1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
68
69 /*
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
76 */
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
78
79 /*
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
83 *
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
87 * reporting).
88 */
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
90
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2))
93
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100 * On SMP, spin_trylock is sufficient protection.
101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102 */
103 #define pcp_trylock_prepare(flags) do { } while (0)
104 #define pcp_trylock_finish(flag) do { } while (0)
105 #else
106
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags) local_irq_save(flags)
109 #define pcp_trylock_finish(flags) local_irq_restore(flags)
110 #endif
111
112 /*
113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114 * a migration causing the wrong PCP to be locked and remote memory being
115 * potentially allocated, pin the task to the CPU for the lookup+lock.
116 * preempt_disable is used on !RT because it is faster than migrate_disable.
117 * migrate_disable is used on RT because otherwise RT spinlock usage is
118 * interfered with and a high priority task cannot preempt the allocator.
119 */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin() preempt_disable()
122 #define pcpu_task_unpin() preempt_enable()
123 #else
124 #define pcpu_task_pin() migrate_disable()
125 #define pcpu_task_unpin() migrate_enable()
126 #endif
127
128 /*
129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130 * Return value should be used with equivalent unlock helper.
131 */
132 #define pcpu_spin_lock(type, member, ptr) \
133 ({ \
134 type *_ret; \
135 pcpu_task_pin(); \
136 _ret = this_cpu_ptr(ptr); \
137 spin_lock(&_ret->member); \
138 _ret; \
139 })
140
141 #define pcpu_spin_trylock(type, member, ptr) \
142 ({ \
143 type *_ret; \
144 pcpu_task_pin(); \
145 _ret = this_cpu_ptr(ptr); \
146 if (!spin_trylock(&_ret->member)) { \
147 pcpu_task_unpin(); \
148 _ret = NULL; \
149 } \
150 _ret; \
151 })
152
153 #define pcpu_spin_unlock(member, ptr) \
154 ({ \
155 spin_unlock(&ptr->member); \
156 pcpu_task_unpin(); \
157 })
158
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr) \
161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162
163 #define pcp_spin_trylock(ptr) \
164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165
166 #define pcp_spin_unlock(ptr) \
167 pcpu_spin_unlock(lock, ptr)
168
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181 * defined in <linux/topology.h>.
182 */
183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193
194 /*
195 * Array of node states.
196 */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 [N_POSSIBLE] = NODE_MASK_ALL,
199 [N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 [N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 [N_MEMORY] = { { [0] = 1UL } },
206 [N_CPU] = { { [0] = 1UL } },
207 #endif /* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 fpi_t fpi_flags);
219
220 /*
221 * results with 256, 32 in the lowmem_reserve sysctl:
222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223 * 1G machine -> (16M dma, 784M normal, 224M high)
224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227 *
228 * TBD: should special case ZONE_DMA32 machines here - in those we normally
229 * don't need any ZONE_NORMAL reservation
230 */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 [ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 [ZONE_DMA32] = 256,
237 #endif
238 [ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 [ZONE_HIGHMEM] = 0,
241 #endif
242 [ZONE_MOVABLE] = 0,
243 };
244
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 "DMA32",
251 #endif
252 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 "HighMem",
255 #endif
256 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 "Device",
259 #endif
260 };
261
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 "Unmovable",
264 "Movable",
265 "Reclaimable",
266 "HighAtomic",
267 #ifdef CONFIG_CMA
268 "CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 "Isolate",
272 #endif
273 };
274
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296
297 int page_group_by_mobility_disabled __read_mostly;
298
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301 * During boot we initialize deferred pages on-demand, as needed, but once
302 * page_alloc_init_late() has finished, the deferred pages are all initialized,
303 * and we can permanently disable that path.
304 */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306
deferred_pages_enabled(void)307 static inline bool deferred_pages_enabled(void)
308 {
309 return static_branch_unlikely(&deferred_pages);
310 }
311
312 /*
313 * deferred_grow_zone() is __init, but it is called from
314 * get_page_from_freelist() during early boot until deferred_pages permanently
315 * disables this call. This is why we have refdata wrapper to avoid warning,
316 * and to ensure that the function body gets unloaded.
317 */
318 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 return deferred_grow_zone(zone, order);
322 }
323 #else
deferred_pages_enabled(void)324 static inline bool deferred_pages_enabled(void)
325 {
326 return false;
327 }
328
_deferred_grow_zone(struct zone * zone,unsigned int order)329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345
pfn_to_bitidx(const struct page * page,unsigned long pfn)346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 pfn &= (PAGES_PER_SECTION-1);
350 #else
351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355
is_standalone_pb_bit(enum pageblock_bits pb_bit)356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit)
357 {
358 return pb_bit > PB_migrate_end && pb_bit < __NR_PAGEBLOCK_BITS;
359 }
360
361 static __always_inline void
get_pfnblock_bitmap_bitidx(const struct page * page,unsigned long pfn,unsigned long ** bitmap_word,unsigned long * bitidx)362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn,
363 unsigned long **bitmap_word, unsigned long *bitidx)
364 {
365 unsigned long *bitmap;
366 unsigned long word_bitidx;
367
368 #ifdef CONFIG_MEMORY_ISOLATION
369 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8);
370 #else
371 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
372 #endif
373 BUILD_BUG_ON(__MIGRATE_TYPE_END >= (1 << PB_migratetype_bits));
374 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
375
376 bitmap = get_pageblock_bitmap(page, pfn);
377 *bitidx = pfn_to_bitidx(page, pfn);
378 word_bitidx = *bitidx / BITS_PER_LONG;
379 *bitidx &= (BITS_PER_LONG - 1);
380 *bitmap_word = &bitmap[word_bitidx];
381 }
382
383
384 /**
385 * __get_pfnblock_flags_mask - Return the requested group of flags for
386 * a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @pfn: The target page frame number
389 * @mask: mask of bits that the caller is interested in
390 *
391 * Return: pageblock_bits flags
392 */
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)393 static unsigned long __get_pfnblock_flags_mask(const struct page *page,
394 unsigned long pfn,
395 unsigned long mask)
396 {
397 unsigned long *bitmap_word;
398 unsigned long bitidx;
399 unsigned long word;
400
401 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
402 /*
403 * This races, without locks, with set_pfnblock_migratetype(). Ensure
404 * a consistent read of the memory array, so that results, even though
405 * racy, are not corrupted.
406 */
407 word = READ_ONCE(*bitmap_word);
408 return (word >> bitidx) & mask;
409 }
410
411 /**
412 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set
413 * @page: The page within the block of interest
414 * @pfn: The target page frame number
415 * @pb_bit: pageblock bit to check
416 *
417 * Return: true if the bit is set, otherwise false
418 */
get_pfnblock_bit(const struct page * page,unsigned long pfn,enum pageblock_bits pb_bit)419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn,
420 enum pageblock_bits pb_bit)
421 {
422 unsigned long *bitmap_word;
423 unsigned long bitidx;
424
425 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
426 return false;
427
428 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
429
430 return test_bit(bitidx + pb_bit, bitmap_word);
431 }
432
433 /**
434 * get_pfnblock_migratetype - Return the migratetype of a pageblock
435 * @page: The page within the block of interest
436 * @pfn: The target page frame number
437 *
438 * Return: The migratetype of the pageblock
439 *
440 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn
441 * to save a call to page_to_pfn().
442 */
443 __always_inline enum migratetype
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn)
445 {
446 unsigned long mask = MIGRATETYPE_AND_ISO_MASK;
447 unsigned long flags;
448
449 flags = __get_pfnblock_flags_mask(page, pfn, mask);
450
451 #ifdef CONFIG_MEMORY_ISOLATION
452 if (flags & BIT(PB_migrate_isolate))
453 return MIGRATE_ISOLATE;
454 #endif
455 return flags & MIGRATETYPE_MASK;
456 }
457
458 /**
459 * __set_pfnblock_flags_mask - Set the requested group of flags for
460 * a pageblock_nr_pages block of pages
461 * @page: The page within the block of interest
462 * @pfn: The target page frame number
463 * @flags: The flags to set
464 * @mask: mask of bits that the caller is interested in
465 */
__set_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long flags,unsigned long mask)466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn,
467 unsigned long flags, unsigned long mask)
468 {
469 unsigned long *bitmap_word;
470 unsigned long bitidx;
471 unsigned long word;
472
473 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
474
475 mask <<= bitidx;
476 flags <<= bitidx;
477
478 word = READ_ONCE(*bitmap_word);
479 do {
480 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags));
481 }
482
483 /**
484 * set_pfnblock_bit - Set a standalone bit of a pageblock
485 * @page: The page within the block of interest
486 * @pfn: The target page frame number
487 * @pb_bit: pageblock bit to set
488 */
set_pfnblock_bit(const struct page * page,unsigned long pfn,enum pageblock_bits pb_bit)489 void set_pfnblock_bit(const struct page *page, unsigned long pfn,
490 enum pageblock_bits pb_bit)
491 {
492 unsigned long *bitmap_word;
493 unsigned long bitidx;
494
495 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
496 return;
497
498 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
499
500 set_bit(bitidx + pb_bit, bitmap_word);
501 }
502
503 /**
504 * clear_pfnblock_bit - Clear a standalone bit of a pageblock
505 * @page: The page within the block of interest
506 * @pfn: The target page frame number
507 * @pb_bit: pageblock bit to clear
508 */
clear_pfnblock_bit(const struct page * page,unsigned long pfn,enum pageblock_bits pb_bit)509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn,
510 enum pageblock_bits pb_bit)
511 {
512 unsigned long *bitmap_word;
513 unsigned long bitidx;
514
515 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
516 return;
517
518 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
519
520 clear_bit(bitidx + pb_bit, bitmap_word);
521 }
522
523 /**
524 * set_pageblock_migratetype - Set the migratetype of a pageblock
525 * @page: The page within the block of interest
526 * @migratetype: migratetype to set
527 */
set_pageblock_migratetype(struct page * page,enum migratetype migratetype)528 static void set_pageblock_migratetype(struct page *page,
529 enum migratetype migratetype)
530 {
531 if (unlikely(page_group_by_mobility_disabled &&
532 migratetype < MIGRATE_PCPTYPES))
533 migratetype = MIGRATE_UNMOVABLE;
534
535 #ifdef CONFIG_MEMORY_ISOLATION
536 if (migratetype == MIGRATE_ISOLATE) {
537 VM_WARN_ONCE(1,
538 "Use set_pageblock_isolate() for pageblock isolation");
539 return;
540 }
541 VM_WARN_ONCE(get_pfnblock_bit(page, page_to_pfn(page),
542 PB_migrate_isolate),
543 "Use clear_pageblock_isolate() to unisolate pageblock");
544 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */
545 #endif
546 __set_pfnblock_flags_mask(page, page_to_pfn(page),
547 (unsigned long)migratetype,
548 MIGRATETYPE_AND_ISO_MASK);
549 }
550
init_pageblock_migratetype(struct page * page,enum migratetype migratetype,bool isolate)551 void __meminit init_pageblock_migratetype(struct page *page,
552 enum migratetype migratetype,
553 bool isolate)
554 {
555 unsigned long flags;
556
557 if (unlikely(page_group_by_mobility_disabled &&
558 migratetype < MIGRATE_PCPTYPES))
559 migratetype = MIGRATE_UNMOVABLE;
560
561 flags = migratetype;
562
563 #ifdef CONFIG_MEMORY_ISOLATION
564 if (migratetype == MIGRATE_ISOLATE) {
565 VM_WARN_ONCE(
566 1,
567 "Set isolate=true to isolate pageblock with a migratetype");
568 return;
569 }
570 if (isolate)
571 flags |= BIT(PB_migrate_isolate);
572 #endif
573 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags,
574 MIGRATETYPE_AND_ISO_MASK);
575 }
576
577 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)578 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
579 {
580 int ret;
581 unsigned seq;
582 unsigned long pfn = page_to_pfn(page);
583 unsigned long sp, start_pfn;
584
585 do {
586 seq = zone_span_seqbegin(zone);
587 start_pfn = zone->zone_start_pfn;
588 sp = zone->spanned_pages;
589 ret = !zone_spans_pfn(zone, pfn);
590 } while (zone_span_seqretry(zone, seq));
591
592 if (ret)
593 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
594 pfn, zone_to_nid(zone), zone->name,
595 start_pfn, start_pfn + sp);
596
597 return ret;
598 }
599
600 /*
601 * Temporary debugging check for pages not lying within a given zone.
602 */
bad_range(struct zone * zone,struct page * page)603 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
604 {
605 if (page_outside_zone_boundaries(zone, page))
606 return true;
607 if (zone != page_zone(page))
608 return true;
609
610 return false;
611 }
612 #else
bad_range(struct zone * zone,struct page * page)613 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
614 {
615 return false;
616 }
617 #endif
618
bad_page(struct page * page,const char * reason)619 static void bad_page(struct page *page, const char *reason)
620 {
621 static unsigned long resume;
622 static unsigned long nr_shown;
623 static unsigned long nr_unshown;
624
625 /*
626 * Allow a burst of 60 reports, then keep quiet for that minute;
627 * or allow a steady drip of one report per second.
628 */
629 if (nr_shown == 60) {
630 if (time_before(jiffies, resume)) {
631 nr_unshown++;
632 goto out;
633 }
634 if (nr_unshown) {
635 pr_alert(
636 "BUG: Bad page state: %lu messages suppressed\n",
637 nr_unshown);
638 nr_unshown = 0;
639 }
640 nr_shown = 0;
641 }
642 if (nr_shown++ == 0)
643 resume = jiffies + 60 * HZ;
644
645 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
646 current->comm, page_to_pfn(page));
647 dump_page(page, reason);
648
649 print_modules();
650 dump_stack();
651 out:
652 /* Leave bad fields for debug, except PageBuddy could make trouble */
653 if (PageBuddy(page))
654 __ClearPageBuddy(page);
655 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
656 }
657
order_to_pindex(int migratetype,int order)658 static inline unsigned int order_to_pindex(int migratetype, int order)
659 {
660
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 bool movable;
663 if (order > PAGE_ALLOC_COSTLY_ORDER) {
664 VM_BUG_ON(order != HPAGE_PMD_ORDER);
665
666 movable = migratetype == MIGRATE_MOVABLE;
667
668 return NR_LOWORDER_PCP_LISTS + movable;
669 }
670 #else
671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
672 #endif
673
674 return (MIGRATE_PCPTYPES * order) + migratetype;
675 }
676
pindex_to_order(unsigned int pindex)677 static inline int pindex_to_order(unsigned int pindex)
678 {
679 int order = pindex / MIGRATE_PCPTYPES;
680
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 if (pindex >= NR_LOWORDER_PCP_LISTS)
683 order = HPAGE_PMD_ORDER;
684 #else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687
688 return order;
689 }
690
pcp_allowed_order(unsigned int order)691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == HPAGE_PMD_ORDER)
697 return true;
698 #endif
699 return false;
700 }
701
702 /*
703 * Higher-order pages are called "compound pages". They are structured thusly:
704 *
705 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
706 *
707 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
708 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
709 *
710 * The first tail page's ->compound_order holds the order of allocation.
711 * This usage means that zero-order pages may not be compound.
712 */
713
prep_compound_page(struct page * page,unsigned int order)714 void prep_compound_page(struct page *page, unsigned int order)
715 {
716 int i;
717 int nr_pages = 1 << order;
718
719 __SetPageHead(page);
720 for (i = 1; i < nr_pages; i++)
721 prep_compound_tail(page, i);
722
723 prep_compound_head(page, order);
724 }
725
set_buddy_order(struct page * page,unsigned int order)726 static inline void set_buddy_order(struct page *page, unsigned int order)
727 {
728 set_page_private(page, order);
729 __SetPageBuddy(page);
730 }
731
732 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)733 static inline struct capture_control *task_capc(struct zone *zone)
734 {
735 struct capture_control *capc = current->capture_control;
736
737 return unlikely(capc) &&
738 !(current->flags & PF_KTHREAD) &&
739 !capc->page &&
740 capc->cc->zone == zone ? capc : NULL;
741 }
742
743 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)744 compaction_capture(struct capture_control *capc, struct page *page,
745 int order, int migratetype)
746 {
747 if (!capc || order != capc->cc->order)
748 return false;
749
750 /* Do not accidentally pollute CMA or isolated regions*/
751 if (is_migrate_cma(migratetype) ||
752 is_migrate_isolate(migratetype))
753 return false;
754
755 /*
756 * Do not let lower order allocations pollute a movable pageblock
757 * unless compaction is also requesting movable pages.
758 * This might let an unmovable request use a reclaimable pageblock
759 * and vice-versa but no more than normal fallback logic which can
760 * have trouble finding a high-order free page.
761 */
762 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
763 capc->cc->migratetype != MIGRATE_MOVABLE)
764 return false;
765
766 if (migratetype != capc->cc->migratetype)
767 trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
768 capc->cc->migratetype, migratetype);
769
770 capc->page = page;
771 return true;
772 }
773
774 #else
task_capc(struct zone * zone)775 static inline struct capture_control *task_capc(struct zone *zone)
776 {
777 return NULL;
778 }
779
780 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)781 compaction_capture(struct capture_control *capc, struct page *page,
782 int order, int migratetype)
783 {
784 return false;
785 }
786 #endif /* CONFIG_COMPACTION */
787
account_freepages(struct zone * zone,int nr_pages,int migratetype)788 static inline void account_freepages(struct zone *zone, int nr_pages,
789 int migratetype)
790 {
791 lockdep_assert_held(&zone->lock);
792
793 if (is_migrate_isolate(migratetype))
794 return;
795
796 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
797
798 if (is_migrate_cma(migratetype))
799 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
800 else if (is_migrate_highatomic(migratetype))
801 WRITE_ONCE(zone->nr_free_highatomic,
802 zone->nr_free_highatomic + nr_pages);
803 }
804
805 /* Used for pages not on another list */
__add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)806 static inline void __add_to_free_list(struct page *page, struct zone *zone,
807 unsigned int order, int migratetype,
808 bool tail)
809 {
810 struct free_area *area = &zone->free_area[order];
811 int nr_pages = 1 << order;
812
813 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
814 "page type is %d, passed migratetype is %d (nr=%d)\n",
815 get_pageblock_migratetype(page), migratetype, nr_pages);
816
817 if (tail)
818 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
819 else
820 list_add(&page->buddy_list, &area->free_list[migratetype]);
821 area->nr_free++;
822
823 if (order >= pageblock_order && !is_migrate_isolate(migratetype))
824 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
825 }
826
827 /*
828 * Used for pages which are on another list. Move the pages to the tail
829 * of the list - so the moved pages won't immediately be considered for
830 * allocation again (e.g., optimization for memory onlining).
831 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int old_mt,int new_mt)832 static inline void move_to_free_list(struct page *page, struct zone *zone,
833 unsigned int order, int old_mt, int new_mt)
834 {
835 struct free_area *area = &zone->free_area[order];
836 int nr_pages = 1 << order;
837
838 /* Free page moving can fail, so it happens before the type update */
839 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
840 "page type is %d, passed migratetype is %d (nr=%d)\n",
841 get_pageblock_migratetype(page), old_mt, nr_pages);
842
843 list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
844
845 account_freepages(zone, -nr_pages, old_mt);
846 account_freepages(zone, nr_pages, new_mt);
847
848 if (order >= pageblock_order &&
849 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
850 if (!is_migrate_isolate(old_mt))
851 nr_pages = -nr_pages;
852 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
853 }
854 }
855
__del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)856 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
857 unsigned int order, int migratetype)
858 {
859 int nr_pages = 1 << order;
860
861 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
862 "page type is %d, passed migratetype is %d (nr=%d)\n",
863 get_pageblock_migratetype(page), migratetype, nr_pages);
864
865 /* clear reported state and update reported page count */
866 if (page_reported(page))
867 __ClearPageReported(page);
868
869 list_del(&page->buddy_list);
870 __ClearPageBuddy(page);
871 set_page_private(page, 0);
872 zone->free_area[order].nr_free--;
873
874 if (order >= pageblock_order && !is_migrate_isolate(migratetype))
875 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
876 }
877
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)878 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
879 unsigned int order, int migratetype)
880 {
881 __del_page_from_free_list(page, zone, order, migratetype);
882 account_freepages(zone, -(1 << order), migratetype);
883 }
884
get_page_from_free_area(struct free_area * area,int migratetype)885 static inline struct page *get_page_from_free_area(struct free_area *area,
886 int migratetype)
887 {
888 return list_first_entry_or_null(&area->free_list[migratetype],
889 struct page, buddy_list);
890 }
891
892 /*
893 * If this is less than the 2nd largest possible page, check if the buddy
894 * of the next-higher order is free. If it is, it's possible
895 * that pages are being freed that will coalesce soon. In case,
896 * that is happening, add the free page to the tail of the list
897 * so it's less likely to be used soon and more likely to be merged
898 * as a 2-level higher order page
899 */
900 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)901 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
902 struct page *page, unsigned int order)
903 {
904 unsigned long higher_page_pfn;
905 struct page *higher_page;
906
907 if (order >= MAX_PAGE_ORDER - 1)
908 return false;
909
910 higher_page_pfn = buddy_pfn & pfn;
911 higher_page = page + (higher_page_pfn - pfn);
912
913 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
914 NULL) != NULL;
915 }
916
917 /*
918 * Freeing function for a buddy system allocator.
919 *
920 * The concept of a buddy system is to maintain direct-mapped table
921 * (containing bit values) for memory blocks of various "orders".
922 * The bottom level table contains the map for the smallest allocatable
923 * units of memory (here, pages), and each level above it describes
924 * pairs of units from the levels below, hence, "buddies".
925 * At a high level, all that happens here is marking the table entry
926 * at the bottom level available, and propagating the changes upward
927 * as necessary, plus some accounting needed to play nicely with other
928 * parts of the VM system.
929 * At each level, we keep a list of pages, which are heads of continuous
930 * free pages of length of (1 << order) and marked with PageBuddy.
931 * Page's order is recorded in page_private(page) field.
932 * So when we are allocating or freeing one, we can derive the state of the
933 * other. That is, if we allocate a small block, and both were
934 * free, the remainder of the region must be split into blocks.
935 * If a block is freed, and its buddy is also free, then this
936 * triggers coalescing into a block of larger size.
937 *
938 * -- nyc
939 */
940
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)941 static inline void __free_one_page(struct page *page,
942 unsigned long pfn,
943 struct zone *zone, unsigned int order,
944 int migratetype, fpi_t fpi_flags)
945 {
946 struct capture_control *capc = task_capc(zone);
947 unsigned long buddy_pfn = 0;
948 unsigned long combined_pfn;
949 struct page *buddy;
950 bool to_tail;
951
952 VM_BUG_ON(!zone_is_initialized(zone));
953 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
954
955 VM_BUG_ON(migratetype == -1);
956 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
957 VM_BUG_ON_PAGE(bad_range(zone, page), page);
958
959 account_freepages(zone, 1 << order, migratetype);
960
961 while (order < MAX_PAGE_ORDER) {
962 int buddy_mt = migratetype;
963
964 if (compaction_capture(capc, page, order, migratetype)) {
965 account_freepages(zone, -(1 << order), migratetype);
966 return;
967 }
968
969 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
970 if (!buddy)
971 goto done_merging;
972
973 if (unlikely(order >= pageblock_order)) {
974 /*
975 * We want to prevent merge between freepages on pageblock
976 * without fallbacks and normal pageblock. Without this,
977 * pageblock isolation could cause incorrect freepage or CMA
978 * accounting or HIGHATOMIC accounting.
979 */
980 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
981
982 if (migratetype != buddy_mt &&
983 (!migratetype_is_mergeable(migratetype) ||
984 !migratetype_is_mergeable(buddy_mt)))
985 goto done_merging;
986 }
987
988 /*
989 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
990 * merge with it and move up one order.
991 */
992 if (page_is_guard(buddy))
993 clear_page_guard(zone, buddy, order);
994 else
995 __del_page_from_free_list(buddy, zone, order, buddy_mt);
996
997 if (unlikely(buddy_mt != migratetype)) {
998 /*
999 * Match buddy type. This ensures that an
1000 * expand() down the line puts the sub-blocks
1001 * on the right freelists.
1002 */
1003 set_pageblock_migratetype(buddy, migratetype);
1004 }
1005
1006 combined_pfn = buddy_pfn & pfn;
1007 page = page + (combined_pfn - pfn);
1008 pfn = combined_pfn;
1009 order++;
1010 }
1011
1012 done_merging:
1013 set_buddy_order(page, order);
1014
1015 if (fpi_flags & FPI_TO_TAIL)
1016 to_tail = true;
1017 else if (is_shuffle_order(order))
1018 to_tail = shuffle_pick_tail();
1019 else
1020 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1021
1022 __add_to_free_list(page, zone, order, migratetype, to_tail);
1023
1024 /* Notify page reporting subsystem of freed page */
1025 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1026 page_reporting_notify_free(order);
1027 }
1028
1029 /*
1030 * A bad page could be due to a number of fields. Instead of multiple branches,
1031 * try and check multiple fields with one check. The caller must do a detailed
1032 * check if necessary.
1033 */
page_expected_state(struct page * page,unsigned long check_flags)1034 static inline bool page_expected_state(struct page *page,
1035 unsigned long check_flags)
1036 {
1037 if (unlikely(atomic_read(&page->_mapcount) != -1))
1038 return false;
1039
1040 if (unlikely((unsigned long)page->mapping |
1041 page_ref_count(page) |
1042 #ifdef CONFIG_MEMCG
1043 page->memcg_data |
1044 #endif
1045 page_pool_page_is_pp(page) |
1046 (page->flags & check_flags)))
1047 return false;
1048
1049 return true;
1050 }
1051
page_bad_reason(struct page * page,unsigned long flags)1052 static const char *page_bad_reason(struct page *page, unsigned long flags)
1053 {
1054 const char *bad_reason = NULL;
1055
1056 if (unlikely(atomic_read(&page->_mapcount) != -1))
1057 bad_reason = "nonzero mapcount";
1058 if (unlikely(page->mapping != NULL))
1059 bad_reason = "non-NULL mapping";
1060 if (unlikely(page_ref_count(page) != 0))
1061 bad_reason = "nonzero _refcount";
1062 if (unlikely(page->flags & flags)) {
1063 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1064 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1065 else
1066 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1067 }
1068 #ifdef CONFIG_MEMCG
1069 if (unlikely(page->memcg_data))
1070 bad_reason = "page still charged to cgroup";
1071 #endif
1072 if (unlikely(page_pool_page_is_pp(page)))
1073 bad_reason = "page_pool leak";
1074 return bad_reason;
1075 }
1076
free_page_is_bad(struct page * page)1077 static inline bool free_page_is_bad(struct page *page)
1078 {
1079 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1080 return false;
1081
1082 /* Something has gone sideways, find it */
1083 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1084 return true;
1085 }
1086
is_check_pages_enabled(void)1087 static inline bool is_check_pages_enabled(void)
1088 {
1089 return static_branch_unlikely(&check_pages_enabled);
1090 }
1091
free_tail_page_prepare(struct page * head_page,struct page * page)1092 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1093 {
1094 struct folio *folio = (struct folio *)head_page;
1095 int ret = 1;
1096
1097 /*
1098 * We rely page->lru.next never has bit 0 set, unless the page
1099 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1100 */
1101 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1102
1103 if (!is_check_pages_enabled()) {
1104 ret = 0;
1105 goto out;
1106 }
1107 switch (page - head_page) {
1108 case 1:
1109 /* the first tail page: these may be in place of ->mapping */
1110 if (unlikely(folio_large_mapcount(folio))) {
1111 bad_page(page, "nonzero large_mapcount");
1112 goto out;
1113 }
1114 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
1115 unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1116 bad_page(page, "nonzero nr_pages_mapped");
1117 goto out;
1118 }
1119 if (IS_ENABLED(CONFIG_MM_ID)) {
1120 if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
1121 bad_page(page, "nonzero mm mapcount 0");
1122 goto out;
1123 }
1124 if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
1125 bad_page(page, "nonzero mm mapcount 1");
1126 goto out;
1127 }
1128 }
1129 if (IS_ENABLED(CONFIG_64BIT)) {
1130 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1131 bad_page(page, "nonzero entire_mapcount");
1132 goto out;
1133 }
1134 if (unlikely(atomic_read(&folio->_pincount))) {
1135 bad_page(page, "nonzero pincount");
1136 goto out;
1137 }
1138 }
1139 break;
1140 case 2:
1141 /* the second tail page: deferred_list overlaps ->mapping */
1142 if (unlikely(!list_empty(&folio->_deferred_list))) {
1143 bad_page(page, "on deferred list");
1144 goto out;
1145 }
1146 if (!IS_ENABLED(CONFIG_64BIT)) {
1147 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1148 bad_page(page, "nonzero entire_mapcount");
1149 goto out;
1150 }
1151 if (unlikely(atomic_read(&folio->_pincount))) {
1152 bad_page(page, "nonzero pincount");
1153 goto out;
1154 }
1155 }
1156 break;
1157 case 3:
1158 /* the third tail page: hugetlb specifics overlap ->mappings */
1159 if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1160 break;
1161 fallthrough;
1162 default:
1163 if (page->mapping != TAIL_MAPPING) {
1164 bad_page(page, "corrupted mapping in tail page");
1165 goto out;
1166 }
1167 break;
1168 }
1169 if (unlikely(!PageTail(page))) {
1170 bad_page(page, "PageTail not set");
1171 goto out;
1172 }
1173 if (unlikely(compound_head(page) != head_page)) {
1174 bad_page(page, "compound_head not consistent");
1175 goto out;
1176 }
1177 ret = 0;
1178 out:
1179 page->mapping = NULL;
1180 clear_compound_head(page);
1181 return ret;
1182 }
1183
1184 /*
1185 * Skip KASAN memory poisoning when either:
1186 *
1187 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1188 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1189 * using page tags instead (see below).
