382 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
383 return 0;
384
385 wbc_attach_fdatawrite_inode(wbc, mapping->host);
386 ret = do_writepages(mapping, wbc);
387 wbc_detach_inode(wbc);
388 return ret;
389 }
390 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
391
392 /**
393 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
394 * @mapping: address space structure to write
395 * @start: offset in bytes where the range starts
396 * @end: offset in bytes where the range ends (inclusive)
397 * @sync_mode: enable synchronous operation
398 *
399 * Start writeback against all of a mapping's dirty pages that lie
400 * within the byte offsets <start, end> inclusive.
401 *
402 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
403 * opposed to a regular memory cleansing writeback. The difference between
404 * these two operations is that if a dirty page/buffer is encountered, it must
405 * be waited upon, and not just skipped over.
406 *
407 * Return: %0 on success, negative error code otherwise.
408 */
__filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)409 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
410 loff_t end, int sync_mode)
411 {
412 struct writeback_control wbc = {
413 .sync_mode = sync_mode,
414 .nr_to_write = LONG_MAX,
415 .range_start = start,
416 .range_end = end,
417 };
418
419 return filemap_fdatawrite_wbc(mapping, &wbc);
420 }
421
__filemap_fdatawrite(struct address_space * mapping,int sync_mode)422 static inline int __filemap_fdatawrite(struct address_space *mapping,
423 int sync_mode)
424 {
425 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
426 }
427
filemap_fdatawrite(struct address_space * mapping)428 int filemap_fdatawrite(struct address_space *mapping)
429 {
430 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
431 }
432 EXPORT_SYMBOL(filemap_fdatawrite);
433
filemap_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end)434 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
435 loff_t end)
436 {
437 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
438 }
439 EXPORT_SYMBOL(filemap_fdatawrite_range);
440
441 /**
442 * filemap_fdatawrite_range_kick - start writeback on a range
443 * @mapping: target address_space
444 * @start: index to start writeback on
445 * @end: last (inclusive) index for writeback
446 *
447 * This is a non-integrity writeback helper, to start writing back folios
448 * for the indicated range.
449 *
450 * Return: %0 on success, negative error code otherwise.
451 */
filemap_fdatawrite_range_kick(struct address_space * mapping,loff_t start,loff_t end)452 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start,
453 loff_t end)
454 {
455 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE);
456 }
457 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick);
458
459 /**
460 * filemap_flush - mostly a non-blocking flush
461 * @mapping: target address_space
462 *
463 * This is a mostly non-blocking flush. Not suitable for data-integrity
464 * purposes - I/O may not be started against all dirty pages.
465 *
466 * Return: %0 on success, negative error code otherwise.
467 */
filemap_flush(struct address_space * mapping)468 int filemap_flush(struct address_space *mapping)
469 {
470 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
471 }
472 EXPORT_SYMBOL(filemap_flush);
473
474 /**
475 * filemap_range_has_page - check if a page exists in range.
476 * @mapping: address space within which to check
477 * @start_byte: offset in bytes where the range starts
478 * @end_byte: offset in bytes where the range ends (inclusive)
479 *
480 * Find at least one page in the range supplied, usually used to check if
481 * direct writing in this range will trigger a writeback.
482 *
483 * Return: %true if at least one page exists in the specified range,
484 * %false otherwise.
485 */
filemap_range_has_page(struct address_space * mapping,loff_t start_byte,loff_t end_byte)486 bool filemap_range_has_page(struct address_space *mapping,
487 loff_t start_byte, loff_t end_byte)
488 {
489 struct folio *folio;
490 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
491 pgoff_t max = end_byte >> PAGE_SHIFT;
492
493 if (end_byte < start_byte)
494 return false;
495
496 rcu_read_lock();
497 for (;;) {
498 folio = xas_find(&xas, max);
499 if (xas_retry(&xas, folio))
500 continue;
501 /* Shadow entries don't count */
502 if (xa_is_value(folio))
503 continue;
504 /*
505 * We don't need to try to pin this page; we're about to
506 * release the RCU lock anyway. It is enough to know that
507 * there was a page here recently.
508 */
509 break;
510 }
511 rcu_read_unlock();
512
513 return folio != NULL;
514 }
515 EXPORT_SYMBOL(filemap_range_has_page);
516
__filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)517 static void __filemap_fdatawait_range(struct address_space *mapping,
518 loff_t start_byte, loff_t end_byte)
519 {
520 pgoff_t index = start_byte >> PAGE_SHIFT;
521 pgoff_t end = end_byte >> PAGE_SHIFT;
522 struct folio_batch fbatch;
523 unsigned nr_folios;
524
525 folio_batch_init(&fbatch);
526
527 while (index <= end) {
528 unsigned i;
529
530 nr_folios = filemap_get_folios_tag(mapping, &index, end,
531 PAGECACHE_TAG_WRITEBACK, &fbatch);
532
533 if (!nr_folios)
534 break;
535
536 for (i = 0; i < nr_folios; i++) {
537 struct folio *folio = fbatch.folios[i];
538
539 folio_wait_writeback(folio);
540 }
541 folio_batch_release(&fbatch);
542 cond_resched();
543 }
544 }
545
546 /**
547 * filemap_fdatawait_range - wait for writeback to complete
548 * @mapping: address space structure to wait for
549 * @start_byte: offset in bytes where the range starts
550 * @end_byte: offset in bytes where the range ends (inclusive)
551 *
552 * Walk the list of under-writeback pages of the given address space
553 * in the given range and wait for all of them. Check error status of
554 * the address space and return it.
555 *
556 * Since the error status of the address space is cleared by this function,
557 * callers are responsible for checking the return value and handling and/or
558 * reporting the error.
559 *
560 * Return: error status of the address space.
561 */
filemap_fdatawait_range(struct address_space * mapping,loff_t start_byte,loff_t end_byte)562 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
563 loff_t end_byte)
564 {
565 __filemap_fdatawait_range(mapping, start_byte, end_byte);
566 return filemap_check_errors(mapping);
567 }
568 EXPORT_SYMBOL(filemap_fdatawait_range);
569
570 /**
571 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
572 * @mapping: address space structure to wait for
573 * @start_byte: offset in bytes where the range starts
574 * @end_byte: offset in bytes where the range ends (inclusive)
575 *
576 * Walk the list of under-writeback pages of the given address space in the
577 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
578 * this function does not clear error status of the address space.
579 *
580 * Use this function if callers don't handle errors themselves. Expected
581 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
582 * fsfreeze(8)
583 */
filemap_fdatawait_range_keep_errors(struct address_space * mapping,loff_t start_byte,loff_t end_byte)584 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
585 loff_t start_byte, loff_t end_byte)
586 {
587 __filemap_fdatawait_range(mapping, start_byte, end_byte);
588 return filemap_check_and_keep_errors(mapping);
589 }
590 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
591
592 /**
593 * file_fdatawait_range - wait for writeback to complete
594 * @file: file pointing to address space structure to wait for
595 * @start_byte: offset in bytes where the range starts
596 * @end_byte: offset in bytes where the range ends (inclusive)
597 *
598 * Walk the list of under-writeback pages of the address space that file
599 * refers to, in the given range and wait for all of them. Check error
600 * status of the address space vs. the file->f_wb_err cursor and return it.
601 *
602 * Since the error status of the file is advanced by this function,
603 * callers are responsible for checking the return value and handling and/or
604 * reporting the error.
605 *
606 * Return: error status of the address space vs. the file->f_wb_err cursor.
607 */
file_fdatawait_range(struct file * file,loff_t start_byte,loff_t end_byte)608 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
609 {
610 struct address_space *mapping = file->f_mapping;
611
612 __filemap_fdatawait_range(mapping, start_byte, end_byte);
613 return file_check_and_advance_wb_err(file);
614 }
615 EXPORT_SYMBOL(file_fdatawait_range);
616
617 /**
618 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
619 * @mapping: address space structure to wait for
620 *
621 * Walk the list of under-writeback pages of the given address space
622 * and wait for all of them. Unlike filemap_fdatawait(), this function
623 * does not clear error status of the address space.
624 *
625 * Use this function if callers don't handle errors themselves. Expected
626 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
627 * fsfreeze(8)
628 *
629 * Return: error status of the address space.
630 */
filemap_fdatawait_keep_errors(struct address_space * mapping)631 int filemap_fdatawait_keep_errors(struct address_space *mapping)
632 {
633 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
634 return filemap_check_and_keep_errors(mapping);
635 }
636 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
637
638 /* Returns true if writeback might be needed or already in progress. */
mapping_needs_writeback(struct address_space * mapping)639 static bool mapping_needs_writeback(struct address_space *mapping)
640 {
641 return mapping->nrpages;
642 }
643
filemap_range_has_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)644 bool filemap_range_has_writeback(struct address_space *mapping,
645 loff_t start_byte, loff_t end_byte)
646 {
647 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
648 pgoff_t max = end_byte >> PAGE_SHIFT;
649 struct folio *folio;
650
651 if (end_byte < start_byte)
652 return false;
653
654 rcu_read_lock();
655 xas_for_each(&xas, folio, max) {
656 if (xas_retry(&xas, folio))
657 continue;
658 if (xa_is_value(folio))
659 continue;
660 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
661 folio_test_writeback(folio))
662 break;
663 }
664 rcu_read_unlock();
665 return folio != NULL;
666 }
667 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
668
669 /**
670 * filemap_write_and_wait_range - write out & wait on a file range
671 * @mapping: the address_space for the pages
672 * @lstart: offset in bytes where the range starts
673 * @lend: offset in bytes where the range ends (inclusive)
674 *
675 * Write out and wait upon file offsets lstart->lend, inclusive.
676 *
677 * Note that @lend is inclusive (describes the last byte to be written) so
678 * that this function can be used to write to the very end-of-file (end = -1).
679 *
680 * Return: error status of the address space.
681 */
filemap_write_and_wait_range(struct address_space * mapping,loff_t lstart,loff_t lend)682 int filemap_write_and_wait_range(struct address_space *mapping,
683 loff_t lstart, loff_t lend)
684 {
685 int err = 0, err2;
686
687 if (lend < lstart)
688 return 0;
689
690 if (mapping_needs_writeback(mapping)) {
691 err = __filemap_fdatawrite_range(mapping, lstart, lend,
692 WB_SYNC_ALL);
693 /*
694 * Even if the above returned error, the pages may be
695 * written partially (e.g. -ENOSPC), so we wait for it.
696 * But the -EIO is special case, it may indicate the worst
697 * thing (e.g. bug) happened, so we avoid waiting for it.
698 */
699 if (err != -EIO)
700 __filemap_fdatawait_range(mapping, lstart, lend);
701 }
702 err2 = filemap_check_errors(mapping);
703 if (!err)
704 err = err2;
705 return err;
706 }
707 EXPORT_SYMBOL(filemap_write_and_wait_range);
708
__filemap_set_wb_err(struct address_space * mapping,int err)709 void __filemap_set_wb_err(struct address_space *mapping, int err)
710 {
711 errseq_t eseq = errseq_set(&mapping->wb_err, err);
712
713 trace_filemap_set_wb_err(mapping, eseq);
714 }
715 EXPORT_SYMBOL(__filemap_set_wb_err);
716
717 /**
718 * file_check_and_advance_wb_err - report wb error (if any) that was previously
719 * and advance wb_err to current one
720 * @file: struct file on which the error is being reported
721 *
722 * When userland calls fsync (or something like nfsd does the equivalent), we
723 * want to report any writeback errors that occurred since the last fsync (or
724 * since the file was opened if there haven't been any).
725 *
726 * Grab the wb_err from the mapping. If it matches what we have in the file,
727 * then just quickly return 0. The file is all caught up.
728 *
729 * If it doesn't match, then take the mapping value, set the "seen" flag in
730 * it and try to swap it into place. If it works, or another task beat us
731 * to it with the new value, then update the f_wb_err and return the error
732 * portion. The error at this point must be reported via proper channels
733 * (a'la fsync, or NFS COMMIT operation, etc.).
734 *
735 * While we handle mapping->wb_err with atomic operations, the f_wb_err
736 * value is protected by the f_lock since we must ensure that it reflects
737 * the latest value swapped in for this file descriptor.
738 *
739 * Return: %0 on success, negative error code otherwise.
740 */
file_check_and_advance_wb_err(struct file * file)741 int file_check_and_advance_wb_err(struct file *file)
742 {
743 int err = 0;
744 errseq_t old = READ_ONCE(file->f_wb_err);
745 struct address_space *mapping = file->f_mapping;
746
747 /* Locklessly handle the common case where nothing has changed */
748 if (errseq_check(&mapping->wb_err, old)) {
749 /* Something changed, must use slow path */
750 spin_lock(&file->f_lock);
751 old = file->f_wb_err;
752 err = errseq_check_and_advance(&mapping->wb_err,
753 &file->f_wb_err);
754 trace_file_check_and_advance_wb_err(file, old);
755 spin_unlock(&file->f_lock);
756 }
757
758 /*
759 * We're mostly using this function as a drop in replacement for
760 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
761 * that the legacy code would have had on these flags.
762 */
763 clear_bit(AS_EIO, &mapping->flags);
764 clear_bit(AS_ENOSPC, &mapping->flags);
765 return err;
766 }
767 EXPORT_SYMBOL(file_check_and_advance_wb_err);
768
769 /**
770 * file_write_and_wait_range - write out & wait on a file range
771 * @file: file pointing to address_space with pages
772 * @lstart: offset in bytes where the range starts
773 * @lend: offset in bytes where the range ends (inclusive)
774 *
775 * Write out and wait upon file offsets lstart->lend, inclusive.
776 *
777 * Note that @lend is inclusive (describes the last byte to be written) so
778 * that this function can be used to write to the very end-of-file (end = -1).
779 *
780 * After writing out and waiting on the data, we check and advance the
781 * f_wb_err cursor to the latest value, and return any errors detected there.
782 *
783 * Return: %0 on success, negative error code otherwise.
784 */
file_write_and_wait_range(struct file * file,loff_t lstart,loff_t lend)785 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
786 {
787 int err = 0, err2;
788 struct address_space *mapping = file->f_mapping;
789
790 if (lend < lstart)
791 return 0;
792
793 if (mapping_needs_writeback(mapping)) {
794 err = __filemap_fdatawrite_range(mapping, lstart, lend,
795 WB_SYNC_ALL);
796 /* See comment of filemap_write_and_wait() */
797 if (err != -EIO)
798 __filemap_fdatawait_range(mapping, lstart, lend);
799 }
800 err2 = file_check_and_advance_wb_err(file);
801 if (!err)
802 err = err2;
803 return err;
804 }
805 EXPORT_SYMBOL(file_write_and_wait_range);
806
807 /**
808 * replace_page_cache_folio - replace a pagecache folio with a new one
809 * @old: folio to be replaced
810 * @new: folio to replace with
811 *
812 * This function replaces a folio in the pagecache with a new one. On
813 * success it acquires the pagecache reference for the new folio and
814 * drops it for the old folio. Both the old and new folios must be
815 * locked. This function does not add the new folio to the LRU, the
816 * caller must do that.
817 *
818 * The remove + add is atomic. This function cannot fail.
819 */
replace_page_cache_folio(struct folio * old,struct folio * new)820 void replace_page_cache_folio(struct folio *old, struct folio *new)
821 {
822 struct address_space *mapping = old->mapping;
823 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
824 pgoff_t offset = old->index;
825 XA_STATE(xas, &mapping->i_pages, offset);
826
827 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
828 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
829 VM_BUG_ON_FOLIO(new->mapping, new);
830
831 folio_get(new);
832 new->mapping = mapping;
833 new->index = offset;
834
835 mem_cgroup_replace_folio(old, new);
836
837 xas_lock_irq(&xas);
838 xas_store(&xas, new);
839
840 old->mapping = NULL;
841 /* hugetlb pages do not participate in page cache accounting. */
842 if (!folio_test_hugetlb(old))
843 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
844 if (!folio_test_hugetlb(new))
845 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
846 if (folio_test_swapbacked(old))
847 __lruvec_stat_sub_folio(old, NR_SHMEM);
848 if (folio_test_swapbacked(new))
849 __lruvec_stat_add_folio(new, NR_SHMEM);
850 xas_unlock_irq(&xas);
851 if (free_folio)
852 free_folio(old);
853 folio_put(old);
854 }
855 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
856
__filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp,void ** shadowp)857 noinline int __filemap_add_folio(struct address_space *mapping,
858 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
859 {
860 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
861 bool huge;
862 long nr;
863 unsigned int forder = folio_order(folio);
864
865 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
866 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
867 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
868 folio);
869 mapping_set_update(&xas, mapping);
870
871 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
872 huge = folio_test_hugetlb(folio);
873 nr = folio_nr_pages(folio);
874
875 gfp &= GFP_RECLAIM_MASK;
876 folio_ref_add(folio, nr);
877 folio->mapping = mapping;
878 folio->index = xas.xa_index;
879
880 for (;;) {
881 int order = -1;
882 void *entry, *old = NULL;
883
884 xas_lock_irq(&xas);
885 xas_for_each_conflict(&xas, entry) {
886 old = entry;
887 if (!xa_is_value(entry)) {
888 xas_set_err(&xas, -EEXIST);
889 goto unlock;
890 }
891 /*
892 * If a larger entry exists,
893 * it will be the first and only entry iterated.
