1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_10_14_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = (val >> 8) | (reg << 6);
253 out[0] = reg >> 2;
254 }
255
regmap_format_8(void * buf,unsigned int val,unsigned int shift)256 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
257 {
258 u8 *b = buf;
259
260 b[0] = val << shift;
261 }
262
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)263 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
264 {
265 put_unaligned_be16(val << shift, buf);
266 }
267
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)268 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
269 {
270 put_unaligned_le16(val << shift, buf);
271 }
272
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_native(void *buf, unsigned int val,
274 unsigned int shift)
275 {
276 u16 v = val << shift;
277
278 memcpy(buf, &v, sizeof(v));
279 }
280
regmap_format_24(void * buf,unsigned int val,unsigned int shift)281 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
282 {
283 u8 *b = buf;
284
285 val <<= shift;
286
287 b[0] = val >> 16;
288 b[1] = val >> 8;
289 b[2] = val;
290 }
291
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)292 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
293 {
294 put_unaligned_be32(val << shift, buf);
295 }
296
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)297 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
298 {
299 put_unaligned_le32(val << shift, buf);
300 }
301
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_native(void *buf, unsigned int val,
303 unsigned int shift)
304 {
305 u32 v = val << shift;
306
307 memcpy(buf, &v, sizeof(v));
308 }
309
310 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)311 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
312 {
313 put_unaligned_be64((u64) val << shift, buf);
314 }
315
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)316 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
317 {
318 put_unaligned_le64((u64) val << shift, buf);
319 }
320
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_native(void *buf, unsigned int val,
322 unsigned int shift)
323 {
324 u64 v = (u64) val << shift;
325
326 memcpy(buf, &v, sizeof(v));
327 }
328 #endif
329
regmap_parse_inplace_noop(void * buf)330 static void regmap_parse_inplace_noop(void *buf)
331 {
332 }
333
regmap_parse_8(const void * buf)334 static unsigned int regmap_parse_8(const void *buf)
335 {
336 const u8 *b = buf;
337
338 return b[0];
339 }
340
regmap_parse_16_be(const void * buf)341 static unsigned int regmap_parse_16_be(const void *buf)
342 {
343 return get_unaligned_be16(buf);
344 }
345
regmap_parse_16_le(const void * buf)346 static unsigned int regmap_parse_16_le(const void *buf)
347 {
348 return get_unaligned_le16(buf);
349 }
350
regmap_parse_16_be_inplace(void * buf)351 static void regmap_parse_16_be_inplace(void *buf)
352 {
353 u16 v = get_unaligned_be16(buf);
354
355 memcpy(buf, &v, sizeof(v));
356 }
357
regmap_parse_16_le_inplace(void * buf)358 static void regmap_parse_16_le_inplace(void *buf)
359 {
360 u16 v = get_unaligned_le16(buf);
361
362 memcpy(buf, &v, sizeof(v));
363 }
364
regmap_parse_16_native(const void * buf)365 static unsigned int regmap_parse_16_native(const void *buf)
366 {
367 u16 v;
368
369 memcpy(&v, buf, sizeof(v));
370 return v;
371 }
372
regmap_parse_24(const void * buf)373 static unsigned int regmap_parse_24(const void *buf)
374 {
375 const u8 *b = buf;
376 unsigned int ret = b[2];
377 ret |= ((unsigned int)b[1]) << 8;
378 ret |= ((unsigned int)b[0]) << 16;
379
380 return ret;
381 }
382
regmap_parse_32_be(const void * buf)383 static unsigned int regmap_parse_32_be(const void *buf)
384 {
385 return get_unaligned_be32(buf);
386 }
387
regmap_parse_32_le(const void * buf)388 static unsigned int regmap_parse_32_le(const void *buf)
389 {
390 return get_unaligned_le32(buf);
391 }
392
regmap_parse_32_be_inplace(void * buf)393 static void regmap_parse_32_be_inplace(void *buf)
394 {
395 u32 v = get_unaligned_be32(buf);
396
397 memcpy(buf, &v, sizeof(v));
398 }
399
regmap_parse_32_le_inplace(void * buf)400 static void regmap_parse_32_le_inplace(void *buf)
401 {
402 u32 v = get_unaligned_le32(buf);
403
404 memcpy(buf, &v, sizeof(v));
405 }
406
regmap_parse_32_native(const void * buf)407 static unsigned int regmap_parse_32_native(const void *buf)
408 {
409 u32 v;
410
411 memcpy(&v, buf, sizeof(v));
412 return v;
413 }
414
415 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)416 static unsigned int regmap_parse_64_be(const void *buf)
417 {
418 return get_unaligned_be64(buf);
419 }
420
regmap_parse_64_le(const void * buf)421 static unsigned int regmap_parse_64_le(const void *buf)
422 {
423 return get_unaligned_le64(buf);
424 }
425
regmap_parse_64_be_inplace(void * buf)426 static void regmap_parse_64_be_inplace(void *buf)
427 {
428 u64 v = get_unaligned_be64(buf);
429
430 memcpy(buf, &v, sizeof(v));
431 }
432
regmap_parse_64_le_inplace(void * buf)433 static void regmap_parse_64_le_inplace(void *buf)
434 {
435 u64 v = get_unaligned_le64(buf);
436
437 memcpy(buf, &v, sizeof(v));
438 }
439
regmap_parse_64_native(const void * buf)440 static unsigned int regmap_parse_64_native(const void *buf)
441 {
442 u64 v;
443
444 memcpy(&v, buf, sizeof(v));
445 return v;
446 }
447 #endif
448
regmap_lock_hwlock(void * __map)449 static void regmap_lock_hwlock(void *__map)
450 {
451 struct regmap *map = __map;
452
453 hwspin_lock_timeout(map->hwlock, UINT_MAX);
454 }
455
regmap_lock_hwlock_irq(void * __map)456 static void regmap_lock_hwlock_irq(void *__map)
457 {
458 struct regmap *map = __map;
459
460 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
461 }
462
regmap_lock_hwlock_irqsave(void * __map)463 static void regmap_lock_hwlock_irqsave(void *__map)
464 {
465 struct regmap *map = __map;
466
467 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
468 &map->spinlock_flags);
469 }
470
regmap_unlock_hwlock(void * __map)471 static void regmap_unlock_hwlock(void *__map)
472 {
473 struct regmap *map = __map;
474
475 hwspin_unlock(map->hwlock);
476 }
477
regmap_unlock_hwlock_irq(void * __map)478 static void regmap_unlock_hwlock_irq(void *__map)
479 {
480 struct regmap *map = __map;
481
482 hwspin_unlock_irq(map->hwlock);
483 }
484
regmap_unlock_hwlock_irqrestore(void * __map)485 static void regmap_unlock_hwlock_irqrestore(void *__map)
486 {
487 struct regmap *map = __map;
488
489 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
490 }
491
regmap_lock_unlock_none(void * __map)492 static void regmap_lock_unlock_none(void *__map)
493 {
494
495 }
496
regmap_lock_mutex(void * __map)497 static void regmap_lock_mutex(void *__map)
498 {
499 struct regmap *map = __map;
500 mutex_lock(&map->mutex);
501 }
502
regmap_unlock_mutex(void * __map)503 static void regmap_unlock_mutex(void *__map)
504 {
505 struct regmap *map = __map;
506 mutex_unlock(&map->mutex);
507 }
508
regmap_lock_spinlock(void * __map)509 static void regmap_lock_spinlock(void *__map)
510 __acquires(&map->spinlock)
511 {
512 struct regmap *map = __map;
513 unsigned long flags;
514
515 spin_lock_irqsave(&map->spinlock, flags);
516 map->spinlock_flags = flags;
517 }
518
regmap_unlock_spinlock(void * __map)519 static void regmap_unlock_spinlock(void *__map)
520 __releases(&map->spinlock)
521 {
522 struct regmap *map = __map;
523 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
524 }
525
dev_get_regmap_release(struct device * dev,void * res)526 static void dev_get_regmap_release(struct device *dev, void *res)
527 {
528 /*
529 * We don't actually have anything to do here; the goal here
530 * is not to manage the regmap but to provide a simple way to
531 * get the regmap back given a struct device.