1190 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1191 * that error detection is disabled for accesses via the page address.
1192 *
1193 * Pages will have match-all tags in the following circumstances:
1194 *
1195 * 1. Pages are being initialized for the first time, including during deferred
1196 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1197 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1198 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1199 * 3. The allocation was excluded from being checked due to sampling,
1200 * see the call to kasan_unpoison_pages.
1201 *
1202 * Poisoning pages during deferred memory init will greatly lengthen the
1203 * process and cause problem in large memory systems as the deferred pages
1204 * initialization is done with interrupt disabled.
1205 *
1206 * Assuming that there will be no reference to those newly initialized
1207 * pages before they are ever allocated, this should have no effect on
1208 * KASAN memory tracking as the poison will be properly inserted at page
1209 * allocation time. The only corner case is when pages are allocated by
1210 * on-demand allocation and then freed again before the deferred pages
1211 * initialization is done, but this is not likely to happen.
1212 */
should_skip_kasan_poison(struct page * page)1213 static inline bool should_skip_kasan_poison(struct page *page)
1214 {
1215 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1216 return deferred_pages_enabled();
1217
1218 return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1219 }
1220
kernel_init_pages(struct page * page,int numpages)1221 static void kernel_init_pages(struct page *page, int numpages)
1222 {
1223 int i;
1224
1225 /* s390's use of memset() could override KASAN redzones. */
1226 kasan_disable_current();
1227 for (i = 0; i < numpages; i++)
1228 clear_highpage_kasan_tagged(page + i);
1229 kasan_enable_current();
1230 }
1231
1232 #ifdef CONFIG_MEM_ALLOC_PROFILING
1233
1234 /* Should be called only if mem_alloc_profiling_enabled() */
__clear_page_tag_ref(struct page * page)1235 void __clear_page_tag_ref(struct page *page)
1236 {
1237 union pgtag_ref_handle handle;
1238 union codetag_ref ref;
1239
1240 if (get_page_tag_ref(page, &ref, &handle)) {
1241 set_codetag_empty(&ref);
1242 update_page_tag_ref(handle, &ref);
1243 put_page_tag_ref(handle);
1244 }
1245 }
1246
1247 /* Should be called only if mem_alloc_profiling_enabled() */
1248 static noinline
__pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1249 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1250 unsigned int nr)
1251 {
1252 union pgtag_ref_handle handle;
1253 union codetag_ref ref;
1254
1255 if (get_page_tag_ref(page, &ref, &handle)) {
1256 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1257 update_page_tag_ref(handle, &ref);
1258 put_page_tag_ref(handle);
1259 }
1260 }
1261
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1262 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1263 unsigned int nr)
1264 {
1265 if (mem_alloc_profiling_enabled())
1266 __pgalloc_tag_add(page, task, nr);
1267 }
1268
1269 /* Should be called only if mem_alloc_profiling_enabled() */
1270 static noinline
__pgalloc_tag_sub(struct page * page,unsigned int nr)1271 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1272 {
1273 union pgtag_ref_handle handle;
1274 union codetag_ref ref;
1275
1276 if (get_page_tag_ref(page, &ref, &handle)) {
1277 alloc_tag_sub(&ref, PAGE_SIZE * nr);
1278 update_page_tag_ref(handle, &ref);
1279 put_page_tag_ref(handle);
1280 }
1281 }
1282
pgalloc_tag_sub(struct page * page,unsigned int nr)1283 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1284 {
1285 if (mem_alloc_profiling_enabled())
1286 __pgalloc_tag_sub(page, nr);
1287 }
1288
1289 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
pgalloc_tag_sub_pages(struct alloc_tag * tag,unsigned int nr)1290 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1291 {
1292 if (tag)
1293 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1294 }
1295
1296 #else /* CONFIG_MEM_ALLOC_PROFILING */
1297
pgalloc_tag_add(struct page * page,struct task_struct * task,unsigned int nr)1298 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1299 unsigned int nr) {}
pgalloc_tag_sub(struct page * page,unsigned int nr)1300 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
pgalloc_tag_sub_pages(struct alloc_tag * tag,unsigned int nr)1301 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1302
1303 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1304
free_pages_prepare(struct page * page,unsigned int order)1305 __always_inline bool free_pages_prepare(struct page *page,
1306 unsigned int order)
1307 {
1308 int bad = 0;
1309 bool skip_kasan_poison = should_skip_kasan_poison(page);
1310 bool init = want_init_on_free();
1311 bool compound = PageCompound(page);
1312 struct folio *folio = page_folio(page);
1313
1314 VM_BUG_ON_PAGE(PageTail(page), page);
1315
1316 trace_mm_page_free(page, order);
1317 kmsan_free_page(page, order);
1318
1319 if (memcg_kmem_online() && PageMemcgKmem(page))
1320 __memcg_kmem_uncharge_page(page, order);
1321
1322 /*
1323 * In rare cases, when truncation or holepunching raced with
1324 * munlock after VM_LOCKED was cleared, Mlocked may still be
1325 * found set here. This does not indicate a problem, unless
1326 * "unevictable_pgs_cleared" appears worryingly large.
1327 */
1328 if (unlikely(folio_test_mlocked(folio))) {
1329 long nr_pages = folio_nr_pages(folio);
1330
1331 __folio_clear_mlocked(folio);
1332 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1333 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1334 }
1335
1336 if (unlikely(PageHWPoison(page)) && !order) {
1337 /* Do not let hwpoison pages hit pcplists/buddy */
1338 reset_page_owner(page, order);
1339 page_table_check_free(page, order);
1340 pgalloc_tag_sub(page, 1 << order);
1341
1342 /*
1343 * The page is isolated and accounted for.
1344 * Mark the codetag as empty to avoid accounting error
1345 * when the page is freed by unpoison_memory().
1346 */
1347 clear_page_tag_ref(page);
1348 return false;
1349 }
1350
1351 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1352
1353 /*
1354 * Check tail pages before head page information is cleared to
1355 * avoid checking PageCompound for order-0 pages.
1356 */
1357 if (unlikely(order)) {
1358 int i;
1359
1360 if (compound) {
1361 page[1].flags &= ~PAGE_FLAGS_SECOND;
1362 #ifdef NR_PAGES_IN_LARGE_FOLIO
1363 folio->_nr_pages = 0;
1364 #endif
1365 }
1366 for (i = 1; i < (1 << order); i++) {
1367 if (compound)
1368 bad += free_tail_page_prepare(page, page + i);
1369 if (is_check_pages_enabled()) {
1370 if (free_page_is_bad(page + i)) {
1371 bad++;
1372 continue;
1373 }
1374 }
1375 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1376 }
1377 }
1378 if (folio_test_anon(folio)) {
1379 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1380 folio->mapping = NULL;
1381 }
1382 if (unlikely(page_has_type(page)))
1383 /* Reset the page_type (which overlays _mapcount) */
1384 page->page_type = UINT_MAX;
1385
1386 if (is_check_pages_enabled()) {
1387 if (free_page_is_bad(page))
1388 bad++;
1389 if (bad)
1390 return false;
1391 }
1392
1393 page_cpupid_reset_last(page);
1394 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1395 reset_page_owner(page, order);
1396 page_table_check_free(page, order);
1397 pgalloc_tag_sub(page, 1 << order);
1398
1399 if (!PageHighMem(page)) {
1400 debug_check_no_locks_freed(page_address(page),
1401 PAGE_SIZE << order);
1402 debug_check_no_obj_freed(page_address(page),
1403 PAGE_SIZE << order);
1404 }
1405
1406 kernel_poison_pages(page, 1 << order);
1407
1408 /*
1409 * As memory initialization might be integrated into KASAN,
1410 * KASAN poisoning and memory initialization code must be
1411 * kept together to avoid discrepancies in behavior.
1412 *
1413 * With hardware tag-based KASAN, memory tags must be set before the
1414 * page becomes unavailable via debug_pagealloc or arch_free_page.
1415 */
1416 if (!skip_kasan_poison) {
1417 kasan_poison_pages(page, order, init);
1418
1419 /* Memory is already initialized if KASAN did it internally. */
1420 if (kasan_has_integrated_init())
1421 init = false;
1422 }
1423 if (init)
1424 kernel_init_pages(page, 1 << order);
1425
1426 /*
1427 * arch_free_page() can make the page's contents inaccessible. s390
1428 * does this. So nothing which can access the page's contents should
1429 * happen after this.
1430 */
1431 arch_free_page(page, order);
1432
1433 debug_pagealloc_unmap_pages(page, 1 << order);
1434
1435 return true;
1436 }
1437
1438 /*
1439 * Frees a number of pages from the PCP lists
1440 * Assumes all pages on list are in same zone.
1441 * count is the number of pages to free.
1442 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1443 static void free_pcppages_bulk(struct zone *zone, int count,
1444 struct per_cpu_pages *pcp,
1445 int pindex)
1446 {
1447 unsigned long flags;
1448 unsigned int order;
1449 struct page *page;
1450
1451 /*
1452 * Ensure proper count is passed which otherwise would stuck in the
1453 * below while (list_empty(list)) loop.
1454 */
1455 count = min(pcp->count, count);
1456
1457 /* Ensure requested pindex is drained first. */
1458 pindex = pindex - 1;
1459
1460 spin_lock_irqsave(&zone->lock, flags);
1461
1462 while (count > 0) {
1463 struct list_head *list;
1464 int nr_pages;
1465
1466 /* Remove pages from lists in a round-robin fashion. */
1467 do {
1468 if (++pindex > NR_PCP_LISTS - 1)
1469 pindex = 0;
1470 list = &pcp->lists[pindex];
1471 } while (list_empty(list));
1472
1473 order = pindex_to_order(pindex);
1474 nr_pages = 1 << order;
1475 do {
1476 unsigned long pfn;
1477 int mt;
1478
1479 page = list_last_entry(list, struct page, pcp_list);
1480 pfn = page_to_pfn(page);
1481 mt = get_pfnblock_migratetype(page, pfn);
1482
1483 /* must delete to avoid corrupting pcp list */
1484 list_del(&page->pcp_list);
1485 count -= nr_pages;
1486 pcp->count -= nr_pages;
1487
1488 __free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1489 trace_mm_page_pcpu_drain(page, order, mt);
1490 } while (count > 0 && !list_empty(list));
1491 }
1492
1493 spin_unlock_irqrestore(&zone->lock, flags);
1494 }
1495
1496 /* Split a multi-block free page into its individual pageblocks. */
split_large_buddy(struct zone * zone,struct page * page,unsigned long pfn,int order,fpi_t fpi)1497 static void split_large_buddy(struct zone *zone, struct page *page,
1498 unsigned long pfn, int order, fpi_t fpi)
1499 {
1500 unsigned long end = pfn + (1 << order);
1501
1502 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1503 /* Caller removed page from freelist, buddy info cleared! */
1504 VM_WARN_ON_ONCE(PageBuddy(page));
1505
1506 if (order > pageblock_order)
1507 order = pageblock_order;
1508
1509 do {
1510 int mt = get_pfnblock_migratetype(page, pfn);
1511
1512 __free_one_page(page, pfn, zone, order, mt, fpi);
1513 pfn += 1 << order;
1514 if (pfn == end)
1515 break;
1516 page = pfn_to_page(pfn);
1517 } while (1);
1518 }
1519
add_page_to_zone_llist(struct zone * zone,struct page * page,unsigned int order)1520 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1521 unsigned int order)
1522 {
1523 /* Remember the order */
1524 page->order = order;
1525 /* Add the page to the free list */
1526 llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1527 }
1528
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,fpi_t fpi_flags)1529 static void free_one_page(struct zone *zone, struct page *page,
1530 unsigned long pfn, unsigned int order,
1531 fpi_t fpi_flags)
1532 {
1533 struct llist_head *llhead;
1534 unsigned long flags;
1535
1536 if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1537 if (!spin_trylock_irqsave(&zone->lock, flags)) {
1538 add_page_to_zone_llist(zone, page, order);
1539 return;
1540 }
1541 } else {
1542 spin_lock_irqsave(&zone->lock, flags);
1543 }
1544
1545 /* The lock succeeded. Process deferred pages. */
1546 llhead = &zone->trylock_free_pages;
1547 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1548 struct llist_node *llnode;
1549 struct page *p, *tmp;
1550
1551 llnode = llist_del_all(llhead);
1552 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1553 unsigned int p_order = p->order;
1554
1555 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1556 __count_vm_events(PGFREE, 1 << p_order);
1557 }
1558 }
1559 split_large_buddy(zone, page, pfn, order, fpi_flags);
1560 spin_unlock_irqrestore(&zone->lock, flags);
1561
1562 __count_vm_events(PGFREE, 1 << order);
1563 }
1564
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 fpi_t fpi_flags)
1567 {
1568 unsigned long pfn = page_to_pfn(page);
1569 struct zone *zone = page_zone(page);
1570
1571 if (free_pages_prepare(page, order))
1572 free_one_page(zone, page, pfn, order, fpi_flags);
1573 }
1574
__free_pages_core(struct page * page,unsigned int order,enum meminit_context context)1575 void __meminit __free_pages_core(struct page *page, unsigned int order,
1576 enum meminit_context context)
1577 {
1578 unsigned int nr_pages = 1 << order;
1579 struct page *p = page;
1580 unsigned int loop;
1581
1582 /*
1583 * When initializing the memmap, __init_single_page() sets the refcount
1584 * of all pages to 1 ("allocated"/"not free"). We have to set the
1585 * refcount of all involved pages to 0.
1586 *
1587 * Note that hotplugged memory pages are initialized to PageOffline().
1588 * Pages freed from memblock might be marked as reserved.
1589 */
1590 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1591 unlikely(context == MEMINIT_HOTPLUG)) {
1592 for (loop = 0; loop < nr_pages; loop++, p++) {
1593 VM_WARN_ON_ONCE(PageReserved(p));
1594 __ClearPageOffline(p);
1595 set_page_count(p, 0);
1596 }
1597
1598 adjust_managed_page_count(page, nr_pages);
1599 } else {
1600 for (loop = 0; loop < nr_pages; loop++, p++) {
1601 __ClearPageReserved(p);
1602 set_page_count(p, 0);
1603 }
1604
1605 /* memblock adjusts totalram_pages() manually. */
1606 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1607 }
1608
1609 if (page_contains_unaccepted(page, order)) {
1610 if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1611 return;
1612
1613 accept_memory(page_to_phys(page), PAGE_SIZE << order);
1614 }
1615
1616 /*
1617 * Bypass PCP and place fresh pages right to the tail, primarily
1618 * relevant for memory onlining.
1619 */
1620 __free_pages_ok(page, order, FPI_TO_TAIL);
1621 }
1622
1623 /*
1624 * Check that the whole (or subset of) a pageblock given by the interval of
1625 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1626 * with the migration of free compaction scanner.
1627 *
1628 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1629 *
1630 * It's possible on some configurations to have a setup like node0 node1 node0
1631 * i.e. it's possible that all pages within a zones range of pages do not
1632 * belong to a single zone. We assume that a border between node0 and node1
1633 * can occur within a single pageblock, but not a node0 node1 node0
1634 * interleaving within a single pageblock. It is therefore sufficient to check
1635 * the first and last page of a pageblock and avoid checking each individual
1636 * page in a pageblock.
1637 *
1638 * Note: the function may return non-NULL struct page even for a page block
1639 * which contains a memory hole (i.e. there is no physical memory for a subset
1640 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1641 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1642 * even though the start pfn is online and valid. This should be safe most of
1643 * the time because struct pages are still initialized via init_unavailable_range()
1644 * and pfn walkers shouldn't touch any physical memory range for which they do
1645 * not recognize any specific metadata in struct pages.
1646 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1647 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1648 unsigned long end_pfn, struct zone *zone)
1649 {
1650 struct page *start_page;
1651 struct page *end_page;
1652
1653 /* end_pfn is one past the range we are checking */
1654 end_pfn--;
1655
1656 if (!pfn_valid(end_pfn))
1657 return NULL;
1658
1659 start_page = pfn_to_online_page(start_pfn);
1660 if (!start_page)
1661 return NULL;
1662
1663 if (page_zone(start_page) != zone)
1664 return NULL;
1665
1666 end_page = pfn_to_page(end_pfn);
1667
1668 /* This gives a shorter code than deriving page_zone(end_page) */
1669 if (page_zone_id(start_page) != page_zone_id(end_page))
1670 return NULL;
1671
1672 return start_page;
1673 }
1674
1675 /*
1676 * The order of subdivision here is critical for the IO subsystem.
1677 * Please do not alter this order without good reasons and regression
1678 * testing. Specifically, as large blocks of memory are subdivided,
1679 * the order in which smaller blocks are delivered depends on the order
1680 * they're subdivided in this function. This is the primary factor
1681 * influencing the order in which pages are delivered to the IO
1682 * subsystem according to empirical testing, and this is also justified
1683 * by considering the behavior of a buddy system containing a single
1684 * large block of memory acted on by a series of small allocations.
1685 * This behavior is a critical factor in sglist merging's success.
1686 *
1687 * -- nyc
1688 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1689 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1690 int high, int migratetype)
1691 {
1692 unsigned int size = 1 << high;
1693 unsigned int nr_added = 0;
1694
1695 while (high > low) {
1696 high--;
1697 size >>= 1;
1698 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1699
1700 /*
1701 * Mark as guard pages (or page), that will allow to
1702 * merge back to allocator when buddy will be freed.
1703 * Corresponding page table entries will not be touched,
1704 * pages will stay not present in virtual address space
1705 */
1706 if (set_page_guard(zone, &page[size], high))
1707 continue;
1708
1709 __add_to_free_list(&page[size], zone, high, migratetype, false);
1710 set_buddy_order(&page[size], high);
1711 nr_added += size;
1712 }
1713
1714 return nr_added;
1715 }
1716
page_del_and_expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1717 static __always_inline void page_del_and_expand(struct zone *zone,
1718 struct page *page, int low,
1719 int high, int migratetype)
1720 {
1721 int nr_pages = 1 << high;
1722
1723 __del_page_from_free_list(page, zone, high, migratetype);
1724 nr_pages -= expand(zone, page, low, high, migratetype);
1725 account_freepages(zone, -nr_pages, migratetype);
1726 }
1727
check_new_page_bad(struct page * page)1728 static void check_new_page_bad(struct page *page)
1729 {
1730 if (unlikely(PageHWPoison(page))) {
1731 /* Don't complain about hwpoisoned pages */
1732 if (PageBuddy(page))
1733 __ClearPageBuddy(page);
1734 return;
1735 }
1736
1737 bad_page(page,
1738 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1739 }
1740
1741 /*
1742 * This page is about to be returned from the page allocator
1743 */
check_new_page(struct page * page)1744 static bool check_new_page(struct page *page)
1745 {
1746 if (likely(page_expected_state(page,
1747 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1748 return false;
1749
1750 check_new_page_bad(page);
1751 return true;
1752 }
1753
check_new_pages(struct page * page,unsigned int order)1754 static inline bool check_new_pages(struct page *page, unsigned int order)
1755 {
1756 if (is_check_pages_enabled()) {
1757 for (int i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759
1760 if (check_new_page(p))
1761 return true;
1762 }
1763 }
1764
1765 return false;
1766 }
1767
should_skip_kasan_unpoison(gfp_t flags)1768 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1769 {
1770 /* Don't skip if a software KASAN mode is enabled. */
1771 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1772 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1773 return false;
1774
1775 /* Skip, if hardware tag-based KASAN is not enabled. */
1776 if (!kasan_hw_tags_enabled())
1777 return true;
1778
1779 /*
1780 * With hardware tag-based KASAN enabled, skip if this has been
1781 * requested via __GFP_SKIP_KASAN.
1782 */
1783 return flags & __GFP_SKIP_KASAN;
1784 }
1785
should_skip_init(gfp_t flags)1786 static inline bool should_skip_init(gfp_t flags)
1787 {
1788 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1789 if (!kasan_hw_tags_enabled())
1790 return false;
1791
1792 /* For hardware tag-based KASAN, skip if requested. */
1793 return (flags & __GFP_SKIP_ZERO);
1794 }
1795
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1796 inline void post_alloc_hook(struct page *page, unsigned int order,
1797 gfp_t gfp_flags)
1798 {
1799 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1800 !should_skip_init(gfp_flags);
1801 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1802 int i;
1803
1804 set_page_private(page, 0);
1805
1806 arch_alloc_page(page, order);
1807 debug_pagealloc_map_pages(page, 1 << order);
1808
1809 /*
1810 * Page unpoisoning must happen before memory initialization.
1811 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1812 * allocations and the page unpoisoning code will complain.
1813 */
1814 kernel_unpoison_pages(page, 1 << order);
1815
1816 /*
1817 * As memory initialization might be integrated into KASAN,
1818 * KASAN unpoisoning and memory initializion code must be
1819 * kept together to avoid discrepancies in behavior.
1820 */
1821
1822 /*
1823 * If memory tags should be zeroed
1824 * (which happens only when memory should be initialized as well).
1825 */
1826 if (zero_tags) {
1827 /* Initialize both memory and memory tags. */
1828 for (i = 0; i != 1 << order; ++i)
1829 tag_clear_highpage(page + i);
1830
1831 /* Take note that memory was initialized by the loop above. */
1832 init = false;
1833 }
1834 if (!should_skip_kasan_unpoison(gfp_flags) &&
1835 kasan_unpoison_pages(page, order, init)) {
1836 /* Take note that memory was initialized by KASAN. */
1837 if (kasan_has_integrated_init())
1838 init = false;
1839 } else {
1840 /*
1841 * If memory tags have not been set by KASAN, reset the page
1842 * tags to ensure page_address() dereferencing does not fault.
1843 */
1844 for (i = 0; i != 1 << order; ++i)
1845 page_kasan_tag_reset(page + i);
1846 }
1847 /* If memory is still not initialized, initialize it now. */
1848 if (init)
1849 kernel_init_pages(page, 1 << order);
1850
1851 set_page_owner(page, order, gfp_flags);
1852 page_table_check_alloc(page, order);
1853 pgalloc_tag_add(page, current, 1 << order);
1854 }
1855
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1856 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1857 unsigned int alloc_flags)
1858 {
1859 post_alloc_hook(page, order, gfp_flags);
1860
1861 if (order && (gfp_flags & __GFP_COMP))
1862 prep_compound_page(page, order);
1863
1864 /*
1865 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1866 * allocate the page. The expectation is that the caller is taking
1867 * steps that will free more memory. The caller should avoid the page
1868 * being used for !PFMEMALLOC purposes.
1869 */
1870 if (alloc_flags & ALLOC_NO_WATERMARKS)
1871 set_page_pfmemalloc(page);
1872 else
1873 clear_page_pfmemalloc(page);
1874 }
1875
1876 /*
1877 * Go through the free lists for the given migratetype and remove
1878 * the smallest available page from the freelists
1879 */
1880 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1881 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1882 int migratetype)
1883 {
1884 unsigned int current_order;
1885 struct free_area *area;
1886 struct page *page;
1887
1888 /* Find a page of the appropriate size in the preferred list */
1889 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1890 area = &(zone->free_area[current_order]);
1891 page = get_page_from_free_area(area, migratetype);
1892 if (!page)
1893 continue;
1894
1895 page_del_and_expand(zone, page, order, current_order,
1896 migratetype);
1897 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1898 pcp_allowed_order(order) &&
1899 migratetype < MIGRATE_PCPTYPES);
1900 return page;
1901 }
1902
1903 return NULL;
1904 }
1905
1906
1907 /*
1908 * This array describes the order lists are fallen back to when
1909 * the free lists for the desirable migrate type are depleted
1910 *
1911 * The other migratetypes do not have fallbacks.
1912 */
1913 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1914 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1917 };
1918
1919 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1920 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1921 unsigned int order)
1922 {
1923 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1924 }
1925 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1926 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1927 unsigned int order) { return NULL; }
1928 #endif
1929
1930 /*
1931 * Move all free pages of a block to new type's freelist. Caller needs to
1932 * change the block type.
1933 */
__move_freepages_block(struct zone * zone,unsigned long start_pfn,int old_mt,int new_mt)1934 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1935 int old_mt, int new_mt)
1936 {
1937 struct page *page;
1938 unsigned long pfn, end_pfn;
1939 unsigned int order;
1940 int pages_moved = 0;
1941
1942 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1943 end_pfn = pageblock_end_pfn(start_pfn);
1944
1945 for (pfn = start_pfn; pfn < end_pfn;) {
1946 page = pfn_to_page(pfn);
1947 if (!PageBuddy(page)) {
1948 pfn++;
1949 continue;
1950 }
1951
1952 /* Make sure we are not inadvertently changing nodes */
1953 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1954 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1955
1956 order = buddy_order(page);
1957
1958 move_to_free_list(page, zone, order, old_mt, new_mt);
1959
1960 pfn += 1 << order;
1961 pages_moved += 1 << order;
1962 }
1963
1964 return pages_moved;
1965 }
1966
prep_move_freepages_block(struct zone * zone,struct page * page,unsigned long * start_pfn,int * num_free,int * num_movable)1967 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1968 unsigned long *start_pfn,
1969 int *num_free, int *num_movable)
1970 {
1971 unsigned long pfn, start, end;
1972
1973 pfn = page_to_pfn(page);
1974 start = pageblock_start_pfn(pfn);
1975 end = pageblock_end_pfn(pfn);
1976
1977 /*
1978 * The caller only has the lock for @zone, don't touch ranges
1979 * that straddle into other zones. While we could move part of
1980 * the range that's inside the zone, this call is usually
1981 * accompanied by other operations such as migratetype updates
1982 * which also should be locked.
1983 */
1984 if (!zone_spans_pfn(zone, start))
1985 return false;
1986 if (!zone_spans_pfn(zone, end - 1))
1987 return false;
1988
1989 *start_pfn = start;
1990
1991 if (num_free) {
1992 *num_free = 0;
1993 *num_movable = 0;
1994 for (pfn = start; pfn < end;) {
1995 page = pfn_to_page(pfn);
1996 if (PageBuddy(page)) {
1997 int nr = 1 << buddy_order(page);
1998
1999 *num_free += nr;
2000 pfn += nr;
2001 continue;
2002 }
2003 /*
2004 * We assume that pages that could be isolated for
2005 * migration are movable. But we don't actually try
2006 * isolating, as that would be expensive.
2007 */
2008 if (PageLRU(page) || page_has_movable_ops(page))
2009 (*num_movable)++;
2010 pfn++;
2011 }
2012 }
2013
2014 return true;
2015 }
2016
move_freepages_block(struct zone * zone,struct page * page,int old_mt,int new_mt)2017 static int move_freepages_block(struct zone *zone, struct page *page,
2018 int old_mt, int new_mt)
2019 {
2020 unsigned long start_pfn;
2021 int res;
2022
2023 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2024 return -1;
2025
2026 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt);
2027 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
2028
2029 return res;
2030
2031 }
2032
2033 #ifdef CONFIG_MEMORY_ISOLATION
2034 /* Look for a buddy that straddles start_pfn */
find_large_buddy(unsigned long start_pfn)2035 static unsigned long find_large_buddy(unsigned long start_pfn)
2036 {
2037 int order = 0;
2038 struct page *page;
2039 unsigned long pfn = start_pfn;
2040
2041 while (!PageBuddy(page = pfn_to_page(pfn))) {
2042 /* Nothing found */
2043 if (++order > MAX_PAGE_ORDER)
2044 return start_pfn;
2045 pfn &= ~0UL << order;
2046 }
2047
2048 /*
2049 * Found a preceding buddy, but does it straddle?
