1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/module.h>
18 #include <linux/blkpg.h>
19 #include <linux/buffer_head.h>
20 #include <linux/swap.h>
21 #include <linux/pagevec.h>
22 #include <linux/writeback.h>
23 #include <linux/mpage.h>
24 #include <linux/mount.h>
25 #include <linux/uio.h>
26 #include <linux/namei.h>
27 #include <linux/log2.h>
28 #include <linux/cleancache.h>
29 #include <asm/uaccess.h>
30 #include "internal.h"
31 
32 struct bdev_inode {
33 	struct block_device bdev;
34 	struct inode vfs_inode;
35 };
36 
37 static const struct address_space_operations def_blk_aops;
38 
BDEV_I(struct inode * inode)39 static inline struct bdev_inode *BDEV_I(struct inode *inode)
40 {
41 	return container_of(inode, struct bdev_inode, vfs_inode);
42 }
43 
I_BDEV(struct inode * inode)44 inline struct block_device *I_BDEV(struct inode *inode)
45 {
46 	return &BDEV_I(inode)->bdev;
47 }
48 EXPORT_SYMBOL(I_BDEV);
49 
50 /*
51  * Move the inode from its current bdi to a new bdi. If the inode is dirty we
52  * need to move it onto the dirty list of @dst so that the inode is always on
53  * the right list.
54  */
bdev_inode_switch_bdi(struct inode * inode,struct backing_dev_info * dst)55 static void bdev_inode_switch_bdi(struct inode *inode,
56 			struct backing_dev_info *dst)
57 {
58 	struct backing_dev_info *old = inode->i_data.backing_dev_info;
59 
60 	if (unlikely(dst == old))		/* deadlock avoidance */
61 		return;
62 	bdi_lock_two(&old->wb, &dst->wb);
63 	spin_lock(&inode->i_lock);
64 	inode->i_data.backing_dev_info = dst;
65 	if (inode->i_state & I_DIRTY)
66 		list_move(&inode->i_wb_list, &dst->wb.b_dirty);
67 	spin_unlock(&inode->i_lock);
68 	spin_unlock(&old->wb.list_lock);
69 	spin_unlock(&dst->wb.list_lock);
70 }
71 
max_block(struct block_device * bdev)72 static sector_t max_block(struct block_device *bdev)
73 {
74 	sector_t retval = ~((sector_t)0);
75 	loff_t sz = i_size_read(bdev->bd_inode);
76 
77 	if (sz) {
78 		unsigned int size = block_size(bdev);
79 		unsigned int sizebits = blksize_bits(size);
80 		retval = (sz >> sizebits);
81 	}
82 	return retval;
83 }
84 
85 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)86 void kill_bdev(struct block_device *bdev)
87 {
88 	struct address_space *mapping = bdev->bd_inode->i_mapping;
89 
90 	if (mapping->nrpages == 0)
91 		return;
92 
93 	invalidate_bh_lrus();
94 	truncate_inode_pages(mapping, 0);
95 }
96 EXPORT_SYMBOL(kill_bdev);
97 
98 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)99 void invalidate_bdev(struct block_device *bdev)
100 {
101 	struct address_space *mapping = bdev->bd_inode->i_mapping;
102 
103 	if (mapping->nrpages == 0)
104 		return;
105 
106 	invalidate_bh_lrus();
107 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
108 	invalidate_mapping_pages(mapping, 0, -1);
109 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
110 	 * But, for the strange corners, lets be cautious
111 	 */
112 	cleancache_flush_inode(mapping);
113 }
114 EXPORT_SYMBOL(invalidate_bdev);
115 
set_blocksize(struct block_device * bdev,int size)116 int set_blocksize(struct block_device *bdev, int size)
117 {
118 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
119 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
120 		return -EINVAL;
121 
122 	/* Size cannot be smaller than the size supported by the device */
123 	if (size < bdev_logical_block_size(bdev))
124 		return -EINVAL;
125 
126 	/* Don't change the size if it is same as current */
127 	if (bdev->bd_block_size != size) {
128 		sync_blockdev(bdev);
129 		bdev->bd_block_size = size;
130 		bdev->bd_inode->i_blkbits = blksize_bits(size);
131 		kill_bdev(bdev);
132 	}
133 	return 0;
134 }
135 
136 EXPORT_SYMBOL(set_blocksize);
137 
sb_set_blocksize(struct super_block * sb,int size)138 int sb_set_blocksize(struct super_block *sb, int size)
139 {
140 	if (set_blocksize(sb->s_bdev, size))
141 		return 0;
142 	/* If we get here, we know size is power of two
143 	 * and it's value is between 512 and PAGE_SIZE */
144 	sb->s_blocksize = size;
145 	sb->s_blocksize_bits = blksize_bits(size);
146 	return sb->s_blocksize;
147 }
148 
149 EXPORT_SYMBOL(sb_set_blocksize);
150 
sb_min_blocksize(struct super_block * sb,int size)151 int sb_min_blocksize(struct super_block *sb, int size)
152 {
153 	int minsize = bdev_logical_block_size(sb->s_bdev);
154 	if (size < minsize)
155 		size = minsize;
156 	return sb_set_blocksize(sb, size);
157 }
158 
159 EXPORT_SYMBOL(sb_min_blocksize);
160 
161 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)162 blkdev_get_block(struct inode *inode, sector_t iblock,
163 		struct buffer_head *bh, int create)
164 {
165 	if (iblock >= max_block(I_BDEV(inode))) {
166 		if (create)
167 			return -EIO;
168 
169 		/*
170 		 * for reads, we're just trying to fill a partial page.
171 		 * return a hole, they will have to call get_block again
172 		 * before they can fill it, and they will get -EIO at that
173 		 * time
174 		 */
175 		return 0;
176 	}
177 	bh->b_bdev = I_BDEV(inode);
178 	bh->b_blocknr = iblock;
179 	set_buffer_mapped(bh);
180 	return 0;
181 }
182 
183 static int
blkdev_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)184 blkdev_get_blocks(struct inode *inode, sector_t iblock,
185 		struct buffer_head *bh, int create)
186 {
187 	sector_t end_block = max_block(I_BDEV(inode));
188 	unsigned long max_blocks = bh->b_size >> inode->i_blkbits;
189 
190 	if ((iblock + max_blocks) > end_block) {
191 		max_blocks = end_block - iblock;
192 		if ((long)max_blocks <= 0) {
193 			if (create)
194 				return -EIO;	/* write fully beyond EOF */
195 			/*
196 			 * It is a read which is fully beyond EOF.  We return
197 			 * a !buffer_mapped buffer
198 			 */
199 			max_blocks = 0;
200 		}
201 	}
202 
203 	bh->b_bdev = I_BDEV(inode);
204 	bh->b_blocknr = iblock;
205 	bh->b_size = max_blocks << inode->i_blkbits;
206 	if (max_blocks)
207 		set_buffer_mapped(bh);
208 	return 0;
209 }
210 
211 static ssize_t
blkdev_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)212 blkdev_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
213 			loff_t offset, unsigned long nr_segs)
214 {
215 	struct file *file = iocb->ki_filp;
216 	struct inode *inode = file->f_mapping->host;
217 
218 	return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iov, offset,
219 				    nr_segs, blkdev_get_blocks, NULL, NULL, 0);
220 }
221 
__sync_blockdev(struct block_device * bdev,int wait)222 int __sync_blockdev(struct block_device *bdev, int wait)
223 {
224 	if (!bdev)
225 		return 0;
226 	if (!wait)
227 		return filemap_flush(bdev->bd_inode->i_mapping);
228 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
229 }
230 
231 /*
232  * Write out and wait upon all the dirty data associated with a block
233  * device via its mapping.  Does not take the superblock lock.
