1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 *
26 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27 *
28 */
29
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/pci.h>
36 #include <linux/interrupt.h>
37 #include <linux/kmod.h>
38 #include <linux/delay.h>
39 #include <linux/workqueue.h>
40 #include <linux/nmi.h>
41 #include <linux/acpi.h>
42 #include <linux/acpi_io.h>
43 #include <linux/efi.h>
44 #include <linux/ioport.h>
45 #include <linux/list.h>
46 #include <linux/jiffies.h>
47 #include <linux/semaphore.h>
48
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51
52 #include <acpi/acpi.h>
53 #include <acpi/acpi_bus.h>
54 #include <acpi/processor.h>
55
56 #define _COMPONENT ACPI_OS_SERVICES
57 ACPI_MODULE_NAME("osl");
58 #define PREFIX "ACPI: "
59 struct acpi_os_dpc {
60 acpi_osd_exec_callback function;
61 void *context;
62 struct work_struct work;
63 int wait;
64 };
65
66 #ifdef CONFIG_ACPI_CUSTOM_DSDT
67 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
68 #endif
69
70 #ifdef ENABLE_DEBUGGER
71 #include <linux/kdb.h>
72
73 /* stuff for debugger support */
74 int acpi_in_debugger;
75 EXPORT_SYMBOL(acpi_in_debugger);
76
77 extern char line_buf[80];
78 #endif /*ENABLE_DEBUGGER */
79
80 static acpi_osd_handler acpi_irq_handler;
81 static void *acpi_irq_context;
82 static struct workqueue_struct *kacpid_wq;
83 static struct workqueue_struct *kacpi_notify_wq;
84 struct workqueue_struct *kacpi_hotplug_wq;
85 EXPORT_SYMBOL(kacpi_hotplug_wq);
86
87 /*
88 * This list of permanent mappings is for memory that may be accessed from
89 * interrupt context, where we can't do the ioremap().
90 */
91 struct acpi_ioremap {
92 struct list_head list;
93 void __iomem *virt;
94 acpi_physical_address phys;
95 acpi_size size;
96 unsigned long refcount;
97 };
98
99 static LIST_HEAD(acpi_ioremaps);
100 static DEFINE_MUTEX(acpi_ioremap_lock);
101
102 static void __init acpi_osi_setup_late(void);
103
104 /*
105 * The story of _OSI(Linux)
106 *
107 * From pre-history through Linux-2.6.22,
108 * Linux responded TRUE upon a BIOS OSI(Linux) query.
109 *
110 * Unfortunately, reference BIOS writers got wind of this
111 * and put OSI(Linux) in their example code, quickly exposing
112 * this string as ill-conceived and opening the door to
113 * an un-bounded number of BIOS incompatibilities.
114 *
115 * For example, OSI(Linux) was used on resume to re-POST a
116 * video card on one system, because Linux at that time
117 * could not do a speedy restore in its native driver.
118 * But then upon gaining quick native restore capability,
119 * Linux has no way to tell the BIOS to skip the time-consuming
120 * POST -- putting Linux at a permanent performance disadvantage.
121 * On another system, the BIOS writer used OSI(Linux)
122 * to infer native OS support for IPMI! On other systems,
123 * OSI(Linux) simply got in the way of Linux claiming to
124 * be compatible with other operating systems, exposing
125 * BIOS issues such as skipped device initialization.
126 *
127 * So "Linux" turned out to be a really poor chose of
128 * OSI string, and from Linux-2.6.23 onward we respond FALSE.
129 *
130 * BIOS writers should NOT query _OSI(Linux) on future systems.
131 * Linux will complain on the console when it sees it, and return FALSE.
132 * To get Linux to return TRUE for your system will require
133 * a kernel source update to add a DMI entry,
134 * or boot with "acpi_osi=Linux"
135 */
136
137 static struct osi_linux {
138 unsigned int enable:1;
139 unsigned int dmi:1;
140 unsigned int cmdline:1;
141 } osi_linux = {0, 0, 0};
142
acpi_osi_handler(acpi_string interface,u32 supported)143 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
144 {
145 if (!strcmp("Linux", interface)) {
146
147 printk_once(KERN_NOTICE FW_BUG PREFIX
148 "BIOS _OSI(Linux) query %s%s\n",
149 osi_linux.enable ? "honored" : "ignored",
150 osi_linux.cmdline ? " via cmdline" :
151 osi_linux.dmi ? " via DMI" : "");
152 }
153
154 return supported;
155 }
156
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)157 static void __init acpi_request_region (struct acpi_generic_address *gas,
158 unsigned int length, char *desc)
159 {
160 u64 addr;
161
162 /* Handle possible alignment issues */
163 memcpy(&addr, &gas->address, sizeof(addr));
164 if (!addr || !length)
165 return;
166
167 /* Resources are never freed */
168 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
169 request_region(addr, length, desc);
170 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
171 request_mem_region(addr, length, desc);
172 }
173
acpi_reserve_resources(void)174 static int __init acpi_reserve_resources(void)
175 {
176 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
177 "ACPI PM1a_EVT_BLK");
178
179 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
180 "ACPI PM1b_EVT_BLK");
181
182 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
183 "ACPI PM1a_CNT_BLK");
184
185 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
186 "ACPI PM1b_CNT_BLK");
187
188 if (acpi_gbl_FADT.pm_timer_length == 4)
189 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
190
191 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
192 "ACPI PM2_CNT_BLK");
193
194 /* Length of GPE blocks must be a non-negative multiple of 2 */
195
196 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
197 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
198 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
199
200 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
201 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
202 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
203
204 return 0;
205 }
206 device_initcall(acpi_reserve_resources);
207
acpi_os_printf(const char * fmt,...)208 void acpi_os_printf(const char *fmt, ...)