894 */
895 if (order == -1)
896 order = xas_get_order(&xas);
897 }
898
899 if (old) {
900 if (order > 0 && order > forder) {
901 unsigned int split_order = max(forder,
902 xas_try_split_min_order(order));
903
904 /* How to handle large swap entries? */
905 BUG_ON(shmem_mapping(mapping));
906
907 while (order > forder) {
908 xas_set_order(&xas, index, split_order);
909 xas_try_split(&xas, old, order);
910 if (xas_error(&xas))
911 goto unlock;
912 order = split_order;
913 split_order =
914 max(xas_try_split_min_order(
915 split_order),
916 forder);
917 }
918 xas_reset(&xas);
919 }
920 if (shadowp)
921 *shadowp = old;
922 }
923
924 xas_store(&xas, folio);
925 if (xas_error(&xas))
926 goto unlock;
927
928 mapping->nrpages += nr;
929
930 /* hugetlb pages do not participate in page cache accounting */
931 if (!huge) {
932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
933 if (folio_test_pmd_mappable(folio))
934 __lruvec_stat_mod_folio(folio,
935 NR_FILE_THPS, nr);
936 }
937
938 unlock:
939 xas_unlock_irq(&xas);
940
941 if (!xas_nomem(&xas, gfp))
942 break;
943 }
944
945 if (xas_error(&xas))
946 goto error;
947
948 trace_mm_filemap_add_to_page_cache(folio);
949 return 0;
950 error:
951 folio->mapping = NULL;
952 /* Leave folio->index set: truncation relies upon it */
953 folio_put_refs(folio, nr);
954 return xas_error(&xas);
955 }
956 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
957
filemap_add_folio(struct address_space * mapping,struct folio * folio,pgoff_t index,gfp_t gfp)958 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
959 pgoff_t index, gfp_t gfp)
960 {
961 void *shadow = NULL;
962 int ret;
963
964 ret = mem_cgroup_charge(folio, NULL, gfp);
965 if (ret)
966 return ret;
967
968 __folio_set_locked(folio);
969 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
970 if (unlikely(ret)) {
971 mem_cgroup_uncharge(folio);
972 __folio_clear_locked(folio);
973 } else {
974 /*
975 * The folio might have been evicted from cache only
976 * recently, in which case it should be activated like
977 * any other repeatedly accessed folio.
978 * The exception is folios getting rewritten; evicting other
979 * data from the working set, only to cache data that will
980 * get overwritten with something else, is a waste of memory.
981 */
982 WARN_ON_ONCE(folio_test_active(folio));
983 if (!(gfp & __GFP_WRITE) && shadow)
984 workingset_refault(folio, shadow);
985 folio_add_lru(folio);
986 }
987 return ret;
988 }
989 EXPORT_SYMBOL_GPL(filemap_add_folio);
990
991 #ifdef CONFIG_NUMA
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)992 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
993 {
994 int n;
995 struct folio *folio;
996
997 if (cpuset_do_page_mem_spread()) {
998 unsigned int cpuset_mems_cookie;
999 do {
1000 cpuset_mems_cookie = read_mems_allowed_begin();
1001 n = cpuset_mem_spread_node();
1002 folio = __folio_alloc_node_noprof(gfp, order, n);
1003 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1004
1005 return folio;
1006 }
1007 return folio_alloc_noprof(gfp, order);
1008 }
1009 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1010 #endif
1011
1012 /*
1013 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1014 *
1015 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1016 *
1017 * @mapping1: the first mapping to lock
1018 * @mapping2: the second mapping to lock
1019 */
filemap_invalidate_lock_two(struct address_space * mapping1,struct address_space * mapping2)1020 void filemap_invalidate_lock_two(struct address_space *mapping1,
1021 struct address_space *mapping2)
1022 {
1023 if (mapping1 > mapping2)
1024 swap(mapping1, mapping2);
1025 if (mapping1)
1026 down_write(&mapping1->invalidate_lock);
1027 if (mapping2 && mapping1 != mapping2)
1028 down_write_nested(&mapping2->invalidate_lock, 1);
1029 }
1030 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1031
1032 /*
1033 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1034 *
1035 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1036 *
1037 * @mapping1: the first mapping to unlock
1038 * @mapping2: the second mapping to unlock
1039 */
filemap_invalidate_unlock_two(struct address_space * mapping1,struct address_space * mapping2)1040 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1041 struct address_space *mapping2)
1042 {
1043 if (mapping1)
1044 up_write(&mapping1->invalidate_lock);
1045 if (mapping2 && mapping1 != mapping2)
1046 up_write(&mapping2->invalidate_lock);
1047 }
1048 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1049
1050 /*
1051 * In order to wait for pages to become available there must be
1052 * waitqueues associated with pages. By using a hash table of
1053 * waitqueues where the bucket discipline is to maintain all
1054 * waiters on the same queue and wake all when any of the pages
1055 * become available, and for the woken contexts to check to be
1056 * sure the appropriate page became available, this saves space
1057 * at a cost of "thundering herd" phenomena during rare hash
1058 * collisions.
1059 */
1060 #define PAGE_WAIT_TABLE_BITS 8
1061 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1062 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1063
folio_waitqueue(struct folio * folio)1064 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1065 {
1066 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1067 }
1068
1069 /* How many times do we accept lock stealing from under a waiter? */
1070 static int sysctl_page_lock_unfairness = 5;
1071 static const struct ctl_table filemap_sysctl_table[] = {
1072 {
1073 .procname = "page_lock_unfairness",
1074 .data = &sysctl_page_lock_unfairness,
1075 .maxlen = sizeof(sysctl_page_lock_unfairness),
1076 .mode = 0644,
1077 .proc_handler = proc_dointvec_minmax,
1078 .extra1 = SYSCTL_ZERO,
1079 }
1080 };
1081
pagecache_init(void)1082 void __init pagecache_init(void)
1083 {
1084 int i;
1085
1086 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1087 init_waitqueue_head(&folio_wait_table[i]);
1088
1089 page_writeback_init();
1090 register_sysctl_init("vm", filemap_sysctl_table);
1091 }
1092
1093 /*
1094 * The page wait code treats the "wait->flags" somewhat unusually, because
1095 * we have multiple different kinds of waits, not just the usual "exclusive"
1096 * one.
1097 *
1098 * We have:
1099 *
1100 * (a) no special bits set:
1101 *
1102 * We're just waiting for the bit to be released, and when a waker
1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1104 * and remove it from the wait queue.
1105 *
1106 * Simple and straightforward.
1107 *
1108 * (b) WQ_FLAG_EXCLUSIVE:
1109 *
1110 * The waiter is waiting to get the lock, and only one waiter should
1111 * be woken up to avoid any thundering herd behavior. We'll set the
1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1113 *
1114 * This is the traditional exclusive wait.
1115 *
1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1117 *
1118 * The waiter is waiting to get the bit, and additionally wants the
1119 * lock to be transferred to it for fair lock behavior. If the lock
1120 * cannot be taken, we stop walking the wait queue without waking
1121 * the waiter.
1122 *
1123 * This is the "fair lock handoff" case, and in addition to setting
1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1125 * that it now has the lock.
1126 */
wake_page_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1128 {
1129 unsigned int flags;
1130 struct wait_page_key *key = arg;
1131 struct wait_page_queue *wait_page
1132 = container_of(wait, struct wait_page_queue, wait);
1133
1134 if (!wake_page_match(wait_page, key))
1135 return 0;
1136
1137 /*
1138 * If it's a lock handoff wait, we get the bit for it, and
1139 * stop walking (and do not wake it up) if we can't.
1140 */
1141 flags = wait->flags;
1142 if (flags & WQ_FLAG_EXCLUSIVE) {
1143 if (test_bit(key->bit_nr, &key->folio->flags))
1144 return -1;
1145 if (flags & WQ_FLAG_CUSTOM) {
1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1147 return -1;
1148 flags |= WQ_FLAG_DONE;
1149 }
1150 }
1151
1152 /*
1153 * We are holding the wait-queue lock, but the waiter that
1154 * is waiting for this will be checking the flags without
1155 * any locking.
1156 *
1157 * So update the flags atomically, and wake up the waiter
1158 * afterwards to avoid any races. This store-release pairs
1159 * with the load-acquire in folio_wait_bit_common().
1160 */
1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1162 wake_up_state(wait->private, mode);
1163
1164 /*
1165 * Ok, we have successfully done what we're waiting for,
1166 * and we can unconditionally remove the wait entry.
1167 *
1168 * Note that this pairs with the "finish_wait()" in the
1169 * waiter, and has to be the absolute last thing we do.
1170 * After this list_del_init(&wait->entry) the wait entry
1171 * might be de-allocated and the process might even have
1172 * exited.
1173 */
1174 list_del_init_careful(&wait->entry);
1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1176 }
1177
folio_wake_bit(struct folio * folio,int bit_nr)1178 static void folio_wake_bit(struct folio *folio, int bit_nr)
1179 {
1180 wait_queue_head_t *q = folio_waitqueue(folio);
1181 struct wait_page_key key;
1182 unsigned long flags;
1183
1184 key.folio = folio;
1185 key.bit_nr = bit_nr;
1186 key.page_match = 0;
1187
1188 spin_lock_irqsave(&q->lock, flags);
1189 __wake_up_locked_key(q, TASK_NORMAL, &key);
1190
1191 /*
1192 * It's possible to miss clearing waiters here, when we woke our page
1193 * waiters, but the hashed waitqueue has waiters for other pages on it.
1194 * That's okay, it's a rare case. The next waker will clear it.
1195 *
1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1197 * other), the flag may be cleared in the course of freeing the page;
1198 * but that is not required for correctness.
1199 */
1200 if (!waitqueue_active(q) || !key.page_match)
1201 folio_clear_waiters(folio);
1202
1203 spin_unlock_irqrestore(&q->lock, flags);
1204 }
1205
1206 /*
1207 * A choice of three behaviors for folio_wait_bit_common():
1208 */
1209 enum behavior {
1210 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1211 * __folio_lock() waiting on then setting PG_locked.
1212 */
1213 SHARED, /* Hold ref to page and check the bit when woken, like
1214 * folio_wait_writeback() waiting on PG_writeback.
1215 */
1216 DROP, /* Drop ref to page before wait, no check when woken,
1217 * like folio_put_wait_locked() on PG_locked.
1218 */
1219 };
1220
1221 /*
1222 * Attempt to check (or get) the folio flag, and mark us done
1223 * if successful.
1224 */
folio_trylock_flag(struct folio * folio,int bit_nr,struct wait_queue_entry * wait)1225 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1226 struct wait_queue_entry *wait)
1227 {
1228 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1229 if (test_and_set_bit(bit_nr, &folio->flags))
1230 return false;
1231 } else if (test_bit(bit_nr, &folio->flags))
1232 return false;
1233
1234 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1235 return true;
1236 }
1237
folio_wait_bit_common(struct folio * folio,int bit_nr,int state,enum behavior behavior)1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1239 int state, enum behavior behavior)
1240 {
1241 wait_queue_head_t *q = folio_waitqueue(folio);
1242 int unfairness = sysctl_page_lock_unfairness;
1243 struct wait_page_queue wait_page;
1244 wait_queue_entry_t *wait = &wait_page.wait;
1245 bool thrashing = false;
1246 unsigned long pflags;
1247 bool in_thrashing;
1248
1249 if (bit_nr == PG_locked &&
1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1251 delayacct_thrashing_start(&in_thrashing);
1252 psi_memstall_enter(&pflags);
1253 thrashing = true;
1254 }
1255
1256 init_wait(wait);
1257 wait->func = wake_page_function;
1258 wait_page.folio = folio;
1259 wait_page.bit_nr = bit_nr;
1260
1261 repeat:
1262 wait->flags = 0;
1263 if (behavior == EXCLUSIVE) {
1264 wait->flags = WQ_FLAG_EXCLUSIVE;
1265 if (--unfairness < 0)
1266 wait->flags |= WQ_FLAG_CUSTOM;
1267 }
1268
1269 /*
1270 * Do one last check whether we can get the
1271 * page bit synchronously.
1272 *
1273 * Do the folio_set_waiters() marking before that
1274 * to let any waker we _just_ missed know they
1275 * need to wake us up (otherwise they'll never
1276 * even go to the slow case that looks at the
1277 * page queue), and add ourselves to the wait
1278 * queue if we need to sleep.
1279 *
1280 * This part needs to be done under the queue
1281 * lock to avoid races.
1282 */
1283 spin_lock_irq(&q->lock);
1284 folio_set_waiters(folio);
1285 if (!folio_trylock_flag(folio, bit_nr, wait))
1286 __add_wait_queue_entry_tail(q, wait);
1287 spin_unlock_irq(&q->lock);
1288
1289 /*
1290 * From now on, all the logic will be based on
1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1292 * see whether the page bit testing has already
1293 * been done by the wake function.
1294 *
1295 * We can drop our reference to the folio.
1296 */
1297 if (behavior == DROP)
1298 folio_put(folio);
1299
1300 /*
1301 * Note that until the "finish_wait()", or until
1302 * we see the WQ_FLAG_WOKEN flag, we need to
1303 * be very careful with the 'wait->flags', because
1304 * we may race with a waker that sets them.
1305 */
1306 for (;;) {
1307 unsigned int flags;
1308
1309 set_current_state(state);
1310
1311 /* Loop until we've been woken or interrupted */
1312 flags = smp_load_acquire(&wait->flags);
1313 if (!(flags & WQ_FLAG_WOKEN)) {
1314 if (signal_pending_state(state, current))
1315 break;
1316
1317 io_schedule();
1318 continue;
1319 }
1320
1321 /* If we were non-exclusive, we're done */
1322 if (behavior != EXCLUSIVE)
1323 break;
1324
1325 /* If the waker got the lock for us, we're done */
1326 if (flags & WQ_FLAG_DONE)
1327 break;
1328
1329 /*
1330 * Otherwise, if we're getting the lock, we need to
1331 * try to get it ourselves.
1332 *
1333 * And if that fails, we'll have to retry this all.
1334 */
1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1336 goto repeat;
1337
1338 wait->flags |= WQ_FLAG_DONE;
1339 break;
1340 }
1341
1342 /*
1343 * If a signal happened, this 'finish_wait()' may remove the last
1344 * waiter from the wait-queues, but the folio waiters bit will remain
1345 * set. That's ok. The next wakeup will take care of it, and trying
1346 * to do it here would be difficult and prone to races.
1347 */
1348 finish_wait(q, wait);
1349
1350 if (thrashing) {
1351 delayacct_thrashing_end(&in_thrashing);
1352 psi_memstall_leave(&pflags);
1353 }
1354
1355 /*
1356 * NOTE! The wait->flags weren't stable until we've done the
1357 * 'finish_wait()', and we could have exited the loop above due
1358 * to a signal, and had a wakeup event happen after the signal
1359 * test but before the 'finish_wait()'.
1360 *
1361 * So only after the finish_wait() can we reliably determine
1362 * if we got woken up or not, so we can now figure out the final
1363 * return value based on that state without races.
1364 *
1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1366 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1367 */
1368 if (behavior == EXCLUSIVE)
1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1370
1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1372 }
1373
1374 #ifdef CONFIG_MIGRATION
1375 /**
1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1377 * @entry: migration swap entry.
1378 * @ptl: already locked ptl. This function will drop the lock.
1379 *
1380 * Wait for a migration entry referencing the given page to be removed. This is
1381 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except
1382 * this can be called without taking a reference on the page. Instead this
1383 * should be called while holding the ptl for the migration entry referencing
1384 * the page.
1385 *
1386 * Returns after unlocking the ptl.
1387 *
1388 * This follows the same logic as folio_wait_bit_common() so see the comments
1389 * there.
1390 */
migration_entry_wait_on_locked(swp_entry_t entry,spinlock_t * ptl)1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1392 __releases(ptl)
1393 {
1394 struct wait_page_queue wait_page;
1395 wait_queue_entry_t *wait = &wait_page.wait;
1396 bool thrashing = false;
1397 unsigned long pflags;
1398 bool in_thrashing;
1399 wait_queue_head_t *q;
1400 struct folio *folio = pfn_swap_entry_folio(entry);
1401
1402 q = folio_waitqueue(folio);
1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1404 delayacct_thrashing_start(&in_thrashing);
1405 psi_memstall_enter(&pflags);
1406 thrashing = true;
1407 }
1408
1409 init_wait(wait);
1410 wait->func = wake_page_function;
1411 wait_page.folio = folio;
1412 wait_page.bit_nr = PG_locked;
1413 wait->flags = 0;
1414
1415 spin_lock_irq(&q->lock);
1416 folio_set_waiters(folio);
1417 if (!folio_trylock_flag(folio, PG_locked, wait))
1418 __add_wait_queue_entry_tail(q, wait);
1419 spin_unlock_irq(&q->lock);
1420
1421 /*
1422 * If a migration entry exists for the page the migration path must hold
1423 * a valid reference to the page, and it must take the ptl to remove the
1424 * migration entry. So the page is valid until the ptl is dropped.
1425 */
1426 spin_unlock(ptl);
1427
1428 for (;;) {
1429 unsigned int flags;
1430
1431 set_current_state(TASK_UNINTERRUPTIBLE);
1432
1433 /* Loop until we've been woken or interrupted */
1434 flags = smp_load_acquire(&wait->flags);
1435 if (!(flags & WQ_FLAG_WOKEN)) {
1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1437 break;
1438
1439 io_schedule();
1440 continue;
1441 }
1442 break;
1443 }
1444
1445 finish_wait(q, wait);
1446
1447 if (thrashing) {
1448 delayacct_thrashing_end(&in_thrashing);
1449 psi_memstall_leave(&pflags);
1450 }
1451 }
1452 #endif
1453
folio_wait_bit(struct folio * folio,int bit_nr)1454 void folio_wait_bit(struct folio *folio, int bit_nr)
1455 {
1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1457 }
1458 EXPORT_SYMBOL(folio_wait_bit);
1459
folio_wait_bit_killable(struct folio * folio,int bit_nr)1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1461 {
1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1463 }
1464 EXPORT_SYMBOL(folio_wait_bit_killable);
1465
1466 /**
1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1468 * @folio: The folio to wait for.
