1 /* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2 /*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12 #ifndef IB_VERBS_H
13 #define IB_VERBS_H
14
15 #include <linux/ethtool.h>
16 #include <linux/types.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/kref.h>
20 #include <linux/list.h>
21 #include <linux/rwsem.h>
22 #include <linux/workqueue.h>
23 #include <linux/irq_poll.h>
24 #include <uapi/linux/if_ether.h>
25 #include <net/ipv6.h>
26 #include <net/ip.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29 #include <linux/netdevice.h>
30 #include <linux/refcount.h>
31 #include <linux/if_link.h>
32 #include <linux/atomic.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/uaccess.h>
35 #include <linux/cgroup_rdma.h>
36 #include <linux/irqflags.h>
37 #include <linux/preempt.h>
38 #include <linux/dim.h>
39 #include <uapi/rdma/ib_user_verbs.h>
40 #include <rdma/rdma_counter.h>
41 #include <rdma/restrack.h>
42 #include <rdma/signature.h>
43 #include <uapi/rdma/rdma_user_ioctl.h>
44 #include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46 #define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48 struct ib_umem_odp;
49 struct ib_uqp_object;
50 struct ib_usrq_object;
51 struct ib_uwq_object;
52 struct rdma_cm_id;
53 struct ib_port;
54 struct hw_stats_device_data;
55
56 extern struct workqueue_struct *ib_wq;
57 extern struct workqueue_struct *ib_comp_wq;
58 extern struct workqueue_struct *ib_comp_unbound_wq;
59
60 struct ib_ucq_object;
61
62 __printf(2, 3) __cold
63 void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
64 __printf(2, 3) __cold
65 void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
66 __printf(2, 3) __cold
67 void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
68 __printf(2, 3) __cold
69 void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
70 __printf(2, 3) __cold
71 void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
72 __printf(2, 3) __cold
73 void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
74 __printf(2, 3) __cold
75 void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
76
77 #if defined(CONFIG_DYNAMIC_DEBUG) || \
78 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
79 #define ibdev_dbg(__dev, format, args...) \
80 dynamic_ibdev_dbg(__dev, format, ##args)
81 #else
82 __printf(2, 3) __cold
83 static inline
ibdev_dbg(const struct ib_device * ibdev,const char * format,...)84 void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
85 #endif
86
87 #define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
88 do { \
89 static DEFINE_RATELIMIT_STATE(_rs, \
90 DEFAULT_RATELIMIT_INTERVAL, \
91 DEFAULT_RATELIMIT_BURST); \
92 if (__ratelimit(&_rs)) \
93 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
94 } while (0)
95
96 #define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
97 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
98 #define ibdev_alert_ratelimited(ibdev, fmt, ...) \
99 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
100 #define ibdev_crit_ratelimited(ibdev, fmt, ...) \
101 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
102 #define ibdev_err_ratelimited(ibdev, fmt, ...) \
103 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
104 #define ibdev_warn_ratelimited(ibdev, fmt, ...) \
105 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
106 #define ibdev_notice_ratelimited(ibdev, fmt, ...) \
107 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
108 #define ibdev_info_ratelimited(ibdev, fmt, ...) \
109 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
110
111 #if defined(CONFIG_DYNAMIC_DEBUG) || \
112 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
113 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
114 #define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
115 do { \
116 static DEFINE_RATELIMIT_STATE(_rs, \
117 DEFAULT_RATELIMIT_INTERVAL, \
118 DEFAULT_RATELIMIT_BURST); \
119 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
120 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
121 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
122 ##__VA_ARGS__); \
123 } while (0)
124 #else
125 __printf(2, 3) __cold
126 static inline
ibdev_dbg_ratelimited(const struct ib_device * ibdev,const char * format,...)127 void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
128 #endif
129
130 union ib_gid {
131 u8 raw[16];
132 struct {
133 __be64 subnet_prefix;
134 __be64 interface_id;
135 } global;
136 };
137
138 extern union ib_gid zgid;
139
140 enum ib_gid_type {
141 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
142 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
143 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
144 IB_GID_TYPE_SIZE
145 };
146
147 #define ROCE_V2_UDP_DPORT 4791
148 struct ib_gid_attr {
149 struct net_device __rcu *ndev;
150 struct ib_device *device;
151 union ib_gid gid;
152 enum ib_gid_type gid_type;
153 u16 index;
154 u32 port_num;
155 };
156
157 enum {
158 /* set the local administered indication */
159 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
160 };
161
162 enum rdma_transport_type {
163 RDMA_TRANSPORT_IB,
164 RDMA_TRANSPORT_IWARP,
165 RDMA_TRANSPORT_USNIC,
166 RDMA_TRANSPORT_USNIC_UDP,
167 RDMA_TRANSPORT_UNSPECIFIED,
168 };
169
170 enum rdma_protocol_type {
171 RDMA_PROTOCOL_IB,
172 RDMA_PROTOCOL_IBOE,
173 RDMA_PROTOCOL_IWARP,
174 RDMA_PROTOCOL_USNIC_UDP
175 };
176
177 __attribute_const__ enum rdma_transport_type
178 rdma_node_get_transport(unsigned int node_type);
179
180 enum rdma_network_type {
181 RDMA_NETWORK_IB,
182 RDMA_NETWORK_ROCE_V1,
183 RDMA_NETWORK_IPV4,
184 RDMA_NETWORK_IPV6
185 };
186
ib_network_to_gid_type(enum rdma_network_type network_type)187 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
188 {
189 if (network_type == RDMA_NETWORK_IPV4 ||
190 network_type == RDMA_NETWORK_IPV6)
191 return IB_GID_TYPE_ROCE_UDP_ENCAP;
192 else if (network_type == RDMA_NETWORK_ROCE_V1)
193 return IB_GID_TYPE_ROCE;
194 else
195 return IB_GID_TYPE_IB;
196 }
197
198 static inline enum rdma_network_type
rdma_gid_attr_network_type(const struct ib_gid_attr * attr)199 rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
200 {
201 if (attr->gid_type == IB_GID_TYPE_IB)
202 return RDMA_NETWORK_IB;
203
204 if (attr->gid_type == IB_GID_TYPE_ROCE)
205 return RDMA_NETWORK_ROCE_V1;
206
207 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
208 return RDMA_NETWORK_IPV4;
209 else
210 return RDMA_NETWORK_IPV6;
211 }
212
213 enum rdma_link_layer {
214 IB_LINK_LAYER_UNSPECIFIED,
215 IB_LINK_LAYER_INFINIBAND,
216 IB_LINK_LAYER_ETHERNET,
217 };
218
219 enum ib_device_cap_flags {
220 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
221 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
222 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
223 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
224 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
225 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
226 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
227 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
228 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
229 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
230 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
231 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
232 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
233 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
234 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
235
236 /* Reserved, old SEND_W_INV = 1 << 16,*/
237 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
238 /*
239 * Devices should set IB_DEVICE_UD_IP_SUM if they support
240 * insertion of UDP and TCP checksum on outgoing UD IPoIB
241 * messages and can verify the validity of checksum for
242 * incoming messages. Setting this flag implies that the
243 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
244 */
245 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
246 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
247
248 /*
249 * This device supports the IB "base memory management extension",
250 * which includes support for fast registrations (IB_WR_REG_MR,
251 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
252 * also be set by any iWarp device which must support FRs to comply
253 * to the iWarp verbs spec. iWarp devices also support the
254 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
255 * stag.
256 */
257 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
258 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
259 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
260 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
261 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
262 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
263 IB_DEVICE_MANAGED_FLOW_STEERING =
264 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
265 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
266 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
267 /* The device supports padding incoming writes to cacheline. */
268 IB_DEVICE_PCI_WRITE_END_PADDING =
269 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
270 /* Placement type attributes */
271 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
272 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
273 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
274 };
275
276 enum ib_kernel_cap_flags {
277 /*
278 * This device supports a per-device lkey or stag that can be
279 * used without performing a memory registration for the local
280 * memory. Note that ULPs should never check this flag, but
281 * instead of use the local_dma_lkey flag in the ib_pd structure,
282 * which will always contain a usable lkey.
283 */
284 IBK_LOCAL_DMA_LKEY = 1 << 0,
285 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
286 IBK_INTEGRITY_HANDOVER = 1 << 1,
287 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
288 IBK_ON_DEMAND_PAGING = 1 << 2,
289 /* IB_MR_TYPE_SG_GAPS is supported */
290 IBK_SG_GAPS_REG = 1 << 3,
291 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
292 IBK_ALLOW_USER_UNREG = 1 << 4,
293
294 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
295 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
296 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
297 IBK_UD_TSO = 1 << 6,
298 /* iopib will use the device ops:
299 * get_vf_config
300 * get_vf_guid
301 * get_vf_stats
302 * set_vf_guid
303 * set_vf_link_state
304 */
305 IBK_VIRTUAL_FUNCTION = 1 << 7,
306 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
307 IBK_RDMA_NETDEV_OPA = 1 << 8,
308 };
309
310 enum ib_atomic_cap {
311 IB_ATOMIC_NONE,
312 IB_ATOMIC_HCA,
313 IB_ATOMIC_GLOB
314 };
315
316 enum ib_odp_general_cap_bits {
317 IB_ODP_SUPPORT = 1 << 0,
318 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
319 };
320
321 enum ib_odp_transport_cap_bits {
322 IB_ODP_SUPPORT_SEND = 1 << 0,
323 IB_ODP_SUPPORT_RECV = 1 << 1,
324 IB_ODP_SUPPORT_WRITE = 1 << 2,
325 IB_ODP_SUPPORT_READ = 1 << 3,
326 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
327 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
328 };
329
330 struct ib_odp_caps {
331 uint64_t general_caps;
332 struct {
333 uint32_t rc_odp_caps;
334 uint32_t uc_odp_caps;
335 uint32_t ud_odp_caps;
336 uint32_t xrc_odp_caps;
337 } per_transport_caps;
338 };
339
340 struct ib_rss_caps {
341 /* Corresponding bit will be set if qp type from
342 * 'enum ib_qp_type' is supported, e.g.
343 * supported_qpts |= 1 << IB_QPT_UD
344 */
345 u32 supported_qpts;
346 u32 max_rwq_indirection_tables;
347 u32 max_rwq_indirection_table_size;
348 };
349
350 enum ib_tm_cap_flags {
351 /* Support tag matching with rendezvous offload for RC transport */
352 IB_TM_CAP_RNDV_RC = 1 << 0,
353 };
354
355 struct ib_tm_caps {
356 /* Max size of RNDV header */
357 u32 max_rndv_hdr_size;
358 /* Max number of entries in tag matching list */
359 u32 max_num_tags;
360 /* From enum ib_tm_cap_flags */
361 u32 flags;
362 /* Max number of outstanding list operations */
363 u32 max_ops;
364 /* Max number of SGE in tag matching entry */
365 u32 max_sge;
366 };
367
368 struct ib_cq_init_attr {
369 unsigned int cqe;
370 u32 comp_vector;
371 u32 flags;
372 };
373
374 enum ib_cq_attr_mask {
375 IB_CQ_MODERATE = 1 << 0,
376 };
377
378 struct ib_cq_caps {
379 u16 max_cq_moderation_count;
380 u16 max_cq_moderation_period;
381 };
382
383 struct ib_dm_mr_attr {
384 u64 length;
385 u64 offset;
386 u32 access_flags;
387 };
388
389 struct ib_dm_alloc_attr {
390 u64 length;
391 u32 alignment;
392 u32 flags;
393 };
394
395 struct ib_device_attr {
396 u64 fw_ver;
397 __be64 sys_image_guid;
398 u64 max_mr_size;
399 u64 page_size_cap;
400 u32 vendor_id;
401 u32 vendor_part_id;
402 u32 hw_ver;
403 int max_qp;
404 int max_qp_wr;
405 u64 device_cap_flags;
406 u64 kernel_cap_flags;
407 int max_send_sge;
408 int max_recv_sge;
409 int max_sge_rd;
410 int max_cq;
411 int max_cqe;
412 int max_mr;
413 int max_pd;
414 int max_qp_rd_atom;
415 int max_ee_rd_atom;
416 int max_res_rd_atom;
417 int max_qp_init_rd_atom;
418 int max_ee_init_rd_atom;
419 enum ib_atomic_cap atomic_cap;
420 enum ib_atomic_cap masked_atomic_cap;
421 int max_ee;
422 int max_rdd;
423 int max_mw;
424 int max_raw_ipv6_qp;
425 int max_raw_ethy_qp;
426 int max_mcast_grp;
427 int max_mcast_qp_attach;
428 int max_total_mcast_qp_attach;
429 int max_ah;
430 int max_srq;
431 int max_srq_wr;
432 int max_srq_sge;
433 unsigned int max_fast_reg_page_list_len;
434 unsigned int max_pi_fast_reg_page_list_len;
435 u16 max_pkeys;
436 u8 local_ca_ack_delay;
437 int sig_prot_cap;
438 int sig_guard_cap;
439 struct ib_odp_caps odp_caps;
440 uint64_t timestamp_mask;
441 uint64_t hca_core_clock; /* in KHZ */
442 struct ib_rss_caps rss_caps;
443 u32 max_wq_type_rq;
444 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
445 struct ib_tm_caps tm_caps;
446 struct ib_cq_caps cq_caps;
447 u64 max_dm_size;
448 /* Max entries for sgl for optimized performance per READ */
449 u32 max_sgl_rd;
450 };
451
452 enum ib_mtu {
453 IB_MTU_256 = 1,
454 IB_MTU_512 = 2,
455 IB_MTU_1024 = 3,
456 IB_MTU_2048 = 4,
457 IB_MTU_4096 = 5
458 };
459
460 enum opa_mtu {
461 OPA_MTU_8192 = 6,
462 OPA_MTU_10240 = 7
463 };
464
ib_mtu_enum_to_int(enum ib_mtu mtu)465 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
466 {
467 switch (mtu) {
468 case IB_MTU_256: return 256;
469 case IB_MTU_512: return 512;
470 case IB_MTU_1024: return 1024;
471 case IB_MTU_2048: return 2048;
472 case IB_MTU_4096: return 4096;
473 default: return -1;
474 }
475 }
476
ib_mtu_int_to_enum(int mtu)477 static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
478 {
479 if (mtu >= 4096)
480 return IB_MTU_4096;
481 else if (mtu >= 2048)
482 return IB_MTU_2048;
483 else if (mtu >= 1024)
484 return IB_MTU_1024;
485 else if (mtu >= 512)
486 return IB_MTU_512;
487 else
488 return IB_MTU_256;
489 }
490
opa_mtu_enum_to_int(enum opa_mtu mtu)491 static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
492 {
493 switch (mtu) {
494 case OPA_MTU_8192:
495 return 8192;
496 case OPA_MTU_10240:
497 return 10240;
498 default:
499 return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
500 }
501 }
502
opa_mtu_int_to_enum(int mtu)503 static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
504 {
505 if (mtu >= 10240)
506 return OPA_MTU_10240;
507 else if (mtu >= 8192)
508 return OPA_MTU_8192;
509 else
510 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
511 }
512
513 enum ib_port_state {
514 IB_PORT_NOP = 0,
515 IB_PORT_DOWN = 1,
516 IB_PORT_INIT = 2,
517 IB_PORT_ARMED = 3,
518 IB_PORT_ACTIVE = 4,
519 IB_PORT_ACTIVE_DEFER = 5
520 };
521
522 static inline const char *__attribute_const__
ib_port_state_to_str(enum ib_port_state state)523 ib_port_state_to_str(enum ib_port_state state)
524 {
525 const char * const states[] = {
526 [IB_PORT_NOP] = "NOP",
527 [IB_PORT_DOWN] = "DOWN",
528 [IB_PORT_INIT] = "INIT",
529 [IB_PORT_ARMED] = "ARMED",
530 [IB_PORT_ACTIVE] = "ACTIVE",
531 [IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
532 };
533
534 if (state < ARRAY_SIZE(states))
535 return states[state];
536 return "UNKNOWN";
537 }
538
539 enum ib_port_phys_state {
540 IB_PORT_PHYS_STATE_SLEEP = 1,
541 IB_PORT_PHYS_STATE_POLLING = 2,
542 IB_PORT_PHYS_STATE_DISABLED = 3,
543 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
544 IB_PORT_PHYS_STATE_LINK_UP = 5,
545 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
546 IB_PORT_PHYS_STATE_PHY_TEST = 7,
547 };
548
549 enum ib_port_width {
550 IB_WIDTH_1X = 1,
551 IB_WIDTH_2X = 16,
552 IB_WIDTH_4X = 2,
553 IB_WIDTH_8X = 4,
554 IB_WIDTH_12X = 8
555 };
556
ib_width_enum_to_int(enum ib_port_width width)557 static inline int ib_width_enum_to_int(enum ib_port_width width)
558 {
559 switch (width) {
560 case IB_WIDTH_1X: return 1;
561 case IB_WIDTH_2X: return 2;
562 case IB_WIDTH_4X: return 4;
563 case IB_WIDTH_8X: return 8;
564 case IB_WIDTH_12X: return 12;
565 default: return -1;
566 }
567 }
568
569 enum ib_port_speed {
570 IB_SPEED_SDR = 1,
571 IB_SPEED_DDR = 2,
572 IB_SPEED_QDR = 4,
573 IB_SPEED_FDR10 = 8,
574 IB_SPEED_FDR = 16,
575 IB_SPEED_EDR = 32,
576 IB_SPEED_HDR = 64,
577 IB_SPEED_NDR = 128,
578 IB_SPEED_XDR = 256,
579 };
580
581 enum ib_stat_flag {
582 IB_STAT_FLAG_OPTIONAL = 1 << 0,
583 };
584
585 /**
586 * struct rdma_stat_desc
587 * @name - The name of the counter
588 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
589 * @priv - Driver private information; Core code should not use
590 */
591 struct rdma_stat_desc {
592 const char *name;
593 unsigned int flags;
594 const void *priv;
595 };
596
597 /**
598 * struct rdma_hw_stats
599 * @lock - Mutex to protect parallel write access to lifespan and values
600 * of counters, which are 64bits and not guaranteed to be written
601 * atomicaly on 32bits systems.
602 * @timestamp - Used by the core code to track when the last update was
603 * @lifespan - Used by the core code to determine how old the counters
604 * should be before being updated again. Stored in jiffies, defaults
605 * to 10 milliseconds, drivers can override the default be specifying
606 * their own value during their allocation routine.
607 * @descs - Array of pointers to static descriptors used for the counters
608 * in directory.
609 * @is_disabled - A bitmap to indicate each counter is currently disabled
610 * or not.
611 * @num_counters - How many hardware counters there are. If name is
612 * shorter than this number, a kernel oops will result. Driver authors
613 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
614 * in their code to prevent this.
615 * @value - Array of u64 counters that are accessed by the sysfs code and
616 * filled in by the drivers get_stats routine
617 */
618 struct rdma_hw_stats {
619 struct mutex lock; /* Protect lifespan and values[] */
620 unsigned long timestamp;
621 unsigned long lifespan;
622 const struct rdma_stat_desc *descs;
623 unsigned long *is_disabled;
624 int num_counters;
625 u64 value[] __counted_by(num_counters);
626 };
627
628 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
629
630 struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
631 const struct rdma_stat_desc *descs, int num_counters,
632 unsigned long lifespan);
633
634 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
635
636 /* Define bits for the various functionality this port needs to be supported by
637 * the core.