209 {
210 va_list args;
211 va_start(args, fmt);
212 acpi_os_vprintf(fmt, args);
213 va_end(args);
214 }
215
acpi_os_vprintf(const char * fmt,va_list args)216 void acpi_os_vprintf(const char *fmt, va_list args)
217 {
218 static char buffer[512];
219
220 vsprintf(buffer, fmt, args);
221
222 #ifdef ENABLE_DEBUGGER
223 if (acpi_in_debugger) {
224 kdb_printf("%s", buffer);
225 } else {
226 printk(KERN_CONT "%s", buffer);
227 }
228 #else
229 printk(KERN_CONT "%s", buffer);
230 #endif
231 }
232
233 #ifdef CONFIG_KEXEC
234 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)235 static int __init setup_acpi_rsdp(char *arg)
236 {
237 acpi_rsdp = simple_strtoul(arg, NULL, 16);
238 return 0;
239 }
240 early_param("acpi_rsdp", setup_acpi_rsdp);
241 #endif
242
acpi_os_get_root_pointer(void)243 acpi_physical_address __init acpi_os_get_root_pointer(void)
244 {
245 #ifdef CONFIG_KEXEC
246 if (acpi_rsdp)
247 return acpi_rsdp;
248 #endif
249
250 if (efi_enabled) {
251 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
252 return efi.acpi20;
253 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
254 return efi.acpi;
255 else {
256 printk(KERN_ERR PREFIX
257 "System description tables not found\n");
258 return 0;
259 }
260 } else {
261 acpi_physical_address pa = 0;
262
263 acpi_find_root_pointer(&pa);
264 return pa;
265 }
266 }
267
268 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
269 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)270 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
271 {
272 struct acpi_ioremap *map;
273
274 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
275 if (map->phys <= phys &&
276 phys + size <= map->phys + map->size)
277 return map;
278
279 return NULL;
280 }
281
282 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
283 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)284 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
285 {
286 struct acpi_ioremap *map;
287
288 map = acpi_map_lookup(phys, size);
289 if (map)
290 return map->virt + (phys - map->phys);
291
292 return NULL;
293 }
294
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)295 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
296 {
297 struct acpi_ioremap *map;
298 void __iomem *virt = NULL;
299
300 mutex_lock(&acpi_ioremap_lock);
301 map = acpi_map_lookup(phys, size);
302 if (map) {
303 virt = map->virt + (phys - map->phys);
304 map->refcount++;
305 }
306 mutex_unlock(&acpi_ioremap_lock);
307 return virt;
308 }
309 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
310
311 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
312 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)313 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
314 {
315 struct acpi_ioremap *map;
316
317 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
318 if (map->virt <= virt &&
319 virt + size <= map->virt + map->size)
320 return map;
321
322 return NULL;
323 }
324
325 #ifndef CONFIG_IA64
326 #define should_use_kmap(pfn) page_is_ram(pfn)
327 #else
328 /* ioremap will take care of cache attributes */
329 #define should_use_kmap(pfn) 0
330 #endif
331
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)332 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
333 {
334 unsigned long pfn;
335
336 pfn = pg_off >> PAGE_SHIFT;
337 if (should_use_kmap(pfn)) {
338 if (pg_sz > PAGE_SIZE)
339 return NULL;
340 return (void __iomem __force *)kmap(pfn_to_page(pfn));
341 } else
342 return acpi_os_ioremap(pg_off, pg_sz);
343 }
344
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)345 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
346 {
347 unsigned long pfn;
348
349 pfn = pg_off >> PAGE_SHIFT;
350 if (page_is_ram(pfn))
351 kunmap(pfn_to_page(pfn));
352 else
353 iounmap(vaddr);
354 }
355
356 void __iomem *__init_refok
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)357 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
358 {
359 struct acpi_ioremap *map;
360 void __iomem *virt;
361 acpi_physical_address pg_off;
362 acpi_size pg_sz;
363
364 if (phys > ULONG_MAX) {
365 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
366 return NULL;
367 }
368
369 if (!acpi_gbl_permanent_mmap)
370 return __acpi_map_table((unsigned long)phys, size);
371
372 mutex_lock(&acpi_ioremap_lock);
373 /* Check if there's a suitable mapping already. */
374 map = acpi_map_lookup(phys, size);
375 if (map) {
376 map->refcount++;
377 goto out;
378 }
379
380 map = kzalloc(sizeof(*map), GFP_KERNEL);
381 if (!map) {
382 mutex_unlock(&acpi_ioremap_lock);
383 return NULL;
384 }
385
386 pg_off = round_down(phys, PAGE_SIZE);
387 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
388 virt = acpi_map(pg_off, pg_sz);
389 if (!virt) {
390 mutex_unlock(&acpi_ioremap_lock);
391 kfree(map);
392 return NULL;
393 }
394
395 INIT_LIST_HEAD(&map->list);
396 map->virt = virt;
397 map->phys = pg_off;
398 map->size = pg_sz;
399 map->refcount = 1;
400