2050 */
2051 if (pfn + (1 << buddy_order(page)) > start_pfn)
2052 return pfn;
2053
2054 /* Nothing found */
2055 return start_pfn;
2056 }
2057
toggle_pageblock_isolate(struct page * page,bool isolate)2058 static inline void toggle_pageblock_isolate(struct page *page, bool isolate)
2059 {
2060 if (isolate)
2061 set_pfnblock_bit(page, page_to_pfn(page), PB_migrate_isolate);
2062 else
2063 clear_pfnblock_bit(page, page_to_pfn(page), PB_migrate_isolate);
2064 }
2065
2066 /**
2067 * __move_freepages_block_isolate - move free pages in block for page isolation
2068 * @zone: the zone
2069 * @page: the pageblock page
2070 * @isolate: to isolate the given pageblock or unisolate it
2071 *
2072 * This is similar to move_freepages_block(), but handles the special
2073 * case encountered in page isolation, where the block of interest
2074 * might be part of a larger buddy spanning multiple pageblocks.
2075 *
2076 * Unlike the regular page allocator path, which moves pages while
2077 * stealing buddies off the freelist, page isolation is interested in
2078 * arbitrary pfn ranges that may have overlapping buddies on both ends.
2079 *
2080 * This function handles that. Straddling buddies are split into
2081 * individual pageblocks. Only the block of interest is moved.
2082 *
2083 * Returns %true if pages could be moved, %false otherwise.
2084 */
__move_freepages_block_isolate(struct zone * zone,struct page * page,bool isolate)2085 static bool __move_freepages_block_isolate(struct zone *zone,
2086 struct page *page, bool isolate)
2087 {
2088 unsigned long start_pfn, pfn;
2089 int from_mt;
2090 int to_mt;
2091
2092 if (isolate == get_pageblock_isolate(page)) {
2093 VM_WARN_ONCE(1, "%s a pageblock that is already in that state",
2094 isolate ? "Isolate" : "Unisolate");
2095 return false;
2096 }
2097
2098 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2099 return false;
2100
2101 /* No splits needed if buddies can't span multiple blocks */
2102 if (pageblock_order == MAX_PAGE_ORDER)
2103 goto move;
2104
2105 /* We're a tail block in a larger buddy */
2106 pfn = find_large_buddy(start_pfn);
2107 if (pfn != start_pfn) {
2108 struct page *buddy = pfn_to_page(pfn);
2109 int order = buddy_order(buddy);
2110
2111 del_page_from_free_list(buddy, zone, order,
2112 get_pfnblock_migratetype(buddy, pfn));
2113 toggle_pageblock_isolate(page, isolate);
2114 split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
2115 return true;
2116 }
2117
2118 /* We're the starting block of a larger buddy */
2119 if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
2120 int order = buddy_order(page);
2121
2122 del_page_from_free_list(page, zone, order,
2123 get_pfnblock_migratetype(page, pfn));
2124 toggle_pageblock_isolate(page, isolate);
2125 split_large_buddy(zone, page, pfn, order, FPI_NONE);
2126 return true;
2127 }
2128 move:
2129 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */
2130 if (isolate) {
2131 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2132 MIGRATETYPE_MASK);
2133 to_mt = MIGRATE_ISOLATE;
2134 } else {
2135 from_mt = MIGRATE_ISOLATE;
2136 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2137 MIGRATETYPE_MASK);
2138 }
2139
2140 __move_freepages_block(zone, start_pfn, from_mt, to_mt);
2141 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate);
2142
2143 return true;
2144 }
2145
pageblock_isolate_and_move_free_pages(struct zone * zone,struct page * page)2146 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page)
2147 {
2148 return __move_freepages_block_isolate(zone, page, true);
2149 }
2150
pageblock_unisolate_and_move_free_pages(struct zone * zone,struct page * page)2151 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page)
2152 {
2153 return __move_freepages_block_isolate(zone, page, false);
2154 }
2155
2156 #endif /* CONFIG_MEMORY_ISOLATION */
2157
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2158 static void change_pageblock_range(struct page *pageblock_page,
2159 int start_order, int migratetype)
2160 {
2161 int nr_pageblocks = 1 << (start_order - pageblock_order);
2162
2163 while (nr_pageblocks--) {
2164 set_pageblock_migratetype(pageblock_page, migratetype);
2165 pageblock_page += pageblock_nr_pages;
2166 }
2167 }
2168
boost_watermark(struct zone * zone)2169 static inline bool boost_watermark(struct zone *zone)
2170 {
2171 unsigned long max_boost;
2172
2173 if (!watermark_boost_factor)
2174 return false;
2175 /*
2176 * Don't bother in zones that are unlikely to produce results.
2177 * On small machines, including kdump capture kernels running
2178 * in a small area, boosting the watermark can cause an out of
2179 * memory situation immediately.
2180 */
2181 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2182 return false;
2183
2184 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2185 watermark_boost_factor, 10000);
2186
2187 /*
2188 * high watermark may be uninitialised if fragmentation occurs
2189 * very early in boot so do not boost. We do not fall
2190 * through and boost by pageblock_nr_pages as failing
2191 * allocations that early means that reclaim is not going
2192 * to help and it may even be impossible to reclaim the
2193 * boosted watermark resulting in a hang.
2194 */
2195 if (!max_boost)
2196 return false;
2197
2198 max_boost = max(pageblock_nr_pages, max_boost);
2199
2200 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2201 max_boost);
2202
2203 return true;
2204 }
2205
2206 /*
2207 * When we are falling back to another migratetype during allocation, should we
2208 * try to claim an entire block to satisfy further allocations, instead of
2209 * polluting multiple pageblocks?
2210 */
should_try_claim_block(unsigned int order,int start_mt)2211 static bool should_try_claim_block(unsigned int order, int start_mt)
2212 {
2213 /*
2214 * Leaving this order check is intended, although there is
2215 * relaxed order check in next check. The reason is that
2216 * we can actually claim the whole pageblock if this condition met,
2217 * but, below check doesn't guarantee it and that is just heuristic
2218 * so could be changed anytime.
2219 */
2220 if (order >= pageblock_order)
2221 return true;
2222
2223 /*
2224 * Above a certain threshold, always try to claim, as it's likely there
2225 * will be more free pages in the pageblock.
2226 */
2227 if (order >= pageblock_order / 2)
2228 return true;
2229
2230 /*
2231 * Unmovable/reclaimable allocations would cause permanent
2232 * fragmentations if they fell back to allocating from a movable block
2233 * (polluting it), so we try to claim the whole block regardless of the
2234 * allocation size. Later movable allocations can always steal from this
2235 * block, which is less problematic.
2236 */
2237 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2238 return true;
2239
2240 if (page_group_by_mobility_disabled)
2241 return true;
2242
2243 /*
2244 * Movable pages won't cause permanent fragmentation, so when you alloc
2245 * small pages, we just need to temporarily steal unmovable or
2246 * reclaimable pages that are closest to the request size. After a
2247 * while, memory compaction may occur to form large contiguous pages,
2248 * and the next movable allocation may not need to steal.
2249 */
2250 return false;
2251 }
2252
2253 /*
2254 * Check whether there is a suitable fallback freepage with requested order.
2255 * If claimable is true, this function returns fallback_mt only if
2256 * we would do this whole-block claiming. This would help to reduce
2257 * fragmentation due to mixed migratetype pages in one pageblock.
2258 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool claimable)2259 int find_suitable_fallback(struct free_area *area, unsigned int order,
2260 int migratetype, bool claimable)
2261 {
2262 int i;
2263
2264 if (claimable && !should_try_claim_block(order, migratetype))
2265 return -2;
2266
2267 if (area->nr_free == 0)
2268 return -1;
2269
2270 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2271 int fallback_mt = fallbacks[migratetype][i];
2272
2273 if (!free_area_empty(area, fallback_mt))
2274 return fallback_mt;
2275 }
2276
2277 return -1;
2278 }
2279
2280 /*
2281 * This function implements actual block claiming behaviour. If order is large
2282 * enough, we can claim the whole pageblock for the requested migratetype. If
2283 * not, we check the pageblock for constituent pages; if at least half of the
2284 * pages are free or compatible, we can still claim the whole block, so pages
2285 * freed in the future will be put on the correct free list.
2286 */
2287 static struct page *
try_to_claim_block(struct zone * zone,struct page * page,int current_order,int order,int start_type,int block_type,unsigned int alloc_flags)2288 try_to_claim_block(struct zone *zone, struct page *page,
2289 int current_order, int order, int start_type,
2290 int block_type, unsigned int alloc_flags)
2291 {
2292 int free_pages, movable_pages, alike_pages;
2293 unsigned long start_pfn;
2294
2295 /* Take ownership for orders >= pageblock_order */
2296 if (current_order >= pageblock_order) {
2297 unsigned int nr_added;
2298
2299 del_page_from_free_list(page, zone, current_order, block_type);
2300 change_pageblock_range(page, current_order, start_type);
2301 nr_added = expand(zone, page, order, current_order, start_type);
2302 account_freepages(zone, nr_added, start_type);
2303 return page;
2304 }
2305
2306 /*
2307 * Boost watermarks to increase reclaim pressure to reduce the
2308 * likelihood of future fallbacks. Wake kswapd now as the node
2309 * may be balanced overall and kswapd will not wake naturally.
2310 */
2311 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2312 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2313
2314 /* moving whole block can fail due to zone boundary conditions */
2315 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2316 &movable_pages))
2317 return NULL;
2318
2319 /*
2320 * Determine how many pages are compatible with our allocation.
2321 * For movable allocation, it's the number of movable pages which
2322 * we just obtained. For other types it's a bit more tricky.
2323 */
2324 if (start_type == MIGRATE_MOVABLE) {
2325 alike_pages = movable_pages;
2326 } else {
2327 /*
2328 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2329 * to MOVABLE pageblock, consider all non-movable pages as
2330 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2331 * vice versa, be conservative since we can't distinguish the
2332 * exact migratetype of non-movable pages.
2333 */
2334 if (block_type == MIGRATE_MOVABLE)
2335 alike_pages = pageblock_nr_pages
2336 - (free_pages + movable_pages);
2337 else
2338 alike_pages = 0;
2339 }
2340 /*
2341 * If a sufficient number of pages in the block are either free or of
2342 * compatible migratability as our allocation, claim the whole block.
2343 */
2344 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2345 page_group_by_mobility_disabled) {
2346 __move_freepages_block(zone, start_pfn, block_type, start_type);
2347 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type);
2348 return __rmqueue_smallest(zone, order, start_type);
2349 }
2350
2351 return NULL;
2352 }
2353
2354 /*
2355 * Try to allocate from some fallback migratetype by claiming the entire block,
2356 * i.e. converting it to the allocation's start migratetype.
2357 *
2358 * The use of signed ints for order and current_order is a deliberate
2359 * deviation from the rest of this file, to make the for loop
2360 * condition simpler.
2361 */
2362 static __always_inline struct page *
__rmqueue_claim(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2363 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2364 unsigned int alloc_flags)
2365 {
2366 struct free_area *area;
2367 int current_order;
2368 int min_order = order;
2369 struct page *page;
2370 int fallback_mt;
2371
2372 /*
2373 * Do not steal pages from freelists belonging to other pageblocks
2374 * i.e. orders < pageblock_order. If there are no local zones free,
2375 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2376 */
2377 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2378 min_order = pageblock_order;
2379
2380 /*
2381 * Find the largest available free page in the other list. This roughly
2382 * approximates finding the pageblock with the most free pages, which
2383 * would be too costly to do exactly.
2384 */
2385 for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2386 --current_order) {
2387 area = &(zone->free_area[current_order]);
2388 fallback_mt = find_suitable_fallback(area, current_order,
2389 start_migratetype, true);
2390
2391 /* No block in that order */
2392 if (fallback_mt == -1)
2393 continue;
2394
2395 /* Advanced into orders too low to claim, abort */
2396 if (fallback_mt == -2)
2397 break;
2398
2399 page = get_page_from_free_area(area, fallback_mt);
2400 page = try_to_claim_block(zone, page, current_order, order,
2401 start_migratetype, fallback_mt,
2402 alloc_flags);
2403 if (page) {
2404 trace_mm_page_alloc_extfrag(page, order, current_order,
2405 start_migratetype, fallback_mt);
2406 return page;
2407 }
2408 }
2409
2410 return NULL;
2411 }
2412
2413 /*
2414 * Try to steal a single page from some fallback migratetype. Leave the rest of
2415 * the block as its current migratetype, potentially causing fragmentation.
2416 */
2417 static __always_inline struct page *
__rmqueue_steal(struct zone * zone,int order,int start_migratetype)2418 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2419 {
2420 struct free_area *area;
2421 int current_order;
2422 struct page *page;
2423 int fallback_mt;
2424
2425 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2426 area = &(zone->free_area[current_order]);
2427 fallback_mt = find_suitable_fallback(area, current_order,
2428 start_migratetype, false);
2429 if (fallback_mt == -1)
2430 continue;
2431
2432 page = get_page_from_free_area(area, fallback_mt);
2433 page_del_and_expand(zone, page, order, current_order, fallback_mt);
2434 trace_mm_page_alloc_extfrag(page, order, current_order,
2435 start_migratetype, fallback_mt);
2436 return page;
2437 }
2438
2439 return NULL;
2440 }
2441
2442 enum rmqueue_mode {
2443 RMQUEUE_NORMAL,
2444 RMQUEUE_CMA,
2445 RMQUEUE_CLAIM,
2446 RMQUEUE_STEAL,
2447 };
2448
2449 /*
2450 * Do the hard work of removing an element from the buddy allocator.
2451 * Call me with the zone->lock already held.
2452 */
2453 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,enum rmqueue_mode * mode)2454 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2455 unsigned int alloc_flags, enum rmqueue_mode *mode)
2456 {
2457 struct page *page;
2458
2459 if (IS_ENABLED(CONFIG_CMA)) {
2460 /*
2461 * Balance movable allocations between regular and CMA areas by
2462 * allocating from CMA when over half of the zone's free memory
2463 * is in the CMA area.
2464 */
2465 if (alloc_flags & ALLOC_CMA &&
2466 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2467 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2468 page = __rmqueue_cma_fallback(zone, order);
2469 if (page)
2470 return page;
2471 }
2472 }
2473
2474 /*
2475 * First try the freelists of the requested migratetype, then try
2476 * fallbacks modes with increasing levels of fragmentation risk.
2477 *
2478 * The fallback logic is expensive and rmqueue_bulk() calls in
2479 * a loop with the zone->lock held, meaning the freelists are
2480 * not subject to any outside changes. Remember in *mode where
2481 * we found pay dirt, to save us the search on the next call.
2482 */
2483 switch (*mode) {
2484 case RMQUEUE_NORMAL:
2485 page = __rmqueue_smallest(zone, order, migratetype);
2486 if (page)
2487 return page;
2488 fallthrough;
2489 case RMQUEUE_CMA:
2490 if (alloc_flags & ALLOC_CMA) {
2491 page = __rmqueue_cma_fallback(zone, order);
2492 if (page) {
2493 *mode = RMQUEUE_CMA;
2494 return page;
2495 }
2496 }
2497 fallthrough;
2498 case RMQUEUE_CLAIM:
2499 page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2500 if (page) {
2501 /* Replenished preferred freelist, back to normal mode. */
2502 *mode = RMQUEUE_NORMAL;
2503 return page;
2504 }
2505 fallthrough;
2506 case RMQUEUE_STEAL:
2507 if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2508 page = __rmqueue_steal(zone, order, migratetype);
2509 if (page) {
2510 *mode = RMQUEUE_STEAL;
2511 return page;
2512 }
2513 }
2514 }
2515 return NULL;
2516 }
2517
2518 /*
2519 * Obtain a specified number of elements from the buddy allocator, all under
2520 * a single hold of the lock, for efficiency. Add them to the supplied list.
2521 * Returns the number of new pages which were placed at *list.
2522 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2523 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2524 unsigned long count, struct list_head *list,
2525 int migratetype, unsigned int alloc_flags)
2526 {
2527 enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2528 unsigned long flags;
2529 int i;
2530
2531 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2532 if (!spin_trylock_irqsave(&zone->lock, flags))
2533 return 0;
2534 } else {
2535 spin_lock_irqsave(&zone->lock, flags);
2536 }
2537 for (i = 0; i < count; ++i) {
2538 struct page *page = __rmqueue(zone, order, migratetype,
2539 alloc_flags, &rmqm);
2540 if (unlikely(page == NULL))
2541 break;
2542
2543 /*
2544 * Split buddy pages returned by expand() are received here in
2545 * physical page order. The page is added to the tail of
2546 * caller's list. From the callers perspective, the linked list
2547 * is ordered by page number under some conditions. This is
2548 * useful for IO devices that can forward direction from the
2549 * head, thus also in the physical page order. This is useful
2550 * for IO devices that can merge IO requests if the physical
2551 * pages are ordered properly.
2552 */
2553 list_add_tail(&page->pcp_list, list);
2554 }
2555 spin_unlock_irqrestore(&zone->lock, flags);
2556
2557 return i;
2558 }
2559
2560 /*
2561 * Called from the vmstat counter updater to decay the PCP high.
2562 * Return whether there are addition works to do.
2563 */
decay_pcp_high(struct zone * zone,struct per_cpu_pages * pcp)2564 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2565 {
2566 int high_min, to_drain, batch;
2567 int todo = 0;
2568
2569 high_min = READ_ONCE(pcp->high_min);
2570 batch = READ_ONCE(pcp->batch);
2571 /*
2572 * Decrease pcp->high periodically to try to free possible
2573 * idle PCP pages. And, avoid to free too many pages to
2574 * control latency. This caps pcp->high decrement too.
2575 */
2576 if (pcp->high > high_min) {
2577 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2578 pcp->high - (pcp->high >> 3), high_min);
2579 if (pcp->high > high_min)
2580 todo++;
2581 }
2582
2583 to_drain = pcp->count - pcp->high;
2584 if (to_drain > 0) {
2585 spin_lock(&pcp->lock);
2586 free_pcppages_bulk(zone, to_drain, pcp, 0);
2587 spin_unlock(&pcp->lock);
2588 todo++;
2589 }
2590
2591 return todo;
2592 }
2593
2594 #ifdef CONFIG_NUMA
2595 /*
2596 * Called from the vmstat counter updater to drain pagesets of this
2597 * currently executing processor on remote nodes after they have
2598 * expired.
2599 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2600 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2601 {
2602 int to_drain, batch;
2603
2604 batch = READ_ONCE(pcp->batch);
2605 to_drain = min(pcp->count, batch);
2606 if (to_drain > 0) {
2607 spin_lock(&pcp->lock);
2608 free_pcppages_bulk(zone, to_drain, pcp, 0);
2609 spin_unlock(&pcp->lock);
2610 }
2611 }
2612 #endif
2613
2614 /*
2615 * Drain pcplists of the indicated processor and zone.
2616 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2617 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2618 {
2619 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2620 int count;
2621
2622 do {
2623 spin_lock(&pcp->lock);
2624 count = pcp->count;
2625 if (count) {
2626 int to_drain = min(count,
2627 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2628
2629 free_pcppages_bulk(zone, to_drain, pcp, 0);
2630 count -= to_drain;
2631 }
2632 spin_unlock(&pcp->lock);
2633 } while (count);
2634 }
2635
2636 /*
2637 * Drain pcplists of all zones on the indicated processor.
2638 */
drain_pages(unsigned int cpu)2639 static void drain_pages(unsigned int cpu)
2640 {
2641 struct zone *zone;
2642
2643 for_each_populated_zone(zone) {
2644 drain_pages_zone(cpu, zone);
2645 }
2646 }
2647
2648 /*
2649 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2650 */
drain_local_pages(struct zone * zone)2651 void drain_local_pages(struct zone *zone)
2652 {
2653 int cpu = smp_processor_id();
2654
2655 if (zone)
2656 drain_pages_zone(cpu, zone);
2657 else
2658 drain_pages(cpu);
2659 }
2660
2661 /*
2662 * The implementation of drain_all_pages(), exposing an extra parameter to
2663 * drain on all cpus.
2664 *
2665 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2666 * not empty. The check for non-emptiness can however race with a free to
2667 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2668 * that need the guarantee that every CPU has drained can disable the
2669 * optimizing racy check.
2670 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2671 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2672 {
2673 int cpu;
2674
2675 /*
2676 * Allocate in the BSS so we won't require allocation in
2677 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2678 */
2679 static cpumask_t cpus_with_pcps;
2680
2681 /*
2682 * Do not drain if one is already in progress unless it's specific to
2683 * a zone. Such callers are primarily CMA and memory hotplug and need
2684 * the drain to be complete when the call returns.
2685 */
2686 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2687 if (!zone)
2688 return;
2689 mutex_lock(&pcpu_drain_mutex);
2690 }
2691
2692 /*
2693 * We don't care about racing with CPU hotplug event
2694 * as offline notification will cause the notified
2695 * cpu to drain that CPU pcps and on_each_cpu_mask
2696 * disables preemption as part of its processing
2697 */
2698 for_each_online_cpu(cpu) {
2699 struct per_cpu_pages *pcp;
2700 struct zone *z;
2701 bool has_pcps = false;
2702
2703 if (force_all_cpus) {
2704 /*
2705 * The pcp.count check is racy, some callers need a
2706 * guarantee that no cpu is missed.
2707 */
2708 has_pcps = true;
2709 } else if (zone) {
2710 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2711 if (pcp->count)
2712 has_pcps = true;
2713 } else {
2714 for_each_populated_zone(z) {
2715 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2716 if (pcp->count) {
2717 has_pcps = true;
2718 break;
2719 }
2720 }
2721 }
2722
2723 if (has_pcps)
2724 cpumask_set_cpu(cpu, &cpus_with_pcps);
2725 else
2726 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2727 }
2728
2729 for_each_cpu(cpu, &cpus_with_pcps) {
2730 if (zone)
2731 drain_pages_zone(cpu, zone);
2732 else
2733 drain_pages(cpu);
2734 }
2735
2736 mutex_unlock(&pcpu_drain_mutex);
2737 }
2738
2739 /*
2740 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2741 *
2742 * When zone parameter is non-NULL, spill just the single zone's pages.
2743 */
drain_all_pages(struct zone * zone)2744 void drain_all_pages(struct zone *zone)
2745 {
2746 __drain_all_pages(zone, false);
2747 }
2748
nr_pcp_free(struct per_cpu_pages * pcp,int batch,int high,bool free_high)2749 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2750 {
2751 int min_nr_free, max_nr_free;
2752
2753 /* Free as much as possible if batch freeing high-order pages. */
2754 if (unlikely(free_high))
2755 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2756
2757 /* Check for PCP disabled or boot pageset */
2758 if (unlikely(high < batch))
2759 return 1;
2760
2761 /* Leave at least pcp->batch pages on the list */
2762 min_nr_free = batch;
2763 max_nr_free = high - batch;
2764
2765 /*
2766 * Increase the batch number to the number of the consecutive
2767 * freed pages to reduce zone lock contention.
2768 */
2769 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2770
2771 return batch;
2772 }
2773
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,int batch,bool free_high)2774 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2775 int batch, bool free_high)
2776 {
2777 int high, high_min, high_max;
2778
2779 high_min = READ_ONCE(pcp->high_min);
2780 high_max = READ_ONCE(pcp->high_max);
2781 high = pcp->high = clamp(pcp->high, high_min, high_max);
2782
2783 if (unlikely(!high))
2784 return 0;
2785
2786 if (unlikely(free_high)) {
2787 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2788 high_min);
2789 return 0;
2790 }
2791
2792 /*
2793 * If reclaim is active, limit the number of pages that can be
2794 * stored on pcp lists
2795 */
2796 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2797 int free_count = max_t(int, pcp->free_count, batch);
2798
2799 pcp->high = max(high - free_count, high_min);
2800 return min(batch << 2, pcp->high);
2801 }
2802
2803 if (high_min == high_max)
2804 return high;
2805
2806 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2807 int free_count = max_t(int, pcp->free_count, batch);
2808
2809 pcp->high = max(high - free_count, high_min);
2810 high = max(pcp->count, high_min);
2811 } else if (pcp->count >= high) {
2812 int need_high = pcp->free_count + batch;
2813
2814 /* pcp->high should be large enough to hold batch freed pages */
2815 if (pcp->high < need_high)
2816 pcp->high = clamp(need_high, high_min, high_max);
2817 }
2818
2819 return high;
2820 }
2821
free_frozen_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order,fpi_t fpi_flags)2822 static void free_frozen_page_commit(struct zone *zone,
2823 struct per_cpu_pages *pcp, struct page *page, int migratetype,
2824 unsigned int order, fpi_t fpi_flags)
2825 {
2826 int high, batch;
2827 int pindex;
2828 bool free_high = false;
2829
2830 /*
2831 * On freeing, reduce the number of pages that are batch allocated.
2832 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2833 * allocations.
2834 */
2835 pcp->alloc_factor >>= 1;
2836 __count_vm_events(PGFREE, 1 << order);
2837 pindex = order_to_pindex(migratetype, order);
2838 list_add(&page->pcp_list, &pcp->lists[pindex]);
2839 pcp->count += 1 << order;
2840
2841 batch = READ_ONCE(pcp->batch);
2842 /*
2843 * As high-order pages other than THP's stored on PCP can contribute
2844 * to fragmentation, limit the number stored when PCP is heavily
2845 * freeing without allocation. The remainder after bulk freeing
2846 * stops will be drained from vmstat refresh context.
2847 */
2848 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2849 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
2850 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2851 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2852 pcp->count >= batch));
2853 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2854 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2855 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2856 }
2857 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2858 pcp->free_count += (1 << order);
2859
2860 if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2861 /*
2862 * Do not attempt to take a zone lock. Let pcp->count get
2863 * over high mark temporarily.
2864 */
2865 return;
2866 }
2867 high = nr_pcp_high(pcp, zone, batch, free_high);
2868 if (pcp->count >= high) {
2869 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2870 pcp, pindex);
2871 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2872 zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2873 ZONE_MOVABLE, 0))
2874 clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2875 }
2876 }
2877
2878 /*
2879 * Free a pcp page
2880 */
__free_frozen_pages(struct page * page,unsigned int order,fpi_t fpi_flags)2881 static void __free_frozen_pages(struct page *page, unsigned int order,
2882 fpi_t fpi_flags)
2883 {
2884 unsigned long __maybe_unused UP_flags;
2885 struct per_cpu_pages *pcp;
2886 struct zone *zone;
2887 unsigned long pfn = page_to_pfn(page);
2888 int migratetype;
2889
2890 if (!pcp_allowed_order(order)) {
2891 __free_pages_ok(page, order, fpi_flags);
2892 return;
2893 }
2894
2895 if (!free_pages_prepare(page, order))
2896 return;
2897
2898 /*
2899 * We only track unmovable, reclaimable and movable on pcp lists.
2900 * Place ISOLATE pages on the isolated list because they are being
2901 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2902 * get those areas back if necessary. Otherwise, we may have to free
2903 * excessively into the page allocator
2904 */
2905 zone = page_zone(page);
2906 migratetype = get_pfnblock_migratetype(page, pfn);
2907 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2908 if (unlikely(is_migrate_isolate(migratetype))) {
2909 free_one_page(zone, page, pfn, order, fpi_flags);
2910 return;
2911 }
2912 migratetype = MIGRATE_MOVABLE;
2913 }
2914
2915 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2916 && (in_nmi() || in_hardirq()))) {
2917 add_page_to_zone_llist(zone, page, order);
2918 return;
2919 }
2920 pcp_trylock_prepare(UP_flags);
2921 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2922 if (pcp) {
2923 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2924 pcp_spin_unlock(pcp);
2925 } else {
2926 free_one_page(zone, page, pfn, order, fpi_flags);
2927 }
2928 pcp_trylock_finish(UP_flags);
2929 }
2930
free_frozen_pages(struct page * page,unsigned int order)2931 void free_frozen_pages(struct page *page, unsigned int order)
2932 {
2933 __free_frozen_pages(page, order, FPI_NONE);
2934 }
2935
2936 /*
2937 * Free a batch of folios
2938 */
free_unref_folios(struct folio_batch * folios)2939 void free_unref_folios(struct folio_batch *folios)
2940 {
2941 unsigned long __maybe_unused UP_flags;
2942 struct per_cpu_pages *pcp = NULL;
2943 struct zone *locked_zone = NULL;
2944 int i, j;
2945
2946 /* Prepare folios for freeing */
2947 for (i = 0, j = 0; i < folios->nr; i++) {
2948 struct folio *folio = folios->folios[i];
2949 unsigned long pfn = folio_pfn(folio);
2950 unsigned int order = folio_order(folio);
2951
2952 if (!free_pages_prepare(&folio->page, order))
2953 continue;
2954 /*
2955 * Free orders not handled on the PCP directly to the
2956 * allocator.