234  */
sync_blockdev(struct block_device * bdev)235 int sync_blockdev(struct block_device *bdev)
236 {
237 	return __sync_blockdev(bdev, 1);
238 }
239 EXPORT_SYMBOL(sync_blockdev);
240 
241 /*
242  * Write out and wait upon all dirty data associated with this
243  * device.   Filesystem data as well as the underlying block
244  * device.  Takes the superblock lock.
245  */
fsync_bdev(struct block_device * bdev)246 int fsync_bdev(struct block_device *bdev)
247 {
248 	struct super_block *sb = get_super(bdev);
249 	if (sb) {
250 		int res = sync_filesystem(sb);
251 		drop_super(sb);
252 		return res;
253 	}
254 	return sync_blockdev(bdev);
255 }
256 EXPORT_SYMBOL(fsync_bdev);
257 
258 /**
259  * freeze_bdev  --  lock a filesystem and force it into a consistent state
260  * @bdev:	blockdevice to lock
261  *
262  * If a superblock is found on this device, we take the s_umount semaphore
263  * on it to make sure nobody unmounts until the snapshot creation is done.
264  * The reference counter (bd_fsfreeze_count) guarantees that only the last
265  * unfreeze process can unfreeze the frozen filesystem actually when multiple
266  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
267  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
268  * actually.
269  */
freeze_bdev(struct block_device * bdev)270 struct super_block *freeze_bdev(struct block_device *bdev)
271 {
272 	struct super_block *sb;
273 	int error = 0;
274 
275 	mutex_lock(&bdev->bd_fsfreeze_mutex);
276 	if (++bdev->bd_fsfreeze_count > 1) {
277 		/*
278 		 * We don't even need to grab a reference - the first call
279 		 * to freeze_bdev grab an active reference and only the last
280 		 * thaw_bdev drops it.
281 		 */
282 		sb = get_super(bdev);
283 		drop_super(sb);
284 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
285 		return sb;
286 	}
287 
288 	sb = get_active_super(bdev);
289 	if (!sb)
290 		goto out;
291 	error = freeze_super(sb);
292 	if (error) {
293 		deactivate_super(sb);
294 		bdev->bd_fsfreeze_count--;
295 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
296 		return ERR_PTR(error);
297 	}
298 	deactivate_super(sb);
299  out:
300 	sync_blockdev(bdev);
301 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
302 	return sb;	/* thaw_bdev releases s->s_umount */
303 }
304 EXPORT_SYMBOL(freeze_bdev);
305 
306 /**
307  * thaw_bdev  -- unlock filesystem
308  * @bdev:	blockdevice to unlock
309  * @sb:		associated superblock
310  *
311  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
312  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)313 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
314 {
315 	int error = -EINVAL;
316 
317 	mutex_lock(&bdev->bd_fsfreeze_mutex);
318 	if (!bdev->bd_fsfreeze_count)
319 		goto out;
320 
321 	error = 0;
322 	if (--bdev->bd_fsfreeze_count > 0)
323 		goto out;
324 
325 	if (!sb)
326 		goto out;
327 
328 	error = thaw_super(sb);
329 	if (error) {
330 		bdev->bd_fsfreeze_count++;
331 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
332 		return error;
333 	}
334 out:
335 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
336 	return 0;
337 }
338 EXPORT_SYMBOL(thaw_bdev);
339 
blkdev_writepage(struct page * page,struct writeback_control * wbc)340 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
341 {
342 	return block_write_full_page(page, blkdev_get_block, wbc);
343 }
344 
blkdev_readpage(struct file * file,struct page * page)345 static int blkdev_readpage(struct file * file, struct page * page)
346 {
347 	return block_read_full_page(page, blkdev_get_block);
348 }
349 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)350 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
351 			loff_t pos, unsigned len, unsigned flags,
352 			struct page **pagep, void **fsdata)
353 {
354 	return block_write_begin(mapping, pos, len, flags, pagep,
355 				 blkdev_get_block);
356 }
357 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)358 static int blkdev_write_end(struct file *file, struct address_space *mapping,
359 			loff_t pos, unsigned len, unsigned copied,
360 			struct page *page, void *fsdata)
361 {
362 	int ret;
363 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
364 
365 	unlock_page(page);
366 	page_cache_release(page);
367 
368 	return ret;
369 }
370 
371 /*
372  * private llseek:
373  * for a block special file file->f_path.dentry->d_inode->i_size is zero
374  * so we compute the size by hand (just as in block_read/write above)
375  */
block_llseek(struct file * file,loff_t offset,int origin)376 static loff_t block_llseek(struct file *file, loff_t offset, int origin)
377 {
378 	struct inode *bd_inode = file->f_mapping->host;
379 	loff_t size;
380 	loff_t retval;
381 
382 	mutex_lock(&bd_inode->i_mutex);
383 	size = i_size_read(bd_inode);
384 
385 	retval = -EINVAL;
386 	switch (origin) {
387 		case SEEK_END:
388 			offset += size;
389 			break;
390 		case SEEK_CUR:
391 			offset += file->f_pos;
392 		case SEEK_SET:
393 			break;
394 		default:
395 			goto out;
396 	}
397 	if (offset >= 0 && offset <= size) {
398 		if (offset != file->f_pos) {
399 			file->f_pos = offset;
400 		}
401 		retval = offset;
402 	}
403 out:
404 	mutex_unlock(&bd_inode->i_mutex);
405 	return retval;
406 }
407 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)408 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
409 {
410 	struct inode *bd_inode = filp->f_mapping->host;
411 	struct block_device *bdev = I_BDEV(bd_inode);
412 	int error;
413 
414 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
415 	if (error)
416 		return error;
417 
418 	/*
419 	 * There is no need to serialise calls to blkdev_issue_flush with
420 	 * i_mutex and doing so causes performance issues with concurrent
421 	 * O_SYNC writers to a block device.