401 list_add_tail_rcu(&map->list, &acpi_ioremaps);
402
403 out:
404 mutex_unlock(&acpi_ioremap_lock);
405 return map->virt + (phys - map->phys);
406 }
407 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
408
acpi_os_drop_map_ref(struct acpi_ioremap * map)409 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
410 {
411 if (!--map->refcount)
412 list_del_rcu(&map->list);
413 }
414
acpi_os_map_cleanup(struct acpi_ioremap * map)415 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
416 {
417 if (!map->refcount) {
418 synchronize_rcu();
419 acpi_unmap(map->phys, map->virt);
420 kfree(map);
421 }
422 }
423
acpi_os_unmap_memory(void __iomem * virt,acpi_size size)424 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
425 {
426 struct acpi_ioremap *map;
427
428 if (!acpi_gbl_permanent_mmap) {
429 __acpi_unmap_table(virt, size);
430 return;
431 }
432
433 mutex_lock(&acpi_ioremap_lock);
434 map = acpi_map_lookup_virt(virt, size);
435 if (!map) {
436 mutex_unlock(&acpi_ioremap_lock);
437 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
438 return;
439 }
440 acpi_os_drop_map_ref(map);
441 mutex_unlock(&acpi_ioremap_lock);
442
443 acpi_os_map_cleanup(map);
444 }
445 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
446
early_acpi_os_unmap_memory(void __iomem * virt,acpi_size size)447 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
448 {
449 if (!acpi_gbl_permanent_mmap)
450 __acpi_unmap_table(virt, size);
451 }
452
acpi_os_map_generic_address(struct acpi_generic_address * gas)453 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
454 {
455 u64 addr;
456 void __iomem *virt;
457
458 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
459 return 0;
460
461 /* Handle possible alignment issues */
462 memcpy(&addr, &gas->address, sizeof(addr));
463 if (!addr || !gas->bit_width)
464 return -EINVAL;
465
466 virt = acpi_os_map_memory(addr, gas->bit_width / 8);
467 if (!virt)
468 return -EIO;
469
470 return 0;
471 }
472 EXPORT_SYMBOL(acpi_os_map_generic_address);
473
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)474 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
475 {
476 u64 addr;
477 struct acpi_ioremap *map;
478
479 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
480 return;
481
482 /* Handle possible alignment issues */
483 memcpy(&addr, &gas->address, sizeof(addr));
484 if (!addr || !gas->bit_width)
485 return;
486
487 mutex_lock(&acpi_ioremap_lock);
488 map = acpi_map_lookup(addr, gas->bit_width / 8);
489 if (!map) {
490 mutex_unlock(&acpi_ioremap_lock);
491 return;
492 }
493 acpi_os_drop_map_ref(map);
494 mutex_unlock(&acpi_ioremap_lock);
495
496 acpi_os_map_cleanup(map);
497 }
498 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
499
500 #ifdef ACPI_FUTURE_USAGE
501 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)502 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
503 {
504 if (!phys || !virt)
505 return AE_BAD_PARAMETER;
506
507 *phys = virt_to_phys(virt);
508
509 return AE_OK;
510 }
511 #endif
512
513 #define ACPI_MAX_OVERRIDE_LEN 100
514
515 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
516
517 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)518 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
519 acpi_string * new_val)
520 {
521 if (!init_val || !new_val)
522 return AE_BAD_PARAMETER;
523
524 *new_val = NULL;
525 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
526 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
527 acpi_os_name);
528 *new_val = acpi_os_name;
529 }
530
531 return AE_OK;
532 }
533
534 acpi_status
acpi_os_table_override(struct acpi_table_header * existing_table,struct acpi_table_header ** new_table)535 acpi_os_table_override(struct acpi_table_header * existing_table,
536 struct acpi_table_header ** new_table)
537 {
538 if (!existing_table || !new_table)
539 return AE_BAD_PARAMETER;
540
541 *new_table = NULL;
542
543 #ifdef CONFIG_ACPI_CUSTOM_DSDT
544 if (strncmp(existing_table->signature, "DSDT", 4) == 0)
545 *new_table = (struct acpi_table_header *)AmlCode;
546 #endif
547 if (*new_table != NULL) {
548 printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
549 "this is unsafe: tainting kernel\n",
550 existing_table->signature,
551 existing_table->oem_table_id);
552 add_taint(TAINT_OVERRIDDEN_ACPI_TABLE);
553 }
554 return AE_OK;
555 }
556
acpi_irq(int irq,void * dev_id)557 static irqreturn_t acpi_irq(int irq, void *dev_id)
558 {
559 u32 handled;
560
561 handled = (*acpi_irq_handler) (acpi_irq_context);
562
563 if (handled) {
564 acpi_irq_handled++;
565 return IRQ_HANDLED;
566 } else {
567 acpi_irq_not_handled++;
568 return IRQ_NONE;
569 }
570 }
571
572 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)573 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
574 void *context)
575 {
576 unsigned int irq;
577
578 acpi_irq_stats_init();
579
580 /*
581 * ACPI interrupts different from the SCI in our copy of the FADT are
582 * not supported.
