1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * drivers/acpi/power.c - ACPI Power Resources management.
4  *
5  * Copyright (C) 2001 - 2015 Intel Corp.
6  * Author: Andy Grover <andrew.grover@intel.com>
7  * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9  */
10 
11 /*
12  * ACPI power-managed devices may be controlled in two ways:
13  * 1. via "Device Specific (D-State) Control"
14  * 2. via "Power Resource Control".
15  * The code below deals with ACPI Power Resources control.
16  *
17  * An ACPI "power resource object" represents a software controllable power
18  * plane, clock plane, or other resource depended on by a device.
19  *
20  * A device may rely on multiple power resources, and a power resource
21  * may be shared by multiple devices.
22  */
23 
24 #define pr_fmt(fmt) "ACPI: PM: " fmt
25 
26 #include <linux/dmi.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/types.h>
31 #include <linux/slab.h>
32 #include <linux/string_choices.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/sysfs.h>
35 #include <linux/acpi.h>
36 #include "sleep.h"
37 #include "internal.h"
38 
39 #define ACPI_POWER_CLASS		"power_resource"
40 #define ACPI_POWER_DEVICE_NAME		"Power Resource"
41 #define ACPI_POWER_RESOURCE_STATE_OFF	0x00
42 #define ACPI_POWER_RESOURCE_STATE_ON	0x01
43 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF
44 
45 struct acpi_power_dependent_device {
46 	struct device *dev;
47 	struct list_head node;
48 };
49 
50 struct acpi_power_resource {
51 	struct acpi_device device;
52 	struct list_head list_node;
53 	u32 system_level;
54 	u32 order;
55 	unsigned int ref_count;
56 	u8 state;
57 	struct mutex resource_lock;
58 	struct list_head dependents;
59 };
60 
61 struct acpi_power_resource_entry {
62 	struct list_head node;
63 	struct acpi_power_resource *resource;
64 };
65 
66 static LIST_HEAD(acpi_power_resource_list);
67 static DEFINE_MUTEX(power_resource_list_lock);
68 
69 /* --------------------------------------------------------------------------
70                              Power Resource Management
71    -------------------------------------------------------------------------- */
72 
resource_dev_name(struct acpi_power_resource * pr)73 static inline const char *resource_dev_name(struct acpi_power_resource *pr)
74 {
75 	return dev_name(&pr->device.dev);
76 }
77 
78 static inline
to_power_resource(struct acpi_device * device)79 struct acpi_power_resource *to_power_resource(struct acpi_device *device)
80 {
81 	return container_of(device, struct acpi_power_resource, device);
82 }
83 
acpi_power_get_context(acpi_handle handle)84 static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle)
85 {
86 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
87 
88 	if (!device)
89 		return NULL;
90 
91 	return to_power_resource(device);
92 }
93 
acpi_power_resources_list_add(acpi_handle handle,struct list_head * list)94 static int acpi_power_resources_list_add(acpi_handle handle,
95 					 struct list_head *list)
96 {
97 	struct acpi_power_resource *resource = acpi_power_get_context(handle);
98 	struct acpi_power_resource_entry *entry;
99 
100 	if (!resource || !list)
101 		return -EINVAL;
102 
103 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
104 	if (!entry)
105 		return -ENOMEM;
106 
107 	entry->resource = resource;
108 	if (!list_empty(list)) {
109 		struct acpi_power_resource_entry *e;
110 
111 		list_for_each_entry(e, list, node)
112 			if (e->resource->order > resource->order) {
113 				list_add_tail(&entry->node, &e->node);
114 				return 0;
115 			}
116 	}
117 	list_add_tail(&entry->node, list);
118 	return 0;
119 }
120 
acpi_power_resources_list_free(struct list_head * list)121 void acpi_power_resources_list_free(struct list_head *list)
122 {
123 	struct acpi_power_resource_entry *entry, *e;
124 
125 	list_for_each_entry_safe(entry, e, list, node) {
126 		list_del(&entry->node);
127 		kfree(entry);
128 	}
129 }
130 
acpi_power_resource_is_dup(union acpi_object * package,unsigned int start,unsigned int i)131 static bool acpi_power_resource_is_dup(union acpi_object *package,
132 				       unsigned int start, unsigned int i)
133 {
134 	acpi_handle rhandle, dup;
135 	unsigned int j;
136 
137 	/* The caller is expected to check the package element types */
138 	rhandle = package->package.elements[i].reference.handle;
139 	for (j = start; j < i; j++) {
140 		dup = package->package.elements[j].reference.handle;
141 		if (dup == rhandle)
142 			return true;
143 	}
144 
145 	return false;
146 }
147 
acpi_extract_power_resources(union acpi_object * package,unsigned int start,struct list_head * list)148 int acpi_extract_power_resources(union acpi_object *package, unsigned int start,
149 				 struct list_head *list)
