xref: /qemu/system/memory.c (revision 2a53c4f5c534a1ab825ba03e0d3ec45a7c2b90d8)
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15 
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "system/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27 #include "system/ram_addr.h"
28 #include "system/kvm.h"
29 #include "system/runstate.h"
30 #include "system/tcg.h"
31 #include "qemu/accel.h"
32 #include "hw/boards.h"
33 #include "migration/vmstate.h"
34 #include "system/address-spaces.h"
35 
36 #include "memory-internal.h"
37 
38 //#define DEBUG_UNASSIGNED
39 
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 unsigned int global_dirty_tracking;
44 
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47 
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50 
51 static GHashTable *flat_views;
52 
53 typedef struct AddrRange AddrRange;
54 
55 /*
56  * Note that signed integers are needed for negative offsetting in aliases
57  * (large MemoryRegion::alias_offset).
58  */
59 struct AddrRange {
60     Int128 start;
61     Int128 size;
62 };
63 
addrrange_make(Int128 start,Int128 size)64 static AddrRange addrrange_make(Int128 start, Int128 size)
65 {
66     return (AddrRange) { start, size };
67 }
68 
addrrange_equal(AddrRange r1,AddrRange r2)69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 {
71     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72 }
73 
addrrange_end(AddrRange r)74 static Int128 addrrange_end(AddrRange r)
75 {
76     return int128_add(r.start, r.size);
77 }
78 
addrrange_shift(AddrRange range,Int128 delta)79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 {
81     int128_addto(&range.start, delta);
82     return range;
83 }
84 
addrrange_contains(AddrRange range,Int128 addr)85 static bool addrrange_contains(AddrRange range, Int128 addr)
86 {
87     return int128_ge(addr, range.start)
88         && int128_lt(addr, addrrange_end(range));
89 }
90 
addrrange_intersects(AddrRange r1,AddrRange r2)91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 {
93     return addrrange_contains(r1, r2.start)
94         || addrrange_contains(r2, r1.start);
95 }
96 
addrrange_intersection(AddrRange r1,AddrRange r2)97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 {
99     Int128 start = int128_max(r1.start, r2.start);
100     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101     return addrrange_make(start, int128_sub(end, start));
102 }
103 
104 enum ListenerDirection { Forward, Reverse };
105 
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107     do {                                                                \
108         MemoryListener *_listener;                                      \
109                                                                         \
110         switch (_direction) {                                           \
111         case Forward:                                                   \
112             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                 if (_listener->_callback) {                             \
114                     _listener->_callback(_listener, ##_args);           \
115                 }                                                       \
116             }                                                           \
117             break;                                                      \
118         case Reverse:                                                   \
119             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120                 if (_listener->_callback) {                             \
121                     _listener->_callback(_listener, ##_args);           \
122                 }                                                       \
123             }                                                           \
124             break;                                                      \
125         default:                                                        \
126             abort();                                                    \
127         }                                                               \
128     } while (0)
129 
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131     do {                                                                \
132         MemoryListener *_listener;                                      \
133                                                                         \
134         switch (_direction) {                                           \
135         case Forward:                                                   \
136             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
137                 if (_listener->_callback) {                             \
138                     _listener->_callback(_listener, _section, ##_args); \
139                 }                                                       \
140             }                                                           \
141             break;                                                      \
142         case Reverse:                                                   \
143             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144                 if (_listener->_callback) {                             \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153 
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
156     do {                                                                \
157         MemoryRegionSection mrs = section_from_flat_range(fr,           \
158                 address_space_to_flatview(as));                         \
159         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
160     } while(0)
161 
162 struct CoalescedMemoryRange {
163     AddrRange addr;
164     QTAILQ_ENTRY(CoalescedMemoryRange) link;
165 };
166 
167 struct MemoryRegionIoeventfd {
168     AddrRange addr;
169     bool match_data;
170     uint64_t data;
171     EventNotifier *e;
172 };
173 
memory_region_ioeventfd_before(MemoryRegionIoeventfd * a,MemoryRegionIoeventfd * b)174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175                                            MemoryRegionIoeventfd *b)
176 {
177     if (int128_lt(a->addr.start, b->addr.start)) {
178         return true;
179     } else if (int128_gt(a->addr.start, b->addr.start)) {
180         return false;
181     } else if (int128_lt(a->addr.size, b->addr.size)) {
182         return true;
183     } else if (int128_gt(a->addr.size, b->addr.size)) {
184         return false;
185     } else if (a->match_data < b->match_data) {
186         return true;
187     } else  if (a->match_data > b->match_data) {
188         return false;
189     } else if (a->match_data) {
190         if (a->data < b->data) {
191             return true;
192         } else if (a->data > b->data) {
193             return false;
194         }
195     }
196     if (a->e < b->e) {
197         return true;
198     } else if (a->e > b->e) {
199         return false;
200     }
201     return false;
202 }
203 
memory_region_ioeventfd_equal(MemoryRegionIoeventfd * a,MemoryRegionIoeventfd * b)204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205                                           MemoryRegionIoeventfd *b)
206 {
207     if (int128_eq(a->addr.start, b->addr.start) &&
208         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209          (int128_eq(a->addr.size, b->addr.size) &&
210           (a->match_data == b->match_data) &&
211           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212           (a->e == b->e))))
213         return true;
214 
215     return false;
216 }
217 
218 /* Range of memory in the global map.  Addresses are absolute. */
219 struct FlatRange {
220     MemoryRegion *mr;
221     hwaddr offset_in_region;
222     AddrRange addr;
223     uint8_t dirty_log_mask;
224     bool romd_mode;
225     bool readonly;
226     bool nonvolatile;
227     bool unmergeable;
228 };
229 
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232 
233 static inline MemoryRegionSection
section_from_flat_range(FlatRange * fr,FlatView * fv)234 section_from_flat_range(FlatRange *fr, FlatView *fv)
235 {
236     return (MemoryRegionSection) {
237         .mr = fr->mr,
238         .fv = fv,
239         .offset_within_region = fr->offset_in_region,
240         .size = fr->addr.size,
241         .offset_within_address_space = int128_get64(fr->addr.start),
242         .readonly = fr->readonly,
243         .nonvolatile = fr->nonvolatile,
244         .unmergeable = fr->unmergeable,
245     };
246 }
247 
flatrange_equal(FlatRange * a,FlatRange * b)248 static bool flatrange_equal(FlatRange *a, FlatRange *b)
249 {
250     return a->mr == b->mr
251         && addrrange_equal(a->addr, b->addr)
252         && a->offset_in_region == b->offset_in_region
253         && a->romd_mode == b->romd_mode
254         && a->readonly == b->readonly
255         && a->nonvolatile == b->nonvolatile
256         && a->unmergeable == b->unmergeable;
257 }
258 
flatview_new(MemoryRegion * mr_root)259 static FlatView *flatview_new(MemoryRegion *mr_root)
260 {
261     FlatView *view;
262 
263     view = g_new0(FlatView, 1);
264     view->ref = 1;
265     view->root = mr_root;
266     memory_region_ref(mr_root);
267     trace_flatview_new(view, mr_root);
268 
269     return view;
270 }
271 
272 /* Insert a range into a given position.  Caller is responsible for maintaining
273  * sorting order.
274  */
flatview_insert(FlatView * view,unsigned pos,FlatRange * range)275 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276 {
277     if (view->nr == view->nr_allocated) {
278         view->nr_allocated = MAX(2 * view->nr, 10);
279         view->ranges = g_realloc(view->ranges,
280                                     view->nr_allocated * sizeof(*view->ranges));
281     }
282     memmove(view->ranges + pos + 1, view->ranges + pos,
283             (view->nr - pos) * sizeof(FlatRange));
284     view->ranges[pos] = *range;
285     memory_region_ref(range->mr);
286     ++view->nr;
287 }
288 
flatview_destroy(FlatView * view)289 static void flatview_destroy(FlatView *view)
290 {
291     int i;
292 
293     trace_flatview_destroy(view, view->root);
294     if (view->dispatch) {
295         address_space_dispatch_free(view->dispatch);
296     }
297     for (i = 0; i < view->nr; i++) {
298         memory_region_unref(view->ranges[i].mr);
299     }
300     g_free(view->ranges);
301     memory_region_unref(view->root);
302     g_free(view);
303 }
304 
flatview_ref(FlatView * view)305 static bool flatview_ref(FlatView *view)
306 {
307     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308 }
309 
flatview_unref(FlatView * view)310 void flatview_unref(FlatView *view)
311 {
312     if (qatomic_fetch_dec(&view->ref) == 1) {
313         trace_flatview_destroy_rcu(view, view->root);
314         assert(view->root);
315         call_rcu(view, flatview_destroy, rcu);
316     }
317 }
318 
can_merge(FlatRange * r1,FlatRange * r2)319 static bool can_merge(FlatRange *r1, FlatRange *r2)
320 {
321     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322         && r1->mr == r2->mr
323         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324                                 r1->addr.size),
325                      int128_make64(r2->offset_in_region))
326         && r1->dirty_log_mask == r2->dirty_log_mask
327         && r1->romd_mode == r2->romd_mode
328         && r1->readonly == r2->readonly
329         && r1->nonvolatile == r2->nonvolatile
330         && !r1->unmergeable && !r2->unmergeable;
331 }
332 
333 /* Attempt to simplify a view by merging adjacent ranges */
flatview_simplify(FlatView * view)334 static void flatview_simplify(FlatView *view)
335 {
336     unsigned i, j, k;
337 
338     i = 0;
339     while (i < view->nr) {
340         j = i + 1;
341         while (j < view->nr
342                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344             ++j;
345         }
346         ++i;
347         for (k = i; k < j; k++) {
348             memory_region_unref(view->ranges[k].mr);
349         }
350         memmove(&view->ranges[i], &view->ranges[j],
351                 (view->nr - j) * sizeof(view->ranges[j]));
352         view->nr -= j - i;
353     }
354 }
355 
adjust_endianness(MemoryRegion * mr,uint64_t * data,MemOp op)356 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
357 {
358     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
359         switch (op & MO_SIZE) {
360         case MO_8:
361             break;
362         case MO_16:
363             *data = bswap16(*data);
364             break;
365         case MO_32:
366             *data = bswap32(*data);
367             break;
368         case MO_64:
369             *data = bswap64(*data);
370             break;
371         default:
372             g_assert_not_reached();
373         }
374     }
375 }
376 
memory_region_shift_read_access(uint64_t * value,signed shift,uint64_t mask,uint64_t tmp)377 static inline void memory_region_shift_read_access(uint64_t *value,
378                                                    signed shift,
379                                                    uint64_t mask,
380                                                    uint64_t tmp)
381 {
382     if (shift >= 0) {
383         *value |= (tmp & mask) << shift;
384     } else {
385         *value |= (tmp & mask) >> -shift;
386     }
387 }
388 
memory_region_shift_write_access(uint64_t * value,signed shift,uint64_t mask)389 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
390                                                         signed shift,
391                                                         uint64_t mask)
392 {
393     uint64_t tmp;
394 
395     if (shift >= 0) {
396         tmp = (*value >> shift) & mask;
397     } else {
398         tmp = (*value << -shift) & mask;
399     }
400 
401     return tmp;
402 }
403 
memory_region_to_absolute_addr(MemoryRegion * mr,hwaddr offset)404 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
405 {
406     MemoryRegion *root;
407     hwaddr abs_addr = offset;
408 
409     abs_addr += mr->addr;
410     for (root = mr; root->container; ) {
411         root = root->container;
412         abs_addr += root->addr;
413     }
414 
415     return abs_addr;
416 }
417 
get_cpu_index(void)418 static int get_cpu_index(void)
419 {
420     if (current_cpu) {
421         return current_cpu->cpu_index;
422     }
423     return -1;
424 }
425 
memory_region_read_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)426 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
427                                                 hwaddr addr,
428                                                 uint64_t *value,
429                                                 unsigned size,
430                                                 signed shift,
431                                                 uint64_t mask,
432                                                 MemTxAttrs attrs)
433 {
434     uint64_t tmp;
435 
436     tmp = mr->ops->read(mr->opaque, addr, size);
437     if (mr->subpage) {
438         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
439     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
440         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
441         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
442                                      memory_region_name(mr));
443     }
444     memory_region_shift_read_access(value, shift, mask, tmp);
445     return MEMTX_OK;
446 }
447 
memory_region_read_with_attrs_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)448 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
449                                                           hwaddr addr,
450                                                           uint64_t *value,
451                                                           unsigned size,
452                                                           signed shift,
453                                                           uint64_t mask,
454                                                           MemTxAttrs attrs)
455 {
456     uint64_t tmp = 0;
457     MemTxResult r;
458 
459     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
460     if (mr->subpage) {
461         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
462     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
463         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
464         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
465                                      memory_region_name(mr));
466     }
467     memory_region_shift_read_access(value, shift, mask, tmp);
468     return r;
469 }
470 
memory_region_write_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)471 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
472                                                 hwaddr addr,
473                                                 uint64_t *value,
474                                                 unsigned size,
475                                                 signed shift,
476                                                 uint64_t mask,
477                                                 MemTxAttrs attrs)
478 {
479     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
480 
481     if (mr->subpage) {
482         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
483     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
484         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
485         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
486                                       memory_region_name(mr));
487     }
488     mr->ops->write(mr->opaque, addr, tmp, size);
489     return MEMTX_OK;
490 }
491 
memory_region_write_with_attrs_accessor(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs)492 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
493                                                            hwaddr addr,
494                                                            uint64_t *value,
495                                                            unsigned size,
496                                                            signed shift,
497                                                            uint64_t mask,
498                                                            MemTxAttrs attrs)
499 {
500     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
501 
502     if (mr->subpage) {
503         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
504     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
505         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
506         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
507                                       memory_region_name(mr));
508     }
509     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
510 }
511 
access_with_adjusted_size(hwaddr addr,uint64_t * value,unsigned size,unsigned access_size_min,unsigned access_size_max,MemTxResult (* access_fn)(MemoryRegion * mr,hwaddr addr,uint64_t * value,unsigned size,signed shift,uint64_t mask,MemTxAttrs attrs),MemoryRegion * mr,MemTxAttrs attrs)512 static MemTxResult access_with_adjusted_size(hwaddr addr,
513                                       uint64_t *value,
514                                       unsigned size,
515                                       unsigned access_size_min,
516                                       unsigned access_size_max,
517                                       MemTxResult (*access_fn)
518                                                   (MemoryRegion *mr,
519                                                    hwaddr addr,
520                                                    uint64_t *value,
521                                                    unsigned size,
522                                                    signed shift,
523                                                    uint64_t mask,
524                                                    MemTxAttrs attrs),
525                                       MemoryRegion *mr,
526                                       MemTxAttrs attrs)
527 {
528     uint64_t access_mask;
529     unsigned access_size;
530     unsigned i;
531     MemTxResult r = MEMTX_OK;
532     bool reentrancy_guard_applied = false;
533 
534     if (!access_size_min) {
535         access_size_min = 1;
536     }
537     if (!access_size_max) {
538         access_size_max = 4;
539     }
540 
541     /* Do not allow more than one simultaneous access to a device's IO Regions */
542     if (mr->dev && !mr->disable_reentrancy_guard &&
543         !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
544         if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
545             warn_report_once("Blocked re-entrant IO on MemoryRegion: "
546                              "%s at addr: 0x%" HWADDR_PRIX,
547                              memory_region_name(mr), addr);
548             return MEMTX_ACCESS_ERROR;
549         }
550         mr->dev->mem_reentrancy_guard.engaged_in_io = true;
551         reentrancy_guard_applied = true;
552     }
553 
554     /* FIXME: support unaligned access? */
555     access_size = MAX(MIN(size, access_size_max), access_size_min);
556     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
557     if (devend_big_endian(mr->ops->endianness)) {
558         for (i = 0; i < size; i += access_size) {
559             r |= access_fn(mr, addr + i, value, access_size,
560                         (size - access_size - i) * 8, access_mask, attrs);
561         }
562     } else {
563         for (i = 0; i < size; i += access_size) {
564             r |= access_fn(mr, addr + i, value, access_size, i * 8,
565                         access_mask, attrs);
566         }
567     }
568     if (mr->dev && reentrancy_guard_applied) {
569         mr->dev->mem_reentrancy_guard.engaged_in_io = false;
570     }
571     return r;
572 }
573 
memory_region_to_address_space(MemoryRegion * mr)574 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
575 {
576     AddressSpace *as;
577 
578     while (mr->container) {
579         mr = mr->container;
580     }
581     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
582         if (mr == as->root) {
583             return as;
584         }
585     }
586     return NULL;
587 }
588 
589 /* Render a memory region into the global view.  Ranges in @view obscure
590  * ranges in @mr.
