1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5 #include <asm-generic/pgtable-nop4d.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/mmdebug.h>
9 #include <linux/bug.h>
10 #include <linux/sizes.h>
11 #endif
12
13 /*
14 * Common bits between hash and Radix page table
15 */
16
17 #define _PAGE_EXEC 0x00001 /* execute permission */
18 #define _PAGE_WRITE 0x00002 /* write access allowed */
19 #define _PAGE_READ 0x00004 /* read access allowed */
20 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
21 #define _PAGE_SAO 0x00010 /* Strong access order */
22 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
23 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
24 #define _PAGE_DIRTY 0x00080 /* C: page changed */
25 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
26 /*
27 * Software bits
28 */
29 #define _RPAGE_SW0 0x2000000000000000UL
30 #define _RPAGE_SW1 0x00800
31 #define _RPAGE_SW2 0x00400
32 #define _RPAGE_SW3 0x00200
33 #define _RPAGE_RSV1 0x00040UL
34
35 #define _RPAGE_PKEY_BIT4 0x1000000000000000UL
36 #define _RPAGE_PKEY_BIT3 0x0800000000000000UL
37 #define _RPAGE_PKEY_BIT2 0x0400000000000000UL
38 #define _RPAGE_PKEY_BIT1 0x0200000000000000UL
39 #define _RPAGE_PKEY_BIT0 0x0100000000000000UL
40
41 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
43 /*
44 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
45 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
46 * differentiate between two use a SW field when invalidating.
47 *
48 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
49 *
50 * This is used only when _PAGE_PRESENT is cleared.
51 */
52 #define _PAGE_INVALID _RPAGE_SW0
53
54 /*
55 * Top and bottom bits of RPN which can be used by hash
56 * translation mode, because we expect them to be zero
57 * otherwise.
58 */
59 #define _RPAGE_RPN0 0x01000
60 #define _RPAGE_RPN1 0x02000
61 #define _RPAGE_RPN43 0x0080000000000000UL
62 #define _RPAGE_RPN42 0x0040000000000000UL
63 #define _RPAGE_RPN41 0x0020000000000000UL
64
65 /* Max physical address bit as per radix table */
66 #define _RPAGE_PA_MAX 56
67
68 /*
69 * Max physical address bit we will use for now.
70 *
71 * This is mostly a hardware limitation and for now Power9 has
72 * a 51 bit limit.
73 *
74 * This is different from the number of physical bit required to address
75 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
76 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
77 * number of sections we can support (SECTIONS_SHIFT).
78 *
79 * This is different from Radix page table limitation above and
80 * should always be less than that. The limit is done such that
81 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
82 * for hash linux page table specific bits.
83 *
84 * In order to be compatible with future hardware generations we keep
85 * some offsets and limit this for now to 53
86 */
87 #define _PAGE_PA_MAX 53
88
89 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
90 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
91 #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */
92
93 /*
94 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
95 * Instead of fixing all of them, add an alternate define which
96 * maps CI pte mapping.
97 */
98 #define _PAGE_NO_CACHE _PAGE_TOLERANT
99 /*
100 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
101 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
102 * and every thing below PAGE_SHIFT;
103 */
104 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
105 #define PTE_RPN_SHIFT PAGE_SHIFT
106 /*
107 * set of bits not changed in pmd_modify. Even though we have hash specific bits
108 * in here, on radix we expect them to be zero.
109 */
110 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
111 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
112 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
113 /*
114 * user access blocked by key
115 */
116 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
117 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
118 #define _PAGE_KERNEL_ROX (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
119 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
120 /*
121 * _PAGE_CHG_MASK masks of bits that are to be preserved across
122 * pgprot changes
123 */
124 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
125 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
126 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
127
128 /*
129 * We define 2 sets of base prot bits, one for basic pages (ie,
130 * cacheable kernel and user pages) and one for non cacheable
131 * pages. We always set _PAGE_COHERENT when SMP is enabled or
132 * the processor might need it for DMA coherency.
133 */
134 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED)
135 #define _PAGE_BASE (_PAGE_BASE_NC)
136
137 #include <asm/pgtable-masks.h>
138
139 /* Permission masks used for kernel mappings */
140 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
141 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
142 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
143 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
144 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
145 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
146
147 #ifndef __ASSEMBLY__
148 /*
149 * page table defines
150 */
151 extern unsigned long __pte_index_size;
152 extern unsigned long __pmd_index_size;
153 extern unsigned long __pud_index_size;
154 extern unsigned long __pgd_index_size;
155 extern unsigned long __pud_cache_index;
156 #define PTE_INDEX_SIZE __pte_index_size
157 #define PMD_INDEX_SIZE __pmd_index_size
158 #define PUD_INDEX_SIZE __pud_index_size
159 #define PGD_INDEX_SIZE __pgd_index_size
160 /* pmd table use page table fragments */
161 #define PMD_CACHE_INDEX 0
162 #define PUD_CACHE_INDEX __pud_cache_index
163 /*
164 * Because of use of pte fragments and THP, size of page table
165 * are not always derived out of index size above.