150 {
151 	unsigned int i;
152 	int err = 0;
153 
154 	for (i = start; i < package->package.count; i++) {
155 		union acpi_object *element = &package->package.elements[i];
156 		struct acpi_device *rdev;
157 		acpi_handle rhandle;
158 
159 		if (element->type != ACPI_TYPE_LOCAL_REFERENCE) {
160 			err = -ENODATA;
161 			break;
162 		}
163 		rhandle = element->reference.handle;
164 		if (!rhandle) {
165 			err = -ENODEV;
166 			break;
167 		}
168 
169 		/* Some ACPI tables contain duplicate power resource references */
170 		if (acpi_power_resource_is_dup(package, start, i))
171 			continue;
172 
173 		rdev = acpi_add_power_resource(rhandle);
174 		if (!rdev) {
175 			err = -ENODEV;
176 			break;
177 		}
178 		err = acpi_power_resources_list_add(rhandle, list);
179 		if (err)
180 			break;
181 	}
182 	if (err)
183 		acpi_power_resources_list_free(list);
184 
185 	return err;
186 }
187 
__get_state(acpi_handle handle,u8 * state)188 static int __get_state(acpi_handle handle, u8 *state)
189 {
190 	acpi_status status = AE_OK;
191 	unsigned long long sta = 0;
192 	u8 cur_state;
193 
194 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
195 	if (ACPI_FAILURE(status))
196 		return -ENODEV;
197 
198 	cur_state = sta & ACPI_POWER_RESOURCE_STATE_ON;
199 
200 	acpi_handle_debug(handle, "Power resource is %s\n",
201 			  str_on_off(cur_state));
202 
203 	*state = cur_state;
204 	return 0;
205 }
206 
acpi_power_get_state(struct acpi_power_resource * resource,u8 * state)207 static int acpi_power_get_state(struct acpi_power_resource *resource, u8 *state)
208 {
209 	if (resource->state == ACPI_POWER_RESOURCE_STATE_UNKNOWN) {
210 		int ret;
211 
212 		ret = __get_state(resource->device.handle, &resource->state);
213 		if (ret)
214 			return ret;
215 	}
216 
217 	*state = resource->state;
218 	return 0;
219 }
220 
acpi_power_get_list_state(struct list_head * list,u8 * state)221 static int acpi_power_get_list_state(struct list_head *list, u8 *state)
222 {
223 	struct acpi_power_resource_entry *entry;
224 	u8 cur_state = ACPI_POWER_RESOURCE_STATE_OFF;
225 
226 	if (!list || !state)
227 		return -EINVAL;
228 
229 	/* The state of the list is 'on' IFF all resources are 'on'. */
230 	list_for_each_entry(entry, list, node) {
231 		struct acpi_power_resource *resource = entry->resource;
232 		int result;
233 
234 		mutex_lock(&resource->resource_lock);
235 		result = acpi_power_get_state(resource, &cur_state);
236 		mutex_unlock(&resource->resource_lock);
237 		if (result)
238 			return result;
239 
240 		if (cur_state != ACPI_POWER_RESOURCE_STATE_ON)
241 			break;
242 	}
243 
244 	pr_debug("Power resource list is %s\n", str_on_off(cur_state));
245 
246 	*state = cur_state;
247 	return 0;
248 }
249 
250 static int
acpi_power_resource_add_dependent(struct acpi_power_resource * resource,struct device * dev)251 acpi_power_resource_add_dependent(struct acpi_power_resource *resource,
252 				  struct device *dev)
253 {
254 	struct acpi_power_dependent_device *dep;
255 	int ret = 0;
256 
257 	mutex_lock(&resource->resource_lock);
258 	list_for_each_entry(dep, &resource->dependents, node) {
259 		/* Only add it once */
260 		if (dep->dev == dev)
261 			goto unlock;
262 	}
263 
264 	dep = kzalloc(sizeof(*dep), GFP_KERNEL);
265 	if (!dep) {
266 		ret = -ENOMEM;
267 		goto unlock;
268 	}
269 
270 	dep->dev = dev;
271 	list_add_tail(&dep->node, &resource->dependents);
272 	dev_dbg(dev, "added power dependency to [%s]\n",
273 		resource_dev_name(resource));
274 
275 unlock:
276 	mutex_unlock(&resource->resource_lock);
277 	return ret;
278 }
279 
280 static void
acpi_power_resource_remove_dependent(struct acpi_power_resource * resource,struct device * dev)281 acpi_power_resource_remove_dependent(struct acpi_power_resource *resource,
282 				     struct device *dev)
283 {
284 	struct acpi_power_dependent_device *dep;
285 
286 	mutex_lock(&resource->resource_lock);
287 	list_for_each_entry(dep, &resource->dependents, node) {
288 		if (dep->dev == dev) {
289 			list_del(&dep->node);
290 			kfree(dep);
291 			dev_dbg(dev, "removed power dependency to [%s]\n",
292 				resource_dev_name(resource));
293 			break;
294 		}
295 	}
296 	mutex_unlock(&resource->resource_lock);
297 }
298 
299 /**
300  * acpi_device_power_add_dependent - Add dependent device of this ACPI device
301  * @adev: ACPI device pointer
302  * @dev: Dependent device
303  *
304  * If @adev has non-empty _PR0 the @dev is added as dependent device to all
305  * power resources returned by it. This means that whenever these power
306  * resources are turned _ON the dependent devices get runtime resumed. This
307  * is needed for devices such as PCI to allow its driver to re-initialize
308  * it after it went to D0uninitialized.