591  */
render_memory_region(FlatView * view,MemoryRegion * mr,Int128 base,AddrRange clip,bool readonly,bool nonvolatile,bool unmergeable)592 static void render_memory_region(FlatView *view,
593                                  MemoryRegion *mr,
594                                  Int128 base,
595                                  AddrRange clip,
596                                  bool readonly,
597                                  bool nonvolatile,
598                                  bool unmergeable)
599 {
600     MemoryRegion *subregion;
601     unsigned i;
602     hwaddr offset_in_region;
603     Int128 remain;
604     Int128 now;
605     FlatRange fr;
606     AddrRange tmp;
607 
608     if (!mr->enabled) {
609         return;
610     }
611 
612     int128_addto(&base, int128_make64(mr->addr));
613     readonly |= mr->readonly;
614     nonvolatile |= mr->nonvolatile;
615     unmergeable |= mr->unmergeable;
616 
617     tmp = addrrange_make(base, mr->size);
618 
619     if (!addrrange_intersects(tmp, clip)) {
620         return;
621     }
622 
623     clip = addrrange_intersection(tmp, clip);
624 
625     if (mr->alias) {
626         int128_subfrom(&base, int128_make64(mr->alias->addr));
627         int128_subfrom(&base, int128_make64(mr->alias_offset));
628         render_memory_region(view, mr->alias, base, clip,
629                              readonly, nonvolatile, unmergeable);
630         return;
631     }
632 
633     /* Render subregions in priority order. */
634     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
635         render_memory_region(view, subregion, base, clip,
636                              readonly, nonvolatile, unmergeable);
637     }
638 
639     if (!mr->terminates) {
640         return;
641     }
642 
643     offset_in_region = int128_get64(int128_sub(clip.start, base));
644     base = clip.start;
645     remain = clip.size;
646 
647     fr.mr = mr;
648     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
649     fr.romd_mode = mr->romd_mode;
650     fr.readonly = readonly;
651     fr.nonvolatile = nonvolatile;
652     fr.unmergeable = unmergeable;
653 
654     /* Render the region itself into any gaps left by the current view. */
655     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
656         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
657             continue;
658         }
659         if (int128_lt(base, view->ranges[i].addr.start)) {
660             now = int128_min(remain,
661                              int128_sub(view->ranges[i].addr.start, base));
662             fr.offset_in_region = offset_in_region;
663             fr.addr = addrrange_make(base, now);
664             flatview_insert(view, i, &fr);
665             ++i;
666             int128_addto(&base, now);
667             offset_in_region += int128_get64(now);
668             int128_subfrom(&remain, now);
669         }
670         now = int128_sub(int128_min(int128_add(base, remain),
671                                     addrrange_end(view->ranges[i].addr)),
672                          base);
673         int128_addto(&base, now);
674         offset_in_region += int128_get64(now);
675         int128_subfrom(&remain, now);
676     }
677     if (int128_nz(remain)) {
678         fr.offset_in_region = offset_in_region;
679         fr.addr = addrrange_make(base, remain);
680         flatview_insert(view, i, &fr);
681     }
682 }
683 
flatview_for_each_range(FlatView * fv,flatview_cb cb,void * opaque)684 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
685 {
686     FlatRange *fr;
687 
688     assert(fv);
689     assert(cb);
690 
691     FOR_EACH_FLAT_RANGE(fr, fv) {
692         if (cb(fr->addr.start, fr->addr.size, fr->mr,
693                fr->offset_in_region, opaque)) {
694             break;
695         }
696     }
697 }
698 
memory_region_get_flatview_root(MemoryRegion * mr)699 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
700 {
701     while (mr->enabled) {
702         if (mr->alias) {
703             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
704                 /* The alias is included in its entirety.  Use it as
705                  * the "real" root, so that we can share more FlatViews.
706                  */
707                 mr = mr->alias;
708                 continue;
709             }
710         } else if (!mr->terminates) {
711             unsigned int found = 0;
712             MemoryRegion *child, *next = NULL;
713             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
714                 if (child->enabled) {
715                     if (++found > 1) {
716                         next = NULL;
717                         break;
718                     }
719                     if (!child->addr && int128_ge(mr->size, child->size)) {
720                         /* A child is included in its entirety.  If it's the only
721                          * enabled one, use it in the hope of finding an alias down the
722                          * way. This will also let us share FlatViews.
723                          */
724                         next = child;
725                     }
726                 }
727             }
728             if (found == 0) {
729                 return NULL;
730             }
731             if (next) {
732                 mr = next;
733                 continue;
734             }
735         }
736 
737         return mr;
738     }
739 
740     return NULL;
741 }
742 
743 /* Render a memory topology into a list of disjoint absolute ranges. */
generate_memory_topology(MemoryRegion * mr)744 static FlatView *generate_memory_topology(MemoryRegion *mr)
745 {
746     int i;
747     FlatView *view;
748 
749     view = flatview_new(mr);
750 
751     if (mr) {
752         render_memory_region(view, mr, int128_zero(),
753                              addrrange_make(int128_zero(), int128_2_64()),
754                              false, false, false);
755     }
756     flatview_simplify(view);
757 
758     view->dispatch = address_space_dispatch_new(view);
759     for (i = 0; i < view->nr; i++) {
760         MemoryRegionSection mrs =
761             section_from_flat_range(&view->ranges[i], view);
762         flatview_add_to_dispatch(view, &mrs);
763     }
764     address_space_dispatch_compact(view->dispatch);
765     g_hash_table_replace(flat_views, mr, view);
766 
767     return view;
768 }
769 
address_space_add_del_ioeventfds(AddressSpace * as,MemoryRegionIoeventfd * fds_new,unsigned fds_new_nb,MemoryRegionIoeventfd * fds_old,unsigned fds_old_nb)770 static void address_space_add_del_ioeventfds(AddressSpace *as,
771                                              MemoryRegionIoeventfd *fds_new,
772                                              unsigned fds_new_nb,
773                                              MemoryRegionIoeventfd *fds_old,
774                                              unsigned fds_old_nb)
775 {
776     unsigned iold, inew;
777     MemoryRegionIoeventfd *fd;
778     MemoryRegionSection section;
779 
780     /* Generate a symmetric difference of the old and new fd sets, adding
781      * and deleting as necessary.
782      */
783 
784     iold = inew = 0;
785     while (iold < fds_old_nb || inew < fds_new_nb) {
786         if (iold < fds_old_nb
787             && (inew == fds_new_nb
788                 || memory_region_ioeventfd_before(&fds_old[iold],
789                                                   &fds_new[inew]))) {
790             fd = &fds_old[iold];
791             section = (MemoryRegionSection) {
792                 .fv = address_space_to_flatview(as),
793                 .offset_within_address_space = int128_get64(fd->addr.start),
794                 .size = fd->addr.size,
795             };
796             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
797                                  fd->match_data, fd->data, fd->e);
798             ++iold;
799         } else if (inew < fds_new_nb
800                    && (iold == fds_old_nb
801                        || memory_region_ioeventfd_before(&fds_new[inew],
802                                                          &fds_old[iold]))) {
803             fd = &fds_new[inew];
804             section = (MemoryRegionSection) {
805                 .fv = address_space_to_flatview(as),
806                 .offset_within_address_space = int128_get64(fd->addr.start),
807                 .size = fd->addr.size,
808             };
809             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
810                                  fd->match_data, fd->data, fd->e);
811             ++inew;
812         } else {
813             ++iold;
814             ++inew;
815         }
816     }
817 }
818 
address_space_get_flatview(AddressSpace * as)819 FlatView *address_space_get_flatview(AddressSpace *as)
820 {
821     FlatView *view;
822 
823     RCU_READ_LOCK_GUARD();
824     do {
825         view = address_space_to_flatview(as);
826         /* If somebody has replaced as->current_map concurrently,
827          * flatview_ref returns false.
828          */
829     } while (!flatview_ref(view));
830     return view;
831 }
832 
address_space_update_ioeventfds(AddressSpace * as)833 static void address_space_update_ioeventfds(AddressSpace *as)
834 {
835     FlatView *view;
836     FlatRange *fr;
837     unsigned ioeventfd_nb = 0;
838     unsigned ioeventfd_max;
839     MemoryRegionIoeventfd *ioeventfds;
840     AddrRange tmp;
841     unsigned i;
842 
843     if (!as->ioeventfd_notifiers) {
844         return;
845     }
846 
847     /*
848      * It is likely that the number of ioeventfds hasn't changed much, so use
849      * the previous size as the starting value, with some headroom to avoid
850      * gratuitous reallocations.
851      */
852     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
853     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
854 
855     view = address_space_get_flatview(as);
856     FOR_EACH_FLAT_RANGE(fr, view) {
857         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
858             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
859                                   int128_sub(fr->addr.start,
860                                              int128_make64(fr->offset_in_region)));
861             if (addrrange_intersects(fr->addr, tmp)) {
862                 ++ioeventfd_nb;
863                 if (ioeventfd_nb > ioeventfd_max) {
864                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
865                     ioeventfds = g_realloc(ioeventfds,
866                             ioeventfd_max * sizeof(*ioeventfds));
867                 }
868                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
869                 ioeventfds[ioeventfd_nb-1].addr = tmp;
870             }
871         }
872     }
873 
874     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
875                                      as->ioeventfds, as->ioeventfd_nb);
876 
877     g_free(as->ioeventfds);
878     as->ioeventfds = ioeventfds;
879     as->ioeventfd_nb = ioeventfd_nb;
880     flatview_unref(view);
881 }
882 
883 /*
884  * Notify the memory listeners about the coalesced IO change events of
885  * range `cmr'.  Only the part that has intersection of the specified
886  * FlatRange will be sent.
887  */
flat_range_coalesced_io_notify(FlatRange * fr,AddressSpace * as,CoalescedMemoryRange * cmr,bool add)888 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
889                                            CoalescedMemoryRange *cmr, bool add)
890 {
891     AddrRange tmp;
892 
893     tmp = addrrange_shift(cmr->addr,
894                           int128_sub(fr->addr.start,
895                                      int128_make64(fr->offset_in_region)));
896     if (!addrrange_intersects(tmp, fr->addr)) {
897         return;
898     }
899     tmp = addrrange_intersection(tmp, fr->addr);
900 
901     if (add) {
902         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
903                                       int128_get64(tmp.start),
904                                       int128_get64(tmp.size));
905     } else {
906         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
907                                       int128_get64(tmp.start),
908                                       int128_get64(tmp.size));
909     }
910 }
911 
flat_range_coalesced_io_del(FlatRange * fr,AddressSpace * as)912 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
913 {
914     CoalescedMemoryRange *cmr;
915 
916     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
917         flat_range_coalesced_io_notify(fr, as, cmr, false);
918     }
919 }
920 
flat_range_coalesced_io_add(FlatRange * fr,AddressSpace * as)921 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
922 {
923     MemoryRegion *mr = fr->mr;
924     CoalescedMemoryRange *cmr;
925 
926     if (QTAILQ_EMPTY(&mr->coalesced)) {
927         return;
928     }
929 
930     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
931         flat_range_coalesced_io_notify(fr, as, cmr, true);
932     }
933 }
934 
935 static void
flat_range_coalesced_io_notify_listener_add_del(FlatRange * fr,MemoryRegionSection * mrs,MemoryListener * listener,AddressSpace * as,bool add)936 flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr,
937                                                 MemoryRegionSection *mrs,
938                                                 MemoryListener *listener,
939                                                 AddressSpace *as, bool add)
940 {
941     CoalescedMemoryRange *cmr;
942     MemoryRegion *mr = fr->mr;
943     AddrRange tmp;
944 
945     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
946         tmp = addrrange_shift(cmr->addr,
947                               int128_sub(fr->addr.start,
948                                          int128_make64(fr->offset_in_region)));
949 
950         if (!addrrange_intersects(tmp, fr->addr)) {
951             return;
952         }
953         tmp = addrrange_intersection(tmp, fr->addr);
954 
955         if (add && listener->coalesced_io_add) {
956             listener->coalesced_io_add(listener, mrs,
957                                        int128_get64(tmp.start),
958                                        int128_get64(tmp.size));
959         } else if (!add && listener->coalesced_io_del) {
960             listener->coalesced_io_del(listener, mrs,
961                                        int128_get64(tmp.start),
962                                        int128_get64(tmp.size));
963         }
964     }
965 }
966 
address_space_update_topology_pass(AddressSpace * as,const FlatView * old_view,const FlatView * new_view,bool adding)967 static void address_space_update_topology_pass(AddressSpace *as,
968                                                const FlatView *old_view,
969                                                const FlatView *new_view,
970                                                bool adding)
971 {
972     unsigned iold, inew;
973     FlatRange *frold, *frnew;
974 
975     /* Generate a symmetric difference of the old and new memory maps.
976      * Kill ranges in the old map, and instantiate ranges in the new map.