532 */
533 }
534
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)535 static bool _regmap_range_add(struct regmap *map,
536 struct regmap_range_node *data)
537 {
538 struct rb_root *root = &map->range_tree;
539 struct rb_node **new = &(root->rb_node), *parent = NULL;
540
541 while (*new) {
542 struct regmap_range_node *this =
543 rb_entry(*new, struct regmap_range_node, node);
544
545 parent = *new;
546 if (data->range_max < this->range_min)
547 new = &((*new)->rb_left);
548 else if (data->range_min > this->range_max)
549 new = &((*new)->rb_right);
550 else
551 return false;
552 }
553
554 rb_link_node(&data->node, parent, new);
555 rb_insert_color(&data->node, root);
556
557 return true;
558 }
559
_regmap_range_lookup(struct regmap * map,unsigned int reg)560 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
561 unsigned int reg)
562 {
563 struct rb_node *node = map->range_tree.rb_node;
564
565 while (node) {
566 struct regmap_range_node *this =
567 rb_entry(node, struct regmap_range_node, node);
568
569 if (reg < this->range_min)
570 node = node->rb_left;
571 else if (reg > this->range_max)
572 node = node->rb_right;
573 else
574 return this;
575 }
576
577 return NULL;
578 }
579
regmap_range_exit(struct regmap * map)580 static void regmap_range_exit(struct regmap *map)
581 {
582 struct rb_node *next;
583 struct regmap_range_node *range_node;
584
585 next = rb_first(&map->range_tree);
586 while (next) {
587 range_node = rb_entry(next, struct regmap_range_node, node);
588 next = rb_next(&range_node->node);
589 rb_erase(&range_node->node, &map->range_tree);
590 kfree(range_node);
591 }
592
593 kfree(map->selector_work_buf);
594 }
595
regmap_set_name(struct regmap * map,const struct regmap_config * config)596 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
597 {
598 if (config->name) {
599 const char *name = kstrdup_const(config->name, GFP_KERNEL);
600
601 if (!name)
602 return -ENOMEM;
603
604 kfree_const(map->name);
605 map->name = name;
606 }
607
608 return 0;
609 }
610
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)611 int regmap_attach_dev(struct device *dev, struct regmap *map,
612 const struct regmap_config *config)
613 {
614 struct regmap **m;
615 int ret;
616
617 map->dev = dev;
618
619 ret = regmap_set_name(map, config);
620 if (ret)
621 return ret;
622
623 regmap_debugfs_init(map);
624
625 /* Add a devres resource for dev_get_regmap() */
626 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
627 if (!m) {
628 regmap_debugfs_exit(map);
629 return -ENOMEM;
630 }
631 *m = map;
632 devres_add(dev, m);
633
634 return 0;
635 }
636 EXPORT_SYMBOL_GPL(regmap_attach_dev);
637
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)638 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
639 const struct regmap_config *config)
640 {
641 enum regmap_endian endian;
642
643 /* Retrieve the endianness specification from the regmap config */
644 endian = config->reg_format_endian;
645
646 /* If the regmap config specified a non-default value, use that */
647 if (endian != REGMAP_ENDIAN_DEFAULT)
648 return endian;
649
650 /* Retrieve the endianness specification from the bus config */
651 if (bus && bus->reg_format_endian_default)
652 endian = bus->reg_format_endian_default;
653
654 /* If the bus specified a non-default value, use that */
655 if (endian != REGMAP_ENDIAN_DEFAULT)
656 return endian;
657
658 /* Use this if no other value was found */
659 return REGMAP_ENDIAN_BIG;
660 }
661
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)662 enum regmap_endian regmap_get_val_endian(struct device *dev,
663 const struct regmap_bus *bus,
664 const struct regmap_config *config)
665 {
666 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
667 enum regmap_endian endian;
668
669 /* Retrieve the endianness specification from the regmap config */
670 endian = config->val_format_endian;
671
672 /* If the regmap config specified a non-default value, use that */
673 if (endian != REGMAP_ENDIAN_DEFAULT)
674 return endian;
675
676 /* If the firmware node exist try to get endianness from it */
677 if (fwnode_property_read_bool(fwnode, "big-endian"))
678 endian = REGMAP_ENDIAN_BIG;
679 else if (fwnode_property_read_bool(fwnode, "little-endian"))
680 endian = REGMAP_ENDIAN_LITTLE;
681 else if (fwnode_property_read_bool(fwnode, "native-endian"))
682 endian = REGMAP_ENDIAN_NATIVE;
683
684 /* If the endianness was specified in fwnode, use that */
685 if (endian != REGMAP_ENDIAN_DEFAULT)
686 return endian;
687
688 /* Retrieve the endianness specification from the bus config */
689 if (bus && bus->val_format_endian_default)
690 endian = bus->val_format_endian_default;
691
692 /* If the bus specified a non-default value, use that */
693 if (endian != REGMAP_ENDIAN_DEFAULT)
694 return endian;
695
696 /* Use this if no other value was found */
697 return REGMAP_ENDIAN_BIG;
698 }
699 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
700
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)701 struct regmap *__regmap_init(struct device *dev,
702 const struct regmap_bus *bus,
703 void *bus_context,
704 const struct regmap_config *config,
705 struct lock_class_key *lock_key,
706 const char *lock_name)
707 {
708 struct regmap *map;
709 int ret = -EINVAL;
710 enum regmap_endian reg_endian, val_endian;
711 int i, j;
712
713 if (!config)
714 goto err;
715
716 map = kzalloc(sizeof(*map), GFP_KERNEL);
717 if (map == NULL) {
718 ret = -ENOMEM;
719 goto err;
720 }
721
722 ret = regmap_set_name(map, config);
723 if (ret)
724 goto err_map;
725
726 ret = -EINVAL; /* Later error paths rely on this */
727
728 if (config->disable_locking) {
729 map->lock = map->unlock = regmap_lock_unlock_none;
730 map->can_sleep = config->can_sleep;
731 regmap_debugfs_disable(map);
732 } else if (config->lock && config->unlock) {
733 map->lock = config->lock;
734 map->unlock = config->unlock;
735 map->lock_arg = config->lock_arg;
736 map->can_sleep = config->can_sleep;
737 } else if (config->use_hwlock) {
738 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
739 if (!map->hwlock) {
740 ret = -ENXIO;
741 goto err_name;
742 }
743
744 switch (config->hwlock_mode) {
745 case HWLOCK_IRQSTATE:
746 map->lock = regmap_lock_hwlock_irqsave;
747 map->unlock = regmap_unlock_hwlock_irqrestore;
748 break;
749 case HWLOCK_IRQ:
750 map->lock = regmap_lock_hwlock_irq;
751 map->unlock = regmap_unlock_hwlock_irq;
752 break;
753 default:
754 map->lock = regmap_lock_hwlock;
755 map->unlock = regmap_unlock_hwlock;
756 break;
757 }
758
759 map->lock_arg = map;
760 } else {
761 if ((bus && bus->fast_io) ||
762 config->fast_io) {
763 spin_lock_init(&map->spinlock);
764 map->lock = regmap_lock_spinlock;
765 map->unlock = regmap_unlock_spinlock;
766 lockdep_set_class_and_name(&map->spinlock,
767 lock_key, lock_name);
768 } else {
769 mutex_init(&map->mutex);
770 map->lock = regmap_lock_mutex;
771 map->unlock = regmap_unlock_mutex;
772 map->can_sleep = true;
773 lockdep_set_class_and_name(&map->mutex,
774 lock_key, lock_name);
775 }
776 map->lock_arg = map;
777 }
778
779 /*
780 * When we write in fast-paths with regmap_bulk_write() don't allocate
781 * scratch buffers with sleeping allocations.
782 */
783 if ((bus && bus->fast_io) || config->fast_io)
784 map->alloc_flags = GFP_ATOMIC;
785 else
786 map->alloc_flags = GFP_KERNEL;
787
788 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
789 map->format.pad_bytes = config->pad_bits / 8;
790 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
791 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
792 config->val_bits + config->pad_bits, 8);
793 map->reg_shift = config->pad_bits % 8;
794 if (config->reg_stride)
795 map->reg_stride = config->reg_stride;
796 else
797 map->reg_stride = 1;
798 if (is_power_of_2(map->reg_stride))
799 map->reg_stride_order = ilog2(map->reg_stride);
800 else
801 map->reg_stride_order = -1;
802 map->use_single_read = config->use_single_read || !bus || !bus->read;
803 map->use_single_write = config->use_single_write || !bus || !bus->write;
804 map->can_multi_write = config->can_multi_write && bus && bus->write;
805 if (bus) {
806 map->max_raw_read = bus->max_raw_read;
807 map->max_raw_write = bus->max_raw_write;
808 }
809 map->dev = dev;
810 map->bus = bus;
811 map->bus_context = bus_context;
812 map->max_register = config->max_register;
813 map->wr_table = config->wr_table;
814 map->rd_table = config->rd_table;
815 map->volatile_table = config->volatile_table;
816 map->precious_table = config->precious_table;
817 map->wr_noinc_table = config->wr_noinc_table;
818 map->rd_noinc_table = config->rd_noinc_table;
819 map->writeable_reg = config->writeable_reg;
820 map->readable_reg = config->readable_reg;
821 map->volatile_reg = config->volatile_reg;
822 map->precious_reg = config->precious_reg;
823 map->writeable_noinc_reg = config->writeable_noinc_reg;
824 map->readable_noinc_reg = config->readable_noinc_reg;
825 map->cache_type = config->cache_type;
826
827 spin_lock_init(&map->async_lock);
828 INIT_LIST_HEAD(&map->async_list);
829 INIT_LIST_HEAD(&map->async_free);
830 init_waitqueue_head(&map->async_waitq);
831
832 if (config->read_flag_mask ||
833 config->write_flag_mask ||
834 config->zero_flag_mask) {
835 map->read_flag_mask = config->read_flag_mask;
836 map->write_flag_mask = config->write_flag_mask;
837 } else if (bus) {
838 map->read_flag_mask = bus->read_flag_mask;
839 }
840
841 if (!bus) {
842 map->reg_read = config->reg_read;
843 map->reg_write = config->reg_write;
844
845 map->defer_caching = false;
846 goto skip_format_initialization;
847 } else if (!bus->read || !bus->write) {
848 map->reg_read = _regmap_bus_reg_read;
849 map->reg_write = _regmap_bus_reg_write;
850 map->reg_update_bits = bus->reg_update_bits;
851
852 map->defer_caching = false;
853 goto skip_format_initialization;
854 } else {
855 map->reg_read = _regmap_bus_read;
856 map->reg_update_bits = bus->reg_update_bits;
857 }
858
859 reg_endian = regmap_get_reg_endian(bus, config);
860 val_endian = regmap_get_val_endian(dev, bus, config);
861
862 switch (config->reg_bits + map->reg_shift) {
863 case 2:
864 switch (config->val_bits) {
865 case 6:
866 map->format.format_write = regmap_format_2_6_write;
867 break;
868 default:
869 goto err_hwlock;
870 }
871 break;
872
873 case 4:
874 switch (config->val_bits) {
875 case 12:
876 map->format.format_write = regmap_format_4_12_write;
877 break;
878 default:
879 goto err_hwlock;
880 }
881 break;
882
883 case 7:
884 switch (config->val_bits) {
885 case 9:
886 map->format.format_write = regmap_format_7_9_write;
887 break;
888 default:
889 goto err_hwlock;
890 }
891 break;
892
893 case 10:
894 switch (config->val_bits) {
895 case 14:
896 map->format.format_write = regmap_format_10_14_write;
897 break;
898 default:
899 goto err_hwlock;
900 }
901 break;
902
903 case 12:
904 switch (config->val_bits) {
905 case 20:
906 map->format.format_write = regmap_format_12_20_write;
907 break;
908 default:
909 goto err_hwlock;
910 }
911 break;
912
913 case 8:
914 map->format.format_reg = regmap_format_8;
915 break;
916
917 case 16:
918 switch (reg_endian) {
919 case REGMAP_ENDIAN_BIG:
920 map->format.format_reg = regmap_format_16_be;
921 break;
922 case REGMAP_ENDIAN_LITTLE:
923 map->format.format_reg = regmap_format_16_le;
924 break;
925 case REGMAP_ENDIAN_NATIVE:
926 map->format.format_reg = regmap_format_16_native;
927 break;
928 default:
929 goto err_hwlock;
930 }
931 break;
932
933 case 24:
934 if (reg_endian != REGMAP_ENDIAN_BIG)
935 goto err_hwlock;
936 map->format.format_reg = regmap_format_24;
937 break;
938
939 case 32:
940 switch (reg_endian) {
941 case REGMAP_ENDIAN_BIG:
942 map->format.format_reg = regmap_format_32_be;
943 break;
944 case REGMAP_ENDIAN_LITTLE:
945 map->format.format_reg = regmap_format_32_le;
946 break;
947 case REGMAP_ENDIAN_NATIVE:
948 map->format.format_reg = regmap_format_32_native;
949 break;
950 default:
951 goto err_hwlock;
952 }
953 break;
954
955 #ifdef CONFIG_64BIT
956 case 64:
957 switch (reg_endian) {
958 case REGMAP_ENDIAN_BIG:
959 map->format.format_reg = regmap_format_64_be;
960 break;
961 case REGMAP_ENDIAN_LITTLE:
962 map->format.format_reg = regmap_format_64_le;
963 break;
964 case REGMAP_ENDIAN_NATIVE:
965 map->format.format_reg = regmap_format_64_native;
966 break;
967 default:
968 goto err_hwlock;
969 }
970 break;
971 #endif
972
973 default:
974 goto err_hwlock;
975 }
976
977 if (val_endian == REGMAP_ENDIAN_NATIVE)
978 map->format.parse_inplace = regmap_parse_inplace_noop;
979
980 switch (config->val_bits) {
981 case 8:
982 map->format.format_val = regmap_format_8;
983 map->format.parse_val = regmap_parse_8;
984 map->format.parse_inplace = regmap_parse_inplace_noop;
985 break;
986 case 16:
987 switch (val_endian) {
988 case REGMAP_ENDIAN_BIG:
989 map->format.format_val = regmap_format_16_be;
990 map->format.parse_val = regmap_parse_16_be;
991 map->format.parse_inplace = regmap_parse_16_be_inplace;
992 break;
993 case REGMAP_ENDIAN_LITTLE:
994 map->format.format_val = regmap_format_16_le;
995 map->format.parse_val = regmap_parse_16_le;
996 map->format.parse_inplace = regmap_parse_16_le_inplace;
997 break;
998 case REGMAP_ENDIAN_NATIVE:
999 map->format.format_val = regmap_format_16_native;
1000 map->format.parse_val = regmap_parse_16_native;
1001 break;
1002 default:
1003 goto err_hwlock;
1004 }
1005 break;
1006 case 24:
1007 if (val_endian != REGMAP_ENDIAN_BIG)
1008 goto err_hwlock;
1009 map->format.format_val = regmap_format_24;
1010 map->format.parse_val = regmap_parse_24;
1011 break;
1012 case 32:
1013 switch (val_endian) {
1014 case REGMAP_ENDIAN_BIG:
1015 map->format.format_val = regmap_format_32_be;
1016 map->format.parse_val = regmap_parse_32_be;
1017 map->format.parse_inplace = regmap_parse_32_be_inplace;
1018 break;
1019 case REGMAP_ENDIAN_LITTLE:
1020 map->format.format_val = regmap_format_32_le;
1021 map->format.parse_val = regmap_parse_32_le;
1022 map->format.parse_inplace = regmap_parse_32_le_inplace;
1023 break;
1024 case REGMAP_ENDIAN_NATIVE:
1025 map->format.format_val = regmap_format_32_native;
1026 map->format.parse_val = regmap_parse_32_native;
1027 break;
1028 default:
1029 goto err_hwlock;
1030 }
1031 break;
1032 #ifdef CONFIG_64BIT
1033 case 64:
1034 switch (val_endian) {
1035 case REGMAP_ENDIAN_BIG:
1036 map->format.format_val = regmap_format_64_be;
1037 map->format.parse_val = regmap_parse_64_be;
1038 map->format.parse_inplace = regmap_parse_64_be_inplace;
1039 break;
1040 case REGMAP_ENDIAN_LITTLE:
1041 map->format.format_val = regmap_format_64_le;
1042 map->format.parse_val = regmap_parse_64_le;
1043 map->format.parse_inplace = regmap_parse_64_le_inplace;
1044 break;
1045 case REGMAP_ENDIAN_NATIVE:
1046 map->format.format_val = regmap_format_64_native;
1047 map->format.parse_val = regmap_parse_64_native;
1048 break;
1049 default:
1050 goto err_hwlock;
1051 }
1052 break;
1053 #endif
1054 }
1055
1056 if (map->format.format_write) {
1057 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1058 (val_endian != REGMAP_ENDIAN_BIG))
1059 goto err_hwlock;
1060 map->use_single_write = true;
1061 }
1062
1063 if (!map->format.format_write &&
1064 !(map->format.format_reg && map->format.format_val))
1065 goto err_hwlock;
1066
1067 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1068 if (map->work_buf == NULL) {
1069 ret = -ENOMEM;
1070 goto err_hwlock;
1071 }
1072
1073 if (map->format.format_write) {
1074 map->defer_caching = false;
1075 map->reg_write = _regmap_bus_formatted_write;
1076 } else if (map->format.format_val) {
1077 map->defer_caching = true;
1078 map->reg_write = _regmap_bus_raw_write;
1079 }
1080
1081 skip_format_initialization:
1082
1083 map->range_tree = RB_ROOT;
1084 for (i = 0; i < config->num_ranges; i++) {
1085 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1086 struct regmap_range_node *new;
1087
1088 /* Sanity check */
1089 if (range_cfg->range_max < range_cfg->range_min) {
1090 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1091 range_cfg->range_max, range_cfg->range_min);
1092 goto err_range;
1093 }
1094
1095 if (range_cfg->range_max > map->max_register) {
1096 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1097 range_cfg->range_max, map->max_register);
1098 goto err_range;
1099 }
1100
1101 if (range_cfg->selector_reg > map->max_register) {
1102 dev_err(map->dev,
1103 "Invalid range %d: selector out of map\n", i);
1104 goto err_range;
1105 }
1106
1107 if (range_cfg->window_len == 0) {
1108 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1109 i);
1110 goto err_range;
1111 }
1112
1113 /* Make sure, that this register range has no selector
1114 or data window within its boundary */
1115 for (j = 0; j < config->num_ranges; j++) {
1116 unsigned sel_reg = config->ranges[j].selector_reg;
1117 unsigned win_min = config->ranges[j].window_start;
1118 unsigned win_max = win_min +
1119 config->ranges[j].window_len - 1;
1120
1121 /* Allow data window inside its own virtual range */
1122 if (j == i)
1123 continue;
1124
1125 if (range_cfg->range_min <= sel_reg &&
1126 sel_reg <= range_cfg->range_max) {
1127 dev_err(map->dev,
1128 "Range %d: selector for %d in window\n",
1129 i, j);
1130 goto err_range;
1131 }
1132
1133 if (!(win_max < range_cfg->range_min ||
1134 win_min > range_cfg->range_max)) {
1135 dev_err(map->dev,
1136 "Range %d: window for %d in window\n",
1137 i, j);
1138 goto err_range;
1139 }
1140 }
1141
1142 new = kzalloc(sizeof(*new), GFP_KERNEL);
1143 if (new == NULL) {
1144 ret = -ENOMEM;
1145 goto err_range;
1146 }
1147
1148 new->map = map;
1149 new->name = range_cfg->name;
1150 new->range_min = range_cfg->range_min;
1151 new->range_max = range_cfg->range_max;
1152 new->selector_reg = range_cfg->selector_reg;
1153 new->selector_mask = range_cfg->selector_mask;
1154 new->selector_shift = range_cfg->selector_shift;
1155 new->window_start = range_cfg->window_start;
1156 new->window_len = range_cfg->window_len;
1157
1158 if (!_regmap_range_add(map, new)) {
1159 dev_err(map->dev, "Failed to add range %d\n", i);
1160 kfree(new);
1161 goto err_range;
1162 }
1163
1164 if (map->selector_work_buf == NULL) {
1165 map->selector_work_buf =
1166 kzalloc(map->format.buf_size, GFP_KERNEL);
1167 if (map->selector_work_buf == NULL) {
1168 ret = -ENOMEM;
1169 goto err_range;
1170 }
1171 }
1172 }
1173
1174 ret = regcache_init(map, config);
1175 if (ret != 0)
1176 goto err_range;
1177
1178 if (dev) {
1179 ret = regmap_attach_dev(dev, map, config);
1180 if (ret != 0)
1181 goto err_regcache;
1182 } else {
1183 regmap_debugfs_init(map);
1184 }
1185
1186 return map;
1187
1188 err_regcache:
1189 regcache_exit(map);
1190 err_range:
1191 regmap_range_exit(map);
1192 kfree(map->work_buf);
1193 err_hwlock:
1194 if (map->hwlock)
1195 hwspin_lock_free(map->hwlock);
1196 err_name:
1197 kfree_const(map->name);
1198 err_map:
1199 kfree(map);
1200 err:
1201 return ERR_PTR(ret);
1202 }
1203 EXPORT_SYMBOL_GPL(__regmap_init);
1204
devm_regmap_release(struct device * dev,void * res)1205 static void devm_regmap_release(struct device *dev, void *res)
1206 {
1207 regmap_exit(*(struct regmap **)res);
1208 }
1209
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1210 struct regmap *__devm_regmap_init(struct device *dev,
1211 const struct regmap_bus *bus,
1212 void *bus_context,
1213 const struct regmap_config *config,
1214 struct lock_class_key *lock_key,
1215 const char *lock_name)
1216 {
1217 struct regmap **ptr, *regmap;
1218
1219 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1220 if (!ptr)
1221 return ERR_PTR(-ENOMEM);
1222
1223 regmap = __regmap_init(dev, bus, bus_context, config,
1224 lock_key, lock_name);
1225 if (!IS_ERR(regmap)) {
1226 *ptr = regmap;
1227 devres_add(dev, ptr);
1228 } else {
1229 devres_free(ptr);
1230 }
1231
1232 return regmap;
1233 }
1234 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1235
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1236 static void regmap_field_init(struct regmap_field *rm_field,
1237 struct regmap *regmap, struct reg_field reg_field)
1238 {
1239 rm_field->regmap = regmap;
1240 rm_field->reg = reg_field.reg;
1241 rm_field->shift = reg_field.lsb;
1242 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1243 rm_field->id_size = reg_field.id_size;
1244 rm_field->id_offset = reg_field.id_offset;
1245 }
1246
1247 /**
1248 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1249 *
1250 * @dev: Device that will be interacted with
1251 * @regmap: regmap bank in which this register field is located.
1252 * @reg_field: Register field with in the bank.
1253 *
1254 * The return value will be an ERR_PTR() on error or a valid pointer
1255 * to a struct regmap_field. The regmap_field will be automatically freed
1256 * by the device management code.
1257 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1258 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1259 struct regmap *regmap, struct reg_field reg_field)
1260 {
1261 struct regmap_field *rm_field = devm_kzalloc(dev,
1262 sizeof(*rm_field), GFP_KERNEL);
1263 if (!rm_field)
1264 return ERR_PTR(-ENOMEM);
1265
1266 regmap_field_init(rm_field, regmap, reg_field);
1267
1268 return rm_field;
1269
1270 }
1271 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1272
1273
1274 /**
1275 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1276 *
1277 * @regmap: regmap bank in which this register field is located.
1278 * @rm_field: regmap register fields within the bank.
1279 * @reg_field: Register fields within the bank.
1280 * @num_fields: Number of register fields.
1281 *
1282 * The return value will be an -ENOMEM on error or zero for success.
1283 * Newly allocated regmap_fields should be freed by calling
1284 * regmap_field_bulk_free()
1285 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1286 int regmap_field_bulk_alloc(struct regmap *regmap,
1287 struct regmap_field **rm_field,
1288 struct reg_field *reg_field,
1289 int num_fields)
1290 {
1291 struct regmap_field *rf;
1292 int i;
1293
1294 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1295 if (!rf)
1296 return -ENOMEM;
1297
1298 for (i = 0; i < num_fields; i++) {
1299 regmap_field_init(&rf[i], regmap, reg_field[i]);
1300 rm_field[i] = &rf[i];
1301 }
1302
1303 return 0;
1304 }
1305 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1306
1307 /**
1308 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1309 * fields.
1310 *
1311 * @dev: Device that will be interacted with
1312 * @regmap: regmap bank in which this register field is located.
1313 * @rm_field: regmap register fields within the bank.
1314 * @reg_field: Register fields within the bank.
1315 * @num_fields: Number of register fields.
1316 *
1317 * The return value will be an -ENOMEM on error or zero for success.
1318 * Newly allocated regmap_fields will be automatically freed by the
1319 * device management code.
1320 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,struct reg_field * reg_field,int num_fields)1321 int devm_regmap_field_bulk_alloc(struct device *dev,
1322 struct regmap *regmap,
1323 struct regmap_field **rm_field,
1324 struct reg_field *reg_field,
1325 int num_fields)
1326 {
1327 struct regmap_field *rf;
1328 int i;
1329
1330 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1331 if (!rf)
1332 return -ENOMEM;
1333
1334 for (i = 0; i < num_fields; i++) {
1335 regmap_field_init(&rf[i], regmap, reg_field[i]);
1336 rm_field[i] = &rf[i];
1337 }
1338
1339 return 0;
1340 }
1341 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1342
1343 /**
1344 * regmap_field_bulk_free() - Free register field allocated using
1345 * regmap_field_bulk_alloc.
1346 *
1347 * @field: regmap fields which should be freed.
1348 */
regmap_field_bulk_free(struct regmap_field * field)1349 void regmap_field_bulk_free(struct regmap_field *field)
1350 {
1351 kfree(field);
1352 }
1353 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1354
1355 /**
1356 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1357 * devm_regmap_field_bulk_alloc.