638 */
639 /* Management 0x00000FFF */
640 #define RDMA_CORE_CAP_IB_MAD 0x00000001
641 #define RDMA_CORE_CAP_IB_SMI 0x00000002
642 #define RDMA_CORE_CAP_IB_CM 0x00000004
643 #define RDMA_CORE_CAP_IW_CM 0x00000008
644 #define RDMA_CORE_CAP_IB_SA 0x00000010
645 #define RDMA_CORE_CAP_OPA_MAD 0x00000020
646
647 /* Address format 0x000FF000 */
648 #define RDMA_CORE_CAP_AF_IB 0x00001000
649 #define RDMA_CORE_CAP_ETH_AH 0x00002000
650 #define RDMA_CORE_CAP_OPA_AH 0x00004000
651 #define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
652
653 /* Protocol 0xFFF00000 */
654 #define RDMA_CORE_CAP_PROT_IB 0x00100000
655 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000
656 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000
657 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
658 #define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
659 #define RDMA_CORE_CAP_PROT_USNIC 0x02000000
660
661 #define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
662 | RDMA_CORE_CAP_PROT_ROCE \
663 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
664
665 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
666 | RDMA_CORE_CAP_IB_MAD \
667 | RDMA_CORE_CAP_IB_SMI \
668 | RDMA_CORE_CAP_IB_CM \
669 | RDMA_CORE_CAP_IB_SA \
670 | RDMA_CORE_CAP_AF_IB)
671 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
672 | RDMA_CORE_CAP_IB_MAD \
673 | RDMA_CORE_CAP_IB_CM \
674 | RDMA_CORE_CAP_AF_IB \
675 | RDMA_CORE_CAP_ETH_AH)
676 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
677 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
678 | RDMA_CORE_CAP_IB_MAD \
679 | RDMA_CORE_CAP_IB_CM \
680 | RDMA_CORE_CAP_AF_IB \
681 | RDMA_CORE_CAP_ETH_AH)
682 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
683 | RDMA_CORE_CAP_IW_CM)
684 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
685 | RDMA_CORE_CAP_OPA_MAD)
686
687 #define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
688
689 #define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
690
691 struct ib_port_attr {
692 u64 subnet_prefix;
693 enum ib_port_state state;
694 enum ib_mtu max_mtu;
695 enum ib_mtu active_mtu;
696 u32 phys_mtu;
697 int gid_tbl_len;
698 unsigned int ip_gids:1;
699 /* This is the value from PortInfo CapabilityMask, defined by IBA */
700 u32 port_cap_flags;
701 u32 max_msg_sz;
702 u32 bad_pkey_cntr;
703 u32 qkey_viol_cntr;
704 u16 pkey_tbl_len;
705 u32 sm_lid;
706 u32 lid;
707 u8 lmc;
708 u8 max_vl_num;
709 u8 sm_sl;
710 u8 subnet_timeout;
711 u8 init_type_reply;
712 u8 active_width;
713 u16 active_speed;
714 u8 phys_state;
715 u16 port_cap_flags2;
716 };
717
718 enum ib_device_modify_flags {
719 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
720 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
721 };
722
723 #define IB_DEVICE_NODE_DESC_MAX 64
724
725 struct ib_device_modify {
726 u64 sys_image_guid;
727 char node_desc[IB_DEVICE_NODE_DESC_MAX];
728 };
729
730 enum ib_port_modify_flags {
731 IB_PORT_SHUTDOWN = 1,
732 IB_PORT_INIT_TYPE = (1<<2),
733 IB_PORT_RESET_QKEY_CNTR = (1<<3),
734 IB_PORT_OPA_MASK_CHG = (1<<4)
735 };
736
737 struct ib_port_modify {
738 u32 set_port_cap_mask;
739 u32 clr_port_cap_mask;
740 u8 init_type;
741 };
742
743 enum ib_event_type {
744 IB_EVENT_CQ_ERR,
745 IB_EVENT_QP_FATAL,
746 IB_EVENT_QP_REQ_ERR,
747 IB_EVENT_QP_ACCESS_ERR,
748 IB_EVENT_COMM_EST,
749 IB_EVENT_SQ_DRAINED,
750 IB_EVENT_PATH_MIG,
751 IB_EVENT_PATH_MIG_ERR,
752 IB_EVENT_DEVICE_FATAL,
753 IB_EVENT_PORT_ACTIVE,
754 IB_EVENT_PORT_ERR,
755 IB_EVENT_LID_CHANGE,
756 IB_EVENT_PKEY_CHANGE,
757 IB_EVENT_SM_CHANGE,
758 IB_EVENT_SRQ_ERR,
759 IB_EVENT_SRQ_LIMIT_REACHED,
760 IB_EVENT_QP_LAST_WQE_REACHED,
761 IB_EVENT_CLIENT_REREGISTER,
762 IB_EVENT_GID_CHANGE,
763 IB_EVENT_WQ_FATAL,
764 };
765
766 const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
767
768 struct ib_event {
769 struct ib_device *device;
770 union {
771 struct ib_cq *cq;
772 struct ib_qp *qp;
773 struct ib_srq *srq;
774 struct ib_wq *wq;
775 u32 port_num;
776 } element;
777 enum ib_event_type event;
778 };
779
780 struct ib_event_handler {
781 struct ib_device *device;
782 void (*handler)(struct ib_event_handler *, struct ib_event *);
783 struct list_head list;
784 };
785
786 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
787 do { \
788 (_ptr)->device = _device; \
789 (_ptr)->handler = _handler; \
790 INIT_LIST_HEAD(&(_ptr)->list); \
791 } while (0)
792
793 struct ib_global_route {
794 const struct ib_gid_attr *sgid_attr;
795 union ib_gid dgid;
796 u32 flow_label;
797 u8 sgid_index;
798 u8 hop_limit;
799 u8 traffic_class;
800 };
801
802 struct ib_grh {
803 __be32 version_tclass_flow;
804 __be16 paylen;
805 u8 next_hdr;
806 u8 hop_limit;
807 union ib_gid sgid;
808 union ib_gid dgid;
809 };
810
811 union rdma_network_hdr {
812 struct ib_grh ibgrh;
813 struct {
814 /* The IB spec states that if it's IPv4, the header
815 * is located in the last 20 bytes of the header.
816 */
817 u8 reserved[20];
818 struct iphdr roce4grh;
819 };
820 };
821
822 #define IB_QPN_MASK 0xFFFFFF
823
824 enum {
825 IB_MULTICAST_QPN = 0xffffff
826 };
827
828 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
829 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
830
831 enum ib_ah_flags {
832 IB_AH_GRH = 1
833 };
834
835 enum ib_rate {
836 IB_RATE_PORT_CURRENT = 0,
837 IB_RATE_2_5_GBPS = 2,
838 IB_RATE_5_GBPS = 5,
839 IB_RATE_10_GBPS = 3,
840 IB_RATE_20_GBPS = 6,
841 IB_RATE_30_GBPS = 4,
842 IB_RATE_40_GBPS = 7,
843 IB_RATE_60_GBPS = 8,
844 IB_RATE_80_GBPS = 9,
845 IB_RATE_120_GBPS = 10,
846 IB_RATE_14_GBPS = 11,
847 IB_RATE_56_GBPS = 12,
848 IB_RATE_112_GBPS = 13,
849 IB_RATE_168_GBPS = 14,
850 IB_RATE_25_GBPS = 15,
851 IB_RATE_100_GBPS = 16,
852 IB_RATE_200_GBPS = 17,
853 IB_RATE_300_GBPS = 18,
854 IB_RATE_28_GBPS = 19,
855 IB_RATE_50_GBPS = 20,
856 IB_RATE_400_GBPS = 21,
857 IB_RATE_600_GBPS = 22,
858 IB_RATE_800_GBPS = 23,
859 };
860
861 /**
862 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
863 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
864 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
865 * @rate: rate to convert.
866 */
867 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
868
869 /**
870 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
871 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
872 * @rate: rate to convert.
873 */
874 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
875
876
877 /**
878 * enum ib_mr_type - memory region type
879 * @IB_MR_TYPE_MEM_REG: memory region that is used for
880 * normal registration
881 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
882 * register any arbitrary sg lists (without
883 * the normal mr constraints - see
884 * ib_map_mr_sg)
885 * @IB_MR_TYPE_DM: memory region that is used for device
886 * memory registration
887 * @IB_MR_TYPE_USER: memory region that is used for the user-space
888 * application
889 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
890 * without address translations (VA=PA)
891 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
892 * data integrity operations
893 */
894 enum ib_mr_type {
895 IB_MR_TYPE_MEM_REG,
896 IB_MR_TYPE_SG_GAPS,
897 IB_MR_TYPE_DM,
898 IB_MR_TYPE_USER,
899 IB_MR_TYPE_DMA,
900 IB_MR_TYPE_INTEGRITY,
901 };
902
903 enum ib_mr_status_check {
904 IB_MR_CHECK_SIG_STATUS = 1,
905 };
906
907 /**
908 * struct ib_mr_status - Memory region status container
909 *
910 * @fail_status: Bitmask of MR checks status. For each
911 * failed check a corresponding status bit is set.
912 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
913 * failure.
914 */
915 struct ib_mr_status {
916 u32 fail_status;
917 struct ib_sig_err sig_err;
918 };
919
920 /**
921 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
922 * enum.
923 * @mult: multiple to convert.
924 */
925 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
926
927 struct rdma_ah_init_attr {
928 struct rdma_ah_attr *ah_attr;
929 u32 flags;
930 struct net_device *xmit_slave;
931 };
932
933 enum rdma_ah_attr_type {
934 RDMA_AH_ATTR_TYPE_UNDEFINED,
935 RDMA_AH_ATTR_TYPE_IB,
936 RDMA_AH_ATTR_TYPE_ROCE,
937 RDMA_AH_ATTR_TYPE_OPA,
938 };
939
940 struct ib_ah_attr {
941 u16 dlid;
942 u8 src_path_bits;
943 };
944
945 struct roce_ah_attr {
946 u8 dmac[ETH_ALEN];
947 };
948
949 struct opa_ah_attr {
950 u32 dlid;
951 u8 src_path_bits;
952 bool make_grd;
953 };
954
955 struct rdma_ah_attr {
956 struct ib_global_route grh;
957 u8 sl;
958 u8 static_rate;
959 u32 port_num;
960 u8 ah_flags;
961 enum rdma_ah_attr_type type;
962 union {
963 struct ib_ah_attr ib;
964 struct roce_ah_attr roce;
965 struct opa_ah_attr opa;
966 };
967 };
968
969 enum ib_wc_status {
970 IB_WC_SUCCESS,
971 IB_WC_LOC_LEN_ERR,
972 IB_WC_LOC_QP_OP_ERR,
973 IB_WC_LOC_EEC_OP_ERR,
974 IB_WC_LOC_PROT_ERR,
975 IB_WC_WR_FLUSH_ERR,
976 IB_WC_MW_BIND_ERR,
977 IB_WC_BAD_RESP_ERR,
978 IB_WC_LOC_ACCESS_ERR,
979 IB_WC_REM_INV_REQ_ERR,
980 IB_WC_REM_ACCESS_ERR,
981 IB_WC_REM_OP_ERR,
982 IB_WC_RETRY_EXC_ERR,
983 IB_WC_RNR_RETRY_EXC_ERR,
984 IB_WC_LOC_RDD_VIOL_ERR,
985 IB_WC_REM_INV_RD_REQ_ERR,
986 IB_WC_REM_ABORT_ERR,
987 IB_WC_INV_EECN_ERR,
988 IB_WC_INV_EEC_STATE_ERR,
989 IB_WC_FATAL_ERR,
990 IB_WC_RESP_TIMEOUT_ERR,
991 IB_WC_GENERAL_ERR
992 };
993
994 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
995
996 enum ib_wc_opcode {
997 IB_WC_SEND = IB_UVERBS_WC_SEND,
998 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
999 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1000 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1001 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1002 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1003 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1004 IB_WC_LSO = IB_UVERBS_WC_TSO,
1005 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1006 IB_WC_REG_MR,
1007 IB_WC_MASKED_COMP_SWAP,
1008 IB_WC_MASKED_FETCH_ADD,
1009 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1010 /*
1011 * Set value of IB_WC_RECV so consumers can test if a completion is a
1012 * receive by testing (opcode & IB_WC_RECV).
1013 */
1014 IB_WC_RECV = 1 << 7,
1015 IB_WC_RECV_RDMA_WITH_IMM
1016 };
1017
1018 enum ib_wc_flags {
1019 IB_WC_GRH = 1,
1020 IB_WC_WITH_IMM = (1<<1),
1021 IB_WC_WITH_INVALIDATE = (1<<2),
1022 IB_WC_IP_CSUM_OK = (1<<3),
1023 IB_WC_WITH_SMAC = (1<<4),
1024 IB_WC_WITH_VLAN = (1<<5),
1025 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1026 };
1027
1028 struct ib_wc {
1029 union {
1030 u64 wr_id;
1031 struct ib_cqe *wr_cqe;
1032 };
1033 enum ib_wc_status status;
1034 enum ib_wc_opcode opcode;
1035 u32 vendor_err;
1036 u32 byte_len;
1037 struct ib_qp *qp;
1038 union {
1039 __be32 imm_data;
1040 u32 invalidate_rkey;
1041 } ex;
1042 u32 src_qp;
1043 u32 slid;
1044 int wc_flags;
1045 u16 pkey_index;
1046 u8 sl;
1047 u8 dlid_path_bits;
1048 u32 port_num; /* valid only for DR SMPs on switches */
1049 u8 smac[ETH_ALEN];
1050 u16 vlan_id;
1051 u8 network_hdr_type;
1052 };
1053
1054 enum ib_cq_notify_flags {
1055 IB_CQ_SOLICITED = 1 << 0,
1056 IB_CQ_NEXT_COMP = 1 << 1,
1057 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1058 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1059 };
1060
1061 enum ib_srq_type {
1062 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1063 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1064 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1065 };
1066
ib_srq_has_cq(enum ib_srq_type srq_type)1067 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1068 {
1069 return srq_type == IB_SRQT_XRC ||
1070 srq_type == IB_SRQT_TM;
1071 }
1072
1073 enum ib_srq_attr_mask {
1074 IB_SRQ_MAX_WR = 1 << 0,
1075 IB_SRQ_LIMIT = 1 << 1,
1076 };
1077
1078 struct ib_srq_attr {
1079 u32 max_wr;
1080 u32 max_sge;
1081 u32 srq_limit;
1082 };
1083
1084 struct ib_srq_init_attr {
1085 void (*event_handler)(struct ib_event *, void *);
1086 void *srq_context;
1087 struct ib_srq_attr attr;
1088 enum ib_srq_type srq_type;
1089
1090 struct {
1091 struct ib_cq *cq;
1092 union {
1093 struct {
1094 struct ib_xrcd *xrcd;
1095 } xrc;
1096
1097 struct {
1098 u32 max_num_tags;
1099 } tag_matching;
1100 };
1101 } ext;
1102 };
1103
1104 struct ib_qp_cap {
1105 u32 max_send_wr;
1106 u32 max_recv_wr;
1107 u32 max_send_sge;
1108 u32 max_recv_sge;
1109 u32 max_inline_data;
1110
1111 /*
1112 * Maximum number of rdma_rw_ctx structures in flight at a time.
1113 * ib_create_qp() will calculate the right amount of needed WRs
1114 * and MRs based on this.
1115 */
1116 u32 max_rdma_ctxs;
1117 };
1118
1119 enum ib_sig_type {
1120 IB_SIGNAL_ALL_WR,
1121 IB_SIGNAL_REQ_WR
1122 };
1123
1124 enum ib_qp_type {
1125 /*
1126 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1127 * here (and in that order) since the MAD layer uses them as
1128 * indices into a 2-entry table.
1129 */
1130 IB_QPT_SMI,
1131 IB_QPT_GSI,
1132
1133 IB_QPT_RC = IB_UVERBS_QPT_RC,
1134 IB_QPT_UC = IB_UVERBS_QPT_UC,
1135 IB_QPT_UD = IB_UVERBS_QPT_UD,
1136 IB_QPT_RAW_IPV6,
1137 IB_QPT_RAW_ETHERTYPE,
1138 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1139 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1140 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1141 IB_QPT_MAX,
1142 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1143 /* Reserve a range for qp types internal to the low level driver.
1144 * These qp types will not be visible at the IB core layer, so the
1145 * IB_QPT_MAX usages should not be affected in the core layer
1146 */
1147 IB_QPT_RESERVED1 = 0x1000,
1148 IB_QPT_RESERVED2,
1149 IB_QPT_RESERVED3,
1150 IB_QPT_RESERVED4,
1151 IB_QPT_RESERVED5,
1152 IB_QPT_RESERVED6,
1153 IB_QPT_RESERVED7,
1154 IB_QPT_RESERVED8,
1155 IB_QPT_RESERVED9,
1156 IB_QPT_RESERVED10,
1157 };
1158
1159 enum ib_qp_create_flags {
1160 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1161 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1162 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1163 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1164 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1165 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1166 IB_QP_CREATE_NETIF_QP = 1 << 5,
1167 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1168 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1169 IB_QP_CREATE_SCATTER_FCS =
1170 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1171 IB_QP_CREATE_CVLAN_STRIPPING =
1172 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1173 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1174 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1175 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1176 /* reserve bits 26-31 for low level drivers' internal use */
1177 IB_QP_CREATE_RESERVED_START = 1 << 26,
1178 IB_QP_CREATE_RESERVED_END = 1 << 31,
1179 };
1180
1181 /*
1182 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1183 * callback to destroy the passed in QP.
1184 */
1185
1186 struct ib_qp_init_attr {
1187 /* This callback occurs in workqueue context */
1188 void (*event_handler)(struct ib_event *, void *);
1189
1190 void *qp_context;
1191 struct ib_cq *send_cq;
1192 struct ib_cq *recv_cq;
1193 struct ib_srq *srq;
1194 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1195 struct ib_qp_cap cap;
1196 enum ib_sig_type sq_sig_type;
1197 enum ib_qp_type qp_type;
1198 u32 create_flags;
1199
1200 /*
1201 * Only needed for special QP types, or when using the RW API.