166 */
167 extern unsigned long __pte_table_size;
168 extern unsigned long __pmd_table_size;
169 extern unsigned long __pud_table_size;
170 extern unsigned long __pgd_table_size;
171 #define PTE_TABLE_SIZE __pte_table_size
172 #define PMD_TABLE_SIZE __pmd_table_size
173 #define PUD_TABLE_SIZE __pud_table_size
174 #define PGD_TABLE_SIZE __pgd_table_size
175
176 extern unsigned long __pmd_val_bits;
177 extern unsigned long __pud_val_bits;
178 extern unsigned long __pgd_val_bits;
179 #define PMD_VAL_BITS __pmd_val_bits
180 #define PUD_VAL_BITS __pud_val_bits
181 #define PGD_VAL_BITS __pgd_val_bits
182
183 extern unsigned long __pte_frag_nr;
184 #define PTE_FRAG_NR __pte_frag_nr
185 extern unsigned long __pte_frag_size_shift;
186 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
187 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
188
189 extern unsigned long __pmd_frag_nr;
190 #define PMD_FRAG_NR __pmd_frag_nr
191 extern unsigned long __pmd_frag_size_shift;
192 #define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
193 #define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
194
195 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
196 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
197 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
198 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
199
200 #define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
201 #define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
202 #define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
203 #define MAX_PTRS_PER_PGD (1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
204 H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
205
206 /* PMD_SHIFT determines what a second-level page table entry can map */
207 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
208 #define PMD_SIZE (1UL << PMD_SHIFT)
209 #define PMD_MASK (~(PMD_SIZE-1))
210
211 /* PUD_SHIFT determines what a third-level page table entry can map */
212 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
213 #define PUD_SIZE (1UL << PUD_SHIFT)
214 #define PUD_MASK (~(PUD_SIZE-1))
215
216 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
217 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
218 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
219 #define PGDIR_MASK (~(PGDIR_SIZE-1))
220
221 /* Bits to mask out from a PMD to get to the PTE page */
222 #define PMD_MASKED_BITS 0xc0000000000000ffUL
223 /* Bits to mask out from a PUD to get to the PMD page */
224 #define PUD_MASKED_BITS 0xc0000000000000ffUL
225 /* Bits to mask out from a PGD to get to the PUD page */
226 #define P4D_MASKED_BITS 0xc0000000000000ffUL
227
228 /*
229 * Used as an indicator for rcu callback functions
230 */
231 enum pgtable_index {
232 PTE_INDEX = 0,
233 PMD_INDEX,
234 PUD_INDEX,
235 PGD_INDEX,
236 /*
237 * Below are used with 4k page size and hugetlb
238 */
239 HTLB_16M_INDEX,
240 HTLB_16G_INDEX,
241 };
242
243 extern unsigned long __vmalloc_start;
244 extern unsigned long __vmalloc_end;
245 #define VMALLOC_START __vmalloc_start
246 #define VMALLOC_END __vmalloc_end
247
ioremap_max_order(void)248 static inline unsigned int ioremap_max_order(void)
249 {
250 if (radix_enabled())
251 return PUD_SHIFT;
252 return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
253 }
254 #define IOREMAP_MAX_ORDER ioremap_max_order()
255
256 extern unsigned long __kernel_virt_start;
257 extern unsigned long __kernel_io_start;
258 extern unsigned long __kernel_io_end;
259 #define KERN_VIRT_START __kernel_virt_start
260 #define KERN_IO_START __kernel_io_start
261 #define KERN_IO_END __kernel_io_end
262
263 extern struct page *vmemmap;
264 extern unsigned long pci_io_base;
265 #endif /* __ASSEMBLY__ */
266
267 #include <asm/book3s/64/hash.h>
268 #include <asm/book3s/64/radix.h>
269
270 #if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
271 #define MAX_PHYSMEM_BITS H_MAX_PHYSMEM_BITS
272 #else
273 #define MAX_PHYSMEM_BITS R_MAX_PHYSMEM_BITS
274 #endif
275
276
277 #ifdef CONFIG_PPC_64K_PAGES
278 #include <asm/book3s/64/pgtable-64k.h>
279 #else
280 #include <asm/book3s/64/pgtable-4k.h>
281 #endif
282
283 #include <asm/barrier.h>
284 /*
285 * IO space itself carved into the PIO region (ISA and PHB IO space) and
286 * the ioremap space
287 *
288 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
289 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
290 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
291 */
292 #define FULL_IO_SIZE 0x80000000ul
293 #define ISA_IO_BASE (KERN_IO_START)
294 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
295 #define PHB_IO_BASE (ISA_IO_END)
296 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
297 #define IOREMAP_BASE (PHB_IO_END)
298 #define IOREMAP_START (ioremap_bot)
299 #define IOREMAP_END (KERN_IO_END - FIXADDR_SIZE)
300 #define FIXADDR_SIZE SZ_32M
301 #define FIXADDR_TOP (IOREMAP_END + FIXADDR_SIZE)
302
303 #ifndef __ASSEMBLY__
304
305 /*
306 * This is the default implementation of various PTE accessors, it's
307 * used in all cases except Book3S with 64K pages where we have a
308 * concept of sub-pages
309 */
310 #ifndef __real_pte
311
312 #define __real_pte(e, p, o) ((real_pte_t){(e)})
313 #define __rpte_to_pte(r) ((r).pte)
314 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
315
316 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
317 do { \
318 index = 0; \
319 shift = mmu_psize_defs[psize].shift; \
320
321 #define pte_iterate_hashed_end() } while(0)
322
323 /*
324 * We expect this to be called only for user addresses or kernel virtual
325 * addresses other than the linear mapping.
326 */
327 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
328
329 #endif /* __real_pte */
330
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned long clr,unsigned long set,int huge)331 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
332 pte_t *ptep, unsigned long clr,
333 unsigned long set, int huge)
334 {
335 if (radix_enabled())
336 return radix__pte_update(mm, addr, ptep, clr, set, huge);
337 return hash__pte_update(mm, addr, ptep, clr, set, huge);
338 }
339 /*
340 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
341 * We currently remove entries from the hashtable regardless of whether
342 * the entry was young or dirty.