977      */
978     iold = inew = 0;
979     while (iold < old_view->nr || inew < new_view->nr) {
980         if (iold < old_view->nr) {
981             frold = &old_view->ranges[iold];
982         } else {
983             frold = NULL;
984         }
985         if (inew < new_view->nr) {
986             frnew = &new_view->ranges[inew];
987         } else {
988             frnew = NULL;
989         }
990 
991         if (frold
992             && (!frnew
993                 || int128_lt(frold->addr.start, frnew->addr.start)
994                 || (int128_eq(frold->addr.start, frnew->addr.start)
995                     && !flatrange_equal(frold, frnew)))) {
996             /* In old but not in new, or in both but attributes changed. */
997 
998             if (!adding) {
999                 flat_range_coalesced_io_del(frold, as);
1000                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
1001             }
1002 
1003             ++iold;
1004         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
1005             /* In both and unchanged (except logging may have changed) */
1006 
1007             if (adding) {
1008                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
1009                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
1010                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
1011                                                   frold->dirty_log_mask,
1012                                                   frnew->dirty_log_mask);
1013                 }
1014                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
1015                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
1016                                                   frold->dirty_log_mask,
1017                                                   frnew->dirty_log_mask);
1018                 }
1019             }
1020 
1021             ++iold;
1022             ++inew;
1023         } else {
1024             /* In new */
1025 
1026             if (adding) {
1027                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1028                 flat_range_coalesced_io_add(frnew, as);
1029             }
1030 
1031             ++inew;
1032         }
1033     }
1034 }
1035 
flatviews_init(void)1036 static void flatviews_init(void)
1037 {
1038     static FlatView *empty_view;
1039 
1040     if (flat_views) {
1041         return;
1042     }
1043 
1044     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1045                                        (GDestroyNotify) flatview_unref);
1046     if (!empty_view) {
1047         empty_view = generate_memory_topology(NULL);
1048         /* We keep it alive forever in the global variable.  */
1049         flatview_ref(empty_view);
1050     } else {
1051         g_hash_table_replace(flat_views, NULL, empty_view);
1052         flatview_ref(empty_view);
1053     }
1054 }
1055 
flatviews_reset(void)1056 static void flatviews_reset(void)
1057 {
1058     AddressSpace *as;
1059 
1060     if (flat_views) {
1061         g_hash_table_unref(flat_views);
1062         flat_views = NULL;
1063     }
1064     flatviews_init();
1065 
1066     /* Render unique FVs */
1067     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1068         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1069 
1070         if (g_hash_table_lookup(flat_views, physmr)) {
1071             continue;
1072         }
1073 
1074         generate_memory_topology(physmr);
1075     }
1076 }
1077 
address_space_set_flatview(AddressSpace * as)1078 static void address_space_set_flatview(AddressSpace *as)
1079 {
1080     FlatView *old_view = address_space_to_flatview(as);
1081     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1082     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1083 
1084     assert(new_view);
1085 
1086     if (old_view == new_view) {
1087         return;
1088     }
1089 
1090     if (old_view) {
1091         flatview_ref(old_view);
1092     }
1093 
1094     flatview_ref(new_view);
1095 
1096     if (!QTAILQ_EMPTY(&as->listeners)) {
1097         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1098 
1099         if (!old_view2) {
1100             old_view2 = &tmpview;
1101         }
1102         address_space_update_topology_pass(as, old_view2, new_view, false);
1103         address_space_update_topology_pass(as, old_view2, new_view, true);
1104     }
1105 
1106     /* Writes are protected by the BQL.  */
1107     qatomic_rcu_set(&as->current_map, new_view);
1108     if (old_view) {
1109         flatview_unref(old_view);
1110     }
1111 
1112     /* Note that all the old MemoryRegions are still alive up to this
1113      * point.  This relieves most MemoryListeners from the need to
1114      * ref/unref the MemoryRegions they get---unless they use them
1115      * outside the iothread mutex, in which case precise reference
1116      * counting is necessary.
1117      */
1118     if (old_view) {
1119         flatview_unref(old_view);
1120     }
1121 }
1122 
address_space_update_topology(AddressSpace * as)1123 static void address_space_update_topology(AddressSpace *as)
1124 {
1125     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1126 
1127     flatviews_init();
1128     if (!g_hash_table_lookup(flat_views, physmr)) {
1129         generate_memory_topology(physmr);
1130     }
1131     address_space_set_flatview(as);
1132 }
1133 
memory_region_transaction_begin(void)1134 void memory_region_transaction_begin(void)
1135 {
1136     qemu_flush_coalesced_mmio_buffer();
1137     ++memory_region_transaction_depth;
1138 }
1139 
memory_region_transaction_commit(void)1140 void memory_region_transaction_commit(void)
1141 {
1142     AddressSpace *as;
1143 
1144     assert(memory_region_transaction_depth);
1145     assert(bql_locked());
1146 
1147     --memory_region_transaction_depth;
1148     if (!memory_region_transaction_depth) {
1149         if (memory_region_update_pending) {
1150             flatviews_reset();
1151 
1152             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1153 
1154             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1155                 address_space_set_flatview(as);
1156                 address_space_update_ioeventfds(as);
1157             }
1158             memory_region_update_pending = false;
1159             ioeventfd_update_pending = false;
1160             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1161         } else if (ioeventfd_update_pending) {
1162             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1163                 address_space_update_ioeventfds(as);
1164             }
1165             ioeventfd_update_pending = false;
1166         }
1167    }
1168 }
1169 
memory_region_destructor_none(MemoryRegion * mr)1170 static void memory_region_destructor_none(MemoryRegion *mr)
1171 {
1172 }
1173 
memory_region_destructor_ram(MemoryRegion * mr)1174 static void memory_region_destructor_ram(MemoryRegion *mr)
1175 {
1176     qemu_ram_free(mr->ram_block);
1177 }
1178 
memory_region_need_escape(char c)1179 static bool memory_region_need_escape(char c)
1180 {
1181     return c == '/' || c == '[' || c == '\\' || c == ']';
1182 }
1183 
memory_region_escape_name(const char * name)1184 static char *memory_region_escape_name(const char *name)
1185 {
1186     const char *p;
1187     char *escaped, *q;
1188     uint8_t c;
1189     size_t bytes = 0;
1190 
1191     for (p = name; *p; p++) {
1192         bytes += memory_region_need_escape(*p) ? 4 : 1;
1193     }
1194     if (bytes == p - name) {
1195        return g_memdup(name, bytes + 1);
1196     }
1197 
1198     escaped = g_malloc(bytes + 1);
1199     for (p = name, q = escaped; *p; p++) {
1200         c = *p;
1201         if (unlikely(memory_region_need_escape(c))) {
1202             *q++ = '\\';
1203             *q++ = 'x';
1204             *q++ = "0123456789abcdef"[c >> 4];
1205             c = "0123456789abcdef"[c & 15];
1206         }
1207         *q++ = c;
1208     }
1209     *q = 0;
1210     return escaped;
1211 }
1212 
memory_region_do_init(MemoryRegion * mr,Object * owner,const char * name,uint64_t size)1213 static void memory_region_do_init(MemoryRegion *mr,
1214                                   Object *owner,
1215                                   const char *name,
1216                                   uint64_t size)
1217 {
1218     mr->size = int128_make64(size);
1219     if (size == UINT64_MAX) {
1220         mr->size = int128_2_64();
1221     }
1222     mr->name = g_strdup(name);
1223     mr->owner = owner;
1224     mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1225     mr->ram_block = NULL;
1226 
1227     if (name) {
1228         char *escaped_name = memory_region_escape_name(name);
1229         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1230 
1231         if (!owner) {
1232             owner = machine_get_container("unattached");
1233         }
1234 
1235         object_property_add_child(owner, name_array, OBJECT(mr));
1236         object_unref(OBJECT(mr));
1237         g_free(name_array);
1238         g_free(escaped_name);
1239     }
1240 }
1241 
memory_region_init(MemoryRegion * mr,Object * owner,const char * name,uint64_t size)1242 void memory_region_init(MemoryRegion *mr,
1243                         Object *owner,
1244                         const char *name,
1245                         uint64_t size)
1246 {
1247     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1248     memory_region_do_init(mr, owner, name, size);
1249 }
1250 
memory_region_get_container(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1251 static void memory_region_get_container(Object *obj, Visitor *v,
1252                                         const char *name, void *opaque,
1253                                         Error **errp)
1254 {
1255     MemoryRegion *mr = MEMORY_REGION(obj);
1256     char *path = (char *)"";
1257 
1258     if (mr->container) {
1259         path = object_get_canonical_path(OBJECT(mr->container));
1260     }
1261     visit_type_str(v, name, &path, errp);
1262     if (mr->container) {
1263         g_free(path);
1264     }
1265 }
1266 
memory_region_resolve_container(Object * obj,void * opaque,const char * part)1267 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1268                                                const char *part)
1269 {
1270     MemoryRegion *mr = MEMORY_REGION(obj);
1271 
1272     return OBJECT(mr->container);
1273 }
1274 
memory_region_get_priority(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1275 static void memory_region_get_priority(Object *obj, Visitor *v,
1276                                        const char *name, void *opaque,
1277                                        Error **errp)
1278 {
1279     MemoryRegion *mr = MEMORY_REGION(obj);
1280     int32_t value = mr->priority;
1281 
1282     visit_type_int32(v, name, &value, errp);
1283 }
1284 
memory_region_get_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1285 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1286                                    void *opaque, Error **errp)
1287 {
1288     MemoryRegion *mr = MEMORY_REGION(obj);
1289     uint64_t value = memory_region_size(mr);
1290 
1291     visit_type_uint64(v, name, &value, errp);
1292 }
1293 
memory_region_initfn(Object * obj)1294 static void memory_region_initfn(Object *obj)
1295 {
1296     MemoryRegion *mr = MEMORY_REGION(obj);
1297     ObjectProperty *op;
1298 
1299     mr->ops = &unassigned_mem_ops;
1300     mr->enabled = true;
1301     mr->romd_mode = true;
1302     mr->destructor = memory_region_destructor_none;
1303     QTAILQ_INIT(&mr->subregions);
1304     QTAILQ_INIT(&mr->coalesced);
1305 
1306     op = object_property_add(OBJECT(mr), "container",
1307                              "link<" TYPE_MEMORY_REGION ">",
1308                              memory_region_get_container,
1309                              NULL, /* memory_region_set_container */
1310                              NULL, NULL);
1311     op->resolve = memory_region_resolve_container;
1312 
1313     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1314                                    &mr->addr, OBJ_PROP_FLAG_READ);
1315     object_property_add(OBJECT(mr), "priority", "uint32",
1316                         memory_region_get_priority,
1317                         NULL, /* memory_region_set_priority */
1318                         NULL, NULL);
1319     object_property_add(OBJECT(mr), "size", "uint64",
1320                         memory_region_get_size,
1321                         NULL, /* memory_region_set_size, */
1322                         NULL, NULL);
1323 }
1324 
iommu_memory_region_initfn(Object * obj)1325 static void iommu_memory_region_initfn(Object *obj)
1326 {
1327     MemoryRegion *mr = MEMORY_REGION(obj);
1328 
1329     mr->is_iommu = true;
1330 }
1331 
unassigned_mem_read(void * opaque,hwaddr addr,unsigned size)1332 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1333                                     unsigned size)
1334 {
1335 #ifdef DEBUG_UNASSIGNED
1336     printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1337 #endif
1338     return 0;
1339 }
1340 
unassigned_mem_write(void * opaque,hwaddr addr,uint64_t val,unsigned size)1341 static void unassigned_mem_write(void *opaque, hwaddr addr,
1342                                  uint64_t val, unsigned size)
1343 {
1344 #ifdef DEBUG_UNASSIGNED
1345     printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1346 #endif
1347 }
1348 
unassigned_mem_accepts(void * opaque,hwaddr addr,unsigned size,bool is_write,MemTxAttrs attrs)1349 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1350                                    unsigned size, bool is_write,
1351                                    MemTxAttrs attrs)
1352 {
1353     return false;
1354 }
1355 
1356 const MemoryRegionOps unassigned_mem_ops = {
1357     .valid.accepts = unassigned_mem_accepts,
1358     .endianness = DEVICE_NATIVE_ENDIAN,
1359 };
1360 
memory_region_ram_device_read(void * opaque,hwaddr addr,unsigned size)1361 static uint64_t memory_region_ram_device_read(void *opaque,
1362                                               hwaddr addr, unsigned size)
1363 {
1364     MemoryRegion *mr = opaque;
1365     uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1366 
1367     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1368 
1369     return data;
1370 }
1371 
memory_region_ram_device_write(void * opaque,hwaddr addr,uint64_t data,unsigned size)1372 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1373                                            uint64_t data, unsigned size)
1374 {
1375     MemoryRegion *mr = opaque;
1376 
1377     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1378 
1379     stn_he_p(mr->ram_block->host + addr, size, data);
1380 }
1381 
1382 static const MemoryRegionOps ram_device_mem_ops = {
1383     .read = memory_region_ram_device_read,
1384     .write = memory_region_ram_device_write,
1385     .endianness = HOST_BIG_ENDIAN ? DEVICE_BIG_ENDIAN : DEVICE_LITTLE_ENDIAN,
1386     .valid = {
1387         .min_access_size = 1,
1388         .max_access_size = 8,
1389         .unaligned = true,
1390     },
1391     .impl = {
1392         .min_access_size = 1,
1393         .max_access_size = 8,
1394         .unaligned = true,
1395     },
1396 };
1397 
memory_region_access_valid(MemoryRegion * mr,hwaddr addr,unsigned size,bool is_write,MemTxAttrs attrs)1398 bool memory_region_access_valid(MemoryRegion *mr,
1399                                 hwaddr addr,
1400                                 unsigned size,
1401                                 bool is_write,
1402                                 MemTxAttrs attrs)
1403 {
1404     if (mr->ops->valid.accepts
1405         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1406         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1407                       ", size %u, region '%s', reason: rejected\n",
1408                       is_write ? "write" : "read",
1409                       addr, size, memory_region_name(mr));
1410         return false;
1411     }
1412 
1413     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1414         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1415                       ", size %u, region '%s', reason: unaligned\n",
1416                       is_write ? "write" : "read",
1417                       addr, size, memory_region_name(mr));
1418         return false;
1419     }
1420 
1421     /* Treat zero as compatibility all valid */
1422     if (!mr->ops->valid.max_access_size) {
1423         return true;
1424     }
1425 
1426     if (size > mr->ops->valid.max_access_size
1427         || size < mr->ops->valid.min_access_size) {
1428         qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1429                       ", size %u, region '%s', reason: invalid size "
1430                       "(min:%u max:%u)\n",
1431                       is_write ? "write" : "read",
1432                       addr, size, memory_region_name(mr),
1433                       mr->ops->valid.min_access_size,
1434                       mr->ops->valid.max_access_size);
1435         return false;
1436     }
1437     return true;
1438 }
1439 
memory_region_dispatch_read1(MemoryRegion * mr,hwaddr addr,uint64_t * pval,unsigned size,MemTxAttrs attrs)1440 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1441                                                 hwaddr addr,
1442                                                 uint64_t *pval,
1443                                                 unsigned size,
1444                                                 MemTxAttrs attrs)
1445 {
1446     *pval = 0;
1447 
1448     if (mr->ops->read) {
1449         return access_with_adjusted_size(addr, pval, size,
1450                                          mr->ops->impl.min_access_size,
1451                                          mr->ops->impl.max_access_size,
1452                                          memory_region_read_accessor,
1453                                          mr, attrs);
1454     } else {
1455         return access_with_adjusted_size(addr, pval, size,
1456                                          mr->ops->impl.min_access_size,
1457                                          mr->ops->impl.max_access_size,
1458                                          memory_region_read_with_attrs_accessor,
1459                                          mr, attrs);
1460     }
1461 }
1462 
memory_region_dispatch_read(MemoryRegion * mr,hwaddr addr,uint64_t * pval,MemOp op,MemTxAttrs attrs)1463 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1464                                         hwaddr addr,
1465                                         uint64_t *pval,
1466                                         MemOp op,
1467                                         MemTxAttrs attrs)
1468 {
1469     unsigned size = memop_size(op);
1470     MemTxResult r;
1471 
1472     if (mr->alias) {
1473         return memory_region_dispatch_read(mr->alias,
1474                                            mr->alias_offset + addr,
1475                                            pval, op, attrs);
1476     }
1477     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1478         *pval = unassigned_mem_read(mr, addr, size);
1479         return MEMTX_DECODE_ERROR;
1480     }
1481 
1482     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1483     adjust_endianness(mr, pval, op);
1484     return r;
1485 }
1486 
1487 /* Return true if an eventfd was signalled */
memory_region_dispatch_write_eventfds(MemoryRegion * mr,hwaddr addr,uint64_t data,unsigned size,MemTxAttrs attrs)1488 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1489                                                     hwaddr addr,
1490                                                     uint64_t data,
1491                                                     unsigned size,
1492                                                     MemTxAttrs attrs)
1493 {
1494     MemoryRegionIoeventfd ioeventfd = {
1495         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1496         .data = data,
1497     };
1498     unsigned i;
1499 
1500     for (i = 0; i < mr->ioeventfd_nb; i++) {
1501         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1502         ioeventfd.e = mr->ioeventfds[i].e;
1503 
1504         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1505             event_notifier_set(ioeventfd.e);
1506             return true;
1507         }
1508     }
1509 
1510     return false;
1511 }
1512 
memory_region_dispatch_write(MemoryRegion * mr,hwaddr addr,uint64_t data,MemOp op,MemTxAttrs attrs)1513 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1514                                          hwaddr addr,
1515                                          uint64_t data,
1516                                          MemOp op,
1517                                          MemTxAttrs attrs)
1518 {
1519     unsigned size = memop_size(op);
1520 
1521     if (mr->alias) {
1522         return memory_region_dispatch_write(mr->alias,
1523                                             mr->alias_offset + addr,
1524                                             data, op, attrs);
1525     }
1526     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1527         unassigned_mem_write(mr, addr, data, size);
1528         return MEMTX_DECODE_ERROR;
1529     }
1530 
1531     adjust_endianness(mr, &data, op);
1532 
1533     /*
1534      * FIXME: it's not clear why under KVM the write would be processed
1535      * directly, instead of going through eventfd.  This probably should
1536      * test "tcg_enabled() || qtest_enabled()", or should just go away.