1202 */
1203 u32 port_num;
1204 struct ib_rwq_ind_table *rwq_ind_tbl;
1205 u32 source_qpn;
1206 };
1207
1208 struct ib_qp_open_attr {
1209 void (*event_handler)(struct ib_event *, void *);
1210 void *qp_context;
1211 u32 qp_num;
1212 enum ib_qp_type qp_type;
1213 };
1214
1215 enum ib_rnr_timeout {
1216 IB_RNR_TIMER_655_36 = 0,
1217 IB_RNR_TIMER_000_01 = 1,
1218 IB_RNR_TIMER_000_02 = 2,
1219 IB_RNR_TIMER_000_03 = 3,
1220 IB_RNR_TIMER_000_04 = 4,
1221 IB_RNR_TIMER_000_06 = 5,
1222 IB_RNR_TIMER_000_08 = 6,
1223 IB_RNR_TIMER_000_12 = 7,
1224 IB_RNR_TIMER_000_16 = 8,
1225 IB_RNR_TIMER_000_24 = 9,
1226 IB_RNR_TIMER_000_32 = 10,
1227 IB_RNR_TIMER_000_48 = 11,
1228 IB_RNR_TIMER_000_64 = 12,
1229 IB_RNR_TIMER_000_96 = 13,
1230 IB_RNR_TIMER_001_28 = 14,
1231 IB_RNR_TIMER_001_92 = 15,
1232 IB_RNR_TIMER_002_56 = 16,
1233 IB_RNR_TIMER_003_84 = 17,
1234 IB_RNR_TIMER_005_12 = 18,
1235 IB_RNR_TIMER_007_68 = 19,
1236 IB_RNR_TIMER_010_24 = 20,
1237 IB_RNR_TIMER_015_36 = 21,
1238 IB_RNR_TIMER_020_48 = 22,
1239 IB_RNR_TIMER_030_72 = 23,
1240 IB_RNR_TIMER_040_96 = 24,
1241 IB_RNR_TIMER_061_44 = 25,
1242 IB_RNR_TIMER_081_92 = 26,
1243 IB_RNR_TIMER_122_88 = 27,
1244 IB_RNR_TIMER_163_84 = 28,
1245 IB_RNR_TIMER_245_76 = 29,
1246 IB_RNR_TIMER_327_68 = 30,
1247 IB_RNR_TIMER_491_52 = 31
1248 };
1249
1250 enum ib_qp_attr_mask {
1251 IB_QP_STATE = 1,
1252 IB_QP_CUR_STATE = (1<<1),
1253 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1254 IB_QP_ACCESS_FLAGS = (1<<3),
1255 IB_QP_PKEY_INDEX = (1<<4),
1256 IB_QP_PORT = (1<<5),
1257 IB_QP_QKEY = (1<<6),
1258 IB_QP_AV = (1<<7),
1259 IB_QP_PATH_MTU = (1<<8),
1260 IB_QP_TIMEOUT = (1<<9),
1261 IB_QP_RETRY_CNT = (1<<10),
1262 IB_QP_RNR_RETRY = (1<<11),
1263 IB_QP_RQ_PSN = (1<<12),
1264 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1265 IB_QP_ALT_PATH = (1<<14),
1266 IB_QP_MIN_RNR_TIMER = (1<<15),
1267 IB_QP_SQ_PSN = (1<<16),
1268 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1269 IB_QP_PATH_MIG_STATE = (1<<18),
1270 IB_QP_CAP = (1<<19),
1271 IB_QP_DEST_QPN = (1<<20),
1272 IB_QP_RESERVED1 = (1<<21),
1273 IB_QP_RESERVED2 = (1<<22),
1274 IB_QP_RESERVED3 = (1<<23),
1275 IB_QP_RESERVED4 = (1<<24),
1276 IB_QP_RATE_LIMIT = (1<<25),
1277
1278 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1279 };
1280
1281 enum ib_qp_state {
1282 IB_QPS_RESET,
1283 IB_QPS_INIT,
1284 IB_QPS_RTR,
1285 IB_QPS_RTS,
1286 IB_QPS_SQD,
1287 IB_QPS_SQE,
1288 IB_QPS_ERR
1289 };
1290
1291 enum ib_mig_state {
1292 IB_MIG_MIGRATED,
1293 IB_MIG_REARM,
1294 IB_MIG_ARMED
1295 };
1296
1297 enum ib_mw_type {
1298 IB_MW_TYPE_1 = 1,
1299 IB_MW_TYPE_2 = 2
1300 };
1301
1302 struct ib_qp_attr {
1303 enum ib_qp_state qp_state;
1304 enum ib_qp_state cur_qp_state;
1305 enum ib_mtu path_mtu;
1306 enum ib_mig_state path_mig_state;
1307 u32 qkey;
1308 u32 rq_psn;
1309 u32 sq_psn;
1310 u32 dest_qp_num;
1311 int qp_access_flags;
1312 struct ib_qp_cap cap;
1313 struct rdma_ah_attr ah_attr;
1314 struct rdma_ah_attr alt_ah_attr;
1315 u16 pkey_index;
1316 u16 alt_pkey_index;
1317 u8 en_sqd_async_notify;
1318 u8 sq_draining;
1319 u8 max_rd_atomic;
1320 u8 max_dest_rd_atomic;
1321 u8 min_rnr_timer;
1322 u32 port_num;
1323 u8 timeout;
1324 u8 retry_cnt;
1325 u8 rnr_retry;
1326 u32 alt_port_num;
1327 u8 alt_timeout;
1328 u32 rate_limit;
1329 struct net_device *xmit_slave;
1330 };
1331
1332 enum ib_wr_opcode {
1333 /* These are shared with userspace */
1334 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1335 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1336 IB_WR_SEND = IB_UVERBS_WR_SEND,
1337 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1338 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1339 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1340 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1341 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1342 IB_WR_LSO = IB_UVERBS_WR_TSO,
1343 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1344 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1345 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1346 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1347 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1348 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1349 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1350 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1351 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1352
1353 /* These are kernel only and can not be issued by userspace */
1354 IB_WR_REG_MR = 0x20,
1355 IB_WR_REG_MR_INTEGRITY,
1356
1357 /* reserve values for low level drivers' internal use.
1358 * These values will not be used at all in the ib core layer.
1359 */
1360 IB_WR_RESERVED1 = 0xf0,
1361 IB_WR_RESERVED2,
1362 IB_WR_RESERVED3,
1363 IB_WR_RESERVED4,
1364 IB_WR_RESERVED5,
1365 IB_WR_RESERVED6,
1366 IB_WR_RESERVED7,
1367 IB_WR_RESERVED8,
1368 IB_WR_RESERVED9,
1369 IB_WR_RESERVED10,
1370 };
1371
1372 enum ib_send_flags {
1373 IB_SEND_FENCE = 1,
1374 IB_SEND_SIGNALED = (1<<1),
1375 IB_SEND_SOLICITED = (1<<2),
1376 IB_SEND_INLINE = (1<<3),
1377 IB_SEND_IP_CSUM = (1<<4),
1378
1379 /* reserve bits 26-31 for low level drivers' internal use */
1380 IB_SEND_RESERVED_START = (1 << 26),
1381 IB_SEND_RESERVED_END = (1 << 31),
1382 };
1383
1384 struct ib_sge {
1385 u64 addr;
1386 u32 length;
1387 u32 lkey;
1388 };
1389
1390 struct ib_cqe {
1391 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1392 };
1393
1394 struct ib_send_wr {
1395 struct ib_send_wr *next;
1396 union {
1397 u64 wr_id;
1398 struct ib_cqe *wr_cqe;
1399 };
1400 struct ib_sge *sg_list;
1401 int num_sge;
1402 enum ib_wr_opcode opcode;
1403 int send_flags;
1404 union {
1405 __be32 imm_data;
1406 u32 invalidate_rkey;
1407 } ex;
1408 };
1409
1410 struct ib_rdma_wr {
1411 struct ib_send_wr wr;
1412 u64 remote_addr;
1413 u32 rkey;
1414 };
1415
rdma_wr(const struct ib_send_wr * wr)1416 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1417 {
1418 return container_of(wr, struct ib_rdma_wr, wr);
1419 }
1420
1421 struct ib_atomic_wr {
1422 struct ib_send_wr wr;
1423 u64 remote_addr;
1424 u64 compare_add;
1425 u64 swap;
1426 u64 compare_add_mask;
1427 u64 swap_mask;
1428 u32 rkey;
1429 };
1430
atomic_wr(const struct ib_send_wr * wr)1431 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1432 {
1433 return container_of(wr, struct ib_atomic_wr, wr);
1434 }
1435
1436 struct ib_ud_wr {
1437 struct ib_send_wr wr;
1438 struct ib_ah *ah;
1439 void *header;
1440 int hlen;
1441 int mss;
1442 u32 remote_qpn;
1443 u32 remote_qkey;
1444 u16 pkey_index; /* valid for GSI only */
1445 u32 port_num; /* valid for DR SMPs on switch only */
1446 };
1447
ud_wr(const struct ib_send_wr * wr)1448 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1449 {
1450 return container_of(wr, struct ib_ud_wr, wr);
1451 }
1452
1453 struct ib_reg_wr {
1454 struct ib_send_wr wr;
1455 struct ib_mr *mr;
1456 u32 key;
1457 int access;
1458 };
1459
reg_wr(const struct ib_send_wr * wr)1460 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1461 {
1462 return container_of(wr, struct ib_reg_wr, wr);
1463 }
1464
1465 struct ib_recv_wr {
1466 struct ib_recv_wr *next;
1467 union {
1468 u64 wr_id;
1469 struct ib_cqe *wr_cqe;
1470 };
1471 struct ib_sge *sg_list;
1472 int num_sge;
1473 };
1474
1475 enum ib_access_flags {
1476 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1477 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1478 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1479 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1480 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1481 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1482 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1483 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1484 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1485 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1486 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1487
1488 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1489 IB_ACCESS_SUPPORTED =
1490 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1491 };
1492
1493 /*
1494 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1495 * are hidden here instead of a uapi header!
1496 */
1497 enum ib_mr_rereg_flags {
1498 IB_MR_REREG_TRANS = 1,
1499 IB_MR_REREG_PD = (1<<1),
1500 IB_MR_REREG_ACCESS = (1<<2),
1501 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1502 };
1503
1504 struct ib_umem;
1505
1506 enum rdma_remove_reason {
1507 /*
1508 * Userspace requested uobject deletion or initial try
1509 * to remove uobject via cleanup. Call could fail
1510 */
1511 RDMA_REMOVE_DESTROY,
1512 /* Context deletion. This call should delete the actual object itself */
1513 RDMA_REMOVE_CLOSE,
1514 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1515 RDMA_REMOVE_DRIVER_REMOVE,
1516 /* uobj is being cleaned-up before being committed */
1517 RDMA_REMOVE_ABORT,
1518 /* The driver failed to destroy the uobject and is being disconnected */
1519 RDMA_REMOVE_DRIVER_FAILURE,
1520 };
1521
1522 struct ib_rdmacg_object {
1523 #ifdef CONFIG_CGROUP_RDMA
1524 struct rdma_cgroup *cg; /* owner rdma cgroup */
1525 #endif
1526 };
1527
1528 struct ib_ucontext {
1529 struct ib_device *device;
1530 struct ib_uverbs_file *ufile;
1531
1532 struct ib_rdmacg_object cg_obj;
1533 u64 enabled_caps;
1534 /*
1535 * Implementation details of the RDMA core, don't use in drivers:
1536 */
1537 struct rdma_restrack_entry res;
1538 struct xarray mmap_xa;
1539 };
1540
1541 struct ib_uobject {
1542 u64 user_handle; /* handle given to us by userspace */
1543 /* ufile & ucontext owning this object */
1544 struct ib_uverbs_file *ufile;
1545 /* FIXME, save memory: ufile->context == context */
1546 struct ib_ucontext *context; /* associated user context */
1547 void *object; /* containing object */
1548 struct list_head list; /* link to context's list */
1549 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1550 int id; /* index into kernel idr */
1551 struct kref ref;
1552 atomic_t usecnt; /* protects exclusive access */
1553 struct rcu_head rcu; /* kfree_rcu() overhead */
1554
1555 const struct uverbs_api_object *uapi_object;
1556 };
1557
1558 struct ib_udata {
1559 const void __user *inbuf;
1560 void __user *outbuf;
1561 size_t inlen;
1562 size_t outlen;
1563 };
1564
1565 struct ib_pd {
1566 u32 local_dma_lkey;
1567 u32 flags;
1568 struct ib_device *device;
1569 struct ib_uobject *uobject;
1570 atomic_t usecnt; /* count all resources */
1571
1572 u32 unsafe_global_rkey;
1573
1574 /*
1575 * Implementation details of the RDMA core, don't use in drivers:
1576 */
1577 struct ib_mr *__internal_mr;
1578 struct rdma_restrack_entry res;
1579 };
1580
1581 struct ib_xrcd {
1582 struct ib_device *device;
1583 atomic_t usecnt; /* count all exposed resources */
1584 struct inode *inode;
1585 struct rw_semaphore tgt_qps_rwsem;
1586 struct xarray tgt_qps;
1587 };
1588
1589 struct ib_ah {
1590 struct ib_device *device;
1591 struct ib_pd *pd;
1592 struct ib_uobject *uobject;
1593 const struct ib_gid_attr *sgid_attr;
1594 enum rdma_ah_attr_type type;
1595 };
1596
1597 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1598
1599 enum ib_poll_context {
1600 IB_POLL_SOFTIRQ, /* poll from softirq context */
1601 IB_POLL_WORKQUEUE, /* poll from workqueue */
1602 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1603 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1604
1605 IB_POLL_DIRECT, /* caller context, no hw completions */
1606 };
1607
1608 struct ib_cq {
1609 struct ib_device *device;
1610 struct ib_ucq_object *uobject;
1611 ib_comp_handler comp_handler;
1612 void (*event_handler)(struct ib_event *, void *);
1613 void *cq_context;
1614 int cqe;
1615 unsigned int cqe_used;
1616 atomic_t usecnt; /* count number of work queues */
1617 enum ib_poll_context poll_ctx;
1618 struct ib_wc *wc;
1619 struct list_head pool_entry;
1620 union {
1621 struct irq_poll iop;
1622 struct work_struct work;
1623 };
1624 struct workqueue_struct *comp_wq;
1625 struct dim *dim;
1626
1627 /* updated only by trace points */
1628 ktime_t timestamp;
1629 u8 interrupt:1;
1630 u8 shared:1;
1631 unsigned int comp_vector;
1632
1633 /*
1634 * Implementation details of the RDMA core, don't use in drivers:
1635 */
1636 struct rdma_restrack_entry res;
1637 };
1638
1639 struct ib_srq {
1640 struct ib_device *device;
1641 struct ib_pd *pd;
1642 struct ib_usrq_object *uobject;
1643 void (*event_handler)(struct ib_event *, void *);
1644 void *srq_context;
1645 enum ib_srq_type srq_type;
1646 atomic_t usecnt;
1647
1648 struct {
1649 struct ib_cq *cq;
1650 union {
1651 struct {
1652 struct ib_xrcd *xrcd;
1653 u32 srq_num;
1654 } xrc;
1655 };
1656 } ext;
1657
1658 /*
1659 * Implementation details of the RDMA core, don't use in drivers:
1660 */
1661 struct rdma_restrack_entry res;
1662 };
1663
1664 enum ib_raw_packet_caps {
1665 /*
1666 * Strip cvlan from incoming packet and report it in the matching work
1667 * completion is supported.
1668 */
1669 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1670 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1671 /*
1672 * Scatter FCS field of an incoming packet to host memory is supported.
1673 */
1674 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1675 /* Checksum offloads are supported (for both send and receive). */
1676 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1677 /*
1678 * When a packet is received for an RQ with no receive WQEs, the
1679 * packet processing is delayed.
1680 */
1681 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1682 };
1683
1684 enum ib_wq_type {
1685 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1686 };
1687
1688 enum ib_wq_state {
1689 IB_WQS_RESET,
1690 IB_WQS_RDY,
1691 IB_WQS_ERR
1692 };
1693
1694 struct ib_wq {
1695 struct ib_device *device;
1696 struct ib_uwq_object *uobject;
1697 void *wq_context;
1698 void (*event_handler)(struct ib_event *, void *);
1699 struct ib_pd *pd;
1700 struct ib_cq *cq;
1701 u32 wq_num;
1702 enum ib_wq_state state;
1703 enum ib_wq_type wq_type;
1704 atomic_t usecnt;
1705 };
1706
1707 enum ib_wq_flags {
1708 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1709 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1710 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1711 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1712 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1713 };
1714
1715 struct ib_wq_init_attr {
1716 void *wq_context;
1717 enum ib_wq_type wq_type;
1718 u32 max_wr;
1719 u32 max_sge;
1720 struct ib_cq *cq;
1721 void (*event_handler)(struct ib_event *, void *);
1722 u32 create_flags; /* Use enum ib_wq_flags */
1723 };
1724
1725 enum ib_wq_attr_mask {
1726 IB_WQ_STATE = 1 << 0,
1727 IB_WQ_CUR_STATE = 1 << 1,
1728 IB_WQ_FLAGS = 1 << 2,
1729 };
1730
1731 struct ib_wq_attr {
1732 enum ib_wq_state wq_state;
1733 enum ib_wq_state curr_wq_state;
1734 u32 flags; /* Use enum ib_wq_flags */
1735 u32 flags_mask; /* Use enum ib_wq_flags */
1736 };
1737
1738 struct ib_rwq_ind_table {
1739 struct ib_device *device;
1740 struct ib_uobject *uobject;
1741 atomic_t usecnt;
1742 u32 ind_tbl_num;
1743 u32 log_ind_tbl_size;
1744 struct ib_wq **ind_tbl;
1745 };
1746
1747 struct ib_rwq_ind_table_init_attr {
1748 u32 log_ind_tbl_size;
1749 /* Each entry is a pointer to Receive Work Queue */
1750 struct ib_wq **ind_tbl;
1751 };
1752
1753 enum port_pkey_state {
1754 IB_PORT_PKEY_NOT_VALID = 0,
1755 IB_PORT_PKEY_VALID = 1,
1756 IB_PORT_PKEY_LISTED = 2,
1757 };
1758
1759 struct ib_qp_security;
1760
1761 struct ib_port_pkey {
1762 enum port_pkey_state state;
1763 u16 pkey_index;
1764 u32 port_num;
1765 struct list_head qp_list;
1766 struct list_head to_error_list;
1767 struct ib_qp_security *sec;
1768 };
1769
1770 struct ib_ports_pkeys {
1771 struct ib_port_pkey main;
1772 struct ib_port_pkey alt;
1773 };
1774
1775 struct ib_qp_security {
1776 struct ib_qp *qp;
1777 struct ib_device *dev;
1778 /* Hold this mutex when changing port and pkey settings. */
1779 struct mutex mutex;
1780 struct ib_ports_pkeys *ports_pkeys;
1781 /* A list of all open shared QP handles. Required to enforce security
1782 * properly for all users of a shared QP.