422 	 */
423 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
424 	if (error == -EOPNOTSUPP)
425 		error = 0;
426 
427 	return error;
428 }
429 EXPORT_SYMBOL(blkdev_fsync);
430 
431 /*
432  * pseudo-fs
433  */
434 
435 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
436 static struct kmem_cache * bdev_cachep __read_mostly;
437 
bdev_alloc_inode(struct super_block * sb)438 static struct inode *bdev_alloc_inode(struct super_block *sb)
439 {
440 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
441 	if (!ei)
442 		return NULL;
443 	return &ei->vfs_inode;
444 }
445 
bdev_i_callback(struct rcu_head * head)446 static void bdev_i_callback(struct rcu_head *head)
447 {
448 	struct inode *inode = container_of(head, struct inode, i_rcu);
449 	struct bdev_inode *bdi = BDEV_I(inode);
450 
451 	kmem_cache_free(bdev_cachep, bdi);
452 }
453 
bdev_destroy_inode(struct inode * inode)454 static void bdev_destroy_inode(struct inode *inode)
455 {
456 	call_rcu(&inode->i_rcu, bdev_i_callback);
457 }
458 
init_once(void * foo)459 static void init_once(void *foo)
460 {
461 	struct bdev_inode *ei = (struct bdev_inode *) foo;
462 	struct block_device *bdev = &ei->bdev;
463 
464 	memset(bdev, 0, sizeof(*bdev));
465 	mutex_init(&bdev->bd_mutex);
466 	INIT_LIST_HEAD(&bdev->bd_inodes);
467 	INIT_LIST_HEAD(&bdev->bd_list);
468 #ifdef CONFIG_SYSFS
469 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
470 #endif
471 	inode_init_once(&ei->vfs_inode);
472 	/* Initialize mutex for freeze. */
473 	mutex_init(&bdev->bd_fsfreeze_mutex);
474 }
475 
__bd_forget(struct inode * inode)476 static inline void __bd_forget(struct inode *inode)
477 {
478 	list_del_init(&inode->i_devices);
479 	inode->i_bdev = NULL;
480 	inode->i_mapping = &inode->i_data;
481 }
482 
bdev_evict_inode(struct inode * inode)483 static void bdev_evict_inode(struct inode *inode)
484 {
485 	struct block_device *bdev = &BDEV_I(inode)->bdev;
486 	struct list_head *p;
487 	truncate_inode_pages(&inode->i_data, 0);
488 	invalidate_inode_buffers(inode); /* is it needed here? */
489 	end_writeback(inode);
490 	spin_lock(&bdev_lock);
491 	while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
492 		__bd_forget(list_entry(p, struct inode, i_devices));
493 	}
494 	list_del_init(&bdev->bd_list);
495 	spin_unlock(&bdev_lock);
496 }
497 
498 static const struct super_operations bdev_sops = {
499 	.statfs = simple_statfs,
500 	.alloc_inode = bdev_alloc_inode,
501 	.destroy_inode = bdev_destroy_inode,
502 	.drop_inode = generic_delete_inode,
503 	.evict_inode = bdev_evict_inode,
504 };
505 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)506 static struct dentry *bd_mount(struct file_system_type *fs_type,
507 	int flags, const char *dev_name, void *data)
508 {
509 	return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, 0x62646576);
510 }
511 
512 static struct file_system_type bd_type = {
513 	.name		= "bdev",
514 	.mount		= bd_mount,
515 	.kill_sb	= kill_anon_super,
516 };
517 
518 static struct super_block *blockdev_superblock __read_mostly;
519 
bdev_cache_init(void)520 void __init bdev_cache_init(void)
521 {
522 	int err;
523 	static struct vfsmount *bd_mnt;
524 
525 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
526 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
527 				SLAB_MEM_SPREAD|SLAB_PANIC),
528 			init_once);
529 	err = register_filesystem(&bd_type);
530 	if (err)
531 		panic("Cannot register bdev pseudo-fs");
532 	bd_mnt = kern_mount(&bd_type);
533 	if (IS_ERR(bd_mnt))
534 		panic("Cannot create bdev pseudo-fs");
535 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
536 }
537 
538 /*
539  * Most likely _very_ bad one - but then it's hardly critical for small
540  * /dev and can be fixed when somebody will need really large one.
541  * Keep in mind that it will be fed through icache hash function too.
542  */
hash(dev_t dev)543 static inline unsigned long hash(dev_t dev)
544 {
545 	return MAJOR(dev)+MINOR(dev);
546 }
547 
bdev_test(struct inode * inode,void * data)548 static int bdev_test(struct inode *inode, void *data)
549 {
550 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
551 }
552 
bdev_set(struct inode * inode,void * data)553 static int bdev_set(struct inode *inode, void *data)
554 {
555 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
556 	return 0;
557 }
558 
559 static LIST_HEAD(all_bdevs);
560 
bdget(dev_t dev)561 struct block_device *bdget(dev_t dev)
562 {
563 	struct block_device *bdev;
564 	struct inode *inode;
565 
566 	inode = iget5_locked(blockdev_superblock, hash(dev),
567 			bdev_test, bdev_set, &dev);
568 
569 	if (!inode)
570 		return NULL;
571 
572 	bdev = &BDEV_I(inode)->bdev;
573 
574 	if (inode->i_state & I_NEW) {
575 		bdev->bd_contains = NULL;
576 		bdev->bd_super = NULL;
577 		bdev->bd_inode = inode;
578 		bdev->bd_block_size = (1 << inode->i_blkbits);
579 		bdev->bd_part_count = 0;
580 		bdev->bd_invalidated = 0;
581 		inode->i_mode = S_IFBLK;
582 		inode->i_rdev = dev;
583 		inode->i_bdev = bdev;
584 		inode->i_data.a_ops = &def_blk_aops;
585 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
586 		inode->i_data.backing_dev_info = &default_backing_dev_info;
587 		spin_lock(&bdev_lock);
588 		list_add(&bdev->bd_list, &all_bdevs);
589 		spin_unlock(&bdev_lock);
590 		unlock_new_inode(inode);
591 	}
592 	return bdev;
593 }
594 
595 EXPORT_SYMBOL(bdget);
596 
597 /**
598  * bdgrab -- Grab a reference to an already referenced block device
599  * @bdev:	Block device to grab a reference to.
600  */
bdgrab(struct block_device * bdev)601 struct block_device *bdgrab(struct block_device *bdev)
602 {
603 	ihold(bdev->bd_inode);
604 	return bdev;
605 }
606 
nr_blockdev_pages(void)607 long nr_blockdev_pages(void)
608 {
609 	struct block_device *bdev;
610 	long ret = 0;
611 	spin_lock(&bdev_lock);
612 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
613 		ret += bdev->bd_inode->i_mapping->nrpages;
614 	}
615 	spin_unlock(&bdev_lock);
616 	return ret;
617 }
618 
bdput(struct block_device * bdev)619 void bdput(struct block_device *bdev)
620 {
621 	iput(bdev->bd_inode);
622 }
623 
624 EXPORT_SYMBOL(bdput);
625 
bd_acquire(struct inode * inode)626 static struct block_device *bd_acquire(struct inode *inode)
627 {
628 	struct block_device *bdev;
629 
630 	spin_lock(&bdev_lock);
631 	bdev = inode->i_bdev;
632 	if (bdev) {
633 		ihold(bdev->bd_inode);
634 		spin_unlock(&bdev_lock);
635 		return bdev;
636 	}
637 	spin_unlock(&bdev_lock);
638 
639 	bdev = bdget(inode->i_rdev);
640 	if (bdev) {
641 		spin_lock(&bdev_lock);
642 		if (!inode->i_bdev) {
643 			/*
644 			 * We take an additional reference to bd_inode,
645 			 * and it's released in clear_inode() of inode.
