xref: /qemu/include/hw/ppc/xive_regs.h (revision 71569cd8aba31fcb3a326c56c307d2b811417c0b)
1  /*
2   * QEMU PowerPC XIVE internal structure definitions
3   *
4   *
5   * The XIVE structures are accessed by the HW and their format is
6   * architected to be big-endian. Some macros are provided to ease
7   * access to the different fields.
8   *
9   *
10   * Copyright (c) 2016-2024, IBM Corporation.
11   *
12   * SPDX-License-Identifier: GPL-2.0-or-later
13   */
14  
15  #ifndef PPC_XIVE_REGS_H
16  #define PPC_XIVE_REGS_H
17  
18  #include "qemu/bswap.h"
19  #include "qemu/host-utils.h"
20  
21  /*
22   * Interrupt source number encoding on PowerBUS
23   */
24  /*
25   * Trigger data definition
26   *
27   * The trigger definition is used for triggers both for HW source
28   * interrupts (PHB, PSI), as well as for rerouting interrupts between
29   * Interrupt Controller.
30   *
31   * HW source controllers set bit0 of word0 to ‘0’ as they provide EAS
32   * information (EAS block + EAS index) in the 8 byte data and not END
33   * information, which is use for rerouting interrupts.
34   *
35   * bit1 of word0 to ‘1’ signals that the state bit check has been
36   * performed.
37   */
38  #define XIVE_TRIGGER_END        PPC_BIT(0)
39  #define XIVE_TRIGGER_PQ         PPC_BIT(1)
40  
41  /*
42   * QEMU macros to manipulate the trigger payload in native endian
43   */
44  #define XIVE_EAS_BLOCK(n)       (((n) >> 28) & 0xf)
45  #define XIVE_EAS_INDEX(n)       ((n) & 0x0fffffff)
46  #define XIVE_EAS(blk, idx)      ((uint32_t)(blk) << 28 | (idx))
47  
48  #define TM_SHIFT                16
49  
50  /*
51   * TIMA addresses are 12-bits (4k page).
52   * The MSB indicates a special op with side effect, which can be
53   * refined with bit 10 (see below).
54   * The registers, logically grouped in 4 rings (a quad-word each), are
55   * defined on the 6 LSBs (offset below 0x40)
56   * In between, we can add a cache line index from 0...3 (ie, 0, 0x80,
57   * 0x100, 0x180) to select a specific snooper. Those 'snoop port
58   * address' bits should be dropped when processing the operations as
59   * they are all equivalent.
60   */
61  #define TM_ADDRESS_MASK         0xC3F
62  #define TM_SPECIAL_OP           0x800
63  #define TM_RING_OFFSET          0x30
64  #define TM_REG_OFFSET           0x3F
65  
66  /* TM register offsets */
67  #define TM_QW0_USER             0x000 /* All rings */
68  #define TM_QW1_OS               0x010 /* Ring 0..2 */
69  #define TM_QW2_HV_POOL          0x020 /* Ring 0..1 */
70  #define TM_QW3_HV_PHYS          0x030 /* Ring 0..1 */
71  
72  /* Byte offsets inside a QW             QW0 QW1 QW2 QW3 */
73  #define TM_NSR                  0x0  /*  +   +   -   +  */
74  #define TM_CPPR                 0x1  /*  -   +   -   +  */
75  #define TM_IPB                  0x2  /*  -   +   +   +  */
76  #define TM_LSMFB                0x3  /*  -   +   +   +  */
77  #define TM_ACK_CNT              0x4  /*  -   +   -   -  */
78  #define TM_INC                  0x5  /*  -   +   -   +  */
79  #define TM_LGS                  0x5  /*  +   +   +   +  */ /* Rename P10 */
80  #define TM_AGE                  0x6  /*  -   +   -   +  */
81  #define TM_T                    0x6  /*  -   +   -   +  */ /* Rename P10 */
82  #define TM_PIPR                 0x7  /*  -   +   -   +  */
83  #define TM_OGEN                 0xF  /*  -   +   -   -  */ /* P10 only */
84  
85  #define TM_WORD0                0x0
86  #define TM_WORD1                0x4
87  
88  /*
89   * QW word 2 contains the valid bit at the top and other fields
90   * depending on the QW.