1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1470 *
1471 * The caller should hold a reference on @folio. They expect the page to
1472 * become unlocked relatively soon, but do not wish to hold up migration
1473 * (for example) by holding the reference while waiting for the folio to
1474 * come unlocked. After this function returns, the caller should not
1475 * dereference @folio.
1476 *
1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1478 */
folio_put_wait_locked(struct folio * folio,int state)1479 static int folio_put_wait_locked(struct folio *folio, int state)
1480 {
1481 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1482 }
1483
1484 /**
1485 * folio_unlock - Unlock a locked folio.
1486 * @folio: The folio.
1487 *
1488 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1489 *
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1492 */
folio_unlock(struct folio * folio)1493 void folio_unlock(struct folio *folio)
1494 {
1495 /* Bit 7 allows x86 to check the byte's sign bit */
1496 BUILD_BUG_ON(PG_waiters != 7);
1497 BUILD_BUG_ON(PG_locked > 7);
1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1500 folio_wake_bit(folio, PG_locked);
1501 }
1502 EXPORT_SYMBOL(folio_unlock);
1503
1504 /**
1505 * folio_end_read - End read on a folio.
1506 * @folio: The folio.
1507 * @success: True if all reads completed successfully.
1508 *
1509 * When all reads against a folio have completed, filesystems should
1510 * call this function to let the pagecache know that no more reads
1511 * are outstanding. This will unlock the folio and wake up any thread
1512 * sleeping on the lock. The folio will also be marked uptodate if all
1513 * reads succeeded.
1514 *
1515 * Context: May be called from interrupt or process context. May not be
1516 * called from NMI context.
1517 */
folio_end_read(struct folio * folio,bool success)1518 void folio_end_read(struct folio *folio, bool success)
1519 {
1520 unsigned long mask = 1 << PG_locked;
1521
1522 /* Must be in bottom byte for x86 to work */
1523 BUILD_BUG_ON(PG_uptodate > 7);
1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio);
1526
1527 if (likely(success))
1528 mask |= 1 << PG_uptodate;
1529 if (folio_xor_flags_has_waiters(folio, mask))
1530 folio_wake_bit(folio, PG_locked);
1531 }
1532 EXPORT_SYMBOL(folio_end_read);
1533
1534 /**
1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1536 * @folio: The folio.
1537 *
1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1539 * it. The folio reference held for PG_private_2 being set is released.
1540 *
1541 * This is, for example, used when a netfs folio is being written to a local
1542 * disk cache, thereby allowing writes to the cache for the same folio to be
1543 * serialised.
1544 */
folio_end_private_2(struct folio * folio)1545 void folio_end_private_2(struct folio *folio)
1546 {
1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1549 folio_wake_bit(folio, PG_private_2);
1550 folio_put(folio);
1551 }
1552 EXPORT_SYMBOL(folio_end_private_2);
1553
1554 /**
1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1556 * @folio: The folio to wait on.
1557 *
1558 * Wait for PG_private_2 to be cleared on a folio.
1559 */
folio_wait_private_2(struct folio * folio)1560 void folio_wait_private_2(struct folio *folio)
1561 {
1562 while (folio_test_private_2(folio))
1563 folio_wait_bit(folio, PG_private_2);
1564 }
1565 EXPORT_SYMBOL(folio_wait_private_2);
1566
1567 /**
1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1569 * @folio: The folio to wait on.
1570 *
1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1572 * received by the calling task.
1573 *
1574 * Return:
1575 * - 0 if successful.
1576 * - -EINTR if a fatal signal was encountered.
1577 */
folio_wait_private_2_killable(struct folio * folio)1578 int folio_wait_private_2_killable(struct folio *folio)
1579 {
1580 int ret = 0;
1581
1582 while (folio_test_private_2(folio)) {
1583 ret = folio_wait_bit_killable(folio, PG_private_2);
1584 if (ret < 0)
1585 break;
1586 }
1587
1588 return ret;
1589 }
1590 EXPORT_SYMBOL(folio_wait_private_2_killable);
1591
filemap_end_dropbehind(struct folio * folio)1592 static void filemap_end_dropbehind(struct folio *folio)
1593 {
1594 struct address_space *mapping = folio->mapping;
1595
1596 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1597
1598 if (folio_test_writeback(folio) || folio_test_dirty(folio))
1599 return;
1600 if (!folio_test_clear_dropbehind(folio))
1601 return;
1602 if (mapping)
1603 folio_unmap_invalidate(mapping, folio, 0);
1604 }
1605
1606 /*
1607 * If folio was marked as dropbehind, then pages should be dropped when writeback
1608 * completes. Do that now. If we fail, it's likely because of a big folio -
1609 * just reset dropbehind for that case and latter completions should invalidate.
1610 */
filemap_end_dropbehind_write(struct folio * folio)1611 static void filemap_end_dropbehind_write(struct folio *folio)
1612 {
1613 if (!folio_test_dropbehind(folio))
1614 return;
1615
1616 /*
1617 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback,
1618 * but can happen if normal writeback just happens to find dirty folios
1619 * that were created as part of uncached writeback, and that writeback
1620 * would otherwise not need non-IRQ handling. Just skip the
1621 * invalidation in that case.
1622 */
1623 if (in_task() && folio_trylock(folio)) {
1624 filemap_end_dropbehind(folio);
1625 folio_unlock(folio);
1626 }
1627 }
1628
1629 /**
1630 * folio_end_writeback - End writeback against a folio.
1631 * @folio: The folio.
1632 *
1633 * The folio must actually be under writeback.
1634 *
1635 * Context: May be called from process or interrupt context.
1636 */
folio_end_writeback(struct folio * folio)1637 void folio_end_writeback(struct folio *folio)
1638 {
1639 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1640
1641 /*
1642 * folio_test_clear_reclaim() could be used here but it is an
1643 * atomic operation and overkill in this particular case. Failing
1644 * to shuffle a folio marked for immediate reclaim is too mild
1645 * a gain to justify taking an atomic operation penalty at the
1646 * end of every folio writeback.
1647 */
1648 if (folio_test_reclaim(folio)) {
1649 folio_clear_reclaim(folio);
1650 folio_rotate_reclaimable(folio);
1651 }
1652
1653 /*
1654 * Writeback does not hold a folio reference of its own, relying
1655 * on truncation to wait for the clearing of PG_writeback.
1656 * But here we must make sure that the folio is not freed and
1657 * reused before the folio_wake_bit().
1658 */
1659 folio_get(folio);
1660 if (__folio_end_writeback(folio))
1661 folio_wake_bit(folio, PG_writeback);
1662
1663 filemap_end_dropbehind_write(folio);
1664 acct_reclaim_writeback(folio);
1665 folio_put(folio);
1666 }
1667 EXPORT_SYMBOL(folio_end_writeback);
1668
1669 /**
1670 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1671 * @folio: The folio to lock
1672 */
__folio_lock(struct folio * folio)1673 void __folio_lock(struct folio *folio)
1674 {
1675 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1676 EXCLUSIVE);
1677 }
1678 EXPORT_SYMBOL(__folio_lock);
1679
__folio_lock_killable(struct folio * folio)1680 int __folio_lock_killable(struct folio *folio)
1681 {
1682 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1683 EXCLUSIVE);
1684 }
1685 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1686
__folio_lock_async(struct folio * folio,struct wait_page_queue * wait)1687 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1688 {
1689 struct wait_queue_head *q = folio_waitqueue(folio);
1690 int ret;
1691
1692 wait->folio = folio;
1693 wait->bit_nr = PG_locked;
1694
1695 spin_lock_irq(&q->lock);
1696 __add_wait_queue_entry_tail(q, &wait->wait);
1697 folio_set_waiters(folio);
1698 ret = !folio_trylock(folio);
1699 /*
1700 * If we were successful now, we know we're still on the
1701 * waitqueue as we're still under the lock. This means it's
1702 * safe to remove and return success, we know the callback
1703 * isn't going to trigger.
1704 */
1705 if (!ret)
1706 __remove_wait_queue(q, &wait->wait);
1707 else
1708 ret = -EIOCBQUEUED;
1709 spin_unlock_irq(&q->lock);
1710 return ret;
1711 }
1712
1713 /*
1714 * Return values:
1715 * 0 - folio is locked.
1716 * non-zero - folio is not locked.
1717 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1718 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1719 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1720 *
1721 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1722 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1723 */
__folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1724 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1725 {
1726 unsigned int flags = vmf->flags;
1727
1728 if (fault_flag_allow_retry_first(flags)) {
1729 /*
1730 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1731 * released even though returning VM_FAULT_RETRY.
1732 */
1733 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1734 return VM_FAULT_RETRY;
1735
1736 release_fault_lock(vmf);
1737 if (flags & FAULT_FLAG_KILLABLE)
1738 folio_wait_locked_killable(folio);
1739 else
1740 folio_wait_locked(folio);
1741 return VM_FAULT_RETRY;
1742 }
1743 if (flags & FAULT_FLAG_KILLABLE) {
1744 bool ret;
1745
1746 ret = __folio_lock_killable(folio);
1747 if (ret) {
1748 release_fault_lock(vmf);
1749 return VM_FAULT_RETRY;
1750 }
1751 } else {
1752 __folio_lock(folio);
1753 }
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * page_cache_next_miss() - Find the next gap in the page cache.
1760 * @mapping: Mapping.
1761 * @index: Index.
1762 * @max_scan: Maximum range to search.
1763 *
1764 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1765 * gap with the lowest index.
1766 *
1767 * This function may be called under the rcu_read_lock. However, this will
1768 * not atomically search a snapshot of the cache at a single point in time.
1769 * For example, if a gap is created at index 5, then subsequently a gap is
1770 * created at index 10, page_cache_next_miss covering both indices may
1771 * return 10 if called under the rcu_read_lock.
1772 *
1773 * Return: The index of the gap if found, otherwise an index outside the
1774 * range specified (in which case 'return - index >= max_scan' will be true).
1775 * In the rare case of index wrap-around, 0 will be returned.
1776 */
page_cache_next_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1777 pgoff_t page_cache_next_miss(struct address_space *mapping,
1778 pgoff_t index, unsigned long max_scan)
1779 {
1780 XA_STATE(xas, &mapping->i_pages, index);
1781 unsigned long nr = max_scan;
1782
1783 while (nr--) {
1784 void *entry = xas_next(&xas);
1785 if (!entry || xa_is_value(entry))
1786 return xas.xa_index;
1787 if (xas.xa_index == 0)
1788 return 0;
1789 }
1790
1791 return index + max_scan;
1792 }
1793 EXPORT_SYMBOL(page_cache_next_miss);
1794
1795 /**
1796 * page_cache_prev_miss() - Find the previous gap in the page cache.
1797 * @mapping: Mapping.
1798 * @index: Index.
1799 * @max_scan: Maximum range to search.
1800 *
1801 * Search the range [max(index - max_scan + 1, 0), index] for the
1802 * gap with the highest index.
1803 *
1804 * This function may be called under the rcu_read_lock. However, this will
1805 * not atomically search a snapshot of the cache at a single point in time.
1806 * For example, if a gap is created at index 10, then subsequently a gap is
1807 * created at index 5, page_cache_prev_miss() covering both indices may
1808 * return 5 if called under the rcu_read_lock.
1809 *
1810 * Return: The index of the gap if found, otherwise an index outside the
1811 * range specified (in which case 'index - return >= max_scan' will be true).
1812 * In the rare case of wrap-around, ULONG_MAX will be returned.
1813 */
page_cache_prev_miss(struct address_space * mapping,pgoff_t index,unsigned long max_scan)1814 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1815 pgoff_t index, unsigned long max_scan)
1816 {
1817 XA_STATE(xas, &mapping->i_pages, index);
1818
1819 while (max_scan--) {
1820 void *entry = xas_prev(&xas);
1821 if (!entry || xa_is_value(entry))
1822 break;
1823 if (xas.xa_index == ULONG_MAX)
1824 break;
1825 }
1826
1827 return xas.xa_index;
1828 }
1829 EXPORT_SYMBOL(page_cache_prev_miss);
1830
1831 /*
1832 * Lockless page cache protocol:
1833 * On the lookup side:
1834 * 1. Load the folio from i_pages
1835 * 2. Increment the refcount if it's not zero
1836 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1837 *
1838 * On the removal side:
1839 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1840 * B. Remove the page from i_pages
1841 * C. Return the page to the page allocator
1842 *
1843 * This means that any page may have its reference count temporarily
1844 * increased by a speculative page cache (or GUP-fast) lookup as it can
1845 * be allocated by another user before the RCU grace period expires.
1846 * Because the refcount temporarily acquired here may end up being the
1847 * last refcount on the page, any page allocation must be freeable by
1848 * folio_put().
1849 */
1850
1851 /*
1852 * filemap_get_entry - Get a page cache entry.
1853 * @mapping: the address_space to search
1854 * @index: The page cache index.
1855 *
1856 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1857 * it is returned with an increased refcount. If it is a shadow entry
1858 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1859 * it is returned without further action.
1860 *
1861 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1862 */
filemap_get_entry(struct address_space * mapping,pgoff_t index)1863 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1864 {
1865 XA_STATE(xas, &mapping->i_pages, index);
1866 struct folio *folio;
1867
1868 rcu_read_lock();
1869 repeat:
1870 xas_reset(&xas);
1871 folio = xas_load(&xas);
1872 if (xas_retry(&xas, folio))
1873 goto repeat;
1874 /*
1875 * A shadow entry of a recently evicted page, or a swap entry from
1876 * shmem/tmpfs. Return it without attempting to raise page count.
1877 */
1878 if (!folio || xa_is_value(folio))
1879 goto out;
1880
1881 if (!folio_try_get(folio))
1882 goto repeat;
1883
1884 if (unlikely(folio != xas_reload(&xas))) {
1885 folio_put(folio);
1886 goto repeat;
1887 }
1888 out:
1889 rcu_read_unlock();
1890
1891 return folio;
1892 }
1893
1894 /**
1895 * __filemap_get_folio - Find and get a reference to a folio.
1896 * @mapping: The address_space to search.
1897 * @index: The page index.
1898 * @fgp_flags: %FGP flags modify how the folio is returned.
1899 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1900 *
1901 * Looks up the page cache entry at @mapping & @index.
1902 *
1903 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1904 * if the %GFP flags specified for %FGP_CREAT are atomic.
1905 *
1906 * If this function returns a folio, it is returned with an increased refcount.
1907 *
1908 * Return: The found folio or an ERR_PTR() otherwise.
1909 */
__filemap_get_folio(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp)1910 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1911 fgf_t fgp_flags, gfp_t gfp)
1912 {
1913 struct folio *folio;
1914
1915 repeat:
1916 folio = filemap_get_entry(mapping, index);
1917 if (xa_is_value(folio))
1918 folio = NULL;
1919 if (!folio)
1920 goto no_page;
1921
1922 if (fgp_flags & FGP_LOCK) {
1923 if (fgp_flags & FGP_NOWAIT) {
1924 if (!folio_trylock(folio)) {
1925 folio_put(folio);
1926 return ERR_PTR(-EAGAIN);
1927 }
1928 } else {
1929 folio_lock(folio);
1930 }
1931
1932 /* Has the page been truncated? */
1933 if (unlikely(folio->mapping != mapping)) {
1934 folio_unlock(folio);
1935 folio_put(folio);
1936 goto repeat;
1937 }
1938 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1939 }
1940
1941 if (fgp_flags & FGP_ACCESSED)
1942 folio_mark_accessed(folio);
1943 else if (fgp_flags & FGP_WRITE) {
1944 /* Clear idle flag for buffer write */
1945 if (folio_test_idle(folio))
1946 folio_clear_idle(folio);
1947 }
1948
1949 if (fgp_flags & FGP_STABLE)
1950 folio_wait_stable(folio);
1951 no_page:
1952 if (!folio && (fgp_flags & FGP_CREAT)) {
1953 unsigned int min_order = mapping_min_folio_order(mapping);
1954 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1955 int err;
1956 index = mapping_align_index(mapping, index);
1957
1958 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1959 gfp |= __GFP_WRITE;
1960 if (fgp_flags & FGP_NOFS)
1961 gfp &= ~__GFP_FS;
1962 if (fgp_flags & FGP_NOWAIT) {
1963 gfp &= ~GFP_KERNEL;
1964 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1965 }
1966 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1967 fgp_flags |= FGP_LOCK;
1968
1969 if (order > mapping_max_folio_order(mapping))
1970 order = mapping_max_folio_order(mapping);
1971 /* If we're not aligned, allocate a smaller folio */
1972 if (index & ((1UL << order) - 1))
1973 order = __ffs(index);
1974
1975 do {
1976 gfp_t alloc_gfp = gfp;
1977
1978 err = -ENOMEM;
1979 if (order > min_order)
1980 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1981 folio = filemap_alloc_folio(alloc_gfp, order);
1982 if (!folio)
1983 continue;
1984
1985 /* Init accessed so avoid atomic mark_page_accessed later */
1986 if (fgp_flags & FGP_ACCESSED)
1987 __folio_set_referenced(folio);
1988 if (fgp_flags & FGP_DONTCACHE)
1989 __folio_set_dropbehind(folio);
1990
1991 err = filemap_add_folio(mapping, folio, index, gfp);
1992 if (!err)
1993 break;
1994 folio_put(folio);
1995 folio = NULL;
1996 } while (order-- > min_order);
1997
1998 if (err == -EEXIST)
1999 goto repeat;
2000 if (err) {
2001 /*
2002 * When NOWAIT I/O fails to allocate folios this could
2003 * be due to a nonblocking memory allocation and not
2004 * because the system actually is out of memory.