343 *
344 * We should be more intelligent about this but for the moment we override
345 * these functions and force a tlb flush unconditionally
346 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
347 * function for both hash and radix.
348 */
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)349 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
350 unsigned long addr, pte_t *ptep)
351 {
352 unsigned long old;
353
354 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
355 return 0;
356 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
357 return (old & _PAGE_ACCESSED) != 0;
358 }
359
360 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
361 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
362 ({ \
363 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
364 })
365
366 /*
367 * On Book3S CPUs, clearing the accessed bit without a TLB flush
368 * doesn't cause data corruption. [ It could cause incorrect
369 * page aging and the (mistaken) reclaim of hot pages, but the
370 * chance of that should be relatively low. ]
371 *
372 * So as a performance optimization don't flush the TLB when
373 * clearing the accessed bit, it will eventually be flushed by
374 * a context switch or a VM operation anyway. [ In the rare
375 * event of it not getting flushed for a long time the delay
376 * shouldn't really matter because there's no real memory
377 * pressure for swapout to react to. ]
378 *
379 * Note: this optimisation also exists in pte_needs_flush() and
380 * huge_pmd_needs_flush().
381 */
382 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
383 #define ptep_clear_flush_young ptep_test_and_clear_young
384
385 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
386 #define pmdp_clear_flush_young pmdp_test_and_clear_young
387
pte_write(pte_t pte)388 static inline int pte_write(pte_t pte)
389 {
390 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
391 }
392
pte_read(pte_t pte)393 static inline int pte_read(pte_t pte)
394 {
395 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
396 }
397
398 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)399 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
400 pte_t *ptep)
401 {
402 if (pte_write(*ptep))
403 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
404 }
405
406 #define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
huge_ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)407 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
408 unsigned long addr, pte_t *ptep)
409 {
410 if (pte_write(*ptep))
411 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
412 }
413
414 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)415 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
416 unsigned long addr, pte_t *ptep)
417 {
418 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
419 return __pte(old);
420 }
421
422 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)423 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
424 unsigned long addr,
425 pte_t *ptep, int full)
426 {
427 if (full && radix_enabled()) {
428 /*
429 * We know that this is a full mm pte clear and
430 * hence can be sure there is no parallel set_pte.
431 */
432 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
433 }
434 return ptep_get_and_clear(mm, addr, ptep);
435 }
436
437
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)438 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
439 pte_t * ptep)
440 {
441 pte_update(mm, addr, ptep, ~0UL, 0, 0);
442 }
443
pte_dirty(pte_t pte)444 static inline int pte_dirty(pte_t pte)
445 {
446 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
447 }
448
pte_young(pte_t pte)449 static inline int pte_young(pte_t pte)
450 {
451 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
452 }
453
pte_special(pte_t pte)454 static inline int pte_special(pte_t pte)
455 {
456 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
457 }
458
pte_exec(pte_t pte)459 static inline bool pte_exec(pte_t pte)
460 {
461 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
462 }
463
464
465 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_soft_dirty(pte_t pte)466 static inline bool pte_soft_dirty(pte_t pte)
467 {
468 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
469 }
470
pte_mksoft_dirty(pte_t pte)471 static inline pte_t pte_mksoft_dirty(pte_t pte)
472 {
473 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
474 }
475
pte_clear_soft_dirty(pte_t pte)476 static inline pte_t pte_clear_soft_dirty(pte_t pte)
477 {
478 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
479 }
480 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
481
482 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)483 static inline int pte_protnone(pte_t pte)
484 {
485 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
486 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
487 }
488 #endif /* CONFIG_NUMA_BALANCING */
489
pte_hw_valid(pte_t pte)490 static inline bool pte_hw_valid(pte_t pte)
491 {
492 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
493 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
494 }
495
pte_present(pte_t pte)496 static inline int pte_present(pte_t pte)
497 {
498 /*
499 * A pte is considerent present if _PAGE_PRESENT is set.
500 * We also need to consider the pte present which is marked
501 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
502 * if we find _PAGE_PRESENT cleared.
503 */
504
505 if (pte_hw_valid(pte))
506 return true;
507 return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
508 cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
509 }
510
511 #ifdef CONFIG_PPC_MEM_KEYS
512 extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
513 #else
arch_pte_access_permitted(u64 pte,bool write,bool execute)514 static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
515 {
516 return true;
517 }
518 #endif /* CONFIG_PPC_MEM_KEYS */
519
pte_user(pte_t pte)520 static inline bool pte_user(pte_t pte)
521 {
522 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
523 }
524
525 #define pte_access_permitted pte_access_permitted
pte_access_permitted(pte_t pte,bool write)526 static inline bool pte_access_permitted(pte_t pte, bool write)
527 {
528 /*
529 * _PAGE_READ is needed for any access and will be cleared for
530 * PROT_NONE. Execute-only mapping via PROT_EXEC also returns false.
531 */
532 if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
533 return false;
534
535 if (write && !pte_write(pte))
536 return false;
537
538 return arch_pte_access_permitted(pte_val(pte), write, 0);
539 }
540
541 /*
542 * Conversion functions: convert a page and protection to a page entry,
543 * and a page entry and page directory to the page they refer to.
544 *
545 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
546 * long for now.
