1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 static void swap_entries_free(struct swap_info_struct *si,
56 struct swap_cluster_info *ci,
57 swp_entry_t entry, unsigned int nr_pages);
58 static void swap_range_alloc(struct swap_info_struct *si,
59 unsigned int nr_entries);
60 static bool folio_swapcache_freeable(struct folio *folio);
61 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
62 unsigned long offset);
63 static inline void unlock_cluster(struct swap_cluster_info *ci);
64
65 static DEFINE_SPINLOCK(swap_lock);
66 static unsigned int nr_swapfiles;
67 atomic_long_t nr_swap_pages;
68 /*
69 * Some modules use swappable objects and may try to swap them out under
70 * memory pressure (via the shrinker). Before doing so, they may wish to
71 * check to see if any swap space is available.
72 */
73 EXPORT_SYMBOL_GPL(nr_swap_pages);
74 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
75 long total_swap_pages;
76 static int least_priority = -1;
77 unsigned long swapfile_maximum_size;
78 #ifdef CONFIG_MIGRATION
79 bool swap_migration_ad_supported;
80 #endif /* CONFIG_MIGRATION */
81
82 static const char Bad_file[] = "Bad swap file entry ";
83 static const char Unused_file[] = "Unused swap file entry ";
84 static const char Bad_offset[] = "Bad swap offset entry ";
85 static const char Unused_offset[] = "Unused swap offset entry ";
86
87 /*
88 * all active swap_info_structs
89 * protected with swap_lock, and ordered by priority.
90 */
91 static PLIST_HEAD(swap_active_head);
92
93 /*
94 * all available (active, not full) swap_info_structs
95 * protected with swap_avail_lock, ordered by priority.
96 * This is used by folio_alloc_swap() instead of swap_active_head
97 * because swap_active_head includes all swap_info_structs,
98 * but folio_alloc_swap() doesn't need to look at full ones.
99 * This uses its own lock instead of swap_lock because when a
100 * swap_info_struct changes between not-full/full, it needs to
101 * add/remove itself to/from this list, but the swap_info_struct->lock
102 * is held and the locking order requires swap_lock to be taken
103 * before any swap_info_struct->lock.
104 */
105 static struct plist_head *swap_avail_heads;
106 static DEFINE_SPINLOCK(swap_avail_lock);
107
108 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
109
110 static DEFINE_MUTEX(swapon_mutex);
111
112 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
113 /* Activity counter to indicate that a swapon or swapoff has occurred */
114 static atomic_t proc_poll_event = ATOMIC_INIT(0);
115
116 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
117
118 struct percpu_swap_cluster {
119 struct swap_info_struct *si[SWAP_NR_ORDERS];
120 unsigned long offset[SWAP_NR_ORDERS];
121 local_lock_t lock;
122 };
123
124 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
125 .si = { NULL },
126 .offset = { SWAP_ENTRY_INVALID },
127 .lock = INIT_LOCAL_LOCK(),
128 };
129
swap_type_to_swap_info(int type)130 static struct swap_info_struct *swap_type_to_swap_info(int type)
131 {
132 if (type >= MAX_SWAPFILES)
133 return NULL;
134
135 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
136 }
137
swap_count(unsigned char ent)138 static inline unsigned char swap_count(unsigned char ent)
139 {
140 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
141 }
142
143 /*
144 * Use the second highest bit of inuse_pages counter as the indicator
145 * if one swap device is on the available plist, so the atomic can
146 * still be updated arithmetically while having special data embedded.
147 *
148 * inuse_pages counter is the only thing indicating if a device should
149 * be on avail_lists or not (except swapon / swapoff). By embedding the
150 * off-list bit in the atomic counter, updates no longer need any lock
151 * to check the list status.
152 *
153 * This bit will be set if the device is not on the plist and not
154 * usable, will be cleared if the device is on the plist.
155 */
156 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
157 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
swap_usage_in_pages(struct swap_info_struct * si)158 static long swap_usage_in_pages(struct swap_info_struct *si)
159 {
160 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
161 }
162
163 /* Reclaim the swap entry anyway if possible */
164 #define TTRS_ANYWAY 0x1
165 /*
166 * Reclaim the swap entry if there are no more mappings of the
167 * corresponding page
168 */
169 #define TTRS_UNMAPPED 0x2
170 /* Reclaim the swap entry if swap is getting full */
171 #define TTRS_FULL 0x4
172
swap_only_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)173 static bool swap_only_has_cache(struct swap_info_struct *si,
174 unsigned long offset, int nr_pages)
175 {
176 unsigned char *map = si->swap_map + offset;
177 unsigned char *map_end = map + nr_pages;
178
179 do {
180 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
181 if (*map != SWAP_HAS_CACHE)
182 return false;
183 } while (++map < map_end);
184
185 return true;
186 }
187
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)188 static bool swap_is_last_map(struct swap_info_struct *si,
189 unsigned long offset, int nr_pages, bool *has_cache)
190 {
191 unsigned char *map = si->swap_map + offset;
192 unsigned char *map_end = map + nr_pages;
193 unsigned char count = *map;
194
195 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
196 return false;
197
198 while (++map < map_end) {
199 if (*map != count)
200 return false;
201 }
202
203 *has_cache = !!(count & SWAP_HAS_CACHE);
204 return true;
205 }
206
207 /*
208 * returns number of pages in the folio that backs the swap entry. If positive,
209 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
210 * folio was associated with the swap entry.
211 */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)212 static int __try_to_reclaim_swap(struct swap_info_struct *si,
213 unsigned long offset, unsigned long flags)
214 {
215 swp_entry_t entry = swp_entry(si->type, offset);
216 struct address_space *address_space = swap_address_space(entry);
217 struct swap_cluster_info *ci;
218 struct folio *folio;
219 int ret, nr_pages;
220 bool need_reclaim;
221
222 again:
223 folio = filemap_get_folio(address_space, swap_cache_index(entry));
224 if (IS_ERR(folio))
225 return 0;
226
227 nr_pages = folio_nr_pages(folio);
228 ret = -nr_pages;
229
230 /*
231 * When this function is called from scan_swap_map_slots() and it's
232 * called by vmscan.c at reclaiming folios. So we hold a folio lock
233 * here. We have to use trylock for avoiding deadlock. This is a special
234 * case and you should use folio_free_swap() with explicit folio_lock()
235 * in usual operations.
236 */
237 if (!folio_trylock(folio))
238 goto out;
239
240 /*
241 * Offset could point to the middle of a large folio, or folio
242 * may no longer point to the expected offset before it's locked.
243 */
244 entry = folio->swap;
245 if (offset < swp_offset(entry) || offset >= swp_offset(entry) + nr_pages) {
246 folio_unlock(folio);
247 folio_put(folio);
248 goto again;
249 }
250 offset = swp_offset(entry);
251
252 need_reclaim = ((flags & TTRS_ANYWAY) ||
253 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
254 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
255 if (!need_reclaim || !folio_swapcache_freeable(folio))
256 goto out_unlock;
257
258 /*
259 * It's safe to delete the folio from swap cache only if the folio's
260 * swap_map is HAS_CACHE only, which means the slots have no page table
261 * reference or pending writeback, and can't be allocated to others.
262 */
263 ci = lock_cluster(si, offset);
264 need_reclaim = swap_only_has_cache(si, offset, nr_pages);
265 unlock_cluster(ci);
266 if (!need_reclaim)
267 goto out_unlock;
268
269 delete_from_swap_cache(folio);
270 folio_set_dirty(folio);
271 ret = nr_pages;
272 out_unlock:
273 folio_unlock(folio);
274 out:
275 folio_put(folio);
276 return ret;
277 }
278
first_se(struct swap_info_struct * sis)279 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
280 {
281 struct rb_node *rb = rb_first(&sis->swap_extent_root);
282 return rb_entry(rb, struct swap_extent, rb_node);
283 }
284
next_se(struct swap_extent * se)285 static inline struct swap_extent *next_se(struct swap_extent *se)
286 {
287 struct rb_node *rb = rb_next(&se->rb_node);
288 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
289 }
290
291 /*
292 * swapon tell device that all the old swap contents can be discarded,
293 * to allow the swap device to optimize its wear-levelling.
294 */
discard_swap(struct swap_info_struct * si)295 static int discard_swap(struct swap_info_struct *si)
296 {
297 struct swap_extent *se;
298 sector_t start_block;
299 sector_t nr_blocks;
300 int err = 0;
301
302 /* Do not discard the swap header page! */
303 se = first_se(si);
304 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
305 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
306 if (nr_blocks) {
307 err = blkdev_issue_discard(si->bdev, start_block,
308 nr_blocks, GFP_KERNEL);
309 if (err)
310 return err;
311 cond_resched();
312 }
313
314 for (se = next_se(se); se; se = next_se(se)) {
315 start_block = se->start_block << (PAGE_SHIFT - 9);
316 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
317
318 err = blkdev_issue_discard(si->bdev, start_block,
319 nr_blocks, GFP_KERNEL);
320 if (err)
321 break;
322
323 cond_resched();
324 }
325 return err; /* That will often be -EOPNOTSUPP */
326 }
327
328 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)329 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
330 {
331 struct swap_extent *se;
332 struct rb_node *rb;
333
334 rb = sis->swap_extent_root.rb_node;
335 while (rb) {
336 se = rb_entry(rb, struct swap_extent, rb_node);
337 if (offset < se->start_page)
338 rb = rb->rb_left;
339 else if (offset >= se->start_page + se->nr_pages)
340 rb = rb->rb_right;
341 else
342 return se;
343 }
344 /* It *must* be present */
345 BUG();
346 }
347
swap_folio_sector(struct folio * folio)348 sector_t swap_folio_sector(struct folio *folio)
349 {
350 struct swap_info_struct *sis = swp_swap_info(folio->swap);
351 struct swap_extent *se;
352 sector_t sector;
353 pgoff_t offset;
354
355 offset = swp_offset(folio->swap);
356 se = offset_to_swap_extent(sis, offset);
357 sector = se->start_block + (offset - se->start_page);
358 return sector << (PAGE_SHIFT - 9);
359 }
360
361 /*
362 * swap allocation tell device that a cluster of swap can now be discarded,
363 * to allow the swap device to optimize its wear-levelling.
364 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)365 static void discard_swap_cluster(struct swap_info_struct *si,
366 pgoff_t start_page, pgoff_t nr_pages)
367 {
368 struct swap_extent *se = offset_to_swap_extent(si, start_page);
369
370 while (nr_pages) {
371 pgoff_t offset = start_page - se->start_page;
372 sector_t start_block = se->start_block + offset;
373 sector_t nr_blocks = se->nr_pages - offset;
374
375 if (nr_blocks > nr_pages)
376 nr_blocks = nr_pages;
377 start_page += nr_blocks;
378 nr_pages -= nr_blocks;
379
380 start_block <<= PAGE_SHIFT - 9;
381 nr_blocks <<= PAGE_SHIFT - 9;
382 if (blkdev_issue_discard(si->bdev, start_block,
383 nr_blocks, GFP_NOIO))
384 break;
385
386 se = next_se(se);
387 }
388 }
389
390 #ifdef CONFIG_THP_SWAP
391 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
392
393 #define swap_entry_order(order) (order)
394 #else
395 #define SWAPFILE_CLUSTER 256
396
397 /*
398 * Define swap_entry_order() as constant to let compiler to optimize
399 * out some code if !CONFIG_THP_SWAP
400 */
401 #define swap_entry_order(order) 0
402 #endif
403 #define LATENCY_LIMIT 256
404
cluster_is_empty(struct swap_cluster_info * info)405 static inline bool cluster_is_empty(struct swap_cluster_info *info)
406 {
407 return info->count == 0;
408 }
409
cluster_is_discard(struct swap_cluster_info * info)410 static inline bool cluster_is_discard(struct swap_cluster_info *info)
411 {
412 return info->flags == CLUSTER_FLAG_DISCARD;
413 }
414
cluster_is_usable(struct swap_cluster_info * ci,int order)415 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
416 {
417 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
418 return false;
419 if (!order)
420 return true;
421 return cluster_is_empty(ci) || order == ci->order;
422 }
423
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 struct swap_cluster_info *ci)
426 {
427 return ci - si->cluster_info;
428 }
429
offset_to_cluster(struct swap_info_struct * si,unsigned long offset)430 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
431 unsigned long offset)
432 {
433 return &si->cluster_info[offset / SWAPFILE_CLUSTER];
434 }
435
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)436 static inline unsigned int cluster_offset(struct swap_info_struct *si,
437 struct swap_cluster_info *ci)
438 {
439 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
440 }
441
lock_cluster(struct swap_info_struct * si,unsigned long offset)442 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
443 unsigned long offset)
444 {
445 struct swap_cluster_info *ci;
446
447 ci = offset_to_cluster(si, offset);
448 spin_lock(&ci->lock);
449
450 return ci;
451 }
452
unlock_cluster(struct swap_cluster_info * ci)453 static inline void unlock_cluster(struct swap_cluster_info *ci)
454 {
455 spin_unlock(&ci->lock);
456 }
457
move_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,struct list_head * list,enum swap_cluster_flags new_flags)458 static void move_cluster(struct swap_info_struct *si,
459 struct swap_cluster_info *ci, struct list_head *list,
460 enum swap_cluster_flags new_flags)
461 {
462 VM_WARN_ON(ci->flags == new_flags);
463
464 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
465 lockdep_assert_held(&ci->lock);
466
467 spin_lock(&si->lock);
468 if (ci->flags == CLUSTER_FLAG_NONE)
469 list_add_tail(&ci->list, list);
470 else
471 list_move_tail(&ci->list, list);
472 spin_unlock(&si->lock);
473
474 if (ci->flags == CLUSTER_FLAG_FRAG)
475 atomic_long_dec(&si->frag_cluster_nr[ci->order]);
476 else if (new_flags == CLUSTER_FLAG_FRAG)
477 atomic_long_inc(&si->frag_cluster_nr[ci->order]);
478 ci->flags = new_flags;
479 }
480
481 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)482 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
483 struct swap_cluster_info *ci)
484 {
485 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
486 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
487 schedule_work(&si->discard_work);
488 }
489
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)490 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
491 {
492 lockdep_assert_held(&ci->lock);
493 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
494 ci->order = 0;
495 }
496
497 /*
498 * Isolate and lock the first cluster that is not contented on a list,
499 * clean its flag before taken off-list. Cluster flag must be in sync
500 * with list status, so cluster updaters can always know the cluster
501 * list status without touching si lock.
502 *
503 * Note it's possible that all clusters on a list are contented so
504 * this returns NULL for an non-empty list.