2957 */
2958 if (!pcp_allowed_order(order)) {
2959 free_one_page(folio_zone(folio), &folio->page,
2960 pfn, order, FPI_NONE);
2961 continue;
2962 }
2963 folio->private = (void *)(unsigned long)order;
2964 if (j != i)
2965 folios->folios[j] = folio;
2966 j++;
2967 }
2968 folios->nr = j;
2969
2970 for (i = 0; i < folios->nr; i++) {
2971 struct folio *folio = folios->folios[i];
2972 struct zone *zone = folio_zone(folio);
2973 unsigned long pfn = folio_pfn(folio);
2974 unsigned int order = (unsigned long)folio->private;
2975 int migratetype;
2976
2977 folio->private = NULL;
2978 migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2979
2980 /* Different zone requires a different pcp lock */
2981 if (zone != locked_zone ||
2982 is_migrate_isolate(migratetype)) {
2983 if (pcp) {
2984 pcp_spin_unlock(pcp);
2985 pcp_trylock_finish(UP_flags);
2986 locked_zone = NULL;
2987 pcp = NULL;
2988 }
2989
2990 /*
2991 * Free isolated pages directly to the
2992 * allocator, see comment in free_frozen_pages.
2993 */
2994 if (is_migrate_isolate(migratetype)) {
2995 free_one_page(zone, &folio->page, pfn,
2996 order, FPI_NONE);
2997 continue;
2998 }
2999
3000 /*
3001 * trylock is necessary as folios may be getting freed
3002 * from IRQ or SoftIRQ context after an IO completion.
3003 */
3004 pcp_trylock_prepare(UP_flags);
3005 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3006 if (unlikely(!pcp)) {
3007 pcp_trylock_finish(UP_flags);
3008 free_one_page(zone, &folio->page, pfn,
3009 order, FPI_NONE);
3010 continue;
3011 }
3012 locked_zone = zone;
3013 }
3014
3015 /*
3016 * Non-isolated types over MIGRATE_PCPTYPES get added
3017 * to the MIGRATE_MOVABLE pcp list.
3018 */
3019 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3020 migratetype = MIGRATE_MOVABLE;
3021
3022 trace_mm_page_free_batched(&folio->page);
3023 free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
3024 order, FPI_NONE);
3025 }
3026
3027 if (pcp) {
3028 pcp_spin_unlock(pcp);
3029 pcp_trylock_finish(UP_flags);
3030 }
3031 folio_batch_reinit(folios);
3032 }
3033
3034 /*
3035 * split_page takes a non-compound higher-order page, and splits it into
3036 * n (1<<order) sub-pages: page[0..n]
3037 * Each sub-page must be freed individually.
3038 *
3039 * Note: this is probably too low level an operation for use in drivers.
3040 * Please consult with lkml before using this in your driver.
3041 */
split_page(struct page * page,unsigned int order)3042 void split_page(struct page *page, unsigned int order)
3043 {
3044 int i;
3045
3046 VM_BUG_ON_PAGE(PageCompound(page), page);
3047 VM_BUG_ON_PAGE(!page_count(page), page);
3048
3049 for (i = 1; i < (1 << order); i++)
3050 set_page_refcounted(page + i);
3051 split_page_owner(page, order, 0);
3052 pgalloc_tag_split(page_folio(page), order, 0);
3053 split_page_memcg(page, order);
3054 }
3055 EXPORT_SYMBOL_GPL(split_page);
3056
__isolate_free_page(struct page * page,unsigned int order)3057 int __isolate_free_page(struct page *page, unsigned int order)
3058 {
3059 struct zone *zone = page_zone(page);
3060 int mt = get_pageblock_migratetype(page);
3061
3062 if (!is_migrate_isolate(mt)) {
3063 unsigned long watermark;
3064 /*
3065 * Obey watermarks as if the page was being allocated. We can
3066 * emulate a high-order watermark check with a raised order-0
3067 * watermark, because we already know our high-order page
3068 * exists.
3069 */
3070 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3071 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3072 return 0;
3073 }
3074
3075 del_page_from_free_list(page, zone, order, mt);
3076
3077 /*
3078 * Set the pageblock if the isolated page is at least half of a
3079 * pageblock
3080 */
3081 if (order >= pageblock_order - 1) {
3082 struct page *endpage = page + (1 << order) - 1;
3083 for (; page < endpage; page += pageblock_nr_pages) {
3084 int mt = get_pageblock_migratetype(page);
3085 /*
3086 * Only change normal pageblocks (i.e., they can merge
3087 * with others)
3088 */
3089 if (migratetype_is_mergeable(mt))
3090 move_freepages_block(zone, page, mt,
3091 MIGRATE_MOVABLE);
3092 }
3093 }
3094
3095 return 1UL << order;
3096 }
3097
3098 /**
3099 * __putback_isolated_page - Return a now-isolated page back where we got it
3100 * @page: Page that was isolated
3101 * @order: Order of the isolated page
3102 * @mt: The page's pageblock's migratetype
3103 *
3104 * This function is meant to return a page pulled from the free lists via
3105 * __isolate_free_page back to the free lists they were pulled from.
3106 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3107 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3108 {
3109 struct zone *zone = page_zone(page);
3110
3111 /* zone lock should be held when this function is called */
3112 lockdep_assert_held(&zone->lock);
3113
3114 /* Return isolated page to tail of freelist. */
3115 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3116 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3117 }
3118
3119 /*
3120 * Update NUMA hit/miss statistics
3121 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3122 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3123 long nr_account)
3124 {
3125 #ifdef CONFIG_NUMA
3126 enum numa_stat_item local_stat = NUMA_LOCAL;
3127
3128 /* skip numa counters update if numa stats is disabled */
3129 if (!static_branch_likely(&vm_numa_stat_key))
3130 return;
3131
3132 if (zone_to_nid(z) != numa_node_id())
3133 local_stat = NUMA_OTHER;
3134
3135 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3136 __count_numa_events(z, NUMA_HIT, nr_account);
3137 else {
3138 __count_numa_events(z, NUMA_MISS, nr_account);
3139 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3140 }
3141 __count_numa_events(z, local_stat, nr_account);
3142 #endif
3143 }
3144
3145 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)3146 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3147 unsigned int order, unsigned int alloc_flags,
3148 int migratetype)
3149 {
3150 struct page *page;
3151 unsigned long flags;
3152
3153 do {
3154 page = NULL;
3155 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
3156 if (!spin_trylock_irqsave(&zone->lock, flags))
3157 return NULL;
3158 } else {
3159 spin_lock_irqsave(&zone->lock, flags);
3160 }
3161 if (alloc_flags & ALLOC_HIGHATOMIC)
3162 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3163 if (!page) {
3164 enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
3165
3166 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
3167
3168 /*
3169 * If the allocation fails, allow OOM handling and
3170 * order-0 (atomic) allocs access to HIGHATOMIC
3171 * reserves as failing now is worse than failing a
3172 * high-order atomic allocation in the future.
3173 */
3174 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3175 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3176
3177 if (!page) {
3178 spin_unlock_irqrestore(&zone->lock, flags);
3179 return NULL;
3180 }
3181 }
3182 spin_unlock_irqrestore(&zone->lock, flags);
3183 } while (check_new_pages(page, order));
3184
3185 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3186 zone_statistics(preferred_zone, zone, 1);
3187
3188 return page;
3189 }
3190
nr_pcp_alloc(struct per_cpu_pages * pcp,struct zone * zone,int order)3191 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3192 {
3193 int high, base_batch, batch, max_nr_alloc;
3194 int high_max, high_min;
3195
3196 base_batch = READ_ONCE(pcp->batch);
3197 high_min = READ_ONCE(pcp->high_min);
3198 high_max = READ_ONCE(pcp->high_max);
3199 high = pcp->high = clamp(pcp->high, high_min, high_max);
3200
3201 /* Check for PCP disabled or boot pageset */
3202 if (unlikely(high < base_batch))
3203 return 1;
3204
3205 if (order)
3206 batch = base_batch;
3207 else
3208 batch = (base_batch << pcp->alloc_factor);
3209
3210 /*
3211 * If we had larger pcp->high, we could avoid to allocate from
3212 * zone.
3213 */
3214 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3215 high = pcp->high = min(high + batch, high_max);
3216
3217 if (!order) {
3218 max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3219 /*
3220 * Double the number of pages allocated each time there is
3221 * subsequent allocation of order-0 pages without any freeing.
3222 */
3223 if (batch <= max_nr_alloc &&
3224 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3225 pcp->alloc_factor++;
3226 batch = min(batch, max_nr_alloc);
3227 }
3228
3229 /*
3230 * Scale batch relative to order if batch implies free pages
3231 * can be stored on the PCP. Batch can be 1 for small zones or
3232 * for boot pagesets which should never store free pages as
3233 * the pages may belong to arbitrary zones.
3234 */
3235 if (batch > 1)
3236 batch = max(batch >> order, 2);
3237
3238 return batch;
3239 }
3240
3241 /* Remove page from the per-cpu list, caller must protect the list */
3242 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3243 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3244 int migratetype,
3245 unsigned int alloc_flags,
3246 struct per_cpu_pages *pcp,
3247 struct list_head *list)
3248 {
3249 struct page *page;
3250
3251 do {
3252 if (list_empty(list)) {
3253 int batch = nr_pcp_alloc(pcp, zone, order);
3254 int alloced;
3255
3256 alloced = rmqueue_bulk(zone, order,
3257 batch, list,
3258 migratetype, alloc_flags);
3259
3260 pcp->count += alloced << order;
3261 if (unlikely(list_empty(list)))
3262 return NULL;
3263 }
3264
3265 page = list_first_entry(list, struct page, pcp_list);
3266 list_del(&page->pcp_list);
3267 pcp->count -= 1 << order;
3268 } while (check_new_pages(page, order));
3269
3270 return page;
3271 }
3272
3273 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)3274 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3275 struct zone *zone, unsigned int order,
3276 int migratetype, unsigned int alloc_flags)
3277 {
3278 struct per_cpu_pages *pcp;
3279 struct list_head *list;
3280 struct page *page;
3281 unsigned long __maybe_unused UP_flags;
3282
3283 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3284 pcp_trylock_prepare(UP_flags);
3285 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3286 if (!pcp) {
3287 pcp_trylock_finish(UP_flags);
3288 return NULL;
3289 }
3290
3291 /*
3292 * On allocation, reduce the number of pages that are batch freed.
3293 * See nr_pcp_free() where free_factor is increased for subsequent
3294 * frees.
3295 */
3296 pcp->free_count >>= 1;
3297 list = &pcp->lists[order_to_pindex(migratetype, order)];
3298 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3299 pcp_spin_unlock(pcp);
3300 pcp_trylock_finish(UP_flags);
3301 if (page) {
3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303 zone_statistics(preferred_zone, zone, 1);
3304 }
3305 return page;
3306 }
3307
3308 /*
3309 * Allocate a page from the given zone.
3310 * Use pcplists for THP or "cheap" high-order allocations.
3311 */
3312
3313 /*
3314 * Do not instrument rmqueue() with KMSAN. This function may call
3315 * __msan_poison_alloca() through a call to set_pfnblock_migratetype().
3316 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3317 * may call rmqueue() again, which will result in a deadlock.
3318 */
3319 __no_sanitize_memory
3320 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3321 struct page *rmqueue(struct zone *preferred_zone,
3322 struct zone *zone, unsigned int order,
3323 gfp_t gfp_flags, unsigned int alloc_flags,
3324 int migratetype)
3325 {
3326 struct page *page;
3327
3328 if (likely(pcp_allowed_order(order))) {
3329 page = rmqueue_pcplist(preferred_zone, zone, order,
3330 migratetype, alloc_flags);
3331 if (likely(page))
3332 goto out;
3333 }
3334
3335 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3336 migratetype);
3337
3338 out:
3339 /* Separate test+clear to avoid unnecessary atomics */
3340 if ((alloc_flags & ALLOC_KSWAPD) &&
3341 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3342 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3343 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3344 }
3345
3346 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3347 return page;
3348 }
3349
3350 /*
3351 * Reserve the pageblock(s) surrounding an allocation request for
3352 * exclusive use of high-order atomic allocations if there are no
3353 * empty page blocks that contain a page with a suitable order
3354 */
reserve_highatomic_pageblock(struct page * page,int order,struct zone * zone)3355 static void reserve_highatomic_pageblock(struct page *page, int order,
3356 struct zone *zone)
3357 {
3358 int mt;
3359 unsigned long max_managed, flags;
3360
3361 /*
3362 * The number reserved as: minimum is 1 pageblock, maximum is
3363 * roughly 1% of a zone. But if 1% of a zone falls below a
3364 * pageblock size, then don't reserve any pageblocks.
3365 * Check is race-prone but harmless.
3366 */
3367 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3368 return;
3369 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3370 if (zone->nr_reserved_highatomic >= max_managed)
3371 return;
3372
3373 spin_lock_irqsave(&zone->lock, flags);
3374
3375 /* Recheck the nr_reserved_highatomic limit under the lock */
3376 if (zone->nr_reserved_highatomic >= max_managed)
3377 goto out_unlock;
3378
3379 /* Yoink! */
3380 mt = get_pageblock_migratetype(page);
3381 /* Only reserve normal pageblocks (i.e., they can merge with others) */
3382 if (!migratetype_is_mergeable(mt))
3383 goto out_unlock;
3384
3385 if (order < pageblock_order) {
3386 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3387 goto out_unlock;
3388 zone->nr_reserved_highatomic += pageblock_nr_pages;
3389 } else {
3390 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3391 zone->nr_reserved_highatomic += 1 << order;
3392 }
3393
3394 out_unlock:
3395 spin_unlock_irqrestore(&zone->lock, flags);
3396 }
3397
3398 /*
3399 * Used when an allocation is about to fail under memory pressure. This
3400 * potentially hurts the reliability of high-order allocations when under
3401 * intense memory pressure but failed atomic allocations should be easier
3402 * to recover from than an OOM.
3403 *
3404 * If @force is true, try to unreserve pageblocks even though highatomic
3405 * pageblock is exhausted.
3406 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)3407 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3408 bool force)
3409 {
3410 struct zonelist *zonelist = ac->zonelist;
3411 unsigned long flags;
3412 struct zoneref *z;
3413 struct zone *zone;
3414 struct page *page;
3415 int order;
3416 int ret;
3417
3418 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3419 ac->nodemask) {
3420 /*
3421 * Preserve at least one pageblock unless memory pressure
3422 * is really high.
3423 */
3424 if (!force && zone->nr_reserved_highatomic <=
3425 pageblock_nr_pages)
3426 continue;
3427
3428 spin_lock_irqsave(&zone->lock, flags);
3429 for (order = 0; order < NR_PAGE_ORDERS; order++) {
3430 struct free_area *area = &(zone->free_area[order]);
3431 unsigned long size;
3432
3433 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3434 if (!page)
3435 continue;
3436
3437 size = max(pageblock_nr_pages, 1UL << order);
3438 /*
3439 * It should never happen but changes to
3440 * locking could inadvertently allow a per-cpu
3441 * drain to add pages to MIGRATE_HIGHATOMIC
3442 * while unreserving so be safe and watch for
3443 * underflows.
3444 */
3445 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3446 size = zone->nr_reserved_highatomic;
3447 zone->nr_reserved_highatomic -= size;
3448
3449 /*
3450 * Convert to ac->migratetype and avoid the normal
3451 * pageblock stealing heuristics. Minimally, the caller
3452 * is doing the work and needs the pages. More
3453 * importantly, if the block was always converted to
3454 * MIGRATE_UNMOVABLE or another type then the number
3455 * of pageblocks that cannot be completely freed
3456 * may increase.
3457 */
3458 if (order < pageblock_order)
3459 ret = move_freepages_block(zone, page,
3460 MIGRATE_HIGHATOMIC,
3461 ac->migratetype);
3462 else {
3463 move_to_free_list(page, zone, order,
3464 MIGRATE_HIGHATOMIC,
3465 ac->migratetype);
3466 change_pageblock_range(page, order,
3467 ac->migratetype);
3468 ret = 1;
3469 }
3470 /*
3471 * Reserving the block(s) already succeeded,
3472 * so this should not fail on zone boundaries.
3473 */
3474 WARN_ON_ONCE(ret == -1);
3475 if (ret > 0) {
3476 spin_unlock_irqrestore(&zone->lock, flags);
3477 return ret;
3478 }
3479 }
3480 spin_unlock_irqrestore(&zone->lock, flags);
3481 }
3482
3483 return false;
3484 }
3485
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3486 static inline long __zone_watermark_unusable_free(struct zone *z,
3487 unsigned int order, unsigned int alloc_flags)
3488 {
3489 long unusable_free = (1 << order) - 1;
3490
3491 /*
3492 * If the caller does not have rights to reserves below the min
3493 * watermark then subtract the free pages reserved for highatomic.
3494 */
3495 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3496 unusable_free += READ_ONCE(z->nr_free_highatomic);
3497
3498 #ifdef CONFIG_CMA
3499 /* If allocation can't use CMA areas don't use free CMA pages */
3500 if (!(alloc_flags & ALLOC_CMA))
3501 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3502 #endif
3503
3504 return unusable_free;
3505 }
3506
3507 /*
3508 * Return true if free base pages are above 'mark'. For high-order checks it
3509 * will return true of the order-0 watermark is reached and there is at least
3510 * one free page of a suitable size. Checking now avoids taking the zone lock
3511 * to check in the allocation paths if no pages are free.
3512 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3513 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3514 int highest_zoneidx, unsigned int alloc_flags,
3515 long free_pages)
3516 {
3517 long min = mark;
3518 int o;
3519
3520 /* free_pages may go negative - that's OK */
3521 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3522
3523 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3524 /*
3525 * __GFP_HIGH allows access to 50% of the min reserve as well
3526 * as OOM.
3527 */
3528 if (alloc_flags & ALLOC_MIN_RESERVE) {
3529 min -= min / 2;
3530
3531 /*
3532 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3533 * access more reserves than just __GFP_HIGH. Other
3534 * non-blocking allocations requests such as GFP_NOWAIT
3535 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3536 * access to the min reserve.
3537 */
3538 if (alloc_flags & ALLOC_NON_BLOCK)
3539 min -= min / 4;
3540 }
3541
3542 /*
3543 * OOM victims can try even harder than the normal reserve
3544 * users on the grounds that it's definitely going to be in
3545 * the exit path shortly and free memory. Any allocation it
3546 * makes during the free path will be small and short-lived.
3547 */
3548 if (alloc_flags & ALLOC_OOM)
3549 min -= min / 2;
3550 }
3551
3552 /*
3553 * Check watermarks for an order-0 allocation request. If these
3554 * are not met, then a high-order request also cannot go ahead
3555 * even if a suitable page happened to be free.
3556 */
3557 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3558 return false;
3559
3560 /* If this is an order-0 request then the watermark is fine */
3561 if (!order)
3562 return true;
3563
3564 /* For a high-order request, check at least one suitable page is free */
3565 for (o = order; o < NR_PAGE_ORDERS; o++) {
3566 struct free_area *area = &z->free_area[o];
3567 int mt;
3568
3569 if (!area->nr_free)
3570 continue;
3571
3572 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3573 if (!free_area_empty(area, mt))
3574 return true;
3575 }
3576
3577 #ifdef CONFIG_CMA
3578 if ((alloc_flags & ALLOC_CMA) &&
3579 !free_area_empty(area, MIGRATE_CMA)) {
3580 return true;
3581 }
3582 #endif
3583 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3584 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3585 return true;
3586 }
3587 }
3588 return false;
3589 }
3590
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3591 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3592 int highest_zoneidx, unsigned int alloc_flags)
3593 {
3594 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3595 zone_page_state(z, NR_FREE_PAGES));
3596 }
3597
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3598 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3599 unsigned long mark, int highest_zoneidx,
3600 unsigned int alloc_flags, gfp_t gfp_mask)
3601 {
3602 long free_pages;
3603
3604 free_pages = zone_page_state(z, NR_FREE_PAGES);
3605
3606 /*
3607 * Fast check for order-0 only. If this fails then the reserves
3608 * need to be calculated.
3609 */
3610 if (!order) {
3611 long usable_free;
3612 long reserved;
3613
3614 usable_free = free_pages;
3615 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3616
3617 /* reserved may over estimate high-atomic reserves. */
3618 usable_free -= min(usable_free, reserved);
3619 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3620 return true;
3621 }
3622
3623 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3624 free_pages))
3625 return true;
3626
3627 /*
3628 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3629 * when checking the min watermark. The min watermark is the
3630 * point where boosting is ignored so that kswapd is woken up
3631 * when below the low watermark.
3632 */
3633 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3634 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3635 mark = z->_watermark[WMARK_MIN];
3636 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3637 alloc_flags, free_pages);
3638 }
3639
3640 return false;
3641 }
3642
3643 #ifdef CONFIG_NUMA
3644 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3645
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3646 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3647 {
3648 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3649 node_reclaim_distance;
3650 }
3651 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3652 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3653 {
3654 return true;
3655 }
3656 #endif /* CONFIG_NUMA */
3657
3658 /*
3659 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3660 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3661 * premature use of a lower zone may cause lowmem pressure problems that
3662 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3663 * probably too small. It only makes sense to spread allocations to avoid
3664 * fragmentation between the Normal and DMA32 zones.
3665 */
3666 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3667 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3668 {
3669 unsigned int alloc_flags;
3670
3671 /*
3672 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3673 * to save a branch.
3674 */
3675 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3676
3677 if (defrag_mode) {
3678 alloc_flags |= ALLOC_NOFRAGMENT;
3679 return alloc_flags;
3680 }
3681
3682 #ifdef CONFIG_ZONE_DMA32
3683 if (!zone)
3684 return alloc_flags;
3685
3686 if (zone_idx(zone) != ZONE_NORMAL)
3687 return alloc_flags;
3688
3689 /*
3690 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3691 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3692 * on UMA that if Normal is populated then so is DMA32.
3693 */
3694 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3695 if (nr_online_nodes > 1 && !populated_zone(--zone))
3696 return alloc_flags;
3697
3698 alloc_flags |= ALLOC_NOFRAGMENT;
3699 #endif /* CONFIG_ZONE_DMA32 */
3700 return alloc_flags;
3701 }
3702
3703 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3704 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3705 unsigned int alloc_flags)
3706 {
3707 #ifdef CONFIG_CMA
3708 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3709 alloc_flags |= ALLOC_CMA;
3710 #endif
3711 return alloc_flags;
3712 }
3713
3714 /*
3715 * get_page_from_freelist goes through the zonelist trying to allocate
3716 * a page.
3717 */
3718 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3719 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3720 const struct alloc_context *ac)
3721 {
3722 struct zoneref *z;
3723 struct zone *zone;
3724 struct pglist_data *last_pgdat = NULL;
3725 bool last_pgdat_dirty_ok = false;
3726 bool no_fallback;
3727
3728 retry:
3729 /*
3730 * Scan zonelist, looking for a zone with enough free.
3731 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
3732 */
3733 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3734 z = ac->preferred_zoneref;
3735 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3736 ac->nodemask) {
3737 struct page *page;
3738 unsigned long mark;
3739
3740 if (cpusets_enabled() &&
3741 (alloc_flags & ALLOC_CPUSET) &&
3742 !__cpuset_zone_allowed(zone, gfp_mask))
3743 continue;
3744 /*
3745 * When allocating a page cache page for writing, we
3746 * want to get it from a node that is within its dirty
3747 * limit, such that no single node holds more than its
3748 * proportional share of globally allowed dirty pages.
3749 * The dirty limits take into account the node's
3750 * lowmem reserves and high watermark so that kswapd
3751 * should be able to balance it without having to
3752 * write pages from its LRU list.
3753 *
3754 * XXX: For now, allow allocations to potentially
3755 * exceed the per-node dirty limit in the slowpath
3756 * (spread_dirty_pages unset) before going into reclaim,
3757 * which is important when on a NUMA setup the allowed
3758 * nodes are together not big enough to reach the
3759 * global limit. The proper fix for these situations
3760 * will require awareness of nodes in the
3761 * dirty-throttling and the flusher threads.
3762 */
3763 if (ac->spread_dirty_pages) {
3764 if (last_pgdat != zone->zone_pgdat) {
3765 last_pgdat = zone->zone_pgdat;
3766 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3767 }
3768
3769 if (!last_pgdat_dirty_ok)
3770 continue;
3771 }
3772
3773 if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3774 zone != zonelist_zone(ac->preferred_zoneref)) {
3775 int local_nid;
3776
3777 /*
3778 * If moving to a remote node, retry but allow
3779 * fragmenting fallbacks. Locality is more important
3780 * than fragmentation avoidance.
3781 */
3782 local_nid = zonelist_node_idx(ac->preferred_zoneref);
3783 if (zone_to_nid(zone) != local_nid) {
3784 alloc_flags &= ~ALLOC_NOFRAGMENT;
3785 goto retry;
3786 }
3787 }
3788
3789 cond_accept_memory(zone, order, alloc_flags);
3790
3791 /*
3792 * Detect whether the number of free pages is below high
3793 * watermark. If so, we will decrease pcp->high and free
3794 * PCP pages in free path to reduce the possibility of
3795 * premature page reclaiming. Detection is done here to
3796 * avoid to do that in hotter free path.
3797 */
3798 if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3799 goto check_alloc_wmark;
3800
3801 mark = high_wmark_pages(zone);
3802 if (zone_watermark_fast(zone, order, mark,
3803 ac->highest_zoneidx, alloc_flags,
3804 gfp_mask))
3805 goto try_this_zone;
3806 else
3807 set_bit(ZONE_BELOW_HIGH, &zone->flags);
3808
3809 check_alloc_wmark:
3810 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3811 if (!zone_watermark_fast(zone, order, mark,
3812 ac->highest_zoneidx, alloc_flags,
3813 gfp_mask)) {
3814 int ret;
3815
3816 if (cond_accept_memory(zone, order, alloc_flags))
3817 goto try_this_zone;
3818
3819 /*
3820 * Watermark failed for this zone, but see if we can
3821 * grow this zone if it contains deferred pages.
3822 */
3823 if (deferred_pages_enabled()) {
3824 if (_deferred_grow_zone(zone, order))
3825 goto try_this_zone;
3826 }
3827 /* Checked here to keep the fast path fast */
3828 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3829 if (alloc_flags & ALLOC_NO_WATERMARKS)
3830 goto try_this_zone;
3831
3832 if (!node_reclaim_enabled() ||
3833 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3834 continue;
3835
3836 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3837 switch (ret) {
3838 case NODE_RECLAIM_NOSCAN:
3839 /* did not scan */
3840 continue;
3841 case NODE_RECLAIM_FULL:
3842 /* scanned but unreclaimable */
3843 continue;
3844 default:
3845 /* did we reclaim enough */
3846 if (zone_watermark_ok(zone, order, mark,
3847 ac->highest_zoneidx, alloc_flags))
3848 goto try_this_zone;
3849
3850 continue;
3851 }
3852 }
3853
3854 try_this_zone:
3855 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3856 gfp_mask, alloc_flags, ac->migratetype);
3857 if (page) {
3858 prep_new_page(page, order, gfp_mask, alloc_flags);
3859
3860 /*
3861 * If this is a high-order atomic allocation then check
3862 * if the pageblock should be reserved for the future
3863 */
3864 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3865 reserve_highatomic_pageblock(page, order, zone);
3866
3867 return page;
3868 } else {
3869 if (cond_accept_memory(zone, order, alloc_flags))
3870 goto try_this_zone;
3871
3872 /* Try again if zone has deferred pages */
3873 if (deferred_pages_enabled()) {
3874 if (_deferred_grow_zone(zone, order))
3875 goto try_this_zone;
3876 }
3877 }
3878 }
3879
3880 /*
3881 * It's possible on a UMA machine to get through all zones that are
3882 * fragmented. If avoiding fragmentation, reset and try again.
3883 */
3884 if (no_fallback && !defrag_mode) {
3885 alloc_flags &= ~ALLOC_NOFRAGMENT;
3886 goto retry;
3887 }
3888
3889 return NULL;
3890 }
3891
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3892 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3893 {
3894 unsigned int filter = SHOW_MEM_FILTER_NODES;
3895
3896 /*
3897 * This documents exceptions given to allocations in certain
3898 * contexts that are allowed to allocate outside current's set
3899 * of allowed nodes.