91   */
92  #define   TM_WORD2              0x8
93  #define   TM_QW0W2_VU           PPC_BIT32(0)
94  #define   TM_QW0W2_LOGIC_SERV   PPC_BITMASK32(1, 31) /* XX 2,31 ? */
95  #define   TM_QW1W2_VO           PPC_BIT32(0)
96  #define   TM_QW1W2_OS_CAM       PPC_BITMASK32(8, 31)
97  #define   TM_QW2W2_VP           PPC_BIT32(0)
98  #define   TM_QW2W2_POOL_CAM     PPC_BITMASK32(8, 31)
99  #define   TM_QW3W2_VT           PPC_BIT32(0)
100  #define   TM_QW3W2_LP           PPC_BIT32(6)
101  #define   TM_QW3W2_LE           PPC_BIT32(7)
102  #define   TM_QW3W2_T            PPC_BIT32(31)
103  #define   TM_QW3B8_VT           PPC_BIT8(0)
104  
105  /*
106   * In addition to normal loads to "peek" and writes (only when invalid)
107   * using 4 and 8 bytes accesses, the above registers support these
108   * "special" byte operations:
109   *
110   *   - Byte load from QW0[NSR] - User level NSR (EBB)
111   *   - Byte store to QW0[NSR] - User level NSR (EBB)
112   *   - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
113   *   - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
114   *                                    otherwise VT||0000000
115   *   - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
116   *
117   * Then we have all these "special" CI ops at these offset that trigger
118   * all sorts of side effects:
119   */
120  #define TM_SPC_ACK_EBB          0x800   /* Load8 ack EBB to reg               */
121  #define TM_SPC_ACK_OS_REG       0x810   /* Load16 ack OS irq to reg           */
122  #define TM_SPC_PUSH_USR_CTX     0x808   /* Store32 Push/Validate user context */
123  #define TM_SPC_PULL_USR_CTX     0x808   /* Load32 Pull/Invalidate user        */
124                                          /* context                            */
125  #define TM_SPC_SET_OS_PENDING   0x812   /* Store8 Set OS irq pending bit      */
126  #define TM_SPC_PULL_OS_CTX_G2   0x810   /* Load32/Load64 Pull/Invalidate OS   */
127                                          /* context to reg                     */
128  #define TM_SPC_PULL_OS_CTX      0x818   /* Load32/Load64 Pull/Invalidate OS   */
129                                          /* context to reg                     */
130  #define TM_SPC_PULL_POOL_CTX_G2 0x820   /* Load32/Load64 Pull/Invalidate Pool */
131                                          /* context to reg                     */
132  #define TM_SPC_PULL_POOL_CTX    0x828   /* Load32/Load64 Pull/Invalidate Pool */
133                                          /* context to reg                     */
134  #define TM_SPC_ACK_HV_REG       0x830   /* Load16 ack HV irq to reg           */
135  #define TM_SPC_PULL_PHYS_CTX_G2 0x830   /* Load32 Pull phys ctx to reg        */
136  #define TM_SPC_PULL_PHYS_CTX    0x838   /* Load8  Pull phys ctx to reg        */
137  #define TM_SPC_PULL_USR_CTX_OL  0xc08   /* Store8 Pull/Inval usr ctx to odd   */
138                                          /* line                               */
139  #define TM_SPC_ACK_OS_EL        0xc10   /* Store8 ack OS irq to even line     */
140  #define TM_SPC_PULL_OS_CTX_OL   0xc18   /* Pull/Invalidate OS context to      */
141                                          /* odd Thread reporting line          */
142  #define TM_SPC_ACK_HV_POOL_EL   0xc20   /* Store8 ack HV evt pool to even     */
143                                          /* line                               */
144  #define TM_SPC_ACK_HV_EL        0xc30   /* Store8 ack HV irq to even line     */
145  #define TM_SPC_PULL_PHYS_CTX_OL 0xc38   /* Pull phys ctx to odd cache line    */
146  /* XXX more... */
147  
148  /*
149   * NSR fields for the various QW ack types
150   *
151   * P10 has an extra bit in QW3 for the group level instead of the
152   * reserved 'i' bit. Since it is not used and we don't support group
153   * interrupts on P9, we use the P10 definition for the group level so
154   * that we can have common macros for the NSR
155   */
156  #define TM_QW0_NSR_EB           PPC_BIT8(0)
157  #define TM_QW1_NSR_EO           PPC_BIT8(0)
158  #define TM_QW3_NSR_HE           PPC_BITMASK8(0, 1)