583 */
584 if (gsi != acpi_gbl_FADT.sci_interrupt)
585 return AE_BAD_PARAMETER;
586
587 if (acpi_irq_handler)
588 return AE_ALREADY_ACQUIRED;
589
590 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
591 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
592 gsi);
593 return AE_OK;
594 }
595
596 acpi_irq_handler = handler;
597 acpi_irq_context = context;
598 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
599 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
600 acpi_irq_handler = NULL;
601 return AE_NOT_ACQUIRED;
602 }
603
604 return AE_OK;
605 }
606
acpi_os_remove_interrupt_handler(u32 irq,acpi_osd_handler handler)607 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
608 {
609 if (irq != acpi_gbl_FADT.sci_interrupt)
610 return AE_BAD_PARAMETER;
611
612 free_irq(irq, acpi_irq);
613 acpi_irq_handler = NULL;
614
615 return AE_OK;
616 }
617
618 /*
619 * Running in interpreter thread context, safe to sleep
620 */
621
acpi_os_sleep(u64 ms)622 void acpi_os_sleep(u64 ms)
623 {
624 schedule_timeout_interruptible(msecs_to_jiffies(ms));
625 }
626
acpi_os_stall(u32 us)627 void acpi_os_stall(u32 us)
628 {
629 while (us) {
630 u32 delay = 1000;
631
632 if (delay > us)
633 delay = us;
634 udelay(delay);
635 touch_nmi_watchdog();
636 us -= delay;
637 }
638 }
639
640 /*
641 * Support ACPI 3.0 AML Timer operand
642 * Returns 64-bit free-running, monotonically increasing timer
643 * with 100ns granularity
644 */
acpi_os_get_timer(void)645 u64 acpi_os_get_timer(void)
646 {
647 static u64 t;
648
649 #ifdef CONFIG_HPET
650 /* TBD: use HPET if available */
651 #endif
652
653 #ifdef CONFIG_X86_PM_TIMER
654 /* TBD: default to PM timer if HPET was not available */
655 #endif
656 if (!t)
657 printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
658
659 return ++t;
660 }
661
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)662 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
663 {
664 u32 dummy;
665
666 if (!value)
667 value = &dummy;
668
669 *value = 0;
670 if (width <= 8) {
671 *(u8 *) value = inb(port);
672 } else if (width <= 16) {
673 *(u16 *) value = inw(port);
674 } else if (width <= 32) {
675 *(u32 *) value = inl(port);
676 } else {
677 BUG();
678 }
679
680 return AE_OK;
681 }
682
683 EXPORT_SYMBOL(acpi_os_read_port);
684
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)685 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
686 {
687 if (width <= 8) {
688 outb(value, port);
689 } else if (width <= 16) {
690 outw(value, port);
691 } else if (width <= 32) {
692 outl(value, port);
693 } else {
694 BUG();
695 }
696
697 return AE_OK;
698 }
699
700 EXPORT_SYMBOL(acpi_os_write_port);
701
702 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u32 * value,u32 width)703 acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
704 {
705 void __iomem *virt_addr;
706 unsigned int size = width / 8;
707 bool unmap = false;
708 u32 dummy;
709
710 rcu_read_lock();
711 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
712 if (!virt_addr) {
713 rcu_read_unlock();
714 virt_addr = acpi_os_ioremap(phys_addr, size);
715 if (!virt_addr)
716 return AE_BAD_ADDRESS;
717 unmap = true;
718 }
719
720 if (!value)
721 value = &dummy;
722
723 switch (width) {
724 case 8:
725 *(u8 *) value = readb(virt_addr);
726 break;
727 case 16:
728 *(u16 *) value = readw(virt_addr);
729 break;
730 case 32:
731 *(u32 *) value = readl(virt_addr);
732 break;
733 default:
734 BUG();
735 }
736
737 if (unmap)
738 iounmap(virt_addr);
739 else
740 rcu_read_unlock();
741
742 return AE_OK;
743 }
744
745 #ifdef readq
read64(const volatile void __iomem * addr)746 static inline u64 read64(const volatile void __iomem *addr)
747 {
748 return readq(addr);
749 }
750 #else
read64(const volatile void __iomem * addr)751 static inline u64 read64(const volatile void __iomem *addr)
752 {
753 u64 l, h;
754 l = readl(addr);
755 h = readl(addr+4);
756 return l | (h << 32);
757 }
758 #endif
759
760 acpi_status
acpi_os_read_memory64(acpi_physical_address phys_addr,u64 * value,u32 width)761 acpi_os_read_memory64(acpi_physical_address phys_addr, u64 *value, u32 width)
762 {
763 void __iomem *virt_addr;
764 unsigned int size = width / 8;
765 bool unmap = false;
766 u64 dummy;
767
768 rcu_read_lock();
769 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
770 if (!virt_addr) {
771 rcu_read_unlock();
772 virt_addr = acpi_os_ioremap(phys_addr, size);
773 if (!virt_addr)
774 return AE_BAD_ADDRESS;
775 unmap = true;
776 }
777
778 if (!value)
779 value = &dummy;
780
781 switch (width) {
782 case 8:
783 *(u8 *) value = readb(virt_addr);
784 break;
785 case 16:
786 *(u16 *) value = readw(virt_addr);
787 break;
788 case 32:
789 *(u32 *) value = readl(virt_addr);
790 break;
791 case 64:
792 *(u64 *) value = read64(virt_addr);
793 break;
794 default:
795 BUG();
796 }
797
798 if (unmap)
799 iounmap(virt_addr);
800 else
801 rcu_read_unlock();
802
803 return AE_OK;
804 }
805
806 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u32 value,u32 width)807 acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
808 {
809 void __iomem *virt_addr;
810 unsigned int size = width / 8;
811 bool unmap = false;
812
813 rcu_read_lock();
814 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
815 if (!virt_addr) {
816 rcu_read_unlock();
817 virt_addr = acpi_os_ioremap(phys_addr, size);
818 if (!virt_addr)
819 return AE_BAD_ADDRESS;
820 unmap = true;
821 }
822
823 switch (width) {
824 case 8:
825 writeb(value, virt_addr);
826 break;
827 case 16:
828 writew(value, virt_addr);
829 break;
830 case 32:
831 writel(value, virt_addr);
832 break;
833 default:
834 BUG();
835 }
836
837 if (unmap)
838 iounmap(virt_addr);
839 else
840 rcu_read_unlock();
841
842 return AE_OK;
843 }
844
845 #ifdef writeq
write64(u64 val,volatile void __iomem * addr)846 static inline void write64(u64 val, volatile void __iomem *addr)
847 {
848 writeq(val, addr);
849 }
850 #else
write64(u64 val,volatile void __iomem * addr)851 static inline void write64(u64 val, volatile void __iomem *addr)
852 {
853 writel(val, addr);
854 writel(val>>32, addr+4);
855 }
856 #endif
857
858 acpi_status
acpi_os_write_memory64(acpi_physical_address phys_addr,u64 value,u32 width)859 acpi_os_write_memory64(acpi_physical_address phys_addr, u64 value, u32 width)
860 {
861 void __iomem *virt_addr;
862 unsigned int size = width / 8;
863 bool unmap = false;
864
865 rcu_read_lock();
866 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
867 if (!virt_addr) {
868 rcu_read_unlock();
869 virt_addr = acpi_os_ioremap(phys_addr, size);
870 if (!virt_addr)
871 return AE_BAD_ADDRESS;
872 unmap = true;
873 }
874
875 switch (width) {
876 case 8:
877 writeb(value, virt_addr);
878 break;
879 case 16:
880 writew(value, virt_addr);
881 break;
882 case 32:
883 writel(value, virt_addr);
884 break;
885 case 64:
886 write64(value, virt_addr);
887 break;
888 default:
889 BUG();
890 }
891
892 if (unmap)
893 iounmap(virt_addr);
894 else
895 rcu_read_unlock();
896
897 return AE_OK;
898 }
899
900 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)901 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
902 u64 *value, u32 width)
903 {
904 int result, size;
905 u32 value32;
906
907 if (!value)
908 return AE_BAD_PARAMETER;
909
910 switch (width) {
911 case 8:
912 size = 1;
913 break;
914 case 16:
915 size = 2;
916 break;
917 case 32:
918 size = 4;
919 break;
920 default:
921 return AE_ERROR;
922 }
923
924 result = raw_pci_read(pci_id->segment, pci_id->bus,
925 PCI_DEVFN(pci_id->device, pci_id->function),
926 reg, size, &value32);
927 *value = value32;
928
929 return (result ? AE_ERROR : AE_OK);
930 }
931
932 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)933 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
934 u64 value, u32 width)
935 {
936 int result, size;
937
938 switch (width) {
939 case 8:
940 size = 1;
941 break;
942 case 16:
943 size = 2;
944 break;
945 case 32:
946 size = 4;
947 break;
948 default:
949 return AE_ERROR;
950 }
951
952 result = raw_pci_write(pci_id->segment, pci_id->bus,
953 PCI_DEVFN(pci_id->device, pci_id->function),
954 reg, size, value);
955
956 return (result ? AE_ERROR : AE_OK);
957 }
958
acpi_os_execute_deferred(struct work_struct * work)959 static void acpi_os_execute_deferred(struct work_struct *work)
960 {
961 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
962
963 if (dpc->wait)
964 acpi_os_wait_events_complete(NULL);
965
966 dpc->function(dpc->context);
967 kfree(dpc);
968 }
969
970 /*******************************************************************************
971 *
972 * FUNCTION: acpi_os_execute
973 *
974 * PARAMETERS: Type - Type of the callback
975 * Function - Function to be executed
976 * Context - Function parameters
977 *
978 * RETURN: Status
979 *
980 * DESCRIPTION: Depending on type, either queues function for deferred execution or
981 * immediately executes function on a separate thread.
982 *
983 ******************************************************************************/
984
__acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context,int hp)985 static acpi_status __acpi_os_execute(acpi_execute_type type,
986 acpi_osd_exec_callback function, void *context, int hp)
987 {
988 acpi_status status = AE_OK;
989 struct acpi_os_dpc *dpc;
990 struct workqueue_struct *queue;
991 int ret;
992 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
993 "Scheduling function [%p(%p)] for deferred execution.\n",
994 function, context));
995
996 /*
997 * Allocate/initialize DPC structure. Note that this memory will be
998 * freed by the callee. The kernel handles the work_struct list in a
999 * way that allows us to also free its memory inside the callee.
1000 * Because we may want to schedule several tasks with different
1001 * parameters we can't use the approach some kernel code uses of
1002 * having a static work_struct.
1003 */
1004
1005 dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1006 if (!dpc)
1007 return AE_NO_MEMORY;
1008
1009 dpc->function = function;
1010 dpc->context = context;
1011
1012 /*
1013 * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
1014 * because the hotplug code may call driver .remove() functions,
1015 * which invoke flush_scheduled_work/acpi_os_wait_events_complete
1016 * to flush these workqueues.
1017 */
1018 queue = hp ? kacpi_hotplug_wq :
1019 (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
1020 dpc->wait = hp ? 1 : 0;
1021
1022 if (queue == kacpi_hotplug_wq)
1023 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1024 else if (queue == kacpi_notify_wq)
1025 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1026 else
1027 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1028
1029 /*
1030 * On some machines, a software-initiated SMI causes corruption unless
1031 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1032 * typically it's done in GPE-related methods that are run via
1033 * workqueues, so we can avoid the known corruption cases by always
1034 * queueing on CPU 0.