1358 *
1359 * @dev: Device that will be interacted with
1360 * @field: regmap field which should be freed.
1361 *
1362 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1363 * drivers need not call this function, as the memory allocated via devm
1364 * will be freed as per device-driver life-cycle.
1365 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1366 void devm_regmap_field_bulk_free(struct device *dev,
1367 struct regmap_field *field)
1368 {
1369 devm_kfree(dev, field);
1370 }
1371 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1372
1373 /**
1374 * devm_regmap_field_free() - Free a register field allocated using
1375 * devm_regmap_field_alloc.
1376 *
1377 * @dev: Device that will be interacted with
1378 * @field: regmap field which should be freed.
1379 *
1380 * Free register field allocated using devm_regmap_field_alloc(). Usually
1381 * drivers need not call this function, as the memory allocated via devm
1382 * will be freed as per device-driver life-cyle.
1383 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1384 void devm_regmap_field_free(struct device *dev,
1385 struct regmap_field *field)
1386 {
1387 devm_kfree(dev, field);
1388 }
1389 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1390
1391 /**
1392 * regmap_field_alloc() - Allocate and initialise a register field.
1393 *
1394 * @regmap: regmap bank in which this register field is located.
1395 * @reg_field: Register field with in the bank.
1396 *
1397 * The return value will be an ERR_PTR() on error or a valid pointer
1398 * to a struct regmap_field. The regmap_field should be freed by the
1399 * user once its finished working with it using regmap_field_free().
1400 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1401 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1402 struct reg_field reg_field)
1403 {
1404 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1405
1406 if (!rm_field)
1407 return ERR_PTR(-ENOMEM);
1408
1409 regmap_field_init(rm_field, regmap, reg_field);
1410
1411 return rm_field;
1412 }
1413 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1414
1415 /**
1416 * regmap_field_free() - Free register field allocated using
1417 * regmap_field_alloc.
1418 *
1419 * @field: regmap field which should be freed.
1420 */
regmap_field_free(struct regmap_field * field)1421 void regmap_field_free(struct regmap_field *field)
1422 {
1423 kfree(field);
1424 }
1425 EXPORT_SYMBOL_GPL(regmap_field_free);
1426
1427 /**
1428 * regmap_reinit_cache() - Reinitialise the current register cache
1429 *
1430 * @map: Register map to operate on.
1431 * @config: New configuration. Only the cache data will be used.
1432 *
1433 * Discard any existing register cache for the map and initialize a
1434 * new cache. This can be used to restore the cache to defaults or to
1435 * update the cache configuration to reflect runtime discovery of the
1436 * hardware.
1437 *
1438 * No explicit locking is done here, the user needs to ensure that
1439 * this function will not race with other calls to regmap.
1440 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1441 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1442 {
1443 int ret;
1444
1445 regcache_exit(map);
1446 regmap_debugfs_exit(map);
1447
1448 map->max_register = config->max_register;
1449 map->writeable_reg = config->writeable_reg;
1450 map->readable_reg = config->readable_reg;
1451 map->volatile_reg = config->volatile_reg;
1452 map->precious_reg = config->precious_reg;
1453 map->writeable_noinc_reg = config->writeable_noinc_reg;
1454 map->readable_noinc_reg = config->readable_noinc_reg;
1455 map->cache_type = config->cache_type;
1456
1457 ret = regmap_set_name(map, config);
1458 if (ret)
1459 return ret;
1460
1461 regmap_debugfs_init(map);
1462
1463 map->cache_bypass = false;
1464 map->cache_only = false;
1465
1466 return regcache_init(map, config);
1467 }
1468 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1469
1470 /**
1471 * regmap_exit() - Free a previously allocated register map
1472 *
1473 * @map: Register map to operate on.
1474 */
regmap_exit(struct regmap * map)1475 void regmap_exit(struct regmap *map)
1476 {
1477 struct regmap_async *async;
1478
1479 regcache_exit(map);
1480 regmap_debugfs_exit(map);
1481 regmap_range_exit(map);
1482 if (map->bus && map->bus->free_context)
1483 map->bus->free_context(map->bus_context);
1484 kfree(map->work_buf);
1485 while (!list_empty(&map->async_free)) {
1486 async = list_first_entry_or_null(&map->async_free,
1487 struct regmap_async,
1488 list);
1489 list_del(&async->list);
1490 kfree(async->work_buf);
1491 kfree(async);
1492 }
1493 if (map->hwlock)
1494 hwspin_lock_free(map->hwlock);
1495 if (map->lock == regmap_lock_mutex)
1496 mutex_destroy(&map->mutex);
1497 kfree_const(map->name);
1498 kfree(map->patch);
1499 kfree(map);
1500 }
1501 EXPORT_SYMBOL_GPL(regmap_exit);
1502
dev_get_regmap_match(struct device * dev,void * res,void * data)1503 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1504 {
1505 struct regmap **r = res;
1506 if (!r || !*r) {
1507 WARN_ON(!r || !*r);
1508 return 0;
1509 }
1510
1511 /* If the user didn't specify a name match any */
1512 if (data)
1513 return !strcmp((*r)->name, data);
1514 else
1515 return 1;
1516 }
1517
1518 /**
1519 * dev_get_regmap() - Obtain the regmap (if any) for a device
1520 *
1521 * @dev: Device to retrieve the map for
1522 * @name: Optional name for the register map, usually NULL.
1523 *
1524 * Returns the regmap for the device if one is present, or NULL. If
1525 * name is specified then it must match the name specified when
1526 * registering the device, if it is NULL then the first regmap found
1527 * will be used. Devices with multiple register maps are very rare,
1528 * generic code should normally not need to specify a name.
1529 */
dev_get_regmap(struct device * dev,const char * name)1530 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1531 {
1532 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1533 dev_get_regmap_match, (void *)name);
1534
1535 if (!r)
1536 return NULL;
1537 return *r;
1538 }
1539 EXPORT_SYMBOL_GPL(dev_get_regmap);
1540
1541 /**
1542 * regmap_get_device() - Obtain the device from a regmap
1543 *
1544 * @map: Register map to operate on.
1545 *
1546 * Returns the underlying device that the regmap has been created for.
1547 */
regmap_get_device(struct regmap * map)1548 struct device *regmap_get_device(struct regmap *map)
1549 {
1550 return map->dev;
1551 }
1552 EXPORT_SYMBOL_GPL(regmap_get_device);
1553
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1554 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1555 struct regmap_range_node *range,
1556 unsigned int val_num)
1557 {
1558 void *orig_work_buf;
1559 unsigned int win_offset;
1560 unsigned int win_page;
1561 bool page_chg;
1562 int ret;
1563
1564 win_offset = (*reg - range->range_min) % range->window_len;
1565 win_page = (*reg - range->range_min) / range->window_len;
1566
1567 if (val_num > 1) {
1568 /* Bulk write shouldn't cross range boundary */
1569 if (*reg + val_num - 1 > range->range_max)
1570 return -EINVAL;
1571
1572 /* ... or single page boundary */
1573 if (val_num > range->window_len - win_offset)
1574 return -EINVAL;
1575 }
1576
1577 /* It is possible to have selector register inside data window.
1578 In that case, selector register is located on every page and
1579 it needs no page switching, when accessed alone. */
1580 if (val_num > 1 ||
1581 range->window_start + win_offset != range->selector_reg) {
1582 /* Use separate work_buf during page switching */
1583 orig_work_buf = map->work_buf;
1584 map->work_buf = map->selector_work_buf;
1585
1586 ret = _regmap_update_bits(map, range->selector_reg,
1587 range->selector_mask,
1588 win_page << range->selector_shift,
1589 &page_chg, false);
1590
1591 map->work_buf = orig_work_buf;
1592
1593 if (ret != 0)
1594 return ret;
1595 }
1596
1597 *reg = range->window_start + win_offset;
1598
1599 return 0;
1600 }
1601
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1602 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1603 unsigned long mask)
1604 {
1605 u8 *buf;
1606 int i;
1607
1608 if (!mask || !map->work_buf)
1609 return;
1610
1611 buf = map->work_buf;
1612
1613 for (i = 0; i < max_bytes; i++)
1614 buf[i] |= (mask >> (8 * i)) & 0xff;
1615 }
1616
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1617 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1618 const void *val, size_t val_len, bool noinc)
1619 {
1620 struct regmap_range_node *range;
1621 unsigned long flags;
1622 void *work_val = map->work_buf + map->format.reg_bytes +
1623 map->format.pad_bytes;
1624 void *buf;
1625 int ret = -ENOTSUPP;
1626 size_t len;
1627 int i;
1628
1629 WARN_ON(!map->bus);
1630
1631 /* Check for unwritable or noinc registers in range
1632 * before we start
1633 */
1634 if (!regmap_writeable_noinc(map, reg)) {
1635 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1636 unsigned int element =
1637 reg + regmap_get_offset(map, i);
1638 if (!regmap_writeable(map, element) ||
1639 regmap_writeable_noinc(map, element))
1640 return -EINVAL;
1641 }
1642 }
1643
1644 if (!map->cache_bypass && map->format.parse_val) {
1645 unsigned int ival;
1646 int val_bytes = map->format.val_bytes;
1647 for (i = 0; i < val_len / val_bytes; i++) {
1648 ival = map->format.parse_val(val + (i * val_bytes));
1649 ret = regcache_write(map,
1650 reg + regmap_get_offset(map, i),
1651 ival);
1652 if (ret) {
1653 dev_err(map->dev,
1654 "Error in caching of register: %x ret: %d\n",
1655 reg + i, ret);
1656 return ret;
1657 }
1658 }
1659 if (map->cache_only) {
1660 map->cache_dirty = true;
1661 return 0;
1662 }
1663 }
1664
1665 range = _regmap_range_lookup(map, reg);
1666 if (range) {
1667 int val_num = val_len / map->format.val_bytes;
1668 int win_offset = (reg - range->range_min) % range->window_len;
1669 int win_residue = range->window_len - win_offset;
1670
1671 /* If the write goes beyond the end of the window split it */
1672 while (val_num > win_residue) {
1673 dev_dbg(map->dev, "Writing window %d/%zu\n",
1674 win_residue, val_len / map->format.val_bytes);
1675 ret = _regmap_raw_write_impl(map, reg, val,
1676 win_residue *
1677 map->format.val_bytes, noinc);
1678 if (ret != 0)
1679 return ret;
1680
1681 reg += win_residue;
1682 val_num -= win_residue;
1683 val += win_residue * map->format.val_bytes;
1684 val_len -= win_residue * map->format.val_bytes;
1685
1686 win_offset = (reg - range->range_min) %
1687 range->window_len;
1688 win_residue = range->window_len - win_offset;
1689 }
1690
1691 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1692 if (ret != 0)
1693 return ret;
1694 }
1695
1696 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1697 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1698 map->write_flag_mask);
1699
1700 /*
1701 * Essentially all I/O mechanisms will be faster with a single
1702 * buffer to write. Since register syncs often generate raw
1703 * writes of single registers optimise that case.