505 */
isolate_lock_cluster(struct swap_info_struct * si,struct list_head * list)506 static struct swap_cluster_info *isolate_lock_cluster(
507 struct swap_info_struct *si, struct list_head *list)
508 {
509 struct swap_cluster_info *ci, *ret = NULL;
510
511 spin_lock(&si->lock);
512
513 if (unlikely(!(si->flags & SWP_WRITEOK)))
514 goto out;
515
516 list_for_each_entry(ci, list, list) {
517 if (!spin_trylock(&ci->lock))
518 continue;
519
520 /* We may only isolate and clear flags of following lists */
521 VM_BUG_ON(!ci->flags);
522 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
523 ci->flags != CLUSTER_FLAG_FULL);
524
525 list_del(&ci->list);
526 ci->flags = CLUSTER_FLAG_NONE;
527 ret = ci;
528 break;
529 }
530 out:
531 spin_unlock(&si->lock);
532
533 return ret;
534 }
535
536 /*
537 * Doing discard actually. After a cluster discard is finished, the cluster
538 * will be added to free cluster list. Discard cluster is a bit special as
539 * they don't participate in allocation or reclaim, so clusters marked as
540 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
541 */
swap_do_scheduled_discard(struct swap_info_struct * si)542 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
543 {
544 struct swap_cluster_info *ci;
545 bool ret = false;
546 unsigned int idx;
547
548 spin_lock(&si->lock);
549 while (!list_empty(&si->discard_clusters)) {
550 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
551 /*
552 * Delete the cluster from list to prepare for discard, but keep
553 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
554 * pointing to it, or ran into by relocate_cluster.
555 */
556 list_del(&ci->list);
557 idx = cluster_index(si, ci);
558 spin_unlock(&si->lock);
559 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
560 SWAPFILE_CLUSTER);
561
562 spin_lock(&ci->lock);
563 /*
564 * Discard is done, clear its flags as it's off-list, then
565 * return the cluster to allocation list.
566 */
567 ci->flags = CLUSTER_FLAG_NONE;
568 __free_cluster(si, ci);
569 spin_unlock(&ci->lock);
570 ret = true;
571 spin_lock(&si->lock);
572 }
573 spin_unlock(&si->lock);
574 return ret;
575 }
576
swap_discard_work(struct work_struct * work)577 static void swap_discard_work(struct work_struct *work)
578 {
579 struct swap_info_struct *si;
580
581 si = container_of(work, struct swap_info_struct, discard_work);
582
583 swap_do_scheduled_discard(si);
584 }
585
swap_users_ref_free(struct percpu_ref * ref)586 static void swap_users_ref_free(struct percpu_ref *ref)
587 {
588 struct swap_info_struct *si;
589
590 si = container_of(ref, struct swap_info_struct, users);
591 complete(&si->comp);
592 }
593
594 /*
595 * Must be called after freeing if ci->count == 0, moves the cluster to free
596 * or discard list.
597 */
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)598 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
599 {
600 VM_BUG_ON(ci->count != 0);
601 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
602 lockdep_assert_held(&ci->lock);
603
604 /*
605 * If the swap is discardable, prepare discard the cluster
606 * instead of free it immediately. The cluster will be freed
607 * after discard.
608 */
609 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
610 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
611 swap_cluster_schedule_discard(si, ci);
612 return;
613 }
614
615 __free_cluster(si, ci);
616 }
617
618 /*
619 * Must be called after freeing if ci->count != 0, moves the cluster to
620 * nonfull list.
621 */
partial_free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)622 static void partial_free_cluster(struct swap_info_struct *si,
623 struct swap_cluster_info *ci)
624 {
625 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
626 lockdep_assert_held(&ci->lock);
627
628 if (ci->flags != CLUSTER_FLAG_NONFULL)
629 move_cluster(si, ci, &si->nonfull_clusters[ci->order],
630 CLUSTER_FLAG_NONFULL);
631 }
632
633 /*
634 * Must be called after allocation, moves the cluster to full or frag list.
635 * Note: allocation doesn't acquire si lock, and may drop the ci lock for
636 * reclaim, so the cluster could be any where when called.
637 */
relocate_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)638 static void relocate_cluster(struct swap_info_struct *si,
639 struct swap_cluster_info *ci)
640 {
641 lockdep_assert_held(&ci->lock);
642
643 /* Discard cluster must remain off-list or on discard list */
644 if (cluster_is_discard(ci))
645 return;
646
647 if (!ci->count) {
648 if (ci->flags != CLUSTER_FLAG_FREE)
649 free_cluster(si, ci);
650 } else if (ci->count != SWAPFILE_CLUSTER) {
651 if (ci->flags != CLUSTER_FLAG_FRAG)
652 move_cluster(si, ci, &si->frag_clusters[ci->order],
653 CLUSTER_FLAG_FRAG);
654 } else {
655 if (ci->flags != CLUSTER_FLAG_FULL)
656 move_cluster(si, ci, &si->full_clusters,
657 CLUSTER_FLAG_FULL);
658 }
659 }
660
661 /*
662 * The cluster corresponding to page_nr will be used. The cluster will not be
663 * added to free cluster list and its usage counter will be increased by 1.
664 * Only used for initialization.
665 */
inc_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * cluster_info,unsigned long page_nr)666 static void inc_cluster_info_page(struct swap_info_struct *si,
667 struct swap_cluster_info *cluster_info, unsigned long page_nr)
668 {
669 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
670 struct swap_cluster_info *ci;
671
672 ci = cluster_info + idx;
673 ci->count++;
674
675 VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
676 VM_BUG_ON(ci->flags);
677 }
678
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)679 static bool cluster_reclaim_range(struct swap_info_struct *si,
680 struct swap_cluster_info *ci,
681 unsigned long start, unsigned long end)
682 {
683 unsigned char *map = si->swap_map;
684 unsigned long offset = start;
685 int nr_reclaim;
686
687 spin_unlock(&ci->lock);
688 do {
689 switch (READ_ONCE(map[offset])) {
690 case 0:
691 offset++;
692 break;
693 case SWAP_HAS_CACHE:
694 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
695 if (nr_reclaim > 0)
696 offset += nr_reclaim;
697 else
698 goto out;
699 break;
700 default:
701 goto out;
702 }
703 } while (offset < end);
704 out:
705 spin_lock(&ci->lock);
706 /*
707 * Recheck the range no matter reclaim succeeded or not, the slot
708 * could have been be freed while we are not holding the lock.
709 */
710 for (offset = start; offset < end; offset++)
711 if (READ_ONCE(map[offset]))
712 return false;
713
714 return true;
715 }
716
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages,bool * need_reclaim)717 static bool cluster_scan_range(struct swap_info_struct *si,
718 struct swap_cluster_info *ci,
719 unsigned long start, unsigned int nr_pages,
720 bool *need_reclaim)
721 {
722 unsigned long offset, end = start + nr_pages;
723 unsigned char *map = si->swap_map;
724
725 if (cluster_is_empty(ci))
726 return true;
727
728 for (offset = start; offset < end; offset++) {
729 switch (READ_ONCE(map[offset])) {
730 case 0:
731 continue;
732 case SWAP_HAS_CACHE:
733 if (!vm_swap_full())
734 return false;
735 *need_reclaim = true;
736 continue;
737 default:
738 return false;
739 }
740 }
741
742 return true;
743 }
744
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)745 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
746 unsigned int start, unsigned char usage,
747 unsigned int order)
748 {
749 unsigned int nr_pages = 1 << order;
750
751 lockdep_assert_held(&ci->lock);
752
753 if (!(si->flags & SWP_WRITEOK))
754 return false;
755
756 /*
757 * The first allocation in a cluster makes the
758 * cluster exclusive to this order
759 */
760 if (cluster_is_empty(ci))
761 ci->order = order;
762
763 memset(si->swap_map + start, usage, nr_pages);
764 swap_range_alloc(si, nr_pages);
765 ci->count += nr_pages;
766
767 return true;
768 }
769
770 /* Try use a new cluster for current CPU and allocate from it. */
alloc_swap_scan_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long offset,unsigned int order,unsigned char usage)771 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
772 struct swap_cluster_info *ci,
773 unsigned long offset,
774 unsigned int order,
775 unsigned char usage)
776 {
777 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
778 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
779 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
780 unsigned int nr_pages = 1 << order;
781 bool need_reclaim, ret;
782
783 lockdep_assert_held(&ci->lock);
784
785 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
786 goto out;
787
788 for (end -= nr_pages; offset <= end; offset += nr_pages) {
789 need_reclaim = false;
790 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
791 continue;
792 if (need_reclaim) {
793 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
794 /*
795 * Reclaim drops ci->lock and cluster could be used
796 * by another order. Not checking flag as off-list
797 * cluster has no flag set, and change of list
798 * won't cause fragmentation.
799 */
800 if (!cluster_is_usable(ci, order))
801 goto out;
802 if (cluster_is_empty(ci))
803 offset = start;
804 /* Reclaim failed but cluster is usable, try next */
805 if (!ret)
806 continue;
807 }
808 if (!cluster_alloc_range(si, ci, offset, usage, order))
809 break;
810 found = offset;
811 offset += nr_pages;
812 if (ci->count < SWAPFILE_CLUSTER && offset <= end)
813 next = offset;
814 break;
815 }
816 out:
817 relocate_cluster(si, ci);
818 unlock_cluster(ci);
819 if (si->flags & SWP_SOLIDSTATE) {
820 this_cpu_write(percpu_swap_cluster.offset[order], next);
821 this_cpu_write(percpu_swap_cluster.si[order], si);
822 } else {
823 si->global_cluster->next[order] = next;
824 }
825 return found;
826 }
827
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)828 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
829 {
830 long to_scan = 1;
831 unsigned long offset, end;
832 struct swap_cluster_info *ci;
833 unsigned char *map = si->swap_map;
834 int nr_reclaim;
835
836 if (force)
837 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
838
839 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
840 offset = cluster_offset(si, ci);
841 end = min(si->max, offset + SWAPFILE_CLUSTER);
842 to_scan--;
843
844 while (offset < end) {
845 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
846 spin_unlock(&ci->lock);
847 nr_reclaim = __try_to_reclaim_swap(si, offset,
848 TTRS_ANYWAY);
849 spin_lock(&ci->lock);
850 if (nr_reclaim) {
851 offset += abs(nr_reclaim);
852 continue;
853 }
854 }
855 offset++;
856 }
857
858 /* in case no swap cache is reclaimed */
859 if (ci->flags == CLUSTER_FLAG_NONE)
860 relocate_cluster(si, ci);
861
862 unlock_cluster(ci);
863 if (to_scan <= 0)
864 break;
865 }
866 }
867
swap_reclaim_work(struct work_struct * work)868 static void swap_reclaim_work(struct work_struct *work)
869 {
870 struct swap_info_struct *si;
871
872 si = container_of(work, struct swap_info_struct, reclaim_work);
873
874 swap_reclaim_full_clusters(si, true);
875 }
876
877 /*
878 * Try to allocate swap entries with specified order and try set a new
879 * cluster for current CPU too.
880 */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)881 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
882 unsigned char usage)
883 {
884 struct swap_cluster_info *ci;
885 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
886
887 /*
888 * Swapfile is not block device so unable
889 * to allocate large entries.
890 */
891 if (order && !(si->flags & SWP_BLKDEV))
892 return 0;
893
894 if (!(si->flags & SWP_SOLIDSTATE)) {
895 /* Serialize HDD SWAP allocation for each device. */
896 spin_lock(&si->global_cluster_lock);
897 offset = si->global_cluster->next[order];
898 if (offset == SWAP_ENTRY_INVALID)
899 goto new_cluster;
900
901 ci = lock_cluster(si, offset);
902 /* Cluster could have been used by another order */
903 if (cluster_is_usable(ci, order)) {
904 if (cluster_is_empty(ci))
905 offset = cluster_offset(si, ci);
906 found = alloc_swap_scan_cluster(si, ci, offset,
907 order, usage);
908 } else {
909 unlock_cluster(ci);
910 }
911 if (found)
912 goto done;
913 }
914
915 new_cluster:
916 ci = isolate_lock_cluster(si, &si->free_clusters);
917 if (ci) {
918 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
919 order, usage);
920 if (found)
921 goto done;
922 }
923
924 /* Try reclaim from full clusters if free clusters list is drained */
925 if (vm_swap_full())
926 swap_reclaim_full_clusters(si, false);
927
928 if (order < PMD_ORDER) {
929 unsigned int frags = 0, frags_existing;
930
931 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
932 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
933 order, usage);
934 if (found)
935 goto done;
936 /* Clusters failed to allocate are moved to frag_clusters */
937 frags++;
938 }
939
940 frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
941 while (frags < frags_existing &&
942 (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
943 atomic_long_dec(&si->frag_cluster_nr[order]);
944 /*
945 * Rotate the frag list to iterate, they were all
946 * failing high order allocation or moved here due to
947 * per-CPU usage, but they could contain newly released
948 * reclaimable (eg. lazy-freed swap cache) slots.
949 */
950 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
951 order, usage);
952 if (found)
953 goto done;
954 frags++;
955 }
956 }
957
958 /*
959 * We don't have free cluster but have some clusters in discarding,
960 * do discard now and reclaim them.
961 */
962 if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
963 goto new_cluster;
964
965 if (order)
966 goto done;
967
968 /* Order 0 stealing from higher order */
969 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
970 /*
971 * Clusters here have at least one usable slots and can't fail order 0
972 * allocation, but reclaim may drop si->lock and race with another user.
973 */
974 while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
975 atomic_long_dec(&si->frag_cluster_nr[o]);
976 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
977 0, usage);
978 if (found)
979 goto done;
980 }
981
982 while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
983 found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
984 0, usage);
985 if (found)
986 goto done;
987 }
988 }
989 done:
990 if (!(si->flags & SWP_SOLIDSTATE))
991 spin_unlock(&si->global_cluster_lock);
992 return found;
993 }
994
995 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
del_from_avail_list(struct swap_info_struct * si,bool swapoff)996 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
997 {
998 int nid;
999 unsigned long pages;
1000
1001 spin_lock(&swap_avail_lock);
1002
1003 if (swapoff) {
1004 /*
1005 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1006 * swapoff here so it's synchronized by both si->lock and
1007 * swap_avail_lock, to ensure the result can be seen by
1008 * add_to_avail_list.
1009 */
1010 lockdep_assert_held(&si->lock);
1011 si->flags &= ~SWP_WRITEOK;
1012 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1013 } else {
1014 /*
1015 * If not called by swapoff, take it off-list only if it's
1016 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1017 * si->inuse_pages == pages), any concurrent slot freeing,
1018 * or device already removed from plist by someone else
1019 * will make this return false.
1020 */
1021 pages = si->pages;
1022 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1023 pages | SWAP_USAGE_OFFLIST_BIT))
1024 goto skip;
1025 }
1026
1027 for_each_node(nid)
1028 plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1029
1030 skip:
1031 spin_unlock(&swap_avail_lock);
1032 }
1033
1034 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
add_to_avail_list(struct swap_info_struct * si,bool swapon)1035 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1036 {
1037 int nid;
1038 long val;
1039 unsigned long pages;
1040
1041 spin_lock(&swap_avail_lock);
1042
1043 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1044 if (swapon) {
1045 lockdep_assert_held(&si->lock);
1046 si->flags |= SWP_WRITEOK;
1047 } else {
1048 if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1049 goto skip;
1050 }
1051
1052 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1053 goto skip;
1054
1055 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1056
1057 /*
1058 * When device is full and device is on the plist, only one updater will
1059 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1060 * that updater happen to be here, just skip adding.