1035 */
1036 ret = queue_work_on(0, queue, &dpc->work);
1037
1038 if (!ret) {
1039 printk(KERN_ERR PREFIX
1040 "Call to queue_work() failed.\n");
1041 status = AE_ERROR;
1042 kfree(dpc);
1043 }
1044 return status;
1045 }
1046
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1047 acpi_status acpi_os_execute(acpi_execute_type type,
1048 acpi_osd_exec_callback function, void *context)
1049 {
1050 return __acpi_os_execute(type, function, context, 0);
1051 }
1052 EXPORT_SYMBOL(acpi_os_execute);
1053
acpi_os_hotplug_execute(acpi_osd_exec_callback function,void * context)1054 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
1055 void *context)
1056 {
1057 return __acpi_os_execute(0, function, context, 1);
1058 }
1059
acpi_os_wait_events_complete(void * context)1060 void acpi_os_wait_events_complete(void *context)
1061 {
1062 flush_workqueue(kacpid_wq);
1063 flush_workqueue(kacpi_notify_wq);
1064 }
1065
1066 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1067
1068 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1069 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1070 {
1071 struct semaphore *sem = NULL;
1072
1073 sem = acpi_os_allocate(sizeof(struct semaphore));
1074 if (!sem)
1075 return AE_NO_MEMORY;
1076 memset(sem, 0, sizeof(struct semaphore));
1077
1078 sema_init(sem, initial_units);
1079
1080 *handle = (acpi_handle *) sem;
1081
1082 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1083 *handle, initial_units));
1084
1085 return AE_OK;
1086 }
1087
1088 /*
1089 * TODO: A better way to delete semaphores? Linux doesn't have a
1090 * 'delete_semaphore()' function -- may result in an invalid
1091 * pointer dereference for non-synchronized consumers. Should
1092 * we at least check for blocked threads and signal/cancel them?
1093 */
1094
acpi_os_delete_semaphore(acpi_handle handle)1095 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1096 {
1097 struct semaphore *sem = (struct semaphore *)handle;
1098
1099 if (!sem)
1100 return AE_BAD_PARAMETER;
1101
1102 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1103
1104 BUG_ON(!list_empty(&sem->wait_list));
1105 kfree(sem);
1106 sem = NULL;
1107
1108 return AE_OK;
1109 }
1110
1111 /*
1112 * TODO: Support for units > 1?
1113 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1114 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1115 {
1116 acpi_status status = AE_OK;
1117 struct semaphore *sem = (struct semaphore *)handle;
1118 long jiffies;
1119 int ret = 0;
1120
1121 if (!sem || (units < 1))
1122 return AE_BAD_PARAMETER;
1123
1124 if (units > 1)
1125 return AE_SUPPORT;
1126
1127 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1128 handle, units, timeout));
1129
1130 if (timeout == ACPI_WAIT_FOREVER)
1131 jiffies = MAX_SCHEDULE_TIMEOUT;
1132 else
1133 jiffies = msecs_to_jiffies(timeout);
1134
1135 ret = down_timeout(sem, jiffies);
1136 if (ret)
1137 status = AE_TIME;
1138
1139 if (ACPI_FAILURE(status)) {
1140 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1141 "Failed to acquire semaphore[%p|%d|%d], %s",
1142 handle, units, timeout,
1143 acpi_format_exception(status)));
1144 } else {
1145 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1146 "Acquired semaphore[%p|%d|%d]", handle,
1147 units, timeout));
1148 }
1149
1150 return status;
1151 }
1152
1153 /*
1154 * TODO: Support for units > 1?
1155 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1156 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1157 {
1158 struct semaphore *sem = (struct semaphore *)handle;
1159
1160 if (!sem || (units < 1))
1161 return AE_BAD_PARAMETER;
1162
1163 if (units > 1)
1164 return AE_SUPPORT;
1165
1166 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1167 units));
1168
1169 up(sem);
1170
1171 return AE_OK;
1172 }
1173
1174 #ifdef ACPI_FUTURE_USAGE
acpi_os_get_line(char * buffer)1175 u32 acpi_os_get_line(char *buffer)
1176 {
1177
1178 #ifdef ENABLE_DEBUGGER
1179 if (acpi_in_debugger) {
1180 u32 chars;
1181
1182 kdb_read(buffer, sizeof(line_buf));
1183
1184 /* remove the CR kdb includes */
1185 chars = strlen(buffer) - 1;
1186 buffer[chars] = '\0';
1187 }
1188 #endif
1189
1190 return 0;
1191 }
1192 #endif /* ACPI_FUTURE_USAGE */
1193
acpi_os_signal(u32 function,void * info)1194 acpi_status acpi_os_signal(u32 function, void *info)
1195 {
1196 switch (function) {
1197 case ACPI_SIGNAL_FATAL:
1198 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1199 break;
1200 case ACPI_SIGNAL_BREAKPOINT:
1201 /*
1202 * AML Breakpoint
1203 * ACPI spec. says to treat it as a NOP unless
1204 * you are debugging. So if/when we integrate
1205 * AML debugger into the kernel debugger its
1206 * hook will go here. But until then it is
1207 * not useful to print anything on breakpoints.