3900 */
3901 if (!(gfp_mask & __GFP_NOMEMALLOC))
3902 if (tsk_is_oom_victim(current) ||
3903 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3904 filter &= ~SHOW_MEM_FILTER_NODES;
3905 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3906 filter &= ~SHOW_MEM_FILTER_NODES;
3907
3908 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3909 }
3910
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3911 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3912 {
3913 struct va_format vaf;
3914 va_list args;
3915 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3916
3917 if ((gfp_mask & __GFP_NOWARN) ||
3918 !__ratelimit(&nopage_rs) ||
3919 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3920 return;
3921
3922 va_start(args, fmt);
3923 vaf.fmt = fmt;
3924 vaf.va = &args;
3925 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3926 current->comm, &vaf, gfp_mask, &gfp_mask,
3927 nodemask_pr_args(nodemask));
3928 va_end(args);
3929
3930 cpuset_print_current_mems_allowed();
3931 pr_cont("\n");
3932 dump_stack();
3933 warn_alloc_show_mem(gfp_mask, nodemask);
3934 }
3935
3936 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3937 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3938 unsigned int alloc_flags,
3939 const struct alloc_context *ac)
3940 {
3941 struct page *page;
3942
3943 page = get_page_from_freelist(gfp_mask, order,
3944 alloc_flags|ALLOC_CPUSET, ac);
3945 /*
3946 * fallback to ignore cpuset restriction if our nodes
3947 * are depleted
3948 */
3949 if (!page)
3950 page = get_page_from_freelist(gfp_mask, order,
3951 alloc_flags, ac);
3952 return page;
3953 }
3954
3955 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3956 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3957 const struct alloc_context *ac, unsigned long *did_some_progress)
3958 {
3959 struct oom_control oc = {
3960 .zonelist = ac->zonelist,
3961 .nodemask = ac->nodemask,
3962 .memcg = NULL,
3963 .gfp_mask = gfp_mask,
3964 .order = order,
3965 };
3966 struct page *page;
3967
3968 *did_some_progress = 0;
3969
3970 /*
3971 * Acquire the oom lock. If that fails, somebody else is
3972 * making progress for us.
3973 */
3974 if (!mutex_trylock(&oom_lock)) {
3975 *did_some_progress = 1;
3976 schedule_timeout_uninterruptible(1);
3977 return NULL;
3978 }
3979
3980 /*
3981 * Go through the zonelist yet one more time, keep very high watermark
3982 * here, this is only to catch a parallel oom killing, we must fail if
3983 * we're still under heavy pressure. But make sure that this reclaim
3984 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3985 * allocation which will never fail due to oom_lock already held.
3986 */
3987 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3988 ~__GFP_DIRECT_RECLAIM, order,
3989 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3990 if (page)
3991 goto out;
3992
3993 /* Coredumps can quickly deplete all memory reserves */
3994 if (current->flags & PF_DUMPCORE)
3995 goto out;
3996 /* The OOM killer will not help higher order allocs */
3997 if (order > PAGE_ALLOC_COSTLY_ORDER)
3998 goto out;
3999 /*
4000 * We have already exhausted all our reclaim opportunities without any
4001 * success so it is time to admit defeat. We will skip the OOM killer
4002 * because it is very likely that the caller has a more reasonable
4003 * fallback than shooting a random task.
4004 *
4005 * The OOM killer may not free memory on a specific node.
4006 */
4007 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4008 goto out;
4009 /* The OOM killer does not needlessly kill tasks for lowmem */
4010 if (ac->highest_zoneidx < ZONE_NORMAL)
4011 goto out;
4012 if (pm_suspended_storage())
4013 goto out;
4014 /*
4015 * XXX: GFP_NOFS allocations should rather fail than rely on
4016 * other request to make a forward progress.
4017 * We are in an unfortunate situation where out_of_memory cannot
4018 * do much for this context but let's try it to at least get
4019 * access to memory reserved if the current task is killed (see
4020 * out_of_memory). Once filesystems are ready to handle allocation
4021 * failures more gracefully we should just bail out here.
4022 */
4023
4024 /* Exhausted what can be done so it's blame time */
4025 if (out_of_memory(&oc) ||
4026 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4027 *did_some_progress = 1;
4028
4029 /*
4030 * Help non-failing allocations by giving them access to memory
4031 * reserves
4032 */
4033 if (gfp_mask & __GFP_NOFAIL)
4034 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4035 ALLOC_NO_WATERMARKS, ac);
4036 }
4037 out:
4038 mutex_unlock(&oom_lock);
4039 return page;
4040 }
4041
4042 /*
4043 * Maximum number of compaction retries with a progress before OOM
4044 * killer is consider as the only way to move forward.
4045 */
4046 #define MAX_COMPACT_RETRIES 16
4047
4048 #ifdef CONFIG_COMPACTION
4049 /* Try memory compaction for high-order allocations before reclaim */
4050 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4051 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4052 unsigned int alloc_flags, const struct alloc_context *ac,
4053 enum compact_priority prio, enum compact_result *compact_result)
4054 {
4055 struct page *page = NULL;
4056 unsigned long pflags;
4057 unsigned int noreclaim_flag;
4058
4059 if (!order)
4060 return NULL;
4061
4062 psi_memstall_enter(&pflags);
4063 delayacct_compact_start();
4064 noreclaim_flag = memalloc_noreclaim_save();
4065
4066 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4067 prio, &page);
4068
4069 memalloc_noreclaim_restore(noreclaim_flag);
4070 psi_memstall_leave(&pflags);
4071 delayacct_compact_end();
4072
4073 if (*compact_result == COMPACT_SKIPPED)
4074 return NULL;
4075 /*
4076 * At least in one zone compaction wasn't deferred or skipped, so let's
4077 * count a compaction stall
4078 */
4079 count_vm_event(COMPACTSTALL);
4080
4081 /* Prep a captured page if available */
4082 if (page)
4083 prep_new_page(page, order, gfp_mask, alloc_flags);
4084
4085 /* Try get a page from the freelist if available */
4086 if (!page)
4087 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4088
4089 if (page) {
4090 struct zone *zone = page_zone(page);
4091
4092 zone->compact_blockskip_flush = false;
4093 compaction_defer_reset(zone, order, true);
4094 count_vm_event(COMPACTSUCCESS);
4095 return page;
4096 }
4097
4098 /*
4099 * It's bad if compaction run occurs and fails. The most likely reason
4100 * is that pages exist, but not enough to satisfy watermarks.
4101 */
4102 count_vm_event(COMPACTFAIL);
4103
4104 cond_resched();
4105
4106 return NULL;
4107 }
4108
4109 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4110 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4111 enum compact_result compact_result,
4112 enum compact_priority *compact_priority,
4113 int *compaction_retries)
4114 {
4115 int max_retries = MAX_COMPACT_RETRIES;
4116 int min_priority;
4117 bool ret = false;
4118 int retries = *compaction_retries;
4119 enum compact_priority priority = *compact_priority;
4120
4121 if (!order)
4122 return false;
4123
4124 if (fatal_signal_pending(current))
4125 return false;
4126
4127 /*
4128 * Compaction was skipped due to a lack of free order-0
4129 * migration targets. Continue if reclaim can help.
4130 */
4131 if (compact_result == COMPACT_SKIPPED) {
4132 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4133 goto out;
4134 }
4135
4136 /*
4137 * Compaction managed to coalesce some page blocks, but the
4138 * allocation failed presumably due to a race. Retry some.
4139 */
4140 if (compact_result == COMPACT_SUCCESS) {
4141 /*
4142 * !costly requests are much more important than
4143 * __GFP_RETRY_MAYFAIL costly ones because they are de
4144 * facto nofail and invoke OOM killer to move on while
4145 * costly can fail and users are ready to cope with
4146 * that. 1/4 retries is rather arbitrary but we would
4147 * need much more detailed feedback from compaction to
4148 * make a better decision.
4149 */
4150 if (order > PAGE_ALLOC_COSTLY_ORDER)
4151 max_retries /= 4;
4152
4153 if (++(*compaction_retries) <= max_retries) {
4154 ret = true;
4155 goto out;
4156 }
4157 }
4158
4159 /*
4160 * Compaction failed. Retry with increasing priority.
4161 */
4162 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4163 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4164
4165 if (*compact_priority > min_priority) {
4166 (*compact_priority)--;
4167 *compaction_retries = 0;
4168 ret = true;
4169 }
4170 out:
4171 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4172 return ret;
4173 }
4174 #else
4175 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4176 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4177 unsigned int alloc_flags, const struct alloc_context *ac,
4178 enum compact_priority prio, enum compact_result *compact_result)
4179 {
4180 *compact_result = COMPACT_SKIPPED;
4181 return NULL;
4182 }
4183
4184 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4185 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4186 enum compact_result compact_result,
4187 enum compact_priority *compact_priority,
4188 int *compaction_retries)
4189 {
4190 struct zone *zone;
4191 struct zoneref *z;
4192
4193 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4194 return false;
4195
4196 /*
4197 * There are setups with compaction disabled which would prefer to loop
4198 * inside the allocator rather than hit the oom killer prematurely.
4199 * Let's give them a good hope and keep retrying while the order-0
4200 * watermarks are OK.
4201 */
4202 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4203 ac->highest_zoneidx, ac->nodemask) {
4204 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4205 ac->highest_zoneidx, alloc_flags))
4206 return true;
4207 }
4208 return false;
4209 }
4210 #endif /* CONFIG_COMPACTION */
4211
4212 #ifdef CONFIG_LOCKDEP
4213 static struct lockdep_map __fs_reclaim_map =
4214 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4215
__need_reclaim(gfp_t gfp_mask)4216 static bool __need_reclaim(gfp_t gfp_mask)
4217 {
4218 /* no reclaim without waiting on it */
4219 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4220 return false;
4221
4222 /* this guy won't enter reclaim */
4223 if (current->flags & PF_MEMALLOC)
4224 return false;
4225
4226 if (gfp_mask & __GFP_NOLOCKDEP)
4227 return false;
4228
4229 return true;
4230 }
4231
__fs_reclaim_acquire(unsigned long ip)4232 void __fs_reclaim_acquire(unsigned long ip)
4233 {
4234 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4235 }
4236
__fs_reclaim_release(unsigned long ip)4237 void __fs_reclaim_release(unsigned long ip)
4238 {
4239 lock_release(&__fs_reclaim_map, ip);
4240 }
4241
fs_reclaim_acquire(gfp_t gfp_mask)4242 void fs_reclaim_acquire(gfp_t gfp_mask)
4243 {
4244 gfp_mask = current_gfp_context(gfp_mask);
4245
4246 if (__need_reclaim(gfp_mask)) {
4247 if (gfp_mask & __GFP_FS)
4248 __fs_reclaim_acquire(_RET_IP_);
4249
4250 #ifdef CONFIG_MMU_NOTIFIER
4251 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4252 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4253 #endif
4254
4255 }
4256 }
4257 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4258
fs_reclaim_release(gfp_t gfp_mask)4259 void fs_reclaim_release(gfp_t gfp_mask)
4260 {
4261 gfp_mask = current_gfp_context(gfp_mask);
4262
4263 if (__need_reclaim(gfp_mask)) {
4264 if (gfp_mask & __GFP_FS)
4265 __fs_reclaim_release(_RET_IP_);
4266 }
4267 }
4268 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4269 #endif
4270
4271 /*
4272 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4273 * have been rebuilt so allocation retries. Reader side does not lock and
4274 * retries the allocation if zonelist changes. Writer side is protected by the
4275 * embedded spin_lock.
4276 */
4277 static DEFINE_SEQLOCK(zonelist_update_seq);
4278
zonelist_iter_begin(void)4279 static unsigned int zonelist_iter_begin(void)
4280 {
4281 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4282 return read_seqbegin(&zonelist_update_seq);
4283
4284 return 0;
4285 }
4286
check_retry_zonelist(unsigned int seq)4287 static unsigned int check_retry_zonelist(unsigned int seq)
4288 {
4289 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4290 return read_seqretry(&zonelist_update_seq, seq);
4291
4292 return seq;
4293 }
4294
4295 /* Perform direct synchronous page reclaim */
4296 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4297 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4298 const struct alloc_context *ac)
4299 {
4300 unsigned int noreclaim_flag;
4301 unsigned long progress;
4302
4303 cond_resched();
4304
4305 /* We now go into synchronous reclaim */
4306 cpuset_memory_pressure_bump();
4307 fs_reclaim_acquire(gfp_mask);
4308 noreclaim_flag = memalloc_noreclaim_save();
4309
4310 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4311 ac->nodemask);
4312
4313 memalloc_noreclaim_restore(noreclaim_flag);
4314 fs_reclaim_release(gfp_mask);
4315
4316 cond_resched();
4317
4318 return progress;
4319 }
4320
4321 /* The really slow allocator path where we enter direct reclaim */
4322 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4323 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4324 unsigned int alloc_flags, const struct alloc_context *ac,
4325 unsigned long *did_some_progress)
4326 {
4327 struct page *page = NULL;
4328 unsigned long pflags;
4329 bool drained = false;
4330
4331 psi_memstall_enter(&pflags);
4332 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4333 if (unlikely(!(*did_some_progress)))
4334 goto out;
4335
4336 retry:
4337 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4338
4339 /*
4340 * If an allocation failed after direct reclaim, it could be because
4341 * pages are pinned on the per-cpu lists or in high alloc reserves.
4342 * Shrink them and try again
4343 */
4344 if (!page && !drained) {
4345 unreserve_highatomic_pageblock(ac, false);
4346 drain_all_pages(NULL);
4347 drained = true;
4348 goto retry;
4349 }
4350 out:
4351 psi_memstall_leave(&pflags);
4352
4353 return page;
4354 }
4355
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4356 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4357 const struct alloc_context *ac)
4358 {
4359 struct zoneref *z;
4360 struct zone *zone;
4361 pg_data_t *last_pgdat = NULL;
4362 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4363 unsigned int reclaim_order;
4364
4365 if (defrag_mode)
4366 reclaim_order = max(order, pageblock_order);
4367 else
4368 reclaim_order = order;
4369
4370 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4371 ac->nodemask) {
4372 if (!managed_zone(zone))
4373 continue;
4374 if (last_pgdat == zone->zone_pgdat)
4375 continue;
4376 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4377 last_pgdat = zone->zone_pgdat;
4378 }
4379 }
4380
4381 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)4382 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4383 {
4384 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4385
4386 /*
4387 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4388 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4389 * to save two branches.
4390 */
4391 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4392 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4393
4394 /*
4395 * The caller may dip into page reserves a bit more if the caller
4396 * cannot run direct reclaim, or if the caller has realtime scheduling
4397 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4398 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4399 */
4400 alloc_flags |= (__force int)
4401 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4402
4403 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4404 /*
4405 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4406 * if it can't schedule.
4407 */
4408 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4409 alloc_flags |= ALLOC_NON_BLOCK;
4410
4411 if (order > 0)
4412 alloc_flags |= ALLOC_HIGHATOMIC;
4413 }
4414
4415 /*
4416 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4417 * GFP_ATOMIC) rather than fail, see the comment for
4418 * cpuset_current_node_allowed().
4419 */
4420 if (alloc_flags & ALLOC_MIN_RESERVE)
4421 alloc_flags &= ~ALLOC_CPUSET;
4422 } else if (unlikely(rt_or_dl_task(current)) && in_task())
4423 alloc_flags |= ALLOC_MIN_RESERVE;
4424
4425 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4426
4427 if (defrag_mode)
4428 alloc_flags |= ALLOC_NOFRAGMENT;
4429
4430 return alloc_flags;
4431 }
4432
oom_reserves_allowed(struct task_struct * tsk)4433 static bool oom_reserves_allowed(struct task_struct *tsk)
4434 {
4435 if (!tsk_is_oom_victim(tsk))
4436 return false;
4437
4438 /*
4439 * !MMU doesn't have oom reaper so give access to memory reserves
4440 * only to the thread with TIF_MEMDIE set
4441 */
4442 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4443 return false;
4444
4445 return true;
4446 }
4447
4448 /*
4449 * Distinguish requests which really need access to full memory
4450 * reserves from oom victims which can live with a portion of it
4451 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4452 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4453 {
4454 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4455 return 0;
4456 if (gfp_mask & __GFP_MEMALLOC)
4457 return ALLOC_NO_WATERMARKS;
4458 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4459 return ALLOC_NO_WATERMARKS;
4460 if (!in_interrupt()) {
4461 if (current->flags & PF_MEMALLOC)
4462 return ALLOC_NO_WATERMARKS;
4463 else if (oom_reserves_allowed(current))
4464 return ALLOC_OOM;
4465 }
4466
4467 return 0;
4468 }
4469
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4470 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4471 {
4472 return !!__gfp_pfmemalloc_flags(gfp_mask);
4473 }
4474
4475 /*
4476 * Checks whether it makes sense to retry the reclaim to make a forward progress
4477 * for the given allocation request.
4478 *
4479 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4480 * without success, or when we couldn't even meet the watermark if we
4481 * reclaimed all remaining pages on the LRU lists.
4482 *
4483 * Returns true if a retry is viable or false to enter the oom path.
4484 */
4485 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4486 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4487 struct alloc_context *ac, int alloc_flags,
4488 bool did_some_progress, int *no_progress_loops)
4489 {
4490 struct zone *zone;
4491 struct zoneref *z;
4492 bool ret = false;
4493
4494 /*
4495 * Costly allocations might have made a progress but this doesn't mean
4496 * their order will become available due to high fragmentation so
4497 * always increment the no progress counter for them
4498 */
4499 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4500 *no_progress_loops = 0;
4501 else
4502 (*no_progress_loops)++;
4503
4504 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4505 goto out;
4506
4507
4508 /*
4509 * Keep reclaiming pages while there is a chance this will lead
4510 * somewhere. If none of the target zones can satisfy our allocation
4511 * request even if all reclaimable pages are considered then we are
4512 * screwed and have to go OOM.
4513 */
4514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4515 ac->highest_zoneidx, ac->nodemask) {
4516 unsigned long available;
4517 unsigned long reclaimable;
4518 unsigned long min_wmark = min_wmark_pages(zone);
4519 bool wmark;
4520
4521 if (cpusets_enabled() &&
4522 (alloc_flags & ALLOC_CPUSET) &&
4523 !__cpuset_zone_allowed(zone, gfp_mask))
4524 continue;
4525
4526 available = reclaimable = zone_reclaimable_pages(zone);
4527 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4528
4529 /*
4530 * Would the allocation succeed if we reclaimed all
4531 * reclaimable pages?
4532 */
4533 wmark = __zone_watermark_ok(zone, order, min_wmark,
4534 ac->highest_zoneidx, alloc_flags, available);
4535 trace_reclaim_retry_zone(z, order, reclaimable,
4536 available, min_wmark, *no_progress_loops, wmark);
4537 if (wmark) {
4538 ret = true;
4539 break;
4540 }
4541 }
4542
4543 /*
4544 * Memory allocation/reclaim might be called from a WQ context and the
4545 * current implementation of the WQ concurrency control doesn't
4546 * recognize that a particular WQ is congested if the worker thread is
4547 * looping without ever sleeping. Therefore we have to do a short sleep
4548 * here rather than calling cond_resched().
4549 */
4550 if (current->flags & PF_WQ_WORKER)
4551 schedule_timeout_uninterruptible(1);
4552 else
4553 cond_resched();
4554 out:
4555 /* Before OOM, exhaust highatomic_reserve */
4556 if (!ret)
4557 return unreserve_highatomic_pageblock(ac, true);
4558
4559 return ret;
4560 }
4561
4562 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4563 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4564 {
4565 /*
4566 * It's possible that cpuset's mems_allowed and the nodemask from
4567 * mempolicy don't intersect. This should be normally dealt with by
4568 * policy_nodemask(), but it's possible to race with cpuset update in
4569 * such a way the check therein was true, and then it became false
4570 * before we got our cpuset_mems_cookie here.
4571 * This assumes that for all allocations, ac->nodemask can come only
4572 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4573 * when it does not intersect with the cpuset restrictions) or the
4574 * caller can deal with a violated nodemask.
4575 */
4576 if (cpusets_enabled() && ac->nodemask &&
4577 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4578 ac->nodemask = NULL;
4579 return true;
4580 }
4581
4582 /*
4583 * When updating a task's mems_allowed or mempolicy nodemask, it is
4584 * possible to race with parallel threads in such a way that our
4585 * allocation can fail while the mask is being updated. If we are about
4586 * to fail, check if the cpuset changed during allocation and if so,
4587 * retry.
4588 */
4589 if (read_mems_allowed_retry(cpuset_mems_cookie))
4590 return true;
4591
4592 return false;
4593 }
4594
4595 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4596 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4597 struct alloc_context *ac)
4598 {
4599 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4600 bool can_compact = gfp_compaction_allowed(gfp_mask);
4601 bool nofail = gfp_mask & __GFP_NOFAIL;
4602 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4603 struct page *page = NULL;
4604 unsigned int alloc_flags;
4605 unsigned long did_some_progress;
4606 enum compact_priority compact_priority;
4607 enum compact_result compact_result;
4608 int compaction_retries;
4609 int no_progress_loops;
4610 unsigned int cpuset_mems_cookie;
4611 unsigned int zonelist_iter_cookie;
4612 int reserve_flags;
4613
4614 if (unlikely(nofail)) {
4615 /*
4616 * We most definitely don't want callers attempting to
4617 * allocate greater than order-1 page units with __GFP_NOFAIL.
4618 */
4619 WARN_ON_ONCE(order > 1);
4620 /*
4621 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4622 * otherwise, we may result in lockup.
4623 */
4624 WARN_ON_ONCE(!can_direct_reclaim);
4625 /*
4626 * PF_MEMALLOC request from this context is rather bizarre
4627 * because we cannot reclaim anything and only can loop waiting
4628 * for somebody to do a work for us.
4629 */
4630 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4631 }
4632
4633 restart:
4634 compaction_retries = 0;
4635 no_progress_loops = 0;
4636 compact_result = COMPACT_SKIPPED;
4637 compact_priority = DEF_COMPACT_PRIORITY;
4638 cpuset_mems_cookie = read_mems_allowed_begin();
4639 zonelist_iter_cookie = zonelist_iter_begin();
4640
4641 /*
4642 * The fast path uses conservative alloc_flags to succeed only until
4643 * kswapd needs to be woken up, and to avoid the cost of setting up
4644 * alloc_flags precisely. So we do that now.
4645 */
4646 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4647
4648 /*
4649 * We need to recalculate the starting point for the zonelist iterator
4650 * because we might have used different nodemask in the fast path, or
4651 * there was a cpuset modification and we are retrying - otherwise we
4652 * could end up iterating over non-eligible zones endlessly.
4653 */
4654 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4655 ac->highest_zoneidx, ac->nodemask);
4656 if (!zonelist_zone(ac->preferred_zoneref))
4657 goto nopage;
4658
4659 /*
4660 * Check for insane configurations where the cpuset doesn't contain
4661 * any suitable zone to satisfy the request - e.g. non-movable
4662 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4663 */
4664 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4665 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4666 ac->highest_zoneidx,
4667 &cpuset_current_mems_allowed);
4668 if (!zonelist_zone(z))
4669 goto nopage;
4670 }
4671
4672 if (alloc_flags & ALLOC_KSWAPD)
4673 wake_all_kswapds(order, gfp_mask, ac);
4674
4675 /*
4676 * The adjusted alloc_flags might result in immediate success, so try
4677 * that first
4678 */
4679 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4680 if (page)
4681 goto got_pg;
4682
4683 /*
4684 * For costly allocations, try direct compaction first, as it's likely
4685 * that we have enough base pages and don't need to reclaim. For non-
4686 * movable high-order allocations, do that as well, as compaction will
4687 * try prevent permanent fragmentation by migrating from blocks of the
4688 * same migratetype.
4689 * Don't try this for allocations that are allowed to ignore
4690 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4691 */
4692 if (can_direct_reclaim && can_compact &&
4693 (costly_order ||
4694 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4695 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4696 page = __alloc_pages_direct_compact(gfp_mask, order,
4697 alloc_flags, ac,
4698 INIT_COMPACT_PRIORITY,
4699 &compact_result);
4700 if (page)
4701 goto got_pg;
4702
4703 /*
4704 * Checks for costly allocations with __GFP_NORETRY, which
4705 * includes some THP page fault allocations
4706 */
4707 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4708 /*
4709 * If allocating entire pageblock(s) and compaction
4710 * failed because all zones are below low watermarks
4711 * or is prohibited because it recently failed at this
4712 * order, fail immediately unless the allocator has
4713 * requested compaction and reclaim retry.
4714 *
4715 * Reclaim is
4716 * - potentially very expensive because zones are far
4717 * below their low watermarks or this is part of very
4718 * bursty high order allocations,
4719 * - not guaranteed to help because isolate_freepages()
4720 * may not iterate over freed pages as part of its
4721 * linear scan, and
4722 * - unlikely to make entire pageblocks free on its
4723 * own.
4724 */
4725 if (compact_result == COMPACT_SKIPPED ||
4726 compact_result == COMPACT_DEFERRED)
4727 goto nopage;
4728
4729 /*
4730 * Looks like reclaim/compaction is worth trying, but
4731 * sync compaction could be very expensive, so keep
4732 * using async compaction.
4733 */
4734 compact_priority = INIT_COMPACT_PRIORITY;
4735 }
4736 }
4737
4738 retry:
4739 /*
4740 * Deal with possible cpuset update races or zonelist updates to avoid
4741 * infinite retries.
4742 */
4743 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4744 check_retry_zonelist(zonelist_iter_cookie))
4745 goto restart;
4746
4747 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4748 if (alloc_flags & ALLOC_KSWAPD)
4749 wake_all_kswapds(order, gfp_mask, ac);
4750
4751 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4752 if (reserve_flags)
4753 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4754 (alloc_flags & ALLOC_KSWAPD);
4755
4756 /*
4757 * Reset the nodemask and zonelist iterators if memory policies can be
4758 * ignored. These allocations are high priority and system rather than
4759 * user oriented.
4760 */
4761 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4762 ac->nodemask = NULL;
4763 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4764 ac->highest_zoneidx, ac->nodemask);
4765 }
4766
4767 /* Attempt with potentially adjusted zonelist and alloc_flags */
4768 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4769 if (page)
4770 goto got_pg;
4771
4772 /* Caller is not willing to reclaim, we can't balance anything */
4773 if (!can_direct_reclaim)
4774 goto nopage;
4775
4776 /* Avoid recursion of direct reclaim */
4777 if (current->flags & PF_MEMALLOC)
4778 goto nopage;
4779
4780 /* Try direct reclaim and then allocating */
4781 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4782 &did_some_progress);
4783 if (page)
4784 goto got_pg;
4785
4786 /* Try direct compaction and then allocating */
4787 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4788 compact_priority, &compact_result);
4789 if (page)
4790 goto got_pg;
4791
4792 /* Do not loop if specifically requested */
4793 if (gfp_mask & __GFP_NORETRY)
4794 goto nopage;
4795
4796 /*
4797 * Do not retry costly high order allocations unless they are
4798 * __GFP_RETRY_MAYFAIL and we can compact
4799 */
4800 if (costly_order && (!can_compact ||
4801 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4802 goto nopage;
4803
4804 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4805 did_some_progress > 0, &no_progress_loops))
4806 goto retry;
4807
4808 /*
4809 * It doesn't make any sense to retry for the compaction if the order-0
4810 * reclaim is not able to make any progress because the current
4811 * implementation of the compaction depends on the sufficient amount
4812 * of free memory (see __compaction_suitable)
4813 */
4814 if (did_some_progress > 0 && can_compact &&
4815 should_compact_retry(ac, order, alloc_flags,
4816 compact_result, &compact_priority,
4817 &compaction_retries))
4818 goto retry;
4819
4820 /* Reclaim/compaction failed to prevent the fallback */
4821 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4822 alloc_flags &= ~ALLOC_NOFRAGMENT;
4823 goto retry;
4824 }
4825
4826 /*
4827 * Deal with possible cpuset update races or zonelist updates to avoid
4828 * a unnecessary OOM kill.
4829 */
4830 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4831 check_retry_zonelist(zonelist_iter_cookie))
4832 goto restart;
4833
4834 /* Reclaim has failed us, start killing things */
4835 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4836 if (page)
4837 goto got_pg;
4838
4839 /* Avoid allocations with no watermarks from looping endlessly */
4840 if (tsk_is_oom_victim(current) &&
4841 (alloc_flags & ALLOC_OOM ||
4842 (gfp_mask & __GFP_NOMEMALLOC)))
4843 goto nopage;
4844
4845 /* Retry as long as the OOM killer is making progress */
4846 if (did_some_progress) {
4847 no_progress_loops = 0;
4848 goto retry;
4849 }
4850
4851 nopage:
4852 /*
4853 * Deal with possible cpuset update races or zonelist updates to avoid
4854 * a unnecessary OOM kill.