1704 */
1705 if (val != work_val && val_len == map->format.val_bytes) {
1706 memcpy(work_val, val, map->format.val_bytes);
1707 val = work_val;
1708 }
1709
1710 if (map->async && map->bus->async_write) {
1711 struct regmap_async *async;
1712
1713 trace_regmap_async_write_start(map, reg, val_len);
1714
1715 spin_lock_irqsave(&map->async_lock, flags);
1716 async = list_first_entry_or_null(&map->async_free,
1717 struct regmap_async,
1718 list);
1719 if (async)
1720 list_del(&async->list);
1721 spin_unlock_irqrestore(&map->async_lock, flags);
1722
1723 if (!async) {
1724 async = map->bus->async_alloc();
1725 if (!async)
1726 return -ENOMEM;
1727
1728 async->work_buf = kzalloc(map->format.buf_size,
1729 GFP_KERNEL | GFP_DMA);
1730 if (!async->work_buf) {
1731 kfree(async);
1732 return -ENOMEM;
1733 }
1734 }
1735
1736 async->map = map;
1737
1738 /* If the caller supplied the value we can use it safely. */
1739 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1740 map->format.reg_bytes + map->format.val_bytes);
1741
1742 spin_lock_irqsave(&map->async_lock, flags);
1743 list_add_tail(&async->list, &map->async_list);
1744 spin_unlock_irqrestore(&map->async_lock, flags);
1745
1746 if (val != work_val)
1747 ret = map->bus->async_write(map->bus_context,
1748 async->work_buf,
1749 map->format.reg_bytes +
1750 map->format.pad_bytes,
1751 val, val_len, async);
1752 else
1753 ret = map->bus->async_write(map->bus_context,
1754 async->work_buf,
1755 map->format.reg_bytes +
1756 map->format.pad_bytes +
1757 val_len, NULL, 0, async);
1758
1759 if (ret != 0) {
1760 dev_err(map->dev, "Failed to schedule write: %d\n",
1761 ret);
1762
1763 spin_lock_irqsave(&map->async_lock, flags);
1764 list_move(&async->list, &map->async_free);
1765 spin_unlock_irqrestore(&map->async_lock, flags);
1766 }
1767
1768 return ret;
1769 }
1770
1771 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1772
1773 /* If we're doing a single register write we can probably just
1774 * send the work_buf directly, otherwise try to do a gather
1775 * write.
1776 */
1777 if (val == work_val)
1778 ret = map->bus->write(map->bus_context, map->work_buf,
1779 map->format.reg_bytes +
1780 map->format.pad_bytes +
1781 val_len);
1782 else if (map->bus->gather_write)
1783 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1784 map->format.reg_bytes +
1785 map->format.pad_bytes,
1786 val, val_len);
1787 else
1788 ret = -ENOTSUPP;
1789
1790 /* If that didn't work fall back on linearising by hand. */
1791 if (ret == -ENOTSUPP) {
1792 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1793 buf = kzalloc(len, GFP_KERNEL);
1794 if (!buf)
1795 return -ENOMEM;
1796
1797 memcpy(buf, map->work_buf, map->format.reg_bytes);
1798 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1799 val, val_len);
1800 ret = map->bus->write(map->bus_context, buf, len);
1801
1802 kfree(buf);
1803 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1804 /* regcache_drop_region() takes lock that we already have,
1805 * thus call map->cache_ops->drop() directly
1806 */
1807 if (map->cache_ops && map->cache_ops->drop)
1808 map->cache_ops->drop(map, reg, reg + 1);
1809 }
1810
1811 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1812
1813 return ret;
1814 }
1815
1816 /**
1817 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1818 *
1819 * @map: Map to check.
1820 */
regmap_can_raw_write(struct regmap * map)1821 bool regmap_can_raw_write(struct regmap *map)
1822 {
1823 return map->bus && map->bus->write && map->format.format_val &&
1824 map->format.format_reg;
1825 }
1826 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1827
1828 /**
1829 * regmap_get_raw_read_max - Get the maximum size we can read
1830 *
1831 * @map: Map to check.
1832 */
regmap_get_raw_read_max(struct regmap * map)1833 size_t regmap_get_raw_read_max(struct regmap *map)
1834 {
1835 return map->max_raw_read;
1836 }
1837 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1838
1839 /**
1840 * regmap_get_raw_write_max - Get the maximum size we can read
1841 *
1842 * @map: Map to check.
1843 */
regmap_get_raw_write_max(struct regmap * map)1844 size_t regmap_get_raw_write_max(struct regmap *map)
1845 {
1846 return map->max_raw_write;
1847 }
1848 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1849
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1850 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1851 unsigned int val)
1852 {
1853 int ret;
1854 struct regmap_range_node *range;
1855 struct regmap *map = context;
1856
1857 WARN_ON(!map->bus || !map->format.format_write);
1858
1859 range = _regmap_range_lookup(map, reg);
1860 if (range) {
1861 ret = _regmap_select_page(map, ®, range, 1);
1862 if (ret != 0)
1863 return ret;
1864 }
1865
1866 map->format.format_write(map, reg, val);
1867
1868 trace_regmap_hw_write_start(map, reg, 1);
1869
1870 ret = map->bus->write(map->bus_context, map->work_buf,
1871 map->format.buf_size);
1872
1873 trace_regmap_hw_write_done(map, reg, 1);
1874
1875 return ret;
1876 }
1877
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1878 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1879 unsigned int val)
1880 {
1881 struct regmap *map = context;
1882
1883 return map->bus->reg_write(map->bus_context, reg, val);
1884 }
1885
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1886 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1887 unsigned int val)
1888 {
1889 struct regmap *map = context;
1890
1891 WARN_ON(!map->bus || !map->format.format_val);
1892
1893 map->format.format_val(map->work_buf + map->format.reg_bytes
1894 + map->format.pad_bytes, val, 0);
1895 return _regmap_raw_write_impl(map, reg,
1896 map->work_buf +
1897 map->format.reg_bytes +
1898 map->format.pad_bytes,
1899 map->format.val_bytes,
1900 false);
1901 }
1902
_regmap_map_get_context(struct regmap * map)1903 static inline void *_regmap_map_get_context(struct regmap *map)
1904 {
1905 return (map->bus) ? map : map->bus_context;
1906 }
1907
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1908 int _regmap_write(struct regmap *map, unsigned int reg,
1909 unsigned int val)
1910 {
1911 int ret;
1912 void *context = _regmap_map_get_context(map);
1913
1914 if (!regmap_writeable(map, reg))
1915 return -EIO;
1916
1917 if (!map->cache_bypass && !map->defer_caching) {
1918 ret = regcache_write(map, reg, val);
1919 if (ret != 0)
1920 return ret;
1921 if (map->cache_only) {
1922 map->cache_dirty = true;
1923 return 0;
1924 }
1925 }
1926
1927 if (regmap_should_log(map))
1928 dev_info(map->dev, "%x <= %x\n", reg, val);
1929
1930 trace_regmap_reg_write(map, reg, val);
1931
1932 return map->reg_write(context, reg, val);
1933 }
1934
1935 /**
1936 * regmap_write() - Write a value to a single register
1937 *
1938 * @map: Register map to write to
1939 * @reg: Register to write to
1940 * @val: Value to be written
1941 *
1942 * A value of zero will be returned on success, a negative errno will
1943 * be returned in error cases.
1944 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1945 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1946 {
1947 int ret;
1948
1949 if (!IS_ALIGNED(reg, map->reg_stride))
1950 return -EINVAL;
1951
1952 map->lock(map->lock_arg);
1953
1954 ret = _regmap_write(map, reg, val);
1955
1956 map->unlock(map->lock_arg);
1957
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(regmap_write);
1961
1962 /**
1963 * regmap_write_async() - Write a value to a single register asynchronously
1964 *
1965 * @map: Register map to write to
1966 * @reg: Register to write to
1967 * @val: Value to be written
1968 *
1969 * A value of zero will be returned on success, a negative errno will
1970 * be returned in error cases.
1971 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1972 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1973 {
1974 int ret;
1975
1976 if (!IS_ALIGNED(reg, map->reg_stride))
1977 return -EINVAL;
1978
1979 map->lock(map->lock_arg);
1980
1981 map->async = true;
1982
1983 ret = _regmap_write(map, reg, val);
1984
1985 map->async = false;
1986
1987 map->unlock(map->lock_arg);
1988
1989 return ret;
1990 }
1991 EXPORT_SYMBOL_GPL(regmap_write_async);
1992
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1993 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1994 const void *val, size_t val_len, bool noinc)
1995 {
1996 size_t val_bytes = map->format.val_bytes;
1997 size_t val_count = val_len / val_bytes;
1998 size_t chunk_count, chunk_bytes;
1999 size_t chunk_regs = val_count;
2000 int ret, i;
2001
2002 if (!val_count)
2003 return -EINVAL;
2004
2005 if (map->use_single_write)
2006 chunk_regs = 1;
2007 else if (map->max_raw_write && val_len > map->max_raw_write)
2008 chunk_regs = map->max_raw_write / val_bytes;
2009
2010 chunk_count = val_count / chunk_regs;
2011 chunk_bytes = chunk_regs * val_bytes;
2012
2013 /* Write as many bytes as possible with chunk_size */
2014 for (i = 0; i < chunk_count; i++) {
2015 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2016 if (ret)
2017 return ret;
2018
2019 reg += regmap_get_offset(map, chunk_regs);
2020 val += chunk_bytes;
2021 val_len -= chunk_bytes;
2022 }
2023
2024 /* Write remaining bytes */
2025 if (val_len)
2026 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2027
2028 return ret;
2029 }
2030
2031 /**
2032 * regmap_raw_write() - Write raw values to one or more registers
2033 *
2034 * @map: Register map to write to
2035 * @reg: Initial register to write to
2036 * @val: Block of data to be written, laid out for direct transmission to the
2037 * device
2038 * @val_len: Length of data pointed to by val.
2039 *
2040 * This function is intended to be used for things like firmware
2041 * download where a large block of data needs to be transferred to the
2042 * device. No formatting will be done on the data provided.
2043 *
2044 * A value of zero will be returned on success, a negative errno will
2045 * be returned in error cases.
2046 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2047 int regmap_raw_write(struct regmap *map, unsigned int reg,
2048 const void *val, size_t val_len)
2049 {
2050 int ret;
2051
2052 if (!regmap_can_raw_write(map))
2053 return -EINVAL;
2054 if (val_len % map->format.val_bytes)
2055 return -EINVAL;
2056
2057 map->lock(map->lock_arg);
2058
2059 ret = _regmap_raw_write(map, reg, val, val_len, false);
2060
2061 map->unlock(map->lock_arg);
2062
2063 return ret;
2064 }
2065 EXPORT_SYMBOL_GPL(regmap_raw_write);
2066
2067 /**
2068 * regmap_noinc_write(): Write data from a register without incrementing the
2069 * register number
2070 *
2071 * @map: Register map to write to
2072 * @reg: Register to write to
2073 * @val: Pointer to data buffer
2074 * @val_len: Length of output buffer in bytes.
2075 *
2076 * The regmap API usually assumes that bulk bus write operations will write a
2077 * range of registers. Some devices have certain registers for which a write
2078 * operation can write to an internal FIFO.
2079 *
2080 * The target register must be volatile but registers after it can be
2081 * completely unrelated cacheable registers.
2082 *
2083 * This will attempt multiple writes as required to write val_len bytes.
2084 *
2085 * A value of zero will be returned on success, a negative errno will be
2086 * returned in error cases.