309  *
310  * If @adev does not have _PR0 this does nothing.
311  *
312  * Returns %0 in case of success and negative errno otherwise.
313  */
acpi_device_power_add_dependent(struct acpi_device * adev,struct device * dev)314 int acpi_device_power_add_dependent(struct acpi_device *adev,
315 				    struct device *dev)
316 {
317 	struct acpi_power_resource_entry *entry;
318 	struct list_head *resources;
319 	int ret;
320 
321 	if (!adev->flags.power_manageable)
322 		return 0;
323 
324 	resources = &adev->power.states[ACPI_STATE_D0].resources;
325 	list_for_each_entry(entry, resources, node) {
326 		ret = acpi_power_resource_add_dependent(entry->resource, dev);
327 		if (ret)
328 			goto err;
329 	}
330 
331 	return 0;
332 
333 err:
334 	list_for_each_entry(entry, resources, node)
335 		acpi_power_resource_remove_dependent(entry->resource, dev);
336 
337 	return ret;
338 }
339 
340 /**
341  * acpi_device_power_remove_dependent - Remove dependent device
342  * @adev: ACPI device pointer
343  * @dev: Dependent device
344  *
345  * Does the opposite of acpi_device_power_add_dependent() and removes the
346  * dependent device if it is found. Can be called to @adev that does not
347  * have _PR0 as well.
348  */
acpi_device_power_remove_dependent(struct acpi_device * adev,struct device * dev)349 void acpi_device_power_remove_dependent(struct acpi_device *adev,
350 					struct device *dev)
351 {
352 	struct acpi_power_resource_entry *entry;
353 	struct list_head *resources;
354 
355 	if (!adev->flags.power_manageable)
356 		return;
357 
358 	resources = &adev->power.states[ACPI_STATE_D0].resources;
359 	list_for_each_entry_reverse(entry, resources, node)
360 		acpi_power_resource_remove_dependent(entry->resource, dev);
361 }
362 
__acpi_power_on(struct acpi_power_resource * resource)363 static int __acpi_power_on(struct acpi_power_resource *resource)
364 {
365 	acpi_handle handle = resource->device.handle;
366 	struct acpi_power_dependent_device *dep;
367 	acpi_status status = AE_OK;
368 
369 	status = acpi_evaluate_object(handle, "_ON", NULL, NULL);
370 	if (ACPI_FAILURE(status)) {
371 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
372 		return -ENODEV;
373 	}
374 
375 	resource->state = ACPI_POWER_RESOURCE_STATE_ON;
376 
377 	acpi_handle_debug(handle, "Power resource turned on\n");
378 
379 	/*
380 	 * If there are other dependents on this power resource we need to
381 	 * resume them now so that their drivers can re-initialize the
382 	 * hardware properly after it went back to D0.