1061 */
1062 pages = si->pages;
1063 if (val == pages) {
1064 /* Just like the cmpxchg in del_from_avail_list */
1065 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1066 pages | SWAP_USAGE_OFFLIST_BIT))
1067 goto skip;
1068 }
1069
1070 for_each_node(nid)
1071 plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1072
1073 skip:
1074 spin_unlock(&swap_avail_lock);
1075 }
1076
1077 /*
1078 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1079 * within each cluster, so the total contribution to the global counter should
1080 * always be positive and cannot exceed the total number of usable slots.
1081 */
swap_usage_add(struct swap_info_struct * si,unsigned int nr_entries)1082 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1083 {
1084 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1085
1086 /*
1087 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1088 * remove it from the plist.
1089 */
1090 if (unlikely(val == si->pages)) {
1091 del_from_avail_list(si, false);
1092 return true;
1093 }
1094
1095 return false;
1096 }
1097
swap_usage_sub(struct swap_info_struct * si,unsigned int nr_entries)1098 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1099 {
1100 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1101
1102 /*
1103 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1104 * add it to the plist.
1105 */
1106 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1107 add_to_avail_list(si, false);
1108 }
1109
swap_range_alloc(struct swap_info_struct * si,unsigned int nr_entries)1110 static void swap_range_alloc(struct swap_info_struct *si,
1111 unsigned int nr_entries)
1112 {
1113 if (swap_usage_add(si, nr_entries)) {
1114 if (vm_swap_full())
1115 schedule_work(&si->reclaim_work);
1116 }
1117 atomic_long_sub(nr_entries, &nr_swap_pages);
1118 }
1119
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)1120 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1121 unsigned int nr_entries)
1122 {
1123 unsigned long begin = offset;
1124 unsigned long end = offset + nr_entries - 1;
1125 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1126 unsigned int i;
1127
1128 /*
1129 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1130 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1131 */
1132 for (i = 0; i < nr_entries; i++) {
1133 clear_bit(offset + i, si->zeromap);
1134 zswap_invalidate(swp_entry(si->type, offset + i));
1135 }
1136
1137 if (si->flags & SWP_BLKDEV)
1138 swap_slot_free_notify =
1139 si->bdev->bd_disk->fops->swap_slot_free_notify;
1140 else
1141 swap_slot_free_notify = NULL;
1142 while (offset <= end) {
1143 arch_swap_invalidate_page(si->type, offset);
1144 if (swap_slot_free_notify)
1145 swap_slot_free_notify(si->bdev, offset);
1146 offset++;
1147 }
1148 clear_shadow_from_swap_cache(si->type, begin, end);
1149
1150 /*
1151 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1152 * only after the above cleanups are done.
1153 */
1154 smp_wmb();
1155 atomic_long_add(nr_entries, &nr_swap_pages);
1156 swap_usage_sub(si, nr_entries);
1157 }
1158
get_swap_device_info(struct swap_info_struct * si)1159 static bool get_swap_device_info(struct swap_info_struct *si)
1160 {
1161 if (!percpu_ref_tryget_live(&si->users))
1162 return false;
1163 /*
1164 * Guarantee the si->users are checked before accessing other
1165 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1166 * up to dated.
1167 *
1168 * Paired with the spin_unlock() after setup_swap_info() in
1169 * enable_swap_info(), and smp_wmb() in swapoff.
1170 */
1171 smp_rmb();
1172 return true;
1173 }
1174
1175 /*
1176 * Fast path try to get swap entries with specified order from current
1177 * CPU's swap entry pool (a cluster).
1178 */
swap_alloc_fast(swp_entry_t * entry,int order)1179 static bool swap_alloc_fast(swp_entry_t *entry,
1180 int order)
1181 {
1182 struct swap_cluster_info *ci;
1183 struct swap_info_struct *si;
1184 unsigned int offset, found = SWAP_ENTRY_INVALID;
1185
1186 /*
1187 * Once allocated, swap_info_struct will never be completely freed,
1188 * so checking it's liveness by get_swap_device_info is enough.
1189 */
1190 si = this_cpu_read(percpu_swap_cluster.si[order]);
1191 offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1192 if (!si || !offset || !get_swap_device_info(si))
1193 return false;
1194
1195 ci = lock_cluster(si, offset);
1196 if (cluster_is_usable(ci, order)) {
1197 if (cluster_is_empty(ci))
1198 offset = cluster_offset(si, ci);
1199 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1200 if (found)
1201 *entry = swp_entry(si->type, found);
1202 } else {
1203 unlock_cluster(ci);
1204 }
1205
1206 put_swap_device(si);
1207 return !!found;
1208 }
1209
1210 /* Rotate the device and switch to a new cluster */
swap_alloc_slow(swp_entry_t * entry,int order)1211 static bool swap_alloc_slow(swp_entry_t *entry,
1212 int order)
1213 {
1214 int node;
1215 unsigned long offset;
1216 struct swap_info_struct *si, *next;
1217
1218 node = numa_node_id();
1219 spin_lock(&swap_avail_lock);
1220 start_over:
1221 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1222 /* Rotate the device and switch to a new cluster */
1223 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1224 spin_unlock(&swap_avail_lock);
1225 if (get_swap_device_info(si)) {
1226 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1227 put_swap_device(si);
1228 if (offset) {
1229 *entry = swp_entry(si->type, offset);
1230 return true;
1231 }
1232 if (order)
1233 return false;
1234 }
1235
1236 spin_lock(&swap_avail_lock);
1237 /*
1238 * if we got here, it's likely that si was almost full before,
1239 * and since scan_swap_map_slots() can drop the si->lock,
1240 * multiple callers probably all tried to get a page from the
1241 * same si and it filled up before we could get one; or, the si
1242 * filled up between us dropping swap_avail_lock and taking
1243 * si->lock. Since we dropped the swap_avail_lock, the
1244 * swap_avail_head list may have been modified; so if next is
1245 * still in the swap_avail_head list then try it, otherwise
1246 * start over if we have not gotten any slots.
1247 */
1248 if (plist_node_empty(&next->avail_lists[node]))
1249 goto start_over;
1250 }
1251 spin_unlock(&swap_avail_lock);
1252 return false;
1253 }
1254
1255 /**
1256 * folio_alloc_swap - allocate swap space for a folio
1257 * @folio: folio we want to move to swap
1258 * @gfp: gfp mask for shadow nodes
1259 *
1260 * Allocate swap space for the folio and add the folio to the
1261 * swap cache.
1262 *
1263 * Context: Caller needs to hold the folio lock.
1264 * Return: Whether the folio was added to the swap cache.
1265 */
folio_alloc_swap(struct folio * folio,gfp_t gfp)1266 int folio_alloc_swap(struct folio *folio, gfp_t gfp)
1267 {
1268 unsigned int order = folio_order(folio);
1269 unsigned int size = 1 << order;
1270 swp_entry_t entry = {};
1271
1272 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1273 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1274
1275 if (order) {
1276 /*
1277 * Reject large allocation when THP_SWAP is disabled,
1278 * the caller should split the folio and try again.
1279 */
1280 if (!IS_ENABLED(CONFIG_THP_SWAP))
1281 return -EAGAIN;
1282
1283 /*
1284 * Allocation size should never exceed cluster size
1285 * (HPAGE_PMD_SIZE).
1286 */
1287 if (size > SWAPFILE_CLUSTER) {
1288 VM_WARN_ON_ONCE(1);
1289 return -EINVAL;
1290 }
1291 }
1292
1293 local_lock(&percpu_swap_cluster.lock);
1294 if (!swap_alloc_fast(&entry, order))
1295 swap_alloc_slow(&entry, order);
1296 local_unlock(&percpu_swap_cluster.lock);
1297
1298 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1299 if (mem_cgroup_try_charge_swap(folio, entry))
1300 goto out_free;
1301
1302 if (!entry.val)
1303 return -ENOMEM;
1304
1305 /*
1306 * XArray node allocations from PF_MEMALLOC contexts could
1307 * completely exhaust the page allocator. __GFP_NOMEMALLOC
1308 * stops emergency reserves from being allocated.
1309 *
1310 * TODO: this could cause a theoretical memory reclaim
1311 * deadlock in the swap out path.
1312 */
1313 if (add_to_swap_cache(folio, entry, gfp | __GFP_NOMEMALLOC, NULL))
1314 goto out_free;
1315
1316 return 0;
1317
1318 out_free:
1319 put_swap_folio(folio, entry);
1320 return -ENOMEM;
1321 }
1322
_swap_info_get(swp_entry_t entry)1323 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1324 {
1325 struct swap_info_struct *si;
1326 unsigned long offset;
1327
1328 if (!entry.val)
1329 goto out;
1330 si = swp_swap_info(entry);
1331 if (!si)
1332 goto bad_nofile;
1333 if (data_race(!(si->flags & SWP_USED)))
1334 goto bad_device;
1335 offset = swp_offset(entry);
1336 if (offset >= si->max)
1337 goto bad_offset;
1338 if (data_race(!si->swap_map[swp_offset(entry)]))
1339 goto bad_free;
1340 return si;
1341
1342 bad_free:
1343 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1344 goto out;
1345 bad_offset:
1346 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1347 goto out;
1348 bad_device:
1349 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1350 goto out;
1351 bad_nofile:
1352 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1353 out:
1354 return NULL;
1355 }
1356
swap_entry_put_locked(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned char usage)1357 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1358 struct swap_cluster_info *ci,
1359 swp_entry_t entry,
1360 unsigned char usage)
1361 {
1362 unsigned long offset = swp_offset(entry);
1363 unsigned char count;
1364 unsigned char has_cache;
1365
1366 count = si->swap_map[offset];
1367
1368 has_cache = count & SWAP_HAS_CACHE;
1369 count &= ~SWAP_HAS_CACHE;
1370
1371 if (usage == SWAP_HAS_CACHE) {
1372 VM_BUG_ON(!has_cache);
1373 has_cache = 0;
1374 } else if (count == SWAP_MAP_SHMEM) {
1375 /*
1376 * Or we could insist on shmem.c using a special
1377 * swap_shmem_free() and free_shmem_swap_and_cache()...
1378 */
1379 count = 0;
1380 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1381 if (count == COUNT_CONTINUED) {
1382 if (swap_count_continued(si, offset, count))
1383 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1384 else
1385 count = SWAP_MAP_MAX;
1386 } else
1387 count--;
1388 }
1389
1390 usage = count | has_cache;
1391 if (usage)
1392 WRITE_ONCE(si->swap_map[offset], usage);
1393 else
1394 swap_entries_free(si, ci, entry, 1);
1395
1396 return usage;
1397 }
1398
1399 /*
1400 * When we get a swap entry, if there aren't some other ways to
1401 * prevent swapoff, such as the folio in swap cache is locked, RCU
1402 * reader side is locked, etc., the swap entry may become invalid
1403 * because of swapoff. Then, we need to enclose all swap related
1404 * functions with get_swap_device() and put_swap_device(), unless the
1405 * swap functions call get/put_swap_device() by themselves.
1406 *
1407 * RCU reader side lock (including any spinlock) is sufficient to
1408 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1409 * before freeing data structures.
1410 *
1411 * Check whether swap entry is valid in the swap device. If so,
1412 * return pointer to swap_info_struct, and keep the swap entry valid
1413 * via preventing the swap device from being swapoff, until
1414 * put_swap_device() is called. Otherwise return NULL.
1415 *
1416 * Notice that swapoff or swapoff+swapon can still happen before the
1417 * percpu_ref_tryget_live() in get_swap_device() or after the
1418 * percpu_ref_put() in put_swap_device() if there isn't any other way
1419 * to prevent swapoff. The caller must be prepared for that. For
1420 * example, the following situation is possible.
1421 *
1422 * CPU1 CPU2
1423 * do_swap_page()
1424 * ... swapoff+swapon
1425 * __read_swap_cache_async()
1426 * swapcache_prepare()
1427 * __swap_duplicate()
1428 * // check swap_map
1429 * // verify PTE not changed
1430 *
1431 * In __swap_duplicate(), the swap_map need to be checked before
1432 * changing partly because the specified swap entry may be for another
1433 * swap device which has been swapoff. And in do_swap_page(), after
1434 * the page is read from the swap device, the PTE is verified not
1435 * changed with the page table locked to check whether the swap device
1436 * has been swapoff or swapoff+swapon.
1437 */
get_swap_device(swp_entry_t entry)1438 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1439 {
1440 struct swap_info_struct *si;
1441 unsigned long offset;
1442
1443 if (!entry.val)
1444 goto out;
1445 si = swp_swap_info(entry);
1446 if (!si)
1447 goto bad_nofile;
1448 if (!get_swap_device_info(si))
1449 goto out;
1450 offset = swp_offset(entry);
1451 if (offset >= si->max)
1452 goto put_out;
1453
1454 return si;
1455 bad_nofile:
1456 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1457 out:
1458 return NULL;
1459 put_out:
1460 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1461 percpu_ref_put(&si->users);
1462 return NULL;
1463 }
1464
swap_entries_put_cache(struct swap_info_struct * si,swp_entry_t entry,int nr)1465 static void swap_entries_put_cache(struct swap_info_struct *si,
1466 swp_entry_t entry, int nr)
1467 {
1468 unsigned long offset = swp_offset(entry);
1469 struct swap_cluster_info *ci;
1470
1471 ci = lock_cluster(si, offset);
1472 if (swap_only_has_cache(si, offset, nr))
1473 swap_entries_free(si, ci, entry, nr);
1474 else {
1475 for (int i = 0; i < nr; i++, entry.val++)
1476 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1477 }
1478 unlock_cluster(ci);
1479 }
1480
swap_entries_put_map(struct swap_info_struct * si,swp_entry_t entry,int nr)1481 static bool swap_entries_put_map(struct swap_info_struct *si,
1482 swp_entry_t entry, int nr)
1483 {
1484 unsigned long offset = swp_offset(entry);
1485 struct swap_cluster_info *ci;
1486 bool has_cache = false;
1487 unsigned char count;
1488 int i;
1489
1490 if (nr <= 1)
1491 goto fallback;
1492 count = swap_count(data_race(si->swap_map[offset]));
1493 if (count != 1 && count != SWAP_MAP_SHMEM)
1494 goto fallback;
1495
1496 ci = lock_cluster(si, offset);
1497 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1498 goto locked_fallback;
1499 }
1500 if (!has_cache)
1501 swap_entries_free(si, ci, entry, nr);
1502 else
1503 for (i = 0; i < nr; i++)
1504 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1505 unlock_cluster(ci);
1506
1507 return has_cache;
1508
1509 fallback:
1510 ci = lock_cluster(si, offset);
1511 locked_fallback:
1512 for (i = 0; i < nr; i++, entry.val++) {
1513 count = swap_entry_put_locked(si, ci, entry, 1);
1514 if (count == SWAP_HAS_CACHE)
1515 has_cache = true;
1516 }
1517 unlock_cluster(ci);
1518 return has_cache;
1519
1520 }
1521
1522 /*
1523 * Only functions with "_nr" suffix are able to free entries spanning
1524 * cross multi clusters, so ensure the range is within a single cluster
1525 * when freeing entries with functions without "_nr" suffix.