159  #define  TM_QW3_NSR_HE_NONE     0
160  #define  TM_QW3_NSR_HE_POOL     1
161  #define  TM_QW3_NSR_HE_PHYS     2
162  #define  TM_QW3_NSR_HE_LSI      3
163  #define TM_NSR_GRP_LVL          PPC_BITMASK8(2, 7)
164  /*
165   * On P10, the format of the 6-bit group level is: 2 bits for the
166   * crowd size and 4 bits for the group size. Since group/crowd size is
167   * always a power of 2, we encode the log. For example, group_level=4
168   * means crowd size = 0 and group size = 16 (2^4)
169   * Same encoding is used in the NVP and NVGC structures for
170   * PGoFirst and PGoNext fields
171   */
172  
173  /*
174   * EAS (Event Assignment Structure)
175   *
176   * One per interrupt source. Targets an interrupt to a given Event
177   * Notification Descriptor (END) and provides the corresponding
178   * logical interrupt number (END data)
179   */
180  typedef struct XiveEAS {
181          /*
182           * Use a single 64-bit definition to make it easier to perform
183           * atomic updates
184           */
185          uint64_t        w;
186  #define EAS_VALID       PPC_BIT(0)
187  #define EAS_END_BLOCK   PPC_BITMASK(4, 7)        /* Destination END block# */
188  #define EAS_END_INDEX   PPC_BITMASK(8, 31)       /* Destination END index */
189  #define EAS_MASKED      PPC_BIT(32)              /* Masked */
190  #define EAS_END_DATA    PPC_BITMASK(33, 63)      /* Data written to the END */
191  } XiveEAS;
192  
193  #define xive_eas_is_valid(eas)   (be64_to_cpu((eas)->w) & EAS_VALID)
194  #define xive_eas_is_masked(eas)  (be64_to_cpu((eas)->w) & EAS_MASKED)
195  
196  void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf);
197  
xive_get_field64(uint64_t mask,uint64_t word)198  static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word)
199  {
200      return (be64_to_cpu(word) & mask) >> ctz64(mask);
201  }
202  
xive_set_field64(uint64_t mask,uint64_t word,uint64_t value)203  static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word,
204                                          uint64_t value)
205  {
206      uint64_t tmp =
207          (be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask);
208      return cpu_to_be64(tmp);
209  }
210  
xive_get_field32(uint32_t mask,uint32_t word)211  static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word)
212  {
213      return (be32_to_cpu(word) & mask) >> ctz32(mask);
214  }
215  
xive_set_field32(uint32_t mask,uint32_t word,uint32_t value)216  static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word,
217                                          uint32_t value)
218  {
219      uint32_t tmp =
220          (be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask);
221      return cpu_to_be32(tmp);
222  }
223  
224  /* Event Notification Descriptor (END) */
225  typedef struct XiveEND {
226          uint32_t        w0;
227  #define END_W0_VALID             PPC_BIT32(0) /* "v" bit */
228  #define END_W0_ENQUEUE           PPC_BIT32(1) /* "q" bit */
229  #define END_W0_UCOND_NOTIFY      PPC_BIT32(2) /* "n" bit */
230  #define END_W0_BACKLOG           PPC_BIT32(3) /* "b" bit */
231  #define END_W0_PRECL_ESC_CTL     PPC_BIT32(4) /* "p" bit */
232  #define END_W0_ESCALATE_CTL      PPC_BIT32(5) /* "e" bit */
233  #define END_W0_UNCOND_ESCALATE   PPC_BIT32(6) /* "u" bit - DD2.0 */
234  #define END_W0_SILENT_ESCALATE   PPC_BIT32(7) /* "s" bit - DD2.0 */
235  #define END_W0_QSIZE             PPC_BITMASK32(12, 15)
236  #define END_W0_SW0               PPC_BIT32(16)
237  #define END_W0_FIRMWARE          END_W0_SW0 /* Owned by FW */
238  #define END_QSIZE_4K             0
239  #define END_QSIZE_64K            4
240  #define END_W0_HWDEP             PPC_BITMASK32(24, 31)
241          uint32_t        w1;
242  #define END_W1_ESn               PPC_BITMASK32(0, 1)
243  #define END_W1_ESn_P             PPC_BIT32(0)
244  #define END_W1_ESn_Q             PPC_BIT32(1)
245  #define END_W1_ESe               PPC_BITMASK32(2, 3)
246  #define END_W1_ESe_P             PPC_BIT32(2)
247  #define END_W1_ESe_Q             PPC_BIT32(3)