383 	 */
384 	if (list_empty(&resource->dependents) ||
385 	    list_is_singular(&resource->dependents))
386 		return 0;
387 
388 	list_for_each_entry(dep, &resource->dependents, node) {
389 		dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n",
390 			resource_dev_name(resource));
391 		pm_request_resume(dep->dev);
392 	}
393 
394 	return 0;
395 }
396 
acpi_power_on_unlocked(struct acpi_power_resource * resource)397 static int acpi_power_on_unlocked(struct acpi_power_resource *resource)
398 {
399 	int result = 0;
400 
401 	if (resource->ref_count++) {
402 		acpi_handle_debug(resource->device.handle,
403 				  "Power resource already on\n");
404 	} else {
405 		result = __acpi_power_on(resource);
406 		if (result)
407 			resource->ref_count--;
408 	}
409 	return result;
410 }
411 
acpi_power_on(struct acpi_power_resource * resource)412 static int acpi_power_on(struct acpi_power_resource *resource)
413 {
414 	int result;
415 
416 	mutex_lock(&resource->resource_lock);
417 	result = acpi_power_on_unlocked(resource);
418 	mutex_unlock(&resource->resource_lock);
419 	return result;
420 }
421 
__acpi_power_off(struct acpi_power_resource * resource)422 static int __acpi_power_off(struct acpi_power_resource *resource)
423 {
424 	acpi_handle handle = resource->device.handle;
425 	acpi_status status;
426 
427 	status = acpi_evaluate_object(handle, "_OFF", NULL, NULL);
428 	if (ACPI_FAILURE(status)) {
429 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
430 		return -ENODEV;
431 	}
432 
433 	resource->state = ACPI_POWER_RESOURCE_STATE_OFF;
434 
435 	acpi_handle_debug(handle, "Power resource turned off\n");
436 
437 	return 0;
438 }
439 
acpi_power_off_unlocked(struct acpi_power_resource * resource)440 static int acpi_power_off_unlocked(struct acpi_power_resource *resource)
441 {
442 	int result = 0;
443 
444 	if (!resource->ref_count) {
445 		acpi_handle_debug(resource->device.handle,
446 				  "Power resource already off\n");
447 		return 0;
448 	}
449 
450 	if (--resource->ref_count) {
451 		acpi_handle_debug(resource->device.handle,
452 				  "Power resource still in use\n");
453 	} else {
454 		result = __acpi_power_off(resource);
455 		if (result)
456 			resource->ref_count++;
457 	}
458 	return result;
459 }
460 
acpi_power_off(struct acpi_power_resource * resource)461 static int acpi_power_off(struct acpi_power_resource *resource)
462 {
463 	int result;
464 
465 	mutex_lock(&resource->resource_lock);
466 	result = acpi_power_off_unlocked(resource);
467 	mutex_unlock(&resource->resource_lock);
468 	return result;
469 }
470 
acpi_power_off_list(struct list_head * list)471 static int acpi_power_off_list(struct list_head *list)
472 {
473 	struct acpi_power_resource_entry *entry;
474 	int result = 0;
475 
476 	list_for_each_entry_reverse(entry, list, node) {
477 		result = acpi_power_off(entry->resource);
478 		if (result)
479 			goto err;
480 	}
481 	return 0;
482 
483  err:
484 	list_for_each_entry_continue(entry, list, node)
485 		acpi_power_on(entry->resource);
486 
487 	return result;
488 }
489 
acpi_power_on_list(struct list_head * list)490 static int acpi_power_on_list(struct list_head *list)
491 {
492 	struct acpi_power_resource_entry *entry;
493 	int result = 0;
494 
495 	list_for_each_entry(entry, list, node) {
496 		result = acpi_power_on(entry->resource);
497 		if (result)
498 			goto err;
499 	}
500 	return 0;
501 
502  err:
503 	list_for_each_entry_continue_reverse(entry, list, node)
504 		acpi_power_off(entry->resource);
505 
506 	return result;
507 }
508 
509 static struct attribute *attrs[] = {
510 	NULL,
511 };
512 
513 static const struct attribute_group attr_groups[] = {
514 	[ACPI_STATE_D0] = {
515 		.name = "power_resources_D0",
516 		.attrs = attrs,
517 	},
518 	[ACPI_STATE_D1] = {
519 		.name = "power_resources_D1",
520 		.attrs = attrs,
521 	},
522 	[ACPI_STATE_D2] = {
523 		.name = "power_resources_D2",
524 		.attrs = attrs,
525 	},
526 	[ACPI_STATE_D3_HOT] = {
527 		.name = "power_resources_D3hot",
528 		.attrs = attrs,
529 	},
530 };
531 
532 static const struct attribute_group wakeup_attr_group = {
533 	.name = "power_resources_wakeup",
534 	.attrs = attrs,
535 };
536 
acpi_power_hide_list(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group)537 static void acpi_power_hide_list(struct acpi_device *adev,
538 				 struct list_head *resources,
539 				 const struct attribute_group *attr_group)
540 {
541 	struct acpi_power_resource_entry *entry;
542 
543 	if (list_empty(resources))
544 		return;
545 
546 	list_for_each_entry_reverse(entry, resources, node) {
547 		struct acpi_device *res_dev = &entry->resource->device;
548 
549 		sysfs_remove_link_from_group(&adev->dev.kobj,
