xref: /linux/rust/kernel/task.rs (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
6 
7 use crate::{
8     bindings,
9     ffi::{c_int, c_long, c_uint},
10     mm::MmWithUser,
11     pid_namespace::PidNamespace,
12     types::{ARef, NotThreadSafe, Opaque},
13 };
14 use core::{
15     cmp::{Eq, PartialEq},
16     ops::Deref,
17     ptr,
18 };
19 
20 /// A sentinel value used for infinite timeouts.
21 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
22 
23 /// Bitmask for tasks that are sleeping in an interruptible state.
24 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
25 /// Bitmask for tasks that are sleeping in an uninterruptible state.
26 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
27 /// Bitmask for tasks that are sleeping in a freezable state.
28 pub const TASK_FREEZABLE: c_int = bindings::TASK_FREEZABLE as c_int;
29 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
30 /// uninterruptible sleep.
31 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
32 
33 /// Returns the currently running task.
34 #[macro_export]
35 macro_rules! current {
36     () => {
37         // SAFETY: This expression creates a temporary value that is dropped at the end of the
38         // caller's scope. The following mechanisms ensure that the resulting `&CurrentTask` cannot
39         // leave current task context:
40         //
41         // * To return to userspace, the caller must leave the current scope.
42         // * Operations such as `begin_new_exec()` are necessarily unsafe and the caller of
43         //   `begin_new_exec()` is responsible for safety.
44         // * Rust abstractions for things such as a `kthread_use_mm()` scope must require the
45         //   closure to be `Send`, so the `NotThreadSafe` field of `CurrentTask` ensures that the
46         //   `&CurrentTask` cannot cross the scope in either direction.
47         unsafe { &*$crate::task::Task::current() }
48     };
49 }
50 
51 /// Wraps the kernel's `struct task_struct`.
52 ///
53 /// # Invariants
54 ///
55 /// All instances are valid tasks created by the C portion of the kernel.
56 ///
57 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
58 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
59 ///
60 /// # Examples
61 ///
62 /// The following is an example of getting the PID of the current thread with zero additional cost
63 /// when compared to the C version:
64 ///
65 /// ```
66 /// let pid = current!().pid();
67 /// ```
68 ///
69 /// Getting the PID of the current process, also zero additional cost:
70 ///
71 /// ```
72 /// let pid = current!().group_leader().pid();
73 /// ```
74 ///
75 /// Getting the current task and storing it in some struct. The reference count is automatically
76 /// incremented when creating `State` and decremented when it is dropped:
77 ///
78 /// ```
79 /// use kernel::{task::Task, types::ARef};
80 ///
81 /// struct State {
82 ///     creator: ARef<Task>,
83 ///     index: u32,
84 /// }
85 ///
86 /// impl State {
87 ///     fn new() -> Self {
88 ///         Self {
89 ///             creator: ARef::from(&**current!()),
90 ///             index: 0,
91 ///         }
92 ///     }
93 /// }
94 /// ```
95 #[repr(transparent)]
96 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
97 
98 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
99 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
100 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
101 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
102 unsafe impl Send for Task {}
103 
104 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
105 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
106 // synchronised by C code (e.g., `signal_pending`).
107 unsafe impl Sync for Task {}
108 
109 /// Represents the [`Task`] in the `current` global.
110 ///
111 /// This type exists to provide more efficient operations that are only valid on the current task.
112 /// For example, to retrieve the pid-namespace of a task, you must use rcu protection unless it is
113 /// the current task.
114 ///
115 /// # Invariants
116 ///
117 /// Each value of this type must only be accessed from the task context it was created within.
118 ///
119 /// Of course, every thread is in a different task context, but for the purposes of this invariant,
120 /// these operations also permanently leave the task context:
121 ///
122 /// * Returning to userspace from system call context.
123 /// * Calling `release_task()`.
124 /// * Calling `begin_new_exec()` in a binary format loader.