547 */
pfn_pte(unsigned long pfn,pgprot_t pgprot)548 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
549 {
550 VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
551 VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
552
553 return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
554 }
555
556 /* Generic modifiers for PTE bits */
pte_wrprotect(pte_t pte)557 static inline pte_t pte_wrprotect(pte_t pte)
558 {
559 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
560 }
561
pte_exprotect(pte_t pte)562 static inline pte_t pte_exprotect(pte_t pte)
563 {
564 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
565 }
566
pte_mkclean(pte_t pte)567 static inline pte_t pte_mkclean(pte_t pte)
568 {
569 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
570 }
571
pte_mkold(pte_t pte)572 static inline pte_t pte_mkold(pte_t pte)
573 {
574 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
575 }
576
pte_mkexec(pte_t pte)577 static inline pte_t pte_mkexec(pte_t pte)
578 {
579 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
580 }
581
pte_mkwrite_novma(pte_t pte)582 static inline pte_t pte_mkwrite_novma(pte_t pte)
583 {
584 /*
585 * write implies read, hence set both
586 */
587 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
588 }
589
pte_mkdirty(pte_t pte)590 static inline pte_t pte_mkdirty(pte_t pte)
591 {
592 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
593 }
594
pte_mkyoung(pte_t pte)595 static inline pte_t pte_mkyoung(pte_t pte)
596 {
597 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
598 }
599
pte_mkspecial(pte_t pte)600 static inline pte_t pte_mkspecial(pte_t pte)
601 {
602 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
603 }
604
pte_mkhuge(pte_t pte)605 static inline pte_t pte_mkhuge(pte_t pte)
606 {
607 return pte;
608 }
609
pte_mkdevmap(pte_t pte)610 static inline pte_t pte_mkdevmap(pte_t pte)
611 {
612 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
613 }
614
615 /*
616 * This is potentially called with a pmd as the argument, in which case it's not
617 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
618 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
619 * use in page directory entries (ie. non-ptes).
620 */
pte_devmap(pte_t pte)621 static inline int pte_devmap(pte_t pte)
622 {
623 __be64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
624
625 return (pte_raw(pte) & mask) == mask;
626 }
627
pte_modify(pte_t pte,pgprot_t newprot)628 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
629 {
630 /* FIXME!! check whether this need to be a conditional */
631 return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
632 cpu_to_be64(pgprot_val(newprot)));
633 }
634
635 /* Encode and de-code a swap entry */
636 #define MAX_SWAPFILES_CHECK() do { \
637 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
638 /* \
639 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
640 * We filter HPTEFLAGS on set_pte. \
641 */ \
642 BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
643 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
644 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE); \
645 } while (0)
646
647 #define SWP_TYPE_BITS 5
648 #define SWP_TYPE_MASK ((1UL << SWP_TYPE_BITS) - 1)
649 #define __swp_type(x) ((x).val & SWP_TYPE_MASK)
650 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
651 #define __swp_entry(type, offset) ((swp_entry_t) { \
652 (type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
653 /*
654 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
655 * swap type and offset we get from swap and convert that to pte to find a
656 * matching pte in linux page table.
657 * Clear bits not found in swap entries here.
658 */
659 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
660 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
661 #define __pmd_to_swp_entry(pmd) (__pte_to_swp_entry(pmd_pte(pmd)))
662 #define __swp_entry_to_pmd(x) (pte_pmd(__swp_entry_to_pte(x)))
663
664 #ifdef CONFIG_MEM_SOFT_DIRTY
665 #define _PAGE_SWP_SOFT_DIRTY _PAGE_SOFT_DIRTY
666 #else
667 #define _PAGE_SWP_SOFT_DIRTY 0UL
668 #endif /* CONFIG_MEM_SOFT_DIRTY */
669
670 #define _PAGE_SWP_EXCLUSIVE _PAGE_NON_IDEMPOTENT
671
672 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
pte_swp_mksoft_dirty(pte_t pte)673 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
674 {
675 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
676 }
677
pte_swp_soft_dirty(pte_t pte)678 static inline bool pte_swp_soft_dirty(pte_t pte)
679 {
680 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
681 }
682
pte_swp_clear_soft_dirty(pte_t pte)683 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
684 {
685 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
686 }
687 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
688
pte_swp_mkexclusive(pte_t pte)689 static inline pte_t pte_swp_mkexclusive(pte_t pte)
690 {
691 return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
692 }
693
pte_swp_exclusive(pte_t pte)694 static inline int pte_swp_exclusive(pte_t pte)
695 {
696 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
697 }
698
pte_swp_clear_exclusive(pte_t pte)699 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
700 {
701 return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
702 }
703
check_pte_access(unsigned long access,unsigned long ptev)704 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
705 {
706 /*
707 * This check for _PAGE_RWX and _PAGE_PRESENT bits
708 */
709 if (access & ~ptev)
710 return false;
711 /*
712 * This check for access to privilege space
713 */
714 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
715 return false;
716
717 return true;
718 }
719 /*
720 * Generic functions with hash/radix callbacks
721 */
722
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)723 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
724 pte_t *ptep, pte_t entry,
725 unsigned long address,
726 int psize)
727 {
728 if (radix_enabled())
729 return radix__ptep_set_access_flags(vma, ptep, entry,
730 address, psize);
731 return hash__ptep_set_access_flags(ptep, entry);
732 }
733
734 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)735 static inline int pte_same(pte_t pte_a, pte_t pte_b)
736 {
737 if (radix_enabled())
738 return radix__pte_same(pte_a, pte_b);
739 return hash__pte_same(pte_a, pte_b);
740 }
741
pte_none(pte_t pte)742 static inline int pte_none(pte_t pte)
743 {
744 if (radix_enabled())
745 return radix__pte_none(pte);
746 return hash__pte_none(pte);
747 }
748
__set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,int percpu)749 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
750 pte_t *ptep, pte_t pte, int percpu)
751 {
752
753 VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
754 /*
755 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
756 * in all the callers.