1783 */
1784 struct list_head shared_qp_list;
1785 void *security;
1786 bool destroying;
1787 atomic_t error_list_count;
1788 struct completion error_complete;
1789 int error_comps_pending;
1790 };
1791
1792 /*
1793 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1794 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1795 */
1796 struct ib_qp {
1797 struct ib_device *device;
1798 struct ib_pd *pd;
1799 struct ib_cq *send_cq;
1800 struct ib_cq *recv_cq;
1801 spinlock_t mr_lock;
1802 int mrs_used;
1803 struct list_head rdma_mrs;
1804 struct list_head sig_mrs;
1805 struct ib_srq *srq;
1806 struct completion srq_completion;
1807 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1808 struct list_head xrcd_list;
1809
1810 /* count times opened, mcast attaches, flow attaches */
1811 atomic_t usecnt;
1812 struct list_head open_list;
1813 struct ib_qp *real_qp;
1814 struct ib_uqp_object *uobject;
1815 void (*event_handler)(struct ib_event *, void *);
1816 void (*registered_event_handler)(struct ib_event *, void *);
1817 void *qp_context;
1818 /* sgid_attrs associated with the AV's */
1819 const struct ib_gid_attr *av_sgid_attr;
1820 const struct ib_gid_attr *alt_path_sgid_attr;
1821 u32 qp_num;
1822 u32 max_write_sge;
1823 u32 max_read_sge;
1824 enum ib_qp_type qp_type;
1825 struct ib_rwq_ind_table *rwq_ind_tbl;
1826 struct ib_qp_security *qp_sec;
1827 u32 port;
1828
1829 bool integrity_en;
1830 /*
1831 * Implementation details of the RDMA core, don't use in drivers:
1832 */
1833 struct rdma_restrack_entry res;
1834
1835 /* The counter the qp is bind to */
1836 struct rdma_counter *counter;
1837 };
1838
1839 struct ib_dm {
1840 struct ib_device *device;
1841 u32 length;
1842 u32 flags;
1843 struct ib_uobject *uobject;
1844 atomic_t usecnt;
1845 };
1846
1847 struct ib_mr {
1848 struct ib_device *device;
1849 struct ib_pd *pd;
1850 u32 lkey;
1851 u32 rkey;
1852 u64 iova;
1853 u64 length;
1854 unsigned int page_size;
1855 enum ib_mr_type type;
1856 bool need_inval;
1857 union {
1858 struct ib_uobject *uobject; /* user */
1859 struct list_head qp_entry; /* FR */
1860 };
1861
1862 struct ib_dm *dm;
1863 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1864 /*
1865 * Implementation details of the RDMA core, don't use in drivers:
1866 */
1867 struct rdma_restrack_entry res;
1868 };
1869
1870 struct ib_mw {
1871 struct ib_device *device;
1872 struct ib_pd *pd;
1873 struct ib_uobject *uobject;
1874 u32 rkey;
1875 enum ib_mw_type type;
1876 };
1877
1878 /* Supported steering options */
1879 enum ib_flow_attr_type {
1880 /* steering according to rule specifications */
1881 IB_FLOW_ATTR_NORMAL = 0x0,
1882 /* default unicast and multicast rule -
1883 * receive all Eth traffic which isn't steered to any QP
1884 */
1885 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1886 /* default multicast rule -
1887 * receive all Eth multicast traffic which isn't steered to any QP
1888 */
1889 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1890 /* sniffer rule - receive all port traffic */
1891 IB_FLOW_ATTR_SNIFFER = 0x3
1892 };
1893
1894 /* Supported steering header types */
1895 enum ib_flow_spec_type {
1896 /* L2 headers*/
1897 IB_FLOW_SPEC_ETH = 0x20,
1898 IB_FLOW_SPEC_IB = 0x22,
1899 /* L3 header*/
1900 IB_FLOW_SPEC_IPV4 = 0x30,
1901 IB_FLOW_SPEC_IPV6 = 0x31,
1902 IB_FLOW_SPEC_ESP = 0x34,
1903 /* L4 headers*/
1904 IB_FLOW_SPEC_TCP = 0x40,
1905 IB_FLOW_SPEC_UDP = 0x41,
1906 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1907 IB_FLOW_SPEC_GRE = 0x51,
1908 IB_FLOW_SPEC_MPLS = 0x60,
1909 IB_FLOW_SPEC_INNER = 0x100,
1910 /* Actions */
1911 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1912 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1913 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1914 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1915 };
1916 #define IB_FLOW_SPEC_LAYER_MASK 0xF0
1917 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1918
1919 enum ib_flow_flags {
1920 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1921 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1922 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1923 };
1924
1925 struct ib_flow_eth_filter {
1926 u8 dst_mac[6];
1927 u8 src_mac[6];
1928 __be16 ether_type;
1929 __be16 vlan_tag;
1930 };
1931
1932 struct ib_flow_spec_eth {
1933 u32 type;
1934 u16 size;
1935 struct ib_flow_eth_filter val;
1936 struct ib_flow_eth_filter mask;
1937 };
1938
1939 struct ib_flow_ib_filter {
1940 __be16 dlid;
1941 __u8 sl;
1942 };
1943
1944 struct ib_flow_spec_ib {
1945 u32 type;
1946 u16 size;
1947 struct ib_flow_ib_filter val;
1948 struct ib_flow_ib_filter mask;
1949 };
1950
1951 /* IPv4 header flags */
1952 enum ib_ipv4_flags {
1953 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1954 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1955 last have this flag set */
1956 };
1957
1958 struct ib_flow_ipv4_filter {
1959 __be32 src_ip;
1960 __be32 dst_ip;
1961 u8 proto;
1962 u8 tos;
1963 u8 ttl;
1964 u8 flags;
1965 };
1966
1967 struct ib_flow_spec_ipv4 {
1968 u32 type;
1969 u16 size;
1970 struct ib_flow_ipv4_filter val;
1971 struct ib_flow_ipv4_filter mask;
1972 };
1973
1974 struct ib_flow_ipv6_filter {
1975 u8 src_ip[16];
1976 u8 dst_ip[16];
1977 __be32 flow_label;
1978 u8 next_hdr;
1979 u8 traffic_class;
1980 u8 hop_limit;
1981 } __packed;
1982
1983 struct ib_flow_spec_ipv6 {
1984 u32 type;
1985 u16 size;
1986 struct ib_flow_ipv6_filter val;
1987 struct ib_flow_ipv6_filter mask;
1988 };
1989
1990 struct ib_flow_tcp_udp_filter {
1991 __be16 dst_port;
1992 __be16 src_port;
1993 };
1994
1995 struct ib_flow_spec_tcp_udp {
1996 u32 type;
1997 u16 size;
1998 struct ib_flow_tcp_udp_filter val;
1999 struct ib_flow_tcp_udp_filter mask;
2000 };
2001
2002 struct ib_flow_tunnel_filter {
2003 __be32 tunnel_id;
2004 };
2005
2006 /* ib_flow_spec_tunnel describes the Vxlan tunnel
2007 * the tunnel_id from val has the vni value
2008 */
2009 struct ib_flow_spec_tunnel {
2010 u32 type;
2011 u16 size;
2012 struct ib_flow_tunnel_filter val;
2013 struct ib_flow_tunnel_filter mask;
2014 };
2015
2016 struct ib_flow_esp_filter {
2017 __be32 spi;
2018 __be32 seq;
2019 };
2020
2021 struct ib_flow_spec_esp {
2022 u32 type;
2023 u16 size;
2024 struct ib_flow_esp_filter val;
2025 struct ib_flow_esp_filter mask;
2026 };
2027
2028 struct ib_flow_gre_filter {
2029 __be16 c_ks_res0_ver;
2030 __be16 protocol;
2031 __be32 key;
2032 };
2033
2034 struct ib_flow_spec_gre {
2035 u32 type;
2036 u16 size;
2037 struct ib_flow_gre_filter val;
2038 struct ib_flow_gre_filter mask;
2039 };
2040
2041 struct ib_flow_mpls_filter {
2042 __be32 tag;
2043 };
2044
2045 struct ib_flow_spec_mpls {
2046 u32 type;
2047 u16 size;
2048 struct ib_flow_mpls_filter val;
2049 struct ib_flow_mpls_filter mask;
2050 };
2051
2052 struct ib_flow_spec_action_tag {
2053 enum ib_flow_spec_type type;
2054 u16 size;
2055 u32 tag_id;
2056 };
2057
2058 struct ib_flow_spec_action_drop {
2059 enum ib_flow_spec_type type;
2060 u16 size;
2061 };
2062
2063 struct ib_flow_spec_action_handle {
2064 enum ib_flow_spec_type type;
2065 u16 size;
2066 struct ib_flow_action *act;
2067 };
2068
2069 enum ib_counters_description {
2070 IB_COUNTER_PACKETS,
2071 IB_COUNTER_BYTES,
2072 };
2073
2074 struct ib_flow_spec_action_count {
2075 enum ib_flow_spec_type type;
2076 u16 size;
2077 struct ib_counters *counters;
2078 };
2079
2080 union ib_flow_spec {
2081 struct {
2082 u32 type;
2083 u16 size;
2084 };
2085 struct ib_flow_spec_eth eth;
2086 struct ib_flow_spec_ib ib;
2087 struct ib_flow_spec_ipv4 ipv4;
2088 struct ib_flow_spec_tcp_udp tcp_udp;
2089 struct ib_flow_spec_ipv6 ipv6;
2090 struct ib_flow_spec_tunnel tunnel;
2091 struct ib_flow_spec_esp esp;
2092 struct ib_flow_spec_gre gre;
2093 struct ib_flow_spec_mpls mpls;
2094 struct ib_flow_spec_action_tag flow_tag;
2095 struct ib_flow_spec_action_drop drop;
2096 struct ib_flow_spec_action_handle action;
2097 struct ib_flow_spec_action_count flow_count;
2098 };
2099
2100 struct ib_flow_attr {
2101 enum ib_flow_attr_type type;
2102 u16 size;
2103 u16 priority;
2104 u32 flags;
2105 u8 num_of_specs;
2106 u32 port;
2107 union ib_flow_spec flows[];
2108 };
2109
2110 struct ib_flow {
2111 struct ib_qp *qp;
2112 struct ib_device *device;
2113 struct ib_uobject *uobject;
2114 };
2115
2116 enum ib_flow_action_type {
2117 IB_FLOW_ACTION_UNSPECIFIED,
2118 IB_FLOW_ACTION_ESP = 1,
2119 };
2120
2121 struct ib_flow_action_attrs_esp_keymats {
2122 enum ib_uverbs_flow_action_esp_keymat protocol;
2123 union {
2124 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2125 } keymat;
2126 };
2127
2128 struct ib_flow_action_attrs_esp_replays {
2129 enum ib_uverbs_flow_action_esp_replay protocol;
2130 union {
2131 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2132 } replay;
2133 };
2134
2135 enum ib_flow_action_attrs_esp_flags {
2136 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2137 * This is done in order to share the same flags between user-space and
2138 * kernel and spare an unnecessary translation.
2139 */
2140
2141 /* Kernel flags */
2142 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2143 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2144 };
2145
2146 struct ib_flow_spec_list {
2147 struct ib_flow_spec_list *next;
2148 union ib_flow_spec spec;
2149 };
2150
2151 struct ib_flow_action_attrs_esp {
2152 struct ib_flow_action_attrs_esp_keymats *keymat;
2153 struct ib_flow_action_attrs_esp_replays *replay;
2154 struct ib_flow_spec_list *encap;
2155 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2156 * Value of 0 is a valid value.
2157 */
2158 u32 esn;
2159 u32 spi;
2160 u32 seq;
2161 u32 tfc_pad;
2162 /* Use enum ib_flow_action_attrs_esp_flags */
2163 u64 flags;
2164 u64 hard_limit_pkts;
2165 };
2166
2167 struct ib_flow_action {
2168 struct ib_device *device;
2169 struct ib_uobject *uobject;
2170 enum ib_flow_action_type type;
2171 atomic_t usecnt;
2172 };
2173
2174 struct ib_mad;
2175
2176 enum ib_process_mad_flags {
2177 IB_MAD_IGNORE_MKEY = 1,
2178 IB_MAD_IGNORE_BKEY = 2,
2179 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2180 };
2181
2182 enum ib_mad_result {
2183 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2184 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2185 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2186 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2187 };
2188
2189 struct ib_port_cache {
2190 u64 subnet_prefix;
2191 struct ib_pkey_cache *pkey;
2192 struct ib_gid_table *gid;
2193 u8 lmc;
2194 enum ib_port_state port_state;
2195 enum ib_port_state last_port_state;
2196 };
2197
2198 struct ib_port_immutable {
2199 int pkey_tbl_len;
2200 int gid_tbl_len;
2201 u32 core_cap_flags;
2202 u32 max_mad_size;
2203 };
2204
2205 struct ib_port_data {
2206 struct ib_device *ib_dev;
2207
2208 struct ib_port_immutable immutable;
2209
2210 spinlock_t pkey_list_lock;
2211
2212 spinlock_t netdev_lock;
2213
2214 struct list_head pkey_list;
2215
2216 struct ib_port_cache cache;
2217
2218 struct net_device __rcu *netdev;
2219 netdevice_tracker netdev_tracker;
2220 struct hlist_node ndev_hash_link;
2221 struct rdma_port_counter port_counter;
2222 struct ib_port *sysfs;
2223 };
2224
2225 /* rdma netdev type - specifies protocol type */
2226 enum rdma_netdev_t {
2227 RDMA_NETDEV_OPA_VNIC,
2228 RDMA_NETDEV_IPOIB,
2229 };
2230
2231 /**
2232 * struct rdma_netdev - rdma netdev
2233 * For cases where netstack interfacing is required.
2234 */
2235 struct rdma_netdev {
2236 void *clnt_priv;
2237 struct ib_device *hca;
2238 u32 port_num;
2239 int mtu;
2240
2241 /*
2242 * cleanup function must be specified.
2243 * FIXME: This is only used for OPA_VNIC and that usage should be
2244 * removed too.
2245 */
2246 void (*free_rdma_netdev)(struct net_device *netdev);
2247
2248 /* control functions */
2249 void (*set_id)(struct net_device *netdev, int id);
2250 /* send packet */
2251 int (*send)(struct net_device *dev, struct sk_buff *skb,
2252 struct ib_ah *address, u32 dqpn);
2253 /* multicast */
2254 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2255 union ib_gid *gid, u16 mlid,
2256 int set_qkey, u32 qkey);
2257 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2258 union ib_gid *gid, u16 mlid);
2259 /* timeout */
2260 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2261 };
2262
2263 struct rdma_netdev_alloc_params {
2264 size_t sizeof_priv;
2265 unsigned int txqs;
2266 unsigned int rxqs;
2267 void *param;
2268
2269 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2270 struct net_device *netdev, void *param);
2271 };
2272
2273 struct ib_odp_counters {
2274 atomic64_t faults;
2275 atomic64_t faults_handled;
2276 atomic64_t invalidations;
2277 atomic64_t invalidations_handled;
2278 atomic64_t prefetch;
2279 };
2280
2281 struct ib_counters {
2282 struct ib_device *device;
2283 struct ib_uobject *uobject;
2284 /* num of objects attached */
2285 atomic_t usecnt;
2286 };
2287
2288 struct ib_counters_read_attr {
2289 u64 *counters_buff;
2290 u32 ncounters;
2291 u32 flags; /* use enum ib_read_counters_flags */
2292 };
2293
2294 struct uverbs_attr_bundle;
2295 struct iw_cm_id;
2296 struct iw_cm_conn_param;
2297
2298 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2299 .size_##ib_struct = \
2300 (sizeof(struct drv_struct) + \
2301 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2302 BUILD_BUG_ON_ZERO( \
2303 !__same_type(((struct drv_struct *)NULL)->member, \
2304 struct ib_struct)))
2305
2306 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2307 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2308 gfp, false))
2309
2310 #define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2311 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2312 GFP_KERNEL, true))
2313
2314 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2315 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2316
2317 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2318
2319 struct rdma_user_mmap_entry {
2320 struct kref ref;
2321 struct ib_ucontext *ucontext;
2322 unsigned long start_pgoff;
2323 size_t npages;
2324 bool driver_removed;
2325 };
2326
2327 /* Return the offset (in bytes) the user should pass to libc's mmap() */
2328 static inline u64
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry * entry)2329 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2330 {
2331 return (u64)entry->start_pgoff << PAGE_SHIFT;
2332 }
2333
2334 /**
2335 * struct ib_device_ops - InfiniBand device operations
2336 * This structure defines all the InfiniBand device operations, providers will
2337 * need to define the supported operations, otherwise they will be set to null.
2338 */
2339 struct ib_device_ops {
2340 struct module *owner;
2341 enum rdma_driver_id driver_id;
2342 u32 uverbs_abi_ver;
2343 unsigned int uverbs_no_driver_id_binding:1;
2344
2345 /*
2346 * NOTE: New drivers should not make use of device_group; instead new
2347 * device parameter should be exposed via netlink command. This
2348 * mechanism exists only for existing drivers.
2349 */
2350 const struct attribute_group *device_group;
2351 const struct attribute_group **port_groups;
2352
2353 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2354 const struct ib_send_wr **bad_send_wr);
2355 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2356 const struct ib_recv_wr **bad_recv_wr);
2357 void (*drain_rq)(struct ib_qp *qp);
2358 void (*drain_sq)(struct ib_qp *qp);
2359 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2360 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2361 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2362 int (*post_srq_recv)(struct ib_srq *srq,
2363 const struct ib_recv_wr *recv_wr,
2364 const struct ib_recv_wr **bad_recv_wr);
2365 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2366 u32 port_num, const struct ib_wc *in_wc,
2367 const struct ib_grh *in_grh,
2368 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2369 size_t *out_mad_size, u16 *out_mad_pkey_index);
2370 int (*query_device)(struct ib_device *device,
2371 struct ib_device_attr *device_attr,
2372 struct ib_udata *udata);
2373 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2374 struct ib_device_modify *device_modify);
2375 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2376 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2377 int comp_vector);
2378 int (*query_port)(struct ib_device *device, u32 port_num,
2379 struct ib_port_attr *port_attr);
2380 int (*modify_port)(struct ib_device *device, u32 port_num,
2381 int port_modify_mask,
2382 struct ib_port_modify *port_modify);
2383 /**
2384 * The following mandatory functions are used only at device
2385 * registration. Keep functions such as these at the end of this
2386 * structure to avoid cache line misses when accessing struct ib_device
2387 * in fast paths.
2388 */
2389 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2390 struct ib_port_immutable *immutable);
2391 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2392 u32 port_num);
2393 /**
2394 * When calling get_netdev, the HW vendor's driver should return the
2395 * net device of device @device at port @port_num or NULL if such
2396 * a net device doesn't exist. The vendor driver should call dev_hold
2397 * on this net device. The HW vendor's device driver must guarantee
2398 * that this function returns NULL before the net device has finished
2399 * NETDEV_UNREGISTER state.
2400 */
2401 struct net_device *(*get_netdev)(struct ib_device *device,
2402 u32 port_num);
2403 /**
2404 * rdma netdev operation
2405 *
2406 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2407 * must return -EOPNOTSUPP if it doesn't support the specified type.
2408 */
2409 struct net_device *(*alloc_rdma_netdev)(
2410 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2411 const char *name, unsigned char name_assign_type,
2412 void (*setup)(struct net_device *));
2413
2414 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2415 enum rdma_netdev_t type,
2416 struct rdma_netdev_alloc_params *params);
2417 /**
2418 * query_gid should be return GID value for @device, when @port_num
2419 * link layer is either IB or iWarp. It is no-op if @port_num port
2420 * is RoCE link layer.
2421 */
2422 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2423 union ib_gid *gid);
2424 /**
2425 * When calling add_gid, the HW vendor's driver should add the gid
2426 * of device of port at gid index available at @attr. Meta-info of
2427 * that gid (for example, the network device related to this gid) is
2428 * available at @attr. @context allows the HW vendor driver to store
2429 * extra information together with a GID entry. The HW vendor driver may
2430 * allocate memory to contain this information and store it in @context
2431 * when a new GID entry is written to. Params are consistent until the
2432 * next call of add_gid or delete_gid. The function should return 0 on
2433 * success or error otherwise. The function could be called
2434 * concurrently for different ports. This function is only called when
2435 * roce_gid_table is used.
2436 */
2437 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2438 /**
2439 * When calling del_gid, the HW vendor's driver should delete the
2440 * gid of device @device at gid index gid_index of port port_num
2441 * available in @attr.
2442 * Upon the deletion of a GID entry, the HW vendor must free any
2443 * allocated memory. The caller will clear @context afterwards.
2444 * This function is only called when roce_gid_table is used.
2445 */
2446 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2447 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2448 u16 *pkey);
2449 int (*alloc_ucontext)(struct ib_ucontext *context,
2450 struct ib_udata *udata);
2451 void (*dealloc_ucontext)(struct ib_ucontext *context);
2452 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2453 /**
2454 * This will be called once refcount of an entry in mmap_xa reaches
2455 * zero. The type of the memory that was mapped may differ between
2456 * entries and is opaque to the rdma_user_mmap interface.
2457 * Therefore needs to be implemented by the driver in mmap_free.
2458 */
2459 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2460 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2461 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2462 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2463 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2464 struct ib_udata *udata);
2465 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2466 struct ib_udata *udata);
2467 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2468 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2469 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2470 int (*create_srq)(struct ib_srq *srq,
2471 struct ib_srq_init_attr *srq_init_attr,
2472 struct ib_udata *udata);
2473 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2474 enum ib_srq_attr_mask srq_attr_mask,
2475 struct ib_udata *udata);
2476 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2477 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2478 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2479 struct ib_udata *udata);
2480 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2481 int qp_attr_mask, struct ib_udata *udata);
2482 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2483 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2484 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2485 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2486 struct uverbs_attr_bundle *attrs);
2487 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2488 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2489 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2490 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2491 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2492 u64 virt_addr, int mr_access_flags,
2493 struct ib_udata *udata);
2494 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2495 u64 length, u64 virt_addr, int fd,
2496 int mr_access_flags,
2497 struct uverbs_attr_bundle *attrs);
2498 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2499 u64 length, u64 virt_addr,
2500 int mr_access_flags, struct ib_pd *pd,
2501 struct ib_udata *udata);
2502 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2503 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2504 u32 max_num_sg);
2505 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2506 u32 max_num_data_sg,
2507 u32 max_num_meta_sg);
2508 int (*advise_mr)(struct ib_pd *pd,
2509 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2510 struct ib_sge *sg_list, u32 num_sge,
2511 struct uverbs_attr_bundle *attrs);
2512
2513 /*
2514 * Kernel users should universally support relaxed ordering (RO), as
2515 * they are designed to read data only after observing the CQE and use
2516 * the DMA API correctly.
2517 *
2518 * Some drivers implicitly enable RO if platform supports it.