125 ///
126 /// Other operations temporarily create a new sub-context:
127 ///
128 /// * Calling `kthread_use_mm()` creates a new context, and `kthread_unuse_mm()` returns to the
129 ///   old context.
130 ///
131 /// This means that a `CurrentTask` obtained before a `kthread_use_mm()` call may be used again
132 /// once `kthread_unuse_mm()` is called, but it must not be used between these two calls.
133 /// Conversely, a `CurrentTask` obtained between a `kthread_use_mm()`/`kthread_unuse_mm()` pair
134 /// must not be used after `kthread_unuse_mm()`.
135 #[repr(transparent)]
136 pub struct CurrentTask(Task, NotThreadSafe);
137 
138 // Make all `Task` methods available on `CurrentTask`.
139 impl Deref for CurrentTask {
140     type Target = Task;
141     #[inline]
deref(&self) -> &Task142     fn deref(&self) -> &Task {
143         &self.0
144     }
145 }
146 
147 /// The type of process identifiers (PIDs).
148 pub type Pid = bindings::pid_t;
149 
150 /// The type of user identifiers (UIDs).
151 #[derive(Copy, Clone)]
152 pub struct Kuid {
153     kuid: bindings::kuid_t,
154 }
155 
156 impl Task {
157     /// Returns a raw pointer to the current task.
158     ///
159     /// It is up to the user to use the pointer correctly.
160     #[inline]
current_raw() -> *mut bindings::task_struct161     pub fn current_raw() -> *mut bindings::task_struct {
162         // SAFETY: Getting the current pointer is always safe.
163         unsafe { bindings::get_current() }
164     }
165 
166     /// Returns a task reference for the currently executing task/thread.
167     ///
168     /// The recommended way to get the current task/thread is to use the
169     /// [`current`] macro because it is safe.
170     ///
171     /// # Safety
172     ///
173     /// Callers must ensure that the returned object is only used to access a [`CurrentTask`]
174     /// within the task context that was active when this function was called. For more details,
175     /// see the invariants section for [`CurrentTask`].
176     #[inline]
current() -> impl Deref<Target = CurrentTask>177     pub unsafe fn current() -> impl Deref<Target = CurrentTask> {
178         struct TaskRef {
179             task: *const CurrentTask,
180         }
181 
182         impl Deref for TaskRef {
183             type Target = CurrentTask;
184 
185             fn deref(&self) -> &Self::Target {
186                 // SAFETY: The returned reference borrows from this `TaskRef`, so it cannot outlive
187                 // the `TaskRef`, which the caller of `Task::current()` has promised will not
188                 // outlive the task/thread for which `self.task` is the `current` pointer. Thus, it
189                 // is okay to return a `CurrentTask` reference here.
190                 unsafe { &*self.task }
191             }
192         }
193 
194         TaskRef {
195             // CAST: The layout of `struct task_struct` and `CurrentTask` is identical.
196             task: Task::current_raw().cast(),
197         }
198     }
199 
200     /// Returns a raw pointer to the task.
201     #[inline]
as_ptr(&self) -> *mut bindings::task_struct202     pub fn as_ptr(&self) -> *mut bindings::task_struct {
203         self.0.get()
204     }
205 
206     /// Returns the group leader of the given task.
group_leader(&self) -> &Task207     pub fn group_leader(&self) -> &Task {
208         // SAFETY: The group leader of a task never changes after initialization, so reading this
209         // field is not a data race.
210         let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
211 
212         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
213         // and given that a task has a reference to its group leader, we know it must be valid for
214         // the lifetime of the returned task reference.
215         unsafe { &*ptr.cast() }
216     }
217 
218     /// Returns the PID of the given task.
pid(&self) -> Pid219     pub fn pid(&self) -> Pid {
220         // SAFETY: The pid of a task never changes after initialization, so reading this field is
221         // not a data race.
222         unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
223     }
224 
225     /// Returns the UID of the given task.