2005 * Return -EAGAIN so that there caller retries in a
2006 * blocking fashion instead of propagating -ENOMEM
2007 * to the application.
2008 */
2009 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM)
2010 err = -EAGAIN;
2011 return ERR_PTR(err);
2012 }
2013 /*
2014 * filemap_add_folio locks the page, and for mmap
2015 * we expect an unlocked page.
2016 */
2017 if (folio && (fgp_flags & FGP_FOR_MMAP))
2018 folio_unlock(folio);
2019 }
2020
2021 if (!folio)
2022 return ERR_PTR(-ENOENT);
2023 /* not an uncached lookup, clear uncached if set */
2024 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE))
2025 folio_clear_dropbehind(folio);
2026 return folio;
2027 }
2028 EXPORT_SYMBOL(__filemap_get_folio);
2029
find_get_entry(struct xa_state * xas,pgoff_t max,xa_mark_t mark)2030 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
2031 xa_mark_t mark)
2032 {
2033 struct folio *folio;
2034
2035 retry:
2036 if (mark == XA_PRESENT)
2037 folio = xas_find(xas, max);
2038 else
2039 folio = xas_find_marked(xas, max, mark);
2040
2041 if (xas_retry(xas, folio))
2042 goto retry;
2043 /*
2044 * A shadow entry of a recently evicted page, a swap
2045 * entry from shmem/tmpfs or a DAX entry. Return it
2046 * without attempting to raise page count.
2047 */
2048 if (!folio || xa_is_value(folio))
2049 return folio;
2050
2051 if (!folio_try_get(folio))
2052 goto reset;
2053
2054 if (unlikely(folio != xas_reload(xas))) {
2055 folio_put(folio);
2056 goto reset;
2057 }
2058
2059 return folio;
2060 reset:
2061 xas_reset(xas);
2062 goto retry;
2063 }
2064
2065 /**
2066 * find_get_entries - gang pagecache lookup
2067 * @mapping: The address_space to search
2068 * @start: The starting page cache index
2069 * @end: The final page index (inclusive).
2070 * @fbatch: Where the resulting entries are placed.
2071 * @indices: The cache indices corresponding to the entries in @entries
2072 *
2073 * find_get_entries() will search for and return a batch of entries in
2074 * the mapping. The entries are placed in @fbatch. find_get_entries()
2075 * takes a reference on any actual folios it returns.
2076 *
2077 * The entries have ascending indexes. The indices may not be consecutive
2078 * due to not-present entries or large folios.
2079 *
2080 * Any shadow entries of evicted folios, or swap entries from
2081 * shmem/tmpfs, are included in the returned array.
2082 *
2083 * Return: The number of entries which were found.
2084 */
find_get_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2085 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2086 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2087 {
2088 XA_STATE(xas, &mapping->i_pages, *start);
2089 struct folio *folio;
2090
2091 rcu_read_lock();
2092 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2093 indices[fbatch->nr] = xas.xa_index;
2094 if (!folio_batch_add(fbatch, folio))
2095 break;
2096 }
2097
2098 if (folio_batch_count(fbatch)) {
2099 unsigned long nr;
2100 int idx = folio_batch_count(fbatch) - 1;
2101
2102 folio = fbatch->folios[idx];
2103 if (!xa_is_value(folio))
2104 nr = folio_nr_pages(folio);
2105 else
2106 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2107 *start = round_down(indices[idx] + nr, nr);
2108 }
2109 rcu_read_unlock();
2110
2111 return folio_batch_count(fbatch);
2112 }
2113
2114 /**
2115 * find_lock_entries - Find a batch of pagecache entries.
2116 * @mapping: The address_space to search.
2117 * @start: The starting page cache index.
2118 * @end: The final page index (inclusive).
2119 * @fbatch: Where the resulting entries are placed.
2120 * @indices: The cache indices of the entries in @fbatch.
2121 *
2122 * find_lock_entries() will return a batch of entries from @mapping.
2123 * Swap, shadow and DAX entries are included. Folios are returned
2124 * locked and with an incremented refcount. Folios which are locked
2125 * by somebody else or under writeback are skipped. Folios which are
2126 * partially outside the range are not returned.
2127 *
2128 * The entries have ascending indexes. The indices may not be consecutive
2129 * due to not-present entries, large folios, folios which could not be
2130 * locked or folios under writeback.
2131 *
2132 * Return: The number of entries which were found.
2133 */
find_lock_entries(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch,pgoff_t * indices)2134 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2135 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2136 {
2137 XA_STATE(xas, &mapping->i_pages, *start);
2138 struct folio *folio;
2139
2140 rcu_read_lock();
2141 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2142 unsigned long base;
2143 unsigned long nr;
2144
2145 if (!xa_is_value(folio)) {
2146 nr = folio_nr_pages(folio);
2147 base = folio->index;
2148 /* Omit large folio which begins before the start */
2149 if (base < *start)
2150 goto put;
2151 /* Omit large folio which extends beyond the end */
2152 if (base + nr - 1 > end)
2153 goto put;
2154 if (!folio_trylock(folio))
2155 goto put;
2156 if (folio->mapping != mapping ||
2157 folio_test_writeback(folio))
2158 goto unlock;
2159 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2160 folio);
2161 } else {
2162 nr = 1 << xas_get_order(&xas);
2163 base = xas.xa_index & ~(nr - 1);
2164 /* Omit order>0 value which begins before the start */
2165 if (base < *start)
2166 continue;
2167 /* Omit order>0 value which extends beyond the end */
2168 if (base + nr - 1 > end)
2169 break;
2170 }
2171
2172 /* Update start now so that last update is correct on return */
2173 *start = base + nr;
2174 indices[fbatch->nr] = xas.xa_index;
2175 if (!folio_batch_add(fbatch, folio))
2176 break;
2177 continue;
2178 unlock:
2179 folio_unlock(folio);
2180 put:
2181 folio_put(folio);
2182 }
2183 rcu_read_unlock();
2184
2185 return folio_batch_count(fbatch);
2186 }
2187
2188 /**
2189 * filemap_get_folios - Get a batch of folios
2190 * @mapping: The address_space to search
2191 * @start: The starting page index
2192 * @end: The final page index (inclusive)
2193 * @fbatch: The batch to fill.
2194 *
2195 * Search for and return a batch of folios in the mapping starting at
2196 * index @start and up to index @end (inclusive). The folios are returned
2197 * in @fbatch with an elevated reference count.
2198 *
2199 * Return: The number of folios which were found.
2200 * We also update @start to index the next folio for the traversal.
2201 */
filemap_get_folios(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2202 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2203 pgoff_t end, struct folio_batch *fbatch)
2204 {
2205 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2206 }
2207 EXPORT_SYMBOL(filemap_get_folios);
2208
2209 /**
2210 * filemap_get_folios_contig - Get a batch of contiguous folios
2211 * @mapping: The address_space to search
2212 * @start: The starting page index
2213 * @end: The final page index (inclusive)
2214 * @fbatch: The batch to fill
2215 *
2216 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2217 * except the returned folios are guaranteed to be contiguous. This may
2218 * not return all contiguous folios if the batch gets filled up.
2219 *
2220 * Return: The number of folios found.
2221 * Also update @start to be positioned for traversal of the next folio.
2222 */
2223
filemap_get_folios_contig(struct address_space * mapping,pgoff_t * start,pgoff_t end,struct folio_batch * fbatch)2224 unsigned filemap_get_folios_contig(struct address_space *mapping,
2225 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2226 {
2227 XA_STATE(xas, &mapping->i_pages, *start);
2228 unsigned long nr;
2229 struct folio *folio;
2230
2231 rcu_read_lock();
2232
2233 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2234 folio = xas_next(&xas)) {
2235 if (xas_retry(&xas, folio))
2236 continue;
2237 /*
2238 * If the entry has been swapped out, we can stop looking.
2239 * No current caller is looking for DAX entries.
2240 */
2241 if (xa_is_value(folio))
2242 goto update_start;
2243
2244 /* If we landed in the middle of a THP, continue at its end. */
2245 if (xa_is_sibling(folio))
2246 goto update_start;
2247
2248 if (!folio_try_get(folio))
2249 goto retry;
2250
2251 if (unlikely(folio != xas_reload(&xas)))
2252 goto put_folio;
2253
2254 if (!folio_batch_add(fbatch, folio)) {
2255 nr = folio_nr_pages(folio);
2256 *start = folio->index + nr;
2257 goto out;
2258 }
2259 xas_advance(&xas, folio_next_index(folio) - 1);
2260 continue;
2261 put_folio:
2262 folio_put(folio);
2263
2264 retry:
2265 xas_reset(&xas);
2266 }
2267
2268 update_start:
2269 nr = folio_batch_count(fbatch);
2270
2271 if (nr) {
2272 folio = fbatch->folios[nr - 1];
2273 *start = folio_next_index(folio);
2274 }
2275 out:
2276 rcu_read_unlock();
2277 return folio_batch_count(fbatch);
2278 }
2279 EXPORT_SYMBOL(filemap_get_folios_contig);
2280
2281 /**
2282 * filemap_get_folios_tag - Get a batch of folios matching @tag
2283 * @mapping: The address_space to search
2284 * @start: The starting page index
2285 * @end: The final page index (inclusive)
2286 * @tag: The tag index
2287 * @fbatch: The batch to fill
2288 *
2289 * The first folio may start before @start; if it does, it will contain
2290 * @start. The final folio may extend beyond @end; if it does, it will
2291 * contain @end. The folios have ascending indices. There may be gaps
2292 * between the folios if there are indices which have no folio in the
2293 * page cache. If folios are added to or removed from the page cache
2294 * while this is running, they may or may not be found by this call.
2295 * Only returns folios that are tagged with @tag.
2296 *
2297 * Return: The number of folios found.
2298 * Also update @start to index the next folio for traversal.
2299 */
filemap_get_folios_tag(struct address_space * mapping,pgoff_t * start,pgoff_t end,xa_mark_t tag,struct folio_batch * fbatch)2300 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2301 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2302 {
2303 XA_STATE(xas, &mapping->i_pages, *start);
2304 struct folio *folio;
2305
2306 rcu_read_lock();
2307 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2308 /*
2309 * Shadow entries should never be tagged, but this iteration
2310 * is lockless so there is a window for page reclaim to evict
2311 * a page we saw tagged. Skip over it.
2312 */
2313 if (xa_is_value(folio))
2314 continue;
2315 if (!folio_batch_add(fbatch, folio)) {
2316 unsigned long nr = folio_nr_pages(folio);
2317 *start = folio->index + nr;
2318 goto out;
2319 }
2320 }
2321 /*
2322 * We come here when there is no page beyond @end. We take care to not
2323 * overflow the index @start as it confuses some of the callers. This
2324 * breaks the iteration when there is a page at index -1 but that is
2325 * already broke anyway.
2326 */
2327 if (end == (pgoff_t)-1)
2328 *start = (pgoff_t)-1;
2329 else
2330 *start = end + 1;
2331 out:
2332 rcu_read_unlock();
2333
2334 return folio_batch_count(fbatch);
2335 }
2336 EXPORT_SYMBOL(filemap_get_folios_tag);
2337
2338 /*
2339 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2340 * a _large_ part of the i/o request. Imagine the worst scenario:
2341 *
2342 * ---R__________________________________________B__________
2343 * ^ reading here ^ bad block(assume 4k)
2344 *
2345 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2346 * => failing the whole request => read(R) => read(R+1) =>
2347 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2348 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2349 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2350 *
2351 * It is going insane. Fix it by quickly scaling down the readahead size.
2352 */
shrink_readahead_size_eio(struct file_ra_state * ra)2353 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2354 {
2355 ra->ra_pages /= 4;
2356 }
2357
2358 /*
2359 * filemap_get_read_batch - Get a batch of folios for read
2360 *
2361 * Get a batch of folios which represent a contiguous range of bytes in
2362 * the file. No exceptional entries will be returned. If @index is in
2363 * the middle of a folio, the entire folio will be returned. The last
2364 * folio in the batch may have the readahead flag set or the uptodate flag
2365 * clear so that the caller can take the appropriate action.
2366 */
filemap_get_read_batch(struct address_space * mapping,pgoff_t index,pgoff_t max,struct folio_batch * fbatch)2367 static void filemap_get_read_batch(struct address_space *mapping,
2368 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2369 {
2370 XA_STATE(xas, &mapping->i_pages, index);
2371 struct folio *folio;
2372
2373 rcu_read_lock();
2374 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2375 if (xas_retry(&xas, folio))
2376 continue;
2377 if (xas.xa_index > max || xa_is_value(folio))
2378 break;
2379 if (xa_is_sibling(folio))
2380 break;
2381 if (!folio_try_get(folio))
2382 goto retry;
2383
2384 if (unlikely(folio != xas_reload(&xas)))
2385 goto put_folio;
2386
2387 if (!folio_batch_add(fbatch, folio))
2388 break;
2389 if (!folio_test_uptodate(folio))
2390 break;
2391 if (folio_test_readahead(folio))
2392 break;
2393 xas_advance(&xas, folio_next_index(folio) - 1);
2394 continue;
2395 put_folio:
2396 folio_put(folio);
2397 retry:
2398 xas_reset(&xas);
2399 }
2400 rcu_read_unlock();
2401 }
2402
filemap_read_folio(struct file * file,filler_t filler,struct folio * folio)2403 static int filemap_read_folio(struct file *file, filler_t filler,
2404 struct folio *folio)
2405 {
2406 bool workingset = folio_test_workingset(folio);
2407 unsigned long pflags;
2408 int error;
2409
2410 /* Start the actual read. The read will unlock the page. */
2411 if (unlikely(workingset))
2412 psi_memstall_enter(&pflags);
2413 error = filler(file, folio);
2414 if (unlikely(workingset))
2415 psi_memstall_leave(&pflags);
2416 if (error)
2417 return error;
2418
2419 error = folio_wait_locked_killable(folio);
2420 if (error)
2421 return error;
2422 if (folio_test_uptodate(folio))
2423 return 0;
2424 if (file)
2425 shrink_readahead_size_eio(&file->f_ra);
2426 return -EIO;
2427 }
2428
filemap_range_uptodate(struct address_space * mapping,loff_t pos,size_t count,struct folio * folio,bool need_uptodate)2429 static bool filemap_range_uptodate(struct address_space *mapping,
2430 loff_t pos, size_t count, struct folio *folio,
2431 bool need_uptodate)
2432 {
2433 if (folio_test_uptodate(folio))
2434 return true;
2435 /* pipes can't handle partially uptodate pages */
2436 if (need_uptodate)
2437 return false;
2438 if (!mapping->a_ops->is_partially_uptodate)
2439 return false;
2440 if (mapping->host->i_blkbits >= folio_shift(folio))
2441 return false;
2442
2443 if (folio_pos(folio) > pos) {
2444 count -= folio_pos(folio) - pos;
2445 pos = 0;
2446 } else {
2447 pos -= folio_pos(folio);
2448 }
2449
2450 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2451 }
2452
filemap_update_page(struct kiocb * iocb,struct address_space * mapping,size_t count,struct folio * folio,bool need_uptodate)2453 static int filemap_update_page(struct kiocb *iocb,
2454 struct address_space *mapping, size_t count,
2455 struct folio *folio, bool need_uptodate)
2456 {
2457 int error;
2458
2459 if (iocb->ki_flags & IOCB_NOWAIT) {
2460 if (!filemap_invalidate_trylock_shared(mapping))
2461 return -EAGAIN;
2462 } else {
2463 filemap_invalidate_lock_shared(mapping);
2464 }
2465
2466 if (!folio_trylock(folio)) {
2467 error = -EAGAIN;
2468 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2469 goto unlock_mapping;
2470 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2471 filemap_invalidate_unlock_shared(mapping);
2472 /*
2473 * This is where we usually end up waiting for a
2474 * previously submitted readahead to finish.
2475 */
2476 folio_put_wait_locked(folio, TASK_KILLABLE);
2477 return AOP_TRUNCATED_PAGE;
2478 }
2479 error = __folio_lock_async(folio, iocb->ki_waitq);
2480 if (error)
2481 goto unlock_mapping;
2482 }
2483
2484 error = AOP_TRUNCATED_PAGE;
2485 if (!folio->mapping)
2486 goto unlock;
2487
2488 error = 0;
2489 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2490 need_uptodate))
2491 goto unlock;
2492
2493 error = -EAGAIN;
2494 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2495 goto unlock;
2496
2497 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2498 folio);
2499 goto unlock_mapping;
2500 unlock:
2501 folio_unlock(folio);
2502 unlock_mapping:
2503 filemap_invalidate_unlock_shared(mapping);
2504 if (error == AOP_TRUNCATED_PAGE)
2505 folio_put(folio);
2506 return error;
2507 }
2508
filemap_create_folio(struct kiocb * iocb,struct folio_batch * fbatch)2509 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch)
2510 {
2511 struct address_space *mapping = iocb->ki_filp->f_mapping;
2512 struct folio *folio;
2513 int error;
2514 unsigned int min_order = mapping_min_folio_order(mapping);
2515 pgoff_t index;
2516
2517 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2518 return -EAGAIN;
2519
2520 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2521 if (!folio)
2522 return -ENOMEM;
2523 if (iocb->ki_flags & IOCB_DONTCACHE)
2524 __folio_set_dropbehind(folio);
2525
2526 /*
2527 * Protect against truncate / hole punch. Grabbing invalidate_lock
2528 * here assures we cannot instantiate and bring uptodate new
2529 * pagecache folios after evicting page cache during truncate
2530 * and before actually freeing blocks. Note that we could
2531 * release invalidate_lock after inserting the folio into
2532 * the page cache as the locked folio would then be enough to
2533 * synchronize with hole punching. But there are code paths
2534 * such as filemap_update_page() filling in partially uptodate
2535 * pages or ->readahead() that need to hold invalidate_lock
2536 * while mapping blocks for IO so let's hold the lock here as
2537 * well to keep locking rules simple.