2087 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2088 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2089 const void *val, size_t val_len)
2090 {
2091 size_t write_len;
2092 int ret;
2093
2094 if (!map->bus)
2095 return -EINVAL;
2096 if (!map->bus->write)
2097 return -ENOTSUPP;
2098 if (val_len % map->format.val_bytes)
2099 return -EINVAL;
2100 if (!IS_ALIGNED(reg, map->reg_stride))
2101 return -EINVAL;
2102 if (val_len == 0)
2103 return -EINVAL;
2104
2105 map->lock(map->lock_arg);
2106
2107 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2108 ret = -EINVAL;
2109 goto out_unlock;
2110 }
2111
2112 while (val_len) {
2113 if (map->max_raw_write && map->max_raw_write < val_len)
2114 write_len = map->max_raw_write;
2115 else
2116 write_len = val_len;
2117 ret = _regmap_raw_write(map, reg, val, write_len, true);
2118 if (ret)
2119 goto out_unlock;
2120 val = ((u8 *)val) + write_len;
2121 val_len -= write_len;
2122 }
2123
2124 out_unlock:
2125 map->unlock(map->lock_arg);
2126 return ret;
2127 }
2128 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2129
2130 /**
2131 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2132 * register field.
2133 *
2134 * @field: Register field to write to
2135 * @mask: Bitmask to change
2136 * @val: Value to be written
2137 * @change: Boolean indicating if a write was done
2138 * @async: Boolean indicating asynchronously
2139 * @force: Boolean indicating use force update
2140 *
2141 * Perform a read/modify/write cycle on the register field with change,
2142 * async, force option.
2143 *
2144 * A value of zero will be returned on success, a negative errno will
2145 * be returned in error cases.
2146 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2147 int regmap_field_update_bits_base(struct regmap_field *field,
2148 unsigned int mask, unsigned int val,
2149 bool *change, bool async, bool force)
2150 {
2151 mask = (mask << field->shift) & field->mask;
2152
2153 return regmap_update_bits_base(field->regmap, field->reg,
2154 mask, val << field->shift,
2155 change, async, force);
2156 }
2157 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2158
2159 /**
2160 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2161 * register field with port ID
2162 *
2163 * @field: Register field to write to
2164 * @id: port ID
2165 * @mask: Bitmask to change
2166 * @val: Value to be written
2167 * @change: Boolean indicating if a write was done
2168 * @async: Boolean indicating asynchronously
2169 * @force: Boolean indicating use force update
2170 *
2171 * A value of zero will be returned on success, a negative errno will
2172 * be returned in error cases.
2173 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2174 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2175 unsigned int mask, unsigned int val,
2176 bool *change, bool async, bool force)
2177 {
2178 if (id >= field->id_size)
2179 return -EINVAL;
2180
2181 mask = (mask << field->shift) & field->mask;
2182
2183 return regmap_update_bits_base(field->regmap,
2184 field->reg + (field->id_offset * id),
2185 mask, val << field->shift,
2186 change, async, force);
2187 }
2188 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2189
2190 /**
2191 * regmap_bulk_write() - Write multiple registers to the device
2192 *
2193 * @map: Register map to write to
2194 * @reg: First register to be write from
2195 * @val: Block of data to be written, in native register size for device
2196 * @val_count: Number of registers to write
2197 *
2198 * This function is intended to be used for writing a large block of
2199 * data to the device either in single transfer or multiple transfer.
2200 *
2201 * A value of zero will be returned on success, a negative errno will
2202 * be returned in error cases.
2203 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2204 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2205 size_t val_count)
2206 {
2207 int ret = 0, i;
2208 size_t val_bytes = map->format.val_bytes;
2209
2210 if (!IS_ALIGNED(reg, map->reg_stride))
2211 return -EINVAL;
2212
2213 /*
2214 * Some devices don't support bulk write, for them we have a series of
2215 * single write operations.
2216 */
2217 if (!map->bus || !map->format.parse_inplace) {
2218 map->lock(map->lock_arg);
2219 for (i = 0; i < val_count; i++) {
2220 unsigned int ival;
2221
2222 switch (val_bytes) {
2223 case 1:
2224 ival = *(u8 *)(val + (i * val_bytes));
2225 break;
2226 case 2:
2227 ival = *(u16 *)(val + (i * val_bytes));
2228 break;
2229 case 4:
2230 ival = *(u32 *)(val + (i * val_bytes));
2231 break;
2232 #ifdef CONFIG_64BIT
2233 case 8:
2234 ival = *(u64 *)(val + (i * val_bytes));
2235 break;
2236 #endif
2237 default:
2238 ret = -EINVAL;
2239 goto out;
2240 }
2241
2242 ret = _regmap_write(map,
2243 reg + regmap_get_offset(map, i),
2244 ival);
2245 if (ret != 0)
2246 goto out;
2247 }
2248 out:
2249 map->unlock(map->lock_arg);
2250 } else {
2251 void *wval;
2252
2253 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2254 if (!wval)
2255 return -ENOMEM;
2256
2257 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2258 map->format.parse_inplace(wval + i);
2259
2260 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2261
2262 kfree(wval);
2263 }
2264 return ret;
2265 }
2266 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2267
2268 /*
2269 * _regmap_raw_multi_reg_write()
2270 *
2271 * the (register,newvalue) pairs in regs have not been formatted, but
2272 * they are all in the same page and have been changed to being page
2273 * relative. The page register has been written if that was necessary.
2274 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2275 static int _regmap_raw_multi_reg_write(struct regmap *map,
2276 const struct reg_sequence *regs,
2277 size_t num_regs)
2278 {
2279 int ret;
2280 void *buf;
2281 int i;
2282 u8 *u8;
2283 size_t val_bytes = map->format.val_bytes;
2284 size_t reg_bytes = map->format.reg_bytes;
2285 size_t pad_bytes = map->format.pad_bytes;
2286 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2287 size_t len = pair_size * num_regs;
2288
2289 if (!len)
2290 return -EINVAL;
2291
2292 buf = kzalloc(len, GFP_KERNEL);
2293 if (!buf)
2294 return -ENOMEM;
2295
2296 /* We have to linearise by hand. */
2297
2298 u8 = buf;
2299
2300 for (i = 0; i < num_regs; i++) {
2301 unsigned int reg = regs[i].reg;
2302 unsigned int val = regs[i].def;
2303 trace_regmap_hw_write_start(map, reg, 1);
2304 map->format.format_reg(u8, reg, map->reg_shift);
2305 u8 += reg_bytes + pad_bytes;
2306 map->format.format_val(u8, val, 0);
2307 u8 += val_bytes;
2308 }
2309 u8 = buf;
2310 *u8 |= map->write_flag_mask;
2311
2312 ret = map->bus->write(map->bus_context, buf, len);
2313
2314 kfree(buf);
2315
2316 for (i = 0; i < num_regs; i++) {
2317 int reg = regs[i].reg;
2318 trace_regmap_hw_write_done(map, reg, 1);
2319 }
2320 return ret;
2321 }
2322
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2323 static unsigned int _regmap_register_page(struct regmap *map,
2324 unsigned int reg,
2325 struct regmap_range_node *range)
2326 {
2327 unsigned int win_page = (reg - range->range_min) / range->window_len;
2328
2329 return win_page;
2330 }
2331
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2332 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2333 struct reg_sequence *regs,
2334 size_t num_regs)
2335 {
2336 int ret;
2337 int i, n;
2338 struct reg_sequence *base;
2339 unsigned int this_page = 0;
2340 unsigned int page_change = 0;
2341 /*
2342 * the set of registers are not neccessarily in order, but
2343 * since the order of write must be preserved this algorithm
2344 * chops the set each time the page changes. This also applies
2345 * if there is a delay required at any point in the sequence.
2346 */
2347 base = regs;
2348 for (i = 0, n = 0; i < num_regs; i++, n++) {
2349 unsigned int reg = regs[i].reg;
2350 struct regmap_range_node *range;
2351
2352 range = _regmap_range_lookup(map, reg);
2353 if (range) {
2354 unsigned int win_page = _regmap_register_page(map, reg,
2355 range);
2356
2357 if (i == 0)
2358 this_page = win_page;
2359 if (win_page != this_page) {
2360 this_page = win_page;
2361 page_change = 1;
2362 }
2363 }
2364
2365 /* If we have both a page change and a delay make sure to
2366 * write the regs and apply the delay before we change the
2367 * page.
2368 */
2369
2370 if (page_change || regs[i].delay_us) {
2371
2372 /* For situations where the first write requires
2373 * a delay we need to make sure we don't call
2374 * raw_multi_reg_write with n=0
2375 * This can't occur with page breaks as we
2376 * never write on the first iteration
2377 */
2378 if (regs[i].delay_us && i == 0)
2379 n = 1;
2380
2381 ret = _regmap_raw_multi_reg_write(map, base, n);
2382 if (ret != 0)
2383 return ret;
2384
2385 if (regs[i].delay_us) {
2386 if (map->can_sleep)
2387 fsleep(regs[i].delay_us);
2388 else
2389 udelay(regs[i].delay_us);
2390 }
2391
2392 base += n;
2393 n = 0;
2394
2395 if (page_change) {
2396 ret = _regmap_select_page(map,
2397 &base[n].reg,
2398 range, 1);
2399 if (ret != 0)
2400 return ret;
2401
2402 page_change = 0;
2403 }
2404
2405 }
2406
2407 }
2408 if (n > 0)
2409 return _regmap_raw_multi_reg_write(map, base, n);
2410 return 0;
2411 }
2412
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2413 static int _regmap_multi_reg_write(struct regmap *map,
2414 const struct reg_sequence *regs,
2415 size_t num_regs)
2416 {
2417 int i;
2418 int ret;
2419
2420 if (!map->can_multi_write) {
2421 for (i = 0; i < num_regs; i++) {
2422 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2423 if (ret != 0)
2424 return ret;
2425
2426 if (regs[i].delay_us) {
2427 if (map->can_sleep)
2428 fsleep(regs[i].delay_us);
2429 else
2430 udelay(regs[i].delay_us);
2431 }
2432 }
2433 return 0;
2434 }
2435
2436 if (!map->format.parse_inplace)
2437 return -EINVAL;
2438
2439 if (map->writeable_reg)
2440 for (i = 0; i < num_regs; i++) {
2441 int reg = regs[i].reg;
2442 if (!map->writeable_reg(map->dev, reg))
2443 return -EINVAL;
2444 if (!IS_ALIGNED(reg, map->reg_stride))
2445 return -EINVAL;
2446 }
2447
2448 if (!map->cache_bypass) {
2449 for (i = 0; i < num_regs; i++) {
2450 unsigned int val = regs[i].def;
2451 unsigned int reg = regs[i].reg;
2452 ret = regcache_write(map, reg, val);
2453 if (ret) {
2454 dev_err(map->dev,
2455 "Error in caching of register: %x ret: %d\n",
2456 reg, ret);
2457 return ret;
2458 }
2459 }
2460 if (map->cache_only) {
2461 map->cache_dirty = true;
2462 return 0;
2463 }
2464 }
2465
2466 WARN_ON(!map->bus);
2467
2468 for (i = 0; i < num_regs; i++) {
2469 unsigned int reg = regs[i].reg;
2470 struct regmap_range_node *range;
2471
2472 /* Coalesce all the writes between a page break or a delay
2473 * in a sequence
2474 */
2475 range = _regmap_range_lookup(map, reg);
2476 if (range || regs[i].delay_us) {
2477 size_t len = sizeof(struct reg_sequence)*num_regs;
2478 struct reg_sequence *base = kmemdup(regs, len,
2479 GFP_KERNEL);
2480 if (!base)
2481 return -ENOMEM;
2482 ret = _regmap_range_multi_paged_reg_write(map, base,
2483 num_regs);
2484 kfree(base);
2485
2486 return ret;
2487 }
2488 }
2489 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2490 }
2491
2492 /**
2493 * regmap_multi_reg_write() - Write multiple registers to the device
2494 *
2495 * @map: Register map to write to
2496 * @regs: Array of structures containing register,value to be written
2497 * @num_regs: Number of registers to write
2498 *
2499 * Write multiple registers to the device where the set of register, value
2500 * pairs are supplied in any order, possibly not all in a single range.