226     #[inline]
uid(&self) -> Kuid227     pub fn uid(&self) -> Kuid {
228         // SAFETY: It's always safe to call `task_uid` on a valid task.
229         Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
230     }
231 
232     /// Returns the effective UID of the given task.
233     #[inline]
euid(&self) -> Kuid234     pub fn euid(&self) -> Kuid {
235         // SAFETY: It's always safe to call `task_euid` on a valid task.
236         Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
237     }
238 
239     /// Determines whether the given task has pending signals.
240     #[inline]
signal_pending(&self) -> bool241     pub fn signal_pending(&self) -> bool {
242         // SAFETY: It's always safe to call `signal_pending` on a valid task.
243         unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
244     }
245 
246     /// Returns task's pid namespace with elevated reference count
247     #[inline]
get_pid_ns(&self) -> Option<ARef<PidNamespace>>248     pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
249         // SAFETY: By the type invariant, we know that `self.0` is valid.
250         let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
251         if ptr.is_null() {
252             None
253         } else {
254             // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
255             // reference count via `task_get_pid_ns()`.
256             // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
257             Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
258         }
259     }
260 
261     /// Returns the given task's pid in the provided pid namespace.
262     #[doc(alias = "task_tgid_nr_ns")]
263     #[inline]
tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid264     pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
265         let pidns = match pidns {
266             Some(pidns) => pidns.as_ptr(),
267             None => core::ptr::null_mut(),
268         };
269         // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
270         // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
271         // thus pass a null pointer. The underlying C function is safe to be used with NULL
272         // pointers.
273         unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
274     }
275 
276     /// Wakes up the task.
277     #[inline]
wake_up(&self)278     pub fn wake_up(&self) {
279         // SAFETY: It's always safe to call `wake_up_process` on a valid task, even if the task
280         // running.
281         unsafe { bindings::wake_up_process(self.as_ptr()) };
282     }
283 }
284 
285 impl CurrentTask {
286     /// Access the address space of the current task.
287     ///
288     /// This function does not touch the refcount of the mm.
289     #[inline]
mm(&self) -> Option<&MmWithUser>290     pub fn mm(&self) -> Option<&MmWithUser> {
291         // SAFETY: The `mm` field of `current` is not modified from other threads, so reading it is
292         // not a data race.
293         let mm = unsafe { (*self.as_ptr()).mm };
294 
295         if mm.is_null() {
296             return None;
297         }
298 
299         // SAFETY: If `current->mm` is non-null, then it references a valid mm with a non-zero
300         // value of `mm_users`. Furthermore, the returned `&MmWithUser` borrows from this
301         // `CurrentTask`, so it cannot escape the scope in which the current pointer was obtained.
302         //
303         // This is safe even if `kthread_use_mm()`/`kthread_unuse_mm()` are used. There are two
304         // relevant cases:
305         // * If the `&CurrentTask` was created before `kthread_use_mm()`, then it cannot be
306         //   accessed during the `kthread_use_mm()`/`kthread_unuse_mm()` scope due to the
307         //   `NotThreadSafe` field of `CurrentTask`.
308         // * If the `&CurrentTask` was created within a `kthread_use_mm()`/`kthread_unuse_mm()`
309         //   scope, then the `&CurrentTask` cannot escape that scope, so the returned `&MmWithUser`
310         //   also cannot escape that scope.
311         // In either case, it's not possible to read `current->mm` and keep using it after the
312         // scope is ended with `kthread_unuse_mm()`.
313         Some(unsafe { MmWithUser::from_raw(mm) })
314     }
315 
316     /// Access the pid namespace of the current task.
317     ///
318     /// This function does not touch the refcount of the namespace or use RCU protection.
319     ///
320     /// To access the pid namespace of another task, see [`Task::get_pid_ns`].