1208 */
1209 break;
1210 default:
1211 break;
1212 }
1213
1214 return AE_OK;
1215 }
1216
acpi_os_name_setup(char * str)1217 static int __init acpi_os_name_setup(char *str)
1218 {
1219 char *p = acpi_os_name;
1220 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1221
1222 if (!str || !*str)
1223 return 0;
1224
1225 for (; count-- && str && *str; str++) {
1226 if (isalnum(*str) || *str == ' ' || *str == ':')
1227 *p++ = *str;
1228 else if (*str == '\'' || *str == '"')
1229 continue;
1230 else
1231 break;
1232 }
1233 *p = 0;
1234
1235 return 1;
1236
1237 }
1238
1239 __setup("acpi_os_name=", acpi_os_name_setup);
1240
1241 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1242 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1243
1244 struct osi_setup_entry {
1245 char string[OSI_STRING_LENGTH_MAX];
1246 bool enable;
1247 };
1248
1249 static struct osi_setup_entry __initdata
1250 osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1251 {"Module Device", true},
1252 {"Processor Device", true},
1253 {"3.0 _SCP Extensions", true},
1254 {"Processor Aggregator Device", true},
1255 };
1256
acpi_osi_setup(char * str)1257 void __init acpi_osi_setup(char *str)
1258 {
1259 struct osi_setup_entry *osi;
1260 bool enable = true;
1261 int i;
1262
1263 if (!acpi_gbl_create_osi_method)
1264 return;
1265
1266 if (str == NULL || *str == '\0') {
1267 printk(KERN_INFO PREFIX "_OSI method disabled\n");
1268 acpi_gbl_create_osi_method = FALSE;
1269 return;
1270 }
1271
1272 if (*str == '!') {
1273 str++;
1274 enable = false;
1275 }
1276
1277 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1278 osi = &osi_setup_entries[i];
1279 if (!strcmp(osi->string, str)) {
1280 osi->enable = enable;
1281 break;
1282 } else if (osi->string[0] == '\0') {
1283 osi->enable = enable;
1284 strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1285 break;
1286 }
1287 }
1288 }
1289
set_osi_linux(unsigned int enable)1290 static void __init set_osi_linux(unsigned int enable)
1291 {
1292 if (osi_linux.enable != enable)
1293 osi_linux.enable = enable;
1294
1295 if (osi_linux.enable)
1296 acpi_osi_setup("Linux");
1297 else
1298 acpi_osi_setup("!Linux");
1299
1300 return;
1301 }
1302
acpi_cmdline_osi_linux(unsigned int enable)1303 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1304 {
1305 osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1306 osi_linux.dmi = 0;
1307 set_osi_linux(enable);
1308
1309 return;
1310 }
1311
acpi_dmi_osi_linux(int enable,const struct dmi_system_id * d)1312 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1313 {
1314 printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1315
1316 if (enable == -1)
1317 return;
1318
1319 osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1320 set_osi_linux(enable);
1321
1322 return;
1323 }
1324
1325 /*
1326 * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1327 *
1328 * empty string disables _OSI
1329 * string starting with '!' disables that string
1330 * otherwise string is added to list, augmenting built-in strings
1331 */
acpi_osi_setup_late(void)1332 static void __init acpi_osi_setup_late(void)
1333 {
1334 struct osi_setup_entry *osi;
1335 char *str;
1336 int i;
1337 acpi_status status;
1338
1339 for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1340 osi = &osi_setup_entries[i];
1341 str = osi->string;
1342
1343 if (*str == '\0')
1344 break;
1345 if (osi->enable) {
1346 status = acpi_install_interface(str);
1347
1348 if (ACPI_SUCCESS(status))
1349 printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1350 } else {
1351 status = acpi_remove_interface(str);
1352
1353 if (ACPI_SUCCESS(status))
1354 printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1355 }
1356 }
1357 }
1358
osi_setup(char * str)1359 static int __init osi_setup(char *str)
1360 {
1361 if (str && !strcmp("Linux", str))
1362 acpi_cmdline_osi_linux(1);
1363 else if (str && !strcmp("!Linux", str))
1364 acpi_cmdline_osi_linux(0);
1365 else
1366 acpi_osi_setup(str);
1367
1368 return 1;
1369 }
1370
1371 __setup("acpi_osi=", osi_setup);
1372
1373 /* enable serialization to combat AE_ALREADY_EXISTS errors */
acpi_serialize_setup(char * str)1374 static int __init acpi_serialize_setup(char *str)
1375 {
1376 printk(KERN_INFO PREFIX "serialize enabled\n");
1377
1378 acpi_gbl_all_methods_serialized = TRUE;
1379
1380 return 1;
1381 }
1382
1383 __setup("acpi_serialize", acpi_serialize_setup);
1384
1385 /* Check of resource interference between native drivers and ACPI
1386 * OperationRegions (SystemIO and System Memory only).
1387 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1388 * in arbitrary AML code and can interfere with legacy drivers.
1389 * acpi_enforce_resources= can be set to:
1390 *
1391 * - strict (default) (2)
1392 * -> further driver trying to access the resources will not load
1393 * - lax (1)
1394 * -> further driver trying to access the resources will load, but you
1395 * get a system message that something might go wrong...