550 					     attr_group->name,
551 					     dev_name(&res_dev->dev));
552 	}
553 	sysfs_remove_group(&adev->dev.kobj, attr_group);
554 }
555 
acpi_power_expose_list(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group)556 static void acpi_power_expose_list(struct acpi_device *adev,
557 				   struct list_head *resources,
558 				   const struct attribute_group *attr_group)
559 {
560 	struct acpi_power_resource_entry *entry;
561 	int ret;
562 
563 	if (list_empty(resources))
564 		return;
565 
566 	ret = sysfs_create_group(&adev->dev.kobj, attr_group);
567 	if (ret)
568 		return;
569 
570 	list_for_each_entry(entry, resources, node) {
571 		struct acpi_device *res_dev = &entry->resource->device;
572 
573 		ret = sysfs_add_link_to_group(&adev->dev.kobj,
574 					      attr_group->name,
575 					      &res_dev->dev.kobj,
576 					      dev_name(&res_dev->dev));
577 		if (ret) {
578 			acpi_power_hide_list(adev, resources, attr_group);
579 			break;
580 		}
581 	}
582 }
583 
acpi_power_expose_hide(struct acpi_device * adev,struct list_head * resources,const struct attribute_group * attr_group,bool expose)584 static void acpi_power_expose_hide(struct acpi_device *adev,
585 				   struct list_head *resources,
586 				   const struct attribute_group *attr_group,
587 				   bool expose)
588 {
589 	if (expose)
590 		acpi_power_expose_list(adev, resources, attr_group);
591 	else
592 		acpi_power_hide_list(adev, resources, attr_group);
593 }
594 
acpi_power_add_remove_device(struct acpi_device * adev,bool add)595 void acpi_power_add_remove_device(struct acpi_device *adev, bool add)
596 {
597 	int state;
598 
599 	if (adev->wakeup.flags.valid)
600 		acpi_power_expose_hide(adev, &adev->wakeup.resources,
601 				       &wakeup_attr_group, add);
602 
603 	if (!adev->power.flags.power_resources)
604 		return;
605 
606 	for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++)
607 		acpi_power_expose_hide(adev,
608 				       &adev->power.states[state].resources,
609 				       &attr_groups[state], add);
610 }
611 
acpi_power_wakeup_list_init(struct list_head * list,int * system_level_p)612 int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p)
613 {
614 	struct acpi_power_resource_entry *entry;
615 	int system_level = 5;
616 
617 	list_for_each_entry(entry, list, node) {
618 		struct acpi_power_resource *resource = entry->resource;
619 		u8 state;
620 
621 		mutex_lock(&resource->resource_lock);
622 
623 		/*
624 		 * Make sure that the power resource state and its reference
625 		 * counter value are consistent with each other.
626 		 */
627 		if (!resource->ref_count &&
628 		    !acpi_power_get_state(resource, &state) &&
629 		    state == ACPI_POWER_RESOURCE_STATE_ON)
630 			__acpi_power_off(resource);
631 
632 		if (system_level > resource->system_level)
633 			system_level = resource->system_level;
634 
635 		mutex_unlock(&resource->resource_lock);
636 	}
637 	*system_level_p = system_level;
638 	return 0;
639 }
640 
641 /* --------------------------------------------------------------------------
642                              Device Power Management
643    -------------------------------------------------------------------------- */
644 
645 /**
646  * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in
647  *                          ACPI 3.0) _PSW (Power State Wake)
648  * @dev: Device to handle.
649  * @enable: 0 - disable, 1 - enable the wake capabilities of the device.
650  * @sleep_state: Target sleep state of the system.
651  * @dev_state: Target power state of the device.
652  *
653  * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
654  * State Wake) for the device, if present.  On failure reset the device's
655  * wakeup.flags.valid flag.
656  *
657  * RETURN VALUE:
658  * 0 if either _DSW or _PSW has been successfully executed
659  * 0 if neither _DSW nor _PSW has been found
660  * -ENODEV if the execution of either _DSW or _PSW has failed
661  */
acpi_device_sleep_wake(struct acpi_device * dev,int enable,int sleep_state,int dev_state)662 int acpi_device_sleep_wake(struct acpi_device *dev,
663 			   int enable, int sleep_state, int dev_state)
664 {
665 	union acpi_object in_arg[3];
666 	struct acpi_object_list arg_list = { 3, in_arg };
667 	acpi_status status = AE_OK;
668 
669 	/*
670 	 * Try to execute _DSW first.
671 	 *
672 	 * Three arguments are needed for the _DSW object:
673 	 * Argument 0: enable/disable the wake capabilities
674 	 * Argument 1: target system state
675 	 * Argument 2: target device state
676 	 * When _DSW object is called to disable the wake capabilities, maybe
677 	 * the first argument is filled. The values of the other two arguments
678 	 * are meaningless.