757 */
758 pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
759
760 if (radix_enabled())
761 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
762 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
763 }
764
765 #define _PAGE_CACHE_CTL (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
766
767 #define pgprot_noncached pgprot_noncached
pgprot_noncached(pgprot_t prot)768 static inline pgprot_t pgprot_noncached(pgprot_t prot)
769 {
770 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
771 _PAGE_NON_IDEMPOTENT);
772 }
773
774 #define pgprot_noncached_wc pgprot_noncached_wc
pgprot_noncached_wc(pgprot_t prot)775 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
776 {
777 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
778 _PAGE_TOLERANT);
779 }
780
781 #define pgprot_cached pgprot_cached
pgprot_cached(pgprot_t prot)782 static inline pgprot_t pgprot_cached(pgprot_t prot)
783 {
784 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
785 }
786
787 #define pgprot_writecombine pgprot_writecombine
pgprot_writecombine(pgprot_t prot)788 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
789 {
790 return pgprot_noncached_wc(prot);
791 }
792 /*
793 * check a pte mapping have cache inhibited property
794 */
pte_ci(pte_t pte)795 static inline bool pte_ci(pte_t pte)
796 {
797 __be64 pte_v = pte_raw(pte);
798
799 if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
800 ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
801 return true;
802 return false;
803 }
804
pmd_clear(pmd_t * pmdp)805 static inline void pmd_clear(pmd_t *pmdp)
806 {
807 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
808 /*
809 * Don't use this if we can possibly have a hash page table
810 * entry mapping this.
811 */
812 WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
813 }
814 *pmdp = __pmd(0);
815 }
816
pmd_none(pmd_t pmd)817 static inline int pmd_none(pmd_t pmd)
818 {
819 return !pmd_raw(pmd);
820 }
821
pmd_present(pmd_t pmd)822 static inline int pmd_present(pmd_t pmd)
823 {
824 /*
825 * A pmd is considerent present if _PAGE_PRESENT is set.
826 * We also need to consider the pmd present which is marked
827 * invalid during a split. Hence we look for _PAGE_INVALID
828 * if we find _PAGE_PRESENT cleared.
829 */
830 if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
831 return true;
832
833 return false;
834 }
835
pmd_is_serializing(pmd_t pmd)836 static inline int pmd_is_serializing(pmd_t pmd)
837 {
838 /*
839 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
840 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
841 *
842 * This condition may also occur when flushing a pmd while flushing
843 * it (see ptep_modify_prot_start), so callers must ensure this
844 * case is fine as well.
845 */
846 if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
847 cpu_to_be64(_PAGE_INVALID))
848 return true;
849
850 return false;
851 }
852
pmd_bad(pmd_t pmd)853 static inline int pmd_bad(pmd_t pmd)
854 {
855 if (radix_enabled())
856 return radix__pmd_bad(pmd);
857 return hash__pmd_bad(pmd);
858 }
859
pud_clear(pud_t * pudp)860 static inline void pud_clear(pud_t *pudp)
861 {
862 if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
863 /*
864 * Don't use this if we can possibly have a hash page table
865 * entry mapping this.
866 */
867 WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
868 }
869 *pudp = __pud(0);
870 }
871
pud_none(pud_t pud)872 static inline int pud_none(pud_t pud)
873 {
874 return !pud_raw(pud);
875 }
876
pud_present(pud_t pud)877 static inline int pud_present(pud_t pud)
878 {
879 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
880 }
881
882 extern struct page *pud_page(pud_t pud);
883 extern struct page *pmd_page(pmd_t pmd);
pud_pte(pud_t pud)884 static inline pte_t pud_pte(pud_t pud)
885 {
886 return __pte_raw(pud_raw(pud));
887 }
888
pte_pud(pte_t pte)889 static inline pud_t pte_pud(pte_t pte)
890 {
891 return __pud_raw(pte_raw(pte));
892 }
893
pudp_ptep(pud_t * pud)894 static inline pte_t *pudp_ptep(pud_t *pud)
895 {
896 return (pte_t *)pud;
897 }
898
899 #define pud_pfn(pud) pte_pfn(pud_pte(pud))
900 #define pud_dirty(pud) pte_dirty(pud_pte(pud))
901 #define pud_young(pud) pte_young(pud_pte(pud))
902 #define pud_mkold(pud) pte_pud(pte_mkold(pud_pte(pud)))
903 #define pud_wrprotect(pud) pte_pud(pte_wrprotect(pud_pte(pud)))
904 #define pud_mkdirty(pud) pte_pud(pte_mkdirty(pud_pte(pud)))
905 #define pud_mkclean(pud) pte_pud(pte_mkclean(pud_pte(pud)))
906 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
907 #define pud_mkwrite(pud) pte_pud(pte_mkwrite_novma(pud_pte(pud)))
908 #define pud_write(pud) pte_write(pud_pte(pud))
909
910 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
911 #define pud_soft_dirty(pmd) pte_soft_dirty(pud_pte(pud))
912 #define pud_mksoft_dirty(pmd) pte_pud(pte_mksoft_dirty(pud_pte(pud)))
913 #define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
914 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
915
pud_bad(pud_t pud)916 static inline int pud_bad(pud_t pud)
917 {
918 if (radix_enabled())
919 return radix__pud_bad(pud);
920 return hash__pud_bad(pud);
921 }
922
923 #define pud_access_permitted pud_access_permitted
pud_access_permitted(pud_t pud,bool write)924 static inline bool pud_access_permitted(pud_t pud, bool write)
925 {
926 return pte_access_permitted(pud_pte(pud), write);
927 }
928
929 #define __p4d_raw(x) ((p4d_t) { __pgd_raw(x) })
p4d_raw(p4d_t x)930 static inline __be64 p4d_raw(p4d_t x)
931 {
932 return pgd_raw(x.pgd);
933 }
934
935 #define p4d_write(p4d) pte_write(p4d_pte(p4d))