646 			 * So, we can access it via ->i_mapping always
647 			 * without igrab().
648 			 */
649 			ihold(bdev->bd_inode);
650 			inode->i_bdev = bdev;
651 			inode->i_mapping = bdev->bd_inode->i_mapping;
652 			list_add(&inode->i_devices, &bdev->bd_inodes);
653 		}
654 		spin_unlock(&bdev_lock);
655 	}
656 	return bdev;
657 }
658 
sb_is_blkdev_sb(struct super_block * sb)659 static inline int sb_is_blkdev_sb(struct super_block *sb)
660 {
661 	return sb == blockdev_superblock;
662 }
663 
664 /* Call when you free inode */
665 
bd_forget(struct inode * inode)666 void bd_forget(struct inode *inode)
667 {
668 	struct block_device *bdev = NULL;
669 
670 	spin_lock(&bdev_lock);
671 	if (inode->i_bdev) {
672 		if (!sb_is_blkdev_sb(inode->i_sb))
673 			bdev = inode->i_bdev;
674 		__bd_forget(inode);
675 	}
676 	spin_unlock(&bdev_lock);
677 
678 	if (bdev)
679 		iput(bdev->bd_inode);
680 }
681 
682 /**
683  * bd_may_claim - test whether a block device can be claimed
684  * @bdev: block device of interest
685  * @whole: whole block device containing @bdev, may equal @bdev
686  * @holder: holder trying to claim @bdev
687  *
688  * Test whether @bdev can be claimed by @holder.
689  *
690  * CONTEXT:
691  * spin_lock(&bdev_lock).
692  *
693  * RETURNS:
694  * %true if @bdev can be claimed, %false otherwise.
695  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)696 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
697 			 void *holder)
698 {
699 	if (bdev->bd_holder == holder)
700 		return true;	 /* already a holder */
701 	else if (bdev->bd_holder != NULL)
702 		return false; 	 /* held by someone else */
703 	else if (bdev->bd_contains == bdev)
704 		return true;  	 /* is a whole device which isn't held */
705 
706 	else if (whole->bd_holder == bd_may_claim)
707 		return true; 	 /* is a partition of a device that is being partitioned */
708 	else if (whole->bd_holder != NULL)
709 		return false;	 /* is a partition of a held device */
710 	else
711 		return true;	 /* is a partition of an un-held device */
712 }
713 
714 /**
715  * bd_prepare_to_claim - prepare to claim a block device
716  * @bdev: block device of interest
717  * @whole: the whole device containing @bdev, may equal @bdev
718  * @holder: holder trying to claim @bdev
719  *
720  * Prepare to claim @bdev.  This function fails if @bdev is already
721  * claimed by another holder and waits if another claiming is in
722  * progress.  This function doesn't actually claim.  On successful
723  * return, the caller has ownership of bd_claiming and bd_holder[s].
724  *
725  * CONTEXT:
726  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
727  * it multiple times.
728  *
729  * RETURNS:
730  * 0 if @bdev can be claimed, -EBUSY otherwise.
731  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)732 static int bd_prepare_to_claim(struct block_device *bdev,
733 			       struct block_device *whole, void *holder)
734 {
735 retry:
736 	/* if someone else claimed, fail */
737 	if (!bd_may_claim(bdev, whole, holder))
738 		return -EBUSY;
739 
740 	/* if claiming is already in progress, wait for it to finish */
741 	if (whole->bd_claiming) {
742 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
743 		DEFINE_WAIT(wait);
744 
745 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
746 		spin_unlock(&bdev_lock);
747 		schedule();
748 		finish_wait(wq, &wait);
749 		spin_lock(&bdev_lock);
750 		goto retry;
751 	}
752 
753 	/* yay, all mine */
754 	return 0;
755 }
756 
757 /**
758  * bd_start_claiming - start claiming a block device
759  * @bdev: block device of interest
760  * @holder: holder trying to claim @bdev
761  *
762  * @bdev is about to be opened exclusively.  Check @bdev can be opened
763  * exclusively and mark that an exclusive open is in progress.  Each
764  * successful call to this function must be matched with a call to
765  * either bd_finish_claiming() or bd_abort_claiming() (which do not
766  * fail).
767  *
768  * This function is used to gain exclusive access to the block device
769  * without actually causing other exclusive open attempts to fail. It
770  * should be used when the open sequence itself requires exclusive
771  * access but may subsequently fail.
772  *
773  * CONTEXT:
774  * Might sleep.
775  *
776  * RETURNS:
777  * Pointer to the block device containing @bdev on success, ERR_PTR()
778  * value on failure.
779  */
bd_start_claiming(struct block_device * bdev,void * holder)780 static struct block_device *bd_start_claiming(struct block_device *bdev,
781 					      void *holder)
782 {
783 	struct gendisk *disk;
784 	struct block_device *whole;
785 	int partno, err;
786 
787 	might_sleep();
788 
789 	/*
790 	 * @bdev might not have been initialized properly yet, look up
791 	 * and grab the outer block device the hard way.
792 	 */
793 	disk = get_gendisk(bdev->bd_dev, &partno);
794 	if (!disk)
795 		return ERR_PTR(-ENXIO);
796 
797 	/*
798 	 * Normally, @bdev should equal what's returned from bdget_disk()
799 	 * if partno is 0; however, some drivers (floppy) use multiple
800 	 * bdev's for the same physical device and @bdev may be one of the
801 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
802 	 * tracking is broken for those devices but it has always been that
803 	 * way.
804 	 */
805 	if (partno)
806 		whole = bdget_disk(disk, 0);
807 	else
808 		whole = bdgrab(bdev);
809 
810 	module_put(disk->fops->owner);
811 	put_disk(disk);
812 	if (!whole)
813 		return ERR_PTR(-ENOMEM);
814 
815 	/* prepare to claim, if successful, mark claiming in progress */
816 	spin_lock(&bdev_lock);
817 
818 	err = bd_prepare_to_claim(bdev, whole, holder);
819 	if (err == 0) {
820 		whole->bd_claiming = holder;
821 		spin_unlock(&bdev_lock);
822 		return whole;
823 	} else {
824 		spin_unlock(&bdev_lock);
825 		bdput(whole);
826 		return ERR_PTR(err);
827 	}
828 }
829 
830 #ifdef CONFIG_SYSFS
831 struct bd_holder_disk {
832 	struct list_head	list;
833 	struct gendisk		*disk;
834 	int			refcnt;
835 };
836 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)837 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
838 						  struct gendisk *disk)
839 {
840 	struct bd_holder_disk *holder;
841 
842 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
843 		if (holder->disk == disk)
844 			return holder;
845 	return NULL;
846 }
847 
add_symlink(struct kobject * from,struct kobject * to)848 static int add_symlink(struct kobject *from, struct kobject *to)
849 {
850 	return sysfs_create_link(from, to, kobject_name(to));
851 }
852 
del_symlink(struct kobject * from,struct kobject * to)853 static void del_symlink(struct kobject *from, struct kobject *to)
854 {
855 	sysfs_remove_link(from, kobject_name(to));
856 }
857 
858 /**
859  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
860  * @bdev: the claimed slave bdev
861  * @disk: the holding disk
862  *
863  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
864  *
865  * This functions creates the following sysfs symlinks.