1537      */
1538     if (!kvm_enabled() &&
1539         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1540         return MEMTX_OK;
1541     }
1542 
1543     if (mr->ops->write) {
1544         return access_with_adjusted_size(addr, &data, size,
1545                                          mr->ops->impl.min_access_size,
1546                                          mr->ops->impl.max_access_size,
1547                                          memory_region_write_accessor, mr,
1548                                          attrs);
1549     } else {
1550         return
1551             access_with_adjusted_size(addr, &data, size,
1552                                       mr->ops->impl.min_access_size,
1553                                       mr->ops->impl.max_access_size,
1554                                       memory_region_write_with_attrs_accessor,
1555                                       mr, attrs);
1556     }
1557 }
1558 
memory_region_init_io(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size)1559 void memory_region_init_io(MemoryRegion *mr,
1560                            Object *owner,
1561                            const MemoryRegionOps *ops,
1562                            void *opaque,
1563                            const char *name,
1564                            uint64_t size)
1565 {
1566     memory_region_init(mr, owner, name, size);
1567     mr->ops = ops ? ops : &unassigned_mem_ops;
1568     mr->opaque = opaque;
1569     mr->terminates = true;
1570 }
1571 
memory_region_init_ram_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)1572 bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1573                                       Object *owner,
1574                                       const char *name,
1575                                       uint64_t size,
1576                                       Error **errp)
1577 {
1578     return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1579                                                   size, 0, errp);
1580 }
1581 
memory_region_init_ram_flags_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint32_t ram_flags,Error ** errp)1582 bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1583                                             Object *owner,
1584                                             const char *name,
1585                                             uint64_t size,
1586                                             uint32_t ram_flags,
1587                                             Error **errp)
1588 {
1589     Error *err = NULL;
1590     memory_region_init(mr, owner, name, size);
1591     mr->ram = true;
1592     mr->terminates = true;
1593     mr->destructor = memory_region_destructor_ram;
1594     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1595     if (err) {
1596         mr->size = int128_zero();
1597         object_unparent(OBJECT(mr));
1598         error_propagate(errp, err);
1599         return false;
1600     }
1601     return true;
1602 }
1603 
memory_region_init_resizeable_ram(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint64_t max_size,void (* resized)(const char *,uint64_t length,void * host),Error ** errp)1604 bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1605                                        Object *owner,
1606                                        const char *name,
1607                                        uint64_t size,
1608                                        uint64_t max_size,
1609                                        void (*resized)(const char*,
1610                                                        uint64_t length,
1611                                                        void *host),
1612                                        Error **errp)
1613 {
1614     Error *err = NULL;
1615     memory_region_init(mr, owner, name, size);
1616     mr->ram = true;
1617     mr->terminates = true;
1618     mr->destructor = memory_region_destructor_ram;
1619     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1620                                               mr, &err);
1621     if (err) {
1622         mr->size = int128_zero();
1623         object_unparent(OBJECT(mr));
1624         error_propagate(errp, err);
1625         return false;
1626     }
1627     return true;
1628 }
1629 
1630 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
memory_region_init_ram_from_file(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint64_t align,uint32_t ram_flags,const char * path,ram_addr_t offset,Error ** errp)1631 bool memory_region_init_ram_from_file(MemoryRegion *mr,
1632                                       Object *owner,
1633                                       const char *name,
1634                                       uint64_t size,
1635                                       uint64_t align,
1636                                       uint32_t ram_flags,
1637                                       const char *path,
1638                                       ram_addr_t offset,
1639                                       Error **errp)
1640 {
1641     Error *err = NULL;
1642     memory_region_init(mr, owner, name, size);
1643     mr->ram = true;
1644     mr->readonly = !!(ram_flags & RAM_READONLY);
1645     mr->terminates = true;
1646     mr->destructor = memory_region_destructor_ram;
1647     mr->align = align;
1648     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1649                                              offset, &err);
1650     if (err) {
1651         mr->size = int128_zero();
1652         object_unparent(OBJECT(mr));
1653         error_propagate(errp, err);
1654         return false;
1655     }
1656     return true;
1657 }
1658 
memory_region_init_ram_from_fd(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,uint32_t ram_flags,int fd,ram_addr_t offset,Error ** errp)1659 bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1660                                     Object *owner,
1661                                     const char *name,
1662                                     uint64_t size,
1663                                     uint32_t ram_flags,
1664                                     int fd,
1665                                     ram_addr_t offset,
1666                                     Error **errp)
1667 {
1668     Error *err = NULL;
1669     memory_region_init(mr, owner, name, size);
1670     mr->ram = true;
1671     mr->readonly = !!(ram_flags & RAM_READONLY);
1672     mr->terminates = true;
1673     mr->destructor = memory_region_destructor_ram;
1674     mr->ram_block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd,
1675                                            offset, false, &err);
1676     if (err) {
1677         mr->size = int128_zero();
1678         object_unparent(OBJECT(mr));
1679         error_propagate(errp, err);
1680         return false;
1681     }
1682     return true;
1683 }
1684 #endif
1685 
memory_region_init_ram_ptr(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,void * ptr)1686 void memory_region_init_ram_ptr(MemoryRegion *mr,
1687                                 Object *owner,
1688                                 const char *name,
1689                                 uint64_t size,
1690                                 void *ptr)
1691 {
1692     memory_region_init(mr, owner, name, size);
1693     mr->ram = true;
1694     mr->terminates = true;
1695     mr->destructor = memory_region_destructor_ram;
1696 
1697     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1698     assert(ptr != NULL);
1699     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1700 }
1701 
memory_region_init_ram_device_ptr(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,void * ptr)1702 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1703                                        Object *owner,
1704                                        const char *name,
1705                                        uint64_t size,
1706                                        void *ptr)
1707 {
1708     memory_region_init(mr, owner, name, size);
1709     mr->ram = true;
1710     mr->terminates = true;
1711     mr->ram_device = true;
1712     mr->ops = &ram_device_mem_ops;
1713     mr->opaque = mr;
1714     mr->destructor = memory_region_destructor_ram;
1715 
1716     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1717     assert(ptr != NULL);
1718     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1719 }
1720 
memory_region_init_alias(MemoryRegion * mr,Object * owner,const char * name,MemoryRegion * orig,hwaddr offset,uint64_t size)1721 void memory_region_init_alias(MemoryRegion *mr,
1722                               Object *owner,
1723                               const char *name,
1724                               MemoryRegion *orig,
1725                               hwaddr offset,
1726                               uint64_t size)
1727 {
1728     memory_region_init(mr, owner, name, size);
1729     mr->alias = orig;
1730     mr->alias_offset = offset;
1731 }
1732 
memory_region_init_rom_nomigrate(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)1733 bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1734                                       Object *owner,
1735                                       const char *name,
1736                                       uint64_t size,
1737                                       Error **errp)
1738 {
1739     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1740                                                 size, 0, errp)) {
1741          return false;
1742     }
1743     mr->readonly = true;
1744 
1745     return true;
1746 }
1747 
memory_region_init_rom_device_nomigrate(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size,Error ** errp)1748 bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1749                                              Object *owner,
1750                                              const MemoryRegionOps *ops,
1751                                              void *opaque,
1752                                              const char *name,
1753                                              uint64_t size,
1754                                              Error **errp)
1755 {
1756     Error *err = NULL;
1757     assert(ops);
1758     memory_region_init(mr, owner, name, size);
1759     mr->ops = ops;
1760     mr->opaque = opaque;
1761     mr->terminates = true;
1762     mr->rom_device = true;
1763     mr->destructor = memory_region_destructor_ram;
1764     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1765     if (err) {
1766         mr->size = int128_zero();
1767         object_unparent(OBJECT(mr));
1768         error_propagate(errp, err);
1769         return false;
1770     }
1771     return true;
1772 }
1773 
memory_region_init_iommu(void * _iommu_mr,size_t instance_size,const char * mrtypename,Object * owner,const char * name,uint64_t size)1774 void memory_region_init_iommu(void *_iommu_mr,
1775                               size_t instance_size,
1776                               const char *mrtypename,
1777                               Object *owner,
1778                               const char *name,
1779                               uint64_t size)
1780 {
1781     struct IOMMUMemoryRegion *iommu_mr;
1782     struct MemoryRegion *mr;
1783 
1784     object_initialize(_iommu_mr, instance_size, mrtypename);
1785     mr = MEMORY_REGION(_iommu_mr);
1786     memory_region_do_init(mr, owner, name, size);
1787     iommu_mr = IOMMU_MEMORY_REGION(mr);
1788     mr->terminates = true;  /* then re-forwards */
1789     QLIST_INIT(&iommu_mr->iommu_notify);
1790     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1791 }
1792 
memory_region_finalize(Object * obj)1793 static void memory_region_finalize(Object *obj)
1794 {
1795     MemoryRegion *mr = MEMORY_REGION(obj);
1796 
1797     assert(!mr->container);
1798 
1799     /* We know the region is not visible in any address space (it
1800      * does not have a container and cannot be a root either because
1801      * it has no references, so we can blindly clear mr->enabled.
1802      * memory_region_set_enabled instead could trigger a transaction
1803      * and cause an infinite loop.
1804      */
1805     mr->enabled = false;
1806     memory_region_transaction_begin();
1807     while (!QTAILQ_EMPTY(&mr->subregions)) {
1808         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1809         memory_region_del_subregion(mr, subregion);
1810     }
1811     memory_region_transaction_commit();
1812 
1813     mr->destructor(mr);
1814     memory_region_clear_coalescing(mr);
1815     g_free((char *)mr->name);
1816     g_free(mr->ioeventfds);
1817 }
1818 
memory_region_owner(MemoryRegion * mr)1819 Object *memory_region_owner(MemoryRegion *mr)
1820 {
1821     Object *obj = OBJECT(mr);
1822     return obj->parent;
1823 }
1824 
memory_region_ref(MemoryRegion * mr)1825 void memory_region_ref(MemoryRegion *mr)
1826 {
1827     /* MMIO callbacks most likely will access data that belongs
1828      * to the owner, hence the need to ref/unref the owner whenever
1829      * the memory region is in use.
1830      *
1831      * The memory region is a child of its owner.  As long as the
1832      * owner doesn't call unparent itself on the memory region,
1833      * ref-ing the owner will also keep the memory region alive.
1834      * Memory regions without an owner are supposed to never go away;
1835      * we do not ref/unref them because it slows down DMA sensibly.
1836      */
1837     if (mr && mr->owner) {
1838         object_ref(mr->owner);
1839     }
1840 }
1841 
memory_region_unref(MemoryRegion * mr)1842 void memory_region_unref(MemoryRegion *mr)
1843 {
1844     if (mr && mr->owner) {
1845         object_unref(mr->owner);
1846     }
1847 }
1848 
memory_region_size(MemoryRegion * mr)1849 uint64_t memory_region_size(MemoryRegion *mr)
1850 {
1851     if (int128_eq(mr->size, int128_2_64())) {
1852         return UINT64_MAX;
1853     }
1854     return int128_get64(mr->size);
1855 }
1856 
memory_region_name(const MemoryRegion * mr)1857 const char *memory_region_name(const MemoryRegion *mr)
1858 {
1859     if (!mr->name) {
1860         ((MemoryRegion *)mr)->name =
1861             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1862     }
1863     return mr->name;
1864 }
1865 
memory_region_is_ram_device(MemoryRegion * mr)1866 bool memory_region_is_ram_device(MemoryRegion *mr)
1867 {
1868     return mr->ram_device;
1869 }
1870 
memory_region_is_protected(MemoryRegion * mr)1871 bool memory_region_is_protected(MemoryRegion *mr)
1872 {
1873     return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1874 }
1875 
memory_region_has_guest_memfd(MemoryRegion * mr)1876 bool memory_region_has_guest_memfd(MemoryRegion *mr)
1877 {
1878     return mr->ram_block && mr->ram_block->guest_memfd >= 0;
1879 }
1880 
memory_region_get_dirty_log_mask(MemoryRegion * mr)1881 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1882 {
1883     uint8_t mask = mr->dirty_log_mask;
1884     RAMBlock *rb = mr->ram_block;
1885 
1886     if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1887                              memory_region_is_iommu(mr))) {
1888         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1889     }
1890 
1891     if (tcg_enabled() && rb) {
1892         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1893         mask |= (1 << DIRTY_MEMORY_CODE);
1894     }
1895     return mask;
1896 }
1897 
memory_region_is_logging(MemoryRegion * mr,uint8_t client)1898 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1899 {
1900     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1901 }
1902 
memory_region_update_iommu_notify_flags(IOMMUMemoryRegion * iommu_mr,Error ** errp)1903 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1904                                                    Error **errp)
1905 {
1906     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1907     IOMMUNotifier *iommu_notifier;
1908     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1909     int ret = 0;
1910 
1911     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1912         flags |= iommu_notifier->notifier_flags;
1913     }
1914 
1915     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1916         ret = imrc->notify_flag_changed(iommu_mr,
1917                                         iommu_mr->iommu_notify_flags,
1918                                         flags, errp);
1919     }
1920 
1921     if (!ret) {
1922         iommu_mr->iommu_notify_flags = flags;
1923     }
1924     return ret;
1925 }
1926 
memory_region_register_iommu_notifier(MemoryRegion * mr,IOMMUNotifier * n,Error ** errp)1927 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1928                                           IOMMUNotifier *n, Error **errp)
1929 {
1930     IOMMUMemoryRegion *iommu_mr;
1931     int ret;
1932 
1933     if (mr->alias) {
1934         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1935     }
1936 
1937     /* We need to register for at least one bitfield */
1938     iommu_mr = IOMMU_MEMORY_REGION(mr);
1939     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1940     assert(n->start <= n->end);
1941     assert(n->iommu_idx >= 0 &&
1942            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1943 
1944     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1945     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1946     if (ret) {
1947         QLIST_REMOVE(n, node);
1948     }
1949     return ret;
1950 }
1951 
memory_region_iommu_get_min_page_size(IOMMUMemoryRegion * iommu_mr)1952 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1953 {
1954     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1955 
1956     if (imrc->get_min_page_size) {
1957         return imrc->get_min_page_size(iommu_mr);
1958     }
1959     return TARGET_PAGE_SIZE;
1960 }
1961 
memory_region_iommu_replay(IOMMUMemoryRegion * iommu_mr,IOMMUNotifier * n)1962 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1963 {
1964     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1965     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1966     hwaddr addr, granularity;
1967     IOMMUTLBEntry iotlb;
1968 
1969     /* If the IOMMU has its own replay callback, override */
1970     if (imrc->replay) {
1971         imrc->replay(iommu_mr, n);
1972         return;
1973     }
1974 
1975     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1976 
1977     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1978         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1979         if (iotlb.perm != IOMMU_NONE) {
1980             n->notify(n, &iotlb);
1981         }
1982 
1983         /* if (2^64 - MR size) < granularity, it's possible to get an
1984          * infinite loop here.  This should catch such a wraparound */
1985         if ((addr + granularity) < addr) {
1986             break;
1987         }
1988     }
1989 }
1990 
memory_region_unregister_iommu_notifier(MemoryRegion * mr,IOMMUNotifier * n)1991 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1992                                              IOMMUNotifier *n)
1993 {
1994     IOMMUMemoryRegion *iommu_mr;
1995 
1996     if (mr->alias) {
1997         memory_region_unregister_iommu_notifier(mr->alias, n);
1998         return;
1999     }
2000     QLIST_REMOVE(n, node);
2001     iommu_mr = IOMMU_MEMORY_REGION(mr);
2002     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2003 }
2004 
memory_region_notify_iommu_one(IOMMUNotifier * notifier,const IOMMUTLBEvent * event)2005 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2006                                     const IOMMUTLBEvent *event)
2007 {
2008     const IOMMUTLBEntry *entry = &event->entry;
2009     hwaddr entry_end = entry->iova + entry->addr_mask;
2010     IOMMUTLBEntry tmp = *entry;
2011 
2012     if (event->type == IOMMU_NOTIFIER_UNMAP) {
2013         assert(entry->perm == IOMMU_NONE);
2014     }
2015 
2016     /*
2017      * Skip the notification if the notification does not overlap
2018      * with registered range.