321     #[doc(alias = "task_active_pid_ns")]
322     #[inline]
active_pid_ns(&self) -> Option<&PidNamespace>323     pub fn active_pid_ns(&self) -> Option<&PidNamespace> {
324         // SAFETY: It is safe to call `task_active_pid_ns` without RCU protection when calling it
325         // on the current task.
326         let active_ns = unsafe { bindings::task_active_pid_ns(self.as_ptr()) };
327 
328         if active_ns.is_null() {
329             return None;
330         }
331 
332         // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
333         //
334         // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive.
335         //
336         // From system call context retrieving the `PidNamespace` for the current task is always
337         // safe and requires neither RCU locking nor a reference count to be held. Retrieving the
338         // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
339         // like that is exposed to Rust.
340         //
341         // SAFETY: If `current`'s pid ns is non-null, then it references a valid pid ns.
342         // Furthermore, the returned `&PidNamespace` borrows from this `CurrentTask`, so it cannot
343         // escape the scope in which the current pointer was obtained, e.g. it cannot live past a
344         // `release_task()` call.
345         Some(unsafe { PidNamespace::from_ptr(active_ns) })
346     }
347 }
348 
349 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
350 unsafe impl crate::types::AlwaysRefCounted for Task {
351     #[inline]
inc_ref(&self)352     fn inc_ref(&self) {
353         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
354         unsafe { bindings::get_task_struct(self.as_ptr()) };
355     }
356 
357     #[inline]
dec_ref(obj: ptr::NonNull<Self>)358     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
359         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
360         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
361     }
362 }
363 
364 impl Kuid {
365     /// Get the current euid.
366     #[inline]
current_euid() -> Kuid367     pub fn current_euid() -> Kuid {
368         // SAFETY: Just an FFI call.
369         Self::from_raw(unsafe { bindings::current_euid() })
370     }
371 
372     /// Create a `Kuid` given the raw C type.
373     #[inline]
from_raw(kuid: bindings::kuid_t) -> Self374     pub fn from_raw(kuid: bindings::kuid_t) -> Self {
375         Self { kuid }
376     }
377 
378     /// Turn this kuid into the raw C type.
379     #[inline]
into_raw(self) -> bindings::kuid_t380     pub fn into_raw(self) -> bindings::kuid_t {
381         self.kuid
382     }
383 
384     /// Converts this kernel UID into a userspace UID.
385     ///
386     /// Uses the namespace of the current task.
387     #[inline]
into_uid_in_current_ns(self) -> bindings::uid_t388     pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
389         // SAFETY: Just an FFI call.
390         unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
391     }
392 }
393 
394 impl PartialEq for Kuid {
395     #[inline]
eq(&self, other: &Kuid) -> bool396     fn eq(&self, other: &Kuid) -> bool {
397         // SAFETY: Just an FFI call.
398         unsafe { bindings::uid_eq(self.kuid, other.kuid) }
399     }
400 }
401 
402 impl Eq for Kuid {}
403 
404 /// Annotation for functions that can sleep.
405 ///
406 /// Equivalent to the C side [`might_sleep()`], this function serves as
407 /// a debugging aid and a potential scheduling point.
408 ///
409 /// This function can only be used in a nonatomic context.
410 ///
411 /// [`might_sleep()`]: https://docs.kernel.org/driver-api/basics.html#c.might_sleep
412 #[track_caller]
413 #[inline]
might_sleep()414 pub fn might_sleep() {
415     #[cfg(CONFIG_DEBUG_ATOMIC_SLEEP)]
416     {
417         let loc = core::panic::Location::caller();
418         let file = kernel::file_from_location(loc);
419 
420         // SAFETY: `file.as_ptr()` is valid for reading and guaranteed to be nul-terminated.
421         unsafe { crate::bindings::__might_sleep(file.as_ptr().cast(), loc.line() as i32) }
422     }
423 
424     // SAFETY: Always safe to call.
425     unsafe { crate::bindings::might_resched() }
426 }
427