2501 *
2502 * The 'normal' block write mode will send ultimately send data on the
2503 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2504 * addressed. However, this alternative block multi write mode will send
2505 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2506 * must of course support the mode.
2507 *
2508 * A value of zero will be returned on success, a negative errno will be
2509 * returned in error cases.
2510 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2511 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2512 int num_regs)
2513 {
2514 int ret;
2515
2516 map->lock(map->lock_arg);
2517
2518 ret = _regmap_multi_reg_write(map, regs, num_regs);
2519
2520 map->unlock(map->lock_arg);
2521
2522 return ret;
2523 }
2524 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2525
2526 /**
2527 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2528 * device but not the cache
2529 *
2530 * @map: Register map to write to
2531 * @regs: Array of structures containing register,value to be written
2532 * @num_regs: Number of registers to write
2533 *
2534 * Write multiple registers to the device but not the cache where the set
2535 * of register are supplied in any order.
2536 *
2537 * This function is intended to be used for writing a large block of data
2538 * atomically to the device in single transfer for those I2C client devices
2539 * that implement this alternative block write mode.
2540 *
2541 * A value of zero will be returned on success, a negative errno will
2542 * be returned in error cases.
2543 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2544 int regmap_multi_reg_write_bypassed(struct regmap *map,
2545 const struct reg_sequence *regs,
2546 int num_regs)
2547 {
2548 int ret;
2549 bool bypass;
2550
2551 map->lock(map->lock_arg);
2552
2553 bypass = map->cache_bypass;
2554 map->cache_bypass = true;
2555
2556 ret = _regmap_multi_reg_write(map, regs, num_regs);
2557
2558 map->cache_bypass = bypass;
2559
2560 map->unlock(map->lock_arg);
2561
2562 return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2565
2566 /**
2567 * regmap_raw_write_async() - Write raw values to one or more registers
2568 * asynchronously
2569 *
2570 * @map: Register map to write to
2571 * @reg: Initial register to write to
2572 * @val: Block of data to be written, laid out for direct transmission to the
2573 * device. Must be valid until regmap_async_complete() is called.
2574 * @val_len: Length of data pointed to by val.
2575 *
2576 * This function is intended to be used for things like firmware
2577 * download where a large block of data needs to be transferred to the
2578 * device. No formatting will be done on the data provided.
2579 *
2580 * If supported by the underlying bus the write will be scheduled
2581 * asynchronously, helping maximise I/O speed on higher speed buses
2582 * like SPI. regmap_async_complete() can be called to ensure that all
2583 * asynchrnous writes have been completed.
2584 *
2585 * A value of zero will be returned on success, a negative errno will
2586 * be returned in error cases.
2587 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2588 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2589 const void *val, size_t val_len)
2590 {
2591 int ret;
2592
2593 if (val_len % map->format.val_bytes)
2594 return -EINVAL;
2595 if (!IS_ALIGNED(reg, map->reg_stride))
2596 return -EINVAL;
2597
2598 map->lock(map->lock_arg);
2599
2600 map->async = true;
2601
2602 ret = _regmap_raw_write(map, reg, val, val_len, false);
2603
2604 map->async = false;
2605
2606 map->unlock(map->lock_arg);
2607
2608 return ret;
2609 }
2610 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2611
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2612 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2613 unsigned int val_len, bool noinc)
2614 {
2615 struct regmap_range_node *range;
2616 int ret;
2617
2618 WARN_ON(!map->bus);
2619
2620 if (!map->bus || !map->bus->read)
2621 return -EINVAL;
2622
2623 range = _regmap_range_lookup(map, reg);
2624 if (range) {
2625 ret = _regmap_select_page(map, ®, range,
2626 noinc ? 1 : val_len / map->format.val_bytes);
2627 if (ret != 0)
2628 return ret;
2629 }
2630
2631 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2632 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2633 map->read_flag_mask);
2634 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2635
2636 ret = map->bus->read(map->bus_context, map->work_buf,
2637 map->format.reg_bytes + map->format.pad_bytes,
2638 val, val_len);
2639
2640 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2641
2642 return ret;
2643 }
2644
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2645 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2646 unsigned int *val)
2647 {
2648 struct regmap *map = context;
2649
2650 return map->bus->reg_read(map->bus_context, reg, val);
2651 }
2652
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2653 static int _regmap_bus_read(void *context, unsigned int reg,
2654 unsigned int *val)
2655 {
2656 int ret;
2657 struct regmap *map = context;
2658 void *work_val = map->work_buf + map->format.reg_bytes +
2659 map->format.pad_bytes;
2660
2661 if (!map->format.parse_val)
2662 return -EINVAL;
2663
2664 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2665 if (ret == 0)
2666 *val = map->format.parse_val(work_val);
2667
2668 return ret;
2669 }
2670
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2671 static int _regmap_read(struct regmap *map, unsigned int reg,
2672 unsigned int *val)
2673 {
2674 int ret;
2675 void *context = _regmap_map_get_context(map);
2676
2677 if (!map->cache_bypass) {
2678 ret = regcache_read(map, reg, val);
2679 if (ret == 0)
2680 return 0;
2681 }
2682
2683 if (map->cache_only)
2684 return -EBUSY;
2685
2686 if (!regmap_readable(map, reg))
2687 return -EIO;
2688
2689 ret = map->reg_read(context, reg, val);
2690 if (ret == 0) {
2691 if (regmap_should_log(map))
2692 dev_info(map->dev, "%x => %x\n", reg, *val);
2693
2694 trace_regmap_reg_read(map, reg, *val);
2695
2696 if (!map->cache_bypass)
2697 regcache_write(map, reg, *val);
2698 }
2699
2700 return ret;
2701 }
2702
2703 /**
2704 * regmap_read() - Read a value from a single register
2705 *
2706 * @map: Register map to read from
2707 * @reg: Register to be read from
2708 * @val: Pointer to store read value
2709 *
2710 * A value of zero will be returned on success, a negative errno will
2711 * be returned in error cases.
2712 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2713 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2714 {
2715 int ret;
2716
2717 if (!IS_ALIGNED(reg, map->reg_stride))
2718 return -EINVAL;
2719
2720 map->lock(map->lock_arg);
2721
2722 ret = _regmap_read(map, reg, val);
2723
2724 map->unlock(map->lock_arg);
2725
2726 return ret;
2727 }
2728 EXPORT_SYMBOL_GPL(regmap_read);
2729
2730 /**
2731 * regmap_raw_read() - Read raw data from the device
2732 *
2733 * @map: Register map to read from
2734 * @reg: First register to be read from
2735 * @val: Pointer to store read value
2736 * @val_len: Size of data to read
2737 *
2738 * A value of zero will be returned on success, a negative errno will
2739 * be returned in error cases.
2740 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2741 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2742 size_t val_len)
2743 {
2744 size_t val_bytes = map->format.val_bytes;
2745 size_t val_count = val_len / val_bytes;
2746 unsigned int v;
2747 int ret, i;
2748
2749 if (!map->bus)
2750 return -EINVAL;
2751 if (val_len % map->format.val_bytes)
2752 return -EINVAL;
2753 if (!IS_ALIGNED(reg, map->reg_stride))
2754 return -EINVAL;
2755 if (val_count == 0)
2756 return -EINVAL;
2757
2758 map->lock(map->lock_arg);
2759
2760 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2761 map->cache_type == REGCACHE_NONE) {
2762 size_t chunk_count, chunk_bytes;
2763 size_t chunk_regs = val_count;
2764
2765 if (!map->bus->read) {
2766 ret = -ENOTSUPP;
2767 goto out;
2768 }
2769
2770 if (map->use_single_read)
2771 chunk_regs = 1;
2772 else if (map->max_raw_read && val_len > map->max_raw_read)
2773 chunk_regs = map->max_raw_read / val_bytes;
2774
2775 chunk_count = val_count / chunk_regs;
2776 chunk_bytes = chunk_regs * val_bytes;
2777
2778 /* Read bytes that fit into whole chunks */
2779 for (i = 0; i < chunk_count; i++) {
2780 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2781 if (ret != 0)
2782 goto out;
2783
2784 reg += regmap_get_offset(map, chunk_regs);
2785 val += chunk_bytes;
2786 val_len -= chunk_bytes;
2787 }
2788
2789 /* Read remaining bytes */
2790 if (val_len) {
2791 ret = _regmap_raw_read(map, reg, val, val_len, false);
2792 if (ret != 0)
2793 goto out;
2794 }
2795 } else {
2796 /* Otherwise go word by word for the cache; should be low
2797 * cost as we expect to hit the cache.
2798 */
2799 for (i = 0; i < val_count; i++) {
2800 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2801 &v);
2802 if (ret != 0)
2803 goto out;
2804
2805 map->format.format_val(val + (i * val_bytes), v, 0);
2806 }
2807 }
2808
2809 out:
2810 map->unlock(map->lock_arg);
2811
2812 return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regmap_raw_read);
2815
2816 /**
2817 * regmap_noinc_read(): Read data from a register without incrementing the
2818 * register number
2819 *
2820 * @map: Register map to read from
2821 * @reg: Register to read from
2822 * @val: Pointer to data buffer
2823 * @val_len: Length of output buffer in bytes.
2824 *
2825 * The regmap API usually assumes that bulk bus read operations will read a
2826 * range of registers. Some devices have certain registers for which a read
2827 * operation read will read from an internal FIFO.
2828 *
2829 * The target register must be volatile but registers after it can be
2830 * completely unrelated cacheable registers.
2831 *
2832 * This will attempt multiple reads as required to read val_len bytes.
2833 *
2834 * A value of zero will be returned on success, a negative errno will be
2835 * returned in error cases.
2836 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2837 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2838 void *val, size_t val_len)
2839 {
2840 size_t read_len;
2841 int ret;
2842
2843 if (!map->bus)
2844 return -EINVAL;
2845 if (!map->bus->read)
2846 return -ENOTSUPP;
2847 if (val_len % map->format.val_bytes)
2848 return -EINVAL;
2849 if (!IS_ALIGNED(reg, map->reg_stride))
2850 return -EINVAL;
2851 if (val_len == 0)
2852 return -EINVAL;
2853
2854 map->lock(map->lock_arg);
2855
2856 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2857 ret = -EINVAL;
2858 goto out_unlock;
2859 }
2860
2861 while (val_len) {
2862 if (map->max_raw_read && map->max_raw_read < val_len)
2863 read_len = map->max_raw_read;
2864 else
2865 read_len = val_len;
2866 ret = _regmap_raw_read(map, reg, val, read_len, true);
2867 if (ret)
2868 goto out_unlock;
2869 val = ((u8 *)val) + read_len;
2870 val_len -= read_len;
2871 }
2872
2873 out_unlock:
2874 map->unlock(map->lock_arg);
2875 return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2878
2879 /**
2880 * regmap_field_read(): Read a value to a single register field
2881 *
2882 * @field: Register field to read from
2883 * @val: Pointer to store read value
2884 *
2885 * A value of zero will be returned on success, a negative errno will
2886 * be returned in error cases.