2519 */
2520 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2521 unsigned int *sg_offset);
2522 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2523 struct ib_mr_status *mr_status);
2524 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2525 int (*dealloc_mw)(struct ib_mw *mw);
2526 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2527 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2528 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2529 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2530 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2531 struct ib_flow_attr *flow_attr,
2532 struct ib_udata *udata);
2533 int (*destroy_flow)(struct ib_flow *flow_id);
2534 int (*destroy_flow_action)(struct ib_flow_action *action);
2535 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2536 int state);
2537 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2538 struct ifla_vf_info *ivf);
2539 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2540 struct ifla_vf_stats *stats);
2541 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2542 struct ifla_vf_guid *node_guid,
2543 struct ifla_vf_guid *port_guid);
2544 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2545 int type);
2546 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2547 struct ib_wq_init_attr *init_attr,
2548 struct ib_udata *udata);
2549 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2550 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2551 u32 wq_attr_mask, struct ib_udata *udata);
2552 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2553 struct ib_rwq_ind_table_init_attr *init_attr,
2554 struct ib_udata *udata);
2555 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2556 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2557 struct ib_ucontext *context,
2558 struct ib_dm_alloc_attr *attr,
2559 struct uverbs_attr_bundle *attrs);
2560 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2561 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2562 struct ib_dm_mr_attr *attr,
2563 struct uverbs_attr_bundle *attrs);
2564 int (*create_counters)(struct ib_counters *counters,
2565 struct uverbs_attr_bundle *attrs);
2566 int (*destroy_counters)(struct ib_counters *counters);
2567 int (*read_counters)(struct ib_counters *counters,
2568 struct ib_counters_read_attr *counters_read_attr,
2569 struct uverbs_attr_bundle *attrs);
2570 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2571 int data_sg_nents, unsigned int *data_sg_offset,
2572 struct scatterlist *meta_sg, int meta_sg_nents,
2573 unsigned int *meta_sg_offset);
2574
2575 /**
2576 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2577 * fill in the driver initialized data. The struct is kfree()'ed by
2578 * the sysfs core when the device is removed. A lifespan of -1 in the
2579 * return struct tells the core to set a default lifespan.
2580 */
2581 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2582 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2583 u32 port_num);
2584 /**
2585 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2586 * @index - The index in the value array we wish to have updated, or
2587 * num_counters if we want all stats updated
2588 * Return codes -
2589 * < 0 - Error, no counters updated
2590 * index - Updated the single counter pointed to by index
2591 * num_counters - Updated all counters (will reset the timestamp
2592 * and prevent further calls for lifespan milliseconds)
2593 * Drivers are allowed to update all counters in leiu of just the
2594 * one given in index at their option
2595 */
2596 int (*get_hw_stats)(struct ib_device *device,
2597 struct rdma_hw_stats *stats, u32 port, int index);
2598
2599 /**
2600 * modify_hw_stat - Modify the counter configuration
2601 * @enable: true/false when enable/disable a counter
2602 * Return codes - 0 on success or error code otherwise.
2603 */
2604 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2605 unsigned int counter_index, bool enable);
2606 /**
2607 * Allows rdma drivers to add their own restrack attributes.
2608 */
2609 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2610 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2611 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2612 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2613 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2614 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2615 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2616 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2617 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2618
2619 /* Device lifecycle callbacks */
2620 /*
2621 * Called after the device becomes registered, before clients are
2622 * attached
2623 */
2624 int (*enable_driver)(struct ib_device *dev);
2625 /*
2626 * This is called as part of ib_dealloc_device().
2627 */
2628 void (*dealloc_driver)(struct ib_device *dev);
2629
2630 /* iWarp CM callbacks */
2631 void (*iw_add_ref)(struct ib_qp *qp);
2632 void (*iw_rem_ref)(struct ib_qp *qp);
2633 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2634 int (*iw_connect)(struct iw_cm_id *cm_id,
2635 struct iw_cm_conn_param *conn_param);
2636 int (*iw_accept)(struct iw_cm_id *cm_id,
2637 struct iw_cm_conn_param *conn_param);
2638 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2639 u8 pdata_len);
2640 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2641 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2642 /**
2643 * counter_bind_qp - Bind a QP to a counter.
2644 * @counter - The counter to be bound. If counter->id is zero then
2645 * the driver needs to allocate a new counter and set counter->id
2646 */
2647 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2648 u32 port);
2649 /**
2650 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2651 * counter and bind it onto the default one
2652 */
2653 int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2654 /**
2655 * counter_dealloc -De-allocate the hw counter
2656 */
2657 int (*counter_dealloc)(struct rdma_counter *counter);
2658 /**
2659 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2660 * the driver initialized data.
2661 */
2662 struct rdma_hw_stats *(*counter_alloc_stats)(
2663 struct rdma_counter *counter);
2664 /**
2665 * counter_update_stats - Query the stats value of this counter
2666 */
2667 int (*counter_update_stats)(struct rdma_counter *counter);
2668
2669 /**
2670 * counter_init - Initialize the driver specific rdma counter struct.
2671 */
2672 void (*counter_init)(struct rdma_counter *counter);
2673
2674 /**
2675 * Allows rdma drivers to add their own restrack attributes
2676 * dumped via 'rdma stat' iproute2 command.
2677 */
2678 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2679
2680 /* query driver for its ucontext properties */
2681 int (*query_ucontext)(struct ib_ucontext *context,
2682 struct uverbs_attr_bundle *attrs);
2683
2684 /*
2685 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2686 * Everyone else relies on Linux memory management model.
2687 */
2688 int (*get_numa_node)(struct ib_device *dev);
2689
2690 /**
2691 * add_sub_dev - Add a sub IB device
2692 */
2693 struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2694 enum rdma_nl_dev_type type,
2695 const char *name);
2696
2697 /**
2698 * del_sub_dev - Delete a sub IB device
2699 */
2700 void (*del_sub_dev)(struct ib_device *sub_dev);
2701
2702 /**
2703 * ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2704 * the ufile.
2705 */
2706 void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2707
2708 /**
2709 * report_port_event - Drivers need to implement this if they have
2710 * some private stuff to handle when link status changes.
2711 */
2712 void (*report_port_event)(struct ib_device *ibdev,
2713 struct net_device *ndev, unsigned long event);
2714
2715 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2716 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2717 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2718 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2719 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2720 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2721 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2722 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2723 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2724 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2725 DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2726 };
2727
2728 struct ib_core_device {
2729 /* device must be the first element in structure until,
2730 * union of ib_core_device and device exists in ib_device.
2731 */
2732 struct device dev;
2733 possible_net_t rdma_net;
2734 struct kobject *ports_kobj;
2735 struct list_head port_list;
2736 struct ib_device *owner; /* reach back to owner ib_device */
2737 };
2738
2739 struct rdma_restrack_root;
2740 struct ib_device {
2741 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2742 struct device *dma_device;
2743 struct ib_device_ops ops;
2744 char name[IB_DEVICE_NAME_MAX];
2745 struct rcu_head rcu_head;
2746
2747 struct list_head event_handler_list;
2748 /* Protects event_handler_list */
2749 struct rw_semaphore event_handler_rwsem;
2750
2751 /* Protects QP's event_handler calls and open_qp list */
2752 spinlock_t qp_open_list_lock;
2753
2754 struct rw_semaphore client_data_rwsem;
2755 struct xarray client_data;
2756 struct mutex unregistration_lock;
2757
2758 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2759 rwlock_t cache_lock;
2760 /**
2761 * port_data is indexed by port number
2762 */
2763 struct ib_port_data *port_data;
2764
2765 int num_comp_vectors;
2766
2767 union {
2768 struct device dev;
2769 struct ib_core_device coredev;
2770 };
2771
2772 /* First group is for device attributes,
2773 * Second group is for driver provided attributes (optional).
2774 * Third group is for the hw_stats
2775 * It is a NULL terminated array.
2776 */
2777 const struct attribute_group *groups[4];
2778 u8 hw_stats_attr_index;
2779
2780 u64 uverbs_cmd_mask;
2781
2782 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2783 __be64 node_guid;
2784 u32 local_dma_lkey;
2785 u16 is_switch:1;
2786 /* Indicates kernel verbs support, should not be used in drivers */
2787 u16 kverbs_provider:1;
2788 /* CQ adaptive moderation (RDMA DIM) */
2789 u16 use_cq_dim:1;
2790 u8 node_type;
2791 u32 phys_port_cnt;
2792 struct ib_device_attr attrs;
2793 struct hw_stats_device_data *hw_stats_data;
2794
2795 #ifdef CONFIG_CGROUP_RDMA
2796 struct rdmacg_device cg_device;
2797 #endif
2798
2799 u32 index;
2800
2801 spinlock_t cq_pools_lock;
2802 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2803
2804 struct rdma_restrack_root *res;
2805
2806 const struct uapi_definition *driver_def;
2807
2808 /*
2809 * Positive refcount indicates that the device is currently
2810 * registered and cannot be unregistered.
2811 */
2812 refcount_t refcount;
2813 struct completion unreg_completion;
2814 struct work_struct unregistration_work;
2815
2816 const struct rdma_link_ops *link_ops;
2817
2818 /* Protects compat_devs xarray modifications */
2819 struct mutex compat_devs_mutex;
2820 /* Maintains compat devices for each net namespace */
2821 struct xarray compat_devs;
2822
2823 /* Used by iWarp CM */
2824 char iw_ifname[IFNAMSIZ];
2825 u32 iw_driver_flags;
2826 u32 lag_flags;
2827
2828 /* A parent device has a list of sub-devices */
2829 struct mutex subdev_lock;
2830 struct list_head subdev_list_head;
2831
2832 /* A sub device has a type and a parent */
2833 enum rdma_nl_dev_type type;
2834 struct ib_device *parent;
2835 struct list_head subdev_list;
2836
2837 enum rdma_nl_name_assign_type name_assign_type;
2838 };
2839
rdma_zalloc_obj(struct ib_device * dev,size_t size,gfp_t gfp,bool is_numa_aware)2840 static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2841 gfp_t gfp, bool is_numa_aware)
2842 {
2843 if (is_numa_aware && dev->ops.get_numa_node)
2844 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2845
2846 return kzalloc(size, gfp);
2847 }
2848
2849 struct ib_client_nl_info;
2850 struct ib_client {
2851 const char *name;
2852 int (*add)(struct ib_device *ibdev);
2853 void (*remove)(struct ib_device *, void *client_data);
2854 void (*rename)(struct ib_device *dev, void *client_data);
2855 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2856 struct ib_client_nl_info *res);
2857 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2858
2859 /* Returns the net_dev belonging to this ib_client and matching the
2860 * given parameters.
2861 * @dev: An RDMA device that the net_dev use for communication.
2862 * @port: A physical port number on the RDMA device.
2863 * @pkey: P_Key that the net_dev uses if applicable.
2864 * @gid: A GID that the net_dev uses to communicate.
2865 * @addr: An IP address the net_dev is configured with.
2866 * @client_data: The device's client data set by ib_set_client_data().
2867 *
2868 * An ib_client that implements a net_dev on top of RDMA devices
2869 * (such as IP over IB) should implement this callback, allowing the
2870 * rdma_cm module to find the right net_dev for a given request.
2871 *
2872 * The caller is responsible for calling dev_put on the returned
2873 * netdev. */
2874 struct net_device *(*get_net_dev_by_params)(
2875 struct ib_device *dev,
2876 u32 port,
2877 u16 pkey,
2878 const union ib_gid *gid,
2879 const struct sockaddr *addr,
2880 void *client_data);
2881
2882 refcount_t uses;
2883 struct completion uses_zero;
2884 u32 client_id;
2885
2886 /* kverbs are not required by the client */
2887 u8 no_kverbs_req:1;
2888 };
2889
2890 /*
2891 * IB block DMA iterator
2892 *
2893 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2894 * to a HW supported page size.
2895 */
2896 struct ib_block_iter {
2897 /* internal states */
2898 struct scatterlist *__sg; /* sg holding the current aligned block */
2899 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2900 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2901 unsigned int __sg_nents; /* number of SG entries */
2902 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2903 unsigned int __pg_bit; /* alignment of current block */
2904 };
2905
2906 struct ib_device *_ib_alloc_device(size_t size);
2907 #define ib_alloc_device(drv_struct, member) \
2908 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2909 BUILD_BUG_ON_ZERO(offsetof( \
2910 struct drv_struct, member))), \
2911 struct drv_struct, member)
2912
2913 void ib_dealloc_device(struct ib_device *device);
2914
2915 void ib_get_device_fw_str(struct ib_device *device, char *str);
2916
2917 int ib_register_device(struct ib_device *device, const char *name,
2918 struct device *dma_device);
2919 void ib_unregister_device(struct ib_device *device);
2920 void ib_unregister_driver(enum rdma_driver_id driver_id);
2921 void ib_unregister_device_and_put(struct ib_device *device);
2922 void ib_unregister_device_queued(struct ib_device *ib_dev);
2923
2924 int ib_register_client (struct ib_client *client);
2925 void ib_unregister_client(struct ib_client *client);
2926
2927 void __rdma_block_iter_start(struct ib_block_iter *biter,
2928 struct scatterlist *sglist,
2929 unsigned int nents,
2930 unsigned long pgsz);
2931 bool __rdma_block_iter_next(struct ib_block_iter *biter);
2932
2933 /**
2934 * rdma_block_iter_dma_address - get the aligned dma address of the current
2935 * block held by the block iterator.
2936 * @biter: block iterator holding the memory block
2937 */
2938 static inline dma_addr_t
rdma_block_iter_dma_address(struct ib_block_iter * biter)2939 rdma_block_iter_dma_address(struct ib_block_iter *biter)
2940 {
2941 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2942 }
2943
2944 /**
2945 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2946 * @sglist: sglist to iterate over
2947 * @biter: block iterator holding the memory block
2948 * @nents: maximum number of sg entries to iterate over
2949 * @pgsz: best HW supported page size to use
2950 *
2951 * Callers may use rdma_block_iter_dma_address() to get each
2952 * blocks aligned DMA address.
2953 */
2954 #define rdma_for_each_block(sglist, biter, nents, pgsz) \
2955 for (__rdma_block_iter_start(biter, sglist, nents, \
2956 pgsz); \
2957 __rdma_block_iter_next(biter);)
2958
2959 /**
2960 * ib_get_client_data - Get IB client context
2961 * @device:Device to get context for
2962 * @client:Client to get context for
2963 *
2964 * ib_get_client_data() returns the client context data set with
2965 * ib_set_client_data(). This can only be called while the client is
2966 * registered to the device, once the ib_client remove() callback returns this
2967 * cannot be called.
2968 */
ib_get_client_data(struct ib_device * device,struct ib_client * client)2969 static inline void *ib_get_client_data(struct ib_device *device,
2970 struct ib_client *client)
2971 {
2972 return xa_load(&device->client_data, client->client_id);
2973 }
2974 void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2975 void *data);
2976 void ib_set_device_ops(struct ib_device *device,
2977 const struct ib_device_ops *ops);
2978
2979 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2980 unsigned long pfn, unsigned long size, pgprot_t prot,
2981 struct rdma_user_mmap_entry *entry);
2982 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2983 struct rdma_user_mmap_entry *entry,
2984 size_t length);
2985 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2986 struct rdma_user_mmap_entry *entry,
2987 size_t length, u32 min_pgoff,
2988 u32 max_pgoff);
2989
2990 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2991 void rdma_user_mmap_disassociate(struct ib_device *device);
2992 #else
rdma_user_mmap_disassociate(struct ib_device * device)2993 static inline void rdma_user_mmap_disassociate(struct ib_device *device)
2994 {
2995 }
2996 #endif
2997
2998 static inline int
rdma_user_mmap_entry_insert_exact(struct ib_ucontext * ucontext,struct rdma_user_mmap_entry * entry,size_t length,u32 pgoff)2999 rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3000 struct rdma_user_mmap_entry *entry,
3001 size_t length, u32 pgoff)
3002 {
3003 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3004 pgoff);
3005 }
3006
3007 struct rdma_user_mmap_entry *
3008 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3009 unsigned long pgoff);
3010 struct rdma_user_mmap_entry *
3011 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3012 struct vm_area_struct *vma);
3013 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3014
3015 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3016
ib_copy_from_udata(void * dest,struct ib_udata * udata,size_t len)3017 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3018 {
3019 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3020 }
3021
ib_copy_to_udata(struct ib_udata * udata,void * src,size_t len)3022 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3023 {
3024 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3025 }
3026
ib_is_buffer_cleared(const void __user * p,size_t len)3027 static inline bool ib_is_buffer_cleared(const void __user *p,
3028 size_t len)
3029 {
3030 bool ret;
3031 u8 *buf;
3032
3033 if (len > USHRT_MAX)
3034 return false;
3035
3036 buf = memdup_user(p, len);
3037 if (IS_ERR(buf))
3038 return false;
3039
3040 ret = !memchr_inv(buf, 0, len);
3041 kfree(buf);
3042 return ret;
3043 }
3044
ib_is_udata_cleared(struct ib_udata * udata,size_t offset,size_t len)3045 static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3046 size_t offset,
3047 size_t len)
3048 {
3049 return ib_is_buffer_cleared(udata->inbuf + offset, len);
3050 }
3051
3052 /**
3053 * ib_modify_qp_is_ok - Check that the supplied attribute mask
3054 * contains all required attributes and no attributes not allowed for
3055 * the given QP state transition.
3056 * @cur_state: Current QP state
3057 * @next_state: Next QP state
3058 * @type: QP type
3059 * @mask: Mask of supplied QP attributes
3060 *
3061 * This function is a helper function that a low-level driver's
3062 * modify_qp method can use to validate the consumer's input. It
3063 * checks that cur_state and next_state are valid QP states, that a
3064 * transition from cur_state to next_state is allowed by the IB spec,
3065 * and that the attribute mask supplied is allowed for the transition.
3066 */
3067 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3068 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3069
3070 void ib_register_event_handler(struct ib_event_handler *event_handler);
3071 void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3072 void ib_dispatch_event(const struct ib_event *event);
3073
3074 int ib_query_port(struct ib_device *device,
3075 u32 port_num, struct ib_port_attr *port_attr);
3076
3077 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3078 u32 port_num);
3079
3080 /**
3081 * rdma_cap_ib_switch - Check if the device is IB switch
3082 * @device: Device to check
3083 *
3084 * Device driver is responsible for setting is_switch bit on
3085 * in ib_device structure at init time.
3086 *
3087 * Return: true if the device is IB switch.