679 	 */
680 	in_arg[0].type = ACPI_TYPE_INTEGER;
681 	in_arg[0].integer.value = enable;
682 	in_arg[1].type = ACPI_TYPE_INTEGER;
683 	in_arg[1].integer.value = sleep_state;
684 	in_arg[2].type = ACPI_TYPE_INTEGER;
685 	in_arg[2].integer.value = dev_state;
686 	status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL);
687 	if (ACPI_SUCCESS(status)) {
688 		return 0;
689 	} else if (status != AE_NOT_FOUND) {
690 		acpi_handle_info(dev->handle, "_DSW execution failed\n");
691 		dev->wakeup.flags.valid = 0;
692 		return -ENODEV;
693 	}
694 
695 	/* Execute _PSW */
696 	status = acpi_execute_simple_method(dev->handle, "_PSW", enable);
697 	if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) {
698 		acpi_handle_info(dev->handle, "_PSW execution failed\n");
699 		dev->wakeup.flags.valid = 0;
700 		return -ENODEV;
701 	}
702 
703 	return 0;
704 }
705 
706 /*
707  * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229):
708  * 1. Power on the power resources required for the wakeup device
709  * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
710  *    State Wake) for the device, if present
711  */
acpi_enable_wakeup_device_power(struct acpi_device * dev,int sleep_state)712 int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state)
713 {
714 	int err = 0;
715 
716 	if (!dev || !dev->wakeup.flags.valid)
717 		return -EINVAL;
718 
719 	mutex_lock(&acpi_device_lock);
720 
721 	dev_dbg(&dev->dev, "Enabling wakeup power (count %d)\n",
722 		dev->wakeup.prepare_count);
723 
724 	if (dev->wakeup.prepare_count++)
725 		goto out;
726 
727 	err = acpi_power_on_list(&dev->wakeup.resources);
728 	if (err) {
729 		dev_err(&dev->dev, "Cannot turn on wakeup power resources\n");
730 		dev->wakeup.flags.valid = 0;
731 		goto out;
732 	}
733 
734 	/*
735 	 * Passing 3 as the third argument below means the device may be
736 	 * put into arbitrary power state afterward.
737 	 */
738 	err = acpi_device_sleep_wake(dev, 1, sleep_state, 3);
739 	if (err) {
740 		acpi_power_off_list(&dev->wakeup.resources);
741 		dev->wakeup.prepare_count = 0;
742 		goto out;
743 	}
744 
745 	dev_dbg(&dev->dev, "Wakeup power enabled\n");
746 
747  out:
748 	mutex_unlock(&acpi_device_lock);
749 	return err;
750 }
751 
752 /*
753  * Shutdown a wakeup device, counterpart of above method
754  * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power
755  *    State Wake) for the device, if present
756  * 2. Shutdown down the power resources
757  */
acpi_disable_wakeup_device_power(struct acpi_device * dev)758 int acpi_disable_wakeup_device_power(struct acpi_device *dev)
759 {
760 	struct acpi_power_resource_entry *entry;
761 	int err = 0;
762 
763 	if (!dev || !dev->wakeup.flags.valid)
764 		return -EINVAL;
765 
766 	mutex_lock(&acpi_device_lock);
767 
768 	dev_dbg(&dev->dev, "Disabling wakeup power (count %d)\n",
769 		dev->wakeup.prepare_count);
770 
771 	/* Do nothing if wakeup power has not been enabled for this device. */
772 	if (dev->wakeup.prepare_count <= 0)
773 		goto out;
774 
775 	if (--dev->wakeup.prepare_count > 0)
776 		goto out;
777 
778 	err = acpi_device_sleep_wake(dev, 0, 0, 0);
779 	if (err)
780 		goto out;
781 
782 	/*
783 	 * All of the power resources in the list need to be turned off even if
784 	 * there are errors.
785 	 */
786 	list_for_each_entry(entry, &dev->wakeup.resources, node) {
787 		int ret;
788 
789 		ret = acpi_power_off(entry->resource);
790 		if (ret && !err)
791 			err = ret;
792 	}
793 	if (err) {
794 		dev_err(&dev->dev, "Cannot turn off wakeup power resources\n");
795 		dev->wakeup.flags.valid = 0;
796 		goto out;
797 	}
798 
799 	dev_dbg(&dev->dev, "Wakeup power disabled\n");
800 
801  out:
802 	mutex_unlock(&acpi_device_lock);
803 	return err;
804 }
805 
acpi_power_get_inferred_state(struct acpi_device * device,int * state)806 int acpi_power_get_inferred_state(struct acpi_device *device, int *state)
807 {
808 	u8 list_state = ACPI_POWER_RESOURCE_STATE_OFF;
809 	int result = 0;
810 	int i = 0;
811 
812 	if (!device || !state)
813 		return -EINVAL;
814 
815 	/*
816 	 * We know a device's inferred power state when all the resources
817 	 * required for a given D-state are 'on'.