866  *
867  * - from "slaves" directory of the holder @disk to the claimed @bdev
868  * - from "holders" directory of the @bdev to the holder @disk
869  *
870  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
871  * passed to bd_link_disk_holder(), then:
872  *
873  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
874  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
875  *
876  * The caller must have claimed @bdev before calling this function and
877  * ensure that both @bdev and @disk are valid during the creation and
878  * lifetime of these symlinks.
879  *
880  * CONTEXT:
881  * Might sleep.
882  *
883  * RETURNS:
884  * 0 on success, -errno on failure.
885  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)886 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
887 {
888 	struct bd_holder_disk *holder;
889 	int ret = 0;
890 
891 	mutex_lock(&bdev->bd_mutex);
892 
893 	WARN_ON_ONCE(!bdev->bd_holder);
894 
895 	/* FIXME: remove the following once add_disk() handles errors */
896 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
897 		goto out_unlock;
898 
899 	holder = bd_find_holder_disk(bdev, disk);
900 	if (holder) {
901 		holder->refcnt++;
902 		goto out_unlock;
903 	}
904 
905 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
906 	if (!holder) {
907 		ret = -ENOMEM;
908 		goto out_unlock;
909 	}
910 
911 	INIT_LIST_HEAD(&holder->list);
912 	holder->disk = disk;
913 	holder->refcnt = 1;
914 
915 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
916 	if (ret)
917 		goto out_free;
918 
919 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
920 	if (ret)
921 		goto out_del;
922 	/*
923 	 * bdev could be deleted beneath us which would implicitly destroy
924 	 * the holder directory.  Hold on to it.
925 	 */
926 	kobject_get(bdev->bd_part->holder_dir);
927 
928 	list_add(&holder->list, &bdev->bd_holder_disks);
929 	goto out_unlock;
930 
931 out_del:
932 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
933 out_free:
934 	kfree(holder);
935 out_unlock:
936 	mutex_unlock(&bdev->bd_mutex);
937 	return ret;
938 }
939 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
940 
941 /**
942  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
943  * @bdev: the calimed slave bdev
944  * @disk: the holding disk
945  *
946  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
947  *
948  * CONTEXT:
949  * Might sleep.
950  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)951 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
952 {
953 	struct bd_holder_disk *holder;
954 
955 	mutex_lock(&bdev->bd_mutex);
956 
957 	holder = bd_find_holder_disk(bdev, disk);
958 
959 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
960 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
961 		del_symlink(bdev->bd_part->holder_dir,
962 			    &disk_to_dev(disk)->kobj);
963 		kobject_put(bdev->bd_part->holder_dir);
964 		list_del_init(&holder->list);
965 		kfree(holder);
966 	}
967 
968 	mutex_unlock(&bdev->bd_mutex);
969 }
970 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
971 #endif
972 
973 /**
974  * flush_disk - invalidates all buffer-cache entries on a disk
975  *
976  * @bdev:      struct block device to be flushed
977  * @kill_dirty: flag to guide handling of dirty inodes
978  *
979  * Invalidates all buffer-cache entries on a disk. It should be called
980  * when a disk has been changed -- either by a media change or online
981  * resize.
982  */
flush_disk(struct block_device * bdev,bool kill_dirty)983 static void flush_disk(struct block_device *bdev, bool kill_dirty)
984 {
985 	if (__invalidate_device(bdev, kill_dirty)) {
986 		char name[BDEVNAME_SIZE] = "";
987 
988 		if (bdev->bd_disk)
989 			disk_name(bdev->bd_disk, 0, name);
990 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
991 		       "resized disk %s\n", name);
992 	}
993 
994 	if (!bdev->bd_disk)
995 		return;
996 	if (disk_part_scan_enabled(bdev->bd_disk))
997 		bdev->bd_invalidated = 1;
998 }
999 
1000 /**
1001  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1002  * @disk: struct gendisk to check
1003  * @bdev: struct bdev to adjust.
1004  *
1005  * This routine checks to see if the bdev size does not match the disk size
1006  * and adjusts it if it differs.
1007  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1008 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1009 {
1010 	loff_t disk_size, bdev_size;
1011 
1012 	disk_size = (loff_t)get_capacity(disk) << 9;
1013 	bdev_size = i_size_read(bdev->bd_inode);
1014 	if (disk_size != bdev_size) {
1015 		char name[BDEVNAME_SIZE];
1016 
1017 		disk_name(disk, 0, name);
1018 		printk(KERN_INFO
1019 		       "%s: detected capacity change from %lld to %lld\n",
1020 		       name, bdev_size, disk_size);
1021 		i_size_write(bdev->bd_inode, disk_size);
1022 		flush_disk(bdev, false);
1023 	}
1024 }
1025 EXPORT_SYMBOL(check_disk_size_change);
1026 
1027 /**
1028  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1029  * @disk: struct gendisk to be revalidated
1030  *
1031  * This routine is a wrapper for lower-level driver's revalidate_disk
1032  * call-backs.  It is used to do common pre and post operations needed
1033  * for all revalidate_disk operations.
1034  */
revalidate_disk(struct gendisk * disk)1035 int revalidate_disk(struct gendisk *disk)
1036 {
1037 	struct block_device *bdev;
1038 	int ret = 0;
1039 
1040 	if (disk->fops->revalidate_disk)
1041 		ret = disk->fops->revalidate_disk(disk);
1042 
1043 	bdev = bdget_disk(disk, 0);
1044 	if (!bdev)
1045 		return ret;
1046 
1047 	mutex_lock(&bdev->bd_mutex);
1048 	check_disk_size_change(disk, bdev);
1049 	mutex_unlock(&bdev->bd_mutex);
1050 	bdput(bdev);
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL(revalidate_disk);
1054 
1055 /*
1056  * This routine checks whether a removable media has been changed,
1057  * and invalidates all buffer-cache-entries in that case. This
1058  * is a relatively slow routine, so we have to try to minimize using
1059  * it. Thus it is called only upon a 'mount' or 'open'. This
1060  * is the best way of combining speed and utility, I think.