2538 */
2539 filemap_invalidate_lock_shared(mapping);
2540 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order;
2541 error = filemap_add_folio(mapping, folio, index,
2542 mapping_gfp_constraint(mapping, GFP_KERNEL));
2543 if (error == -EEXIST)
2544 error = AOP_TRUNCATED_PAGE;
2545 if (error)
2546 goto error;
2547
2548 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2549 folio);
2550 if (error)
2551 goto error;
2552
2553 filemap_invalidate_unlock_shared(mapping);
2554 folio_batch_add(fbatch, folio);
2555 return 0;
2556 error:
2557 filemap_invalidate_unlock_shared(mapping);
2558 folio_put(folio);
2559 return error;
2560 }
2561
filemap_readahead(struct kiocb * iocb,struct file * file,struct address_space * mapping,struct folio * folio,pgoff_t last_index)2562 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2563 struct address_space *mapping, struct folio *folio,
2564 pgoff_t last_index)
2565 {
2566 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2567
2568 if (iocb->ki_flags & IOCB_NOIO)
2569 return -EAGAIN;
2570 if (iocb->ki_flags & IOCB_DONTCACHE)
2571 ractl.dropbehind = 1;
2572 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2573 return 0;
2574 }
2575
filemap_get_pages(struct kiocb * iocb,size_t count,struct folio_batch * fbatch,bool need_uptodate)2576 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2577 struct folio_batch *fbatch, bool need_uptodate)
2578 {
2579 struct file *filp = iocb->ki_filp;
2580 struct address_space *mapping = filp->f_mapping;
2581 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2582 pgoff_t last_index;
2583 struct folio *folio;
2584 unsigned int flags;
2585 int err = 0;
2586
2587 /* "last_index" is the index of the page beyond the end of the read */
2588 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2589 retry:
2590 if (fatal_signal_pending(current))
2591 return -EINTR;
2592
2593 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2594 if (!folio_batch_count(fbatch)) {
2595 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index);
2596
2597 if (iocb->ki_flags & IOCB_NOIO)
2598 return -EAGAIN;
2599 if (iocb->ki_flags & IOCB_NOWAIT)
2600 flags = memalloc_noio_save();
2601 if (iocb->ki_flags & IOCB_DONTCACHE)
2602 ractl.dropbehind = 1;
2603 page_cache_sync_ra(&ractl, last_index - index);
2604 if (iocb->ki_flags & IOCB_NOWAIT)
2605 memalloc_noio_restore(flags);
2606 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2607 }
2608 if (!folio_batch_count(fbatch)) {
2609 err = filemap_create_folio(iocb, fbatch);
2610 if (err == AOP_TRUNCATED_PAGE)
2611 goto retry;
2612 return err;
2613 }
2614
2615 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2616 if (folio_test_readahead(folio)) {
2617 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2618 if (err)
2619 goto err;
2620 }
2621 if (!folio_test_uptodate(folio)) {
2622 if ((iocb->ki_flags & IOCB_WAITQ) &&
2623 folio_batch_count(fbatch) > 1)
2624 iocb->ki_flags |= IOCB_NOWAIT;
2625 err = filemap_update_page(iocb, mapping, count, folio,
2626 need_uptodate);
2627 if (err)
2628 goto err;
2629 }
2630
2631 trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2632 return 0;
2633 err:
2634 if (err < 0)
2635 folio_put(folio);
2636 if (likely(--fbatch->nr))
2637 return 0;
2638 if (err == AOP_TRUNCATED_PAGE)
2639 goto retry;
2640 return err;
2641 }
2642
pos_same_folio(loff_t pos1,loff_t pos2,struct folio * folio)2643 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2644 {
2645 unsigned int shift = folio_shift(folio);
2646
2647 return (pos1 >> shift == pos2 >> shift);
2648 }
2649
filemap_end_dropbehind_read(struct folio * folio)2650 static void filemap_end_dropbehind_read(struct folio *folio)
2651 {
2652 if (!folio_test_dropbehind(folio))
2653 return;
2654 if (folio_test_writeback(folio) || folio_test_dirty(folio))
2655 return;
2656 if (folio_trylock(folio)) {
2657 filemap_end_dropbehind(folio);
2658 folio_unlock(folio);
2659 }
2660 }
2661
2662 /**
2663 * filemap_read - Read data from the page cache.
2664 * @iocb: The iocb to read.
2665 * @iter: Destination for the data.
2666 * @already_read: Number of bytes already read by the caller.
2667 *
2668 * Copies data from the page cache. If the data is not currently present,
2669 * uses the readahead and read_folio address_space operations to fetch it.
2670 *
2671 * Return: Total number of bytes copied, including those already read by
2672 * the caller. If an error happens before any bytes are copied, returns
2673 * a negative error number.
2674 */
filemap_read(struct kiocb * iocb,struct iov_iter * iter,ssize_t already_read)2675 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2676 ssize_t already_read)
2677 {
2678 struct file *filp = iocb->ki_filp;
2679 struct file_ra_state *ra = &filp->f_ra;
2680 struct address_space *mapping = filp->f_mapping;
2681 struct inode *inode = mapping->host;
2682 struct folio_batch fbatch;
2683 int i, error = 0;
2684 bool writably_mapped;
2685 loff_t isize, end_offset;
2686 loff_t last_pos = ra->prev_pos;
2687
2688 if (unlikely(iocb->ki_pos < 0))
2689 return -EINVAL;
2690 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2691 return 0;
2692 if (unlikely(!iov_iter_count(iter)))
2693 return 0;
2694
2695 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2696 folio_batch_init(&fbatch);
2697
2698 do {
2699 cond_resched();
2700
2701 /*
2702 * If we've already successfully copied some data, then we
2703 * can no longer safely return -EIOCBQUEUED. Hence mark
2704 * an async read NOWAIT at that point.
2705 */
2706 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2707 iocb->ki_flags |= IOCB_NOWAIT;
2708
2709 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2710 break;
2711
2712 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2713 if (error < 0)
2714 break;
2715
2716 /*
2717 * i_size must be checked after we know the pages are Uptodate.
2718 *
2719 * Checking i_size after the check allows us to calculate
2720 * the correct value for "nr", which means the zero-filled
2721 * part of the page is not copied back to userspace (unless
2722 * another truncate extends the file - this is desired though).
2723 */
2724 isize = i_size_read(inode);
2725 if (unlikely(iocb->ki_pos >= isize))
2726 goto put_folios;
2727 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2728
2729 /*
2730 * Once we start copying data, we don't want to be touching any
2731 * cachelines that might be contended:
2732 */
2733 writably_mapped = mapping_writably_mapped(mapping);
2734
2735 /*
2736 * When a read accesses the same folio several times, only
2737 * mark it as accessed the first time.
2738 */
2739 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2740 fbatch.folios[0]))
2741 folio_mark_accessed(fbatch.folios[0]);
2742
2743 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2744 struct folio *folio = fbatch.folios[i];
2745 size_t fsize = folio_size(folio);
2746 size_t offset = iocb->ki_pos & (fsize - 1);
2747 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2748 fsize - offset);
2749 size_t copied;
2750
2751 if (end_offset < folio_pos(folio))
2752 break;
2753 if (i > 0)
2754 folio_mark_accessed(folio);
2755 /*
2756 * If users can be writing to this folio using arbitrary
2757 * virtual addresses, take care of potential aliasing
2758 * before reading the folio on the kernel side.
2759 */
2760 if (writably_mapped)
2761 flush_dcache_folio(folio);
2762
2763 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2764
2765 already_read += copied;
2766 iocb->ki_pos += copied;
2767 last_pos = iocb->ki_pos;
2768
2769 if (copied < bytes) {
2770 error = -EFAULT;
2771 break;
2772 }
2773 }
2774 put_folios:
2775 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2776 struct folio *folio = fbatch.folios[i];
2777
2778 filemap_end_dropbehind_read(folio);
2779 folio_put(folio);
2780 }
2781 folio_batch_init(&fbatch);
2782 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2783
2784 file_accessed(filp);
2785 ra->prev_pos = last_pos;
2786 return already_read ? already_read : error;
2787 }
2788 EXPORT_SYMBOL_GPL(filemap_read);
2789
kiocb_write_and_wait(struct kiocb * iocb,size_t count)2790 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2791 {
2792 struct address_space *mapping = iocb->ki_filp->f_mapping;
2793 loff_t pos = iocb->ki_pos;
2794 loff_t end = pos + count - 1;
2795
2796 if (iocb->ki_flags & IOCB_NOWAIT) {
2797 if (filemap_range_needs_writeback(mapping, pos, end))
2798 return -EAGAIN;
2799 return 0;
2800 }
2801
2802 return filemap_write_and_wait_range(mapping, pos, end);
2803 }
2804 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2805
filemap_invalidate_pages(struct address_space * mapping,loff_t pos,loff_t end,bool nowait)2806 int filemap_invalidate_pages(struct address_space *mapping,
2807 loff_t pos, loff_t end, bool nowait)
2808 {
2809 int ret;
2810
2811 if (nowait) {
2812 /* we could block if there are any pages in the range */
2813 if (filemap_range_has_page(mapping, pos, end))
2814 return -EAGAIN;
2815 } else {
2816 ret = filemap_write_and_wait_range(mapping, pos, end);
2817 if (ret)
2818 return ret;
2819 }
2820
2821 /*
2822 * After a write we want buffered reads to be sure to go to disk to get
2823 * the new data. We invalidate clean cached page from the region we're
2824 * about to write. We do this *before* the write so that we can return
2825 * without clobbering -EIOCBQUEUED from ->direct_IO().
2826 */
2827 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2828 end >> PAGE_SHIFT);
2829 }
2830
kiocb_invalidate_pages(struct kiocb * iocb,size_t count)2831 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2832 {
2833 struct address_space *mapping = iocb->ki_filp->f_mapping;
2834
2835 return filemap_invalidate_pages(mapping, iocb->ki_pos,
2836 iocb->ki_pos + count - 1,
2837 iocb->ki_flags & IOCB_NOWAIT);
2838 }
2839 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2840
2841 /**
2842 * generic_file_read_iter - generic filesystem read routine
2843 * @iocb: kernel I/O control block
2844 * @iter: destination for the data read
2845 *
2846 * This is the "read_iter()" routine for all filesystems
2847 * that can use the page cache directly.
2848 *
2849 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2850 * be returned when no data can be read without waiting for I/O requests
2851 * to complete; it doesn't prevent readahead.
2852 *
2853 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2854 * requests shall be made for the read or for readahead. When no data
2855 * can be read, -EAGAIN shall be returned. When readahead would be
2856 * triggered, a partial, possibly empty read shall be returned.
2857 *
2858 * Return:
2859 * * number of bytes copied, even for partial reads
2860 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2861 */
2862 ssize_t
generic_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)2863 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2864 {
2865 size_t count = iov_iter_count(iter);
2866 ssize_t retval = 0;
2867
2868 if (!count)
2869 return 0; /* skip atime */
2870
2871 if (iocb->ki_flags & IOCB_DIRECT) {
2872 struct file *file = iocb->ki_filp;
2873 struct address_space *mapping = file->f_mapping;
2874 struct inode *inode = mapping->host;
2875
2876 retval = kiocb_write_and_wait(iocb, count);
2877 if (retval < 0)
2878 return retval;
2879 file_accessed(file);
2880
2881 retval = mapping->a_ops->direct_IO(iocb, iter);
2882 if (retval >= 0) {
2883 iocb->ki_pos += retval;
2884 count -= retval;
2885 }
2886 if (retval != -EIOCBQUEUED)
2887 iov_iter_revert(iter, count - iov_iter_count(iter));
2888
2889 /*
2890 * Btrfs can have a short DIO read if we encounter
2891 * compressed extents, so if there was an error, or if
2892 * we've already read everything we wanted to, or if
2893 * there was a short read because we hit EOF, go ahead
2894 * and return. Otherwise fallthrough to buffered io for
2895 * the rest of the read. Buffered reads will not work for
2896 * DAX files, so don't bother trying.
2897 */
2898 if (retval < 0 || !count || IS_DAX(inode))
2899 return retval;
2900 if (iocb->ki_pos >= i_size_read(inode))
2901 return retval;
2902 }
2903
2904 return filemap_read(iocb, iter, retval);
2905 }
2906 EXPORT_SYMBOL(generic_file_read_iter);
2907
2908 /*
2909 * Splice subpages from a folio into a pipe.
2910 */
splice_folio_into_pipe(struct pipe_inode_info * pipe,struct folio * folio,loff_t fpos,size_t size)2911 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2912 struct folio *folio, loff_t fpos, size_t size)
2913 {
2914 struct page *page;
2915 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2916
2917 page = folio_page(folio, offset / PAGE_SIZE);
2918 size = min(size, folio_size(folio) - offset);
2919 offset %= PAGE_SIZE;
2920
2921 while (spliced < size && !pipe_is_full(pipe)) {
2922 struct pipe_buffer *buf = pipe_head_buf(pipe);
2923 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2924
2925 *buf = (struct pipe_buffer) {
2926 .ops = &page_cache_pipe_buf_ops,
2927 .page = page,
2928 .offset = offset,
2929 .len = part,
2930 };
2931 folio_get(folio);
2932 pipe->head++;
2933 page++;
2934 spliced += part;
2935 offset = 0;
2936 }
2937
2938 return spliced;
2939 }
2940
2941 /**
2942 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2943 * @in: The file to read from
2944 * @ppos: Pointer to the file position to read from
2945 * @pipe: The pipe to splice into
2946 * @len: The amount to splice
2947 * @flags: The SPLICE_F_* flags
2948 *
2949 * This function gets folios from a file's pagecache and splices them into the
2950 * pipe. Readahead will be called as necessary to fill more folios. This may
2951 * be used for blockdevs also.
2952 *
2953 * Return: On success, the number of bytes read will be returned and *@ppos
2954 * will be updated if appropriate; 0 will be returned if there is no more data
2955 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2956 * other negative error code will be returned on error. A short read may occur
2957 * if the pipe has insufficient space, we reach the end of the data or we hit a
2958 * hole.
2959 */
filemap_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2960 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2961 struct pipe_inode_info *pipe,
2962 size_t len, unsigned int flags)
2963 {
2964 struct folio_batch fbatch;
2965 struct kiocb iocb;
2966 size_t total_spliced = 0, used, npages;
2967 loff_t isize, end_offset;
2968 bool writably_mapped;
2969 int i, error = 0;
2970
2971 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2972 return 0;
2973
2974 init_sync_kiocb(&iocb, in);
2975 iocb.ki_pos = *ppos;
2976
2977 /* Work out how much data we can actually add into the pipe */
2978 used = pipe_buf_usage(pipe);
2979 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2980 len = min_t(size_t, len, npages * PAGE_SIZE);
2981
2982 folio_batch_init(&fbatch);
2983
2984 do {
2985 cond_resched();
2986
2987 if (*ppos >= i_size_read(in->f_mapping->host))
2988 break;
2989
2990 iocb.ki_pos = *ppos;
2991 error = filemap_get_pages(&iocb, len, &fbatch, true);
2992 if (error < 0)
2993 break;
2994
2995 /*
2996 * i_size must be checked after we know the pages are Uptodate.
2997 *
2998 * Checking i_size after the check allows us to calculate
2999 * the correct value for "nr", which means the zero-filled
3000 * part of the page is not copied back to userspace (unless
3001 * another truncate extends the file - this is desired though).
3002 */
3003 isize = i_size_read(in->f_mapping->host);
3004 if (unlikely(*ppos >= isize))
3005 break;
3006 end_offset = min_t(loff_t, isize, *ppos + len);
3007
3008 /*
3009 * Once we start copying data, we don't want to be touching any
3010 * cachelines that might be contended:
3011 */
3012 writably_mapped = mapping_writably_mapped(in->f_mapping);
3013
3014 for (i = 0; i < folio_batch_count(&fbatch); i++) {
3015 struct folio *folio = fbatch.folios[i];
3016 size_t n;
3017
3018 if (folio_pos(folio) >= end_offset)
3019 goto out;
3020 folio_mark_accessed(folio);
3021
3022 /*
3023 * If users can be writing to this folio using arbitrary
3024 * virtual addresses, take care of potential aliasing
3025 * before reading the folio on the kernel side.