2019      */
2020     if (notifier->start > entry_end || notifier->end < entry->iova) {
2021         return;
2022     }
2023 
2024     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2025         /* Crop (iova, addr_mask) to range */
2026         tmp.iova = MAX(tmp.iova, notifier->start);
2027         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2028     } else {
2029         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2030     }
2031 
2032     if (event->type & notifier->notifier_flags) {
2033         notifier->notify(notifier, &tmp);
2034     }
2035 }
2036 
memory_region_unmap_iommu_notifier_range(IOMMUNotifier * notifier)2037 void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2038 {
2039     IOMMUTLBEvent event;
2040 
2041     event.type = IOMMU_NOTIFIER_UNMAP;
2042     event.entry.target_as = &address_space_memory;
2043     event.entry.iova = notifier->start;
2044     event.entry.perm = IOMMU_NONE;
2045     event.entry.addr_mask = notifier->end - notifier->start;
2046 
2047     memory_region_notify_iommu_one(notifier, &event);
2048 }
2049 
memory_region_notify_iommu(IOMMUMemoryRegion * iommu_mr,int iommu_idx,const IOMMUTLBEvent event)2050 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2051                                 int iommu_idx,
2052                                 const IOMMUTLBEvent event)
2053 {
2054     IOMMUNotifier *iommu_notifier;
2055 
2056     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2057 
2058     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2059         if (iommu_notifier->iommu_idx == iommu_idx) {
2060             memory_region_notify_iommu_one(iommu_notifier, &event);
2061         }
2062     }
2063 }
2064 
memory_region_iommu_get_attr(IOMMUMemoryRegion * iommu_mr,enum IOMMUMemoryRegionAttr attr,void * data)2065 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2066                                  enum IOMMUMemoryRegionAttr attr,
2067                                  void *data)
2068 {
2069     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2070 
2071     if (!imrc->get_attr) {
2072         return -EINVAL;
2073     }
2074 
2075     return imrc->get_attr(iommu_mr, attr, data);
2076 }
2077 
memory_region_iommu_attrs_to_index(IOMMUMemoryRegion * iommu_mr,MemTxAttrs attrs)2078 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2079                                        MemTxAttrs attrs)
2080 {
2081     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2082 
2083     if (!imrc->attrs_to_index) {
2084         return 0;
2085     }
2086 
2087     return imrc->attrs_to_index(iommu_mr, attrs);
2088 }
2089 
memory_region_iommu_num_indexes(IOMMUMemoryRegion * iommu_mr)2090 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2091 {
2092     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2093 
2094     if (!imrc->num_indexes) {
2095         return 1;
2096     }
2097 
2098     return imrc->num_indexes(iommu_mr);
2099 }
2100 
memory_region_get_ram_discard_manager(MemoryRegion * mr)2101 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2102 {
2103     if (!memory_region_is_ram(mr)) {
2104         return NULL;
2105     }
2106     return mr->rdm;
2107 }
2108 
memory_region_set_ram_discard_manager(MemoryRegion * mr,RamDiscardManager * rdm)2109 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2110                                            RamDiscardManager *rdm)
2111 {
2112     g_assert(memory_region_is_ram(mr));
2113     g_assert(!rdm || !mr->rdm);
2114     mr->rdm = rdm;
2115 }
2116 
ram_discard_manager_get_min_granularity(const RamDiscardManager * rdm,const MemoryRegion * mr)2117 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2118                                                  const MemoryRegion *mr)
2119 {
2120     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2121 
2122     g_assert(rdmc->get_min_granularity);
2123     return rdmc->get_min_granularity(rdm, mr);
2124 }
2125 
ram_discard_manager_is_populated(const RamDiscardManager * rdm,const MemoryRegionSection * section)2126 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2127                                       const MemoryRegionSection *section)
2128 {
2129     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2130 
2131     g_assert(rdmc->is_populated);
2132     return rdmc->is_populated(rdm, section);
2133 }
2134 
ram_discard_manager_replay_populated(const RamDiscardManager * rdm,MemoryRegionSection * section,ReplayRamPopulate replay_fn,void * opaque)2135 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2136                                          MemoryRegionSection *section,
2137                                          ReplayRamPopulate replay_fn,
2138                                          void *opaque)
2139 {
2140     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2141 
2142     g_assert(rdmc->replay_populated);
2143     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2144 }
2145 
ram_discard_manager_replay_discarded(const RamDiscardManager * rdm,MemoryRegionSection * section,ReplayRamDiscard replay_fn,void * opaque)2146 void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2147                                           MemoryRegionSection *section,
2148                                           ReplayRamDiscard replay_fn,
2149                                           void *opaque)
2150 {
2151     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2152 
2153     g_assert(rdmc->replay_discarded);
2154     rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2155 }
2156 
ram_discard_manager_register_listener(RamDiscardManager * rdm,RamDiscardListener * rdl,MemoryRegionSection * section)2157 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2158                                            RamDiscardListener *rdl,
2159                                            MemoryRegionSection *section)
2160 {
2161     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2162 
2163     g_assert(rdmc->register_listener);
2164     rdmc->register_listener(rdm, rdl, section);
2165 }
2166 
ram_discard_manager_unregister_listener(RamDiscardManager * rdm,RamDiscardListener * rdl)2167 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2168                                              RamDiscardListener *rdl)
2169 {
2170     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2171 
2172     g_assert(rdmc->unregister_listener);
2173     rdmc->unregister_listener(rdm, rdl);
2174 }
2175 
2176 /* Called with rcu_read_lock held.  */
memory_translate_iotlb(IOMMUTLBEntry * iotlb,hwaddr * xlat_p,Error ** errp)2177 MemoryRegion *memory_translate_iotlb(IOMMUTLBEntry *iotlb, hwaddr *xlat_p,
2178                                      Error **errp)
2179 {
2180     MemoryRegion *mr;
2181     hwaddr xlat;
2182     hwaddr len = iotlb->addr_mask + 1;
2183     bool writable = iotlb->perm & IOMMU_WO;
2184 
2185     /*
2186      * The IOMMU TLB entry we have just covers translation through
2187      * this IOMMU to its immediate target.  We need to translate
2188      * it the rest of the way through to memory.
2189      */
2190     mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2191                                  &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2192     if (!memory_region_is_ram(mr)) {
2193         error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2194         return NULL;
2195     } else if (memory_region_has_ram_discard_manager(mr)) {
2196         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2197         MemoryRegionSection tmp = {
2198             .mr = mr,
2199             .offset_within_region = xlat,
2200             .size = int128_make64(len),
2201         };
2202         /*
2203          * Malicious VMs can map memory into the IOMMU, which is expected
2204          * to remain discarded. vfio will pin all pages, populating memory.
2205          * Disallow that. vmstate priorities make sure any RamDiscardManager
2206          * were already restored before IOMMUs are restored.
2207          */
2208         if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2209             error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2210                          " via virtio-mem): %" HWADDR_PRIx "",
2211                          iotlb->translated_addr);
2212             return NULL;
2213         }
2214     }
2215 
2216     /*
2217      * Translation truncates length to the IOMMU page size,
2218      * check that it did not truncate too much.
2219      */
2220     if (len & iotlb->addr_mask) {
2221         error_setg(errp, "iommu has granularity incompatible with target AS");
2222         return NULL;
2223     }
2224 
2225     *xlat_p = xlat;
2226     return mr;
2227 }
2228 
memory_region_set_log(MemoryRegion * mr,bool log,unsigned client)2229 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2230 {
2231     uint8_t mask = 1 << client;
2232     uint8_t old_logging;
2233 
2234     assert(client == DIRTY_MEMORY_VGA);
2235     old_logging = mr->vga_logging_count;
2236     mr->vga_logging_count += log ? 1 : -1;
2237     if (!!old_logging == !!mr->vga_logging_count) {
2238         return;
2239     }
2240 
2241     memory_region_transaction_begin();
2242     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2243     memory_region_update_pending |= mr->enabled;
2244     memory_region_transaction_commit();
2245 }
2246 
memory_region_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size)2247 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2248                              hwaddr size)
2249 {
2250     assert(mr->ram_block);
2251     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2252                                         size,
2253                                         memory_region_get_dirty_log_mask(mr));
2254 }
2255 
2256 /*
2257  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2258  * dirty bitmap for the specified memory region.
2259  */
memory_region_sync_dirty_bitmap(MemoryRegion * mr,bool last_stage)2260 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2261 {
2262     MemoryListener *listener;
2263     AddressSpace *as;
2264     FlatView *view;
2265     FlatRange *fr;
2266 
2267     /* If the same address space has multiple log_sync listeners, we
2268      * visit that address space's FlatView multiple times.  But because
2269      * log_sync listeners are rare, it's still cheaper than walking each
2270      * address space once.
2271      */
2272     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2273         if (listener->log_sync) {
2274             as = listener->address_space;
2275             view = address_space_get_flatview(as);
2276             FOR_EACH_FLAT_RANGE(fr, view) {
2277                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2278                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2279                     listener->log_sync(listener, &mrs);
2280                 }
2281             }
2282             flatview_unref(view);
2283             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2284         } else if (listener->log_sync_global) {
2285             /*
2286              * No matter whether MR is specified, what we can do here
2287              * is to do a global sync, because we are not capable to
2288              * sync in a finer granularity.
2289              */
2290             listener->log_sync_global(listener, last_stage);
2291             trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2292         }
2293     }
2294 }
2295 
memory_region_clear_dirty_bitmap(MemoryRegion * mr,hwaddr start,hwaddr len)2296 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2297                                       hwaddr len)
2298 {
2299     MemoryRegionSection mrs;
2300     MemoryListener *listener;
2301     AddressSpace *as;
2302     FlatView *view;
2303     FlatRange *fr;
2304     hwaddr sec_start, sec_end, sec_size;
2305 
2306     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2307         if (!listener->log_clear) {
2308             continue;
2309         }
2310         as = listener->address_space;
2311         view = address_space_get_flatview(as);
2312         FOR_EACH_FLAT_RANGE(fr, view) {
2313             if (!fr->dirty_log_mask || fr->mr != mr) {
2314                 /*
2315                  * Clear dirty bitmap operation only applies to those
2316                  * regions whose dirty logging is at least enabled
2317                  */
2318                 continue;
2319             }
2320 
2321             mrs = section_from_flat_range(fr, view);
2322 
2323             sec_start = MAX(mrs.offset_within_region, start);
2324             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2325             sec_end = MIN(sec_end, start + len);
2326 
2327             if (sec_start >= sec_end) {
2328                 /*
2329                  * If this memory region section has no intersection
2330                  * with the requested range, skip.
2331                  */
2332                 continue;
2333             }
2334 
2335             /* Valid case; shrink the section if needed */
2336             mrs.offset_within_address_space +=
2337                 sec_start - mrs.offset_within_region;
2338             mrs.offset_within_region = sec_start;
2339             sec_size = sec_end - sec_start;
2340             mrs.size = int128_make64(sec_size);
2341             listener->log_clear(listener, &mrs);
2342         }
2343         flatview_unref(view);
2344     }
2345 }
2346 
memory_region_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size,unsigned client)2347 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2348                                                             hwaddr addr,
2349                                                             hwaddr size,
2350                                                             unsigned client)
2351 {
2352     DirtyBitmapSnapshot *snapshot;
2353     assert(mr->ram_block);
2354     memory_region_sync_dirty_bitmap(mr, false);
2355     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2356     memory_global_after_dirty_log_sync();
2357     return snapshot;
2358 }
2359 
memory_region_snapshot_get_dirty(MemoryRegion * mr,DirtyBitmapSnapshot * snap,hwaddr addr,hwaddr size)2360 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2361                                       hwaddr addr, hwaddr size)
2362 {
2363     assert(mr->ram_block);
2364     return cpu_physical_memory_snapshot_get_dirty(snap,
2365                 memory_region_get_ram_addr(mr) + addr, size);
2366 }
2367 
memory_region_set_readonly(MemoryRegion * mr,bool readonly)2368 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2369 {
2370     if (mr->readonly != readonly) {
2371         memory_region_transaction_begin();
2372         mr->readonly = readonly;
2373         memory_region_update_pending |= mr->enabled;
2374         memory_region_transaction_commit();
2375     }
2376 }
2377 
memory_region_set_nonvolatile(MemoryRegion * mr,bool nonvolatile)2378 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2379 {
2380     if (mr->nonvolatile != nonvolatile) {
2381         memory_region_transaction_begin();
2382         mr->nonvolatile = nonvolatile;
2383         memory_region_update_pending |= mr->enabled;
2384         memory_region_transaction_commit();
2385     }
2386 }
2387 
memory_region_rom_device_set_romd(MemoryRegion * mr,bool romd_mode)2388 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2389 {
2390     if (mr->romd_mode != romd_mode) {
2391         memory_region_transaction_begin();
2392         mr->romd_mode = romd_mode;
2393         memory_region_update_pending |= mr->enabled;
2394         memory_region_transaction_commit();
2395     }
2396 }
2397 
memory_region_reset_dirty(MemoryRegion * mr,hwaddr addr,hwaddr size,unsigned client)2398 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2399                                hwaddr size, unsigned client)
2400 {
2401     assert(mr->ram_block);
2402     cpu_physical_memory_test_and_clear_dirty(
2403         memory_region_get_ram_addr(mr) + addr, size, client);
2404 }
2405 
memory_region_get_fd(MemoryRegion * mr)2406 int memory_region_get_fd(MemoryRegion *mr)
2407 {
2408     RCU_READ_LOCK_GUARD();
2409     while (mr->alias) {
2410         mr = mr->alias;
2411     }
2412     return mr->ram_block->fd;
2413 }
2414 
memory_region_get_ram_ptr(MemoryRegion * mr)2415 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2416 {
2417     uint64_t offset = 0;
2418 
2419     RCU_READ_LOCK_GUARD();
2420     while (mr->alias) {
2421         offset += mr->alias_offset;
2422         mr = mr->alias;
2423     }
2424     assert(mr->ram_block);
2425     return qemu_map_ram_ptr(mr->ram_block, offset);
2426 }
2427 
memory_region_from_host(void * ptr,ram_addr_t * offset)2428 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2429 {
2430     RAMBlock *block;
2431 
2432     block = qemu_ram_block_from_host(ptr, false, offset);
2433     if (!block) {
2434         return NULL;
2435     }
2436 
2437     return block->mr;
2438 }
2439 
memory_region_get_ram_addr(MemoryRegion * mr)2440 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2441 {
2442     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2443 }
2444 
memory_region_ram_resize(MemoryRegion * mr,ram_addr_t newsize,Error ** errp)2445 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2446 {
2447     assert(mr->ram_block);
2448 
2449     qemu_ram_resize(mr->ram_block, newsize, errp);
2450 }
2451 
memory_region_msync(MemoryRegion * mr,hwaddr addr,hwaddr size)2452 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2453 {
2454     if (mr->ram_block) {
2455         qemu_ram_msync(mr->ram_block, addr, size);
2456     }
2457 }
2458 
memory_region_writeback(MemoryRegion * mr,hwaddr addr,hwaddr size)2459 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2460 {
2461     /*
2462      * Might be extended case needed to cover
2463      * different types of memory regions
2464      */
2465     if (mr->dirty_log_mask) {
2466         memory_region_msync(mr, addr, size);
2467     }
2468 }
2469 
2470 /*
2471  * Call proper memory listeners about the change on the newly
2472  * added/removed CoalescedMemoryRange.