1061  * People changing diskettes in the middle of an operation deserve
1062  * to lose :-)
1063  */
check_disk_change(struct block_device * bdev)1064 int check_disk_change(struct block_device *bdev)
1065 {
1066 	struct gendisk *disk = bdev->bd_disk;
1067 	const struct block_device_operations *bdops = disk->fops;
1068 	unsigned int events;
1069 
1070 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1071 				   DISK_EVENT_EJECT_REQUEST);
1072 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1073 		return 0;
1074 
1075 	flush_disk(bdev, true);
1076 	if (bdops->revalidate_disk)
1077 		bdops->revalidate_disk(bdev->bd_disk);
1078 	return 1;
1079 }
1080 
1081 EXPORT_SYMBOL(check_disk_change);
1082 
bd_set_size(struct block_device * bdev,loff_t size)1083 void bd_set_size(struct block_device *bdev, loff_t size)
1084 {
1085 	unsigned bsize = bdev_logical_block_size(bdev);
1086 
1087 	bdev->bd_inode->i_size = size;
1088 	while (bsize < PAGE_CACHE_SIZE) {
1089 		if (size & bsize)
1090 			break;
1091 		bsize <<= 1;
1092 	}
1093 	bdev->bd_block_size = bsize;
1094 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1095 }
1096 EXPORT_SYMBOL(bd_set_size);
1097 
1098 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1099 
1100 /*
1101  * bd_mutex locking:
1102  *
1103  *  mutex_lock(part->bd_mutex)
1104  *    mutex_lock_nested(whole->bd_mutex, 1)
1105  */
1106 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1107 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1108 {
1109 	struct gendisk *disk;
1110 	struct module *owner;
1111 	int ret;
1112 	int partno;
1113 	int perm = 0;
1114 
1115 	if (mode & FMODE_READ)
1116 		perm |= MAY_READ;
1117 	if (mode & FMODE_WRITE)
1118 		perm |= MAY_WRITE;
1119 	/*
1120 	 * hooks: /n/, see "layering violations".
1121 	 */
1122 	if (!for_part) {
1123 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1124 		if (ret != 0) {
1125 			bdput(bdev);
1126 			return ret;
1127 		}
1128 	}
1129 
1130  restart:
1131 
1132 	ret = -ENXIO;
1133 	disk = get_gendisk(bdev->bd_dev, &partno);
1134 	if (!disk)
1135 		goto out;
1136 	owner = disk->fops->owner;
1137 
1138 	disk_block_events(disk);
1139 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1140 	if (!bdev->bd_openers) {
1141 		bdev->bd_disk = disk;
1142 		bdev->bd_queue = disk->queue;
1143 		bdev->bd_contains = bdev;
1144 		if (!partno) {
1145 			struct backing_dev_info *bdi;
1146 
1147 			ret = -ENXIO;
1148 			bdev->bd_part = disk_get_part(disk, partno);
1149 			if (!bdev->bd_part)
1150 				goto out_clear;
1151 
1152 			ret = 0;
1153 			if (disk->fops->open) {
1154 				ret = disk->fops->open(bdev, mode);
1155 				if (ret == -ERESTARTSYS) {
1156 					/* Lost a race with 'disk' being
1157 					 * deleted, try again.
1158 					 * See md.c
1159 					 */
1160 					disk_put_part(bdev->bd_part);
1161 					bdev->bd_part = NULL;
1162 					bdev->bd_disk = NULL;
1163 					bdev->bd_queue = NULL;
1164 					mutex_unlock(&bdev->bd_mutex);
1165 					disk_unblock_events(disk);
1166 					put_disk(disk);
1167 					module_put(owner);
1168 					goto restart;
1169 				}
1170 			}
1171 
1172 			if (!ret && !bdev->bd_openers) {
1173 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1174 				bdi = blk_get_backing_dev_info(bdev);
1175 				if (bdi == NULL)
1176 					bdi = &default_backing_dev_info;
1177 				bdev_inode_switch_bdi(bdev->bd_inode, bdi);
1178 			}
1179 
1180 			/*
1181 			 * If the device is invalidated, rescan partition
1182 			 * if open succeeded or failed with -ENOMEDIUM.
1183 			 * The latter is necessary to prevent ghost
1184 			 * partitions on a removed medium.
1185 			 */
1186 			if (bdev->bd_invalidated) {
1187 				if (!ret)
1188 					rescan_partitions(disk, bdev);
1189 				else if (ret == -ENOMEDIUM)
1190 					invalidate_partitions(disk, bdev);
1191 			}
1192 			if (ret)
1193 				goto out_clear;
1194 		} else {
1195 			struct block_device *whole;
1196 			whole = bdget_disk(disk, 0);
1197 			ret = -ENOMEM;
1198 			if (!whole)
1199 				goto out_clear;
1200 			BUG_ON(for_part);
1201 			ret = __blkdev_get(whole, mode, 1);
1202 			if (ret)
1203 				goto out_clear;
1204 			bdev->bd_contains = whole;
1205 			bdev_inode_switch_bdi(bdev->bd_inode,
1206 				whole->bd_inode->i_data.backing_dev_info);
1207 			bdev->bd_part = disk_get_part(disk, partno);
1208 			if (!(disk->flags & GENHD_FL_UP) ||
1209 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1210 				ret = -ENXIO;
1211 				goto out_clear;
1212 			}
1213 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1214 		}
1215 	} else {
1216 		if (bdev->bd_contains == bdev) {
1217 			ret = 0;
1218 			if (bdev->bd_disk->fops->open)
1219 				ret = bdev->bd_disk->fops->open(bdev, mode);
1220 			/* the same as first opener case, read comment there */
1221 			if (bdev->bd_invalidated) {
1222 				if (!ret)
1223 					rescan_partitions(bdev->bd_disk, bdev);
1224 				else if (ret == -ENOMEDIUM)
1225 					invalidate_partitions(bdev->bd_disk, bdev);
1226 			}
1227 			if (ret)
1228 				goto out_unlock_bdev;
1229 		}
1230 		/* only one opener holds refs to the module and disk */
1231 		put_disk(disk);
1232 		module_put(owner);
1233 	}
1234 	bdev->bd_openers++;
1235 	if (for_part)
1236 		bdev->bd_part_count++;
1237 	mutex_unlock(&bdev->bd_mutex);
1238 	disk_unblock_events(disk);
1239 	return 0;
1240 
1241  out_clear:
1242 	disk_put_part(bdev->bd_part);
1243 	bdev->bd_disk = NULL;
1244 	bdev->bd_part = NULL;
1245 	bdev->bd_queue = NULL;
1246 	bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info);
1247 	if (bdev != bdev->bd_contains)
1248 		__blkdev_put(bdev->bd_contains, mode, 1);
1249 	bdev->bd_contains = NULL;
1250  out_unlock_bdev:
1251 	mutex_unlock(&bdev->bd_mutex);
1252 	disk_unblock_events(disk);
1253 	put_disk(disk);
1254 	module_put(owner);
1255  out:
1256 	bdput(bdev);
1257 
1258 	return ret;
1259 }
1260 
1261 /**
1262  * blkdev_get - open a block device
1263  * @bdev: block_device to open
1264  * @mode: FMODE_* mask
1265  * @holder: exclusive holder identifier
1266  *
1267  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1268  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1269  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1270  *
1271  * On success, the reference count of @bdev is unchanged.  On failure,
1272  * @bdev is put.
1273  *
1274  * CONTEXT:
1275  * Might sleep.
1276  *
1277  * RETURNS:
1278  * 0 on success, -errno on failure.