3026 */
3027 if (writably_mapped)
3028 flush_dcache_folio(folio);
3029
3030 n = min_t(loff_t, len, isize - *ppos);
3031 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
3032 if (!n)
3033 goto out;
3034 len -= n;
3035 total_spliced += n;
3036 *ppos += n;
3037 in->f_ra.prev_pos = *ppos;
3038 if (pipe_is_full(pipe))
3039 goto out;
3040 }
3041
3042 folio_batch_release(&fbatch);
3043 } while (len);
3044
3045 out:
3046 folio_batch_release(&fbatch);
3047 file_accessed(in);
3048
3049 return total_spliced ? total_spliced : error;
3050 }
3051 EXPORT_SYMBOL(filemap_splice_read);
3052
folio_seek_hole_data(struct xa_state * xas,struct address_space * mapping,struct folio * folio,loff_t start,loff_t end,bool seek_data)3053 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
3054 struct address_space *mapping, struct folio *folio,
3055 loff_t start, loff_t end, bool seek_data)
3056 {
3057 const struct address_space_operations *ops = mapping->a_ops;
3058 size_t offset, bsz = i_blocksize(mapping->host);
3059
3060 if (xa_is_value(folio) || folio_test_uptodate(folio))
3061 return seek_data ? start : end;
3062 if (!ops->is_partially_uptodate)
3063 return seek_data ? end : start;
3064
3065 xas_pause(xas);
3066 rcu_read_unlock();
3067 folio_lock(folio);
3068 if (unlikely(folio->mapping != mapping))
3069 goto unlock;
3070
3071 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3072
3073 do {
3074 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3075 seek_data)
3076 break;
3077 start = (start + bsz) & ~((u64)bsz - 1);
3078 offset += bsz;
3079 } while (offset < folio_size(folio));
3080 unlock:
3081 folio_unlock(folio);
3082 rcu_read_lock();
3083 return start;
3084 }
3085
seek_folio_size(struct xa_state * xas,struct folio * folio)3086 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3087 {
3088 if (xa_is_value(folio))
3089 return PAGE_SIZE << xas_get_order(xas);
3090 return folio_size(folio);
3091 }
3092
3093 /**
3094 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3095 * @mapping: Address space to search.
3096 * @start: First byte to consider.
3097 * @end: Limit of search (exclusive).
3098 * @whence: Either SEEK_HOLE or SEEK_DATA.
3099 *
3100 * If the page cache knows which blocks contain holes and which blocks
3101 * contain data, your filesystem can use this function to implement
3102 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3103 * entirely memory-based such as tmpfs, and filesystems which support
3104 * unwritten extents.
3105 *
3106 * Return: The requested offset on success, or -ENXIO if @whence specifies
3107 * SEEK_DATA and there is no data after @start. There is an implicit hole
3108 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3109 * and @end contain data.
3110 */
mapping_seek_hole_data(struct address_space * mapping,loff_t start,loff_t end,int whence)3111 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3112 loff_t end, int whence)
3113 {
3114 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3115 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3116 bool seek_data = (whence == SEEK_DATA);
3117 struct folio *folio;
3118
3119 if (end <= start)
3120 return -ENXIO;
3121
3122 rcu_read_lock();
3123 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3124 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3125 size_t seek_size;
3126
3127 if (start < pos) {
3128 if (!seek_data)
3129 goto unlock;
3130 start = pos;
3131 }
3132
3133 seek_size = seek_folio_size(&xas, folio);
3134 pos = round_up((u64)pos + 1, seek_size);
3135 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3136 seek_data);
3137 if (start < pos)
3138 goto unlock;
3139 if (start >= end)
3140 break;
3141 if (seek_size > PAGE_SIZE)
3142 xas_set(&xas, pos >> PAGE_SHIFT);
3143 if (!xa_is_value(folio))
3144 folio_put(folio);
3145 }
3146 if (seek_data)
3147 start = -ENXIO;
3148 unlock:
3149 rcu_read_unlock();
3150 if (folio && !xa_is_value(folio))
3151 folio_put(folio);
3152 if (start > end)
3153 return end;
3154 return start;
3155 }
3156
3157 #ifdef CONFIG_MMU
3158 #define MMAP_LOTSAMISS (100)
3159 /*
3160 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3161 * @vmf - the vm_fault for this fault.
3162 * @folio - the folio to lock.
3163 * @fpin - the pointer to the file we may pin (or is already pinned).
3164 *
3165 * This works similar to lock_folio_or_retry in that it can drop the
3166 * mmap_lock. It differs in that it actually returns the folio locked
3167 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3168 * to drop the mmap_lock then fpin will point to the pinned file and
3169 * needs to be fput()'ed at a later point.
3170 */
lock_folio_maybe_drop_mmap(struct vm_fault * vmf,struct folio * folio,struct file ** fpin)3171 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3172 struct file **fpin)
3173 {
3174 if (folio_trylock(folio))
3175 return 1;
3176
3177 /*
3178 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3179 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3180 * is supposed to work. We have way too many special cases..
3181 */
3182 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3183 return 0;
3184
3185 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3186 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3187 if (__folio_lock_killable(folio)) {
3188 /*
3189 * We didn't have the right flags to drop the
3190 * fault lock, but all fault_handlers only check
3191 * for fatal signals if we return VM_FAULT_RETRY,
3192 * so we need to drop the fault lock here and
3193 * return 0 if we don't have a fpin.
3194 */
3195 if (*fpin == NULL)
3196 release_fault_lock(vmf);
3197 return 0;
3198 }
3199 } else
3200 __folio_lock(folio);
3201
3202 return 1;
3203 }
3204
3205 /*
3206 * Synchronous readahead happens when we don't even find a page in the page
3207 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3208 * to drop the mmap sem we return the file that was pinned in order for us to do
3209 * that. If we didn't pin a file then we return NULL. The file that is
3210 * returned needs to be fput()'ed when we're done with it.
3211 */
do_sync_mmap_readahead(struct vm_fault * vmf)3212 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3213 {
3214 struct file *file = vmf->vma->vm_file;
3215 struct file_ra_state *ra = &file->f_ra;
3216 struct address_space *mapping = file->f_mapping;
3217 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3218 struct file *fpin = NULL;
3219 vm_flags_t vm_flags = vmf->vma->vm_flags;
3220 unsigned short mmap_miss;
3221
3222 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3223 /* Use the readahead code, even if readahead is disabled */
3224 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3225 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3226 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3227 ra->size = HPAGE_PMD_NR;
3228 /*
3229 * Fetch two PMD folios, so we get the chance to actually
3230 * readahead, unless we've been told not to.
3231 */
3232 if (!(vm_flags & VM_RAND_READ))
3233 ra->size *= 2;
3234 ra->async_size = HPAGE_PMD_NR;
3235 ra->order = HPAGE_PMD_ORDER;
3236 page_cache_ra_order(&ractl, ra);
3237 return fpin;
3238 }
3239 #endif
3240
3241 /*
3242 * If we don't want any read-ahead, don't bother. VM_EXEC case below is
3243 * already intended for random access.
3244 */
3245 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ)
3246 return fpin;
3247 if (!ra->ra_pages)
3248 return fpin;
3249
3250 if (vm_flags & VM_SEQ_READ) {
3251 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3252 page_cache_sync_ra(&ractl, ra->ra_pages);
3253 return fpin;
3254 }
3255
3256 /* Avoid banging the cache line if not needed */
3257 mmap_miss = READ_ONCE(ra->mmap_miss);
3258 if (mmap_miss < MMAP_LOTSAMISS * 10)
3259 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3260
3261 /*
3262 * Do we miss much more than hit in this file? If so,
3263 * stop bothering with read-ahead. It will only hurt.
3264 */
3265 if (mmap_miss > MMAP_LOTSAMISS)
3266 return fpin;
3267
3268 if (vm_flags & VM_EXEC) {
3269 /*
3270 * Allow arch to request a preferred minimum folio order for
3271 * executable memory. This can often be beneficial to
3272 * performance if (e.g.) arm64 can contpte-map the folio.
3273 * Executable memory rarely benefits from readahead, due to its
3274 * random access nature, so set async_size to 0.
3275 *
3276 * Limit to the boundaries of the VMA to avoid reading in any
3277 * pad that might exist between sections, which would be a waste
3278 * of memory.
3279 */
3280 struct vm_area_struct *vma = vmf->vma;
3281 unsigned long start = vma->vm_pgoff;
3282 unsigned long end = start + vma_pages(vma);
3283 unsigned long ra_end;
3284
3285 ra->order = exec_folio_order();
3286 ra->start = round_down(vmf->pgoff, 1UL << ra->order);
3287 ra->start = max(ra->start, start);
3288 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order);
3289 ra_end = min(ra_end, end);
3290 ra->size = ra_end - ra->start;
3291 ra->async_size = 0;
3292 } else {
3293 /*
3294 * mmap read-around
3295 */
3296 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3297 ra->size = ra->ra_pages;
3298 ra->async_size = ra->ra_pages / 4;
3299 ra->order = 0;
3300 }
3301
3302 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3303 ractl._index = ra->start;
3304 page_cache_ra_order(&ractl, ra);
3305 return fpin;
3306 }
3307
3308 /*
3309 * Asynchronous readahead happens when we find the page and PG_readahead,
3310 * so we want to possibly extend the readahead further. We return the file that
3311 * was pinned if we have to drop the mmap_lock in order to do IO.
3312 */
do_async_mmap_readahead(struct vm_fault * vmf,struct folio * folio)3313 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3314 struct folio *folio)
3315 {
3316 struct file *file = vmf->vma->vm_file;
3317 struct file_ra_state *ra = &file->f_ra;
3318 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3319 struct file *fpin = NULL;
3320 unsigned short mmap_miss;
3321
3322 /* If we don't want any read-ahead, don't bother */
3323 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3324 return fpin;
3325
3326 mmap_miss = READ_ONCE(ra->mmap_miss);
3327 if (mmap_miss)
3328 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3329
3330 if (folio_test_readahead(folio)) {
3331 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3332 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3333 }
3334 return fpin;
3335 }
3336
filemap_fault_recheck_pte_none(struct vm_fault * vmf)3337 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3338 {
3339 struct vm_area_struct *vma = vmf->vma;
3340 vm_fault_t ret = 0;
3341 pte_t *ptep;
3342
3343 /*
3344 * We might have COW'ed a pagecache folio and might now have an mlocked
3345 * anon folio mapped. The original pagecache folio is not mlocked and
3346 * might have been evicted. During a read+clear/modify/write update of
3347 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3348 * temporarily clear the PTE under PT lock and might detect it here as
3349 * "none" when not holding the PT lock.
3350 *
3351 * Not rechecking the PTE under PT lock could result in an unexpected
3352 * major fault in an mlock'ed region. Recheck only for this special
3353 * scenario while holding the PT lock, to not degrade non-mlocked
3354 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3355 * the number of times we hold PT lock.
3356 */
3357 if (!(vma->vm_flags & VM_LOCKED))
3358 return 0;
3359
3360 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3361 return 0;
3362
3363 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3364 &vmf->ptl);
3365 if (unlikely(!ptep))
3366 return VM_FAULT_NOPAGE;
3367
3368 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3369 ret = VM_FAULT_NOPAGE;
3370 } else {
3371 spin_lock(vmf->ptl);
3372 if (unlikely(!pte_none(ptep_get(ptep))))
3373 ret = VM_FAULT_NOPAGE;
3374 spin_unlock(vmf->ptl);
3375 }
3376 pte_unmap(ptep);
3377 return ret;
3378 }
3379
3380 /**
3381 * filemap_fault - read in file data for page fault handling
3382 * @vmf: struct vm_fault containing details of the fault
3383 *
3384 * filemap_fault() is invoked via the vma operations vector for a
3385 * mapped memory region to read in file data during a page fault.
3386 *
3387 * The goto's are kind of ugly, but this streamlines the normal case of having
3388 * it in the page cache, and handles the special cases reasonably without
3389 * having a lot of duplicated code.
3390 *
3391 * vma->vm_mm->mmap_lock must be held on entry.
3392 *
3393 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3394 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3395 *
3396 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3397 * has not been released.
3398 *
3399 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3400 *
3401 * Return: bitwise-OR of %VM_FAULT_ codes.
3402 */
filemap_fault(struct vm_fault * vmf)3403 vm_fault_t filemap_fault(struct vm_fault *vmf)
3404 {
3405 int error;
3406 struct file *file = vmf->vma->vm_file;
3407 struct file *fpin = NULL;
3408 struct address_space *mapping = file->f_mapping;
3409 struct inode *inode = mapping->host;
3410 pgoff_t max_idx, index = vmf->pgoff;
3411 struct folio *folio;
3412 vm_fault_t ret = 0;
3413 bool mapping_locked = false;
3414
3415 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3416 if (unlikely(index >= max_idx))
3417 return VM_FAULT_SIGBUS;
3418
3419 trace_mm_filemap_fault(mapping, index);
3420
3421 /*
3422 * Do we have something in the page cache already?
3423 */
3424 folio = filemap_get_folio(mapping, index);
3425 if (likely(!IS_ERR(folio))) {
3426 /*
3427 * We found the page, so try async readahead before waiting for
3428 * the lock.
3429 */
3430 if (!(vmf->flags & FAULT_FLAG_TRIED))
3431 fpin = do_async_mmap_readahead(vmf, folio);
3432 if (unlikely(!folio_test_uptodate(folio))) {
3433 filemap_invalidate_lock_shared(mapping);
3434 mapping_locked = true;
3435 }
3436 } else {
3437 ret = filemap_fault_recheck_pte_none(vmf);
3438 if (unlikely(ret))
3439 return ret;
3440
3441 /* No page in the page cache at all */
3442 count_vm_event(PGMAJFAULT);
3443 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3444 ret = VM_FAULT_MAJOR;
3445 fpin = do_sync_mmap_readahead(vmf);
3446 retry_find:
3447 /*
3448 * See comment in filemap_create_folio() why we need
3449 * invalidate_lock
3450 */
3451 if (!mapping_locked) {
3452 filemap_invalidate_lock_shared(mapping);
3453 mapping_locked = true;
3454 }
3455 folio = __filemap_get_folio(mapping, index,
3456 FGP_CREAT|FGP_FOR_MMAP,
3457 vmf->gfp_mask);
3458 if (IS_ERR(folio)) {
3459 if (fpin)
3460 goto out_retry;
3461 filemap_invalidate_unlock_shared(mapping);
3462 return VM_FAULT_OOM;
3463 }
3464 }
3465
3466 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3467 goto out_retry;
3468
3469 /* Did it get truncated? */
3470 if (unlikely(folio->mapping != mapping)) {
3471 folio_unlock(folio);
3472 folio_put(folio);
3473 goto retry_find;
3474 }
3475 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3476
3477 /*
3478 * We have a locked folio in the page cache, now we need to check
3479 * that it's up-to-date. If not, it is going to be due to an error,
3480 * or because readahead was otherwise unable to retrieve it.
3481 */
3482 if (unlikely(!folio_test_uptodate(folio))) {
3483 /*
3484 * If the invalidate lock is not held, the folio was in cache
3485 * and uptodate and now it is not. Strange but possible since we
3486 * didn't hold the page lock all the time. Let's drop
3487 * everything, get the invalidate lock and try again.
3488 */
3489 if (!mapping_locked) {
3490 folio_unlock(folio);
3491 folio_put(folio);
3492 goto retry_find;
3493 }
3494
3495 /*
3496 * OK, the folio is really not uptodate. This can be because the
3497 * VMA has the VM_RAND_READ flag set, or because an error
3498 * arose. Let's read it in directly.
3499 */
3500 goto page_not_uptodate;
3501 }
3502
3503 /*
3504 * We've made it this far and we had to drop our mmap_lock, now is the
3505 * time to return to the upper layer and have it re-find the vma and
3506 * redo the fault.
3507 */
3508 if (fpin) {
3509 folio_unlock(folio);
3510 goto out_retry;
3511 }
3512 if (mapping_locked)
3513 filemap_invalidate_unlock_shared(mapping);
3514
3515 /*
3516 * Found the page and have a reference on it.
3517 * We must recheck i_size under page lock.
3518 */
3519 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3520 if (unlikely(index >= max_idx)) {
3521 folio_unlock(folio);
3522 folio_put(folio);
3523 return VM_FAULT_SIGBUS;
3524 }
3525
3526 vmf->page = folio_file_page(folio, index);
3527 return ret | VM_FAULT_LOCKED;
3528
3529 page_not_uptodate:
3530 /*
3531 * Umm, take care of errors if the page isn't up-to-date.
3532 * Try to re-read it _once_. We do this synchronously,
3533 * because there really aren't any performance issues here
3534 * and we need to check for errors.
3535 */
3536 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3537 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3538 if (fpin)
3539 goto out_retry;
3540 folio_put(folio);
3541
3542 if (!error || error == AOP_TRUNCATED_PAGE)
3543 goto retry_find;
3544 filemap_invalidate_unlock_shared(mapping);
3545
3546 return VM_FAULT_SIGBUS;
3547
3548 out_retry:
3549 /*
3550 * We dropped the mmap_lock, we need to return to the fault handler to
3551 * re-find the vma and come back and find our hopefully still populated
3552 * page.