1526 */
swap_entries_put_map_nr(struct swap_info_struct * si,swp_entry_t entry,int nr)1527 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1528 swp_entry_t entry, int nr)
1529 {
1530 int cluster_nr, cluster_rest;
1531 unsigned long offset = swp_offset(entry);
1532 bool has_cache = false;
1533
1534 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1535 while (nr) {
1536 cluster_nr = min(nr, cluster_rest);
1537 has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1538 cluster_rest = SWAPFILE_CLUSTER;
1539 nr -= cluster_nr;
1540 entry.val += cluster_nr;
1541 }
1542
1543 return has_cache;
1544 }
1545
1546 /*
1547 * Check if it's the last ref of swap entry in the freeing path.
1548 * Qualified vlaue includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1549 */
swap_is_last_ref(unsigned char count)1550 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1551 {
1552 return (count == SWAP_HAS_CACHE) || (count == 1) ||
1553 (count == SWAP_MAP_SHMEM);
1554 }
1555
1556 /*
1557 * Drop the last ref of swap entries, caller have to ensure all entries
1558 * belong to the same cgroup and cluster.
1559 */
swap_entries_free(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned int nr_pages)1560 static void swap_entries_free(struct swap_info_struct *si,
1561 struct swap_cluster_info *ci,
1562 swp_entry_t entry, unsigned int nr_pages)
1563 {
1564 unsigned long offset = swp_offset(entry);
1565 unsigned char *map = si->swap_map + offset;
1566 unsigned char *map_end = map + nr_pages;
1567
1568 /* It should never free entries across different clusters */
1569 VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1570 VM_BUG_ON(cluster_is_empty(ci));
1571 VM_BUG_ON(ci->count < nr_pages);
1572
1573 ci->count -= nr_pages;
1574 do {
1575 VM_BUG_ON(!swap_is_last_ref(*map));
1576 *map = 0;
1577 } while (++map < map_end);
1578
1579 mem_cgroup_uncharge_swap(entry, nr_pages);
1580 swap_range_free(si, offset, nr_pages);
1581
1582 if (!ci->count)
1583 free_cluster(si, ci);
1584 else
1585 partial_free_cluster(si, ci);
1586 }
1587
1588 /*
1589 * Caller has made sure that the swap device corresponding to entry
1590 * is still around or has not been recycled.
1591 */
swap_free_nr(swp_entry_t entry,int nr_pages)1592 void swap_free_nr(swp_entry_t entry, int nr_pages)
1593 {
1594 int nr;
1595 struct swap_info_struct *sis;
1596 unsigned long offset = swp_offset(entry);
1597
1598 sis = _swap_info_get(entry);
1599 if (!sis)
1600 return;
1601
1602 while (nr_pages) {
1603 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1604 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1605 offset += nr;
1606 nr_pages -= nr;
1607 }
1608 }
1609
1610 /*
1611 * Called after dropping swapcache to decrease refcnt to swap entries.
1612 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1613 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1614 {
1615 struct swap_info_struct *si;
1616 int size = 1 << swap_entry_order(folio_order(folio));
1617
1618 si = _swap_info_get(entry);
1619 if (!si)
1620 return;
1621
1622 swap_entries_put_cache(si, entry, size);
1623 }
1624
__swap_count(swp_entry_t entry)1625 int __swap_count(swp_entry_t entry)
1626 {
1627 struct swap_info_struct *si = swp_swap_info(entry);
1628 pgoff_t offset = swp_offset(entry);
1629
1630 return swap_count(si->swap_map[offset]);
1631 }
1632
1633 /*
1634 * How many references to @entry are currently swapped out?
1635 * This does not give an exact answer when swap count is continued,
1636 * but does include the high COUNT_CONTINUED flag to allow for that.
1637 */
swap_entry_swapped(struct swap_info_struct * si,swp_entry_t entry)1638 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1639 {
1640 pgoff_t offset = swp_offset(entry);
1641 struct swap_cluster_info *ci;
1642 int count;
1643
1644 ci = lock_cluster(si, offset);
1645 count = swap_count(si->swap_map[offset]);
1646 unlock_cluster(ci);
1647 return !!count;
1648 }
1649
1650 /*
1651 * How many references to @entry are currently swapped out?
1652 * This considers COUNT_CONTINUED so it returns exact answer.
1653 */
swp_swapcount(swp_entry_t entry)1654 int swp_swapcount(swp_entry_t entry)
1655 {
1656 int count, tmp_count, n;
1657 struct swap_info_struct *si;
1658 struct swap_cluster_info *ci;
1659 struct page *page;
1660 pgoff_t offset;
1661 unsigned char *map;
1662
1663 si = _swap_info_get(entry);
1664 if (!si)
1665 return 0;
1666
1667 offset = swp_offset(entry);
1668
1669 ci = lock_cluster(si, offset);
1670
1671 count = swap_count(si->swap_map[offset]);
1672 if (!(count & COUNT_CONTINUED))
1673 goto out;
1674
1675 count &= ~COUNT_CONTINUED;
1676 n = SWAP_MAP_MAX + 1;
1677
1678 page = vmalloc_to_page(si->swap_map + offset);
1679 offset &= ~PAGE_MASK;
1680 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1681
1682 do {
1683 page = list_next_entry(page, lru);
1684 map = kmap_local_page(page);
1685 tmp_count = map[offset];
1686 kunmap_local(map);
1687
1688 count += (tmp_count & ~COUNT_CONTINUED) * n;
1689 n *= (SWAP_CONT_MAX + 1);
1690 } while (tmp_count & COUNT_CONTINUED);
1691 out:
1692 unlock_cluster(ci);
1693 return count;
1694 }
1695
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1696 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1697 swp_entry_t entry, int order)
1698 {
1699 struct swap_cluster_info *ci;
1700 unsigned char *map = si->swap_map;
1701 unsigned int nr_pages = 1 << order;
1702 unsigned long roffset = swp_offset(entry);
1703 unsigned long offset = round_down(roffset, nr_pages);
1704 int i;
1705 bool ret = false;
1706
1707 ci = lock_cluster(si, offset);
1708 if (nr_pages == 1) {
1709 if (swap_count(map[roffset]))
1710 ret = true;
1711 goto unlock_out;
1712 }
1713 for (i = 0; i < nr_pages; i++) {
1714 if (swap_count(map[offset + i])) {
1715 ret = true;
1716 break;
1717 }
1718 }
1719 unlock_out:
1720 unlock_cluster(ci);
1721 return ret;
1722 }
1723
folio_swapped(struct folio * folio)1724 static bool folio_swapped(struct folio *folio)
1725 {
1726 swp_entry_t entry = folio->swap;
1727 struct swap_info_struct *si = _swap_info_get(entry);
1728
1729 if (!si)
1730 return false;
1731
1732 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1733 return swap_entry_swapped(si, entry);
1734
1735 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1736 }
1737
folio_swapcache_freeable(struct folio * folio)1738 static bool folio_swapcache_freeable(struct folio *folio)
1739 {
1740 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1741
1742 if (!folio_test_swapcache(folio))
1743 return false;
1744 if (folio_test_writeback(folio))
1745 return false;
1746
1747 /*
1748 * Once hibernation has begun to create its image of memory,
1749 * there's a danger that one of the calls to folio_free_swap()
1750 * - most probably a call from __try_to_reclaim_swap() while
1751 * hibernation is allocating its own swap pages for the image,
1752 * but conceivably even a call from memory reclaim - will free
1753 * the swap from a folio which has already been recorded in the
1754 * image as a clean swapcache folio, and then reuse its swap for
1755 * another page of the image. On waking from hibernation, the
1756 * original folio might be freed under memory pressure, then
1757 * later read back in from swap, now with the wrong data.
1758 *
1759 * Hibernation suspends storage while it is writing the image
1760 * to disk so check that here.
1761 */
1762 if (pm_suspended_storage())
1763 return false;
1764
1765 return true;
1766 }
1767
1768 /**
1769 * folio_free_swap() - Free the swap space used for this folio.
1770 * @folio: The folio to remove.
1771 *
1772 * If swap is getting full, or if there are no more mappings of this folio,
1773 * then call folio_free_swap to free its swap space.
1774 *
1775 * Return: true if we were able to release the swap space.
1776 */
folio_free_swap(struct folio * folio)1777 bool folio_free_swap(struct folio *folio)
1778 {
1779 if (!folio_swapcache_freeable(folio))
1780 return false;
1781 if (folio_swapped(folio))
1782 return false;
1783
1784 delete_from_swap_cache(folio);
1785 folio_set_dirty(folio);
1786 return true;
1787 }
1788
1789 /**
1790 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1791 * reclaim their cache if no more references remain.
1792 * @entry: First entry of range.
1793 * @nr: Number of entries in range.
1794 *
1795 * For each swap entry in the contiguous range, release a reference. If any swap
1796 * entries become free, try to reclaim their underlying folios, if present. The
1797 * offset range is defined by [entry.offset, entry.offset + nr).
1798 */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1799 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1800 {
1801 const unsigned long start_offset = swp_offset(entry);
1802 const unsigned long end_offset = start_offset + nr;
1803 struct swap_info_struct *si;
1804 bool any_only_cache = false;
1805 unsigned long offset;
1806
1807 si = get_swap_device(entry);
1808 if (!si)
1809 return;
1810
1811 if (WARN_ON(end_offset > si->max))
1812 goto out;
1813
1814 /*
1815 * First free all entries in the range.
1816 */
1817 any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1818
1819 /*
1820 * Short-circuit the below loop if none of the entries had their
1821 * reference drop to zero.
1822 */
1823 if (!any_only_cache)
1824 goto out;
1825
1826 /*
1827 * Now go back over the range trying to reclaim the swap cache.
1828 */
1829 for (offset = start_offset; offset < end_offset; offset += nr) {
1830 nr = 1;
1831 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1832 /*
1833 * Folios are always naturally aligned in swap so
1834 * advance forward to the next boundary. Zero means no
1835 * folio was found for the swap entry, so advance by 1
1836 * in this case. Negative value means folio was found
1837 * but could not be reclaimed. Here we can still advance
1838 * to the next boundary.
1839 */
1840 nr = __try_to_reclaim_swap(si, offset,
1841 TTRS_UNMAPPED | TTRS_FULL);
1842 if (nr == 0)
1843 nr = 1;
1844 else if (nr < 0)
1845 nr = -nr;
1846 nr = ALIGN(offset + 1, nr) - offset;
1847 }
1848 }
1849
1850 out:
1851 put_swap_device(si);
1852 }
1853
1854 #ifdef CONFIG_HIBERNATION
1855
get_swap_page_of_type(int type)1856 swp_entry_t get_swap_page_of_type(int type)
1857 {
1858 struct swap_info_struct *si = swap_type_to_swap_info(type);
1859 unsigned long offset;
1860 swp_entry_t entry = {0};
1861
1862 if (!si)
1863 goto fail;
1864
1865 /* This is called for allocating swap entry, not cache */
1866 if (get_swap_device_info(si)) {
1867 if (si->flags & SWP_WRITEOK) {
1868 offset = cluster_alloc_swap_entry(si, 0, 1);
1869 if (offset) {
1870 entry = swp_entry(si->type, offset);
1871 atomic_long_dec(&nr_swap_pages);
1872 }
1873 }
1874 put_swap_device(si);
1875 }
1876 fail:
1877 return entry;
1878 }
1879
1880 /*
1881 * Find the swap type that corresponds to given device (if any).
1882 *
1883 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1884 * from 0, in which the swap header is expected to be located.
1885 *
1886 * This is needed for the suspend to disk (aka swsusp).
1887 */
swap_type_of(dev_t device,sector_t offset)1888 int swap_type_of(dev_t device, sector_t offset)
1889 {
1890 int type;
1891
1892 if (!device)
1893 return -1;
1894
1895 spin_lock(&swap_lock);
1896 for (type = 0; type < nr_swapfiles; type++) {
1897 struct swap_info_struct *sis = swap_info[type];
1898
1899 if (!(sis->flags & SWP_WRITEOK))
1900 continue;
1901
1902 if (device == sis->bdev->bd_dev) {
1903 struct swap_extent *se = first_se(sis);
1904
1905 if (se->start_block == offset) {
1906 spin_unlock(&swap_lock);
1907 return type;
1908 }
1909 }
1910 }
1911 spin_unlock(&swap_lock);
1912 return -ENODEV;
1913 }
1914
find_first_swap(dev_t * device)1915 int find_first_swap(dev_t *device)
1916 {
1917 int type;
1918
1919 spin_lock(&swap_lock);
1920 for (type = 0; type < nr_swapfiles; type++) {
1921 struct swap_info_struct *sis = swap_info[type];
1922
1923 if (!(sis->flags & SWP_WRITEOK))
1924 continue;
1925 *device = sis->bdev->bd_dev;
1926 spin_unlock(&swap_lock);
1927 return type;
1928 }
1929 spin_unlock(&swap_lock);
1930 return -ENODEV;
1931 }
1932
1933 /*
1934 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1935 * corresponding to given index in swap_info (swap type).
1936 */
swapdev_block(int type,pgoff_t offset)1937 sector_t swapdev_block(int type, pgoff_t offset)
1938 {
1939 struct swap_info_struct *si = swap_type_to_swap_info(type);
1940 struct swap_extent *se;
1941
1942 if (!si || !(si->flags & SWP_WRITEOK))
1943 return 0;
1944 se = offset_to_swap_extent(si, offset);
1945 return se->start_block + (offset - se->start_page);
1946 }
1947
1948 /*
1949 * Return either the total number of swap pages of given type, or the number
1950 * of free pages of that type (depending on @free)
1951 *
1952 * This is needed for software suspend
1953 */
count_swap_pages(int type,int free)1954 unsigned int count_swap_pages(int type, int free)
1955 {
1956 unsigned int n = 0;
1957
1958 spin_lock(&swap_lock);
1959 if ((unsigned int)type < nr_swapfiles) {
1960 struct swap_info_struct *sis = swap_info[type];
1961
1962 spin_lock(&sis->lock);
1963 if (sis->flags & SWP_WRITEOK) {
1964 n = sis->pages;
1965 if (free)
1966 n -= swap_usage_in_pages(sis);
1967 }
1968 spin_unlock(&sis->lock);
1969 }
1970 spin_unlock(&swap_lock);
1971 return n;
1972 }
1973 #endif /* CONFIG_HIBERNATION */
1974
pte_same_as_swp(pte_t pte,pte_t swp_pte)1975 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1976 {
1977 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1978 }
1979
1980 /*
1981 * No need to decide whether this PTE shares the swap entry with others,
1982 * just let do_wp_page work it out if a write is requested later - to
1983 * force COW, vm_page_prot omits write permission from any private vma.