248  #define END_W1_GENERATION        PPC_BIT32(9)
249  #define END_W1_PAGE_OFF          PPC_BITMASK32(10, 31)
250          uint32_t        w2;
251  #define END_W2_MIGRATION_REG     PPC_BITMASK32(0, 3)
252  #define END_W2_OP_DESC_HI        PPC_BITMASK32(4, 31)
253          uint32_t        w3;
254  #define END_W3_OP_DESC_LO        PPC_BITMASK32(0, 31)
255          uint32_t        w4;
256  #define END_W4_ESC_END_BLOCK     PPC_BITMASK32(4, 7)
257  #define END_W4_ESC_END_INDEX     PPC_BITMASK32(8, 31)
258          uint32_t        w5;
259  #define END_W5_ESC_END_DATA      PPC_BITMASK32(1, 31)
260          uint32_t        w6;
261  #define END_W6_FORMAT_BIT        PPC_BIT32(8)
262  #define END_W6_NVT_BLOCK         PPC_BITMASK32(9, 12)
263  #define END_W6_NVT_INDEX         PPC_BITMASK32(13, 31)
264          uint32_t        w7;
265  #define END_W7_F0_IGNORE         PPC_BIT32(0)
266  #define END_W7_F0_BLK_GROUPING   PPC_BIT32(1)
267  #define END_W7_F0_PRIORITY       PPC_BITMASK32(8, 15)
268  #define END_W7_F1_WAKEZ          PPC_BIT32(0)
269  #define END_W7_F1_LOG_SERVER_ID  PPC_BITMASK32(1, 31)
270  } XiveEND;
271  
272  #define xive_end_is_valid(end)    (be32_to_cpu((end)->w0) & END_W0_VALID)
273  #define xive_end_is_enqueue(end)  (be32_to_cpu((end)->w0) & END_W0_ENQUEUE)
274  #define xive_end_is_notify(end)   (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY)
275  #define xive_end_is_backlog(end)  (be32_to_cpu((end)->w0) & END_W0_BACKLOG)
276  #define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL)
277  #define xive_end_is_uncond_escalation(end)              \
278      (be32_to_cpu((end)->w0) & END_W0_UNCOND_ESCALATE)
279  #define xive_end_is_silent_escalation(end)              \
280      (be32_to_cpu((end)->w0) & END_W0_SILENT_ESCALATE)
281  #define xive_end_is_firmware(end)              \
282      (be32_to_cpu((end)->w0) & END_W0_FIRMWARE)
283  
xive_end_qaddr(XiveEND * end)284  static inline uint64_t xive_end_qaddr(XiveEND *end)
285  {
286      return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 |
287          be32_to_cpu(end->w3);
288  }
289  
290  void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf);
291  void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf);
292  void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf);
293  
294  /* Notification Virtual Target (NVT) */
295  typedef struct XiveNVT {
296          uint32_t        w0;
297  #define NVT_W0_VALID             PPC_BIT32(0)
298          uint32_t        w1;
299  #define NVT_W1_EQ_BLOCK          PPC_BITMASK32(0, 3)
300  #define NVT_W1_EQ_INDEX          PPC_BITMASK32(4, 31)
301          uint32_t        w2;
302          uint32_t        w3;
303          uint32_t        w4;
304  #define NVT_W4_IPB               PPC_BITMASK32(16, 23)
305          uint32_t        w5;
306          uint32_t        w6;
307          uint32_t        w7;
308          uint32_t        w8;
309  #define NVT_W8_GRP_VALID         PPC_BIT32(0)
310          uint32_t        w9;
311          uint32_t        wa;
312          uint32_t        wb;
313          uint32_t        wc;
314          uint32_t        wd;
315          uint32_t        we;
316          uint32_t        wf;
317  } XiveNVT;
318  
319  #define xive_nvt_is_valid(nvt)    (be32_to_cpu((nvt)->w0) & NVT_W0_VALID)
320  
321  /*
322   * The VP number space in a block is defined by the END_W6_NVT_INDEX
323   * field of the XIVE END
324   */
325  #define XIVE_NVT_SHIFT                19
326  #define XIVE_NVT_COUNT                (1 << XIVE_NVT_SHIFT)
327  
xive_nvt_cam_line(uint8_t nvt_blk,uint32_t nvt_idx)328  static inline uint32_t xive_nvt_cam_line(uint8_t nvt_blk, uint32_t nvt_idx)
329  {
330      return (nvt_blk << XIVE_NVT_SHIFT) | nvt_idx;
331  }
332  
xive_nvt_idx(uint32_t cam_line)333  static inline uint32_t xive_nvt_idx(uint32_t cam_line)
334  {
335      return cam_line & ((1 << XIVE_NVT_SHIFT) - 1);
336  }
337  
xive_nvt_blk(uint32_t cam_line)338  static inline uint32_t xive_nvt_blk(uint32_t cam_line)
339  {
340      return (cam_line >> XIVE_NVT_SHIFT) & 0xf;
341  }
342  
343  #endif /* PPC_XIVE_REGS_H */
344