4855 */
4856 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4857 check_retry_zonelist(zonelist_iter_cookie))
4858 goto restart;
4859
4860 /*
4861 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4862 * we always retry
4863 */
4864 if (unlikely(nofail)) {
4865 /*
4866 * Lacking direct_reclaim we can't do anything to reclaim memory,
4867 * we disregard these unreasonable nofail requests and still
4868 * return NULL
4869 */
4870 if (!can_direct_reclaim)
4871 goto fail;
4872
4873 /*
4874 * Help non-failing allocations by giving some access to memory
4875 * reserves normally used for high priority non-blocking
4876 * allocations but do not use ALLOC_NO_WATERMARKS because this
4877 * could deplete whole memory reserves which would just make
4878 * the situation worse.
4879 */
4880 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4881 if (page)
4882 goto got_pg;
4883
4884 cond_resched();
4885 goto retry;
4886 }
4887 fail:
4888 warn_alloc(gfp_mask, ac->nodemask,
4889 "page allocation failure: order:%u", order);
4890 got_pg:
4891 return page;
4892 }
4893
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4894 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4895 int preferred_nid, nodemask_t *nodemask,
4896 struct alloc_context *ac, gfp_t *alloc_gfp,
4897 unsigned int *alloc_flags)
4898 {
4899 ac->highest_zoneidx = gfp_zone(gfp_mask);
4900 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4901 ac->nodemask = nodemask;
4902 ac->migratetype = gfp_migratetype(gfp_mask);
4903
4904 if (cpusets_enabled()) {
4905 *alloc_gfp |= __GFP_HARDWALL;
4906 /*
4907 * When we are in the interrupt context, it is irrelevant
4908 * to the current task context. It means that any node ok.
4909 */
4910 if (in_task() && !ac->nodemask)
4911 ac->nodemask = &cpuset_current_mems_allowed;
4912 else
4913 *alloc_flags |= ALLOC_CPUSET;
4914 }
4915
4916 might_alloc(gfp_mask);
4917
4918 /*
4919 * Don't invoke should_fail logic, since it may call
4920 * get_random_u32() and printk() which need to spin_lock.
4921 */
4922 if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4923 should_fail_alloc_page(gfp_mask, order))
4924 return false;
4925
4926 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4927
4928 /* Dirty zone balancing only done in the fast path */
4929 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4930
4931 /*
4932 * The preferred zone is used for statistics but crucially it is
4933 * also used as the starting point for the zonelist iterator. It
4934 * may get reset for allocations that ignore memory policies.
4935 */
4936 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4937 ac->highest_zoneidx, ac->nodemask);
4938
4939 return true;
4940 }
4941
4942 /*
4943 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4944 * @gfp: GFP flags for the allocation
4945 * @preferred_nid: The preferred NUMA node ID to allocate from
4946 * @nodemask: Set of nodes to allocate from, may be NULL
4947 * @nr_pages: The number of pages desired in the array
4948 * @page_array: Array to store the pages
4949 *
4950 * This is a batched version of the page allocator that attempts to
4951 * allocate nr_pages quickly. Pages are added to the page_array.
4952 *
4953 * Note that only NULL elements are populated with pages and nr_pages
4954 * is the maximum number of pages that will be stored in the array.
4955 *
4956 * Returns the number of pages in the array.
4957 */
alloc_pages_bulk_noprof(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct page ** page_array)4958 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4959 nodemask_t *nodemask, int nr_pages,
4960 struct page **page_array)
4961 {
4962 struct page *page;
4963 unsigned long __maybe_unused UP_flags;
4964 struct zone *zone;
4965 struct zoneref *z;
4966 struct per_cpu_pages *pcp;
4967 struct list_head *pcp_list;
4968 struct alloc_context ac;
4969 gfp_t alloc_gfp;
4970 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4971 int nr_populated = 0, nr_account = 0;
4972
4973 /*
4974 * Skip populated array elements to determine if any pages need
4975 * to be allocated before disabling IRQs.
4976 */
4977 while (nr_populated < nr_pages && page_array[nr_populated])
4978 nr_populated++;
4979
4980 /* No pages requested? */
4981 if (unlikely(nr_pages <= 0))
4982 goto out;
4983
4984 /* Already populated array? */
4985 if (unlikely(nr_pages - nr_populated == 0))
4986 goto out;
4987
4988 /* Bulk allocator does not support memcg accounting. */
4989 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4990 goto failed;
4991
4992 /* Use the single page allocator for one page. */
4993 if (nr_pages - nr_populated == 1)
4994 goto failed;
4995
4996 #ifdef CONFIG_PAGE_OWNER
4997 /*
4998 * PAGE_OWNER may recurse into the allocator to allocate space to
4999 * save the stack with pagesets.lock held. Releasing/reacquiring
5000 * removes much of the performance benefit of bulk allocation so
5001 * force the caller to allocate one page at a time as it'll have
5002 * similar performance to added complexity to the bulk allocator.
5003 */
5004 if (static_branch_unlikely(&page_owner_inited))
5005 goto failed;
5006 #endif
5007
5008 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5009 gfp &= gfp_allowed_mask;
5010 alloc_gfp = gfp;
5011 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5012 goto out;
5013 gfp = alloc_gfp;
5014
5015 /* Find an allowed local zone that meets the low watermark. */
5016 z = ac.preferred_zoneref;
5017 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
5018 unsigned long mark;
5019
5020 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5021 !__cpuset_zone_allowed(zone, gfp)) {
5022 continue;
5023 }
5024
5025 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
5026 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
5027 goto failed;
5028 }
5029
5030 cond_accept_memory(zone, 0, alloc_flags);
5031 retry_this_zone:
5032 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5033 if (zone_watermark_fast(zone, 0, mark,
5034 zonelist_zone_idx(ac.preferred_zoneref),
5035 alloc_flags, gfp)) {
5036 break;
5037 }
5038
5039 if (cond_accept_memory(zone, 0, alloc_flags))
5040 goto retry_this_zone;
5041
5042 /* Try again if zone has deferred pages */
5043 if (deferred_pages_enabled()) {
5044 if (_deferred_grow_zone(zone, 0))
5045 goto retry_this_zone;
5046 }
5047 }
5048
5049 /*
5050 * If there are no allowed local zones that meets the watermarks then
5051 * try to allocate a single page and reclaim if necessary.
5052 */
5053 if (unlikely(!zone))
5054 goto failed;
5055
5056 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5057 pcp_trylock_prepare(UP_flags);
5058 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5059 if (!pcp)
5060 goto failed_irq;
5061
5062 /* Attempt the batch allocation */
5063 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5064 while (nr_populated < nr_pages) {
5065
5066 /* Skip existing pages */
5067 if (page_array[nr_populated]) {
5068 nr_populated++;
5069 continue;
5070 }
5071
5072 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5073 pcp, pcp_list);
5074 if (unlikely(!page)) {
5075 /* Try and allocate at least one page */
5076 if (!nr_account) {
5077 pcp_spin_unlock(pcp);
5078 goto failed_irq;
5079 }
5080 break;
5081 }
5082 nr_account++;
5083
5084 prep_new_page(page, 0, gfp, 0);
5085 set_page_refcounted(page);
5086 page_array[nr_populated++] = page;
5087 }
5088
5089 pcp_spin_unlock(pcp);
5090 pcp_trylock_finish(UP_flags);
5091
5092 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5093 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
5094
5095 out:
5096 return nr_populated;
5097
5098 failed_irq:
5099 pcp_trylock_finish(UP_flags);
5100
5101 failed:
5102 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
5103 if (page)
5104 page_array[nr_populated++] = page;
5105 goto out;
5106 }
5107 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
5108
5109 /*
5110 * This is the 'heart' of the zoned buddy allocator.
5111 */
__alloc_frozen_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5112 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
5113 int preferred_nid, nodemask_t *nodemask)
5114 {
5115 struct page *page;
5116 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5117 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5118 struct alloc_context ac = { };
5119
5120 /*
5121 * There are several places where we assume that the order value is sane
5122 * so bail out early if the request is out of bound.
5123 */
5124 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
5125 return NULL;
5126
5127 gfp &= gfp_allowed_mask;
5128 /*
5129 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5130 * resp. GFP_NOIO which has to be inherited for all allocation requests
5131 * from a particular context which has been marked by
5132 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5133 * movable zones are not used during allocation.
5134 */
5135 gfp = current_gfp_context(gfp);
5136 alloc_gfp = gfp;
5137 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5138 &alloc_gfp, &alloc_flags))
5139 return NULL;
5140
5141 /*
5142 * Forbid the first pass from falling back to types that fragment
5143 * memory until all local zones are considered.
5144 */
5145 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
5146
5147 /* First allocation attempt */
5148 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5149 if (likely(page))
5150 goto out;
5151
5152 alloc_gfp = gfp;
5153 ac.spread_dirty_pages = false;
5154
5155 /*
5156 * Restore the original nodemask if it was potentially replaced with
5157 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5158 */
5159 ac.nodemask = nodemask;
5160
5161 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5162
5163 out:
5164 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5165 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5166 free_frozen_pages(page, order);
5167 page = NULL;
5168 }
5169
5170 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5171 kmsan_alloc_page(page, order, alloc_gfp);
5172
5173 return page;
5174 }
5175 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5176
__alloc_pages_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5177 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5178 int preferred_nid, nodemask_t *nodemask)
5179 {
5180 struct page *page;
5181
5182 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5183 if (page)
5184 set_page_refcounted(page);
5185 return page;
5186 }
5187 EXPORT_SYMBOL(__alloc_pages_noprof);
5188
__folio_alloc_noprof(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5189 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5190 nodemask_t *nodemask)
5191 {
5192 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5193 preferred_nid, nodemask);
5194 return page_rmappable_folio(page);
5195 }
5196 EXPORT_SYMBOL(__folio_alloc_noprof);
5197
5198 /*
5199 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5200 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5201 * you need to access high mem.
5202 */
get_free_pages_noprof(gfp_t gfp_mask,unsigned int order)5203 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5204 {
5205 struct page *page;
5206
5207 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5208 if (!page)
5209 return 0;
5210 return (unsigned long) page_address(page);
5211 }
5212 EXPORT_SYMBOL(get_free_pages_noprof);
5213
get_zeroed_page_noprof(gfp_t gfp_mask)5214 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5215 {
5216 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5217 }
5218 EXPORT_SYMBOL(get_zeroed_page_noprof);
5219
___free_pages(struct page * page,unsigned int order,fpi_t fpi_flags)5220 static void ___free_pages(struct page *page, unsigned int order,
5221 fpi_t fpi_flags)
5222 {
5223 /* get PageHead before we drop reference */
5224 int head = PageHead(page);
5225 /* get alloc tag in case the page is released by others */
5226 struct alloc_tag *tag = pgalloc_tag_get(page);
5227
5228 if (put_page_testzero(page))
5229 __free_frozen_pages(page, order, fpi_flags);
5230 else if (!head) {
5231 pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5232 while (order-- > 0)
5233 __free_frozen_pages(page + (1 << order), order,
5234 fpi_flags);
5235 }
5236 }
5237
5238 /**
5239 * __free_pages - Free pages allocated with alloc_pages().
5240 * @page: The page pointer returned from alloc_pages().
5241 * @order: The order of the allocation.
5242 *
5243 * This function can free multi-page allocations that are not compound
5244 * pages. It does not check that the @order passed in matches that of
5245 * the allocation, so it is easy to leak memory. Freeing more memory
5246 * than was allocated will probably emit a warning.
5247 *
5248 * If the last reference to this page is speculative, it will be released
5249 * by put_page() which only frees the first page of a non-compound
5250 * allocation. To prevent the remaining pages from being leaked, we free
5251 * the subsequent pages here. If you want to use the page's reference
5252 * count to decide when to free the allocation, you should allocate a
5253 * compound page, and use put_page() instead of __free_pages().
5254 *
5255 * Context: May be called in interrupt context or while holding a normal
5256 * spinlock, but not in NMI context or while holding a raw spinlock.
5257 */
__free_pages(struct page * page,unsigned int order)5258 void __free_pages(struct page *page, unsigned int order)
5259 {
5260 ___free_pages(page, order, FPI_NONE);
5261 }
5262 EXPORT_SYMBOL(__free_pages);
5263
5264 /*
5265 * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5266 * page type (not only those that came from alloc_pages_nolock)
5267 */
free_pages_nolock(struct page * page,unsigned int order)5268 void free_pages_nolock(struct page *page, unsigned int order)
5269 {
5270 ___free_pages(page, order, FPI_TRYLOCK);
5271 }
5272
free_pages(unsigned long addr,unsigned int order)5273 void free_pages(unsigned long addr, unsigned int order)
5274 {
5275 if (addr != 0) {
5276 VM_BUG_ON(!virt_addr_valid((void *)addr));
5277 __free_pages(virt_to_page((void *)addr), order);
5278 }
5279 }
5280
5281 EXPORT_SYMBOL(free_pages);
5282
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5283 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5284 size_t size)
5285 {
5286 if (addr) {
5287 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5288 struct page *page = virt_to_page((void *)addr);
5289 struct page *last = page + nr;
5290
5291 split_page_owner(page, order, 0);
5292 pgalloc_tag_split(page_folio(page), order, 0);
5293 split_page_memcg(page, order);
5294 while (page < --last)
5295 set_page_refcounted(last);
5296
5297 last = page + (1UL << order);
5298 for (page += nr; page < last; page++)
5299 __free_pages_ok(page, 0, FPI_TO_TAIL);
5300 }
5301 return (void *)addr;
5302 }
5303
5304 /**
5305 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5306 * @size: the number of bytes to allocate
5307 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5308 *
5309 * This function is similar to alloc_pages(), except that it allocates the
5310 * minimum number of pages to satisfy the request. alloc_pages() can only
5311 * allocate memory in power-of-two pages.
5312 *
5313 * This function is also limited by MAX_PAGE_ORDER.
5314 *
5315 * Memory allocated by this function must be released by free_pages_exact().
5316 *
5317 * Return: pointer to the allocated area or %NULL in case of error.
5318 */
alloc_pages_exact_noprof(size_t size,gfp_t gfp_mask)5319 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5320 {
5321 unsigned int order = get_order(size);
5322 unsigned long addr;
5323
5324 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5325 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5326
5327 addr = get_free_pages_noprof(gfp_mask, order);
5328 return make_alloc_exact(addr, order, size);
5329 }
5330 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5331
5332 /**
5333 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5334 * pages on a node.
5335 * @nid: the preferred node ID where memory should be allocated
5336 * @size: the number of bytes to allocate
5337 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5338 *
5339 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5340 * back.
5341 *
5342 * Return: pointer to the allocated area or %NULL in case of error.
5343 */
alloc_pages_exact_nid_noprof(int nid,size_t size,gfp_t gfp_mask)5344 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5345 {
5346 unsigned int order = get_order(size);
5347 struct page *p;
5348
5349 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5350 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5351
5352 p = alloc_pages_node_noprof(nid, gfp_mask, order);
5353 if (!p)
5354 return NULL;
5355 return make_alloc_exact((unsigned long)page_address(p), order, size);
5356 }
5357
5358 /**
5359 * free_pages_exact - release memory allocated via alloc_pages_exact()
5360 * @virt: the value returned by alloc_pages_exact.
5361 * @size: size of allocation, same value as passed to alloc_pages_exact().
5362 *
5363 * Release the memory allocated by a previous call to alloc_pages_exact.
5364 */
free_pages_exact(void * virt,size_t size)5365 void free_pages_exact(void *virt, size_t size)
5366 {
5367 unsigned long addr = (unsigned long)virt;
5368 unsigned long end = addr + PAGE_ALIGN(size);
5369
5370 while (addr < end) {
5371 free_page(addr);
5372 addr += PAGE_SIZE;
5373 }
5374 }
5375 EXPORT_SYMBOL(free_pages_exact);
5376
5377 /**
5378 * nr_free_zone_pages - count number of pages beyond high watermark
5379 * @offset: The zone index of the highest zone
5380 *
5381 * nr_free_zone_pages() counts the number of pages which are beyond the
5382 * high watermark within all zones at or below a given zone index. For each
5383 * zone, the number of pages is calculated as:
5384 *
5385 * nr_free_zone_pages = managed_pages - high_pages
5386 *
5387 * Return: number of pages beyond high watermark.
5388 */
nr_free_zone_pages(int offset)5389 static unsigned long nr_free_zone_pages(int offset)
5390 {
5391 struct zoneref *z;
5392 struct zone *zone;
5393
5394 /* Just pick one node, since fallback list is circular */
5395 unsigned long sum = 0;
5396
5397 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5398
5399 for_each_zone_zonelist(zone, z, zonelist, offset) {
5400 unsigned long size = zone_managed_pages(zone);
5401 unsigned long high = high_wmark_pages(zone);
5402 if (size > high)
5403 sum += size - high;
5404 }
5405
5406 return sum;
5407 }
5408
5409 /**
5410 * nr_free_buffer_pages - count number of pages beyond high watermark
5411 *
5412 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5413 * watermark within ZONE_DMA and ZONE_NORMAL.
5414 *
5415 * Return: number of pages beyond high watermark within ZONE_DMA and
5416 * ZONE_NORMAL.
5417 */
nr_free_buffer_pages(void)5418 unsigned long nr_free_buffer_pages(void)
5419 {
5420 return nr_free_zone_pages(gfp_zone(GFP_USER));
5421 }
5422 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5423
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5424 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5425 {
5426 zoneref->zone = zone;
5427 zoneref->zone_idx = zone_idx(zone);
5428 }
5429
5430 /*
5431 * Builds allocation fallback zone lists.
5432 *
5433 * Add all populated zones of a node to the zonelist.
5434 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5435 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5436 {
5437 struct zone *zone;
5438 enum zone_type zone_type = MAX_NR_ZONES;
5439 int nr_zones = 0;
5440
5441 do {
5442 zone_type--;
5443 zone = pgdat->node_zones + zone_type;
5444 if (populated_zone(zone)) {
5445 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5446 check_highest_zone(zone_type);
5447 }
5448 } while (zone_type);
5449
5450 return nr_zones;
5451 }
5452
5453 #ifdef CONFIG_NUMA
5454
__parse_numa_zonelist_order(char * s)5455 static int __parse_numa_zonelist_order(char *s)
5456 {
5457 /*
5458 * We used to support different zonelists modes but they turned
5459 * out to be just not useful. Let's keep the warning in place
5460 * if somebody still use the cmd line parameter so that we do
5461 * not fail it silently
5462 */
5463 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5464 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5465 return -EINVAL;
5466 }
5467 return 0;
5468 }
5469
5470 static char numa_zonelist_order[] = "Node";
5471 #define NUMA_ZONELIST_ORDER_LEN 16
5472 /*
5473 * sysctl handler for numa_zonelist_order
5474 */
numa_zonelist_order_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5475 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5476 void *buffer, size_t *length, loff_t *ppos)
5477 {
5478 if (write)
5479 return __parse_numa_zonelist_order(buffer);
5480 return proc_dostring(table, write, buffer, length, ppos);
5481 }
5482
5483 static int node_load[MAX_NUMNODES];
5484
5485 /**
5486 * find_next_best_node - find the next node that should appear in a given node's fallback list
5487 * @node: node whose fallback list we're appending
5488 * @used_node_mask: nodemask_t of already used nodes
5489 *
5490 * We use a number of factors to determine which is the next node that should
5491 * appear on a given node's fallback list. The node should not have appeared
5492 * already in @node's fallback list, and it should be the next closest node
5493 * according to the distance array (which contains arbitrary distance values
5494 * from each node to each node in the system), and should also prefer nodes
5495 * with no CPUs, since presumably they'll have very little allocation pressure
5496 * on them otherwise.
5497 *
5498 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5499 */
find_next_best_node(int node,nodemask_t * used_node_mask)5500 int find_next_best_node(int node, nodemask_t *used_node_mask)
5501 {
5502 int n, val;
5503 int min_val = INT_MAX;
5504 int best_node = NUMA_NO_NODE;
5505
5506 /*
5507 * Use the local node if we haven't already, but for memoryless local
5508 * node, we should skip it and fall back to other nodes.
5509 */
5510 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5511 node_set(node, *used_node_mask);
5512 return node;
5513 }
5514
5515 for_each_node_state(n, N_MEMORY) {
5516
5517 /* Don't want a node to appear more than once */
5518 if (node_isset(n, *used_node_mask))
5519 continue;
5520
5521 /* Use the distance array to find the distance */
5522 val = node_distance(node, n);
5523
5524 /* Penalize nodes under us ("prefer the next node") */
5525 val += (n < node);
5526
5527 /* Give preference to headless and unused nodes */
5528 if (!cpumask_empty(cpumask_of_node(n)))
5529 val += PENALTY_FOR_NODE_WITH_CPUS;
5530
5531 /* Slight preference for less loaded node */
5532 val *= MAX_NUMNODES;
5533 val += node_load[n];
5534
5535 if (val < min_val) {
5536 min_val = val;
5537 best_node = n;
5538 }
5539 }
5540
5541 if (best_node >= 0)
5542 node_set(best_node, *used_node_mask);
5543
5544 return best_node;
5545 }
5546
5547
5548 /*
5549 * Build zonelists ordered by node and zones within node.
5550 * This results in maximum locality--normal zone overflows into local
5551 * DMA zone, if any--but risks exhausting DMA zone.
5552 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5553 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5554 unsigned nr_nodes)
5555 {
5556 struct zoneref *zonerefs;
5557 int i;
5558
5559 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5560
5561 for (i = 0; i < nr_nodes; i++) {
5562 int nr_zones;
5563
5564 pg_data_t *node = NODE_DATA(node_order[i]);
5565
5566 nr_zones = build_zonerefs_node(node, zonerefs);
5567 zonerefs += nr_zones;
5568 }
5569 zonerefs->zone = NULL;
5570 zonerefs->zone_idx = 0;
5571 }
5572
5573 /*
5574 * Build __GFP_THISNODE zonelists
5575 */
build_thisnode_zonelists(pg_data_t * pgdat)5576 static void build_thisnode_zonelists(pg_data_t *pgdat)
5577 {
5578 struct zoneref *zonerefs;
5579 int nr_zones;
5580
5581 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5582 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5583 zonerefs += nr_zones;
5584 zonerefs->zone = NULL;
5585 zonerefs->zone_idx = 0;
5586 }
5587
build_zonelists(pg_data_t * pgdat)5588 static void build_zonelists(pg_data_t *pgdat)
5589 {
5590 static int node_order[MAX_NUMNODES];
5591 int node, nr_nodes = 0;
5592 nodemask_t used_mask = NODE_MASK_NONE;
5593 int local_node, prev_node;
5594
5595 /* NUMA-aware ordering of nodes */
5596 local_node = pgdat->node_id;
5597 prev_node = local_node;
5598
5599 memset(node_order, 0, sizeof(node_order));
5600 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5601 /*
5602 * We don't want to pressure a particular node.
5603 * So adding penalty to the first node in same
5604 * distance group to make it round-robin.
5605 */
5606 if (node_distance(local_node, node) !=
5607 node_distance(local_node, prev_node))
5608 node_load[node] += 1;
5609
5610 node_order[nr_nodes++] = node;
5611 prev_node = node;
5612 }
5613
5614 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5615 build_thisnode_zonelists(pgdat);
5616 pr_info("Fallback order for Node %d: ", local_node);
5617 for (node = 0; node < nr_nodes; node++)
5618 pr_cont("%d ", node_order[node]);
5619 pr_cont("\n");
5620 }
5621
5622 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5623 /*
5624 * Return node id of node used for "local" allocations.
5625 * I.e., first node id of first zone in arg node's generic zonelist.
5626 * Used for initializing percpu 'numa_mem', which is used primarily
5627 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5628 */
local_memory_node(int node)5629 int local_memory_node(int node)
5630 {
5631 struct zoneref *z;
5632
5633 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5634 gfp_zone(GFP_KERNEL),
5635 NULL);
5636 return zonelist_node_idx(z);
5637 }
5638 #endif
5639
5640 static void setup_min_unmapped_ratio(void);
5641 static void setup_min_slab_ratio(void);
5642 #else /* CONFIG_NUMA */
5643
build_zonelists(pg_data_t * pgdat)5644 static void build_zonelists(pg_data_t *pgdat)
5645 {
5646 struct zoneref *zonerefs;
5647 int nr_zones;
5648
5649 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5650 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5651 zonerefs += nr_zones;
5652
5653 zonerefs->zone = NULL;
5654 zonerefs->zone_idx = 0;
5655 }
5656
5657 #endif /* CONFIG_NUMA */
5658
5659 /*
5660 * Boot pageset table. One per cpu which is going to be used for all
5661 * zones and all nodes. The parameters will be set in such a way
5662 * that an item put on a list will immediately be handed over to
5663 * the buddy list. This is safe since pageset manipulation is done
5664 * with interrupts disabled.
5665 *
5666 * The boot_pagesets must be kept even after bootup is complete for
5667 * unused processors and/or zones. They do play a role for bootstrapping
5668 * hotplugged processors.
5669 *
5670 * zoneinfo_show() and maybe other functions do
5671 * not check if the processor is online before following the pageset pointer.
5672 * Other parts of the kernel may not check if the zone is available.
5673 */
5674 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5675 /* These effectively disable the pcplists in the boot pageset completely */
5676 #define BOOT_PAGESET_HIGH 0
5677 #define BOOT_PAGESET_BATCH 1
5678 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5679 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5680
__build_all_zonelists(void * data)5681 static void __build_all_zonelists(void *data)
5682 {
5683 int nid;
5684 int __maybe_unused cpu;
5685 pg_data_t *self = data;
5686 unsigned long flags;
5687
5688 /*
5689 * The zonelist_update_seq must be acquired with irqsave because the
5690 * reader can be invoked from IRQ with GFP_ATOMIC.
5691 */
5692 write_seqlock_irqsave(&zonelist_update_seq, flags);
5693 /*
5694 * Also disable synchronous printk() to prevent any printk() from
5695 * trying to hold port->lock, for
5696 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5697 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5698 */
5699 printk_deferred_enter();
5700
5701 #ifdef CONFIG_NUMA
5702 memset(node_load, 0, sizeof(node_load));
5703 #endif
5704
5705 /*
5706 * This node is hotadded and no memory is yet present. So just
5707 * building zonelists is fine - no need to touch other nodes.
5708 */
5709 if (self && !node_online(self->node_id)) {
5710 build_zonelists(self);
5711 } else {
5712 /*
5713 * All possible nodes have pgdat preallocated
5714 * in free_area_init
5715 */
5716 for_each_node(nid) {
5717 pg_data_t *pgdat = NODE_DATA(nid);
5718
5719 build_zonelists(pgdat);
5720 }
5721
5722 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5723 /*
5724 * We now know the "local memory node" for each node--
5725 * i.e., the node of the first zone in the generic zonelist.
5726 * Set up numa_mem percpu variable for on-line cpus. During
5727 * boot, only the boot cpu should be on-line; we'll init the
5728 * secondary cpus' numa_mem as they come on-line. During
5729 * node/memory hotplug, we'll fixup all on-line cpus.
5730 */
5731 for_each_online_cpu(cpu)
5732 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5733 #endif
5734 }
5735
5736 printk_deferred_exit();
5737 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5738 }
5739
5740 static noinline void __init
build_all_zonelists_init(void)5741 build_all_zonelists_init(void)
5742 {
5743 int cpu;
5744
5745 __build_all_zonelists(NULL);
5746
5747 /*
5748 * Initialize the boot_pagesets that are going to be used
5749 * for bootstrapping processors. The real pagesets for
5750 * each zone will be allocated later when the per cpu
5751 * allocator is available.
5752 *
5753 * boot_pagesets are used also for bootstrapping offline
5754 * cpus if the system is already booted because the pagesets
5755 * are needed to initialize allocators on a specific cpu too.
5756 * F.e. the percpu allocator needs the page allocator which
5757 * needs the percpu allocator in order to allocate its pagesets
5758 * (a chicken-egg dilemma).
5759 */
5760 for_each_possible_cpu(cpu)
5761 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5762
5763 mminit_verify_zonelist();
5764 cpuset_init_current_mems_allowed();
5765 }
5766
5767 /*
5768 * unless system_state == SYSTEM_BOOTING.
5769 *
5770 * __ref due to call of __init annotated helper build_all_zonelists_init
5771 * [protected by SYSTEM_BOOTING].