1984 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)1985 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1986 unsigned long addr, swp_entry_t entry, struct folio *folio)
1987 {
1988 struct page *page;
1989 struct folio *swapcache;
1990 spinlock_t *ptl;
1991 pte_t *pte, new_pte, old_pte;
1992 bool hwpoisoned = false;
1993 int ret = 1;
1994
1995 swapcache = folio;
1996 folio = ksm_might_need_to_copy(folio, vma, addr);
1997 if (unlikely(!folio))
1998 return -ENOMEM;
1999 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2000 hwpoisoned = true;
2001 folio = swapcache;
2002 }
2003
2004 page = folio_file_page(folio, swp_offset(entry));
2005 if (PageHWPoison(page))
2006 hwpoisoned = true;
2007
2008 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2009 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2010 swp_entry_to_pte(entry)))) {
2011 ret = 0;
2012 goto out;
2013 }
2014
2015 old_pte = ptep_get(pte);
2016
2017 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2018 swp_entry_t swp_entry;
2019
2020 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2021 if (hwpoisoned) {
2022 swp_entry = make_hwpoison_entry(page);
2023 } else {
2024 swp_entry = make_poisoned_swp_entry();
2025 }
2026 new_pte = swp_entry_to_pte(swp_entry);
2027 ret = 0;
2028 goto setpte;
2029 }
2030
2031 /*
2032 * Some architectures may have to restore extra metadata to the page
2033 * when reading from swap. This metadata may be indexed by swap entry
2034 * so this must be called before swap_free().
2035 */
2036 arch_swap_restore(folio_swap(entry, folio), folio);
2037
2038 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2039 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2040 folio_get(folio);
2041 if (folio == swapcache) {
2042 rmap_t rmap_flags = RMAP_NONE;
2043
2044 /*
2045 * See do_swap_page(): writeback would be problematic.
2046 * However, we do a folio_wait_writeback() just before this
2047 * call and have the folio locked.
2048 */
2049 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2050 if (pte_swp_exclusive(old_pte))
2051 rmap_flags |= RMAP_EXCLUSIVE;
2052 /*
2053 * We currently only expect small !anon folios, which are either
2054 * fully exclusive or fully shared. If we ever get large folios
2055 * here, we have to be careful.
2056 */
2057 if (!folio_test_anon(folio)) {
2058 VM_WARN_ON_ONCE(folio_test_large(folio));
2059 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2060 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2061 } else {
2062 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2063 }
2064 } else { /* ksm created a completely new copy */
2065 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2066 folio_add_lru_vma(folio, vma);
2067 }
2068 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2069 if (pte_swp_soft_dirty(old_pte))
2070 new_pte = pte_mksoft_dirty(new_pte);
2071 if (pte_swp_uffd_wp(old_pte))
2072 new_pte = pte_mkuffd_wp(new_pte);
2073 setpte:
2074 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2075 swap_free(entry);
2076 out:
2077 if (pte)
2078 pte_unmap_unlock(pte, ptl);
2079 if (folio != swapcache) {
2080 folio_unlock(folio);
2081 folio_put(folio);
2082 }
2083 return ret;
2084 }
2085
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2086 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2087 unsigned long addr, unsigned long end,
2088 unsigned int type)
2089 {
2090 pte_t *pte = NULL;
2091 struct swap_info_struct *si;
2092
2093 si = swap_info[type];
2094 do {
2095 struct folio *folio;
2096 unsigned long offset;
2097 unsigned char swp_count;
2098 swp_entry_t entry;
2099 int ret;
2100 pte_t ptent;
2101
2102 if (!pte++) {
2103 pte = pte_offset_map(pmd, addr);
2104 if (!pte)
2105 break;
2106 }
2107
2108 ptent = ptep_get_lockless(pte);
2109
2110 if (!is_swap_pte(ptent))
2111 continue;
2112
2113 entry = pte_to_swp_entry(ptent);
2114 if (swp_type(entry) != type)
2115 continue;
2116
2117 offset = swp_offset(entry);
2118 pte_unmap(pte);
2119 pte = NULL;
2120
2121 folio = swap_cache_get_folio(entry, vma, addr);
2122 if (!folio) {
2123 struct vm_fault vmf = {
2124 .vma = vma,
2125 .address = addr,
2126 .real_address = addr,
2127 .pmd = pmd,
2128 };
2129
2130 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2131 &vmf);
2132 }
2133 if (!folio) {
2134 swp_count = READ_ONCE(si->swap_map[offset]);
2135 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2136 continue;
2137 return -ENOMEM;
2138 }
2139
2140 folio_lock(folio);
2141 folio_wait_writeback(folio);
2142 ret = unuse_pte(vma, pmd, addr, entry, folio);
2143 if (ret < 0) {
2144 folio_unlock(folio);
2145 folio_put(folio);
2146 return ret;
2147 }
2148
2149 folio_free_swap(folio);
2150 folio_unlock(folio);
2151 folio_put(folio);
2152 } while (addr += PAGE_SIZE, addr != end);
2153
2154 if (pte)
2155 pte_unmap(pte);
2156 return 0;
2157 }
2158
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2159 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2160 unsigned long addr, unsigned long end,
2161 unsigned int type)
2162 {
2163 pmd_t *pmd;
2164 unsigned long next;
2165 int ret;
2166
2167 pmd = pmd_offset(pud, addr);
2168 do {
2169 cond_resched();
2170 next = pmd_addr_end(addr, end);
2171 ret = unuse_pte_range(vma, pmd, addr, next, type);
2172 if (ret)
2173 return ret;
2174 } while (pmd++, addr = next, addr != end);
2175 return 0;
2176 }
2177
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2178 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2179 unsigned long addr, unsigned long end,
2180 unsigned int type)
2181 {
2182 pud_t *pud;
2183 unsigned long next;
2184 int ret;
2185
2186 pud = pud_offset(p4d, addr);
2187 do {
2188 next = pud_addr_end(addr, end);
2189 if (pud_none_or_clear_bad(pud))
2190 continue;
2191 ret = unuse_pmd_range(vma, pud, addr, next, type);
2192 if (ret)
2193 return ret;
2194 } while (pud++, addr = next, addr != end);
2195 return 0;
2196 }
2197
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2198 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2199 unsigned long addr, unsigned long end,
2200 unsigned int type)
2201 {
2202 p4d_t *p4d;
2203 unsigned long next;
2204 int ret;
2205
2206 p4d = p4d_offset(pgd, addr);
2207 do {
2208 next = p4d_addr_end(addr, end);
2209 if (p4d_none_or_clear_bad(p4d))
2210 continue;
2211 ret = unuse_pud_range(vma, p4d, addr, next, type);
2212 if (ret)
2213 return ret;
2214 } while (p4d++, addr = next, addr != end);
2215 return 0;
2216 }
2217
unuse_vma(struct vm_area_struct * vma,unsigned int type)2218 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2219 {
2220 pgd_t *pgd;
2221 unsigned long addr, end, next;
2222 int ret;
2223
2224 addr = vma->vm_start;
2225 end = vma->vm_end;
2226
2227 pgd = pgd_offset(vma->vm_mm, addr);
2228 do {
2229 next = pgd_addr_end(addr, end);
2230 if (pgd_none_or_clear_bad(pgd))
2231 continue;
2232 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2233 if (ret)
2234 return ret;
2235 } while (pgd++, addr = next, addr != end);
2236 return 0;
2237 }
2238
unuse_mm(struct mm_struct * mm,unsigned int type)2239 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2240 {
2241 struct vm_area_struct *vma;
2242 int ret = 0;
2243 VMA_ITERATOR(vmi, mm, 0);
2244
2245 mmap_read_lock(mm);
2246 for_each_vma(vmi, vma) {
2247 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2248 ret = unuse_vma(vma, type);
2249 if (ret)
2250 break;
2251 }
2252
2253 cond_resched();
2254 }
2255 mmap_read_unlock(mm);
2256 return ret;
2257 }
2258
2259 /*
2260 * Scan swap_map from current position to next entry still in use.
2261 * Return 0 if there are no inuse entries after prev till end of
2262 * the map.
2263 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2264 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2265 unsigned int prev)
2266 {
2267 unsigned int i;
2268 unsigned char count;
2269
2270 /*
2271 * No need for swap_lock here: we're just looking
2272 * for whether an entry is in use, not modifying it; false
2273 * hits are okay, and sys_swapoff() has already prevented new
2274 * allocations from this area (while holding swap_lock).
2275 */
2276 for (i = prev + 1; i < si->max; i++) {
2277 count = READ_ONCE(si->swap_map[i]);
2278 if (count && swap_count(count) != SWAP_MAP_BAD)
2279 break;
2280 if ((i % LATENCY_LIMIT) == 0)
2281 cond_resched();
2282 }
2283
2284 if (i == si->max)
2285 i = 0;
2286
2287 return i;
2288 }
2289
try_to_unuse(unsigned int type)2290 static int try_to_unuse(unsigned int type)
2291 {
2292 struct mm_struct *prev_mm;
2293 struct mm_struct *mm;
2294 struct list_head *p;
2295 int retval = 0;
2296 struct swap_info_struct *si = swap_info[type];
2297 struct folio *folio;
2298 swp_entry_t entry;
2299 unsigned int i;
2300
2301 if (!swap_usage_in_pages(si))
2302 goto success;
2303
2304 retry:
2305 retval = shmem_unuse(type);
2306 if (retval)
2307 return retval;
2308
2309 prev_mm = &init_mm;
2310 mmget(prev_mm);
2311
2312 spin_lock(&mmlist_lock);
2313 p = &init_mm.mmlist;
2314 while (swap_usage_in_pages(si) &&
2315 !signal_pending(current) &&
2316 (p = p->next) != &init_mm.mmlist) {
2317
2318 mm = list_entry(p, struct mm_struct, mmlist);
2319 if (!mmget_not_zero(mm))
2320 continue;
2321 spin_unlock(&mmlist_lock);
2322 mmput(prev_mm);
2323 prev_mm = mm;
2324 retval = unuse_mm(mm, type);
2325 if (retval) {
2326 mmput(prev_mm);
2327 return retval;
2328 }
2329
2330 /*
2331 * Make sure that we aren't completely killing
2332 * interactive performance.
2333 */
2334 cond_resched();
2335 spin_lock(&mmlist_lock);
2336 }
2337 spin_unlock(&mmlist_lock);
2338
2339 mmput(prev_mm);
2340
2341 i = 0;
2342 while (swap_usage_in_pages(si) &&
2343 !signal_pending(current) &&
2344 (i = find_next_to_unuse(si, i)) != 0) {
2345
2346 entry = swp_entry(type, i);
2347 folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2348 if (IS_ERR(folio))
2349 continue;
2350
2351 /*
2352 * It is conceivable that a racing task removed this folio from
2353 * swap cache just before we acquired the page lock. The folio
2354 * might even be back in swap cache on another swap area. But
2355 * that is okay, folio_free_swap() only removes stale folios.
2356 */
2357 folio_lock(folio);
2358 folio_wait_writeback(folio);
2359 folio_free_swap(folio);
2360 folio_unlock(folio);
2361 folio_put(folio);
2362 }
2363
2364 /*
2365 * Lets check again to see if there are still swap entries in the map.
2366 * If yes, we would need to do retry the unuse logic again.
2367 * Under global memory pressure, swap entries can be reinserted back
2368 * into process space after the mmlist loop above passes over them.
2369 *
2370 * Limit the number of retries? No: when mmget_not_zero()
2371 * above fails, that mm is likely to be freeing swap from
2372 * exit_mmap(), which proceeds at its own independent pace;
2373 * and even shmem_writeout() could have been preempted after
2374 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2375 * and robust (though cpu-intensive) just to keep retrying.
2376 */
2377 if (swap_usage_in_pages(si)) {
2378 if (!signal_pending(current))
2379 goto retry;
2380 return -EINTR;
2381 }
2382
2383 success:
2384 /*
2385 * Make sure that further cleanups after try_to_unuse() returns happen
2386 * after swap_range_free() reduces si->inuse_pages to 0.
2387 */
2388 smp_mb();
2389 return 0;
2390 }
2391
2392 /*
2393 * After a successful try_to_unuse, if no swap is now in use, we know
2394 * we can empty the mmlist. swap_lock must be held on entry and exit.
2395 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2396 * added to the mmlist just after page_duplicate - before would be racy.
2397 */
drain_mmlist(void)2398 static void drain_mmlist(void)
2399 {
2400 struct list_head *p, *next;
2401 unsigned int type;
2402
2403 for (type = 0; type < nr_swapfiles; type++)
2404 if (swap_usage_in_pages(swap_info[type]))
2405 return;
2406 spin_lock(&mmlist_lock);
2407 list_for_each_safe(p, next, &init_mm.mmlist)
2408 list_del_init(p);
2409 spin_unlock(&mmlist_lock);
2410 }
2411
2412 /*
2413 * Free all of a swapdev's extent information
2414 */
destroy_swap_extents(struct swap_info_struct * sis)2415 static void destroy_swap_extents(struct swap_info_struct *sis)
2416 {
2417 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2418 struct rb_node *rb = sis->swap_extent_root.rb_node;
2419 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2420
2421 rb_erase(rb, &sis->swap_extent_root);
2422 kfree(se);
2423 }
2424
2425 if (sis->flags & SWP_ACTIVATED) {
2426 struct file *swap_file = sis->swap_file;
2427 struct address_space *mapping = swap_file->f_mapping;
2428
2429 sis->flags &= ~SWP_ACTIVATED;
2430 if (mapping->a_ops->swap_deactivate)
2431 mapping->a_ops->swap_deactivate(swap_file);
2432 }
2433 }
2434
2435 /*
2436 * Add a block range (and the corresponding page range) into this swapdev's
2437 * extent tree.
2438 *
2439 * This function rather assumes that it is called in ascending page order.
2440 */
2441 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2442 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2443 unsigned long nr_pages, sector_t start_block)
2444 {
2445 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2446 struct swap_extent *se;
2447 struct swap_extent *new_se;
2448
2449 /*
2450 * place the new node at the right most since the
2451 * function is called in ascending page order.
2452 */
2453 while (*link) {
2454 parent = *link;
2455 link = &parent->rb_right;
2456 }
2457
2458 if (parent) {
2459 se = rb_entry(parent, struct swap_extent, rb_node);
2460 BUG_ON(se->start_page + se->nr_pages != start_page);
2461 if (se->start_block + se->nr_pages == start_block) {
2462 /* Merge it */
2463 se->nr_pages += nr_pages;
2464 return 0;
2465 }
2466 }
2467
2468 /* No merge, insert a new extent. */
2469 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2470 if (new_se == NULL)
2471 return -ENOMEM;
2472 new_se->start_page = start_page;
2473 new_se->nr_pages = nr_pages;
2474 new_se->start_block = start_block;
2475
2476 rb_link_node(&new_se->rb_node, parent, link);
2477 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2478 return 1;
2479 }
2480 EXPORT_SYMBOL_GPL(add_swap_extent);
2481
2482 /*
2483 * A `swap extent' is a simple thing which maps a contiguous range of pages
2484 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2485 * built at swapon time and is then used at swap_writepage/swap_read_folio
2486 * time for locating where on disk a page belongs.
2487 *
2488 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2489 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2490 * swap files identically.
2491 *
2492 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2493 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2494 * swapfiles are handled *identically* after swapon time.
2495 *
2496 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2497 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2498 * blocks are found which do not fall within the PAGE_SIZE alignment
2499 * requirements, they are simply tossed out - we will never use those blocks
2500 * for swapping.