936
p4d_clear(p4d_t * p4dp)937 static inline void p4d_clear(p4d_t *p4dp)
938 {
939 *p4dp = __p4d(0);
940 }
941
p4d_none(p4d_t p4d)942 static inline int p4d_none(p4d_t p4d)
943 {
944 return !p4d_raw(p4d);
945 }
946
p4d_present(p4d_t p4d)947 static inline int p4d_present(p4d_t p4d)
948 {
949 return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
950 }
951
p4d_pte(p4d_t p4d)952 static inline pte_t p4d_pte(p4d_t p4d)
953 {
954 return __pte_raw(p4d_raw(p4d));
955 }
956
pte_p4d(pte_t pte)957 static inline p4d_t pte_p4d(pte_t pte)
958 {
959 return __p4d_raw(pte_raw(pte));
960 }
961
p4d_bad(p4d_t p4d)962 static inline int p4d_bad(p4d_t p4d)
963 {
964 if (radix_enabled())
965 return radix__p4d_bad(p4d);
966 return hash__p4d_bad(p4d);
967 }
968
969 #define p4d_access_permitted p4d_access_permitted
p4d_access_permitted(p4d_t p4d,bool write)970 static inline bool p4d_access_permitted(p4d_t p4d, bool write)
971 {
972 return pte_access_permitted(p4d_pte(p4d), write);
973 }
974
975 extern struct page *p4d_page(p4d_t p4d);
976
977 /* Pointers in the page table tree are physical addresses */
978 #define __pgtable_ptr_val(ptr) __pa(ptr)
979
p4d_pgtable(p4d_t p4d)980 static inline pud_t *p4d_pgtable(p4d_t p4d)
981 {
982 return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
983 }
984
pud_pgtable(pud_t pud)985 static inline pmd_t *pud_pgtable(pud_t pud)
986 {
987 return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
988 }
989
990 #define pmd_ERROR(e) \
991 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
992 #define pud_ERROR(e) \
993 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
994 #define pgd_ERROR(e) \
995 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
996
map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t prot)997 static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
998 {
999 if (radix_enabled()) {
1000 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1001 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1002 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1003 #endif
1004 return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1005 }
1006 return hash__map_kernel_page(ea, pa, prot);
1007 }
1008
1009 void unmap_kernel_page(unsigned long va);
1010
vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)1011 static inline int __meminit vmemmap_create_mapping(unsigned long start,
1012 unsigned long page_size,
1013 unsigned long phys)
1014 {
1015 if (radix_enabled())
1016 return radix__vmemmap_create_mapping(start, page_size, phys);
1017 return hash__vmemmap_create_mapping(start, page_size, phys);
1018 }
1019
1020 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_remove_mapping(unsigned long start,unsigned long page_size)1021 static inline void vmemmap_remove_mapping(unsigned long start,
1022 unsigned long page_size)
1023 {
1024 if (radix_enabled())
1025 return radix__vmemmap_remove_mapping(start, page_size);
1026 return hash__vmemmap_remove_mapping(start, page_size);
1027 }
1028 #endif
1029
1030 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
__kernel_map_pages(struct page * page,int numpages,int enable)1031 static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1032 {
1033 if (radix_enabled())
1034 radix__kernel_map_pages(page, numpages, enable);
1035 else
1036 hash__kernel_map_pages(page, numpages, enable);
1037 }
1038 #endif
1039
pmd_pte(pmd_t pmd)1040 static inline pte_t pmd_pte(pmd_t pmd)
1041 {
1042 return __pte_raw(pmd_raw(pmd));
1043 }
1044
pte_pmd(pte_t pte)1045 static inline pmd_t pte_pmd(pte_t pte)
1046 {
1047 return __pmd_raw(pte_raw(pte));
1048 }
1049
pmdp_ptep(pmd_t * pmd)1050 static inline pte_t *pmdp_ptep(pmd_t *pmd)
1051 {
1052 return (pte_t *)pmd;
1053 }
1054 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
1055 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
1056 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
1057 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
1058 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1059 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1060 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
1061 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1062 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1063
1064 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1065 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
1066 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1067 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1068
1069 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1070 #define pmd_swp_mksoft_dirty(pmd) pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1071 #define pmd_swp_soft_dirty(pmd) pte_swp_soft_dirty(pmd_pte(pmd))
1072 #define pmd_swp_clear_soft_dirty(pmd) pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1073 #endif
1074 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1075
1076 #ifdef CONFIG_NUMA_BALANCING
pmd_protnone(pmd_t pmd)1077 static inline int pmd_protnone(pmd_t pmd)
1078 {
1079 return pte_protnone(pmd_pte(pmd));
1080 }
1081 #endif /* CONFIG_NUMA_BALANCING */
1082
1083 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
1084
1085 #define pmd_access_permitted pmd_access_permitted
pmd_access_permitted(pmd_t pmd,bool write)1086 static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1087 {
1088 /*
1089 * pmdp_invalidate sets this combination (which is not caught by
1090 * !pte_present() check in pte_access_permitted), to prevent
1091 * lock-free lookups, as part of the serialize_against_pte_lookup()
1092 * synchronisation.