2473  */
memory_region_update_coalesced_range(MemoryRegion * mr,CoalescedMemoryRange * cmr,bool add)2474 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2475                                                  CoalescedMemoryRange *cmr,
2476                                                  bool add)
2477 {
2478     AddressSpace *as;
2479     FlatView *view;
2480     FlatRange *fr;
2481 
2482     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2483         view = address_space_get_flatview(as);
2484         FOR_EACH_FLAT_RANGE(fr, view) {
2485             if (fr->mr == mr) {
2486                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2487             }
2488         }
2489         flatview_unref(view);
2490     }
2491 }
2492 
memory_region_set_coalescing(MemoryRegion * mr)2493 void memory_region_set_coalescing(MemoryRegion *mr)
2494 {
2495     memory_region_clear_coalescing(mr);
2496     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2497 }
2498 
memory_region_add_coalescing(MemoryRegion * mr,hwaddr offset,uint64_t size)2499 void memory_region_add_coalescing(MemoryRegion *mr,
2500                                   hwaddr offset,
2501                                   uint64_t size)
2502 {
2503     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2504 
2505     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2506     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2507     memory_region_update_coalesced_range(mr, cmr, true);
2508     memory_region_set_flush_coalesced(mr);
2509 }
2510 
memory_region_clear_coalescing(MemoryRegion * mr)2511 void memory_region_clear_coalescing(MemoryRegion *mr)
2512 {
2513     CoalescedMemoryRange *cmr;
2514 
2515     if (QTAILQ_EMPTY(&mr->coalesced)) {
2516         return;
2517     }
2518 
2519     qemu_flush_coalesced_mmio_buffer();
2520     mr->flush_coalesced_mmio = false;
2521 
2522     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2523         cmr = QTAILQ_FIRST(&mr->coalesced);
2524         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2525         memory_region_update_coalesced_range(mr, cmr, false);
2526         g_free(cmr);
2527     }
2528 }
2529 
memory_region_set_flush_coalesced(MemoryRegion * mr)2530 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2531 {
2532     mr->flush_coalesced_mmio = true;
2533 }
2534 
memory_region_clear_flush_coalesced(MemoryRegion * mr)2535 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2536 {
2537     qemu_flush_coalesced_mmio_buffer();
2538     if (QTAILQ_EMPTY(&mr->coalesced)) {
2539         mr->flush_coalesced_mmio = false;
2540     }
2541 }
2542 
memory_region_add_eventfd(MemoryRegion * mr,hwaddr addr,unsigned size,bool match_data,uint64_t data,EventNotifier * e)2543 void memory_region_add_eventfd(MemoryRegion *mr,
2544                                hwaddr addr,
2545                                unsigned size,
2546                                bool match_data,
2547                                uint64_t data,
2548                                EventNotifier *e)
2549 {
2550     MemoryRegionIoeventfd mrfd = {
2551         .addr.start = int128_make64(addr),
2552         .addr.size = int128_make64(size),
2553         .match_data = match_data,
2554         .data = data,
2555         .e = e,
2556     };
2557     unsigned i;
2558 
2559     if (size) {
2560         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2561         adjust_endianness(mr, &mrfd.data, mop);
2562     }
2563     memory_region_transaction_begin();
2564     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2565         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2566             break;
2567         }
2568     }
2569     ++mr->ioeventfd_nb;
2570     mr->ioeventfds = g_realloc(mr->ioeventfds,
2571                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2572     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2573             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2574     mr->ioeventfds[i] = mrfd;
2575     ioeventfd_update_pending |= mr->enabled;
2576     memory_region_transaction_commit();
2577 }
2578 
memory_region_del_eventfd(MemoryRegion * mr,hwaddr addr,unsigned size,bool match_data,uint64_t data,EventNotifier * e)2579 void memory_region_del_eventfd(MemoryRegion *mr,
2580                                hwaddr addr,
2581                                unsigned size,
2582                                bool match_data,
2583                                uint64_t data,
2584                                EventNotifier *e)
2585 {
2586     MemoryRegionIoeventfd mrfd = {
2587         .addr.start = int128_make64(addr),
2588         .addr.size = int128_make64(size),
2589         .match_data = match_data,
2590         .data = data,
2591         .e = e,
2592     };
2593     unsigned i;
2594 
2595     if (size) {
2596         MemOp mop = (target_big_endian() ? MO_BE : MO_LE) | size_memop(size);
2597         adjust_endianness(mr, &mrfd.data, mop);
2598     }
2599     memory_region_transaction_begin();
2600     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2601         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2602             break;
2603         }
2604     }
2605     assert(i != mr->ioeventfd_nb);
2606     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2607             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2608     --mr->ioeventfd_nb;
2609     mr->ioeventfds = g_realloc(mr->ioeventfds,
2610                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2611     ioeventfd_update_pending |= mr->enabled;
2612     memory_region_transaction_commit();
2613 }
2614 
memory_region_update_container_subregions(MemoryRegion * subregion)2615 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2616 {
2617     MemoryRegion *mr = subregion->container;
2618     MemoryRegion *other;
2619 
2620     memory_region_transaction_begin();
2621 
2622     memory_region_ref(subregion);
2623     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2624         if (subregion->priority >= other->priority) {
2625             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2626             goto done;
2627         }
2628     }
2629     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2630 done:
2631     memory_region_update_pending |= mr->enabled && subregion->enabled;
2632     memory_region_transaction_commit();
2633 }
2634 
memory_region_add_subregion_common(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion)2635 static void memory_region_add_subregion_common(MemoryRegion *mr,
2636                                                hwaddr offset,
2637                                                MemoryRegion *subregion)
2638 {
2639     MemoryRegion *alias;
2640 
2641     assert(!subregion->container);
2642     subregion->container = mr;
2643     for (alias = subregion->alias; alias; alias = alias->alias) {
2644         alias->mapped_via_alias++;
2645     }
2646     subregion->addr = offset;
2647     memory_region_update_container_subregions(subregion);
2648 }
2649 
memory_region_add_subregion(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion)2650 void memory_region_add_subregion(MemoryRegion *mr,
2651                                  hwaddr offset,
2652                                  MemoryRegion *subregion)
2653 {
2654     subregion->priority = 0;
2655     memory_region_add_subregion_common(mr, offset, subregion);
2656 }
2657 
memory_region_add_subregion_overlap(MemoryRegion * mr,hwaddr offset,MemoryRegion * subregion,int priority)2658 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2659                                          hwaddr offset,
2660                                          MemoryRegion *subregion,
2661                                          int priority)
2662 {
2663     subregion->priority = priority;
2664     memory_region_add_subregion_common(mr, offset, subregion);
2665 }
2666 
memory_region_del_subregion(MemoryRegion * mr,MemoryRegion * subregion)2667 void memory_region_del_subregion(MemoryRegion *mr,
2668                                  MemoryRegion *subregion)
2669 {
2670     MemoryRegion *alias;
2671 
2672     memory_region_transaction_begin();
2673     assert(subregion->container == mr);
2674     subregion->container = NULL;
2675     for (alias = subregion->alias; alias; alias = alias->alias) {
2676         alias->mapped_via_alias--;
2677         assert(alias->mapped_via_alias >= 0);
2678     }
2679     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2680     memory_region_unref(subregion);
2681     memory_region_update_pending |= mr->enabled && subregion->enabled;
2682     memory_region_transaction_commit();
2683 }
2684 
memory_region_set_enabled(MemoryRegion * mr,bool enabled)2685 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2686 {
2687     if (enabled == mr->enabled) {
2688         return;
2689     }
2690     memory_region_transaction_begin();
2691     mr->enabled = enabled;
2692     memory_region_update_pending = true;
2693     memory_region_transaction_commit();
2694 }
2695 
memory_region_set_size(MemoryRegion * mr,uint64_t size)2696 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2697 {
2698     Int128 s = int128_make64(size);
2699 
2700     if (size == UINT64_MAX) {
2701         s = int128_2_64();
2702     }
2703     if (int128_eq(s, mr->size)) {
2704         return;
2705     }
2706     memory_region_transaction_begin();
2707     mr->size = s;
2708     memory_region_update_pending = true;
2709     memory_region_transaction_commit();
2710 }
2711 
memory_region_readd_subregion(MemoryRegion * mr)2712 static void memory_region_readd_subregion(MemoryRegion *mr)
2713 {
2714     MemoryRegion *container = mr->container;
2715 
2716     if (container) {
2717         memory_region_transaction_begin();
2718         memory_region_ref(mr);
2719         memory_region_del_subregion(container, mr);
2720         memory_region_add_subregion_common(container, mr->addr, mr);
2721         memory_region_unref(mr);
2722         memory_region_transaction_commit();
2723     }
2724 }
2725 
memory_region_set_address(MemoryRegion * mr,hwaddr addr)2726 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2727 {
2728     if (addr != mr->addr) {
2729         mr->addr = addr;
2730         memory_region_readd_subregion(mr);
2731     }
2732 }
2733 
memory_region_set_alias_offset(MemoryRegion * mr,hwaddr offset)2734 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2735 {
2736     assert(mr->alias);
2737 
2738     if (offset == mr->alias_offset) {
2739         return;
2740     }
2741 
2742     memory_region_transaction_begin();
2743     mr->alias_offset = offset;
2744     memory_region_update_pending |= mr->enabled;
2745     memory_region_transaction_commit();
2746 }
2747 
memory_region_set_unmergeable(MemoryRegion * mr,bool unmergeable)2748 void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2749 {
2750     if (unmergeable == mr->unmergeable) {
2751         return;
2752     }
2753 
2754     memory_region_transaction_begin();
2755     mr->unmergeable = unmergeable;
2756     memory_region_update_pending |= mr->enabled;
2757     memory_region_transaction_commit();
2758 }
2759 
memory_region_get_alignment(const MemoryRegion * mr)2760 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2761 {
2762     return mr->align;
2763 }
2764 
cmp_flatrange_addr(const void * addr_,const void * fr_)2765 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2766 {
2767     const AddrRange *addr = addr_;
2768     const FlatRange *fr = fr_;
2769 
2770     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2771         return -1;
2772     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2773         return 1;
2774     }
2775     return 0;
2776 }
2777 
flatview_lookup(FlatView * view,AddrRange addr)2778 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2779 {
2780     return bsearch(&addr, view->ranges, view->nr,
2781                    sizeof(FlatRange), cmp_flatrange_addr);
2782 }
2783 
memory_region_is_mapped(MemoryRegion * mr)2784 bool memory_region_is_mapped(MemoryRegion *mr)
2785 {
2786     return !!mr->container || mr->mapped_via_alias;
2787 }
2788 
2789 /* Same as memory_region_find, but it does not add a reference to the
2790  * returned region.  It must be called from an RCU critical section.
2791  */
memory_region_find_rcu(MemoryRegion * mr,hwaddr addr,uint64_t size)2792 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2793                                                   hwaddr addr, uint64_t size)
2794 {
2795     MemoryRegionSection ret = { .mr = NULL };
2796     MemoryRegion *root;
2797     AddressSpace *as;
2798     AddrRange range;
2799     FlatView *view;
2800     FlatRange *fr;
2801 
2802     addr += mr->addr;
2803     for (root = mr; root->container; ) {
2804         root = root->container;
2805         addr += root->addr;
2806     }
2807 
2808     as = memory_region_to_address_space(root);
2809     if (!as) {
2810         return ret;
2811     }
2812     range = addrrange_make(int128_make64(addr), int128_make64(size));
2813 
2814     view = address_space_to_flatview(as);
2815     fr = flatview_lookup(view, range);
2816     if (!fr) {
2817         return ret;
2818     }
2819 
2820     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2821         --fr;
2822     }
2823 
2824     ret.mr = fr->mr;
2825     ret.fv = view;
2826     range = addrrange_intersection(range, fr->addr);
2827     ret.offset_within_region = fr->offset_in_region;
2828     ret.offset_within_region += int128_get64(int128_sub(range.start,
2829                                                         fr->addr.start));
2830     ret.size = range.size;
2831     ret.offset_within_address_space = int128_get64(range.start);
2832     ret.readonly = fr->readonly;
2833     ret.nonvolatile = fr->nonvolatile;
2834     return ret;
2835 }
2836 
memory_region_find(MemoryRegion * mr,hwaddr addr,uint64_t size)2837 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2838                                        hwaddr addr, uint64_t size)
2839 {
2840     MemoryRegionSection ret;
2841     RCU_READ_LOCK_GUARD();
2842     ret = memory_region_find_rcu(mr, addr, size);
2843     if (ret.mr) {
2844         memory_region_ref(ret.mr);
2845     }
2846     return ret;
2847 }
2848 
memory_region_section_new_copy(MemoryRegionSection * s)2849 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2850 {
2851     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2852 
2853     *tmp = *s;
2854     if (tmp->mr) {
2855         memory_region_ref(tmp->mr);
2856     }
2857     if (tmp->fv) {
2858         bool ret  = flatview_ref(tmp->fv);
2859 
2860         g_assert(ret);
2861     }
2862     return tmp;
2863 }
2864 
memory_region_section_free_copy(MemoryRegionSection * s)2865 void memory_region_section_free_copy(MemoryRegionSection *s)
2866 {
2867     if (s->fv) {
2868         flatview_unref(s->fv);
2869     }
2870     if (s->mr) {
2871         memory_region_unref(s->mr);
2872     }
2873     g_free(s);
2874 }
2875 
memory_region_present(MemoryRegion * container,hwaddr addr)2876 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2877 {
2878     MemoryRegion *mr;
2879 
2880     RCU_READ_LOCK_GUARD();
2881     mr = memory_region_find_rcu(container, addr, 1).mr;
2882     return mr && mr != container;
2883 }
2884 
memory_global_dirty_log_sync(bool last_stage)2885 void memory_global_dirty_log_sync(bool last_stage)
2886 {
2887     memory_region_sync_dirty_bitmap(NULL, last_stage);
2888 }
2889 
memory_global_after_dirty_log_sync(void)2890 void memory_global_after_dirty_log_sync(void)
2891 {
2892     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2893 }
2894 
2895 /*
2896  * Dirty track stop flags that are postponed due to VM being stopped.  Should
2897  * only be used within vmstate_change hook.