2501 *
2502 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2503 * prevents users from writing to the swap device, which will corrupt memory.
2504 *
2505 * The amount of disk space which a single swap extent represents varies.
2506 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2507 * extents in the rbtree. - akpm.
2508 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2509 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2510 {
2511 struct file *swap_file = sis->swap_file;
2512 struct address_space *mapping = swap_file->f_mapping;
2513 struct inode *inode = mapping->host;
2514 int ret;
2515
2516 if (S_ISBLK(inode->i_mode)) {
2517 ret = add_swap_extent(sis, 0, sis->max, 0);
2518 *span = sis->pages;
2519 return ret;
2520 }
2521
2522 if (mapping->a_ops->swap_activate) {
2523 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2524 if (ret < 0)
2525 return ret;
2526 sis->flags |= SWP_ACTIVATED;
2527 if ((sis->flags & SWP_FS_OPS) &&
2528 sio_pool_init() != 0) {
2529 destroy_swap_extents(sis);
2530 return -ENOMEM;
2531 }
2532 return ret;
2533 }
2534
2535 return generic_swapfile_activate(sis, swap_file, span);
2536 }
2537
swap_node(struct swap_info_struct * si)2538 static int swap_node(struct swap_info_struct *si)
2539 {
2540 struct block_device *bdev;
2541
2542 if (si->bdev)
2543 bdev = si->bdev;
2544 else
2545 bdev = si->swap_file->f_inode->i_sb->s_bdev;
2546
2547 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2548 }
2549
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2550 static void setup_swap_info(struct swap_info_struct *si, int prio,
2551 unsigned char *swap_map,
2552 struct swap_cluster_info *cluster_info,
2553 unsigned long *zeromap)
2554 {
2555 int i;
2556
2557 if (prio >= 0)
2558 si->prio = prio;
2559 else
2560 si->prio = --least_priority;
2561 /*
2562 * the plist prio is negated because plist ordering is
2563 * low-to-high, while swap ordering is high-to-low
2564 */
2565 si->list.prio = -si->prio;
2566 for_each_node(i) {
2567 if (si->prio >= 0)
2568 si->avail_lists[i].prio = -si->prio;
2569 else {
2570 if (swap_node(si) == i)
2571 si->avail_lists[i].prio = 1;
2572 else
2573 si->avail_lists[i].prio = -si->prio;
2574 }
2575 }
2576 si->swap_map = swap_map;
2577 si->cluster_info = cluster_info;
2578 si->zeromap = zeromap;
2579 }
2580
_enable_swap_info(struct swap_info_struct * si)2581 static void _enable_swap_info(struct swap_info_struct *si)
2582 {
2583 atomic_long_add(si->pages, &nr_swap_pages);
2584 total_swap_pages += si->pages;
2585
2586 assert_spin_locked(&swap_lock);
2587 /*
2588 * both lists are plists, and thus priority ordered.
2589 * swap_active_head needs to be priority ordered for swapoff(),
2590 * which on removal of any swap_info_struct with an auto-assigned
2591 * (i.e. negative) priority increments the auto-assigned priority
2592 * of any lower-priority swap_info_structs.
2593 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2594 * which allocates swap pages from the highest available priority
2595 * swap_info_struct.
2596 */
2597 plist_add(&si->list, &swap_active_head);
2598
2599 /* Add back to available list */
2600 add_to_avail_list(si, true);
2601 }
2602
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2603 static void enable_swap_info(struct swap_info_struct *si, int prio,
2604 unsigned char *swap_map,
2605 struct swap_cluster_info *cluster_info,
2606 unsigned long *zeromap)
2607 {
2608 spin_lock(&swap_lock);
2609 spin_lock(&si->lock);
2610 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2611 spin_unlock(&si->lock);
2612 spin_unlock(&swap_lock);
2613 /*
2614 * Finished initializing swap device, now it's safe to reference it.
2615 */
2616 percpu_ref_resurrect(&si->users);
2617 spin_lock(&swap_lock);
2618 spin_lock(&si->lock);
2619 _enable_swap_info(si);
2620 spin_unlock(&si->lock);
2621 spin_unlock(&swap_lock);
2622 }
2623
reinsert_swap_info(struct swap_info_struct * si)2624 static void reinsert_swap_info(struct swap_info_struct *si)
2625 {
2626 spin_lock(&swap_lock);
2627 spin_lock(&si->lock);
2628 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2629 _enable_swap_info(si);
2630 spin_unlock(&si->lock);
2631 spin_unlock(&swap_lock);
2632 }
2633
2634 /*
2635 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2636 * see the updated flags, so there will be no more allocations.
2637 */
wait_for_allocation(struct swap_info_struct * si)2638 static void wait_for_allocation(struct swap_info_struct *si)
2639 {
2640 unsigned long offset;
2641 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2642 struct swap_cluster_info *ci;
2643
2644 BUG_ON(si->flags & SWP_WRITEOK);
2645
2646 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2647 ci = lock_cluster(si, offset);
2648 unlock_cluster(ci);
2649 }
2650 }
2651
2652 /*
2653 * Called after swap device's reference count is dead, so
2654 * neither scan nor allocation will use it.
2655 */
flush_percpu_swap_cluster(struct swap_info_struct * si)2656 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2657 {
2658 int cpu, i;
2659 struct swap_info_struct **pcp_si;
2660
2661 for_each_possible_cpu(cpu) {
2662 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2663 /*
2664 * Invalidate the percpu swap cluster cache, si->users
2665 * is dead, so no new user will point to it, just flush
2666 * any existing user.
2667 */
2668 for (i = 0; i < SWAP_NR_ORDERS; i++)
2669 cmpxchg(&pcp_si[i], si, NULL);
2670 }
2671 }
2672
2673
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2674 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2675 {
2676 struct swap_info_struct *p = NULL;
2677 unsigned char *swap_map;
2678 unsigned long *zeromap;
2679 struct swap_cluster_info *cluster_info;
2680 struct file *swap_file, *victim;
2681 struct address_space *mapping;
2682 struct inode *inode;
2683 struct filename *pathname;
2684 int err, found = 0;
2685
2686 if (!capable(CAP_SYS_ADMIN))
2687 return -EPERM;
2688
2689 BUG_ON(!current->mm);
2690
2691 pathname = getname(specialfile);
2692 if (IS_ERR(pathname))
2693 return PTR_ERR(pathname);
2694
2695 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2696 err = PTR_ERR(victim);
2697 if (IS_ERR(victim))
2698 goto out;
2699
2700 mapping = victim->f_mapping;
2701 spin_lock(&swap_lock);
2702 plist_for_each_entry(p, &swap_active_head, list) {
2703 if (p->flags & SWP_WRITEOK) {
2704 if (p->swap_file->f_mapping == mapping) {
2705 found = 1;
2706 break;
2707 }
2708 }
2709 }
2710 if (!found) {
2711 err = -EINVAL;
2712 spin_unlock(&swap_lock);
2713 goto out_dput;
2714 }
2715 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2716 vm_unacct_memory(p->pages);
2717 else {
2718 err = -ENOMEM;
2719 spin_unlock(&swap_lock);
2720 goto out_dput;
2721 }
2722 spin_lock(&p->lock);
2723 del_from_avail_list(p, true);
2724 if (p->prio < 0) {
2725 struct swap_info_struct *si = p;
2726 int nid;
2727
2728 plist_for_each_entry_continue(si, &swap_active_head, list) {
2729 si->prio++;
2730 si->list.prio--;
2731 for_each_node(nid) {
2732 if (si->avail_lists[nid].prio != 1)
2733 si->avail_lists[nid].prio--;
2734 }
2735 }
2736 least_priority++;
2737 }
2738 plist_del(&p->list, &swap_active_head);
2739 atomic_long_sub(p->pages, &nr_swap_pages);
2740 total_swap_pages -= p->pages;
2741 spin_unlock(&p->lock);
2742 spin_unlock(&swap_lock);
2743
2744 wait_for_allocation(p);
2745
2746 set_current_oom_origin();
2747 err = try_to_unuse(p->type);
2748 clear_current_oom_origin();
2749
2750 if (err) {
2751 /* re-insert swap space back into swap_list */
2752 reinsert_swap_info(p);
2753 goto out_dput;
2754 }
2755
2756 /*
2757 * Wait for swap operations protected by get/put_swap_device()
2758 * to complete. Because of synchronize_rcu() here, all swap
2759 * operations protected by RCU reader side lock (including any
2760 * spinlock) will be waited too. This makes it easy to
2761 * prevent folio_test_swapcache() and the following swap cache
2762 * operations from racing with swapoff.
2763 */
2764 percpu_ref_kill(&p->users);
2765 synchronize_rcu();
2766 wait_for_completion(&p->comp);
2767
2768 flush_work(&p->discard_work);
2769 flush_work(&p->reclaim_work);
2770 flush_percpu_swap_cluster(p);
2771
2772 destroy_swap_extents(p);
2773 if (p->flags & SWP_CONTINUED)
2774 free_swap_count_continuations(p);
2775
2776 if (!p->bdev || !bdev_nonrot(p->bdev))
2777 atomic_dec(&nr_rotate_swap);
2778
2779 mutex_lock(&swapon_mutex);
2780 spin_lock(&swap_lock);
2781 spin_lock(&p->lock);
2782 drain_mmlist();
2783
2784 swap_file = p->swap_file;
2785 p->swap_file = NULL;
2786 p->max = 0;
2787 swap_map = p->swap_map;
2788 p->swap_map = NULL;
2789 zeromap = p->zeromap;
2790 p->zeromap = NULL;
2791 cluster_info = p->cluster_info;
2792 p->cluster_info = NULL;
2793 spin_unlock(&p->lock);
2794 spin_unlock(&swap_lock);
2795 arch_swap_invalidate_area(p->type);
2796 zswap_swapoff(p->type);
2797 mutex_unlock(&swapon_mutex);
2798 kfree(p->global_cluster);
2799 p->global_cluster = NULL;
2800 vfree(swap_map);
2801 kvfree(zeromap);
2802 kvfree(cluster_info);
2803 /* Destroy swap account information */
2804 swap_cgroup_swapoff(p->type);
2805 exit_swap_address_space(p->type);
2806
2807 inode = mapping->host;
2808
2809 inode_lock(inode);
2810 inode->i_flags &= ~S_SWAPFILE;
2811 inode_unlock(inode);
2812 filp_close(swap_file, NULL);
2813
2814 /*
2815 * Clear the SWP_USED flag after all resources are freed so that swapon
2816 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2817 * not hold p->lock after we cleared its SWP_WRITEOK.
2818 */
2819 spin_lock(&swap_lock);
2820 p->flags = 0;
2821 spin_unlock(&swap_lock);
2822
2823 err = 0;
2824 atomic_inc(&proc_poll_event);
2825 wake_up_interruptible(&proc_poll_wait);
2826
2827 out_dput:
2828 filp_close(victim, NULL);
2829 out:
2830 putname(pathname);
2831 return err;
2832 }
2833
2834 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2835 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2836 {
2837 struct seq_file *seq = file->private_data;
2838
2839 poll_wait(file, &proc_poll_wait, wait);
2840
2841 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2842 seq->poll_event = atomic_read(&proc_poll_event);
2843 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2844 }
2845
2846 return EPOLLIN | EPOLLRDNORM;
2847 }
2848
2849 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2850 static void *swap_start(struct seq_file *swap, loff_t *pos)
2851 {
2852 struct swap_info_struct *si;
2853 int type;
2854 loff_t l = *pos;
2855
2856 mutex_lock(&swapon_mutex);
2857
2858 if (!l)
2859 return SEQ_START_TOKEN;
2860
2861 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2862 if (!(si->flags & SWP_USED) || !si->swap_map)
2863 continue;
2864 if (!--l)
2865 return si;
2866 }
2867
2868 return NULL;
2869 }
2870
swap_next(struct seq_file * swap,void * v,loff_t * pos)2871 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2872 {
2873 struct swap_info_struct *si = v;
2874 int type;
2875
2876 if (v == SEQ_START_TOKEN)
2877 type = 0;
2878 else
2879 type = si->type + 1;
2880
2881 ++(*pos);
2882 for (; (si = swap_type_to_swap_info(type)); type++) {
2883 if (!(si->flags & SWP_USED) || !si->swap_map)
2884 continue;
2885 return si;
2886 }
2887
2888 return NULL;
2889 }
2890
swap_stop(struct seq_file * swap,void * v)2891 static void swap_stop(struct seq_file *swap, void *v)
2892 {
2893 mutex_unlock(&swapon_mutex);
2894 }
2895
swap_show(struct seq_file * swap,void * v)2896 static int swap_show(struct seq_file *swap, void *v)
2897 {
2898 struct swap_info_struct *si = v;
2899 struct file *file;
2900 int len;
2901 unsigned long bytes, inuse;
2902
2903 if (si == SEQ_START_TOKEN) {
2904 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2905 return 0;
2906 }
2907
2908 bytes = K(si->pages);
2909 inuse = K(swap_usage_in_pages(si));
2910
2911 file = si->swap_file;
2912 len = seq_file_path(swap, file, " \t\n\\");
2913 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2914 len < 40 ? 40 - len : 1, " ",
2915 S_ISBLK(file_inode(file)->i_mode) ?
2916 "partition" : "file\t",
2917 bytes, bytes < 10000000 ? "\t" : "",
2918 inuse, inuse < 10000000 ? "\t" : "",
2919 si->prio);
2920 return 0;
2921 }
2922
2923 static const struct seq_operations swaps_op = {
2924 .start = swap_start,
2925 .next = swap_next,
2926 .stop = swap_stop,
2927 .show = swap_show
2928 };
2929
swaps_open(struct inode * inode,struct file * file)2930 static int swaps_open(struct inode *inode, struct file *file)
2931 {
2932 struct seq_file *seq;
2933 int ret;
2934
2935 ret = seq_open(file, &swaps_op);
2936 if (ret)
2937 return ret;
2938
2939 seq = file->private_data;
2940 seq->poll_event = atomic_read(&proc_poll_event);
2941 return 0;
2942 }
2943
2944 static const struct proc_ops swaps_proc_ops = {
2945 .proc_flags = PROC_ENTRY_PERMANENT,
2946 .proc_open = swaps_open,
2947 .proc_read = seq_read,
2948 .proc_lseek = seq_lseek,
2949 .proc_release = seq_release,
2950 .proc_poll = swaps_poll,
2951 };
2952
procswaps_init(void)2953 static int __init procswaps_init(void)
2954 {
2955 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2956 return 0;
2957 }
2958 __initcall(procswaps_init);
2959 #endif /* CONFIG_PROC_FS */
2960
2961 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2962 static int __init max_swapfiles_check(void)
2963 {
2964 MAX_SWAPFILES_CHECK();
2965 return 0;
2966 }
2967 late_initcall(max_swapfiles_check);
2968 #endif
2969
alloc_swap_info(void)2970 static struct swap_info_struct *alloc_swap_info(void)
2971 {
2972 struct swap_info_struct *p;
2973 struct swap_info_struct *defer = NULL;
2974 unsigned int type;
2975 int i;
2976
2977 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2978 if (!p)
2979 return ERR_PTR(-ENOMEM);
2980
2981 if (percpu_ref_init(&p->users, swap_users_ref_free,
2982 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2983 kvfree(p);
2984 return ERR_PTR(-ENOMEM);
2985 }
2986
2987 spin_lock(&swap_lock);
2988 for (type = 0; type < nr_swapfiles; type++) {
2989 if (!(swap_info[type]->flags & SWP_USED))
2990 break;
2991 }
2992 if (type >= MAX_SWAPFILES) {
2993 spin_unlock(&swap_lock);
2994 percpu_ref_exit(&p->users);
2995 kvfree(p);
2996 return ERR_PTR(-EPERM);
2997 }
2998 if (type >= nr_swapfiles) {
2999 p->type = type;
3000 /*
3001 * Publish the swap_info_struct after initializing it.