3553 */
3554 if (!IS_ERR(folio))
3555 folio_put(folio);
3556 if (mapping_locked)
3557 filemap_invalidate_unlock_shared(mapping);
3558 if (fpin)
3559 fput(fpin);
3560 return ret | VM_FAULT_RETRY;
3561 }
3562 EXPORT_SYMBOL(filemap_fault);
3563
filemap_map_pmd(struct vm_fault * vmf,struct folio * folio,pgoff_t start)3564 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3565 pgoff_t start)
3566 {
3567 struct mm_struct *mm = vmf->vma->vm_mm;
3568
3569 /* Huge page is mapped? No need to proceed. */
3570 if (pmd_trans_huge(*vmf->pmd)) {
3571 folio_unlock(folio);
3572 folio_put(folio);
3573 return true;
3574 }
3575
3576 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3577 struct page *page = folio_file_page(folio, start);
3578 vm_fault_t ret = do_set_pmd(vmf, folio, page);
3579 if (!ret) {
3580 /* The page is mapped successfully, reference consumed. */
3581 folio_unlock(folio);
3582 return true;
3583 }
3584 }
3585
3586 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3587 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3588
3589 return false;
3590 }
3591
next_uptodate_folio(struct xa_state * xas,struct address_space * mapping,pgoff_t end_pgoff)3592 static struct folio *next_uptodate_folio(struct xa_state *xas,
3593 struct address_space *mapping, pgoff_t end_pgoff)
3594 {
3595 struct folio *folio = xas_next_entry(xas, end_pgoff);
3596 unsigned long max_idx;
3597
3598 do {
3599 if (!folio)
3600 return NULL;
3601 if (xas_retry(xas, folio))
3602 continue;
3603 if (xa_is_value(folio))
3604 continue;
3605 if (!folio_try_get(folio))
3606 continue;
3607 if (folio_test_locked(folio))
3608 goto skip;
3609 /* Has the page moved or been split? */
3610 if (unlikely(folio != xas_reload(xas)))
3611 goto skip;
3612 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3613 goto skip;
3614 if (!folio_trylock(folio))
3615 goto skip;
3616 if (folio->mapping != mapping)
3617 goto unlock;
3618 if (!folio_test_uptodate(folio))
3619 goto unlock;
3620 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3621 if (xas->xa_index >= max_idx)
3622 goto unlock;
3623 return folio;
3624 unlock:
3625 folio_unlock(folio);
3626 skip:
3627 folio_put(folio);
3628 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3629
3630 return NULL;
3631 }
3632
3633 /*
3634 * Map page range [start_page, start_page + nr_pages) of folio.
3635 * start_page is gotten from start by folio_page(folio, start)
3636 */
filemap_map_folio_range(struct vm_fault * vmf,struct folio * folio,unsigned long start,unsigned long addr,unsigned int nr_pages,unsigned long * rss,unsigned short * mmap_miss)3637 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3638 struct folio *folio, unsigned long start,
3639 unsigned long addr, unsigned int nr_pages,
3640 unsigned long *rss, unsigned short *mmap_miss)
3641 {
3642 vm_fault_t ret = 0;
3643 struct page *page = folio_page(folio, start);
3644 unsigned int count = 0;
3645 pte_t *old_ptep = vmf->pte;
3646
3647 do {
3648 if (PageHWPoison(page + count))
3649 goto skip;
3650
3651 /*
3652 * If there are too many folios that are recently evicted
3653 * in a file, they will probably continue to be evicted.
3654 * In such situation, read-ahead is only a waste of IO.
3655 * Don't decrease mmap_miss in this scenario to make sure
3656 * we can stop read-ahead.
3657 */
3658 if (!folio_test_workingset(folio))
3659 (*mmap_miss)++;
3660
3661 /*
3662 * NOTE: If there're PTE markers, we'll leave them to be
3663 * handled in the specific fault path, and it'll prohibit the
3664 * fault-around logic.
3665 */
3666 if (!pte_none(ptep_get(&vmf->pte[count])))
3667 goto skip;
3668
3669 count++;
3670 continue;
3671 skip:
3672 if (count) {
3673 set_pte_range(vmf, folio, page, count, addr);
3674 *rss += count;
3675 folio_ref_add(folio, count);
3676 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3677 ret = VM_FAULT_NOPAGE;
3678 }
3679
3680 count++;
3681 page += count;
3682 vmf->pte += count;
3683 addr += count * PAGE_SIZE;
3684 count = 0;
3685 } while (--nr_pages > 0);
3686
3687 if (count) {
3688 set_pte_range(vmf, folio, page, count, addr);
3689 *rss += count;
3690 folio_ref_add(folio, count);
3691 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3692 ret = VM_FAULT_NOPAGE;
3693 }
3694
3695 vmf->pte = old_ptep;
3696
3697 return ret;
3698 }
3699
filemap_map_order0_folio(struct vm_fault * vmf,struct folio * folio,unsigned long addr,unsigned long * rss,unsigned short * mmap_miss)3700 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3701 struct folio *folio, unsigned long addr,
3702 unsigned long *rss, unsigned short *mmap_miss)
3703 {
3704 vm_fault_t ret = 0;
3705 struct page *page = &folio->page;
3706
3707 if (PageHWPoison(page))
3708 return ret;
3709
3710 /* See comment of filemap_map_folio_range() */
3711 if (!folio_test_workingset(folio))
3712 (*mmap_miss)++;
3713
3714 /*
3715 * NOTE: If there're PTE markers, we'll leave them to be
3716 * handled in the specific fault path, and it'll prohibit
3717 * the fault-around logic.
3718 */
3719 if (!pte_none(ptep_get(vmf->pte)))
3720 return ret;
3721
3722 if (vmf->address == addr)
3723 ret = VM_FAULT_NOPAGE;
3724
3725 set_pte_range(vmf, folio, page, 1, addr);
3726 (*rss)++;
3727 folio_ref_inc(folio);
3728
3729 return ret;
3730 }
3731
filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)3732 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3733 pgoff_t start_pgoff, pgoff_t end_pgoff)
3734 {
3735 struct vm_area_struct *vma = vmf->vma;
3736 struct file *file = vma->vm_file;
3737 struct address_space *mapping = file->f_mapping;
3738 pgoff_t file_end, last_pgoff = start_pgoff;
3739 unsigned long addr;
3740 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3741 struct folio *folio;
3742 vm_fault_t ret = 0;
3743 unsigned long rss = 0;
3744 unsigned int nr_pages = 0, folio_type;
3745 unsigned short mmap_miss = 0, mmap_miss_saved;
3746
3747 rcu_read_lock();
3748 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3749 if (!folio)
3750 goto out;
3751
3752 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3753 ret = VM_FAULT_NOPAGE;
3754 goto out;
3755 }
3756
3757 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3758 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3759 if (!vmf->pte) {
3760 folio_unlock(folio);
3761 folio_put(folio);
3762 goto out;
3763 }
3764
3765 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3766 if (end_pgoff > file_end)
3767 end_pgoff = file_end;
3768
3769 folio_type = mm_counter_file(folio);
3770 do {
3771 unsigned long end;
3772
3773 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3774 vmf->pte += xas.xa_index - last_pgoff;
3775 last_pgoff = xas.xa_index;
3776 end = folio_next_index(folio) - 1;
3777 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3778
3779 if (!folio_test_large(folio))
3780 ret |= filemap_map_order0_folio(vmf,
3781 folio, addr, &rss, &mmap_miss);
3782 else
3783 ret |= filemap_map_folio_range(vmf, folio,
3784 xas.xa_index - folio->index, addr,
3785 nr_pages, &rss, &mmap_miss);
3786
3787 folio_unlock(folio);
3788 folio_put(folio);
3789 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3790 add_mm_counter(vma->vm_mm, folio_type, rss);
3791 pte_unmap_unlock(vmf->pte, vmf->ptl);
3792 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3793 out:
3794 rcu_read_unlock();
3795
3796 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3797 if (mmap_miss >= mmap_miss_saved)
3798 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3799 else
3800 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3801
3802 return ret;
3803 }
3804 EXPORT_SYMBOL(filemap_map_pages);
3805
filemap_page_mkwrite(struct vm_fault * vmf)3806 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3807 {
3808 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3809 struct folio *folio = page_folio(vmf->page);
3810 vm_fault_t ret = VM_FAULT_LOCKED;
3811
3812 sb_start_pagefault(mapping->host->i_sb);
3813 file_update_time(vmf->vma->vm_file);
3814 folio_lock(folio);
3815 if (folio->mapping != mapping) {
3816 folio_unlock(folio);
3817 ret = VM_FAULT_NOPAGE;
3818 goto out;
3819 }
3820 /*
3821 * We mark the folio dirty already here so that when freeze is in
3822 * progress, we are guaranteed that writeback during freezing will
3823 * see the dirty folio and writeprotect it again.
3824 */
3825 folio_mark_dirty(folio);
3826 folio_wait_stable(folio);
3827 out:
3828 sb_end_pagefault(mapping->host->i_sb);
3829 return ret;
3830 }
3831
3832 const struct vm_operations_struct generic_file_vm_ops = {
3833 .fault = filemap_fault,
3834 .map_pages = filemap_map_pages,
3835 .page_mkwrite = filemap_page_mkwrite,
3836 };
3837
3838 /* This is used for a general mmap of a disk file */
3839
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3840 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3841 {
3842 struct address_space *mapping = file->f_mapping;
3843
3844 if (!mapping->a_ops->read_folio)
3845 return -ENOEXEC;
3846 file_accessed(file);
3847 vma->vm_ops = &generic_file_vm_ops;
3848 return 0;
3849 }
3850
generic_file_mmap_prepare(struct vm_area_desc * desc)3851 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3852 {
3853 struct file *file = desc->file;
3854 struct address_space *mapping = file->f_mapping;
3855
3856 if (!mapping->a_ops->read_folio)
3857 return -ENOEXEC;
3858 file_accessed(file);
3859 desc->vm_ops = &generic_file_vm_ops;
3860 return 0;
3861 }
3862
3863 /*
3864 * This is for filesystems which do not implement ->writepage.
3865 */
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3866 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3867 {
3868 if (vma_is_shared_maywrite(vma))
3869 return -EINVAL;
3870 return generic_file_mmap(file, vma);
3871 }
3872
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)3873 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3874 {
3875 if (is_shared_maywrite(desc->vm_flags))
3876 return -EINVAL;
3877 return generic_file_mmap_prepare(desc);
3878 }
3879 #else
filemap_page_mkwrite(struct vm_fault * vmf)3880 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3881 {
3882 return VM_FAULT_SIGBUS;
3883 }
generic_file_mmap(struct file * file,struct vm_area_struct * vma)3884 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3885 {
3886 return -ENOSYS;
3887 }
generic_file_mmap_prepare(struct vm_area_desc * desc)3888 int generic_file_mmap_prepare(struct vm_area_desc *desc)
3889 {
3890 return -ENOSYS;
3891 }
generic_file_readonly_mmap(struct file * file,struct vm_area_struct * vma)3892 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3893 {
3894 return -ENOSYS;
3895 }
generic_file_readonly_mmap_prepare(struct vm_area_desc * desc)3896 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc)
3897 {
3898 return -ENOSYS;
3899 }
3900 #endif /* CONFIG_MMU */
3901
3902 EXPORT_SYMBOL(filemap_page_mkwrite);
3903 EXPORT_SYMBOL(generic_file_mmap);
3904 EXPORT_SYMBOL(generic_file_mmap_prepare);
3905 EXPORT_SYMBOL(generic_file_readonly_mmap);
3906 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare);
3907
do_read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file,gfp_t gfp)3908 static struct folio *do_read_cache_folio(struct address_space *mapping,
3909 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3910 {
3911 struct folio *folio;
3912 int err;
3913
3914 if (!filler)
3915 filler = mapping->a_ops->read_folio;
3916 repeat:
3917 folio = filemap_get_folio(mapping, index);
3918 if (IS_ERR(folio)) {
3919 folio = filemap_alloc_folio(gfp,
3920 mapping_min_folio_order(mapping));
3921 if (!folio)
3922 return ERR_PTR(-ENOMEM);
3923 index = mapping_align_index(mapping, index);
3924 err = filemap_add_folio(mapping, folio, index, gfp);
3925 if (unlikely(err)) {
3926 folio_put(folio);
3927 if (err == -EEXIST)
3928 goto repeat;
3929 /* Presumably ENOMEM for xarray node */
3930 return ERR_PTR(err);
3931 }
3932
3933 goto filler;
3934 }
3935 if (folio_test_uptodate(folio))
3936 goto out;
3937
3938 if (!folio_trylock(folio)) {
3939 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3940 goto repeat;
3941 }
3942
3943 /* Folio was truncated from mapping */
3944 if (!folio->mapping) {
3945 folio_unlock(folio);
3946 folio_put(folio);
3947 goto repeat;
3948 }
3949
3950 /* Someone else locked and filled the page in a very small window */
3951 if (folio_test_uptodate(folio)) {
3952 folio_unlock(folio);
3953 goto out;
3954 }
3955
3956 filler:
3957 err = filemap_read_folio(file, filler, folio);
3958 if (err) {
3959 folio_put(folio);
3960 if (err == AOP_TRUNCATED_PAGE)
3961 goto repeat;
3962 return ERR_PTR(err);
3963 }
3964
3965 out:
3966 folio_mark_accessed(folio);
3967 return folio;
3968 }
3969
3970 /**
3971 * read_cache_folio - Read into page cache, fill it if needed.
3972 * @mapping: The address_space to read from.
3973 * @index: The index to read.
3974 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3975 * @file: Passed to filler function, may be NULL if not required.
3976 *
3977 * Read one page into the page cache. If it succeeds, the folio returned
3978 * will contain @index, but it may not be the first page of the folio.
3979 *
3980 * If the filler function returns an error, it will be returned to the
3981 * caller.
3982 *
3983 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3984 * Return: An uptodate folio on success, ERR_PTR() on failure.
3985 */
read_cache_folio(struct address_space * mapping,pgoff_t index,filler_t filler,struct file * file)3986 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3987 filler_t filler, struct file *file)
3988 {
3989 return do_read_cache_folio(mapping, index, filler, file,
3990 mapping_gfp_mask(mapping));
3991 }
3992 EXPORT_SYMBOL(read_cache_folio);
3993
3994 /**
3995 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3996 * @mapping: The address_space for the folio.
3997 * @index: The index that the allocated folio will contain.
3998 * @gfp: The page allocator flags to use if allocating.
3999 *
4000 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
4001 * any new memory allocations done using the specified allocation flags.
4002 *
4003 * The most likely error from this function is EIO, but ENOMEM is
4004 * possible and so is EINTR. If ->read_folio returns another error,
4005 * that will be returned to the caller.
4006 *
4007 * The function expects mapping->invalidate_lock to be already held.
4008 *
4009 * Return: Uptodate folio on success, ERR_PTR() on failure.
4010 */
mapping_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4011 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
4012 pgoff_t index, gfp_t gfp)
4013 {
4014 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
4015 }
4016 EXPORT_SYMBOL(mapping_read_folio_gfp);
4017
do_read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file,gfp_t gfp)4018 static struct page *do_read_cache_page(struct address_space *mapping,
4019 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
4020 {
4021 struct folio *folio;
4022
4023 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
4024 if (IS_ERR(folio))
4025 return &folio->page;
4026 return folio_file_page(folio, index);
4027 }
4028
read_cache_page(struct address_space * mapping,pgoff_t index,filler_t * filler,struct file * file)4029 struct page *read_cache_page(struct address_space *mapping,
4030 pgoff_t index, filler_t *filler, struct file *file)
4031 {
4032 return do_read_cache_page(mapping, index, filler, file,
4033 mapping_gfp_mask(mapping));
4034 }
4035 EXPORT_SYMBOL(read_cache_page);
4036
4037 /**
4038 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
4039 * @mapping: the page's address_space
4040 * @index: the page index
4041 * @gfp: the page allocator flags to use if allocating
4042 *
4043 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
4044 * any new page allocations done using the specified allocation flags.
4045 *
4046 * If the page does not get brought uptodate, return -EIO.
4047 *
4048 * The function expects mapping->invalidate_lock to be already held.
4049 *
4050 * Return: up to date page on success, ERR_PTR() on failure.
4051 */
read_cache_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4052 struct page *read_cache_page_gfp(struct address_space *mapping,
4053 pgoff_t index,
4054 gfp_t gfp)
4055 {
4056 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
4057 }
4058 EXPORT_SYMBOL(read_cache_page_gfp);
4059
4060 /*
4061 * Warn about a page cache invalidation failure during a direct I/O write.
4062 */
dio_warn_stale_pagecache(struct file * filp)4063 static void dio_warn_stale_pagecache(struct file *filp)
4064 {
4065 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
4066 char pathname[128];
4067 char *path;
4068
4069 errseq_set(&filp->f_mapping->wb_err, -EIO);
4070 if (__ratelimit(&_rs)) {
4071 path = file_path(filp, pathname, sizeof(pathname));
4072 if (IS_ERR(path))
4073 path = "(unknown)";
4074 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
4075 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
4076 current->comm);
4077 }
4078 }
4079
kiocb_invalidate_post_direct_write(struct kiocb * iocb,size_t count)4080 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
4081 {
4082 struct address_space *mapping = iocb->ki_filp->f_mapping;
4083
4084 if (mapping->nrpages &&
4085 invalidate_inode_pages2_range(mapping,
4086 iocb->ki_pos >> PAGE_SHIFT,
4087 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
4088 dio_warn_stale_pagecache(iocb->ki_filp);
4089 }
4090
4091 ssize_t
generic_file_direct_write(struct kiocb * iocb,struct iov_iter * from)4092 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
4093 {
4094 struct address_space *mapping = iocb->ki_filp->f_mapping;
4095 size_t write_len = iov_iter_count(from);
4096 ssize_t written;
4097
4098 /*
4099 * If a page can not be invalidated, return 0 to fall back
4100 * to buffered write.