2898  */
2899 static unsigned int postponed_stop_flags;
2900 static VMChangeStateEntry *vmstate_change;
2901 static void memory_global_dirty_log_stop_postponed_run(void);
2902 
memory_global_dirty_log_do_start(Error ** errp)2903 static bool memory_global_dirty_log_do_start(Error **errp)
2904 {
2905     MemoryListener *listener;
2906 
2907     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2908         if (listener->log_global_start) {
2909             if (!listener->log_global_start(listener, errp)) {
2910                 goto err;
2911             }
2912         }
2913     }
2914     return true;
2915 
2916 err:
2917     while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
2918         if (listener->log_global_stop) {
2919             listener->log_global_stop(listener);
2920         }
2921     }
2922 
2923     return false;
2924 }
2925 
memory_global_dirty_log_start(unsigned int flags,Error ** errp)2926 bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
2927 {
2928     unsigned int old_flags;
2929 
2930     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2931 
2932     if (vmstate_change) {
2933         /* If there is postponed stop(), operate on it first */
2934         postponed_stop_flags &= ~flags;
2935         memory_global_dirty_log_stop_postponed_run();
2936     }
2937 
2938     flags &= ~global_dirty_tracking;
2939     if (!flags) {
2940         return true;
2941     }
2942 
2943     old_flags = global_dirty_tracking;
2944     global_dirty_tracking |= flags;
2945     trace_global_dirty_changed(global_dirty_tracking);
2946 
2947     if (!old_flags) {
2948         if (!memory_global_dirty_log_do_start(errp)) {
2949             global_dirty_tracking &= ~flags;
2950             trace_global_dirty_changed(global_dirty_tracking);
2951             return false;
2952         }
2953 
2954         memory_region_transaction_begin();
2955         memory_region_update_pending = true;
2956         memory_region_transaction_commit();
2957     }
2958     return true;
2959 }
2960 
memory_global_dirty_log_do_stop(unsigned int flags)2961 static void memory_global_dirty_log_do_stop(unsigned int flags)
2962 {
2963     assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2964     assert((global_dirty_tracking & flags) == flags);
2965     global_dirty_tracking &= ~flags;
2966 
2967     trace_global_dirty_changed(global_dirty_tracking);
2968 
2969     if (!global_dirty_tracking) {
2970         memory_region_transaction_begin();
2971         memory_region_update_pending = true;
2972         memory_region_transaction_commit();
2973         MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2974     }
2975 }
2976 
2977 /*
2978  * Execute the postponed dirty log stop operations if there is, then reset
2979  * everything (including the flags and the vmstate change hook).
2980  */
memory_global_dirty_log_stop_postponed_run(void)2981 static void memory_global_dirty_log_stop_postponed_run(void)
2982 {
2983     /* This must be called with the vmstate handler registered */
2984     assert(vmstate_change);
2985 
2986     /* Note: postponed_stop_flags can be cleared in log start routine */
2987     if (postponed_stop_flags) {
2988         memory_global_dirty_log_do_stop(postponed_stop_flags);
2989         postponed_stop_flags = 0;
2990     }
2991 
2992     qemu_del_vm_change_state_handler(vmstate_change);
2993     vmstate_change = NULL;
2994 }
2995 
memory_vm_change_state_handler(void * opaque,bool running,RunState state)2996 static void memory_vm_change_state_handler(void *opaque, bool running,
2997                                            RunState state)
2998 {
2999     if (running) {
3000         memory_global_dirty_log_stop_postponed_run();
3001     }
3002 }
3003 
memory_global_dirty_log_stop(unsigned int flags)3004 void memory_global_dirty_log_stop(unsigned int flags)
3005 {
3006     if (!runstate_is_running()) {
3007         /* Postpone the dirty log stop, e.g., to when VM starts again */
3008         if (vmstate_change) {
3009             /* Batch with previous postponed flags */
3010             postponed_stop_flags |= flags;
3011         } else {
3012             postponed_stop_flags = flags;
3013             vmstate_change = qemu_add_vm_change_state_handler(
3014                 memory_vm_change_state_handler, NULL);
3015         }
3016         return;
3017     }
3018 
3019     memory_global_dirty_log_do_stop(flags);
3020 }
3021 
listener_add_address_space(MemoryListener * listener,AddressSpace * as)3022 static void listener_add_address_space(MemoryListener *listener,
3023                                        AddressSpace *as)
3024 {
3025     unsigned i;
3026     FlatView *view;
3027     FlatRange *fr;
3028     MemoryRegionIoeventfd *fd;
3029 
3030     if (listener->begin) {
3031         listener->begin(listener);
3032     }
3033     if (global_dirty_tracking) {
3034         /*
3035          * Currently only VFIO can fail log_global_start(), and it's not
3036          * yet allowed to hotplug any PCI device during migration. So this
3037          * should never fail when invoked, guard it with error_abort.  If
3038          * it can start to fail in the future, we need to be able to fail
3039          * the whole listener_add_address_space() and its callers.
3040          */
3041         if (listener->log_global_start) {
3042             listener->log_global_start(listener, &error_abort);
3043         }
3044     }
3045 
3046     view = address_space_get_flatview(as);
3047     FOR_EACH_FLAT_RANGE(fr, view) {
3048         MemoryRegionSection section = section_from_flat_range(fr, view);
3049 
3050         if (listener->region_add) {
3051             listener->region_add(listener, &section);
3052         }
3053 
3054         /* send coalesced io add notifications */
3055         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3056                                                         listener, as, true);
3057 
3058         if (fr->dirty_log_mask && listener->log_start) {
3059             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3060         }
3061     }
3062 
3063     /*
3064      * register all eventfds for this address space for the newly registered
3065      * listener.
3066      */
3067     for (i = 0; i < as->ioeventfd_nb; i++) {
3068         fd = &as->ioeventfds[i];
3069         MemoryRegionSection section = (MemoryRegionSection) {
3070             .fv = view,
3071             .offset_within_address_space = int128_get64(fd->addr.start),
3072             .size = fd->addr.size,
3073         };
3074 
3075         if (listener->eventfd_add) {
3076             listener->eventfd_add(listener, &section,
3077                                   fd->match_data, fd->data, fd->e);
3078         }
3079     }
3080 
3081     if (listener->commit) {
3082         listener->commit(listener);
3083     }
3084     flatview_unref(view);
3085 }
3086 
listener_del_address_space(MemoryListener * listener,AddressSpace * as)3087 static void listener_del_address_space(MemoryListener *listener,
3088                                        AddressSpace *as)
3089 {
3090     unsigned i;
3091     FlatView *view;
3092     FlatRange *fr;
3093     MemoryRegionIoeventfd *fd;
3094 
3095     if (listener->begin) {
3096         listener->begin(listener);
3097     }
3098     view = address_space_get_flatview(as);
3099     FOR_EACH_FLAT_RANGE(fr, view) {
3100         MemoryRegionSection section = section_from_flat_range(fr, view);
3101 
3102         if (fr->dirty_log_mask && listener->log_stop) {
3103             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3104         }
3105 
3106         /* send coalesced io del notifications */
3107         flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3108                                                         listener, as, false);
3109         if (listener->region_del) {
3110             listener->region_del(listener, &section);
3111         }
3112     }
3113 
3114     /*
3115      * de-register all eventfds for this address space for the current
3116      * listener.
3117      */
3118     for (i = 0; i < as->ioeventfd_nb; i++) {
3119         fd = &as->ioeventfds[i];
3120         MemoryRegionSection section = (MemoryRegionSection) {
3121             .fv = view,
3122             .offset_within_address_space = int128_get64(fd->addr.start),
3123             .size = fd->addr.size,
3124         };
3125 
3126         if (listener->eventfd_del) {
3127             listener->eventfd_del(listener, &section,
3128                                   fd->match_data, fd->data, fd->e);
3129         }
3130     }
3131 
3132     if (listener->commit) {
3133         listener->commit(listener);
3134     }
3135     flatview_unref(view);
3136 }
3137 
memory_listener_register(MemoryListener * listener,AddressSpace * as)3138 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3139 {
3140     MemoryListener *other = NULL;
3141 
3142     /* Only one of them can be defined for a listener */
3143     assert(!(listener->log_sync && listener->log_sync_global));
3144 
3145     listener->address_space = as;
3146     if (QTAILQ_EMPTY(&memory_listeners)
3147         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3148         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3149     } else {
3150         QTAILQ_FOREACH(other, &memory_listeners, link) {
3151             if (listener->priority < other->priority) {
3152                 break;
3153             }
3154         }
3155         QTAILQ_INSERT_BEFORE(other, listener, link);
3156     }
3157 
3158     if (QTAILQ_EMPTY(&as->listeners)
3159         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3160         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3161     } else {
3162         QTAILQ_FOREACH(other, &as->listeners, link_as) {
3163             if (listener->priority < other->priority) {
3164                 break;
3165             }
3166         }
3167         QTAILQ_INSERT_BEFORE(other, listener, link_as);
3168     }
3169 
3170     listener_add_address_space(listener, as);
3171 
3172     if (listener->eventfd_add || listener->eventfd_del) {
3173         as->ioeventfd_notifiers++;
3174     }
3175 }
3176 
memory_listener_unregister(MemoryListener * listener)3177 void memory_listener_unregister(MemoryListener *listener)
3178 {
3179     if (!listener->address_space) {
3180         return;
3181     }
3182 
3183     if (listener->eventfd_add || listener->eventfd_del) {
3184         listener->address_space->ioeventfd_notifiers--;
3185     }
3186 
3187     listener_del_address_space(listener, listener->address_space);
3188     QTAILQ_REMOVE(&memory_listeners, listener, link);
3189     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3190     listener->address_space = NULL;
3191 }
3192 
address_space_remove_listeners(AddressSpace * as)3193 void address_space_remove_listeners(AddressSpace *as)
3194 {
3195     while (!QTAILQ_EMPTY(&as->listeners)) {
3196         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3197     }
3198 }
3199 
address_space_init(AddressSpace * as,MemoryRegion * root,const char * name)3200 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3201 {
3202     memory_region_ref(root);
3203     as->root = root;
3204     as->current_map = NULL;
3205     as->ioeventfd_nb = 0;
3206     as->ioeventfds = NULL;
3207     QTAILQ_INIT(&as->listeners);
3208     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3209     as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE;
3210     as->bounce_buffer_size = 0;
3211     qemu_mutex_init(&as->map_client_list_lock);
3212     QLIST_INIT(&as->map_client_list);
3213     as->name = g_strdup(name ? name : "anonymous");
3214     address_space_update_topology(as);
3215     address_space_update_ioeventfds(as);
3216 }
3217 
do_address_space_destroy(AddressSpace * as)3218 static void do_address_space_destroy(AddressSpace *as)
3219 {
3220     assert(qatomic_read(&as->bounce_buffer_size) == 0);
3221     assert(QLIST_EMPTY(&as->map_client_list));
3222     qemu_mutex_destroy(&as->map_client_list_lock);
3223 
3224     assert(QTAILQ_EMPTY(&as->listeners));
3225 
3226     flatview_unref(as->current_map);
3227     g_free(as->name);
3228     g_free(as->ioeventfds);
3229     memory_region_unref(as->root);
3230 }
3231 
address_space_destroy(AddressSpace * as)3232 void address_space_destroy(AddressSpace *as)
3233 {
3234     MemoryRegion *root = as->root;
3235 
3236     /* Flush out anything from MemoryListeners listening in on this */
3237     memory_region_transaction_begin();
3238     as->root = NULL;
3239     memory_region_transaction_commit();
3240     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3241 
3242     /* At this point, as->dispatch and as->current_map are dummy
3243      * entries that the guest should never use.  Wait for the old
3244      * values to expire before freeing the data.
3245      */
3246     as->root = root;
3247     call_rcu(as, do_address_space_destroy, rcu);
3248 }
3249 
memory_region_type(MemoryRegion * mr)3250 static const char *memory_region_type(MemoryRegion *mr)
3251 {
3252     if (mr->alias) {
3253         return memory_region_type(mr->alias);
3254     }
3255     if (memory_region_is_ram_device(mr)) {
3256         return "ramd";
3257     } else if (memory_region_is_romd(mr)) {
3258         return "romd";
3259     } else if (memory_region_is_rom(mr)) {
3260         return "rom";
3261     } else if (memory_region_is_ram(mr)) {
3262         return "ram";
3263     } else {
3264         return "i/o";
3265     }
3266 }
3267 
3268 typedef struct MemoryRegionList MemoryRegionList;
3269 
3270 struct MemoryRegionList {
3271     const MemoryRegion *mr;
3272     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3273 };
3274 
3275 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3276 
3277 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3278                            int128_sub((size), int128_one())) : 0)
3279 #define MTREE_INDENT "  "
3280 
mtree_expand_owner(const char * label,Object * obj)3281 static void mtree_expand_owner(const char *label, Object *obj)
3282 {
3283     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3284 
3285     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3286     if (dev && dev->id) {
3287         qemu_printf(" id=%s", dev->id);
3288     } else {
3289         char *canonical_path = object_get_canonical_path(obj);
3290         if (canonical_path) {
3291             qemu_printf(" path=%s", canonical_path);
3292             g_free(canonical_path);
3293         } else {
3294             qemu_printf(" type=%s", object_get_typename(obj));
3295         }
3296     }
3297     qemu_printf("}");
3298 }
3299 
mtree_print_mr_owner(const MemoryRegion * mr)3300 static void mtree_print_mr_owner(const MemoryRegion *mr)
3301 {
3302     Object *owner = mr->owner;
3303     Object *parent = memory_region_owner((MemoryRegion *)mr);
3304 
3305     if (!owner && !parent) {
3306         qemu_printf(" orphan");
3307         return;
3308     }
3309     if (owner) {
3310         mtree_expand_owner("owner", owner);
3311     }
3312     if (parent && parent != owner) {
3313         mtree_expand_owner("parent", parent);
3314     }
3315 }
3316 
mtree_print_mr(const MemoryRegion * mr,unsigned int level,hwaddr base,MemoryRegionListHead * alias_print_queue,bool owner,bool display_disabled)3317 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3318                            hwaddr base,
3319                            MemoryRegionListHead *alias_print_queue,
3320                            bool owner, bool display_disabled)
3321 {
3322     MemoryRegionList *new_ml, *ml, *next_ml;
3323     MemoryRegionListHead submr_print_queue;
3324     const MemoryRegion *submr;
3325     unsigned int i;
3326     hwaddr cur_start, cur_end;
3327 
3328     if (!mr) {
3329         return;
3330     }
3331 
3332     cur_start = base + mr->addr;
3333     cur_end = cur_start + MR_SIZE(mr->size);
3334 
3335     /*
3336      * Try to detect overflow of memory region. This should never
3337      * happen normally. When it happens, we dump something to warn the
3338      * user who is observing this.