2887 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2888 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2889 {
2890 int ret;
2891 unsigned int reg_val;
2892 ret = regmap_read(field->regmap, field->reg, ®_val);
2893 if (ret != 0)
2894 return ret;
2895
2896 reg_val &= field->mask;
2897 reg_val >>= field->shift;
2898 *val = reg_val;
2899
2900 return ret;
2901 }
2902 EXPORT_SYMBOL_GPL(regmap_field_read);
2903
2904 /**
2905 * regmap_fields_read() - Read a value to a single register field with port ID
2906 *
2907 * @field: Register field to read from
2908 * @id: port ID
2909 * @val: Pointer to store read value
2910 *
2911 * A value of zero will be returned on success, a negative errno will
2912 * be returned in error cases.
2913 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2914 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2915 unsigned int *val)
2916 {
2917 int ret;
2918 unsigned int reg_val;
2919
2920 if (id >= field->id_size)
2921 return -EINVAL;
2922
2923 ret = regmap_read(field->regmap,
2924 field->reg + (field->id_offset * id),
2925 ®_val);
2926 if (ret != 0)
2927 return ret;
2928
2929 reg_val &= field->mask;
2930 reg_val >>= field->shift;
2931 *val = reg_val;
2932
2933 return ret;
2934 }
2935 EXPORT_SYMBOL_GPL(regmap_fields_read);
2936
2937 /**
2938 * regmap_bulk_read() - Read multiple registers from the device
2939 *
2940 * @map: Register map to read from
2941 * @reg: First register to be read from
2942 * @val: Pointer to store read value, in native register size for device
2943 * @val_count: Number of registers to read
2944 *
2945 * A value of zero will be returned on success, a negative errno will
2946 * be returned in error cases.
2947 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2948 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2949 size_t val_count)
2950 {
2951 int ret, i;
2952 size_t val_bytes = map->format.val_bytes;
2953 bool vol = regmap_volatile_range(map, reg, val_count);
2954
2955 if (!IS_ALIGNED(reg, map->reg_stride))
2956 return -EINVAL;
2957 if (val_count == 0)
2958 return -EINVAL;
2959
2960 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2961 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2962 if (ret != 0)
2963 return ret;
2964
2965 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2966 map->format.parse_inplace(val + i);
2967 } else {
2968 #ifdef CONFIG_64BIT
2969 u64 *u64 = val;
2970 #endif
2971 u32 *u32 = val;
2972 u16 *u16 = val;
2973 u8 *u8 = val;
2974
2975 map->lock(map->lock_arg);
2976
2977 for (i = 0; i < val_count; i++) {
2978 unsigned int ival;
2979
2980 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2981 &ival);
2982 if (ret != 0)
2983 goto out;
2984
2985 switch (map->format.val_bytes) {
2986 #ifdef CONFIG_64BIT
2987 case 8:
2988 u64[i] = ival;
2989 break;
2990 #endif
2991 case 4:
2992 u32[i] = ival;
2993 break;
2994 case 2:
2995 u16[i] = ival;
2996 break;
2997 case 1:
2998 u8[i] = ival;
2999 break;
3000 default:
3001 ret = -EINVAL;
3002 goto out;
3003 }
3004 }
3005
3006 out:
3007 map->unlock(map->lock_arg);
3008 }
3009
3010 return ret;
3011 }
3012 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3013
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3014 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3015 unsigned int mask, unsigned int val,
3016 bool *change, bool force_write)
3017 {
3018 int ret;
3019 unsigned int tmp, orig;
3020
3021 if (change)
3022 *change = false;
3023
3024 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3025 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3026 if (ret == 0 && change)
3027 *change = true;
3028 } else {
3029 ret = _regmap_read(map, reg, &orig);
3030 if (ret != 0)
3031 return ret;
3032
3033 tmp = orig & ~mask;
3034 tmp |= val & mask;
3035
3036 if (force_write || (tmp != orig)) {
3037 ret = _regmap_write(map, reg, tmp);
3038 if (ret == 0 && change)
3039 *change = true;
3040 }
3041 }
3042
3043 return ret;
3044 }
3045
3046 /**
3047 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3048 *
3049 * @map: Register map to update
3050 * @reg: Register to update
3051 * @mask: Bitmask to change
3052 * @val: New value for bitmask
3053 * @change: Boolean indicating if a write was done
3054 * @async: Boolean indicating asynchronously
3055 * @force: Boolean indicating use force update
3056 *
3057 * Perform a read/modify/write cycle on a register map with change, async, force
3058 * options.
3059 *
3060 * If async is true:
3061 *
3062 * With most buses the read must be done synchronously so this is most useful
3063 * for devices with a cache which do not need to interact with the hardware to
3064 * determine the current register value.
3065 *
3066 * Returns zero for success, a negative number on error.
3067 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3068 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3069 unsigned int mask, unsigned int val,
3070 bool *change, bool async, bool force)
3071 {
3072 int ret;
3073
3074 map->lock(map->lock_arg);
3075
3076 map->async = async;
3077
3078 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3079
3080 map->async = false;
3081
3082 map->unlock(map->lock_arg);
3083
3084 return ret;
3085 }
3086 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3087
3088 /**
3089 * regmap_test_bits() - Check if all specified bits are set in a register.
3090 *
3091 * @map: Register map to operate on
3092 * @reg: Register to read from
3093 * @bits: Bits to test
3094 *
3095 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3096 * bits are set and a negative error number if the underlying regmap_read()
3097 * fails.
3098 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3099 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3100 {
3101 unsigned int val, ret;
3102
3103 ret = regmap_read(map, reg, &val);
3104 if (ret)
3105 return ret;
3106
3107 return (val & bits) == bits;
3108 }
3109 EXPORT_SYMBOL_GPL(regmap_test_bits);
3110
regmap_async_complete_cb(struct regmap_async * async,int ret)3111 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3112 {
3113 struct regmap *map = async->map;
3114 bool wake;
3115
3116 trace_regmap_async_io_complete(map);
3117
3118 spin_lock(&map->async_lock);
3119 list_move(&async->list, &map->async_free);
3120 wake = list_empty(&map->async_list);
3121
3122 if (ret != 0)
3123 map->async_ret = ret;
3124
3125 spin_unlock(&map->async_lock);
3126
3127 if (wake)
3128 wake_up(&map->async_waitq);
3129 }
3130 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3131
regmap_async_is_done(struct regmap * map)3132 static int regmap_async_is_done(struct regmap *map)
3133 {
3134 unsigned long flags;
3135 int ret;
3136
3137 spin_lock_irqsave(&map->async_lock, flags);
3138 ret = list_empty(&map->async_list);
3139 spin_unlock_irqrestore(&map->async_lock, flags);
3140
3141 return ret;
3142 }
3143
3144 /**
3145 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3146 *
3147 * @map: Map to operate on.
3148 *
3149 * Blocks until any pending asynchronous I/O has completed. Returns
3150 * an error code for any failed I/O operations.
3151 */
regmap_async_complete(struct regmap * map)3152 int regmap_async_complete(struct regmap *map)
3153 {
3154 unsigned long flags;
3155 int ret;
3156
3157 /* Nothing to do with no async support */
3158 if (!map->bus || !map->bus->async_write)
3159 return 0;
3160
3161 trace_regmap_async_complete_start(map);
3162
3163 wait_event(map->async_waitq, regmap_async_is_done(map));
3164
3165 spin_lock_irqsave(&map->async_lock, flags);
3166 ret = map->async_ret;
3167 map->async_ret = 0;
3168 spin_unlock_irqrestore(&map->async_lock, flags);
3169
3170 trace_regmap_async_complete_done(map);
3171
3172 return ret;
3173 }
3174 EXPORT_SYMBOL_GPL(regmap_async_complete);
3175
3176 /**
3177 * regmap_register_patch - Register and apply register updates to be applied
3178 * on device initialistion
3179 *
3180 * @map: Register map to apply updates to.
3181 * @regs: Values to update.
3182 * @num_regs: Number of entries in regs.
3183 *
3184 * Register a set of register updates to be applied to the device
3185 * whenever the device registers are synchronised with the cache and
3186 * apply them immediately. Typically this is used to apply
3187 * corrections to be applied to the device defaults on startup, such
3188 * as the updates some vendors provide to undocumented registers.
3189 *
3190 * The caller must ensure that this function cannot be called
3191 * concurrently with either itself or regcache_sync().
3192 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3193 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3194 int num_regs)
3195 {
3196 struct reg_sequence *p;
3197 int ret;
3198 bool bypass;
3199
3200 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3201 num_regs))
3202 return 0;
3203
3204 p = krealloc(map->patch,
3205 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3206 GFP_KERNEL);
3207 if (p) {
3208 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3209 map->patch = p;
3210 map->patch_regs += num_regs;
3211 } else {
3212 return -ENOMEM;
3213 }
3214
3215 map->lock(map->lock_arg);
3216
3217 bypass = map->cache_bypass;
3218
3219 map->cache_bypass = true;
3220 map->async = true;
3221
3222 ret = _regmap_multi_reg_write(map, regs, num_regs);
3223
3224 map->async = false;
3225 map->cache_bypass = bypass;
3226
3227 map->unlock(map->lock_arg);
3228
3229 regmap_async_complete(map);
3230
3231 return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(regmap_register_patch);
3234
3235 /**
3236 * regmap_get_val_bytes() - Report the size of a register value
3237 *
3238 * @map: Register map to operate on.
3239 *
3240 * Report the size of a register value, mainly intended to for use by
3241 * generic infrastructure built on top of regmap.
3242 */
regmap_get_val_bytes(struct regmap * map)3243 int regmap_get_val_bytes(struct regmap *map)
3244 {
3245 if (map->format.format_write)
3246 return -EINVAL;
3247
3248 return map->format.val_bytes;
3249 }
3250 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3251
3252 /**
3253 * regmap_get_max_register() - Report the max register value
3254 *
3255 * @map: Register map to operate on.
3256 *
3257 * Report the max register value, mainly intended to for use by
3258 * generic infrastructure built on top of regmap.
3259 */
regmap_get_max_register(struct regmap * map)3260 int regmap_get_max_register(struct regmap *map)
3261 {
3262 return map->max_register ? map->max_register : -EINVAL;
3263 }
3264 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3265
3266 /**
3267 * regmap_get_reg_stride() - Report the register address stride
3268 *
3269 * @map: Register map to operate on.
3270 *
3271 * Report the register address stride, mainly intended to for use by
3272 * generic infrastructure built on top of regmap.
3273 */
regmap_get_reg_stride(struct regmap * map)3274 int regmap_get_reg_stride(struct regmap *map)
3275 {
3276 return map->reg_stride;
3277 }
3278 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3279
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3280 int regmap_parse_val(struct regmap *map, const void *buf,
3281 unsigned int *val)
3282 {
3283 if (!map->format.parse_val)
3284 return -EINVAL;
3285
3286 *val = map->format.parse_val(buf);
3287
3288 return 0;
3289 }
3290 EXPORT_SYMBOL_GPL(regmap_parse_val);
3291
regmap_initcall(void)3292 static int __init regmap_initcall(void)
3293 {
3294 regmap_debugfs_initcall();
3295
3296 return 0;
3297 }
3298 postcore_initcall(regmap_initcall);
3299