5772 */
build_all_zonelists(pg_data_t * pgdat)5773 void __ref build_all_zonelists(pg_data_t *pgdat)
5774 {
5775 unsigned long vm_total_pages;
5776
5777 if (system_state == SYSTEM_BOOTING) {
5778 build_all_zonelists_init();
5779 } else {
5780 __build_all_zonelists(pgdat);
5781 /* cpuset refresh routine should be here */
5782 }
5783 /* Get the number of free pages beyond high watermark in all zones. */
5784 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5785 /*
5786 * Disable grouping by mobility if the number of pages in the
5787 * system is too low to allow the mechanism to work. It would be
5788 * more accurate, but expensive to check per-zone. This check is
5789 * made on memory-hotadd so a system can start with mobility
5790 * disabled and enable it later
5791 */
5792 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5793 page_group_by_mobility_disabled = 1;
5794 else
5795 page_group_by_mobility_disabled = 0;
5796
5797 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5798 nr_online_nodes,
5799 str_off_on(page_group_by_mobility_disabled),
5800 vm_total_pages);
5801 #ifdef CONFIG_NUMA
5802 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5803 #endif
5804 }
5805
zone_batchsize(struct zone * zone)5806 static int zone_batchsize(struct zone *zone)
5807 {
5808 #ifdef CONFIG_MMU
5809 int batch;
5810
5811 /*
5812 * The number of pages to batch allocate is either ~0.1%
5813 * of the zone or 1MB, whichever is smaller. The batch
5814 * size is striking a balance between allocation latency
5815 * and zone lock contention.
5816 */
5817 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5818 batch /= 4; /* We effectively *= 4 below */
5819 if (batch < 1)
5820 batch = 1;
5821
5822 /*
5823 * Clamp the batch to a 2^n - 1 value. Having a power
5824 * of 2 value was found to be more likely to have
5825 * suboptimal cache aliasing properties in some cases.
5826 *
5827 * For example if 2 tasks are alternately allocating
5828 * batches of pages, one task can end up with a lot
5829 * of pages of one half of the possible page colors
5830 * and the other with pages of the other colors.
5831 */
5832 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5833
5834 return batch;
5835
5836 #else
5837 /* The deferral and batching of frees should be suppressed under NOMMU
5838 * conditions.
5839 *
5840 * The problem is that NOMMU needs to be able to allocate large chunks
5841 * of contiguous memory as there's no hardware page translation to
5842 * assemble apparent contiguous memory from discontiguous pages.
5843 *
5844 * Queueing large contiguous runs of pages for batching, however,
5845 * causes the pages to actually be freed in smaller chunks. As there
5846 * can be a significant delay between the individual batches being
5847 * recycled, this leads to the once large chunks of space being
5848 * fragmented and becoming unavailable for high-order allocations.
5849 */
5850 return 0;
5851 #endif
5852 }
5853
5854 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online,int high_fraction)5855 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5856 int high_fraction)
5857 {
5858 #ifdef CONFIG_MMU
5859 int high;
5860 int nr_split_cpus;
5861 unsigned long total_pages;
5862
5863 if (!high_fraction) {
5864 /*
5865 * By default, the high value of the pcp is based on the zone
5866 * low watermark so that if they are full then background
5867 * reclaim will not be started prematurely.
5868 */
5869 total_pages = low_wmark_pages(zone);
5870 } else {
5871 /*
5872 * If percpu_pagelist_high_fraction is configured, the high
5873 * value is based on a fraction of the managed pages in the
5874 * zone.
5875 */
5876 total_pages = zone_managed_pages(zone) / high_fraction;
5877 }
5878
5879 /*
5880 * Split the high value across all online CPUs local to the zone. Note
5881 * that early in boot that CPUs may not be online yet and that during
5882 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5883 * onlined. For memory nodes that have no CPUs, split the high value
5884 * across all online CPUs to mitigate the risk that reclaim is triggered
5885 * prematurely due to pages stored on pcp lists.
5886 */
5887 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5888 if (!nr_split_cpus)
5889 nr_split_cpus = num_online_cpus();
5890 high = total_pages / nr_split_cpus;
5891
5892 /*
5893 * Ensure high is at least batch*4. The multiple is based on the
5894 * historical relationship between high and batch.
5895 */
5896 high = max(high, batch << 2);
5897
5898 return high;
5899 #else
5900 return 0;
5901 #endif
5902 }
5903
5904 /*
5905 * pcp->high and pcp->batch values are related and generally batch is lower
5906 * than high. They are also related to pcp->count such that count is lower
5907 * than high, and as soon as it reaches high, the pcplist is flushed.
5908 *
5909 * However, guaranteeing these relations at all times would require e.g. write
5910 * barriers here but also careful usage of read barriers at the read side, and
5911 * thus be prone to error and bad for performance. Thus the update only prevents
5912 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5913 * should ensure they can cope with those fields changing asynchronously, and
5914 * fully trust only the pcp->count field on the local CPU with interrupts
5915 * disabled.
5916 *
5917 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5918 * outside of boot time (or some other assurance that no concurrent updaters
5919 * exist).
5920 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high_min,unsigned long high_max,unsigned long batch)5921 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5922 unsigned long high_max, unsigned long batch)
5923 {
5924 WRITE_ONCE(pcp->batch, batch);
5925 WRITE_ONCE(pcp->high_min, high_min);
5926 WRITE_ONCE(pcp->high_max, high_max);
5927 }
5928
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5929 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5930 {
5931 int pindex;
5932
5933 memset(pcp, 0, sizeof(*pcp));
5934 memset(pzstats, 0, sizeof(*pzstats));
5935
5936 spin_lock_init(&pcp->lock);
5937 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5938 INIT_LIST_HEAD(&pcp->lists[pindex]);
5939
5940 /*
5941 * Set batch and high values safe for a boot pageset. A true percpu
5942 * pageset's initialization will update them subsequently. Here we don't
5943 * need to be as careful as pageset_update() as nobody can access the
5944 * pageset yet.
5945 */
5946 pcp->high_min = BOOT_PAGESET_HIGH;
5947 pcp->high_max = BOOT_PAGESET_HIGH;
5948 pcp->batch = BOOT_PAGESET_BATCH;
5949 pcp->free_count = 0;
5950 }
5951
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high_min,unsigned long high_max,unsigned long batch)5952 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5953 unsigned long high_max, unsigned long batch)
5954 {
5955 struct per_cpu_pages *pcp;
5956 int cpu;
5957
5958 for_each_possible_cpu(cpu) {
5959 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5960 pageset_update(pcp, high_min, high_max, batch);
5961 }
5962 }
5963
5964 /*
5965 * Calculate and set new high and batch values for all per-cpu pagesets of a
5966 * zone based on the zone's size.
5967 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5968 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5969 {
5970 int new_high_min, new_high_max, new_batch;
5971
5972 new_batch = max(1, zone_batchsize(zone));
5973 if (percpu_pagelist_high_fraction) {
5974 new_high_min = zone_highsize(zone, new_batch, cpu_online,
5975 percpu_pagelist_high_fraction);
5976 /*
5977 * PCP high is tuned manually, disable auto-tuning via
5978 * setting high_min and high_max to the manual value.
5979 */
5980 new_high_max = new_high_min;
5981 } else {
5982 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5983 new_high_max = zone_highsize(zone, new_batch, cpu_online,
5984 MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5985 }
5986
5987 if (zone->pageset_high_min == new_high_min &&
5988 zone->pageset_high_max == new_high_max &&
5989 zone->pageset_batch == new_batch)
5990 return;
5991
5992 zone->pageset_high_min = new_high_min;
5993 zone->pageset_high_max = new_high_max;
5994 zone->pageset_batch = new_batch;
5995
5996 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5997 new_batch);
5998 }
5999
setup_zone_pageset(struct zone * zone)6000 void __meminit setup_zone_pageset(struct zone *zone)
6001 {
6002 int cpu;
6003
6004 /* Size may be 0 on !SMP && !NUMA */
6005 if (sizeof(struct per_cpu_zonestat) > 0)
6006 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6007
6008 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6009 for_each_possible_cpu(cpu) {
6010 struct per_cpu_pages *pcp;
6011 struct per_cpu_zonestat *pzstats;
6012
6013 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6014 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6015 per_cpu_pages_init(pcp, pzstats);
6016 }
6017
6018 zone_set_pageset_high_and_batch(zone, 0);
6019 }
6020
6021 /*
6022 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6023 * page high values need to be recalculated.
6024 */
zone_pcp_update(struct zone * zone,int cpu_online)6025 static void zone_pcp_update(struct zone *zone, int cpu_online)
6026 {
6027 mutex_lock(&pcp_batch_high_lock);
6028 zone_set_pageset_high_and_batch(zone, cpu_online);
6029 mutex_unlock(&pcp_batch_high_lock);
6030 }
6031
zone_pcp_update_cacheinfo(struct zone * zone,unsigned int cpu)6032 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
6033 {
6034 struct per_cpu_pages *pcp;
6035 struct cpu_cacheinfo *cci;
6036
6037 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6038 cci = get_cpu_cacheinfo(cpu);
6039 /*
6040 * If data cache slice of CPU is large enough, "pcp->batch"
6041 * pages can be preserved in PCP before draining PCP for
6042 * consecutive high-order pages freeing without allocation.
6043 * This can reduce zone lock contention without hurting
6044 * cache-hot pages sharing.
6045 */
6046 spin_lock(&pcp->lock);
6047 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
6048 pcp->flags |= PCPF_FREE_HIGH_BATCH;
6049 else
6050 pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
6051 spin_unlock(&pcp->lock);
6052 }
6053
setup_pcp_cacheinfo(unsigned int cpu)6054 void setup_pcp_cacheinfo(unsigned int cpu)
6055 {
6056 struct zone *zone;
6057
6058 for_each_populated_zone(zone)
6059 zone_pcp_update_cacheinfo(zone, cpu);
6060 }
6061
6062 /*
6063 * Allocate per cpu pagesets and initialize them.
6064 * Before this call only boot pagesets were available.
6065 */
setup_per_cpu_pageset(void)6066 void __init setup_per_cpu_pageset(void)
6067 {
6068 struct pglist_data *pgdat;
6069 struct zone *zone;
6070 int __maybe_unused cpu;
6071
6072 for_each_populated_zone(zone)
6073 setup_zone_pageset(zone);
6074
6075 #ifdef CONFIG_NUMA
6076 /*
6077 * Unpopulated zones continue using the boot pagesets.
6078 * The numa stats for these pagesets need to be reset.
6079 * Otherwise, they will end up skewing the stats of
6080 * the nodes these zones are associated with.
6081 */
6082 for_each_possible_cpu(cpu) {
6083 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6084 memset(pzstats->vm_numa_event, 0,
6085 sizeof(pzstats->vm_numa_event));
6086 }
6087 #endif
6088
6089 for_each_online_pgdat(pgdat)
6090 pgdat->per_cpu_nodestats =
6091 alloc_percpu(struct per_cpu_nodestat);
6092 }
6093
zone_pcp_init(struct zone * zone)6094 __meminit void zone_pcp_init(struct zone *zone)
6095 {
6096 /*
6097 * per cpu subsystem is not up at this point. The following code
6098 * relies on the ability of the linker to provide the
6099 * offset of a (static) per cpu variable into the per cpu area.
6100 */
6101 zone->per_cpu_pageset = &boot_pageset;
6102 zone->per_cpu_zonestats = &boot_zonestats;
6103 zone->pageset_high_min = BOOT_PAGESET_HIGH;
6104 zone->pageset_high_max = BOOT_PAGESET_HIGH;
6105 zone->pageset_batch = BOOT_PAGESET_BATCH;
6106
6107 if (populated_zone(zone))
6108 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6109 zone->present_pages, zone_batchsize(zone));
6110 }
6111
6112 static void setup_per_zone_lowmem_reserve(void);
6113
adjust_managed_page_count(struct page * page,long count)6114 void adjust_managed_page_count(struct page *page, long count)
6115 {
6116 atomic_long_add(count, &page_zone(page)->managed_pages);
6117 totalram_pages_add(count);
6118 setup_per_zone_lowmem_reserve();
6119 }
6120 EXPORT_SYMBOL(adjust_managed_page_count);
6121
free_reserved_area(void * start,void * end,int poison,const char * s)6122 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6123 {
6124 void *pos;
6125 unsigned long pages = 0;
6126
6127 start = (void *)PAGE_ALIGN((unsigned long)start);
6128 end = (void *)((unsigned long)end & PAGE_MASK);
6129 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6130 struct page *page = virt_to_page(pos);
6131 void *direct_map_addr;
6132
6133 /*
6134 * 'direct_map_addr' might be different from 'pos'
6135 * because some architectures' virt_to_page()
6136 * work with aliases. Getting the direct map
6137 * address ensures that we get a _writeable_
6138 * alias for the memset().
6139 */
6140 direct_map_addr = page_address(page);
6141 /*
6142 * Perform a kasan-unchecked memset() since this memory
6143 * has not been initialized.
6144 */
6145 direct_map_addr = kasan_reset_tag(direct_map_addr);
6146 if ((unsigned int)poison <= 0xFF)
6147 memset(direct_map_addr, poison, PAGE_SIZE);
6148
6149 free_reserved_page(page);
6150 }
6151
6152 if (pages && s)
6153 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6154
6155 return pages;
6156 }
6157
free_reserved_page(struct page * page)6158 void free_reserved_page(struct page *page)
6159 {
6160 clear_page_tag_ref(page);
6161 ClearPageReserved(page);
6162 init_page_count(page);
6163 __free_page(page);
6164 adjust_managed_page_count(page, 1);
6165 }
6166 EXPORT_SYMBOL(free_reserved_page);
6167
page_alloc_cpu_dead(unsigned int cpu)6168 static int page_alloc_cpu_dead(unsigned int cpu)
6169 {
6170 struct zone *zone;
6171
6172 lru_add_drain_cpu(cpu);
6173 mlock_drain_remote(cpu);
6174 drain_pages(cpu);
6175
6176 /*
6177 * Spill the event counters of the dead processor
6178 * into the current processors event counters.
6179 * This artificially elevates the count of the current
6180 * processor.
6181 */
6182 vm_events_fold_cpu(cpu);
6183
6184 /*
6185 * Zero the differential counters of the dead processor
6186 * so that the vm statistics are consistent.
6187 *
6188 * This is only okay since the processor is dead and cannot
6189 * race with what we are doing.
6190 */
6191 cpu_vm_stats_fold(cpu);
6192
6193 for_each_populated_zone(zone)
6194 zone_pcp_update(zone, 0);
6195
6196 return 0;
6197 }
6198
page_alloc_cpu_online(unsigned int cpu)6199 static int page_alloc_cpu_online(unsigned int cpu)
6200 {
6201 struct zone *zone;
6202
6203 for_each_populated_zone(zone)
6204 zone_pcp_update(zone, 1);
6205 return 0;
6206 }
6207
page_alloc_init_cpuhp(void)6208 void __init page_alloc_init_cpuhp(void)
6209 {
6210 int ret;
6211
6212 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6213 "mm/page_alloc:pcp",
6214 page_alloc_cpu_online,
6215 page_alloc_cpu_dead);
6216 WARN_ON(ret < 0);
6217 }
6218
6219 /*
6220 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6221 * or min_free_kbytes changes.
6222 */
calculate_totalreserve_pages(void)6223 static void calculate_totalreserve_pages(void)
6224 {
6225 struct pglist_data *pgdat;
6226 unsigned long reserve_pages = 0;
6227 enum zone_type i, j;
6228
6229 for_each_online_pgdat(pgdat) {
6230
6231 pgdat->totalreserve_pages = 0;
6232
6233 for (i = 0; i < MAX_NR_ZONES; i++) {
6234 struct zone *zone = pgdat->node_zones + i;
6235 long max = 0;
6236 unsigned long managed_pages = zone_managed_pages(zone);
6237
6238 /* Find valid and maximum lowmem_reserve in the zone */
6239 for (j = i; j < MAX_NR_ZONES; j++) {
6240 if (zone->lowmem_reserve[j] > max)
6241 max = zone->lowmem_reserve[j];
6242 }
6243
6244 /* we treat the high watermark as reserved pages. */
6245 max += high_wmark_pages(zone);
6246
6247 if (max > managed_pages)
6248 max = managed_pages;
6249
6250 pgdat->totalreserve_pages += max;
6251
6252 reserve_pages += max;
6253 }
6254 }
6255 totalreserve_pages = reserve_pages;
6256 trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6257 }
6258
6259 /*
6260 * setup_per_zone_lowmem_reserve - called whenever
6261 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6262 * has a correct pages reserved value, so an adequate number of
6263 * pages are left in the zone after a successful __alloc_pages().
6264 */
setup_per_zone_lowmem_reserve(void)6265 static void setup_per_zone_lowmem_reserve(void)
6266 {
6267 struct pglist_data *pgdat;
6268 enum zone_type i, j;
6269
6270 for_each_online_pgdat(pgdat) {
6271 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6272 struct zone *zone = &pgdat->node_zones[i];
6273 int ratio = sysctl_lowmem_reserve_ratio[i];
6274 bool clear = !ratio || !zone_managed_pages(zone);
6275 unsigned long managed_pages = 0;
6276
6277 for (j = i + 1; j < MAX_NR_ZONES; j++) {
6278 struct zone *upper_zone = &pgdat->node_zones[j];
6279
6280 managed_pages += zone_managed_pages(upper_zone);
6281
6282 if (clear)
6283 zone->lowmem_reserve[j] = 0;
6284 else
6285 zone->lowmem_reserve[j] = managed_pages / ratio;
6286 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6287 zone->lowmem_reserve[j]);
6288 }
6289 }
6290 }
6291
6292 /* update totalreserve_pages */
6293 calculate_totalreserve_pages();
6294 }
6295
__setup_per_zone_wmarks(void)6296 static void __setup_per_zone_wmarks(void)
6297 {
6298 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6299 unsigned long lowmem_pages = 0;
6300 struct zone *zone;
6301 unsigned long flags;
6302
6303 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6304 for_each_zone(zone) {
6305 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6306 lowmem_pages += zone_managed_pages(zone);
6307 }
6308
6309 for_each_zone(zone) {
6310 u64 tmp;
6311
6312 spin_lock_irqsave(&zone->lock, flags);
6313 tmp = (u64)pages_min * zone_managed_pages(zone);
6314 tmp = div64_ul(tmp, lowmem_pages);
6315 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6316 /*
6317 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6318 * need highmem and movable zones pages, so cap pages_min
6319 * to a small value here.
6320 *
6321 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6322 * deltas control async page reclaim, and so should
6323 * not be capped for highmem and movable zones.
6324 */
6325 unsigned long min_pages;
6326
6327 min_pages = zone_managed_pages(zone) / 1024;
6328 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6329 zone->_watermark[WMARK_MIN] = min_pages;
6330 } else {
6331 /*
6332 * If it's a lowmem zone, reserve a number of pages
6333 * proportionate to the zone's size.
6334 */
6335 zone->_watermark[WMARK_MIN] = tmp;
6336 }
6337
6338 /*
6339 * Set the kswapd watermarks distance according to the
6340 * scale factor in proportion to available memory, but
6341 * ensure a minimum size on small systems.
6342 */
6343 tmp = max_t(u64, tmp >> 2,
6344 mult_frac(zone_managed_pages(zone),
6345 watermark_scale_factor, 10000));
6346
6347 zone->watermark_boost = 0;
6348 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6349 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6350 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6351 trace_mm_setup_per_zone_wmarks(zone);
6352
6353 spin_unlock_irqrestore(&zone->lock, flags);
6354 }
6355
6356 /* update totalreserve_pages */
6357 calculate_totalreserve_pages();
6358 }
6359
6360 /**
6361 * setup_per_zone_wmarks - called when min_free_kbytes changes
6362 * or when memory is hot-{added|removed}
6363 *
6364 * Ensures that the watermark[min,low,high] values for each zone are set
6365 * correctly with respect to min_free_kbytes.
6366 */
setup_per_zone_wmarks(void)6367 void setup_per_zone_wmarks(void)
6368 {
6369 struct zone *zone;
6370 static DEFINE_SPINLOCK(lock);
6371
6372 spin_lock(&lock);
6373 __setup_per_zone_wmarks();
6374 spin_unlock(&lock);
6375
6376 /*
6377 * The watermark size have changed so update the pcpu batch
6378 * and high limits or the limits may be inappropriate.
6379 */
6380 for_each_zone(zone)
6381 zone_pcp_update(zone, 0);
6382 }
6383
6384 /*
6385 * Initialise min_free_kbytes.
6386 *
6387 * For small machines we want it small (128k min). For large machines
6388 * we want it large (256MB max). But it is not linear, because network
6389 * bandwidth does not increase linearly with machine size. We use
6390 *
6391 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6392 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6393 *
6394 * which yields
6395 *
6396 * 16MB: 512k
6397 * 32MB: 724k
6398 * 64MB: 1024k
6399 * 128MB: 1448k
6400 * 256MB: 2048k
6401 * 512MB: 2896k
6402 * 1024MB: 4096k
6403 * 2048MB: 5792k
6404 * 4096MB: 8192k
6405 * 8192MB: 11584k
6406 * 16384MB: 16384k
6407 */
calculate_min_free_kbytes(void)6408 void calculate_min_free_kbytes(void)
6409 {
6410 unsigned long lowmem_kbytes;
6411 int new_min_free_kbytes;
6412
6413 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6414 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6415
6416 if (new_min_free_kbytes > user_min_free_kbytes)
6417 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6418 else
6419 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6420 new_min_free_kbytes, user_min_free_kbytes);
6421
6422 }
6423
init_per_zone_wmark_min(void)6424 int __meminit init_per_zone_wmark_min(void)
6425 {
6426 calculate_min_free_kbytes();
6427 setup_per_zone_wmarks();
6428 refresh_zone_stat_thresholds();
6429 setup_per_zone_lowmem_reserve();
6430
6431 #ifdef CONFIG_NUMA
6432 setup_min_unmapped_ratio();
6433 setup_min_slab_ratio();
6434 #endif
6435
6436 khugepaged_min_free_kbytes_update();
6437
6438 return 0;
6439 }
postcore_initcall(init_per_zone_wmark_min)6440 postcore_initcall(init_per_zone_wmark_min)
6441
6442 /*
6443 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6444 * that we can call two helper functions whenever min_free_kbytes
6445 * changes.
6446 */
6447 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6448 void *buffer, size_t *length, loff_t *ppos)
6449 {
6450 int rc;
6451
6452 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6453 if (rc)
6454 return rc;
6455
6456 if (write) {
6457 user_min_free_kbytes = min_free_kbytes;
6458 setup_per_zone_wmarks();
6459 }
6460 return 0;
6461 }
6462
watermark_scale_factor_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6463 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6464 void *buffer, size_t *length, loff_t *ppos)
6465 {
6466 int rc;
6467
6468 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6469 if (rc)
6470 return rc;
6471
6472 if (write)
6473 setup_per_zone_wmarks();
6474
6475 return 0;
6476 }
6477
6478 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6479 static void setup_min_unmapped_ratio(void)
6480 {
6481 pg_data_t *pgdat;
6482 struct zone *zone;
6483
6484 for_each_online_pgdat(pgdat)
6485 pgdat->min_unmapped_pages = 0;
6486
6487 for_each_zone(zone)
6488 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6489 sysctl_min_unmapped_ratio) / 100;
6490 }
6491
6492
sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6493 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6494 void *buffer, size_t *length, loff_t *ppos)
6495 {
6496 int rc;
6497
6498 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6499 if (rc)
6500 return rc;
6501
6502 setup_min_unmapped_ratio();
6503
6504 return 0;
6505 }
6506
setup_min_slab_ratio(void)6507 static void setup_min_slab_ratio(void)
6508 {
6509 pg_data_t *pgdat;
6510 struct zone *zone;
6511
6512 for_each_online_pgdat(pgdat)
6513 pgdat->min_slab_pages = 0;
6514
6515 for_each_zone(zone)
6516 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6517 sysctl_min_slab_ratio) / 100;
6518 }
6519
sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6520 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6521 void *buffer, size_t *length, loff_t *ppos)
6522 {
6523 int rc;
6524
6525 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6526 if (rc)
6527 return rc;
6528
6529 setup_min_slab_ratio();
6530
6531 return 0;
6532 }
6533 #endif
6534
6535 /*
6536 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6537 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6538 * whenever sysctl_lowmem_reserve_ratio changes.
6539 *
6540 * The reserve ratio obviously has absolutely no relation with the
6541 * minimum watermarks. The lowmem reserve ratio can only make sense
6542 * if in function of the boot time zone sizes.
6543 */
lowmem_reserve_ratio_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6544 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6545 int write, void *buffer, size_t *length, loff_t *ppos)
6546 {
6547 int i;
6548
6549 proc_dointvec_minmax(table, write, buffer, length, ppos);
6550
6551 for (i = 0; i < MAX_NR_ZONES; i++) {
6552 if (sysctl_lowmem_reserve_ratio[i] < 1)
6553 sysctl_lowmem_reserve_ratio[i] = 0;
6554 }
6555
6556 setup_per_zone_lowmem_reserve();
6557 return 0;
6558 }
6559
6560 /*
6561 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6562 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6563 * pagelist can have before it gets flushed back to buddy allocator.
6564 */
percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6565 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6566 int write, void *buffer, size_t *length, loff_t *ppos)
6567 {
6568 struct zone *zone;
6569 int old_percpu_pagelist_high_fraction;
6570 int ret;
6571
6572 mutex_lock(&pcp_batch_high_lock);
6573 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6574
6575 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6576 if (!write || ret < 0)
6577 goto out;
6578
6579 /* Sanity checking to avoid pcp imbalance */
6580 if (percpu_pagelist_high_fraction &&
6581 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6582 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6583 ret = -EINVAL;
6584 goto out;
6585 }
6586
6587 /* No change? */
6588 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6589 goto out;
6590
6591 for_each_populated_zone(zone)
6592 zone_set_pageset_high_and_batch(zone, 0);
6593 out:
6594 mutex_unlock(&pcp_batch_high_lock);
6595 return ret;
6596 }
6597
6598 static const struct ctl_table page_alloc_sysctl_table[] = {
6599 {
6600 .procname = "min_free_kbytes",
6601 .data = &min_free_kbytes,
6602 .maxlen = sizeof(min_free_kbytes),
6603 .mode = 0644,
6604 .proc_handler = min_free_kbytes_sysctl_handler,
6605 .extra1 = SYSCTL_ZERO,
6606 },
6607 {
6608 .procname = "watermark_boost_factor",
6609 .data = &watermark_boost_factor,
6610 .maxlen = sizeof(watermark_boost_factor),
6611 .mode = 0644,
6612 .proc_handler = proc_dointvec_minmax,
6613 .extra1 = SYSCTL_ZERO,
6614 },
6615 {
6616 .procname = "watermark_scale_factor",
6617 .data = &watermark_scale_factor,
6618 .maxlen = sizeof(watermark_scale_factor),
6619 .mode = 0644,
6620 .proc_handler = watermark_scale_factor_sysctl_handler,
6621 .extra1 = SYSCTL_ONE,
6622 .extra2 = SYSCTL_THREE_THOUSAND,
6623 },
6624 {
6625 .procname = "defrag_mode",
6626 .data = &defrag_mode,
6627 .maxlen = sizeof(defrag_mode),
6628 .mode = 0644,
6629 .proc_handler = proc_dointvec_minmax,
6630 .extra1 = SYSCTL_ZERO,
6631 .extra2 = SYSCTL_ONE,
6632 },
6633 {
6634 .procname = "percpu_pagelist_high_fraction",
6635 .data = &percpu_pagelist_high_fraction,
6636 .maxlen = sizeof(percpu_pagelist_high_fraction),
6637 .mode = 0644,
6638 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6639 .extra1 = SYSCTL_ZERO,
6640 },
6641 {
6642 .procname = "lowmem_reserve_ratio",
6643 .data = &sysctl_lowmem_reserve_ratio,
6644 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6645 .mode = 0644,
6646 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6647 },
6648 #ifdef CONFIG_NUMA
6649 {
6650 .procname = "numa_zonelist_order",
6651 .data = &numa_zonelist_order,
6652 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6653 .mode = 0644,
6654 .proc_handler = numa_zonelist_order_handler,
6655 },
6656 {
6657 .procname = "min_unmapped_ratio",
6658 .data = &sysctl_min_unmapped_ratio,
6659 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6660 .mode = 0644,
6661 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6662 .extra1 = SYSCTL_ZERO,
6663 .extra2 = SYSCTL_ONE_HUNDRED,
6664 },
6665 {
6666 .procname = "min_slab_ratio",
6667 .data = &sysctl_min_slab_ratio,
6668 .maxlen = sizeof(sysctl_min_slab_ratio),
6669 .mode = 0644,
6670 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6671 .extra1 = SYSCTL_ZERO,
6672 .extra2 = SYSCTL_ONE_HUNDRED,
6673 },
6674 #endif
6675 };
6676
page_alloc_sysctl_init(void)6677 void __init page_alloc_sysctl_init(void)
6678 {
6679 register_sysctl_init("vm", page_alloc_sysctl_table);
6680 }
6681
6682 #ifdef CONFIG_CONTIG_ALLOC
6683 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6684 static void alloc_contig_dump_pages(struct list_head *page_list)
6685 {
6686 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6687
6688 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6689 struct page *page;
6690
6691 dump_stack();
6692 list_for_each_entry(page, page_list, lru)
6693 dump_page(page, "migration failure");
6694 }
6695 }
6696
6697 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6698 static int __alloc_contig_migrate_range(struct compact_control *cc,
6699 unsigned long start, unsigned long end)
6700 {
6701 /* This function is based on compact_zone() from compaction.c. */
6702 unsigned int nr_reclaimed;
6703 unsigned long pfn = start;
6704 unsigned int tries = 0;
6705 int ret = 0;
6706 struct migration_target_control mtc = {
6707 .nid = zone_to_nid(cc->zone),
6708 .gfp_mask = cc->gfp_mask,
6709 .reason = MR_CONTIG_RANGE,
6710 };
6711
6712 lru_cache_disable();
6713
6714 while (pfn < end || !list_empty(&cc->migratepages)) {
6715 if (fatal_signal_pending(current)) {
6716 ret = -EINTR;
6717 break;
6718 }
6719
6720 if (list_empty(&cc->migratepages)) {
6721 cc->nr_migratepages = 0;
6722 ret = isolate_migratepages_range(cc, pfn, end);
6723 if (ret && ret != -EAGAIN)
6724 break;
6725 pfn = cc->migrate_pfn;
6726 tries = 0;
6727 } else if (++tries == 5) {
6728 ret = -EBUSY;
6729 break;
6730 }
6731
6732 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6733 &cc->migratepages);
6734 cc->nr_migratepages -= nr_reclaimed;
6735
6736 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6737 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6738
6739 /*
6740 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6741 * to retry again over this error, so do the same here.