3088 */
rdma_cap_ib_switch(const struct ib_device * device)3089 static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3090 {
3091 return device->is_switch;
3092 }
3093
3094 /**
3095 * rdma_start_port - Return the first valid port number for the device
3096 * specified
3097 *
3098 * @device: Device to be checked
3099 *
3100 * Return start port number
3101 */
rdma_start_port(const struct ib_device * device)3102 static inline u32 rdma_start_port(const struct ib_device *device)
3103 {
3104 return rdma_cap_ib_switch(device) ? 0 : 1;
3105 }
3106
3107 /**
3108 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3109 * @device - The struct ib_device * to iterate over
3110 * @iter - The unsigned int to store the port number
3111 */
3112 #define rdma_for_each_port(device, iter) \
3113 for (iter = rdma_start_port(device + \
3114 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3115 iter))); \
3116 iter <= rdma_end_port(device); iter++)
3117
3118 /**
3119 * rdma_end_port - Return the last valid port number for the device
3120 * specified
3121 *
3122 * @device: Device to be checked
3123 *
3124 * Return last port number
3125 */
rdma_end_port(const struct ib_device * device)3126 static inline u32 rdma_end_port(const struct ib_device *device)
3127 {
3128 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3129 }
3130
rdma_is_port_valid(const struct ib_device * device,unsigned int port)3131 static inline int rdma_is_port_valid(const struct ib_device *device,
3132 unsigned int port)
3133 {
3134 return (port >= rdma_start_port(device) &&
3135 port <= rdma_end_port(device));
3136 }
3137
rdma_is_grh_required(const struct ib_device * device,u32 port_num)3138 static inline bool rdma_is_grh_required(const struct ib_device *device,
3139 u32 port_num)
3140 {
3141 return device->port_data[port_num].immutable.core_cap_flags &
3142 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3143 }
3144
rdma_protocol_ib(const struct ib_device * device,u32 port_num)3145 static inline bool rdma_protocol_ib(const struct ib_device *device,
3146 u32 port_num)
3147 {
3148 return device->port_data[port_num].immutable.core_cap_flags &
3149 RDMA_CORE_CAP_PROT_IB;
3150 }
3151
rdma_protocol_roce(const struct ib_device * device,u32 port_num)3152 static inline bool rdma_protocol_roce(const struct ib_device *device,
3153 u32 port_num)
3154 {
3155 return device->port_data[port_num].immutable.core_cap_flags &
3156 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3157 }
3158
rdma_protocol_roce_udp_encap(const struct ib_device * device,u32 port_num)3159 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3160 u32 port_num)
3161 {
3162 return device->port_data[port_num].immutable.core_cap_flags &
3163 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3164 }
3165
rdma_protocol_roce_eth_encap(const struct ib_device * device,u32 port_num)3166 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3167 u32 port_num)
3168 {
3169 return device->port_data[port_num].immutable.core_cap_flags &
3170 RDMA_CORE_CAP_PROT_ROCE;
3171 }
3172
rdma_protocol_iwarp(const struct ib_device * device,u32 port_num)3173 static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3174 u32 port_num)
3175 {
3176 return device->port_data[port_num].immutable.core_cap_flags &
3177 RDMA_CORE_CAP_PROT_IWARP;
3178 }
3179
rdma_ib_or_roce(const struct ib_device * device,u32 port_num)3180 static inline bool rdma_ib_or_roce(const struct ib_device *device,
3181 u32 port_num)
3182 {
3183 return rdma_protocol_ib(device, port_num) ||
3184 rdma_protocol_roce(device, port_num);
3185 }
3186
rdma_protocol_raw_packet(const struct ib_device * device,u32 port_num)3187 static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3188 u32 port_num)
3189 {
3190 return device->port_data[port_num].immutable.core_cap_flags &
3191 RDMA_CORE_CAP_PROT_RAW_PACKET;
3192 }
3193
rdma_protocol_usnic(const struct ib_device * device,u32 port_num)3194 static inline bool rdma_protocol_usnic(const struct ib_device *device,
3195 u32 port_num)
3196 {
3197 return device->port_data[port_num].immutable.core_cap_flags &
3198 RDMA_CORE_CAP_PROT_USNIC;
3199 }
3200
3201 /**
3202 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3203 * Management Datagrams.
3204 * @device: Device to check
3205 * @port_num: Port number to check
3206 *
3207 * Management Datagrams (MAD) are a required part of the InfiniBand
3208 * specification and are supported on all InfiniBand devices. A slightly
3209 * extended version are also supported on OPA interfaces.
3210 *
3211 * Return: true if the port supports sending/receiving of MAD packets.
3212 */
rdma_cap_ib_mad(const struct ib_device * device,u32 port_num)3213 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3214 {
3215 return device->port_data[port_num].immutable.core_cap_flags &
3216 RDMA_CORE_CAP_IB_MAD;
3217 }
3218
3219 /**
3220 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3221 * Management Datagrams.
3222 * @device: Device to check
3223 * @port_num: Port number to check
3224 *
3225 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3226 * datagrams with their own versions. These OPA MADs share many but not all of
3227 * the characteristics of InfiniBand MADs.
3228 *
3229 * OPA MADs differ in the following ways:
3230 *
3231 * 1) MADs are variable size up to 2K
3232 * IBTA defined MADs remain fixed at 256 bytes
3233 * 2) OPA SMPs must carry valid PKeys
3234 * 3) OPA SMP packets are a different format
3235 *
3236 * Return: true if the port supports OPA MAD packet formats.
3237 */
rdma_cap_opa_mad(struct ib_device * device,u32 port_num)3238 static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3239 {
3240 return device->port_data[port_num].immutable.core_cap_flags &
3241 RDMA_CORE_CAP_OPA_MAD;
3242 }
3243
3244 /**
3245 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3246 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3247 * @device: Device to check
3248 * @port_num: Port number to check
3249 *
3250 * Each InfiniBand node is required to provide a Subnet Management Agent
3251 * that the subnet manager can access. Prior to the fabric being fully
3252 * configured by the subnet manager, the SMA is accessed via a well known
3253 * interface called the Subnet Management Interface (SMI). This interface
3254 * uses directed route packets to communicate with the SM to get around the
3255 * chicken and egg problem of the SM needing to know what's on the fabric
3256 * in order to configure the fabric, and needing to configure the fabric in
3257 * order to send packets to the devices on the fabric. These directed
3258 * route packets do not need the fabric fully configured in order to reach
3259 * their destination. The SMI is the only method allowed to send
3260 * directed route packets on an InfiniBand fabric.
3261 *
3262 * Return: true if the port provides an SMI.
3263 */
rdma_cap_ib_smi(const struct ib_device * device,u32 port_num)3264 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3265 {
3266 return device->port_data[port_num].immutable.core_cap_flags &
3267 RDMA_CORE_CAP_IB_SMI;
3268 }
3269
3270 /**
3271 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3272 * Communication Manager.
3273 * @device: Device to check
3274 * @port_num: Port number to check
3275 *
3276 * The InfiniBand Communication Manager is one of many pre-defined General
3277 * Service Agents (GSA) that are accessed via the General Service
3278 * Interface (GSI). It's role is to facilitate establishment of connections
3279 * between nodes as well as other management related tasks for established
3280 * connections.
3281 *
3282 * Return: true if the port supports an IB CM (this does not guarantee that
3283 * a CM is actually running however).
3284 */
rdma_cap_ib_cm(const struct ib_device * device,u32 port_num)3285 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3286 {
3287 return device->port_data[port_num].immutable.core_cap_flags &
3288 RDMA_CORE_CAP_IB_CM;
3289 }
3290
3291 /**
3292 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3293 * Communication Manager.
3294 * @device: Device to check
3295 * @port_num: Port number to check
3296 *
3297 * Similar to above, but specific to iWARP connections which have a different
3298 * managment protocol than InfiniBand.
3299 *
3300 * Return: true if the port supports an iWARP CM (this does not guarantee that
3301 * a CM is actually running however).
3302 */
rdma_cap_iw_cm(const struct ib_device * device,u32 port_num)3303 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3304 {
3305 return device->port_data[port_num].immutable.core_cap_flags &
3306 RDMA_CORE_CAP_IW_CM;
3307 }
3308
3309 /**
3310 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3311 * Subnet Administration.
3312 * @device: Device to check
3313 * @port_num: Port number to check
3314 *
3315 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3316 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3317 * fabrics, devices should resolve routes to other hosts by contacting the
3318 * SA to query the proper route.
3319 *
3320 * Return: true if the port should act as a client to the fabric Subnet
3321 * Administration interface. This does not imply that the SA service is
3322 * running locally.
3323 */
rdma_cap_ib_sa(const struct ib_device * device,u32 port_num)3324 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3325 {
3326 return device->port_data[port_num].immutable.core_cap_flags &
3327 RDMA_CORE_CAP_IB_SA;
3328 }
3329
3330 /**
3331 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3332 * Multicast.
3333 * @device: Device to check
3334 * @port_num: Port number to check
3335 *
3336 * InfiniBand multicast registration is more complex than normal IPv4 or
3337 * IPv6 multicast registration. Each Host Channel Adapter must register
3338 * with the Subnet Manager when it wishes to join a multicast group. It
3339 * should do so only once regardless of how many queue pairs it subscribes
3340 * to this group. And it should leave the group only after all queue pairs
3341 * attached to the group have been detached.
3342 *
3343 * Return: true if the port must undertake the additional adminstrative
3344 * overhead of registering/unregistering with the SM and tracking of the
3345 * total number of queue pairs attached to the multicast group.
3346 */
rdma_cap_ib_mcast(const struct ib_device * device,u32 port_num)3347 static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3348 u32 port_num)
3349 {
3350 return rdma_cap_ib_sa(device, port_num);
3351 }
3352
3353 /**
3354 * rdma_cap_af_ib - Check if the port of device has the capability
3355 * Native Infiniband Address.
3356 * @device: Device to check
3357 * @port_num: Port number to check
3358 *
3359 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3360 * GID. RoCE uses a different mechanism, but still generates a GID via
3361 * a prescribed mechanism and port specific data.
3362 *
3363 * Return: true if the port uses a GID address to identify devices on the
3364 * network.
3365 */
rdma_cap_af_ib(const struct ib_device * device,u32 port_num)3366 static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3367 {
3368 return device->port_data[port_num].immutable.core_cap_flags &
3369 RDMA_CORE_CAP_AF_IB;
3370 }
3371
3372 /**
3373 * rdma_cap_eth_ah - Check if the port of device has the capability
3374 * Ethernet Address Handle.
3375 * @device: Device to check
3376 * @port_num: Port number to check
3377 *
3378 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3379 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3380 * port. Normally, packet headers are generated by the sending host
3381 * adapter, but when sending connectionless datagrams, we must manually
3382 * inject the proper headers for the fabric we are communicating over.
3383 *
3384 * Return: true if we are running as a RoCE port and must force the
3385 * addition of a Global Route Header built from our Ethernet Address
3386 * Handle into our header list for connectionless packets.
3387 */
rdma_cap_eth_ah(const struct ib_device * device,u32 port_num)3388 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3389 {
3390 return device->port_data[port_num].immutable.core_cap_flags &
3391 RDMA_CORE_CAP_ETH_AH;
3392 }
3393
3394 /**
3395 * rdma_cap_opa_ah - Check if the port of device supports
3396 * OPA Address handles
3397 * @device: Device to check
3398 * @port_num: Port number to check
3399 *
3400 * Return: true if we are running on an OPA device which supports
3401 * the extended OPA addressing.
3402 */
rdma_cap_opa_ah(struct ib_device * device,u32 port_num)3403 static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3404 {
3405 return (device->port_data[port_num].immutable.core_cap_flags &
3406 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3407 }
3408
3409 /**
3410 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3411 *
3412 * @device: Device
3413 * @port_num: Port number
3414 *
3415 * This MAD size includes the MAD headers and MAD payload. No other headers
3416 * are included.
3417 *
3418 * Return the max MAD size required by the Port. Will return 0 if the port
3419 * does not support MADs
3420 */
rdma_max_mad_size(const struct ib_device * device,u32 port_num)3421 static inline size_t rdma_max_mad_size(const struct ib_device *device,
3422 u32 port_num)
3423 {
3424 return device->port_data[port_num].immutable.max_mad_size;
3425 }
3426
3427 /**
3428 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3429 * @device: Device to check
3430 * @port_num: Port number to check
3431 *
3432 * RoCE GID table mechanism manages the various GIDs for a device.
3433 *
3434 * NOTE: if allocating the port's GID table has failed, this call will still
3435 * return true, but any RoCE GID table API will fail.
3436 *
3437 * Return: true if the port uses RoCE GID table mechanism in order to manage
3438 * its GIDs.
3439 */
rdma_cap_roce_gid_table(const struct ib_device * device,u32 port_num)3440 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3441 u32 port_num)
3442 {
3443 return rdma_protocol_roce(device, port_num) &&
3444 device->ops.add_gid && device->ops.del_gid;
3445 }
3446
3447 /*
3448 * Check if the device supports READ W/ INVALIDATE.
3449 */
rdma_cap_read_inv(struct ib_device * dev,u32 port_num)3450 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3451 {
3452 /*
3453 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3454 * has support for it yet.
3455 */
3456 return rdma_protocol_iwarp(dev, port_num);
3457 }
3458
3459 /**
3460 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3461 * @device: Device
3462 * @port_num: 1 based Port number
3463 *
3464 * Return true if port is an Intel OPA port , false if not
3465 */
rdma_core_cap_opa_port(struct ib_device * device,u32 port_num)3466 static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3467 u32 port_num)
3468 {
3469 return (device->port_data[port_num].immutable.core_cap_flags &
3470 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3471 }
3472
3473 /**
3474 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3475 * @device: Device
3476 * @port_num: Port number
3477 * @mtu: enum value of MTU
3478 *
3479 * Return the MTU size supported by the port as an integer value. Will return
3480 * -1 if enum value of mtu is not supported.
3481 */
rdma_mtu_enum_to_int(struct ib_device * device,u32 port,int mtu)3482 static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3483 int mtu)
3484 {
3485 if (rdma_core_cap_opa_port(device, port))
3486 return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3487 else
3488 return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3489 }
3490
3491 /**
3492 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3493 * @device: Device
3494 * @port_num: Port number
3495 * @attr: port attribute
3496 *
3497 * Return the MTU size supported by the port as an integer value.
3498 */
rdma_mtu_from_attr(struct ib_device * device,u32 port,struct ib_port_attr * attr)3499 static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3500 struct ib_port_attr *attr)
3501 {
3502 if (rdma_core_cap_opa_port(device, port))
3503 return attr->phys_mtu;
3504 else
3505 return ib_mtu_enum_to_int(attr->max_mtu);
3506 }
3507
3508 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3509 int state);
3510 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3511 struct ifla_vf_info *info);
3512 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3513 struct ifla_vf_stats *stats);
3514 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3515 struct ifla_vf_guid *node_guid,
3516 struct ifla_vf_guid *port_guid);
3517 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3518 int type);
3519
3520 int ib_query_pkey(struct ib_device *device,
3521 u32 port_num, u16 index, u16 *pkey);
3522
3523 int ib_modify_device(struct ib_device *device,
3524 int device_modify_mask,
3525 struct ib_device_modify *device_modify);
3526
3527 int ib_modify_port(struct ib_device *device,
3528 u32 port_num, int port_modify_mask,
3529 struct ib_port_modify *port_modify);
3530
3531 int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3532 u32 *port_num, u16 *index);
3533
3534 int ib_find_pkey(struct ib_device *device,
3535 u32 port_num, u16 pkey, u16 *index);
3536
3537 enum ib_pd_flags {
3538 /*
3539 * Create a memory registration for all memory in the system and place
3540 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3541 * ULPs to avoid the overhead of dynamic MRs.
3542 *
3543 * This flag is generally considered unsafe and must only be used in
3544 * extremly trusted environments. Every use of it will log a warning
3545 * in the kernel log.
3546 */
3547 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3548 };
3549
3550 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3551 const char *caller);
3552
3553 /**
3554 * ib_alloc_pd - Allocates an unused protection domain.
3555 * @device: The device on which to allocate the protection domain.
3556 * @flags: protection domain flags
3557 *
3558 * A protection domain object provides an association between QPs, shared
3559 * receive queues, address handles, memory regions, and memory windows.
3560 *
3561 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3562 * memory operations.
3563 */
3564 #define ib_alloc_pd(device, flags) \
3565 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3566
3567 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3568
3569 /**
3570 * ib_dealloc_pd - Deallocate kernel PD
3571 * @pd: The protection domain
3572 *
3573 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3574 */
ib_dealloc_pd(struct ib_pd * pd)3575 static inline void ib_dealloc_pd(struct ib_pd *pd)
3576 {
3577 int ret = ib_dealloc_pd_user(pd, NULL);
3578
3579 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3580 }
3581
3582 enum rdma_create_ah_flags {
3583 /* In a sleepable context */
3584 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3585 };
3586
3587 /**
3588 * rdma_create_ah - Creates an address handle for the given address vector.
3589 * @pd: The protection domain associated with the address handle.
3590 * @ah_attr: The attributes of the address vector.
3591 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3592 *
3593 * The address handle is used to reference a local or global destination
3594 * in all UD QP post sends.
3595 */
3596 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3597 u32 flags);
3598
3599 /**
3600 * rdma_create_user_ah - Creates an address handle for the given address vector.
3601 * It resolves destination mac address for ah attribute of RoCE type.
3602 * @pd: The protection domain associated with the address handle.
3603 * @ah_attr: The attributes of the address vector.
3604 * @udata: pointer to user's input output buffer information need by
3605 * provider driver.
3606 *
3607 * It returns 0 on success and returns appropriate error code on error.
3608 * The address handle is used to reference a local or global destination
3609 * in all UD QP post sends.
3610 */
3611 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3612 struct rdma_ah_attr *ah_attr,
3613 struct ib_udata *udata);
3614 /**
3615 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3616 * work completion.
3617 * @hdr: the L3 header to parse
3618 * @net_type: type of header to parse
3619 * @sgid: place to store source gid
3620 * @dgid: place to store destination gid
3621 */
3622 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3623 enum rdma_network_type net_type,
3624 union ib_gid *sgid, union ib_gid *dgid);
3625
3626 /**
3627 * ib_get_rdma_header_version - Get the header version
3628 * @hdr: the L3 header to parse
3629 */
3630 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3631
3632 /**
3633 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3634 * work completion.
3635 * @device: Device on which the received message arrived.
3636 * @port_num: Port on which the received message arrived.
3637 * @wc: Work completion associated with the received message.
3638 * @grh: References the received global route header. This parameter is
3639 * ignored unless the work completion indicates that the GRH is valid.
3640 * @ah_attr: Returned attributes that can be used when creating an address
3641 * handle for replying to the message.
3642 * When ib_init_ah_attr_from_wc() returns success,
3643 * (a) for IB link layer it optionally contains a reference to SGID attribute
3644 * when GRH is present for IB link layer.
3645 * (b) for RoCE link layer it contains a reference to SGID attribute.
3646 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3647 * attributes which are initialized using ib_init_ah_attr_from_wc().
3648 *
3649 */
3650 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3651 const struct ib_wc *wc, const struct ib_grh *grh,
3652 struct rdma_ah_attr *ah_attr);
3653
3654 /**
3655 * ib_create_ah_from_wc - Creates an address handle associated with the
3656 * sender of the specified work completion.
3657 * @pd: The protection domain associated with the address handle.
3658 * @wc: Work completion information associated with a received message.
3659 * @grh: References the received global route header. This parameter is
3660 * ignored unless the work completion indicates that the GRH is valid.
3661 * @port_num: The outbound port number to associate with the address.
3662 *
3663 * The address handle is used to reference a local or global destination
3664 * in all UD QP post sends.
3665 */
3666 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3667 const struct ib_grh *grh, u32 port_num);
3668
3669 /**
3670 * rdma_modify_ah - Modifies the address vector associated with an address
3671 * handle.
3672 * @ah: The address handle to modify.
3673 * @ah_attr: The new address vector attributes to associate with the
3674 * address handle.
3675 */
3676 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3677
3678 /**
3679 * rdma_query_ah - Queries the address vector associated with an address
3680 * handle.
3681 * @ah: The address handle to query.
3682 * @ah_attr: The address vector attributes associated with the address
3683 * handle.
3684 */
3685 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3686
3687 enum rdma_destroy_ah_flags {
3688 /* In a sleepable context */
3689 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3690 };
3691
3692 /**
3693 * rdma_destroy_ah_user - Destroys an address handle.
3694 * @ah: The address handle to destroy.
3695 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3696 * @udata: Valid user data or NULL for kernel objects
3697 */
3698 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3699
3700 /**
3701 * rdma_destroy_ah - Destroys an kernel address handle.
3702 * @ah: The address handle to destroy.
3703 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3704 *
3705 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3706 */
rdma_destroy_ah(struct ib_ah * ah,u32 flags)3707 static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3708 {
3709 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3710
3711 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3712 }
3713
3714 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3715 struct ib_srq_init_attr *srq_init_attr,
3716 struct ib_usrq_object *uobject,
3717 struct ib_udata *udata);
3718 static inline struct ib_srq *
ib_create_srq(struct ib_pd * pd,struct ib_srq_init_attr * srq_init_attr)3719 ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3720 {
3721 if (!pd->device->ops.create_srq)
3722 return ERR_PTR(-EOPNOTSUPP);
3723
3724 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3725 }
3726
3727 /**
3728 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3729 * @srq: The SRQ to modify.
3730 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3731 * the current values of selected SRQ attributes are returned.
3732 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3733 * are being modified.