1396 *
1397 * - no (0)
1398 * -> ACPI Operation Region resources will not be registered
1399 *
1400 */
1401 #define ENFORCE_RESOURCES_STRICT 2
1402 #define ENFORCE_RESOURCES_LAX 1
1403 #define ENFORCE_RESOURCES_NO 0
1404
1405 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1406
acpi_enforce_resources_setup(char * str)1407 static int __init acpi_enforce_resources_setup(char *str)
1408 {
1409 if (str == NULL || *str == '\0')
1410 return 0;
1411
1412 if (!strcmp("strict", str))
1413 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1414 else if (!strcmp("lax", str))
1415 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1416 else if (!strcmp("no", str))
1417 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1418
1419 return 1;
1420 }
1421
1422 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1423
1424 /* Check for resource conflicts between ACPI OperationRegions and native
1425 * drivers */
acpi_check_resource_conflict(const struct resource * res)1426 int acpi_check_resource_conflict(const struct resource *res)
1427 {
1428 acpi_adr_space_type space_id;
1429 acpi_size length;
1430 u8 warn = 0;
1431 int clash = 0;
1432
1433 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1434 return 0;
1435 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1436 return 0;
1437
1438 if (res->flags & IORESOURCE_IO)
1439 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1440 else
1441 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1442
1443 length = res->end - res->start + 1;
1444 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1445 warn = 1;
1446 clash = acpi_check_address_range(space_id, res->start, length, warn);
1447
1448 if (clash) {
1449 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1450 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1451 printk(KERN_NOTICE "ACPI: This conflict may"
1452 " cause random problems and system"
1453 " instability\n");
1454 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1455 " for this device, you should use it instead of"
1456 " the native driver\n");
1457 }
1458 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1459 return -EBUSY;
1460 }
1461 return 0;
1462 }
1463 EXPORT_SYMBOL(acpi_check_resource_conflict);
1464
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1465 int acpi_check_region(resource_size_t start, resource_size_t n,
1466 const char *name)
1467 {
1468 struct resource res = {
1469 .start = start,
1470 .end = start + n - 1,
1471 .name = name,
1472 .flags = IORESOURCE_IO,
1473 };
1474
1475 return acpi_check_resource_conflict(&res);
1476 }
1477 EXPORT_SYMBOL(acpi_check_region);
1478
1479 /*
1480 * Let drivers know whether the resource checks are effective
1481 */
acpi_resources_are_enforced(void)1482 int acpi_resources_are_enforced(void)
1483 {
1484 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1485 }
1486 EXPORT_SYMBOL(acpi_resources_are_enforced);
1487
1488 /*
1489 * Deallocate the memory for a spinlock.
1490 */
acpi_os_delete_lock(acpi_spinlock handle)1491 void acpi_os_delete_lock(acpi_spinlock handle)
1492 {
1493 ACPI_FREE(handle);
1494 }
1495
1496 /*
1497 * Acquire a spinlock.
1498 *
1499 * handle is a pointer to the spinlock_t.
1500 */
1501
acpi_os_acquire_lock(acpi_spinlock lockp)1502 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1503 {
1504 acpi_cpu_flags flags;
1505 spin_lock_irqsave(lockp, flags);
1506 return flags;
1507 }
1508
1509 /*
1510 * Release a spinlock. See above.
1511 */
1512
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1513 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1514 {
1515 spin_unlock_irqrestore(lockp, flags);
1516 }
1517
1518 #ifndef ACPI_USE_LOCAL_CACHE
1519
1520 /*******************************************************************************
1521 *
1522 * FUNCTION: acpi_os_create_cache
1523 *
1524 * PARAMETERS: name - Ascii name for the cache
1525 * size - Size of each cached object
1526 * depth - Maximum depth of the cache (in objects) <ignored>
1527 * cache - Where the new cache object is returned
1528 *
1529 * RETURN: status
1530 *
1531 * DESCRIPTION: Create a cache object
1532 *
1533 ******************************************************************************/
1534
1535 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1536 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1537 {
1538 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1539 if (*cache == NULL)
1540 return AE_ERROR;
1541 else
1542 return AE_OK;
1543 }
1544
1545 /*******************************************************************************
1546 *
1547 * FUNCTION: acpi_os_purge_cache
1548 *
1549 * PARAMETERS: Cache - Handle to cache object
1550 *
1551 * RETURN: Status
1552 *
1553 * DESCRIPTION: Free all objects within the requested cache.
1554 *
1555 ******************************************************************************/
1556
acpi_os_purge_cache(acpi_cache_t * cache)1557 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1558 {
1559 kmem_cache_shrink(cache);
1560 return (AE_OK);
1561 }
1562
1563 /*******************************************************************************
1564 *
1565 * FUNCTION: acpi_os_delete_cache
1566 *
1567 * PARAMETERS: Cache - Handle to cache object
1568 *
1569 * RETURN: Status
1570 *
1571 * DESCRIPTION: Free all objects within the requested cache and delete the
1572 * cache object.
1573 *
1574 ******************************************************************************/
1575
acpi_os_delete_cache(acpi_cache_t * cache)1576 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1577 {
1578 kmem_cache_destroy(cache);
1579 return (AE_OK);
1580 }
1581
1582 /*******************************************************************************
1583 *
1584 * FUNCTION: acpi_os_release_object
1585 *
1586 * PARAMETERS: Cache - Handle to cache object
1587 * Object - The object to be released
1588 *
1589 * RETURN: None
1590 *
1591 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1592 * the object is deleted.
1593 *
1594 ******************************************************************************/
1595
acpi_os_release_object(acpi_cache_t * cache,void * object)1596 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1597 {
1598 kmem_cache_free(cache, object);
1599 return (AE_OK);
1600 }
1601 #endif
1602
acpi_os_initialize(void)1603 acpi_status __init acpi_os_initialize(void)
1604 {
1605 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1606 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1607 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1608 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1609
1610 return AE_OK;
1611 }
1612
acpi_os_initialize1(void)1613 acpi_status __init acpi_os_initialize1(void)
1614 {
1615 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1616 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1617 kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1618 BUG_ON(!kacpid_wq);
1619 BUG_ON(!kacpi_notify_wq);
1620 BUG_ON(!kacpi_hotplug_wq);
1621 acpi_install_interface_handler(acpi_osi_handler);
1622 acpi_osi_setup_late();
1623 return AE_OK;
1624 }
1625
acpi_os_terminate(void)1626 acpi_status acpi_os_terminate(void)
1627 {
1628 if (acpi_irq_handler) {
1629 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1630 acpi_irq_handler);
1631 }
1632
1633 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1634 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1635 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1636 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1637
1638 destroy_workqueue(kacpid_wq);
1639 destroy_workqueue(kacpi_notify_wq);
1640 destroy_workqueue(kacpi_hotplug_wq);
1641
1642 return AE_OK;
1643 }
1644