6742 */
6743 if (ret == -ENOMEM)
6744 break;
6745 }
6746
6747 lru_cache_enable();
6748 if (ret < 0) {
6749 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6750 alloc_contig_dump_pages(&cc->migratepages);
6751 putback_movable_pages(&cc->migratepages);
6752 }
6753
6754 return (ret < 0) ? ret : 0;
6755 }
6756
split_free_pages(struct list_head * list,gfp_t gfp_mask)6757 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6758 {
6759 int order;
6760
6761 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6762 struct page *page, *next;
6763 int nr_pages = 1 << order;
6764
6765 list_for_each_entry_safe(page, next, &list[order], lru) {
6766 int i;
6767
6768 post_alloc_hook(page, order, gfp_mask);
6769 set_page_refcounted(page);
6770 if (!order)
6771 continue;
6772
6773 split_page(page, order);
6774
6775 /* Add all subpages to the order-0 head, in sequence. */
6776 list_del(&page->lru);
6777 for (i = 0; i < nr_pages; i++)
6778 list_add_tail(&page[i].lru, &list[0]);
6779 }
6780 }
6781 }
6782
__alloc_contig_verify_gfp_mask(gfp_t gfp_mask,gfp_t * gfp_cc_mask)6783 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6784 {
6785 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6786 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6787 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6788 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6789
6790 /*
6791 * We are given the range to allocate; node, mobility and placement
6792 * hints are irrelevant at this point. We'll simply ignore them.
6793 */
6794 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6795 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6796
6797 /*
6798 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6799 * selected action flags.
6800 */
6801 if (gfp_mask & ~(reclaim_mask | action_mask))
6802 return -EINVAL;
6803
6804 /*
6805 * Flags to control page compaction/migration/reclaim, to free up our
6806 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6807 * for them.
6808 *
6809 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6810 * to not degrade callers.
6811 */
6812 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6813 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6814 return 0;
6815 }
6816
6817 /**
6818 * alloc_contig_range() -- tries to allocate given range of pages
6819 * @start: start PFN to allocate
6820 * @end: one-past-the-last PFN to allocate
6821 * @alloc_flags: allocation information
6822 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some
6823 * action and reclaim modifiers are supported. Reclaim modifiers
6824 * control allocation behavior during compaction/migration/reclaim.
6825 *
6826 * The PFN range does not have to be pageblock aligned. The PFN range must
6827 * belong to a single zone.
6828 *
6829 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6830 * pageblocks in the range. Once isolated, the pageblocks should not
6831 * be modified by others.
6832 *
6833 * Return: zero on success or negative error code. On success all
6834 * pages which PFN is in [start, end) are allocated for the caller and
6835 * need to be freed with free_contig_range().
6836 */
alloc_contig_range_noprof(unsigned long start,unsigned long end,acr_flags_t alloc_flags,gfp_t gfp_mask)6837 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6838 acr_flags_t alloc_flags, gfp_t gfp_mask)
6839 {
6840 unsigned long outer_start, outer_end;
6841 int ret = 0;
6842
6843 struct compact_control cc = {
6844 .nr_migratepages = 0,
6845 .order = -1,
6846 .zone = page_zone(pfn_to_page(start)),
6847 .mode = MIGRATE_SYNC,
6848 .ignore_skip_hint = true,
6849 .no_set_skip_hint = true,
6850 .alloc_contig = true,
6851 };
6852 INIT_LIST_HEAD(&cc.migratepages);
6853 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ?
6854 PB_ISOLATE_MODE_CMA_ALLOC :
6855 PB_ISOLATE_MODE_OTHER;
6856
6857 gfp_mask = current_gfp_context(gfp_mask);
6858 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6859 return -EINVAL;
6860
6861 /*
6862 * What we do here is we mark all pageblocks in range as
6863 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6864 * have different sizes, and due to the way page allocator
6865 * work, start_isolate_page_range() has special handlings for this.
6866 *
6867 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6868 * migrate the pages from an unaligned range (ie. pages that
6869 * we are interested in). This will put all the pages in
6870 * range back to page allocator as MIGRATE_ISOLATE.
6871 *
6872 * When this is done, we take the pages in range from page
6873 * allocator removing them from the buddy system. This way
6874 * page allocator will never consider using them.
6875 *
6876 * This lets us mark the pageblocks back as
6877 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6878 * aligned range but not in the unaligned, original range are
6879 * put back to page allocator so that buddy can use them.
6880 */
6881
6882 ret = start_isolate_page_range(start, end, mode);
6883 if (ret)
6884 goto done;
6885
6886 drain_all_pages(cc.zone);
6887
6888 /*
6889 * In case of -EBUSY, we'd like to know which page causes problem.
6890 * So, just fall through. test_pages_isolated() has a tracepoint
6891 * which will report the busy page.
6892 *
6893 * It is possible that busy pages could become available before
6894 * the call to test_pages_isolated, and the range will actually be
6895 * allocated. So, if we fall through be sure to clear ret so that
6896 * -EBUSY is not accidentally used or returned to caller.
6897 */
6898 ret = __alloc_contig_migrate_range(&cc, start, end);
6899 if (ret && ret != -EBUSY)
6900 goto done;
6901
6902 /*
6903 * When in-use hugetlb pages are migrated, they may simply be released
6904 * back into the free hugepage pool instead of being returned to the
6905 * buddy system. After the migration of in-use huge pages is completed,
6906 * we will invoke replace_free_hugepage_folios() to ensure that these
6907 * hugepages are properly released to the buddy system.
6908 */
6909 ret = replace_free_hugepage_folios(start, end);
6910 if (ret)
6911 goto done;
6912
6913 /*
6914 * Pages from [start, end) are within a pageblock_nr_pages
6915 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6916 * more, all pages in [start, end) are free in page allocator.
6917 * What we are going to do is to allocate all pages from
6918 * [start, end) (that is remove them from page allocator).
6919 *
6920 * The only problem is that pages at the beginning and at the
6921 * end of interesting range may be not aligned with pages that
6922 * page allocator holds, ie. they can be part of higher order
6923 * pages. Because of this, we reserve the bigger range and
6924 * once this is done free the pages we are not interested in.
6925 *
6926 * We don't have to hold zone->lock here because the pages are
6927 * isolated thus they won't get removed from buddy.
6928 */
6929 outer_start = find_large_buddy(start);
6930
6931 /* Make sure the range is really isolated. */
6932 if (test_pages_isolated(outer_start, end, mode)) {
6933 ret = -EBUSY;
6934 goto done;
6935 }
6936
6937 /* Grab isolated pages from freelists. */
6938 outer_end = isolate_freepages_range(&cc, outer_start, end);
6939 if (!outer_end) {
6940 ret = -EBUSY;
6941 goto done;
6942 }
6943
6944 if (!(gfp_mask & __GFP_COMP)) {
6945 split_free_pages(cc.freepages, gfp_mask);
6946
6947 /* Free head and tail (if any) */
6948 if (start != outer_start)
6949 free_contig_range(outer_start, start - outer_start);
6950 if (end != outer_end)
6951 free_contig_range(end, outer_end - end);
6952 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6953 struct page *head = pfn_to_page(start);
6954 int order = ilog2(end - start);
6955
6956 check_new_pages(head, order);
6957 prep_new_page(head, order, gfp_mask, 0);
6958 set_page_refcounted(head);
6959 } else {
6960 ret = -EINVAL;
6961 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6962 start, end, outer_start, outer_end);
6963 }
6964 done:
6965 undo_isolate_page_range(start, end);
6966 return ret;
6967 }
6968 EXPORT_SYMBOL(alloc_contig_range_noprof);
6969
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6970 static int __alloc_contig_pages(unsigned long start_pfn,
6971 unsigned long nr_pages, gfp_t gfp_mask)
6972 {
6973 unsigned long end_pfn = start_pfn + nr_pages;
6974
6975 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE,
6976 gfp_mask);
6977 }
6978
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6979 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6980 unsigned long nr_pages)
6981 {
6982 unsigned long i, end_pfn = start_pfn + nr_pages;
6983 struct page *page;
6984
6985 for (i = start_pfn; i < end_pfn; i++) {
6986 page = pfn_to_online_page(i);
6987 if (!page)
6988 return false;
6989
6990 if (page_zone(page) != z)
6991 return false;
6992
6993 if (PageReserved(page))
6994 return false;
6995
6996 if (PageHuge(page))
6997 return false;
6998 }
6999 return true;
7000 }
7001
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)7002 static bool zone_spans_last_pfn(const struct zone *zone,
7003 unsigned long start_pfn, unsigned long nr_pages)
7004 {
7005 unsigned long last_pfn = start_pfn + nr_pages - 1;
7006
7007 return zone_spans_pfn(zone, last_pfn);
7008 }
7009
7010 /**
7011 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
7012 * @nr_pages: Number of contiguous pages to allocate
7013 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some
7014 * action and reclaim modifiers are supported. Reclaim modifiers
7015 * control allocation behavior during compaction/migration/reclaim.
7016 * @nid: Target node
7017 * @nodemask: Mask for other possible nodes
7018 *
7019 * This routine is a wrapper around alloc_contig_range(). It scans over zones
7020 * on an applicable zonelist to find a contiguous pfn range which can then be
7021 * tried for allocation with alloc_contig_range(). This routine is intended
7022 * for allocation requests which can not be fulfilled with the buddy allocator.
7023 *
7024 * The allocated memory is always aligned to a page boundary. If nr_pages is a
7025 * power of two, then allocated range is also guaranteed to be aligned to same
7026 * nr_pages (e.g. 1GB request would be aligned to 1GB).
7027 *
7028 * Allocated pages can be freed with free_contig_range() or by manually calling
7029 * __free_page() on each allocated page.
7030 *
7031 * Return: pointer to contiguous pages on success, or NULL if not successful.
7032 */
alloc_contig_pages_noprof(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)7033 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
7034 int nid, nodemask_t *nodemask)
7035 {
7036 unsigned long ret, pfn, flags;
7037 struct zonelist *zonelist;
7038 struct zone *zone;
7039 struct zoneref *z;
7040
7041 zonelist = node_zonelist(nid, gfp_mask);
7042 for_each_zone_zonelist_nodemask(zone, z, zonelist,
7043 gfp_zone(gfp_mask), nodemask) {
7044 spin_lock_irqsave(&zone->lock, flags);
7045
7046 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
7047 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
7048 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
7049 /*
7050 * We release the zone lock here because
7051 * alloc_contig_range() will also lock the zone
7052 * at some point. If there's an allocation
7053 * spinning on this lock, it may win the race
7054 * and cause alloc_contig_range() to fail...
7055 */
7056 spin_unlock_irqrestore(&zone->lock, flags);
7057 ret = __alloc_contig_pages(pfn, nr_pages,
7058 gfp_mask);
7059 if (!ret)
7060 return pfn_to_page(pfn);
7061 spin_lock_irqsave(&zone->lock, flags);
7062 }
7063 pfn += nr_pages;
7064 }
7065 spin_unlock_irqrestore(&zone->lock, flags);
7066 }
7067 return NULL;
7068 }
7069 #endif /* CONFIG_CONTIG_ALLOC */
7070
free_contig_range(unsigned long pfn,unsigned long nr_pages)7071 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
7072 {
7073 unsigned long count = 0;
7074 struct folio *folio = pfn_folio(pfn);
7075
7076 if (folio_test_large(folio)) {
7077 int expected = folio_nr_pages(folio);
7078
7079 if (nr_pages == expected)
7080 folio_put(folio);
7081 else
7082 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
7083 pfn, nr_pages, expected);
7084 return;
7085 }
7086
7087 for (; nr_pages--; pfn++) {
7088 struct page *page = pfn_to_page(pfn);
7089
7090 count += page_count(page) != 1;
7091 __free_page(page);
7092 }
7093 WARN(count != 0, "%lu pages are still in use!\n", count);
7094 }
7095 EXPORT_SYMBOL(free_contig_range);
7096
7097 /*
7098 * Effectively disable pcplists for the zone by setting the high limit to 0
7099 * and draining all cpus. A concurrent page freeing on another CPU that's about
7100 * to put the page on pcplist will either finish before the drain and the page
7101 * will be drained, or observe the new high limit and skip the pcplist.
7102 *
7103 * Must be paired with a call to zone_pcp_enable().
7104 */
zone_pcp_disable(struct zone * zone)7105 void zone_pcp_disable(struct zone *zone)
7106 {
7107 mutex_lock(&pcp_batch_high_lock);
7108 __zone_set_pageset_high_and_batch(zone, 0, 0, 1);
7109 __drain_all_pages(zone, true);
7110 }
7111
zone_pcp_enable(struct zone * zone)7112 void zone_pcp_enable(struct zone *zone)
7113 {
7114 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
7115 zone->pageset_high_max, zone->pageset_batch);
7116 mutex_unlock(&pcp_batch_high_lock);
7117 }
7118
zone_pcp_reset(struct zone * zone)7119 void zone_pcp_reset(struct zone *zone)
7120 {
7121 int cpu;
7122 struct per_cpu_zonestat *pzstats;
7123
7124 if (zone->per_cpu_pageset != &boot_pageset) {
7125 for_each_online_cpu(cpu) {
7126 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7127 drain_zonestat(zone, pzstats);
7128 }
7129 free_percpu(zone->per_cpu_pageset);
7130 zone->per_cpu_pageset = &boot_pageset;
7131 if (zone->per_cpu_zonestats != &boot_zonestats) {
7132 free_percpu(zone->per_cpu_zonestats);
7133 zone->per_cpu_zonestats = &boot_zonestats;
7134 }
7135 }
7136 }
7137
7138 #ifdef CONFIG_MEMORY_HOTREMOVE
7139 /*
7140 * All pages in the range must be in a single zone, must not contain holes,
7141 * must span full sections, and must be isolated before calling this function.
7142 *
7143 * Returns the number of managed (non-PageOffline()) pages in the range: the
7144 * number of pages for which memory offlining code must adjust managed page
7145 * counters using adjust_managed_page_count().
7146 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)7147 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7148 unsigned long end_pfn)
7149 {
7150 unsigned long already_offline = 0, flags;
7151 unsigned long pfn = start_pfn;
7152 struct page *page;
7153 struct zone *zone;
7154 unsigned int order;
7155
7156 offline_mem_sections(pfn, end_pfn);
7157 zone = page_zone(pfn_to_page(pfn));
7158 spin_lock_irqsave(&zone->lock, flags);
7159 while (pfn < end_pfn) {
7160 page = pfn_to_page(pfn);
7161 /*
7162 * The HWPoisoned page may be not in buddy system, and
7163 * page_count() is not 0.
7164 */
7165 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7166 pfn++;
7167 continue;
7168 }
7169 /*
7170 * At this point all remaining PageOffline() pages have a
7171 * reference count of 0 and can simply be skipped.
7172 */
7173 if (PageOffline(page)) {
7174 BUG_ON(page_count(page));
7175 BUG_ON(PageBuddy(page));
7176 already_offline++;
7177 pfn++;
7178 continue;
7179 }
7180
7181 BUG_ON(page_count(page));
7182 BUG_ON(!PageBuddy(page));
7183 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7184 order = buddy_order(page);
7185 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7186 pfn += (1 << order);
7187 }
7188 spin_unlock_irqrestore(&zone->lock, flags);
7189
7190 return end_pfn - start_pfn - already_offline;
7191 }
7192 #endif
7193
7194 /*
7195 * This function returns a stable result only if called under zone lock.
7196 */
is_free_buddy_page(const struct page * page)7197 bool is_free_buddy_page(const struct page *page)
7198 {
7199 unsigned long pfn = page_to_pfn(page);
7200 unsigned int order;
7201
7202 for (order = 0; order < NR_PAGE_ORDERS; order++) {
7203 const struct page *head = page - (pfn & ((1 << order) - 1));
7204
7205 if (PageBuddy(head) &&
7206 buddy_order_unsafe(head) >= order)
7207 break;
7208 }
7209
7210 return order <= MAX_PAGE_ORDER;
7211 }
7212 EXPORT_SYMBOL(is_free_buddy_page);
7213
7214 #ifdef CONFIG_MEMORY_FAILURE
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype,bool tail)7215 static inline void add_to_free_list(struct page *page, struct zone *zone,
7216 unsigned int order, int migratetype,
7217 bool tail)
7218 {
7219 __add_to_free_list(page, zone, order, migratetype, tail);
7220 account_freepages(zone, 1 << order, migratetype);
7221 }
7222
7223 /*
7224 * Break down a higher-order page in sub-pages, and keep our target out of
7225 * buddy allocator.
7226 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)7227 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7228 struct page *target, int low, int high,
7229 int migratetype)
7230 {
7231 unsigned long size = 1 << high;
7232 struct page *current_buddy;
7233
7234 while (high > low) {
7235 high--;
7236 size >>= 1;
7237
7238 if (target >= &page[size]) {
7239 current_buddy = page;
7240 page = page + size;
7241 } else {
7242 current_buddy = page + size;
7243 }
7244
7245 if (set_page_guard(zone, current_buddy, high))
7246 continue;
7247
7248 add_to_free_list(current_buddy, zone, high, migratetype, false);
7249 set_buddy_order(current_buddy, high);
7250 }
7251 }
7252
7253 /*
7254 * Take a page that will be marked as poisoned off the buddy allocator.
7255 */
take_page_off_buddy(struct page * page)7256 bool take_page_off_buddy(struct page *page)
7257 {
7258 struct zone *zone = page_zone(page);
7259 unsigned long pfn = page_to_pfn(page);
7260 unsigned long flags;
7261 unsigned int order;
7262 bool ret = false;
7263
7264 spin_lock_irqsave(&zone->lock, flags);
7265 for (order = 0; order < NR_PAGE_ORDERS; order++) {
7266 struct page *page_head = page - (pfn & ((1 << order) - 1));
7267 int page_order = buddy_order(page_head);
7268
7269 if (PageBuddy(page_head) && page_order >= order) {
7270 unsigned long pfn_head = page_to_pfn(page_head);
7271 int migratetype = get_pfnblock_migratetype(page_head,
7272 pfn_head);
7273
7274 del_page_from_free_list(page_head, zone, page_order,
7275 migratetype);
7276 break_down_buddy_pages(zone, page_head, page, 0,
7277 page_order, migratetype);
7278 SetPageHWPoisonTakenOff(page);
7279 ret = true;
7280 break;
7281 }
7282 if (page_count(page_head) > 0)
7283 break;
7284 }
7285 spin_unlock_irqrestore(&zone->lock, flags);
7286 return ret;
7287 }
7288
7289 /*
7290 * Cancel takeoff done by take_page_off_buddy().
7291 */
put_page_back_buddy(struct page * page)7292 bool put_page_back_buddy(struct page *page)
7293 {
7294 struct zone *zone = page_zone(page);
7295 unsigned long flags;
7296 bool ret = false;
7297
7298 spin_lock_irqsave(&zone->lock, flags);
7299 if (put_page_testzero(page)) {
7300 unsigned long pfn = page_to_pfn(page);
7301 int migratetype = get_pfnblock_migratetype(page, pfn);
7302
7303 ClearPageHWPoisonTakenOff(page);
7304 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7305 if (TestClearPageHWPoison(page)) {
7306 ret = true;
7307 }
7308 }
7309 spin_unlock_irqrestore(&zone->lock, flags);
7310
7311 return ret;
7312 }
7313 #endif
7314
7315 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)7316 bool has_managed_dma(void)
7317 {
7318 struct pglist_data *pgdat;
7319
7320 for_each_online_pgdat(pgdat) {
7321 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7322
7323 if (managed_zone(zone))
7324 return true;
7325 }
7326 return false;
7327 }
7328 #endif /* CONFIG_ZONE_DMA */
7329
7330 #ifdef CONFIG_UNACCEPTED_MEMORY
7331
7332 static bool lazy_accept = true;
7333
accept_memory_parse(char * p)7334 static int __init accept_memory_parse(char *p)
7335 {
7336 if (!strcmp(p, "lazy")) {
7337 lazy_accept = true;
7338 return 0;
7339 } else if (!strcmp(p, "eager")) {
7340 lazy_accept = false;
7341 return 0;
7342 } else {
7343 return -EINVAL;
7344 }
7345 }
7346 early_param("accept_memory", accept_memory_parse);
7347
page_contains_unaccepted(struct page * page,unsigned int order)7348 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7349 {
7350 phys_addr_t start = page_to_phys(page);
7351
7352 return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7353 }
7354
__accept_page(struct zone * zone,unsigned long * flags,struct page * page)7355 static void __accept_page(struct zone *zone, unsigned long *flags,
7356 struct page *page)
7357 {
7358 list_del(&page->lru);
7359 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7360 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7361 __ClearPageUnaccepted(page);
7362 spin_unlock_irqrestore(&zone->lock, *flags);
7363
7364 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7365
7366 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7367 }
7368
accept_page(struct page * page)7369 void accept_page(struct page *page)
7370 {
7371 struct zone *zone = page_zone(page);
7372 unsigned long flags;
7373
7374 spin_lock_irqsave(&zone->lock, flags);
7375 if (!PageUnaccepted(page)) {
7376 spin_unlock_irqrestore(&zone->lock, flags);
7377 return;
7378 }
7379
7380 /* Unlocks zone->lock */
7381 __accept_page(zone, &flags, page);
7382 }
7383
try_to_accept_memory_one(struct zone * zone)7384 static bool try_to_accept_memory_one(struct zone *zone)
7385 {
7386 unsigned long flags;
7387 struct page *page;
7388
7389 spin_lock_irqsave(&zone->lock, flags);
7390 page = list_first_entry_or_null(&zone->unaccepted_pages,
7391 struct page, lru);
7392 if (!page) {
7393 spin_unlock_irqrestore(&zone->lock, flags);
7394 return false;
7395 }
7396
7397 /* Unlocks zone->lock */
7398 __accept_page(zone, &flags, page);
7399
7400 return true;
7401 }
7402
cond_accept_memory(struct zone * zone,unsigned int order,int alloc_flags)7403 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7404 int alloc_flags)
7405 {
7406 long to_accept, wmark;
7407 bool ret = false;
7408
7409 if (list_empty(&zone->unaccepted_pages))
7410 return false;
7411
7412 /* Bailout, since try_to_accept_memory_one() needs to take a lock */
7413 if (alloc_flags & ALLOC_TRYLOCK)
7414 return false;
7415
7416 wmark = promo_wmark_pages(zone);
7417
7418 /*
7419 * Watermarks have not been initialized yet.
7420 *
7421 * Accepting one MAX_ORDER page to ensure progress.
7422 */
7423 if (!wmark)
7424 return try_to_accept_memory_one(zone);
7425
7426 /* How much to accept to get to promo watermark? */
7427 to_accept = wmark -
7428 (zone_page_state(zone, NR_FREE_PAGES) -
7429 __zone_watermark_unusable_free(zone, order, 0) -
7430 zone_page_state(zone, NR_UNACCEPTED));
7431
7432 while (to_accept > 0) {
7433 if (!try_to_accept_memory_one(zone))
7434 break;
7435 ret = true;
7436 to_accept -= MAX_ORDER_NR_PAGES;
7437 }
7438
7439 return ret;
7440 }
7441
__free_unaccepted(struct page * page)7442 static bool __free_unaccepted(struct page *page)
7443 {
7444 struct zone *zone = page_zone(page);
7445 unsigned long flags;
7446
7447 if (!lazy_accept)
7448 return false;
7449
7450 spin_lock_irqsave(&zone->lock, flags);
7451 list_add_tail(&page->lru, &zone->unaccepted_pages);
7452 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7453 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7454 __SetPageUnaccepted(page);
7455 spin_unlock_irqrestore(&zone->lock, flags);
7456
7457 return true;
7458 }
7459
7460 #else
7461
page_contains_unaccepted(struct page * page,unsigned int order)7462 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7463 {
7464 return false;
7465 }
7466
cond_accept_memory(struct zone * zone,unsigned int order,int alloc_flags)7467 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7468 int alloc_flags)
7469 {
7470 return false;
7471 }
7472
__free_unaccepted(struct page * page)7473 static bool __free_unaccepted(struct page *page)
7474 {
7475 BUILD_BUG();
7476 return false;
7477 }
7478
7479 #endif /* CONFIG_UNACCEPTED_MEMORY */
7480
7481 /**
7482 * alloc_pages_nolock - opportunistic reentrant allocation from any context
7483 * @nid: node to allocate from
7484 * @order: allocation order size
7485 *
7486 * Allocates pages of a given order from the given node. This is safe to
7487 * call from any context (from atomic, NMI, and also reentrant
7488 * allocator -> tracepoint -> alloc_pages_nolock_noprof).
7489 * Allocation is best effort and to be expected to fail easily so nobody should
7490 * rely on the success. Failures are not reported via warn_alloc().
7491 * See always fail conditions below.
7492 *
7493 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
7494 * It means ENOMEM. There is no reason to call it again and expect !NULL.
7495 */
alloc_pages_nolock_noprof(int nid,unsigned int order)7496 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
7497 {
7498 /*
7499 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7500 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7501 * is not safe in arbitrary context.
7502 *
7503 * These two are the conditions for gfpflags_allow_spinning() being true.
7504 *
7505 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
7506 * to warn. Also warn would trigger printk() which is unsafe from
7507 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7508 * since the running context is unknown.
7509 *
7510 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7511 * is safe in any context. Also zeroing the page is mandatory for
7512 * BPF use cases.
7513 *
7514 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7515 * specify it here to highlight that alloc_pages_nolock()
7516 * doesn't want to deplete reserves.
7517 */
7518 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7519 | __GFP_ACCOUNT;
7520 unsigned int alloc_flags = ALLOC_TRYLOCK;
7521 struct alloc_context ac = { };
7522 struct page *page;
7523
7524 /*
7525 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7526 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7527 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7528 * mark the task as the owner of another rt_spin_lock which will
7529 * confuse PI logic, so return immediately if called form hard IRQ or
7530 * NMI.
7531 *
7532 * Note, irqs_disabled() case is ok. This function can be called
7533 * from raw_spin_lock_irqsave region.
7534 */
7535 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7536 return NULL;
7537 if (!pcp_allowed_order(order))
7538 return NULL;
7539
7540 /* Bailout, since _deferred_grow_zone() needs to take a lock */
7541 if (deferred_pages_enabled())
7542 return NULL;
7543
7544 if (nid == NUMA_NO_NODE)
7545 nid = numa_node_id();
7546
7547 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7548 &alloc_gfp, &alloc_flags);
7549
7550 /*
7551 * Best effort allocation from percpu free list.
7552 * If it's empty attempt to spin_trylock zone->lock.
7553 */
7554 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7555
7556 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7557
7558 if (page)
7559 set_page_refcounted(page);
7560
7561 if (memcg_kmem_online() && page &&
7562 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7563 free_pages_nolock(page, order);
7564 page = NULL;
7565 }
7566 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7567 kmsan_alloc_page(page, order, alloc_gfp);
7568 return page;
7569 }
7570