3734 *
3735 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3736 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3737 * the number of receives queued drops below the limit.
3738 */
3739 int ib_modify_srq(struct ib_srq *srq,
3740 struct ib_srq_attr *srq_attr,
3741 enum ib_srq_attr_mask srq_attr_mask);
3742
3743 /**
3744 * ib_query_srq - Returns the attribute list and current values for the
3745 * specified SRQ.
3746 * @srq: The SRQ to query.
3747 * @srq_attr: The attributes of the specified SRQ.
3748 */
3749 int ib_query_srq(struct ib_srq *srq,
3750 struct ib_srq_attr *srq_attr);
3751
3752 /**
3753 * ib_destroy_srq_user - Destroys the specified SRQ.
3754 * @srq: The SRQ to destroy.
3755 * @udata: Valid user data or NULL for kernel objects
3756 */
3757 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3758
3759 /**
3760 * ib_destroy_srq - Destroys the specified kernel SRQ.
3761 * @srq: The SRQ to destroy.
3762 *
3763 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3764 */
ib_destroy_srq(struct ib_srq * srq)3765 static inline void ib_destroy_srq(struct ib_srq *srq)
3766 {
3767 int ret = ib_destroy_srq_user(srq, NULL);
3768
3769 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3770 }
3771
3772 /**
3773 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3774 * @srq: The SRQ to post the work request on.
3775 * @recv_wr: A list of work requests to post on the receive queue.
3776 * @bad_recv_wr: On an immediate failure, this parameter will reference
3777 * the work request that failed to be posted on the QP.
3778 */
ib_post_srq_recv(struct ib_srq * srq,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3779 static inline int ib_post_srq_recv(struct ib_srq *srq,
3780 const struct ib_recv_wr *recv_wr,
3781 const struct ib_recv_wr **bad_recv_wr)
3782 {
3783 const struct ib_recv_wr *dummy;
3784
3785 return srq->device->ops.post_srq_recv(srq, recv_wr,
3786 bad_recv_wr ? : &dummy);
3787 }
3788
3789 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3790 struct ib_qp_init_attr *qp_init_attr,
3791 const char *caller);
3792 /**
3793 * ib_create_qp - Creates a kernel QP associated with the specific protection
3794 * domain.
3795 * @pd: The protection domain associated with the QP.
3796 * @init_attr: A list of initial attributes required to create the
3797 * QP. If QP creation succeeds, then the attributes are updated to
3798 * the actual capabilities of the created QP.
3799 */
ib_create_qp(struct ib_pd * pd,struct ib_qp_init_attr * init_attr)3800 static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3801 struct ib_qp_init_attr *init_attr)
3802 {
3803 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3804 }
3805
3806 /**
3807 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3808 * @qp: The QP to modify.
3809 * @attr: On input, specifies the QP attributes to modify. On output,
3810 * the current values of selected QP attributes are returned.
3811 * @attr_mask: A bit-mask used to specify which attributes of the QP
3812 * are being modified.
3813 * @udata: pointer to user's input output buffer information
3814 * are being modified.
3815 * It returns 0 on success and returns appropriate error code on error.
3816 */
3817 int ib_modify_qp_with_udata(struct ib_qp *qp,
3818 struct ib_qp_attr *attr,
3819 int attr_mask,
3820 struct ib_udata *udata);
3821
3822 /**
3823 * ib_modify_qp - Modifies the attributes for the specified QP and then
3824 * transitions the QP to the given state.
3825 * @qp: The QP to modify.
3826 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3827 * the current values of selected QP attributes are returned.
3828 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3829 * are being modified.
3830 */
3831 int ib_modify_qp(struct ib_qp *qp,
3832 struct ib_qp_attr *qp_attr,
3833 int qp_attr_mask);
3834
3835 /**
3836 * ib_query_qp - Returns the attribute list and current values for the
3837 * specified QP.
3838 * @qp: The QP to query.
3839 * @qp_attr: The attributes of the specified QP.
3840 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3841 * @qp_init_attr: Additional attributes of the selected QP.
3842 *
3843 * The qp_attr_mask may be used to limit the query to gathering only the
3844 * selected attributes.
3845 */
3846 int ib_query_qp(struct ib_qp *qp,
3847 struct ib_qp_attr *qp_attr,
3848 int qp_attr_mask,
3849 struct ib_qp_init_attr *qp_init_attr);
3850
3851 /**
3852 * ib_destroy_qp - Destroys the specified QP.
3853 * @qp: The QP to destroy.
3854 * @udata: Valid udata or NULL for kernel objects
3855 */
3856 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3857
3858 /**
3859 * ib_destroy_qp - Destroys the specified kernel QP.
3860 * @qp: The QP to destroy.
3861 *
3862 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3863 */
ib_destroy_qp(struct ib_qp * qp)3864 static inline int ib_destroy_qp(struct ib_qp *qp)
3865 {
3866 return ib_destroy_qp_user(qp, NULL);
3867 }
3868
3869 /**
3870 * ib_open_qp - Obtain a reference to an existing sharable QP.
3871 * @xrcd - XRC domain
3872 * @qp_open_attr: Attributes identifying the QP to open.
3873 *
3874 * Returns a reference to a sharable QP.
3875 */
3876 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3877 struct ib_qp_open_attr *qp_open_attr);
3878
3879 /**
3880 * ib_close_qp - Release an external reference to a QP.
3881 * @qp: The QP handle to release
3882 *
3883 * The opened QP handle is released by the caller. The underlying
3884 * shared QP is not destroyed until all internal references are released.
3885 */
3886 int ib_close_qp(struct ib_qp *qp);
3887
3888 /**
3889 * ib_post_send - Posts a list of work requests to the send queue of
3890 * the specified QP.
3891 * @qp: The QP to post the work request on.
3892 * @send_wr: A list of work requests to post on the send queue.
3893 * @bad_send_wr: On an immediate failure, this parameter will reference
3894 * the work request that failed to be posted on the QP.
3895 *
3896 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3897 * error is returned, the QP state shall not be affected,
3898 * ib_post_send() will return an immediate error after queueing any
3899 * earlier work requests in the list.
3900 */
ib_post_send(struct ib_qp * qp,const struct ib_send_wr * send_wr,const struct ib_send_wr ** bad_send_wr)3901 static inline int ib_post_send(struct ib_qp *qp,
3902 const struct ib_send_wr *send_wr,
3903 const struct ib_send_wr **bad_send_wr)
3904 {
3905 const struct ib_send_wr *dummy;
3906
3907 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3908 }
3909
3910 /**
3911 * ib_post_recv - Posts a list of work requests to the receive queue of
3912 * the specified QP.
3913 * @qp: The QP to post the work request on.
3914 * @recv_wr: A list of work requests to post on the receive queue.
3915 * @bad_recv_wr: On an immediate failure, this parameter will reference
3916 * the work request that failed to be posted on the QP.
3917 */
ib_post_recv(struct ib_qp * qp,const struct ib_recv_wr * recv_wr,const struct ib_recv_wr ** bad_recv_wr)3918 static inline int ib_post_recv(struct ib_qp *qp,
3919 const struct ib_recv_wr *recv_wr,
3920 const struct ib_recv_wr **bad_recv_wr)
3921 {
3922 const struct ib_recv_wr *dummy;
3923
3924 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3925 }
3926
3927 struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3928 int comp_vector, enum ib_poll_context poll_ctx,
3929 const char *caller);
ib_alloc_cq(struct ib_device * dev,void * private,int nr_cqe,int comp_vector,enum ib_poll_context poll_ctx)3930 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3931 int nr_cqe, int comp_vector,
3932 enum ib_poll_context poll_ctx)
3933 {
3934 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3935 KBUILD_MODNAME);
3936 }
3937
3938 struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3939 int nr_cqe, enum ib_poll_context poll_ctx,
3940 const char *caller);
3941
3942 /**
3943 * ib_alloc_cq_any: Allocate kernel CQ
3944 * @dev: The IB device
3945 * @private: Private data attached to the CQE
3946 * @nr_cqe: Number of CQEs in the CQ
3947 * @poll_ctx: Context used for polling the CQ
3948 */
ib_alloc_cq_any(struct ib_device * dev,void * private,int nr_cqe,enum ib_poll_context poll_ctx)3949 static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3950 void *private, int nr_cqe,
3951 enum ib_poll_context poll_ctx)
3952 {
3953 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3954 KBUILD_MODNAME);
3955 }
3956
3957 void ib_free_cq(struct ib_cq *cq);
3958 int ib_process_cq_direct(struct ib_cq *cq, int budget);
3959
3960 /**
3961 * ib_create_cq - Creates a CQ on the specified device.
3962 * @device: The device on which to create the CQ.
3963 * @comp_handler: A user-specified callback that is invoked when a
3964 * completion event occurs on the CQ.
3965 * @event_handler: A user-specified callback that is invoked when an
3966 * asynchronous event not associated with a completion occurs on the CQ.
3967 * @cq_context: Context associated with the CQ returned to the user via
3968 * the associated completion and event handlers.
3969 * @cq_attr: The attributes the CQ should be created upon.
3970 *
3971 * Users can examine the cq structure to determine the actual CQ size.
3972 */
3973 struct ib_cq *__ib_create_cq(struct ib_device *device,
3974 ib_comp_handler comp_handler,
3975 void (*event_handler)(struct ib_event *, void *),
3976 void *cq_context,
3977 const struct ib_cq_init_attr *cq_attr,
3978 const char *caller);
3979 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3980 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3981
3982 /**
3983 * ib_resize_cq - Modifies the capacity of the CQ.
3984 * @cq: The CQ to resize.
3985 * @cqe: The minimum size of the CQ.
3986 *
3987 * Users can examine the cq structure to determine the actual CQ size.
3988 */
3989 int ib_resize_cq(struct ib_cq *cq, int cqe);
3990
3991 /**
3992 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3993 * @cq: The CQ to modify.
3994 * @cq_count: number of CQEs that will trigger an event
3995 * @cq_period: max period of time in usec before triggering an event
3996 *
3997 */
3998 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3999
4000 /**
4001 * ib_destroy_cq_user - Destroys the specified CQ.
4002 * @cq: The CQ to destroy.
4003 * @udata: Valid user data or NULL for kernel objects
4004 */
4005 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4006
4007 /**
4008 * ib_destroy_cq - Destroys the specified kernel CQ.
4009 * @cq: The CQ to destroy.
4010 *
4011 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
4012 */
ib_destroy_cq(struct ib_cq * cq)4013 static inline void ib_destroy_cq(struct ib_cq *cq)
4014 {
4015 int ret = ib_destroy_cq_user(cq, NULL);
4016
4017 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4018 }
4019
4020 /**
4021 * ib_poll_cq - poll a CQ for completion(s)
4022 * @cq:the CQ being polled
4023 * @num_entries:maximum number of completions to return
4024 * @wc:array of at least @num_entries &struct ib_wc where completions
4025 * will be returned
4026 *
4027 * Poll a CQ for (possibly multiple) completions. If the return value
4028 * is < 0, an error occurred. If the return value is >= 0, it is the
4029 * number of completions returned. If the return value is
4030 * non-negative and < num_entries, then the CQ was emptied.
4031 */
ib_poll_cq(struct ib_cq * cq,int num_entries,struct ib_wc * wc)4032 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4033 struct ib_wc *wc)
4034 {
4035 return cq->device->ops.poll_cq(cq, num_entries, wc);
4036 }
4037
4038 /**
4039 * ib_req_notify_cq - Request completion notification on a CQ.
4040 * @cq: The CQ to generate an event for.
4041 * @flags:
4042 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4043 * to request an event on the next solicited event or next work
4044 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4045 * may also be |ed in to request a hint about missed events, as
4046 * described below.
4047 *
4048 * Return Value:
4049 * < 0 means an error occurred while requesting notification
4050 * == 0 means notification was requested successfully, and if
4051 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4052 * were missed and it is safe to wait for another event. In
4053 * this case is it guaranteed that any work completions added
4054 * to the CQ since the last CQ poll will trigger a completion
4055 * notification event.
4056 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4057 * in. It means that the consumer must poll the CQ again to
4058 * make sure it is empty to avoid missing an event because of a
4059 * race between requesting notification and an entry being
4060 * added to the CQ. This return value means it is possible
4061 * (but not guaranteed) that a work completion has been added
4062 * to the CQ since the last poll without triggering a
4063 * completion notification event.
4064 */
ib_req_notify_cq(struct ib_cq * cq,enum ib_cq_notify_flags flags)4065 static inline int ib_req_notify_cq(struct ib_cq *cq,
4066 enum ib_cq_notify_flags flags)
4067 {
4068 return cq->device->ops.req_notify_cq(cq, flags);
4069 }
4070
4071 struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4072 int comp_vector_hint,
4073 enum ib_poll_context poll_ctx);
4074
4075 void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4076
4077 /*
4078 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4079 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4080 * address into the dma address.
4081 */
ib_uses_virt_dma(struct ib_device * dev)4082 static inline bool ib_uses_virt_dma(struct ib_device *dev)
4083 {
4084 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4085 }
4086
4087 /*
4088 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4089 */
ib_dma_pci_p2p_dma_supported(struct ib_device * dev)4090 static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4091 {
4092 if (ib_uses_virt_dma(dev))
4093 return false;
4094
4095 return dma_pci_p2pdma_supported(dev->dma_device);
4096 }
4097
4098 /**
4099 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4100 * @dma_addr: The DMA address
4101 *
4102 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4103 * going through the dma_addr marshalling.
4104 */
ib_virt_dma_to_ptr(u64 dma_addr)4105 static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4106 {
4107 /* virt_dma mode maps the kvs's directly into the dma addr */
4108 return (void *)(uintptr_t)dma_addr;
4109 }
4110
4111 /**
4112 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4113 * @dma_addr: The DMA address
4114 *
4115 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4116 * through the dma_addr marshalling.
4117 */
ib_virt_dma_to_page(u64 dma_addr)4118 static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4119 {
4120 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4121 }
4122
4123 /**
4124 * ib_dma_mapping_error - check a DMA addr for error
4125 * @dev: The device for which the dma_addr was created
4126 * @dma_addr: The DMA address to check
4127 */
ib_dma_mapping_error(struct ib_device * dev,u64 dma_addr)4128 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4129 {
4130 if (ib_uses_virt_dma(dev))
4131 return 0;
4132 return dma_mapping_error(dev->dma_device, dma_addr);
4133 }
4134
4135 /**
4136 * ib_dma_map_single - Map a kernel virtual address to DMA address
4137 * @dev: The device for which the dma_addr is to be created
4138 * @cpu_addr: The kernel virtual address
4139 * @size: The size of the region in bytes
4140 * @direction: The direction of the DMA
4141 */
ib_dma_map_single(struct ib_device * dev,void * cpu_addr,size_t size,enum dma_data_direction direction)4142 static inline u64 ib_dma_map_single(struct ib_device *dev,
4143 void *cpu_addr, size_t size,
4144 enum dma_data_direction direction)
4145 {
4146 if (ib_uses_virt_dma(dev))
4147 return (uintptr_t)cpu_addr;
4148 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4149 }
4150
4151 /**
4152 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4153 * @dev: The device for which the DMA address was created
4154 * @addr: The DMA address
4155 * @size: The size of the region in bytes
4156 * @direction: The direction of the DMA
4157 */
ib_dma_unmap_single(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4158 static inline void ib_dma_unmap_single(struct ib_device *dev,
4159 u64 addr, size_t size,
4160 enum dma_data_direction direction)
4161 {
4162 if (!ib_uses_virt_dma(dev))
4163 dma_unmap_single(dev->dma_device, addr, size, direction);
4164 }
4165
4166 /**
4167 * ib_dma_map_page - Map a physical page to DMA address
4168 * @dev: The device for which the dma_addr is to be created
4169 * @page: The page to be mapped
4170 * @offset: The offset within the page
4171 * @size: The size of the region in bytes
4172 * @direction: The direction of the DMA
4173 */
ib_dma_map_page(struct ib_device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)4174 static inline u64 ib_dma_map_page(struct ib_device *dev,
4175 struct page *page,
4176 unsigned long offset,
4177 size_t size,
4178 enum dma_data_direction direction)
4179 {
4180 if (ib_uses_virt_dma(dev))
4181 return (uintptr_t)(page_address(page) + offset);
4182 return dma_map_page(dev->dma_device, page, offset, size, direction);
4183 }
4184
4185 /**
4186 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4187 * @dev: The device for which the DMA address was created
4188 * @addr: The DMA address
4189 * @size: The size of the region in bytes
4190 * @direction: The direction of the DMA
4191 */
ib_dma_unmap_page(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction direction)4192 static inline void ib_dma_unmap_page(struct ib_device *dev,
4193 u64 addr, size_t size,
4194 enum dma_data_direction direction)
4195 {
4196 if (!ib_uses_virt_dma(dev))
4197 dma_unmap_page(dev->dma_device, addr, size, direction);
4198 }
4199
4200 int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
ib_dma_map_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4201 static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4202 struct scatterlist *sg, int nents,
4203 enum dma_data_direction direction,
4204 unsigned long dma_attrs)
4205 {
4206 if (ib_uses_virt_dma(dev))
4207 return ib_dma_virt_map_sg(dev, sg, nents);
4208 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4209 dma_attrs);
4210 }
4211
ib_dma_unmap_sg_attrs(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction,unsigned long dma_attrs)4212 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4213 struct scatterlist *sg, int nents,
4214 enum dma_data_direction direction,
4215 unsigned long dma_attrs)
4216 {
4217 if (!ib_uses_virt_dma(dev))
4218 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4219 dma_attrs);
4220 }
4221
4222 /**
4223 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4224 * @dev: The device for which the DMA addresses are to be created
4225 * @sg: The sg_table object describing the buffer
4226 * @direction: The direction of the DMA
4227 * @attrs: Optional DMA attributes for the map operation
4228 */
ib_dma_map_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4229 static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4230 struct sg_table *sgt,
4231 enum dma_data_direction direction,
4232 unsigned long dma_attrs)
4233 {
4234 int nents;
4235
4236 if (ib_uses_virt_dma(dev)) {
4237 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4238 if (!nents)
4239 return -EIO;
4240 sgt->nents = nents;
4241 return 0;
4242 }
4243 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4244 }
4245
ib_dma_unmap_sgtable_attrs(struct ib_device * dev,struct sg_table * sgt,enum dma_data_direction direction,unsigned long dma_attrs)4246 static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4247 struct sg_table *sgt,
4248 enum dma_data_direction direction,
4249 unsigned long dma_attrs)
4250 {
4251 if (!ib_uses_virt_dma(dev))
4252 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4253 }
4254
4255 /**
4256 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4257 * @dev: The device for which the DMA addresses are to be created
4258 * @sg: The array of scatter/gather entries
4259 * @nents: The number of scatter/gather entries
4260 * @direction: The direction of the DMA
4261 */
ib_dma_map_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4262 static inline int ib_dma_map_sg(struct ib_device *dev,
4263 struct scatterlist *sg, int nents,
4264 enum dma_data_direction direction)
4265 {
4266 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4267 }
4268
4269 /**
4270 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4271 * @dev: The device for which the DMA addresses were created
4272 * @sg: The array of scatter/gather entries
4273 * @nents: The number of scatter/gather entries
4274 * @direction: The direction of the DMA
4275 */
ib_dma_unmap_sg(struct ib_device * dev,struct scatterlist * sg,int nents,enum dma_data_direction direction)4276 static inline void ib_dma_unmap_sg(struct ib_device *dev,
4277 struct scatterlist *sg, int nents,
4278 enum dma_data_direction direction)
4279 {
4280 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4281 }
4282
4283 /**
4284 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4285 * @dev: The device to query
4286 *
4287 * The returned value represents a size in bytes.