1093 *
1094 * This also catches the case where the PTE's hardware PRESENT bit is
1095 * cleared while TLB is flushed, which is suboptimal but should not
1096 * be frequent.
1097 */
1098 if (pmd_is_serializing(pmd))
1099 return false;
1100
1101 return pte_access_permitted(pmd_pte(pmd), write);
1102 }
1103
1104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1105 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1106 extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1107 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1108 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1109 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1110 pmd_t *pmdp, pmd_t pmd);
1111 extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1112 pud_t *pudp, pud_t pud);
1113
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)1114 static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1115 unsigned long addr, pmd_t *pmd)
1116 {
1117 }
1118
update_mmu_cache_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud)1119 static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1120 unsigned long addr, pud_t *pud)
1121 {
1122 }
1123
1124 extern int hash__has_transparent_hugepage(void);
has_transparent_hugepage(void)1125 static inline int has_transparent_hugepage(void)
1126 {
1127 if (radix_enabled())
1128 return radix__has_transparent_hugepage();
1129 return hash__has_transparent_hugepage();
1130 }
1131 #define has_transparent_hugepage has_transparent_hugepage
1132
has_transparent_pud_hugepage(void)1133 static inline int has_transparent_pud_hugepage(void)
1134 {
1135 if (radix_enabled())
1136 return radix__has_transparent_pud_hugepage();
1137 return 0;
1138 }
1139 #define has_transparent_pud_hugepage has_transparent_pud_hugepage
1140
1141 static inline unsigned long
pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)1142 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1143 unsigned long clr, unsigned long set)
1144 {
1145 if (radix_enabled())
1146 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1147 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1148 }
1149
1150 static inline unsigned long
pud_hugepage_update(struct mm_struct * mm,unsigned long addr,pud_t * pudp,unsigned long clr,unsigned long set)1151 pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1152 unsigned long clr, unsigned long set)
1153 {
1154 if (radix_enabled())
1155 return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1156 BUG();
1157 return pud_val(*pudp);
1158 }
1159
1160 /*
1161 * returns true for pmd migration entries, THP, devmap, hugetlb
1162 * But compile time dependent on THP config
1163 */
pmd_large(pmd_t pmd)1164 static inline int pmd_large(pmd_t pmd)
1165 {
1166 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1167 }
1168
pud_large(pud_t pud)1169 static inline int pud_large(pud_t pud)
1170 {
1171 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1172 }
1173
1174 /*
1175 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1176 * the below will work for radix too
1177 */
__pmdp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1178 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1179 unsigned long addr, pmd_t *pmdp)
1180 {
1181 unsigned long old;
1182
1183 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1184 return 0;
1185 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1186 return ((old & _PAGE_ACCESSED) != 0);
1187 }
1188
__pudp_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1189 static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1190 unsigned long addr, pud_t *pudp)
1191 {
1192 unsigned long old;
1193
1194 if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1195 return 0;
1196 old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1197 return ((old & _PAGE_ACCESSED) != 0);
1198 }
1199
1200 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1201 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1202 pmd_t *pmdp)
1203 {
1204 if (pmd_write(*pmdp))
1205 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1206 }
1207
1208 #define __HAVE_ARCH_PUDP_SET_WRPROTECT
pudp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1209 static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1210 pud_t *pudp)
1211 {
1212 if (pud_write(*pudp))
1213 pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1214 }
1215
1216 /*
1217 * Only returns true for a THP. False for pmd migration entry.
1218 * We also need to return true when we come across a pte that
1219 * in between a thp split. While splitting THP, we mark the pmd
1220 * invalid (pmdp_invalidate()) before we set it with pte page
1221 * address. A pmd_trans_huge() check against a pmd entry during that time
1222 * should return true.
1223 * We should not call this on a hugetlb entry. We should check for HugeTLB
1224 * entry using vma->vm_flags
1225 * The page table walk rule is explained in Documentation/mm/transhuge.rst
1226 */
pmd_trans_huge(pmd_t pmd)1227 static inline int pmd_trans_huge(pmd_t pmd)
1228 {
1229 if (!pmd_present(pmd))
1230 return false;
1231
1232 if (radix_enabled())
1233 return radix__pmd_trans_huge(pmd);
1234 return hash__pmd_trans_huge(pmd);
1235 }
1236
pud_trans_huge(pud_t pud)1237 static inline int pud_trans_huge(pud_t pud)
1238 {
1239 if (!pud_present(pud))
1240 return false;
1241
1242 if (radix_enabled())
1243 return radix__pud_trans_huge(pud);
1244 return 0;
1245 }
1246
1247
1248 #define __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1249 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1250 {
1251 if (radix_enabled())
1252 return radix__pmd_same(pmd_a, pmd_b);
1253 return hash__pmd_same(pmd_a, pmd_b);
1254 }
1255
1256 #define pud_same pud_same
pud_same(pud_t pud_a,pud_t pud_b)1257 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1258 {
1259 if (radix_enabled())
1260 return radix__pud_same(pud_a, pud_b);
1261 return hash__pud_same(pud_a, pud_b);
1262 }
1263
1264
__pmd_mkhuge(pmd_t pmd)1265 static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1266 {
1267 if (radix_enabled())
1268 return radix__pmd_mkhuge(pmd);
1269 return hash__pmd_mkhuge(pmd);
1270 }
1271
__pud_mkhuge(pud_t pud)1272 static inline pud_t __pud_mkhuge(pud_t pud)
1273 {
1274 if (radix_enabled())
1275 return radix__pud_mkhuge(pud);