1279  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1280 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1281 {
1282 	struct block_device *whole = NULL;
1283 	int res;
1284 
1285 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1286 
1287 	if ((mode & FMODE_EXCL) && holder) {
1288 		whole = bd_start_claiming(bdev, holder);
1289 		if (IS_ERR(whole)) {
1290 			bdput(bdev);
1291 			return PTR_ERR(whole);
1292 		}
1293 	}
1294 
1295 	res = __blkdev_get(bdev, mode, 0);
1296 
1297 	if (whole) {
1298 		struct gendisk *disk = whole->bd_disk;
1299 
1300 		/* finish claiming */
1301 		mutex_lock(&bdev->bd_mutex);
1302 		spin_lock(&bdev_lock);
1303 
1304 		if (!res) {
1305 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1306 			/*
1307 			 * Note that for a whole device bd_holders
1308 			 * will be incremented twice, and bd_holder
1309 			 * will be set to bd_may_claim before being
1310 			 * set to holder
1311 			 */
1312 			whole->bd_holders++;
1313 			whole->bd_holder = bd_may_claim;
1314 			bdev->bd_holders++;
1315 			bdev->bd_holder = holder;
1316 		}
1317 
1318 		/* tell others that we're done */
1319 		BUG_ON(whole->bd_claiming != holder);
1320 		whole->bd_claiming = NULL;
1321 		wake_up_bit(&whole->bd_claiming, 0);
1322 
1323 		spin_unlock(&bdev_lock);
1324 
1325 		/*
1326 		 * Block event polling for write claims if requested.  Any
1327 		 * write holder makes the write_holder state stick until
1328 		 * all are released.  This is good enough and tracking
1329 		 * individual writeable reference is too fragile given the
1330 		 * way @mode is used in blkdev_get/put().
1331 		 */
1332 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1333 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1334 			bdev->bd_write_holder = true;
1335 			disk_block_events(disk);
1336 		}
1337 
1338 		mutex_unlock(&bdev->bd_mutex);
1339 		bdput(whole);
1340 	}
1341 
1342 	return res;
1343 }
1344 EXPORT_SYMBOL(blkdev_get);
1345 
1346 /**
1347  * blkdev_get_by_path - open a block device by name
1348  * @path: path to the block device to open
1349  * @mode: FMODE_* mask
1350  * @holder: exclusive holder identifier
1351  *
1352  * Open the blockdevice described by the device file at @path.  @mode
1353  * and @holder are identical to blkdev_get().
1354  *
1355  * On success, the returned block_device has reference count of one.
1356  *
1357  * CONTEXT:
1358  * Might sleep.
1359  *
1360  * RETURNS:
1361  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1362  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1363 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1364 					void *holder)
1365 {
1366 	struct block_device *bdev;
1367 	int err;
1368 
1369 	bdev = lookup_bdev(path);
1370 	if (IS_ERR(bdev))
1371 		return bdev;
1372 
1373 	err = blkdev_get(bdev, mode, holder);
1374 	if (err)
1375 		return ERR_PTR(err);
1376 
1377 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1378 		blkdev_put(bdev, mode);
1379 		return ERR_PTR(-EACCES);
1380 	}
1381 
1382 	return bdev;
1383 }
1384 EXPORT_SYMBOL(blkdev_get_by_path);
1385 
1386 /**
1387  * blkdev_get_by_dev - open a block device by device number
1388  * @dev: device number of block device to open
1389  * @mode: FMODE_* mask
1390  * @holder: exclusive holder identifier
1391  *
1392  * Open the blockdevice described by device number @dev.  @mode and
1393  * @holder are identical to blkdev_get().
1394  *
1395  * Use it ONLY if you really do not have anything better - i.e. when
1396  * you are behind a truly sucky interface and all you are given is a
1397  * device number.  _Never_ to be used for internal purposes.  If you
1398  * ever need it - reconsider your API.
1399  *
1400  * On success, the returned block_device has reference count of one.
1401  *
1402  * CONTEXT:
1403  * Might sleep.
1404  *
1405  * RETURNS:
1406  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1407  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1408 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1409 {
1410 	struct block_device *bdev;
1411 	int err;
1412 
1413 	bdev = bdget(dev);
1414 	if (!bdev)
1415 		return ERR_PTR(-ENOMEM);
1416 
1417 	err = blkdev_get(bdev, mode, holder);
1418 	if (err)
1419 		return ERR_PTR(err);
1420 
1421 	return bdev;
1422 }
1423 EXPORT_SYMBOL(blkdev_get_by_dev);
1424 
blkdev_open(struct inode * inode,struct file * filp)1425 static int blkdev_open(struct inode * inode, struct file * filp)
1426 {
1427 	struct block_device *bdev;
1428 
1429 	/*
1430 	 * Preserve backwards compatibility and allow large file access
1431 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1432 	 * binary needs it. We might want to drop this workaround
1433 	 * during an unstable branch.
1434 	 */
1435 	filp->f_flags |= O_LARGEFILE;
1436 
1437 	if (filp->f_flags & O_NDELAY)
1438 		filp->f_mode |= FMODE_NDELAY;
1439 	if (filp->f_flags & O_EXCL)
1440 		filp->f_mode |= FMODE_EXCL;
1441 	if ((filp->f_flags & O_ACCMODE) == 3)
1442 		filp->f_mode |= FMODE_WRITE_IOCTL;
1443 
1444 	bdev = bd_acquire(inode);
1445 	if (bdev == NULL)
1446 		return -ENOMEM;
1447 
1448 	filp->f_mapping = bdev->bd_inode->i_mapping;
1449 
1450 	return blkdev_get(bdev, filp->f_mode, filp);
1451 }
1452 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1453 static int __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1454 {
1455 	int ret = 0;
1456 	struct gendisk *disk = bdev->bd_disk;
1457 	struct block_device *victim = NULL;
1458 
1459 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1460 	if (for_part)
1461 		bdev->bd_part_count--;
1462 
1463 	if (!--bdev->bd_openers) {
1464 		WARN_ON_ONCE(bdev->bd_holders);
1465 		sync_blockdev(bdev);
1466 		kill_bdev(bdev);
1467 		/* ->release can cause the old bdi to disappear,
1468 		 * so must switch it out first
1469 		 */
1470 		bdev_inode_switch_bdi(bdev->bd_inode,
1471 					&default_backing_dev_info);
1472 	}
1473 	if (bdev->bd_contains == bdev) {
1474 		if (disk->fops->release)
1475 			ret = disk->fops->release(disk, mode);
1476 	}
1477 	if (!bdev->bd_openers) {
1478 		struct module *owner = disk->fops->owner;
1479 
1480 		disk_put_part(bdev->bd_part);
1481 		bdev->bd_part = NULL;
1482 		bdev->bd_disk = NULL;
1483 		if (bdev != bdev->bd_contains)
1484 			victim = bdev->bd_contains;
1485 		bdev->bd_contains = NULL;
1486 
1487 		put_disk(disk);
1488 		module_put(owner);
1489 	}
1490 	mutex_unlock(&bdev->bd_mutex);
1491 	bdput(bdev);
1492 	if (victim)
1493 		__blkdev_put(victim, mode, 1);
1494 	return ret;
1495 }
1496 
blkdev_put(struct block_device * bdev,fmode_t mode)1497 int blkdev_put(struct block_device *bdev, fmode_t mode)
1498 {
1499 	mutex_lock(&bdev->bd_mutex);
1500 
1501 	if (mode & FMODE_EXCL) {
1502 		bool bdev_free;
1503 
1504 		/*
1505 		 * Release a claim on the device.  The holder fields
1506 		 * are protected with bdev_lock.  bd_mutex is to
1507 		 * synchronize disk_holder unlinking.