3002 * Note that kvzalloc() above zeroes all its fields.
3003 */
3004 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3005 nr_swapfiles++;
3006 } else {
3007 defer = p;
3008 p = swap_info[type];
3009 /*
3010 * Do not memset this entry: a racing procfs swap_next()
3011 * would be relying on p->type to remain valid.
3012 */
3013 }
3014 p->swap_extent_root = RB_ROOT;
3015 plist_node_init(&p->list, 0);
3016 for_each_node(i)
3017 plist_node_init(&p->avail_lists[i], 0);
3018 p->flags = SWP_USED;
3019 spin_unlock(&swap_lock);
3020 if (defer) {
3021 percpu_ref_exit(&defer->users);
3022 kvfree(defer);
3023 }
3024 spin_lock_init(&p->lock);
3025 spin_lock_init(&p->cont_lock);
3026 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3027 init_completion(&p->comp);
3028
3029 return p;
3030 }
3031
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3032 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3033 {
3034 if (S_ISBLK(inode->i_mode)) {
3035 si->bdev = I_BDEV(inode);
3036 /*
3037 * Zoned block devices contain zones that have a sequential
3038 * write only restriction. Hence zoned block devices are not
3039 * suitable for swapping. Disallow them here.
3040 */
3041 if (bdev_is_zoned(si->bdev))
3042 return -EINVAL;
3043 si->flags |= SWP_BLKDEV;
3044 } else if (S_ISREG(inode->i_mode)) {
3045 si->bdev = inode->i_sb->s_bdev;
3046 }
3047
3048 return 0;
3049 }
3050
3051
3052 /*
3053 * Find out how many pages are allowed for a single swap device. There
3054 * are two limiting factors:
3055 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3056 * 2) the number of bits in the swap pte, as defined by the different
3057 * architectures.
3058 *
3059 * In order to find the largest possible bit mask, a swap entry with
3060 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3061 * decoded to a swp_entry_t again, and finally the swap offset is
3062 * extracted.
3063 *
3064 * This will mask all the bits from the initial ~0UL mask that can't
3065 * be encoded in either the swp_entry_t or the architecture definition
3066 * of a swap pte.
3067 */
generic_max_swapfile_size(void)3068 unsigned long generic_max_swapfile_size(void)
3069 {
3070 return swp_offset(pte_to_swp_entry(
3071 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3072 }
3073
3074 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3075 __weak unsigned long arch_max_swapfile_size(void)
3076 {
3077 return generic_max_swapfile_size();
3078 }
3079
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3080 static unsigned long read_swap_header(struct swap_info_struct *si,
3081 union swap_header *swap_header,
3082 struct inode *inode)
3083 {
3084 int i;
3085 unsigned long maxpages;
3086 unsigned long swapfilepages;
3087 unsigned long last_page;
3088
3089 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3090 pr_err("Unable to find swap-space signature\n");
3091 return 0;
3092 }
3093
3094 /* swap partition endianness hack... */
3095 if (swab32(swap_header->info.version) == 1) {
3096 swab32s(&swap_header->info.version);
3097 swab32s(&swap_header->info.last_page);
3098 swab32s(&swap_header->info.nr_badpages);
3099 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3100 return 0;
3101 for (i = 0; i < swap_header->info.nr_badpages; i++)
3102 swab32s(&swap_header->info.badpages[i]);
3103 }
3104 /* Check the swap header's sub-version */
3105 if (swap_header->info.version != 1) {
3106 pr_warn("Unable to handle swap header version %d\n",
3107 swap_header->info.version);
3108 return 0;
3109 }
3110
3111 maxpages = swapfile_maximum_size;
3112 last_page = swap_header->info.last_page;
3113 if (!last_page) {
3114 pr_warn("Empty swap-file\n");
3115 return 0;
3116 }
3117 if (last_page > maxpages) {
3118 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3119 K(maxpages), K(last_page));
3120 }
3121 if (maxpages > last_page) {
3122 maxpages = last_page + 1;
3123 /* p->max is an unsigned int: don't overflow it */
3124 if ((unsigned int)maxpages == 0)
3125 maxpages = UINT_MAX;
3126 }
3127
3128 if (!maxpages)
3129 return 0;
3130 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3131 if (swapfilepages && maxpages > swapfilepages) {
3132 pr_warn("Swap area shorter than signature indicates\n");
3133 return 0;
3134 }
3135 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3136 return 0;
3137 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3138 return 0;
3139
3140 return maxpages;
3141 }
3142
setup_swap_map(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages)3143 static int setup_swap_map(struct swap_info_struct *si,
3144 union swap_header *swap_header,
3145 unsigned char *swap_map,
3146 unsigned long maxpages)
3147 {
3148 unsigned long i;
3149
3150 swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3151 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3152 unsigned int page_nr = swap_header->info.badpages[i];
3153 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3154 return -EINVAL;
3155 if (page_nr < maxpages) {
3156 swap_map[page_nr] = SWAP_MAP_BAD;
3157 si->pages--;
3158 }
3159 }
3160
3161 if (!si->pages) {
3162 pr_warn("Empty swap-file\n");
3163 return -EINVAL;
3164 }
3165
3166 return 0;
3167 }
3168
3169 #define SWAP_CLUSTER_INFO_COLS \
3170 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3171 #define SWAP_CLUSTER_SPACE_COLS \
3172 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3173 #define SWAP_CLUSTER_COLS \
3174 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3175
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3176 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3177 union swap_header *swap_header,
3178 unsigned long maxpages)
3179 {
3180 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3181 struct swap_cluster_info *cluster_info;
3182 unsigned long i, j, idx;
3183 int err = -ENOMEM;
3184
3185 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3186 if (!cluster_info)
3187 goto err;
3188
3189 for (i = 0; i < nr_clusters; i++)
3190 spin_lock_init(&cluster_info[i].lock);
3191
3192 if (!(si->flags & SWP_SOLIDSTATE)) {
3193 si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3194 GFP_KERNEL);
3195 if (!si->global_cluster)
3196 goto err_free;
3197 for (i = 0; i < SWAP_NR_ORDERS; i++)
3198 si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3199 spin_lock_init(&si->global_cluster_lock);
3200 }
3201
3202 /*
3203 * Mark unusable pages as unavailable. The clusters aren't
3204 * marked free yet, so no list operations are involved yet.
3205 *
3206 * See setup_swap_map(): header page, bad pages,
3207 * and the EOF part of the last cluster.
3208 */
3209 inc_cluster_info_page(si, cluster_info, 0);
3210 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3211 unsigned int page_nr = swap_header->info.badpages[i];
3212
3213 if (page_nr >= maxpages)
3214 continue;
3215 inc_cluster_info_page(si, cluster_info, page_nr);
3216 }
3217 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3218 inc_cluster_info_page(si, cluster_info, i);
3219
3220 INIT_LIST_HEAD(&si->free_clusters);
3221 INIT_LIST_HEAD(&si->full_clusters);
3222 INIT_LIST_HEAD(&si->discard_clusters);
3223
3224 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3225 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3226 INIT_LIST_HEAD(&si->frag_clusters[i]);
3227 atomic_long_set(&si->frag_cluster_nr[i], 0);
3228 }
3229
3230 /*
3231 * Reduce false cache line sharing between cluster_info and
3232 * sharing same address space.
3233 */
3234 for (j = 0; j < SWAP_CLUSTER_COLS; j++) {
3235 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3236 struct swap_cluster_info *ci;
3237 idx = i * SWAP_CLUSTER_COLS + j;
3238 ci = cluster_info + idx;
3239 if (idx >= nr_clusters)
3240 continue;
3241 if (ci->count) {
3242 ci->flags = CLUSTER_FLAG_NONFULL;
3243 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3244 continue;
3245 }
3246 ci->flags = CLUSTER_FLAG_FREE;
3247 list_add_tail(&ci->list, &si->free_clusters);
3248 }
3249 }
3250
3251 return cluster_info;
3252
3253 err_free:
3254 kvfree(cluster_info);
3255 err:
3256 return ERR_PTR(err);
3257 }
3258
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3259 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3260 {
3261 struct swap_info_struct *si;
3262 struct filename *name;
3263 struct file *swap_file = NULL;
3264 struct address_space *mapping;
3265 struct dentry *dentry;
3266 int prio;
3267 int error;
3268 union swap_header *swap_header;
3269 int nr_extents;
3270 sector_t span;
3271 unsigned long maxpages;
3272 unsigned char *swap_map = NULL;
3273 unsigned long *zeromap = NULL;
3274 struct swap_cluster_info *cluster_info = NULL;
3275 struct folio *folio = NULL;
3276 struct inode *inode = NULL;
3277 bool inced_nr_rotate_swap = false;
3278
3279 if (swap_flags & ~SWAP_FLAGS_VALID)
3280 return -EINVAL;
3281
3282 if (!capable(CAP_SYS_ADMIN))
3283 return -EPERM;
3284
3285 if (!swap_avail_heads)
3286 return -ENOMEM;
3287
3288 si = alloc_swap_info();
3289 if (IS_ERR(si))
3290 return PTR_ERR(si);
3291
3292 INIT_WORK(&si->discard_work, swap_discard_work);
3293 INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3294
3295 name = getname(specialfile);
3296 if (IS_ERR(name)) {
3297 error = PTR_ERR(name);
3298 name = NULL;
3299 goto bad_swap;
3300 }
3301 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3302 if (IS_ERR(swap_file)) {
3303 error = PTR_ERR(swap_file);
3304 swap_file = NULL;
3305 goto bad_swap;
3306 }
3307
3308 si->swap_file = swap_file;
3309 mapping = swap_file->f_mapping;
3310 dentry = swap_file->f_path.dentry;
3311 inode = mapping->host;
3312
3313 error = claim_swapfile(si, inode);
3314 if (unlikely(error))
3315 goto bad_swap;
3316
3317 inode_lock(inode);
3318 if (d_unlinked(dentry) || cant_mount(dentry)) {
3319 error = -ENOENT;
3320 goto bad_swap_unlock_inode;
3321 }
3322 if (IS_SWAPFILE(inode)) {
3323 error = -EBUSY;
3324 goto bad_swap_unlock_inode;
3325 }
3326
3327 /*
3328 * The swap subsystem needs a major overhaul to support this.
3329 * It doesn't work yet so just disable it for now.
3330 */
3331 if (mapping_min_folio_order(mapping) > 0) {
3332 error = -EINVAL;
3333 goto bad_swap_unlock_inode;
3334 }
3335
3336 /*
3337 * Read the swap header.
3338 */
3339 if (!mapping->a_ops->read_folio) {
3340 error = -EINVAL;
3341 goto bad_swap_unlock_inode;
3342 }
3343 folio = read_mapping_folio(mapping, 0, swap_file);
3344 if (IS_ERR(folio)) {
3345 error = PTR_ERR(folio);
3346 goto bad_swap_unlock_inode;
3347 }
3348 swap_header = kmap_local_folio(folio, 0);
3349
3350 maxpages = read_swap_header(si, swap_header, inode);
3351 if (unlikely(!maxpages)) {
3352 error = -EINVAL;
3353 goto bad_swap_unlock_inode;
3354 }
3355
3356 si->max = maxpages;
3357 si->pages = maxpages - 1;
3358 nr_extents = setup_swap_extents(si, &span);
3359 if (nr_extents < 0) {
3360 error = nr_extents;
3361 goto bad_swap_unlock_inode;
3362 }
3363 if (si->pages != si->max - 1) {
3364 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3365 error = -EINVAL;
3366 goto bad_swap_unlock_inode;
3367 }
3368
3369 maxpages = si->max;
3370
3371 /* OK, set up the swap map and apply the bad block list */
3372 swap_map = vzalloc(maxpages);
3373 if (!swap_map) {
3374 error = -ENOMEM;
3375 goto bad_swap_unlock_inode;
3376 }
3377
3378 error = swap_cgroup_swapon(si->type, maxpages);
3379 if (error)
3380 goto bad_swap_unlock_inode;
3381
3382 error = setup_swap_map(si, swap_header, swap_map, maxpages);
3383 if (error)
3384 goto bad_swap_unlock_inode;
3385
3386 /*
3387 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3388 * be above MAX_PAGE_ORDER incase of a large swap file.
3389 */
3390 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3391 GFP_KERNEL | __GFP_ZERO);
3392 if (!zeromap) {
3393 error = -ENOMEM;
3394 goto bad_swap_unlock_inode;
3395 }
3396
3397 if (si->bdev && bdev_stable_writes(si->bdev))
3398 si->flags |= SWP_STABLE_WRITES;
3399
3400 if (si->bdev && bdev_synchronous(si->bdev))
3401 si->flags |= SWP_SYNCHRONOUS_IO;
3402
3403 if (si->bdev && bdev_nonrot(si->bdev)) {
3404 si->flags |= SWP_SOLIDSTATE;
3405 } else {
3406 atomic_inc(&nr_rotate_swap);
3407 inced_nr_rotate_swap = true;
3408 }
3409
3410 cluster_info = setup_clusters(si, swap_header, maxpages);
3411 if (IS_ERR(cluster_info)) {
3412 error = PTR_ERR(cluster_info);
3413 cluster_info = NULL;
3414 goto bad_swap_unlock_inode;
3415 }
3416
3417 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3418 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3419 /*
3420 * When discard is enabled for swap with no particular
3421 * policy flagged, we set all swap discard flags here in
3422 * order to sustain backward compatibility with older
3423 * swapon(8) releases.
3424 */
3425 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3426 SWP_PAGE_DISCARD);
3427
3428 /*
3429 * By flagging sys_swapon, a sysadmin can tell us to
3430 * either do single-time area discards only, or to just
3431 * perform discards for released swap page-clusters.
3432 * Now it's time to adjust the p->flags accordingly.
3433 */
3434 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3435 si->flags &= ~SWP_PAGE_DISCARD;
3436 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3437 si->flags &= ~SWP_AREA_DISCARD;
3438
3439 /* issue a swapon-time discard if it's still required */
3440 if (si->flags & SWP_AREA_DISCARD) {
3441 int err = discard_swap(si);
3442 if (unlikely(err))
3443 pr_err("swapon: discard_swap(%p): %d\n",
3444 si, err);
3445 }
3446 }
3447
3448 error = init_swap_address_space(si->type, maxpages);
3449 if (error)
3450 goto bad_swap_unlock_inode;
3451
3452 error = zswap_swapon(si->type, maxpages);
3453 if (error)
3454 goto free_swap_address_space;
3455
3456 /*
3457 * Flush any pending IO and dirty mappings before we start using this
3458 * swap device.