818 	 */
819 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
820 		struct list_head *list = &device->power.states[i].resources;
821 
822 		if (list_empty(list))
823 			continue;
824 
825 		result = acpi_power_get_list_state(list, &list_state);
826 		if (result)
827 			return result;
828 
829 		if (list_state == ACPI_POWER_RESOURCE_STATE_ON) {
830 			*state = i;
831 			return 0;
832 		}
833 	}
834 
835 	*state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ?
836 		ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT;
837 	return 0;
838 }
839 
acpi_power_on_resources(struct acpi_device * device,int state)840 int acpi_power_on_resources(struct acpi_device *device, int state)
841 {
842 	if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT)
843 		return -EINVAL;
844 
845 	return acpi_power_on_list(&device->power.states[state].resources);
846 }
847 
acpi_power_transition(struct acpi_device * device,int state)848 int acpi_power_transition(struct acpi_device *device, int state)
849 {
850 	int result = 0;
851 
852 	if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD))
853 		return -EINVAL;
854 
855 	if (device->power.state == state || !device->flags.power_manageable)
856 		return 0;
857 
858 	if ((device->power.state < ACPI_STATE_D0)
859 	    || (device->power.state > ACPI_STATE_D3_COLD))
860 		return -ENODEV;
861 
862 	/*
863 	 * First we reference all power resources required in the target list
864 	 * (e.g. so the device doesn't lose power while transitioning).  Then,
865 	 * we dereference all power resources used in the current list.
866 	 */
867 	if (state < ACPI_STATE_D3_COLD)
868 		result = acpi_power_on_list(
869 			&device->power.states[state].resources);
870 
871 	if (!result && device->power.state < ACPI_STATE_D3_COLD)
872 		acpi_power_off_list(
873 			&device->power.states[device->power.state].resources);
874 
875 	/* We shouldn't change the state unless the above operations succeed. */
876 	device->power.state = result ? ACPI_STATE_UNKNOWN : state;
877 
878 	return result;
879 }
880 
acpi_release_power_resource(struct device * dev)881 static void acpi_release_power_resource(struct device *dev)
882 {
883 	struct acpi_device *device = to_acpi_device(dev);
884 	struct acpi_power_resource *resource;
885 
886 	resource = container_of(device, struct acpi_power_resource, device);
887 
888 	mutex_lock(&power_resource_list_lock);
889 	list_del(&resource->list_node);
890 	mutex_unlock(&power_resource_list_lock);
891 
892 	acpi_free_pnp_ids(&device->pnp);
893 	kfree(resource);
894 }
895 
resource_in_use_show(struct device * dev,struct device_attribute * attr,char * buf)896 static ssize_t resource_in_use_show(struct device *dev,
897 				    struct device_attribute *attr,
898 				    char *buf)
899 {
900 	struct acpi_power_resource *resource;
901 
902 	resource = to_power_resource(to_acpi_device(dev));
903 	return sprintf(buf, "%u\n", !!resource->ref_count);
904 }
905 static DEVICE_ATTR_RO(resource_in_use);
906 
acpi_power_sysfs_remove(struct acpi_device * device)907 static void acpi_power_sysfs_remove(struct acpi_device *device)
908 {
909 	device_remove_file(&device->dev, &dev_attr_resource_in_use);
910 }
911 
acpi_power_add_resource_to_list(struct acpi_power_resource * resource)912 static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource)
913 {
914 	mutex_lock(&power_resource_list_lock);
915 
916 	if (!list_empty(&acpi_power_resource_list)) {
917 		struct acpi_power_resource *r;
918 
919 		list_for_each_entry(r, &acpi_power_resource_list, list_node)
920 			if (r->order > resource->order) {
921 				list_add_tail(&resource->list_node, &r->list_node);
922 				goto out;
923 			}
924 	}
925 	list_add_tail(&resource->list_node, &acpi_power_resource_list);
926 
927  out:
928 	mutex_unlock(&power_resource_list_lock);
929 }
930 
acpi_add_power_resource(acpi_handle handle)931 struct acpi_device *acpi_add_power_resource(acpi_handle handle)
932 {
933 	struct acpi_device *device = acpi_fetch_acpi_dev(handle);
934 	struct acpi_power_resource *resource;
935 	union acpi_object acpi_object;
936 	struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object };