3339      */
3340     if (cur_start < base || cur_end < cur_start) {
3341         qemu_printf("[DETECTED OVERFLOW!] ");
3342     }
3343 
3344     if (mr->alias) {
3345         bool found = false;
3346 
3347         /* check if the alias is already in the queue */
3348         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3349             if (ml->mr == mr->alias) {
3350                 found = true;
3351             }
3352         }
3353 
3354         if (!found) {
3355             ml = g_new(MemoryRegionList, 1);
3356             ml->mr = mr->alias;
3357             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3358         }
3359         if (mr->enabled || display_disabled) {
3360             for (i = 0; i < level; i++) {
3361                 qemu_printf(MTREE_INDENT);
3362             }
3363             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3364                         " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3365                         "-" HWADDR_FMT_plx "%s",
3366                         cur_start, cur_end,
3367                         mr->priority,
3368                         mr->nonvolatile ? "nv-" : "",
3369                         memory_region_type((MemoryRegion *)mr),
3370                         memory_region_name(mr),
3371                         memory_region_name(mr->alias),
3372                         mr->alias_offset,
3373                         mr->alias_offset + MR_SIZE(mr->size),
3374                         mr->enabled ? "" : " [disabled]");
3375             if (owner) {
3376                 mtree_print_mr_owner(mr);
3377             }
3378             qemu_printf("\n");
3379         }
3380     } else {
3381         if (mr->enabled || display_disabled) {
3382             for (i = 0; i < level; i++) {
3383                 qemu_printf(MTREE_INDENT);
3384             }
3385             qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3386                         " (prio %d, %s%s): %s%s",
3387                         cur_start, cur_end,
3388                         mr->priority,
3389                         mr->nonvolatile ? "nv-" : "",
3390                         memory_region_type((MemoryRegion *)mr),
3391                         memory_region_name(mr),
3392                         mr->enabled ? "" : " [disabled]");
3393             if (owner) {
3394                 mtree_print_mr_owner(mr);
3395             }
3396             qemu_printf("\n");
3397         }
3398     }
3399 
3400     QTAILQ_INIT(&submr_print_queue);
3401 
3402     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3403         new_ml = g_new(MemoryRegionList, 1);
3404         new_ml->mr = submr;
3405         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3406             if (new_ml->mr->addr < ml->mr->addr ||
3407                 (new_ml->mr->addr == ml->mr->addr &&
3408                  new_ml->mr->priority > ml->mr->priority)) {
3409                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3410                 new_ml = NULL;
3411                 break;
3412             }
3413         }
3414         if (new_ml) {
3415             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3416         }
3417     }
3418 
3419     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3420         mtree_print_mr(ml->mr, level + 1, cur_start,
3421                        alias_print_queue, owner, display_disabled);
3422     }
3423 
3424     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3425         g_free(ml);
3426     }
3427 }
3428 
3429 struct FlatViewInfo {
3430     int counter;
3431     bool dispatch_tree;
3432     bool owner;
3433     AccelClass *ac;
3434 };
3435 
mtree_print_flatview(gpointer key,gpointer value,gpointer user_data)3436 static void mtree_print_flatview(gpointer key, gpointer value,
3437                                  gpointer user_data)
3438 {
3439     FlatView *view = key;
3440     GArray *fv_address_spaces = value;
3441     struct FlatViewInfo *fvi = user_data;
3442     FlatRange *range = &view->ranges[0];
3443     MemoryRegion *mr;
3444     int n = view->nr;
3445     int i;
3446     AddressSpace *as;
3447 
3448     qemu_printf("FlatView #%d\n", fvi->counter);
3449     ++fvi->counter;
3450 
3451     for (i = 0; i < fv_address_spaces->len; ++i) {
3452         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3453         qemu_printf(" AS \"%s\", root: %s",
3454                     as->name, memory_region_name(as->root));
3455         if (as->root->alias) {
3456             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3457         }
3458         qemu_printf("\n");
3459     }
3460 
3461     qemu_printf(" Root memory region: %s\n",
3462       view->root ? memory_region_name(view->root) : "(none)");
3463 
3464     if (n <= 0) {
3465         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3466         return;
3467     }
3468 
3469     while (n--) {
3470         mr = range->mr;
3471         if (range->offset_in_region) {
3472             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3473                         " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3474                         int128_get64(range->addr.start),
3475                         int128_get64(range->addr.start)
3476                         + MR_SIZE(range->addr.size),
3477                         mr->priority,
3478                         range->nonvolatile ? "nv-" : "",
3479                         range->readonly ? "rom" : memory_region_type(mr),
3480                         memory_region_name(mr),
3481                         range->offset_in_region);
3482         } else {
3483             qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3484                         " (prio %d, %s%s): %s",
3485                         int128_get64(range->addr.start),
3486                         int128_get64(range->addr.start)
3487                         + MR_SIZE(range->addr.size),
3488                         mr->priority,
3489                         range->nonvolatile ? "nv-" : "",
3490                         range->readonly ? "rom" : memory_region_type(mr),
3491                         memory_region_name(mr));
3492         }
3493         if (fvi->owner) {
3494             mtree_print_mr_owner(mr);
3495         }
3496 
3497         if (fvi->ac) {
3498             for (i = 0; i < fv_address_spaces->len; ++i) {
3499                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3500                 if (fvi->ac->has_memory(current_machine, as,
3501                                         int128_get64(range->addr.start),
3502                                         MR_SIZE(range->addr.size) + 1)) {
3503                     qemu_printf(" %s", fvi->ac->name);
3504                 }
3505             }
3506         }
3507         qemu_printf("\n");
3508         range++;
3509     }
3510 
3511 #if !defined(CONFIG_USER_ONLY)
3512     if (fvi->dispatch_tree && view->root) {
3513         mtree_print_dispatch(view->dispatch, view->root);
3514     }
3515 #endif
3516 
3517     qemu_printf("\n");
3518 }
3519 
mtree_info_flatview_free(gpointer key,gpointer value,gpointer user_data)3520 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3521                                       gpointer user_data)
3522 {
3523     FlatView *view = key;
3524     GArray *fv_address_spaces = value;
3525 
3526     g_array_unref(fv_address_spaces);
3527     flatview_unref(view);
3528 
3529     return true;
3530 }
3531 
mtree_info_flatview(bool dispatch_tree,bool owner)3532 static void mtree_info_flatview(bool dispatch_tree, bool owner)
3533 {
3534     struct FlatViewInfo fvi = {
3535         .counter = 0,
3536         .dispatch_tree = dispatch_tree,
3537         .owner = owner,
3538     };
3539     AddressSpace *as;
3540     FlatView *view;
3541     GArray *fv_address_spaces;
3542     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3543     AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3544 
3545     if (ac->has_memory) {
3546         fvi.ac = ac;
3547     }
3548 
3549     /* Gather all FVs in one table */
3550     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3551         view = address_space_get_flatview(as);
3552 
3553         fv_address_spaces = g_hash_table_lookup(views, view);
3554         if (!fv_address_spaces) {
3555             fv_address_spaces = g_array_new(false, false, sizeof(as));
3556             g_hash_table_insert(views, view, fv_address_spaces);
3557         }
3558 
3559         g_array_append_val(fv_address_spaces, as);
3560     }
3561 
3562     /* Print */
3563     g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3564 
3565     /* Free */
3566     g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3567     g_hash_table_unref(views);
3568 }
3569 
3570 struct AddressSpaceInfo {
3571     MemoryRegionListHead *ml_head;
3572     bool owner;
3573     bool disabled;
3574 };
3575 
3576 /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
address_space_compare_name(gconstpointer a,gconstpointer b)3577 static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3578 {
3579     const AddressSpace *as_a = a;
3580     const AddressSpace *as_b = b;
3581 
3582     return g_strcmp0(as_a->name, as_b->name);
3583 }
3584 
mtree_print_as_name(gpointer data,gpointer user_data)3585 static void mtree_print_as_name(gpointer data, gpointer user_data)
3586 {
3587     AddressSpace *as = data;
3588 
3589     qemu_printf("address-space: %s\n", as->name);
3590 }
3591 
mtree_print_as(gpointer key,gpointer value,gpointer user_data)3592 static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3593 {
3594     MemoryRegion *mr = key;
3595     GSList *as_same_root_mr_list = value;
3596     struct AddressSpaceInfo *asi = user_data;
3597 
3598     g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3599     mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3600     qemu_printf("\n");
3601 }
3602 
mtree_info_as_free(gpointer key,gpointer value,gpointer user_data)3603 static gboolean mtree_info_as_free(gpointer key, gpointer value,
3604                                    gpointer user_data)
3605 {
3606     GSList *as_same_root_mr_list = value;
3607 
3608     g_slist_free(as_same_root_mr_list);
3609 
3610     return true;
3611 }
3612 
mtree_info_as(bool dispatch_tree,bool owner,bool disabled)3613 static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3614 {
3615     MemoryRegionListHead ml_head;
3616     MemoryRegionList *ml, *ml2;
3617     AddressSpace *as;
3618     GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3619     GSList *as_same_root_mr_list;
3620     struct AddressSpaceInfo asi = {
3621         .ml_head = &ml_head,
3622         .owner = owner,
3623         .disabled = disabled,
3624     };
3625 
3626     QTAILQ_INIT(&ml_head);
3627 
3628     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3629         /* Create hashtable, key=AS root MR, value = list of AS */
3630         as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3631         as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3632                                                      address_space_compare_name);
3633         g_hash_table_insert(views, as->root, as_same_root_mr_list);
3634     }
3635 
3636     /* print address spaces */
3637     g_hash_table_foreach(views, mtree_print_as, &asi);
3638     g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3639     g_hash_table_unref(views);
3640 
3641     /* print aliased regions */
3642     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3643         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3644         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3645         qemu_printf("\n");
3646     }
3647 
3648     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3649         g_free(ml);
3650     }
3651 }
3652 
mtree_info(bool flatview,bool dispatch_tree,bool owner,bool disabled)3653 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3654 {
3655     if (flatview) {
3656         mtree_info_flatview(dispatch_tree, owner);
3657     } else {
3658         mtree_info_as(dispatch_tree, owner, disabled);
3659     }
3660 }
3661 
memory_region_init_ram(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3662 bool memory_region_init_ram(MemoryRegion *mr,
3663                             Object *owner,
3664                             const char *name,
3665                             uint64_t size,
3666                             Error **errp)
3667 {
3668     DeviceState *owner_dev;
3669 
3670     if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3671         return false;
3672     }
3673     /* This will assert if owner is neither NULL nor a DeviceState.
3674      * We only want the owner here for the purposes of defining a
3675      * unique name for migration. TODO: Ideally we should implement
3676      * a naming scheme for Objects which are not DeviceStates, in
3677      * which case we can relax this restriction.
3678      */
3679     owner_dev = DEVICE(owner);
3680     vmstate_register_ram(mr, owner_dev);
3681 
3682     return true;
3683 }
3684 
memory_region_init_ram_guest_memfd(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3685 bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3686                                         Object *owner,
3687                                         const char *name,
3688                                         uint64_t size,
3689                                         Error **errp)
3690 {
3691     DeviceState *owner_dev;
3692 
3693     if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3694                                                 RAM_GUEST_MEMFD, errp)) {
3695         return false;
3696     }
3697     /* This will assert if owner is neither NULL nor a DeviceState.
3698      * We only want the owner here for the purposes of defining a
3699      * unique name for migration. TODO: Ideally we should implement
3700      * a naming scheme for Objects which are not DeviceStates, in
3701      * which case we can relax this restriction.
3702      */
3703     owner_dev = DEVICE(owner);
3704     vmstate_register_ram(mr, owner_dev);
3705 
3706     return true;
3707 }
3708 
memory_region_init_rom(MemoryRegion * mr,Object * owner,const char * name,uint64_t size,Error ** errp)3709 bool memory_region_init_rom(MemoryRegion *mr,
3710                             Object *owner,
3711                             const char *name,
3712                             uint64_t size,
3713                             Error **errp)
3714 {
3715     DeviceState *owner_dev;
3716 
3717     if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3718         return false;
3719     }
3720     /* This will assert if owner is neither NULL nor a DeviceState.
3721      * We only want the owner here for the purposes of defining a
3722      * unique name for migration. TODO: Ideally we should implement
3723      * a naming scheme for Objects which are not DeviceStates, in
3724      * which case we can relax this restriction.
3725      */
3726     owner_dev = DEVICE(owner);
3727     vmstate_register_ram(mr, owner_dev);
3728 
3729     return true;
3730 }
3731 
memory_region_init_rom_device(MemoryRegion * mr,Object * owner,const MemoryRegionOps * ops,void * opaque,const char * name,uint64_t size,Error ** errp)3732 bool memory_region_init_rom_device(MemoryRegion *mr,
3733                                    Object *owner,
3734                                    const MemoryRegionOps *ops,
3735                                    void *opaque,
3736                                    const char *name,
3737                                    uint64_t size,
3738                                    Error **errp)
3739 {
3740     DeviceState *owner_dev;
3741 
3742     if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3743                                                  name, size, errp)) {
3744         return false;
3745     }
3746     /* This will assert if owner is neither NULL nor a DeviceState.
3747      * We only want the owner here for the purposes of defining a
3748      * unique name for migration. TODO: Ideally we should implement
3749      * a naming scheme for Objects which are not DeviceStates, in
3750      * which case we can relax this restriction.
3751      */
3752     owner_dev = DEVICE(owner);
3753     vmstate_register_ram(mr, owner_dev);
3754 
3755     return true;
3756 }
3757 
3758 /*
3759  * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3760  * the fuzz_dma_read_cb callback
3761  */
3762 #ifdef CONFIG_FUZZ
fuzz_dma_read_cb(size_t addr,size_t len,MemoryRegion * mr)3763 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3764                       size_t len,
3765                       MemoryRegion *mr)
3766 {
3767 }
3768 #endif
3769 
3770 static const TypeInfo memory_region_info = {
3771     .parent             = TYPE_OBJECT,
3772     .name               = TYPE_MEMORY_REGION,
3773     .class_size         = sizeof(MemoryRegionClass),
3774     .instance_size      = sizeof(MemoryRegion),
3775     .instance_init      = memory_region_initfn,
3776     .instance_finalize  = memory_region_finalize,
3777 };
3778 
3779 static const TypeInfo iommu_memory_region_info = {
3780     .parent             = TYPE_MEMORY_REGION,
3781     .name               = TYPE_IOMMU_MEMORY_REGION,
3782     .class_size         = sizeof(IOMMUMemoryRegionClass),
3783     .instance_size      = sizeof(IOMMUMemoryRegion),
3784     .instance_init      = iommu_memory_region_initfn,
3785     .abstract           = true,
3786 };
3787 
3788 static const TypeInfo ram_discard_manager_info = {
3789     .parent             = TYPE_INTERFACE,
3790     .name               = TYPE_RAM_DISCARD_MANAGER,
3791     .class_size         = sizeof(RamDiscardManagerClass),
3792 };
3793 
memory_register_types(void)3794 static void memory_register_types(void)
3795 {
3796     type_register_static(&memory_region_info);
3797     type_register_static(&iommu_memory_region_info);
3798     type_register_static(&ram_discard_manager_info);
3799 }
3800 
3801 type_init(memory_register_types)
3802