4288 */
ib_dma_max_seg_size(struct ib_device * dev)4289 static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4290 {
4291 if (ib_uses_virt_dma(dev))
4292 return UINT_MAX;
4293 return dma_get_max_seg_size(dev->dma_device);
4294 }
4295
4296 /**
4297 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4298 * @dev: The device for which the DMA address was created
4299 * @addr: The DMA address
4300 * @size: The size of the region in bytes
4301 * @dir: The direction of the DMA
4302 */
ib_dma_sync_single_for_cpu(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4303 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4304 u64 addr,
4305 size_t size,
4306 enum dma_data_direction dir)
4307 {
4308 if (!ib_uses_virt_dma(dev))
4309 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4310 }
4311
4312 /**
4313 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4314 * @dev: The device for which the DMA address was created
4315 * @addr: The DMA address
4316 * @size: The size of the region in bytes
4317 * @dir: The direction of the DMA
4318 */
ib_dma_sync_single_for_device(struct ib_device * dev,u64 addr,size_t size,enum dma_data_direction dir)4319 static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4320 u64 addr,
4321 size_t size,
4322 enum dma_data_direction dir)
4323 {
4324 if (!ib_uses_virt_dma(dev))
4325 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4326 }
4327
4328 /* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4329 * space. This function should be called when 'current' is the owning MM.
4330 */
4331 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4332 u64 virt_addr, int mr_access_flags);
4333
4334 /* ib_advise_mr - give an advice about an address range in a memory region */
4335 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4336 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4337 /**
4338 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4339 * HCA translation table.
4340 * @mr: The memory region to deregister.
4341 * @udata: Valid user data or NULL for kernel object
4342 *
4343 * This function can fail, if the memory region has memory windows bound to it.
4344 */
4345 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4346
4347 /**
4348 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4349 * HCA translation table.
4350 * @mr: The memory region to deregister.
4351 *
4352 * This function can fail, if the memory region has memory windows bound to it.
4353 *
4354 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4355 */
ib_dereg_mr(struct ib_mr * mr)4356 static inline int ib_dereg_mr(struct ib_mr *mr)
4357 {
4358 return ib_dereg_mr_user(mr, NULL);
4359 }
4360
4361 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4362 u32 max_num_sg);
4363
4364 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4365 u32 max_num_data_sg,
4366 u32 max_num_meta_sg);
4367
4368 /**
4369 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4370 * R_Key and L_Key.
4371 * @mr - struct ib_mr pointer to be updated.
4372 * @newkey - new key to be used.
4373 */
ib_update_fast_reg_key(struct ib_mr * mr,u8 newkey)4374 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4375 {
4376 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4377 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4378 }
4379
4380 /**
4381 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4382 * for calculating a new rkey for type 2 memory windows.
4383 * @rkey - the rkey to increment.
4384 */
ib_inc_rkey(u32 rkey)4385 static inline u32 ib_inc_rkey(u32 rkey)
4386 {
4387 const u32 mask = 0x000000ff;
4388 return ((rkey + 1) & mask) | (rkey & ~mask);
4389 }
4390
4391 /**
4392 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4393 * @qp: QP to attach to the multicast group. The QP must be type
4394 * IB_QPT_UD.
4395 * @gid: Multicast group GID.
4396 * @lid: Multicast group LID in host byte order.
4397 *
4398 * In order to send and receive multicast packets, subnet
4399 * administration must have created the multicast group and configured
4400 * the fabric appropriately. The port associated with the specified
4401 * QP must also be a member of the multicast group.
4402 */
4403 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4404
4405 /**
4406 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4407 * @qp: QP to detach from the multicast group.
4408 * @gid: Multicast group GID.
4409 * @lid: Multicast group LID in host byte order.
4410 */
4411 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4412
4413 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4414 struct inode *inode, struct ib_udata *udata);
4415 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4416
ib_check_mr_access(struct ib_device * ib_dev,unsigned int flags)4417 static inline int ib_check_mr_access(struct ib_device *ib_dev,
4418 unsigned int flags)
4419 {
4420 u64 device_cap = ib_dev->attrs.device_cap_flags;
4421
4422 /*
4423 * Local write permission is required if remote write or
4424 * remote atomic permission is also requested.
4425 */
4426 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4427 !(flags & IB_ACCESS_LOCAL_WRITE))
4428 return -EINVAL;
4429
4430 if (flags & ~IB_ACCESS_SUPPORTED)
4431 return -EINVAL;
4432
4433 if (flags & IB_ACCESS_ON_DEMAND &&
4434 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4435 return -EOPNOTSUPP;
4436
4437 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4438 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4439 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4440 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4441 return -EOPNOTSUPP;
4442
4443 return 0;
4444 }
4445
ib_access_writable(int access_flags)4446 static inline bool ib_access_writable(int access_flags)
4447 {
4448 /*
4449 * We have writable memory backing the MR if any of the following
4450 * access flags are set. "Local write" and "remote write" obviously
4451 * require write access. "Remote atomic" can do things like fetch and
4452 * add, which will modify memory, and "MW bind" can change permissions
4453 * by binding a window.
4454 */
4455 return access_flags &
4456 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4457 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4458 }
4459
4460 /**
4461 * ib_check_mr_status: lightweight check of MR status.
4462 * This routine may provide status checks on a selected
4463 * ib_mr. first use is for signature status check.
4464 *
4465 * @mr: A memory region.
4466 * @check_mask: Bitmask of which checks to perform from
4467 * ib_mr_status_check enumeration.
4468 * @mr_status: The container of relevant status checks.
4469 * failed checks will be indicated in the status bitmask
4470 * and the relevant info shall be in the error item.
4471 */
4472 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4473 struct ib_mr_status *mr_status);
4474
4475 /**
4476 * ib_device_try_get: Hold a registration lock
4477 * device: The device to lock
4478 *
4479 * A device under an active registration lock cannot become unregistered. It
4480 * is only possible to obtain a registration lock on a device that is fully
4481 * registered, otherwise this function returns false.
4482 *
4483 * The registration lock is only necessary for actions which require the
4484 * device to still be registered. Uses that only require the device pointer to
4485 * be valid should use get_device(&ibdev->dev) to hold the memory.
4486 *
4487 */
ib_device_try_get(struct ib_device * dev)4488 static inline bool ib_device_try_get(struct ib_device *dev)
4489 {
4490 return refcount_inc_not_zero(&dev->refcount);
4491 }
4492
4493 void ib_device_put(struct ib_device *device);
4494 struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4495 enum rdma_driver_id driver_id);
4496 struct ib_device *ib_device_get_by_name(const char *name,
4497 enum rdma_driver_id driver_id);
4498 struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4499 u16 pkey, const union ib_gid *gid,
4500 const struct sockaddr *addr);
4501 int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4502 unsigned int port);
4503 struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4504 u32 port);
4505 int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4506 u32 *port);
4507
ib_get_curr_port_state(struct net_device * net_dev)4508 static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4509 {
4510 return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4511 IB_PORT_ACTIVE : IB_PORT_DOWN;
4512 }
4513
4514 void ib_dispatch_port_state_event(struct ib_device *ibdev,
4515 struct net_device *ndev);
4516 struct ib_wq *ib_create_wq(struct ib_pd *pd,
4517 struct ib_wq_init_attr *init_attr);
4518 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4519
4520 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4521 unsigned int *sg_offset, unsigned int page_size);
4522 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4523 int data_sg_nents, unsigned int *data_sg_offset,
4524 struct scatterlist *meta_sg, int meta_sg_nents,
4525 unsigned int *meta_sg_offset, unsigned int page_size);
4526
4527 static inline int
ib_map_mr_sg_zbva(struct ib_mr * mr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset,unsigned int page_size)4528 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4529 unsigned int *sg_offset, unsigned int page_size)
4530 {
4531 int n;
4532
4533 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4534 mr->iova = 0;
4535
4536 return n;
4537 }
4538
4539 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4540 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4541
4542 void ib_drain_rq(struct ib_qp *qp);
4543 void ib_drain_sq(struct ib_qp *qp);
4544 void ib_drain_qp(struct ib_qp *qp);
4545
4546 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4547 u8 *width);
4548
rdma_ah_retrieve_dmac(struct rdma_ah_attr * attr)4549 static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4550 {
4551 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4552 return attr->roce.dmac;
4553 return NULL;
4554 }
4555
rdma_ah_set_dlid(struct rdma_ah_attr * attr,u32 dlid)4556 static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4557 {
4558 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4559 attr->ib.dlid = (u16)dlid;
4560 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4561 attr->opa.dlid = dlid;
4562 }
4563
rdma_ah_get_dlid(const struct rdma_ah_attr * attr)4564 static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4565 {
4566 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4567 return attr->ib.dlid;
4568 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4569 return attr->opa.dlid;
4570 return 0;
4571 }
4572
rdma_ah_set_sl(struct rdma_ah_attr * attr,u8 sl)4573 static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4574 {
4575 attr->sl = sl;
4576 }
4577
rdma_ah_get_sl(const struct rdma_ah_attr * attr)4578 static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4579 {
4580 return attr->sl;
4581 }
4582
rdma_ah_set_path_bits(struct rdma_ah_attr * attr,u8 src_path_bits)4583 static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4584 u8 src_path_bits)
4585 {
4586 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4587 attr->ib.src_path_bits = src_path_bits;
4588 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4589 attr->opa.src_path_bits = src_path_bits;
4590 }
4591
rdma_ah_get_path_bits(const struct rdma_ah_attr * attr)4592 static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4593 {
4594 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4595 return attr->ib.src_path_bits;
4596 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4597 return attr->opa.src_path_bits;
4598 return 0;
4599 }
4600
rdma_ah_set_make_grd(struct rdma_ah_attr * attr,bool make_grd)4601 static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4602 bool make_grd)
4603 {
4604 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4605 attr->opa.make_grd = make_grd;
4606 }
4607
rdma_ah_get_make_grd(const struct rdma_ah_attr * attr)4608 static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4609 {
4610 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4611 return attr->opa.make_grd;
4612 return false;
4613 }
4614
rdma_ah_set_port_num(struct rdma_ah_attr * attr,u32 port_num)4615 static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4616 {
4617 attr->port_num = port_num;
4618 }
4619
rdma_ah_get_port_num(const struct rdma_ah_attr * attr)4620 static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4621 {
4622 return attr->port_num;
4623 }
4624
rdma_ah_set_static_rate(struct rdma_ah_attr * attr,u8 static_rate)4625 static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4626 u8 static_rate)
4627 {
4628 attr->static_rate = static_rate;
4629 }
4630
rdma_ah_get_static_rate(const struct rdma_ah_attr * attr)4631 static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4632 {
4633 return attr->static_rate;
4634 }
4635
rdma_ah_set_ah_flags(struct rdma_ah_attr * attr,enum ib_ah_flags flag)4636 static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4637 enum ib_ah_flags flag)
4638 {
4639 attr->ah_flags = flag;
4640 }
4641
4642 static inline enum ib_ah_flags
rdma_ah_get_ah_flags(const struct rdma_ah_attr * attr)4643 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4644 {
4645 return attr->ah_flags;
4646 }
4647
4648 static inline const struct ib_global_route
rdma_ah_read_grh(const struct rdma_ah_attr * attr)4649 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4650 {
4651 return &attr->grh;
4652 }
4653
4654 /*To retrieve and modify the grh */
4655 static inline struct ib_global_route
rdma_ah_retrieve_grh(struct rdma_ah_attr * attr)4656 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4657 {
4658 return &attr->grh;
4659 }
4660
rdma_ah_set_dgid_raw(struct rdma_ah_attr * attr,void * dgid)4661 static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4662 {
4663 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4664
4665 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4666 }
4667
rdma_ah_set_subnet_prefix(struct rdma_ah_attr * attr,__be64 prefix)4668 static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4669 __be64 prefix)
4670 {
4671 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4672
4673 grh->dgid.global.subnet_prefix = prefix;
4674 }
4675
rdma_ah_set_interface_id(struct rdma_ah_attr * attr,__be64 if_id)4676 static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4677 __be64 if_id)
4678 {
4679 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4680
4681 grh->dgid.global.interface_id = if_id;
4682 }
4683
rdma_ah_set_grh(struct rdma_ah_attr * attr,union ib_gid * dgid,u32 flow_label,u8 sgid_index,u8 hop_limit,u8 traffic_class)4684 static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4685 union ib_gid *dgid, u32 flow_label,
4686 u8 sgid_index, u8 hop_limit,
4687 u8 traffic_class)
4688 {
4689 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4690
4691 attr->ah_flags = IB_AH_GRH;
4692 if (dgid)
4693 grh->dgid = *dgid;
4694 grh->flow_label = flow_label;
4695 grh->sgid_index = sgid_index;
4696 grh->hop_limit = hop_limit;
4697 grh->traffic_class = traffic_class;
4698 grh->sgid_attr = NULL;
4699 }
4700
4701 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4702 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4703 u32 flow_label, u8 hop_limit, u8 traffic_class,
4704 const struct ib_gid_attr *sgid_attr);
4705 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4706 const struct rdma_ah_attr *src);
4707 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4708 const struct rdma_ah_attr *new);
4709 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4710
4711 /**
4712 * rdma_ah_find_type - Return address handle type.
4713 *
4714 * @dev: Device to be checked
4715 * @port_num: Port number
4716 */
rdma_ah_find_type(struct ib_device * dev,u32 port_num)4717 static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4718 u32 port_num)
4719 {
4720 if (rdma_protocol_roce(dev, port_num))
4721 return RDMA_AH_ATTR_TYPE_ROCE;
4722 if (rdma_protocol_ib(dev, port_num)) {
4723 if (rdma_cap_opa_ah(dev, port_num))
4724 return RDMA_AH_ATTR_TYPE_OPA;
4725 return RDMA_AH_ATTR_TYPE_IB;
4726 }
4727 if (dev->type == RDMA_DEVICE_TYPE_SMI)
4728 return RDMA_AH_ATTR_TYPE_IB;
4729
4730 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4731 }
4732
4733 /**
4734 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4735 * In the current implementation the only way to
4736 * get the 32bit lid is from other sources for OPA.
4737 * For IB, lids will always be 16bits so cast the
4738 * value accordingly.
4739 *
4740 * @lid: A 32bit LID
4741 */
ib_lid_cpu16(u32 lid)4742 static inline u16 ib_lid_cpu16(u32 lid)
4743 {
4744 WARN_ON_ONCE(lid & 0xFFFF0000);
4745 return (u16)lid;
4746 }
4747
4748 /**
4749 * ib_lid_be16 - Return lid in 16bit BE encoding.
4750 *
4751 * @lid: A 32bit LID
4752 */
ib_lid_be16(u32 lid)4753 static inline __be16 ib_lid_be16(u32 lid)
4754 {
4755 WARN_ON_ONCE(lid & 0xFFFF0000);
4756 return cpu_to_be16((u16)lid);
4757 }
4758
4759 /**
4760 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4761 * vector
4762 * @device: the rdma device
4763 * @comp_vector: index of completion vector
4764 *
4765 * Returns NULL on failure, otherwise a corresponding cpu map of the
4766 * completion vector (returns all-cpus map if the device driver doesn't
4767 * implement get_vector_affinity).
4768 */
4769 static inline const struct cpumask *
ib_get_vector_affinity(struct ib_device * device,int comp_vector)4770 ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4771 {
4772 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4773 !device->ops.get_vector_affinity)
4774 return NULL;
4775
4776 return device->ops.get_vector_affinity(device, comp_vector);
4777
4778 }
4779
4780 /**
4781 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4782 * and add their gids, as needed, to the relevant RoCE devices.
4783 *
4784 * @device: the rdma device
4785 */
4786 void rdma_roce_rescan_device(struct ib_device *ibdev);
4787 void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4788 void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4789 u32 port, struct net_device *ndev);
4790
4791 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4792
4793 #if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4794 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4795 #else
uverbs_destroy_def_handler(struct uverbs_attr_bundle * attrs)4796 static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4797 {
4798 return 0;
4799 }
4800 #endif
4801
4802 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4803 enum rdma_netdev_t type, const char *name,
4804 unsigned char name_assign_type,
4805 void (*setup)(struct net_device *));
4806
4807 int rdma_init_netdev(struct ib_device *device, u32 port_num,
4808 enum rdma_netdev_t type, const char *name,
4809 unsigned char name_assign_type,
4810 void (*setup)(struct net_device *),
4811 struct net_device *netdev);
4812
4813 /**
4814 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4815 *
4816 * @device: device pointer for which ib_device pointer to retrieve
4817 *
4818 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4819 *
4820 */
rdma_device_to_ibdev(struct device * device)4821 static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4822 {
4823 struct ib_core_device *coredev =
4824 container_of(device, struct ib_core_device, dev);
4825
4826 return coredev->owner;
4827 }
4828
4829 /**
4830 * ibdev_to_node - return the NUMA node for a given ib_device
4831 * @dev: device to get the NUMA node for.
4832 */
ibdev_to_node(struct ib_device * ibdev)4833 static inline int ibdev_to_node(struct ib_device *ibdev)
4834 {
4835 struct device *parent = ibdev->dev.parent;
4836
4837 if (!parent)
4838 return NUMA_NO_NODE;
4839 return dev_to_node(parent);
4840 }
4841
4842 /**
4843 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4844 * ib_device holder structure from device pointer.
4845 *
4846 * NOTE: New drivers should not make use of this API; This API is only for
4847 * existing drivers who have exposed sysfs entries using
4848 * ops->device_group.
4849 */
4850 #define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4851 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4852
4853 bool rdma_dev_access_netns(const struct ib_device *device,
4854 const struct net *net);
4855
4856 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4857 #define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4858 #define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4859
4860 /**
4861 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4862 * on the flow_label
4863 *
4864 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4865 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4866 * convention.
4867 */
rdma_flow_label_to_udp_sport(u32 fl)4868 static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4869 {
4870 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4871
4872 fl_low ^= fl_high >> 14;
4873 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4874 }
4875
4876 /**
4877 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4878 * local and remote qpn values
4879 *
4880 * This function folded the multiplication results of two qpns, 24 bit each,
4881 * fields, and converts it to a 20 bit results.
4882 *
4883 * This function will create symmetric flow_label value based on the local
4884 * and remote qpn values. this will allow both the requester and responder
4885 * to calculate the same flow_label for a given connection.
4886 *
4887 * This helper function should be used by driver in case the upper layer
4888 * provide a zero flow_label value. This is to improve entropy of RDMA
4889 * traffic in the network.
4890 */
rdma_calc_flow_label(u32 lqpn,u32 rqpn)4891 static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4892 {
4893 u64 v = (u64)lqpn * rqpn;
4894
4895 v ^= v >> 20;
4896 v ^= v >> 40;
4897
4898 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4899 }
4900
4901 /**
4902 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4903 * label. If flow label is not defined in GRH then
4904 * calculate it based on lqpn/rqpn.
4905 *
4906 * @fl: flow label from GRH
4907 * @lqpn: local qp number
4908 * @rqpn: remote qp number
4909 */
rdma_get_udp_sport(u32 fl,u32 lqpn,u32 rqpn)4910 static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4911 {
4912 if (!fl)
4913 fl = rdma_calc_flow_label(lqpn, rqpn);
4914
4915 return rdma_flow_label_to_udp_sport(fl);
4916 }
4917
4918 const struct ib_port_immutable*
4919 ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4920
4921 /** ib_add_sub_device - Add a sub IB device on an existing one
4922 *
4923 * @parent: The IB device that needs to add a sub device
4924 * @type: The type of the new sub device
4925 * @name: The name of the new sub device
4926 *
4927 *
4928 * Return 0 on success, an error code otherwise
4929 */
4930 int ib_add_sub_device(struct ib_device *parent,
4931 enum rdma_nl_dev_type type,
4932 const char *name);
4933
4934
4935 /** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4936 *
4937 * @sub: The sub device that is going to be deleted
4938 *
4939 * Return 0 on success, an error code otherwise
4940 */
4941 int ib_del_sub_device_and_put(struct ib_device *sub);
4942
ib_mark_name_assigned_by_user(struct ib_device * ibdev)4943 static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
4944 {
4945 ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
4946 }
4947
4948 #endif /* IB_VERBS_H */
4949