937 	acpi_status status;
938 	u8 state_dummy;
939 	int result;
940 
941 	if (device)
942 		return device;
943 
944 	resource = kzalloc(sizeof(*resource), GFP_KERNEL);
945 	if (!resource)
946 		return NULL;
947 
948 	device = &resource->device;
949 	acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER,
950 				acpi_release_power_resource);
951 	mutex_init(&resource->resource_lock);
952 	INIT_LIST_HEAD(&resource->list_node);
953 	INIT_LIST_HEAD(&resource->dependents);
954 	strscpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME);
955 	strscpy(acpi_device_class(device), ACPI_POWER_CLASS);
956 	device->power.state = ACPI_STATE_UNKNOWN;
957 	device->flags.match_driver = true;
958 
959 	/* Evaluate the object to get the system level and resource order. */
960 	status = acpi_evaluate_object(handle, NULL, NULL, &buffer);
961 	if (ACPI_FAILURE(status))
962 		goto err;
963 
964 	resource->system_level = acpi_object.power_resource.system_level;
965 	resource->order = acpi_object.power_resource.resource_order;
966 	resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
967 
968 	/* Get the initial state or just flip it on if that fails. */
969 	if (acpi_power_get_state(resource, &state_dummy))
970 		__acpi_power_on(resource);
971 
972 	acpi_handle_info(handle, "New power resource\n");
973 
974 	result = acpi_tie_acpi_dev(device);
975 	if (result)
976 		goto err;
977 
978 	result = acpi_device_add(device);
979 	if (result)
980 		goto err;
981 
982 	if (!device_create_file(&device->dev, &dev_attr_resource_in_use))
983 		device->remove = acpi_power_sysfs_remove;
984 
985 	acpi_power_add_resource_to_list(resource);
986 	acpi_device_add_finalize(device);
987 	return device;
988 
989  err:
990 	acpi_release_power_resource(&device->dev);
991 	return NULL;
992 }
993 
994 #ifdef CONFIG_ACPI_SLEEP
acpi_resume_power_resources(void)995 void acpi_resume_power_resources(void)
996 {
997 	struct acpi_power_resource *resource;
998 
999 	mutex_lock(&power_resource_list_lock);
1000 
1001 	list_for_each_entry(resource, &acpi_power_resource_list, list_node) {
1002 		int result;
1003 		u8 state;
1004 
1005 		mutex_lock(&resource->resource_lock);
1006 
1007 		resource->state = ACPI_POWER_RESOURCE_STATE_UNKNOWN;
1008 		result = acpi_power_get_state(resource, &state);
1009 		if (result) {
1010 			mutex_unlock(&resource->resource_lock);
1011 			continue;
1012 		}
1013 
1014 		if (state == ACPI_POWER_RESOURCE_STATE_OFF
1015 		    && resource->ref_count) {
1016 			acpi_handle_debug(resource->device.handle, "Turning ON\n");
1017 			__acpi_power_on(resource);
1018 		}
1019 
1020 		mutex_unlock(&resource->resource_lock);
1021 	}
1022 
1023 	mutex_unlock(&power_resource_list_lock);
1024 }
1025 #endif
1026 
1027 static const struct dmi_system_id dmi_leave_unused_power_resources_on[] = {
1028 	{
1029 		/*
1030 		 * The Toshiba Click Mini has a CPR3 power-resource which must
1031 		 * be on for the touchscreen to work, but which is not in any
1032 		 * _PR? lists. The other 2 affected power-resources are no-ops.
1033 		 */
1034 		.matches = {
1035 			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
1036 			DMI_MATCH(DMI_PRODUCT_NAME, "SATELLITE Click Mini L9W-B"),
1037 		},
1038 	},
1039 	{}
1040 };
1041 
1042 /**
1043  * acpi_turn_off_unused_power_resources - Turn off power resources not in use.
1044  */
acpi_turn_off_unused_power_resources(void)1045 void acpi_turn_off_unused_power_resources(void)
1046 {
1047 	struct acpi_power_resource *resource;
1048 
1049 	if (dmi_check_system(dmi_leave_unused_power_resources_on))
1050 		return;
1051 
1052 	mutex_lock(&power_resource_list_lock);
1053 
1054 	list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) {
1055 		mutex_lock(&resource->resource_lock);
1056 
1057 		if (!resource->ref_count &&
1058 		    resource->state == ACPI_POWER_RESOURCE_STATE_ON) {
1059 			acpi_handle_debug(resource->device.handle, "Turning OFF\n");
1060 			__acpi_power_off(resource);
1061 		}
1062 
1063 		mutex_unlock(&resource->resource_lock);
1064 	}
1065 
1066 	mutex_unlock(&power_resource_list_lock);
1067 }
1068