4101 */
4102 written = kiocb_invalidate_pages(iocb, write_len);
4103 if (written) {
4104 if (written == -EBUSY)
4105 return 0;
4106 return written;
4107 }
4108
4109 written = mapping->a_ops->direct_IO(iocb, from);
4110
4111 /*
4112 * Finally, try again to invalidate clean pages which might have been
4113 * cached by non-direct readahead, or faulted in by get_user_pages()
4114 * if the source of the write was an mmap'ed region of the file
4115 * we're writing. Either one is a pretty crazy thing to do,
4116 * so we don't support it 100%. If this invalidation
4117 * fails, tough, the write still worked...
4118 *
4119 * Most of the time we do not need this since dio_complete() will do
4120 * the invalidation for us. However there are some file systems that
4121 * do not end up with dio_complete() being called, so let's not break
4122 * them by removing it completely.
4123 *
4124 * Noticeable example is a blkdev_direct_IO().
4125 *
4126 * Skip invalidation for async writes or if mapping has no pages.
4127 */
4128 if (written > 0) {
4129 struct inode *inode = mapping->host;
4130 loff_t pos = iocb->ki_pos;
4131
4132 kiocb_invalidate_post_direct_write(iocb, written);
4133 pos += written;
4134 write_len -= written;
4135 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4136 i_size_write(inode, pos);
4137 mark_inode_dirty(inode);
4138 }
4139 iocb->ki_pos = pos;
4140 }
4141 if (written != -EIOCBQUEUED)
4142 iov_iter_revert(from, write_len - iov_iter_count(from));
4143 return written;
4144 }
4145 EXPORT_SYMBOL(generic_file_direct_write);
4146
generic_perform_write(struct kiocb * iocb,struct iov_iter * i)4147 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4148 {
4149 struct file *file = iocb->ki_filp;
4150 loff_t pos = iocb->ki_pos;
4151 struct address_space *mapping = file->f_mapping;
4152 const struct address_space_operations *a_ops = mapping->a_ops;
4153 size_t chunk = mapping_max_folio_size(mapping);
4154 long status = 0;
4155 ssize_t written = 0;
4156
4157 do {
4158 struct folio *folio;
4159 size_t offset; /* Offset into folio */
4160 size_t bytes; /* Bytes to write to folio */
4161 size_t copied; /* Bytes copied from user */
4162 void *fsdata = NULL;
4163
4164 bytes = iov_iter_count(i);
4165 retry:
4166 offset = pos & (chunk - 1);
4167 bytes = min(chunk - offset, bytes);
4168 balance_dirty_pages_ratelimited(mapping);
4169
4170 if (fatal_signal_pending(current)) {
4171 status = -EINTR;
4172 break;
4173 }
4174
4175 status = a_ops->write_begin(iocb, mapping, pos, bytes,
4176 &folio, &fsdata);
4177 if (unlikely(status < 0))
4178 break;
4179
4180 offset = offset_in_folio(folio, pos);
4181 if (bytes > folio_size(folio) - offset)
4182 bytes = folio_size(folio) - offset;
4183
4184 if (mapping_writably_mapped(mapping))
4185 flush_dcache_folio(folio);
4186
4187 /*
4188 * Faults here on mmap()s can recurse into arbitrary
4189 * filesystem code. Lots of locks are held that can
4190 * deadlock. Use an atomic copy to avoid deadlocking
4191 * in page fault handling.
4192 */
4193 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4194 flush_dcache_folio(folio);
4195
4196 status = a_ops->write_end(iocb, mapping, pos, bytes, copied,
4197 folio, fsdata);
4198 if (unlikely(status != copied)) {
4199 iov_iter_revert(i, copied - max(status, 0L));
4200 if (unlikely(status < 0))
4201 break;
4202 }
4203 cond_resched();
4204
4205 if (unlikely(status == 0)) {
4206 /*
4207 * A short copy made ->write_end() reject the
4208 * thing entirely. Might be memory poisoning
4209 * halfway through, might be a race with munmap,
4210 * might be severe memory pressure.
4211 */
4212 if (chunk > PAGE_SIZE)
4213 chunk /= 2;
4214 if (copied) {
4215 bytes = copied;
4216 goto retry;
4217 }
4218
4219 /*
4220 * 'folio' is now unlocked and faults on it can be
4221 * handled. Ensure forward progress by trying to
4222 * fault it in now.
4223 */
4224 if (fault_in_iov_iter_readable(i, bytes) == bytes) {
4225 status = -EFAULT;
4226 break;
4227 }
4228 } else {
4229 pos += status;
4230 written += status;
4231 }
4232 } while (iov_iter_count(i));
4233
4234 if (!written)
4235 return status;
4236 iocb->ki_pos += written;
4237 return written;
4238 }
4239 EXPORT_SYMBOL(generic_perform_write);
4240
4241 /**
4242 * __generic_file_write_iter - write data to a file
4243 * @iocb: IO state structure (file, offset, etc.)
4244 * @from: iov_iter with data to write
4245 *
4246 * This function does all the work needed for actually writing data to a
4247 * file. It does all basic checks, removes SUID from the file, updates
4248 * modification times and calls proper subroutines depending on whether we
4249 * do direct IO or a standard buffered write.
4250 *
4251 * It expects i_rwsem to be grabbed unless we work on a block device or similar
4252 * object which does not need locking at all.
4253 *
4254 * This function does *not* take care of syncing data in case of O_SYNC write.
4255 * A caller has to handle it. This is mainly due to the fact that we want to
4256 * avoid syncing under i_rwsem.
4257 *
4258 * Return:
4259 * * number of bytes written, even for truncated writes
4260 * * negative error code if no data has been written at all
4261 */
__generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4262 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4263 {
4264 struct file *file = iocb->ki_filp;
4265 struct address_space *mapping = file->f_mapping;
4266 struct inode *inode = mapping->host;
4267 ssize_t ret;
4268
4269 ret = file_remove_privs(file);
4270 if (ret)
4271 return ret;
4272
4273 ret = file_update_time(file);
4274 if (ret)
4275 return ret;
4276
4277 if (iocb->ki_flags & IOCB_DIRECT) {
4278 ret = generic_file_direct_write(iocb, from);
4279 /*
4280 * If the write stopped short of completing, fall back to
4281 * buffered writes. Some filesystems do this for writes to
4282 * holes, for example. For DAX files, a buffered write will
4283 * not succeed (even if it did, DAX does not handle dirty
4284 * page-cache pages correctly).
4285 */
4286 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4287 return ret;
4288 return direct_write_fallback(iocb, from, ret,
4289 generic_perform_write(iocb, from));
4290 }
4291
4292 return generic_perform_write(iocb, from);
4293 }
4294 EXPORT_SYMBOL(__generic_file_write_iter);
4295
4296 /**
4297 * generic_file_write_iter - write data to a file
4298 * @iocb: IO state structure
4299 * @from: iov_iter with data to write
4300 *
4301 * This is a wrapper around __generic_file_write_iter() to be used by most
4302 * filesystems. It takes care of syncing the file in case of O_SYNC file
4303 * and acquires i_rwsem as needed.
4304 * Return:
4305 * * negative error code if no data has been written at all of
4306 * vfs_fsync_range() failed for a synchronous write
4307 * * number of bytes written, even for truncated writes
4308 */
generic_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4309 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4310 {
4311 struct file *file = iocb->ki_filp;
4312 struct inode *inode = file->f_mapping->host;
4313 ssize_t ret;
4314
4315 inode_lock(inode);
4316 ret = generic_write_checks(iocb, from);
4317 if (ret > 0)
4318 ret = __generic_file_write_iter(iocb, from);
4319 inode_unlock(inode);
4320
4321 if (ret > 0)
4322 ret = generic_write_sync(iocb, ret);
4323 return ret;
4324 }
4325 EXPORT_SYMBOL(generic_file_write_iter);
4326
4327 /**
4328 * filemap_release_folio() - Release fs-specific metadata on a folio.
4329 * @folio: The folio which the kernel is trying to free.
4330 * @gfp: Memory allocation flags (and I/O mode).
4331 *
4332 * The address_space is trying to release any data attached to a folio
4333 * (presumably at folio->private).
4334 *
4335 * This will also be called if the private_2 flag is set on a page,
4336 * indicating that the folio has other metadata associated with it.
4337 *
4338 * The @gfp argument specifies whether I/O may be performed to release
4339 * this page (__GFP_IO), and whether the call may block
4340 * (__GFP_RECLAIM & __GFP_FS).
4341 *
4342 * Return: %true if the release was successful, otherwise %false.
4343 */
filemap_release_folio(struct folio * folio,gfp_t gfp)4344 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4345 {
4346 struct address_space * const mapping = folio->mapping;
4347
4348 BUG_ON(!folio_test_locked(folio));
4349 if (!folio_needs_release(folio))
4350 return true;
4351 if (folio_test_writeback(folio))
4352 return false;
4353
4354 if (mapping && mapping->a_ops->release_folio)
4355 return mapping->a_ops->release_folio(folio, gfp);
4356 return try_to_free_buffers(folio);
4357 }
4358 EXPORT_SYMBOL(filemap_release_folio);
4359
4360 /**
4361 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4362 * @inode: The inode to flush
4363 * @flush: Set to write back rather than simply invalidate.
4364 * @start: First byte to in range.
4365 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4366 * onwards.
4367 *
4368 * Invalidate all the folios on an inode that contribute to the specified
4369 * range, possibly writing them back first. Whilst the operation is
4370 * undertaken, the invalidate lock is held to prevent new folios from being
4371 * installed.
4372 */
filemap_invalidate_inode(struct inode * inode,bool flush,loff_t start,loff_t end)4373 int filemap_invalidate_inode(struct inode *inode, bool flush,
4374 loff_t start, loff_t end)
4375 {
4376 struct address_space *mapping = inode->i_mapping;
4377 pgoff_t first = start >> PAGE_SHIFT;
4378 pgoff_t last = end >> PAGE_SHIFT;
4379 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4380
4381 if (!mapping || !mapping->nrpages || end < start)
4382 goto out;
4383
4384 /* Prevent new folios from being added to the inode. */
4385 filemap_invalidate_lock(mapping);
4386
4387 if (!mapping->nrpages)
4388 goto unlock;
4389
4390 unmap_mapping_pages(mapping, first, nr, false);
4391
4392 /* Write back the data if we're asked to. */
4393 if (flush) {
4394 struct writeback_control wbc = {
4395 .sync_mode = WB_SYNC_ALL,
4396 .nr_to_write = LONG_MAX,
4397 .range_start = start,
4398 .range_end = end,
4399 };
4400
4401 filemap_fdatawrite_wbc(mapping, &wbc);
4402 }
4403
4404 /* Wait for writeback to complete on all folios and discard. */
4405 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4406
4407 unlock:
4408 filemap_invalidate_unlock(mapping);
4409 out:
4410 return filemap_check_errors(mapping);
4411 }
4412 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4413
4414 #ifdef CONFIG_CACHESTAT_SYSCALL
4415 /**
4416 * filemap_cachestat() - compute the page cache statistics of a mapping
4417 * @mapping: The mapping to compute the statistics for.
4418 * @first_index: The starting page cache index.
4419 * @last_index: The final page index (inclusive).
4420 * @cs: the cachestat struct to write the result to.
4421 *
4422 * This will query the page cache statistics of a mapping in the
4423 * page range of [first_index, last_index] (inclusive). The statistics
4424 * queried include: number of dirty pages, number of pages marked for
4425 * writeback, and the number of (recently) evicted pages.
4426 */
filemap_cachestat(struct address_space * mapping,pgoff_t first_index,pgoff_t last_index,struct cachestat * cs)4427 static void filemap_cachestat(struct address_space *mapping,
4428 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4429 {
4430 XA_STATE(xas, &mapping->i_pages, first_index);
4431 struct folio *folio;
4432
4433 /* Flush stats (and potentially sleep) outside the RCU read section. */
4434 mem_cgroup_flush_stats_ratelimited(NULL);
4435
4436 rcu_read_lock();
4437 xas_for_each(&xas, folio, last_index) {
4438 int order;
4439 unsigned long nr_pages;
4440 pgoff_t folio_first_index, folio_last_index;
4441
4442 /*
4443 * Don't deref the folio. It is not pinned, and might
4444 * get freed (and reused) underneath us.
4445 *
4446 * We *could* pin it, but that would be expensive for
4447 * what should be a fast and lightweight syscall.
4448 *
4449 * Instead, derive all information of interest from
4450 * the rcu-protected xarray.
4451 */
4452
4453 if (xas_retry(&xas, folio))
4454 continue;
4455
4456 order = xas_get_order(&xas);
4457 nr_pages = 1 << order;
4458 folio_first_index = round_down(xas.xa_index, 1 << order);
4459 folio_last_index = folio_first_index + nr_pages - 1;
4460
4461 /* Folios might straddle the range boundaries, only count covered pages */
4462 if (folio_first_index < first_index)
4463 nr_pages -= first_index - folio_first_index;
4464
4465 if (folio_last_index > last_index)
4466 nr_pages -= folio_last_index - last_index;
4467
4468 if (xa_is_value(folio)) {
4469 /* page is evicted */
4470 void *shadow = (void *)folio;
4471 bool workingset; /* not used */
4472
4473 cs->nr_evicted += nr_pages;
4474
4475 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4476 if (shmem_mapping(mapping)) {
4477 /* shmem file - in swap cache */
4478 swp_entry_t swp = radix_to_swp_entry(folio);
4479
4480 /* swapin error results in poisoned entry */
4481 if (non_swap_entry(swp))
4482 goto resched;
4483
4484 /*
4485 * Getting a swap entry from the shmem
4486 * inode means we beat
4487 * shmem_unuse(). rcu_read_lock()
4488 * ensures swapoff waits for us before
4489 * freeing the swapper space. However,
4490 * we can race with swapping and
4491 * invalidation, so there might not be
4492 * a shadow in the swapcache (yet).
4493 */
4494 shadow = get_shadow_from_swap_cache(swp);
4495 if (!shadow)
4496 goto resched;
4497 }
4498 #endif
4499 if (workingset_test_recent(shadow, true, &workingset, false))
4500 cs->nr_recently_evicted += nr_pages;
4501
4502 goto resched;
4503 }
4504
4505 /* page is in cache */
4506 cs->nr_cache += nr_pages;
4507
4508 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4509 cs->nr_dirty += nr_pages;
4510
4511 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4512 cs->nr_writeback += nr_pages;
4513
4514 resched:
4515 if (need_resched()) {
4516 xas_pause(&xas);
4517 cond_resched_rcu();
4518 }
4519 }
4520 rcu_read_unlock();
4521 }
4522
4523 /*
4524 * See mincore: reveal pagecache information only for files
4525 * that the calling process has write access to, or could (if
4526 * tried) open for writing.
4527 */
can_do_cachestat(struct file * f)4528 static inline bool can_do_cachestat(struct file *f)
4529 {
4530 if (f->f_mode & FMODE_WRITE)
4531 return true;
4532 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f)))
4533 return true;
4534 return file_permission(f, MAY_WRITE) == 0;
4535 }
4536
4537 /*
4538 * The cachestat(2) system call.
4539 *
4540 * cachestat() returns the page cache statistics of a file in the
4541 * bytes range specified by `off` and `len`: number of cached pages,
4542 * number of dirty pages, number of pages marked for writeback,
4543 * number of evicted pages, and number of recently evicted pages.
4544 *
4545 * An evicted page is a page that is previously in the page cache
4546 * but has been evicted since. A page is recently evicted if its last
4547 * eviction was recent enough that its reentry to the cache would
4548 * indicate that it is actively being used by the system, and that
4549 * there is memory pressure on the system.
4550 *
4551 * `off` and `len` must be non-negative integers. If `len` > 0,
4552 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4553 * we will query in the range from `off` to the end of the file.
4554 *
4555 * The `flags` argument is unused for now, but is included for future
4556 * extensibility. User should pass 0 (i.e no flag specified).
4557 *
4558 * Currently, hugetlbfs is not supported.
4559 *
4560 * Because the status of a page can change after cachestat() checks it
4561 * but before it returns to the application, the returned values may
4562 * contain stale information.
4563 *
4564 * return values:
4565 * zero - success
4566 * -EFAULT - cstat or cstat_range points to an illegal address
4567 * -EINVAL - invalid flags
4568 * -EBADF - invalid file descriptor
4569 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4570 */
SYSCALL_DEFINE4(cachestat,unsigned int,fd,struct cachestat_range __user *,cstat_range,struct cachestat __user *,cstat,unsigned int,flags)4571 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4572 struct cachestat_range __user *, cstat_range,
4573 struct cachestat __user *, cstat, unsigned int, flags)
4574 {
4575 CLASS(fd, f)(fd);
4576 struct address_space *mapping;
4577 struct cachestat_range csr;
4578 struct cachestat cs;
4579 pgoff_t first_index, last_index;
4580
4581 if (fd_empty(f))
4582 return -EBADF;
4583
4584 if (copy_from_user(&csr, cstat_range,
4585 sizeof(struct cachestat_range)))
4586 return -EFAULT;
4587
4588 /* hugetlbfs is not supported */
4589 if (is_file_hugepages(fd_file(f)))
4590 return -EOPNOTSUPP;
4591
4592 if (!can_do_cachestat(fd_file(f)))
4593 return -EPERM;
4594
4595 if (flags != 0)
4596 return -EINVAL;
4597
4598 first_index = csr.off >> PAGE_SHIFT;
4599 last_index =
4600 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4601 memset(&cs, 0, sizeof(struct cachestat));
4602 mapping = fd_file(f)->f_mapping;
4603 filemap_cachestat(mapping, first_index, last_index, &cs);
4604
4605 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4606 return -EFAULT;
4607
4608 return 0;
4609 }
4610 #endif /* CONFIG_CACHESTAT_SYSCALL */
4611