1508 		 */
1509 		spin_lock(&bdev_lock);
1510 
1511 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1512 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1513 
1514 		/* bd_contains might point to self, check in a separate step */
1515 		if ((bdev_free = !bdev->bd_holders))
1516 			bdev->bd_holder = NULL;
1517 		if (!bdev->bd_contains->bd_holders)
1518 			bdev->bd_contains->bd_holder = NULL;
1519 
1520 		spin_unlock(&bdev_lock);
1521 
1522 		/*
1523 		 * If this was the last claim, remove holder link and
1524 		 * unblock evpoll if it was a write holder.
1525 		 */
1526 		if (bdev_free && bdev->bd_write_holder) {
1527 			disk_unblock_events(bdev->bd_disk);
1528 			bdev->bd_write_holder = false;
1529 		}
1530 	}
1531 
1532 	/*
1533 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1534 	 * event.  This is to ensure detection of media removal commanded
1535 	 * from userland - e.g. eject(1).
1536 	 */
1537 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1538 
1539 	mutex_unlock(&bdev->bd_mutex);
1540 
1541 	return __blkdev_put(bdev, mode, 0);
1542 }
1543 EXPORT_SYMBOL(blkdev_put);
1544 
blkdev_close(struct inode * inode,struct file * filp)1545 static int blkdev_close(struct inode * inode, struct file * filp)
1546 {
1547 	struct block_device *bdev = I_BDEV(filp->f_mapping->host);
1548 
1549 	return blkdev_put(bdev, filp->f_mode);
1550 }
1551 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1552 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1553 {
1554 	struct block_device *bdev = I_BDEV(file->f_mapping->host);
1555 	fmode_t mode = file->f_mode;
1556 
1557 	/*
1558 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1559 	 * to updated it before every ioctl.
1560 	 */
1561 	if (file->f_flags & O_NDELAY)
1562 		mode |= FMODE_NDELAY;
1563 	else
1564 		mode &= ~FMODE_NDELAY;
1565 
1566 	return blkdev_ioctl(bdev, mode, cmd, arg);
1567 }
1568 
1569 /*
1570  * Write data to the block device.  Only intended for the block device itself
1571  * and the raw driver which basically is a fake block device.
1572  *
1573  * Does not take i_mutex for the write and thus is not for general purpose
1574  * use.
1575  */
blkdev_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1576 ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov,
1577 			 unsigned long nr_segs, loff_t pos)
1578 {
1579 	struct file *file = iocb->ki_filp;
1580 	ssize_t ret;
1581 
1582 	BUG_ON(iocb->ki_pos != pos);
1583 
1584 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1585 	if (ret > 0 || ret == -EIOCBQUEUED) {
1586 		ssize_t err;
1587 
1588 		err = generic_write_sync(file, pos, ret);
1589 		if (err < 0 && ret > 0)
1590 			ret = err;
1591 	}
1592 	return ret;
1593 }
1594 EXPORT_SYMBOL_GPL(blkdev_aio_write);
1595 
1596 /*
1597  * Try to release a page associated with block device when the system
1598  * is under memory pressure.
1599  */
blkdev_releasepage(struct page * page,gfp_t wait)1600 static int blkdev_releasepage(struct page *page, gfp_t wait)
1601 {
1602 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1603 
1604 	if (super && super->s_op->bdev_try_to_free_page)
1605 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1606 
1607 	return try_to_free_buffers(page);
1608 }
1609 
1610 static const struct address_space_operations def_blk_aops = {
1611 	.readpage	= blkdev_readpage,
1612 	.writepage	= blkdev_writepage,
1613 	.write_begin	= blkdev_write_begin,
1614 	.write_end	= blkdev_write_end,
1615 	.writepages	= generic_writepages,
1616 	.releasepage	= blkdev_releasepage,
1617 	.direct_IO	= blkdev_direct_IO,
1618 };
1619 
1620 const struct file_operations def_blk_fops = {
1621 	.open		= blkdev_open,
1622 	.release	= blkdev_close,
1623 	.llseek		= block_llseek,
1624 	.read		= do_sync_read,
1625 	.write		= do_sync_write,
1626   	.aio_read	= generic_file_aio_read,
1627 	.aio_write	= blkdev_aio_write,
1628 	.mmap		= generic_file_mmap,
1629 	.fsync		= blkdev_fsync,
1630 	.unlocked_ioctl	= block_ioctl,
1631 #ifdef CONFIG_COMPAT
1632 	.compat_ioctl	= compat_blkdev_ioctl,
1633 #endif
1634 	.splice_read	= generic_file_splice_read,
1635 	.splice_write	= generic_file_splice_write,
1636 };
1637 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1638 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1639 {
1640 	int res;
1641 	mm_segment_t old_fs = get_fs();
1642 	set_fs(KERNEL_DS);
1643 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1644 	set_fs(old_fs);
1645 	return res;
1646 }
1647 
1648 EXPORT_SYMBOL(ioctl_by_bdev);
1649 
1650 /**
1651  * lookup_bdev  - lookup a struct block_device by name
1652  * @pathname:	special file representing the block device
1653  *
1654  * Get a reference to the blockdevice at @pathname in the current
1655  * namespace if possible and return it.  Return ERR_PTR(error)
1656  * otherwise.
1657  */
lookup_bdev(const char * pathname)1658 struct block_device *lookup_bdev(const char *pathname)
1659 {
1660 	struct block_device *bdev;
1661 	struct inode *inode;
1662 	struct path path;
1663 	int error;
1664 
1665 	if (!pathname || !*pathname)
1666 		return ERR_PTR(-EINVAL);
1667 
1668 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1669 	if (error)
1670 		return ERR_PTR(error);
1671 
1672 	inode = path.dentry->d_inode;
1673 	error = -ENOTBLK;
1674 	if (!S_ISBLK(inode->i_mode))
1675 		goto fail;
1676 	error = -EACCES;
1677 	if (path.mnt->mnt_flags & MNT_NODEV)
1678 		goto fail;
1679 	error = -ENOMEM;
1680 	bdev = bd_acquire(inode);
1681 	if (!bdev)
1682 		goto fail;
1683 out:
1684 	path_put(&path);
1685 	return bdev;
1686 fail:
1687 	bdev = ERR_PTR(error);
1688 	goto out;
1689 }
1690 EXPORT_SYMBOL(lookup_bdev);
1691 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1692 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1693 {
1694 	struct super_block *sb = get_super(bdev);
1695 	int res = 0;
1696 
1697 	if (sb) {
1698 		/*
1699 		 * no need to lock the super, get_super holds the
1700 		 * read mutex so the filesystem cannot go away
1701 		 * under us (->put_super runs with the write lock
1702 		 * hold).
1703 		 */
1704 		shrink_dcache_sb(sb);
1705 		res = invalidate_inodes(sb, kill_dirty);
1706 		drop_super(sb);
1707 	}
1708 	invalidate_bdev(bdev);
1709 	return res;
1710 }
1711 EXPORT_SYMBOL(__invalidate_device);
1712