3459 */
3460 inode->i_flags |= S_SWAPFILE;
3461 error = inode_drain_writes(inode);
3462 if (error) {
3463 inode->i_flags &= ~S_SWAPFILE;
3464 goto free_swap_zswap;
3465 }
3466
3467 mutex_lock(&swapon_mutex);
3468 prio = -1;
3469 if (swap_flags & SWAP_FLAG_PREFER)
3470 prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3471 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3472
3473 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3474 K(si->pages), name->name, si->prio, nr_extents,
3475 K((unsigned long long)span),
3476 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3477 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3478 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3479 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3480
3481 mutex_unlock(&swapon_mutex);
3482 atomic_inc(&proc_poll_event);
3483 wake_up_interruptible(&proc_poll_wait);
3484
3485 error = 0;
3486 goto out;
3487 free_swap_zswap:
3488 zswap_swapoff(si->type);
3489 free_swap_address_space:
3490 exit_swap_address_space(si->type);
3491 bad_swap_unlock_inode:
3492 inode_unlock(inode);
3493 bad_swap:
3494 kfree(si->global_cluster);
3495 si->global_cluster = NULL;
3496 inode = NULL;
3497 destroy_swap_extents(si);
3498 swap_cgroup_swapoff(si->type);
3499 spin_lock(&swap_lock);
3500 si->swap_file = NULL;
3501 si->flags = 0;
3502 spin_unlock(&swap_lock);
3503 vfree(swap_map);
3504 kvfree(zeromap);
3505 kvfree(cluster_info);
3506 if (inced_nr_rotate_swap)
3507 atomic_dec(&nr_rotate_swap);
3508 if (swap_file)
3509 filp_close(swap_file, NULL);
3510 out:
3511 if (!IS_ERR_OR_NULL(folio))
3512 folio_release_kmap(folio, swap_header);
3513 if (name)
3514 putname(name);
3515 if (inode)
3516 inode_unlock(inode);
3517 return error;
3518 }
3519
si_swapinfo(struct sysinfo * val)3520 void si_swapinfo(struct sysinfo *val)
3521 {
3522 unsigned int type;
3523 unsigned long nr_to_be_unused = 0;
3524
3525 spin_lock(&swap_lock);
3526 for (type = 0; type < nr_swapfiles; type++) {
3527 struct swap_info_struct *si = swap_info[type];
3528
3529 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3530 nr_to_be_unused += swap_usage_in_pages(si);
3531 }
3532 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3533 val->totalswap = total_swap_pages + nr_to_be_unused;
3534 spin_unlock(&swap_lock);
3535 }
3536
3537 /*
3538 * Verify that nr swap entries are valid and increment their swap map counts.
3539 *
3540 * Returns error code in following case.
3541 * - success -> 0
3542 * - swp_entry is invalid -> EINVAL
3543 * - swap-cache reference is requested but there is already one. -> EEXIST
3544 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3545 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3546 */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3547 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3548 {
3549 struct swap_info_struct *si;
3550 struct swap_cluster_info *ci;
3551 unsigned long offset;
3552 unsigned char count;
3553 unsigned char has_cache;
3554 int err, i;
3555
3556 si = swp_swap_info(entry);
3557 if (WARN_ON_ONCE(!si)) {
3558 pr_err("%s%08lx\n", Bad_file, entry.val);
3559 return -EINVAL;
3560 }
3561
3562 offset = swp_offset(entry);
3563 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3564 VM_WARN_ON(usage == 1 && nr > 1);
3565 ci = lock_cluster(si, offset);
3566
3567 err = 0;
3568 for (i = 0; i < nr; i++) {
3569 count = si->swap_map[offset + i];
3570
3571 /*
3572 * swapin_readahead() doesn't check if a swap entry is valid, so the
3573 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3574 */
3575 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3576 err = -ENOENT;
3577 goto unlock_out;
3578 }
3579
3580 has_cache = count & SWAP_HAS_CACHE;
3581 count &= ~SWAP_HAS_CACHE;
3582
3583 if (!count && !has_cache) {
3584 err = -ENOENT;
3585 } else if (usage == SWAP_HAS_CACHE) {
3586 if (has_cache)
3587 err = -EEXIST;
3588 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3589 err = -EINVAL;
3590 }
3591
3592 if (err)
3593 goto unlock_out;
3594 }
3595
3596 for (i = 0; i < nr; i++) {
3597 count = si->swap_map[offset + i];
3598 has_cache = count & SWAP_HAS_CACHE;
3599 count &= ~SWAP_HAS_CACHE;
3600
3601 if (usage == SWAP_HAS_CACHE)
3602 has_cache = SWAP_HAS_CACHE;
3603 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3604 count += usage;
3605 else if (swap_count_continued(si, offset + i, count))
3606 count = COUNT_CONTINUED;
3607 else {
3608 /*
3609 * Don't need to rollback changes, because if
3610 * usage == 1, there must be nr == 1.
3611 */
3612 err = -ENOMEM;
3613 goto unlock_out;
3614 }
3615
3616 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3617 }
3618
3619 unlock_out:
3620 unlock_cluster(ci);
3621 return err;
3622 }
3623
3624 /*
3625 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3626 * (in which case its reference count is never incremented).
3627 */
swap_shmem_alloc(swp_entry_t entry,int nr)3628 void swap_shmem_alloc(swp_entry_t entry, int nr)
3629 {
3630 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3631 }
3632
3633 /*
3634 * Increase reference count of swap entry by 1.
3635 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3636 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3637 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3638 * might occur if a page table entry has got corrupted.
3639 */
swap_duplicate(swp_entry_t entry)3640 int swap_duplicate(swp_entry_t entry)
3641 {
3642 int err = 0;
3643
3644 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3645 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3646 return err;
3647 }
3648
3649 /*
3650 * @entry: first swap entry from which we allocate nr swap cache.
3651 *
3652 * Called when allocating swap cache for existing swap entries,
3653 * This can return error codes. Returns 0 at success.
3654 * -EEXIST means there is a swap cache.
3655 * Note: return code is different from swap_duplicate().
3656 */
swapcache_prepare(swp_entry_t entry,int nr)3657 int swapcache_prepare(swp_entry_t entry, int nr)
3658 {
3659 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3660 }
3661
3662 /*
3663 * Caller should ensure entries belong to the same folio so
3664 * the entries won't span cross cluster boundary.
3665 */
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3666 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3667 {
3668 swap_entries_put_cache(si, entry, nr);
3669 }
3670
swp_swap_info(swp_entry_t entry)3671 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3672 {
3673 return swap_type_to_swap_info(swp_type(entry));
3674 }
3675
3676 /*
3677 * add_swap_count_continuation - called when a swap count is duplicated
3678 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3679 * page of the original vmalloc'ed swap_map, to hold the continuation count
3680 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3681 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3682 *
3683 * These continuation pages are seldom referenced: the common paths all work
3684 * on the original swap_map, only referring to a continuation page when the
3685 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3686 *
3687 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3688 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3689 * can be called after dropping locks.
3690 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3691 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3692 {
3693 struct swap_info_struct *si;
3694 struct swap_cluster_info *ci;
3695 struct page *head;
3696 struct page *page;
3697 struct page *list_page;
3698 pgoff_t offset;
3699 unsigned char count;
3700 int ret = 0;
3701
3702 /*
3703 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3704 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3705 */
3706 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3707
3708 si = get_swap_device(entry);
3709 if (!si) {
3710 /*
3711 * An acceptable race has occurred since the failing
3712 * __swap_duplicate(): the swap device may be swapoff
3713 */
3714 goto outer;
3715 }
3716
3717 offset = swp_offset(entry);
3718
3719 ci = lock_cluster(si, offset);
3720
3721 count = swap_count(si->swap_map[offset]);
3722
3723 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3724 /*
3725 * The higher the swap count, the more likely it is that tasks
3726 * will race to add swap count continuation: we need to avoid
3727 * over-provisioning.
3728 */
3729 goto out;
3730 }
3731
3732 if (!page) {
3733 ret = -ENOMEM;
3734 goto out;
3735 }
3736
3737 head = vmalloc_to_page(si->swap_map + offset);
3738 offset &= ~PAGE_MASK;
3739
3740 spin_lock(&si->cont_lock);
3741 /*
3742 * Page allocation does not initialize the page's lru field,
3743 * but it does always reset its private field.
3744 */
3745 if (!page_private(head)) {
3746 BUG_ON(count & COUNT_CONTINUED);
3747 INIT_LIST_HEAD(&head->lru);
3748 set_page_private(head, SWP_CONTINUED);
3749 si->flags |= SWP_CONTINUED;
3750 }
3751
3752 list_for_each_entry(list_page, &head->lru, lru) {
3753 unsigned char *map;
3754
3755 /*
3756 * If the previous map said no continuation, but we've found
3757 * a continuation page, free our allocation and use this one.
3758 */
3759 if (!(count & COUNT_CONTINUED))
3760 goto out_unlock_cont;
3761
3762 map = kmap_local_page(list_page) + offset;
3763 count = *map;
3764 kunmap_local(map);
3765
3766 /*
3767 * If this continuation count now has some space in it,
3768 * free our allocation and use this one.
3769 */
3770 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3771 goto out_unlock_cont;
3772 }
3773
3774 list_add_tail(&page->lru, &head->lru);
3775 page = NULL; /* now it's attached, don't free it */
3776 out_unlock_cont:
3777 spin_unlock(&si->cont_lock);
3778 out:
3779 unlock_cluster(ci);
3780 put_swap_device(si);
3781 outer:
3782 if (page)
3783 __free_page(page);
3784 return ret;
3785 }
3786
3787 /*
3788 * swap_count_continued - when the original swap_map count is incremented
3789 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3790 * into, carry if so, or else fail until a new continuation page is allocated;
3791 * when the original swap_map count is decremented from 0 with continuation,
3792 * borrow from the continuation and report whether it still holds more.
3793 * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3794 * holds cluster lock.
3795 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3796 static bool swap_count_continued(struct swap_info_struct *si,
3797 pgoff_t offset, unsigned char count)
3798 {
3799 struct page *head;
3800 struct page *page;
3801 unsigned char *map;
3802 bool ret;
3803
3804 head = vmalloc_to_page(si->swap_map + offset);
3805 if (page_private(head) != SWP_CONTINUED) {
3806 BUG_ON(count & COUNT_CONTINUED);
3807 return false; /* need to add count continuation */
3808 }
3809
3810 spin_lock(&si->cont_lock);
3811 offset &= ~PAGE_MASK;
3812 page = list_next_entry(head, lru);
3813 map = kmap_local_page(page) + offset;
3814
3815 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3816 goto init_map; /* jump over SWAP_CONT_MAX checks */
3817
3818 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3819 /*
3820 * Think of how you add 1 to 999
3821 */
3822 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3823 kunmap_local(map);
3824 page = list_next_entry(page, lru);
3825 BUG_ON(page == head);
3826 map = kmap_local_page(page) + offset;
3827 }
3828 if (*map == SWAP_CONT_MAX) {
3829 kunmap_local(map);
3830 page = list_next_entry(page, lru);
3831 if (page == head) {
3832 ret = false; /* add count continuation */
3833 goto out;
3834 }
3835 map = kmap_local_page(page) + offset;
3836 init_map: *map = 0; /* we didn't zero the page */
3837 }
3838 *map += 1;
3839 kunmap_local(map);
3840 while ((page = list_prev_entry(page, lru)) != head) {
3841 map = kmap_local_page(page) + offset;
3842 *map = COUNT_CONTINUED;
3843 kunmap_local(map);
3844 }
3845 ret = true; /* incremented */
3846
3847 } else { /* decrementing */
3848 /*
3849 * Think of how you subtract 1 from 1000
3850 */
3851 BUG_ON(count != COUNT_CONTINUED);
3852 while (*map == COUNT_CONTINUED) {
3853 kunmap_local(map);
3854 page = list_next_entry(page, lru);
3855 BUG_ON(page == head);
3856 map = kmap_local_page(page) + offset;
3857 }
3858 BUG_ON(*map == 0);
3859 *map -= 1;
3860 if (*map == 0)
3861 count = 0;
3862 kunmap_local(map);
3863 while ((page = list_prev_entry(page, lru)) != head) {
3864 map = kmap_local_page(page) + offset;
3865 *map = SWAP_CONT_MAX | count;
3866 count = COUNT_CONTINUED;
3867 kunmap_local(map);
3868 }
3869 ret = count == COUNT_CONTINUED;
3870 }
3871 out:
3872 spin_unlock(&si->cont_lock);
3873 return ret;
3874 }
3875
3876 /*
3877 * free_swap_count_continuations - swapoff free all the continuation pages
3878 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3879 */
free_swap_count_continuations(struct swap_info_struct * si)3880 static void free_swap_count_continuations(struct swap_info_struct *si)
3881 {
3882 pgoff_t offset;
3883
3884 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3885 struct page *head;
3886 head = vmalloc_to_page(si->swap_map + offset);
3887 if (page_private(head)) {
3888 struct page *page, *next;
3889
3890 list_for_each_entry_safe(page, next, &head->lru, lru) {
3891 list_del(&page->lru);
3892 __free_page(page);
3893 }
3894 }
3895 }
3896 }
3897
3898 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__has_usable_swap(void)3899 static bool __has_usable_swap(void)
3900 {
3901 return !plist_head_empty(&swap_active_head);
3902 }
3903
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)3904 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3905 {
3906 struct swap_info_struct *si, *next;
3907 int nid = folio_nid(folio);
3908
3909 if (!(gfp & __GFP_IO))
3910 return;
3911
3912 if (!__has_usable_swap())
3913 return;
3914
3915 if (!blk_cgroup_congested())
3916 return;
3917
3918 /*
3919 * We've already scheduled a throttle, avoid taking the global swap
3920 * lock.
3921 */
3922 if (current->throttle_disk)
3923 return;
3924
3925 spin_lock(&swap_avail_lock);
3926 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3927 avail_lists[nid]) {
3928 if (si->bdev) {
3929 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3930 break;
3931 }
3932 }
3933 spin_unlock(&swap_avail_lock);
3934 }
3935 #endif
3936
swapfile_init(void)3937 static int __init swapfile_init(void)
3938 {
3939 int nid;
3940
3941 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3942 GFP_KERNEL);
3943 if (!swap_avail_heads) {
3944 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3945 return -ENOMEM;
3946 }
3947
3948 for_each_node(nid)
3949 plist_head_init(&swap_avail_heads[nid]);
3950
3951 swapfile_maximum_size = arch_max_swapfile_size();
3952
3953 #ifdef CONFIG_MIGRATION
3954 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3955 swap_migration_ad_supported = true;
3956 #endif /* CONFIG_MIGRATION */
3957
3958 return 0;
3959 }
3960 subsys_initcall(swapfile_init);
3961