1276 BUG();
1277 return pud;
1278 }
1279
1280 /*
1281 * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1282 */
pmd_mkhuge(pmd_t pmd)1283 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1284 {
1285 #ifdef CONFIG_DEBUG_VM
1286 if (radix_enabled())
1287 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1288 else
1289 WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1290 cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1291 #endif
1292 return pmd;
1293 }
1294
pud_mkhuge(pud_t pud)1295 static inline pud_t pud_mkhuge(pud_t pud)
1296 {
1297 #ifdef CONFIG_DEBUG_VM
1298 if (radix_enabled())
1299 WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1300 else
1301 WARN_ON(1);
1302 #endif
1303 return pud;
1304 }
1305
1306
1307 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1308 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1309 unsigned long address, pmd_t *pmdp,
1310 pmd_t entry, int dirty);
1311 #define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1312 extern int pudp_set_access_flags(struct vm_area_struct *vma,
1313 unsigned long address, pud_t *pudp,
1314 pud_t entry, int dirty);
1315
1316 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1317 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1318 unsigned long address, pmd_t *pmdp);
1319 #define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1320 extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1321 unsigned long address, pud_t *pudp);
1322
1323
1324 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1325 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1326 unsigned long addr, pmd_t *pmdp)
1327 {
1328 if (radix_enabled())
1329 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1330 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1331 }
1332
1333 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pud_t * pudp)1334 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1335 unsigned long addr, pud_t *pudp)
1336 {
1337 if (radix_enabled())
1338 return radix__pudp_huge_get_and_clear(mm, addr, pudp);
1339 BUG();
1340 return *pudp;
1341 }
1342
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1343 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1344 unsigned long address, pmd_t *pmdp)
1345 {
1346 if (radix_enabled())
1347 return radix__pmdp_collapse_flush(vma, address, pmdp);
1348 return hash__pmdp_collapse_flush(vma, address, pmdp);
1349 }
1350 #define pmdp_collapse_flush pmdp_collapse_flush
1351
1352 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1353 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1354 unsigned long addr,
1355 pmd_t *pmdp, int full);
1356
1357 #define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1358 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1359 unsigned long addr,
1360 pud_t *pudp, int full);
1361
1362 #define __HAVE_ARCH_PGTABLE_DEPOSIT
pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1363 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1364 pmd_t *pmdp, pgtable_t pgtable)
1365 {
1366 if (radix_enabled())
1367 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1368 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1369 }
1370
1371 #define __HAVE_ARCH_PGTABLE_WITHDRAW
pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1372 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1373 pmd_t *pmdp)
1374 {
1375 if (radix_enabled())
1376 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1377 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1378 }
1379
1380 #define __HAVE_ARCH_PMDP_INVALIDATE
1381 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1382 pmd_t *pmdp);
1383
1384 #define pmd_move_must_withdraw pmd_move_must_withdraw
1385 struct spinlock;
1386 extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1387 struct spinlock *old_pmd_ptl,
1388 struct vm_area_struct *vma);
1389 /*
1390 * Hash translation mode use the deposited table to store hash pte
1391 * slot information.
1392 */
1393 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
arch_needs_pgtable_deposit(void)1394 static inline bool arch_needs_pgtable_deposit(void)
1395 {
1396 if (radix_enabled())
1397 return false;
1398 return true;
1399 }
1400 extern void serialize_against_pte_lookup(struct mm_struct *mm);
1401
1402
pmd_mkdevmap(pmd_t pmd)1403 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1404 {
1405 if (radix_enabled())
1406 return radix__pmd_mkdevmap(pmd);
1407 return hash__pmd_mkdevmap(pmd);
1408 }
1409
pud_mkdevmap(pud_t pud)1410 static inline pud_t pud_mkdevmap(pud_t pud)
1411 {
1412 if (radix_enabled())
1413 return radix__pud_mkdevmap(pud);
1414 BUG();
1415 return pud;
1416 }
1417
pmd_devmap(pmd_t pmd)1418 static inline int pmd_devmap(pmd_t pmd)
1419 {
1420 return pte_devmap(pmd_pte(pmd));
1421 }
1422
pud_devmap(pud_t pud)1423 static inline int pud_devmap(pud_t pud)
1424 {
1425 return pte_devmap(pud_pte(pud));
1426 }
1427
pgd_devmap(pgd_t pgd)1428 static inline int pgd_devmap(pgd_t pgd)
1429 {
1430 return 0;
1431 }
1432 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1433
1434 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1435 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1436 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1437 pte_t *, pte_t, pte_t);
1438
1439 /*
1440 * Returns true for a R -> RW upgrade of pte
1441 */
is_pte_rw_upgrade(unsigned long old_val,unsigned long new_val)1442 static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1443 {
1444 if (!(old_val & _PAGE_READ))
1445 return false;
1446
1447 if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1448 return true;
1449
1450 return false;
1451 }
1452
1453 /*
1454 * Like pmd_huge() and pmd_large(), but works regardless of config options
1455 */
1456 #define pmd_is_leaf pmd_is_leaf
1457 #define pmd_leaf pmd_is_leaf
pmd_is_leaf(pmd_t pmd)1458 static inline bool pmd_is_leaf(pmd_t pmd)
1459 {
1460 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1461 }
1462
1463 #define pud_is_leaf pud_is_leaf
1464 #define pud_leaf pud_is_leaf
pud_is_leaf(pud_t pud)1465 static inline bool pud_is_leaf(pud_t pud)
1466 {
1467 return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1468 }
1469
1470 #endif /* __ASSEMBLY__ */
1471 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1472