1 /////////////////////////////////////////////////////////////////////////
2 //
3 // Copyright (C) 2001-2012 The Bochs Project
4 // Copyright (C) 2017 Google Inc.
5 //
6 // This library is free software; you can redistribute it and/or
7 // modify it under the terms of the GNU Lesser General Public
8 // License as published by the Free Software Foundation; either
9 // version 2.1 of the License, or (at your option) any later version.
10 //
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 // Lesser General Public License for more details.
15 //
16 // You should have received a copy of the GNU Lesser General Public
17 // License along with this library; if not, write to the Free Software
18 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
19 /////////////////////////////////////////////////////////////////////////
20 /*
21 * flags functions
22 */
23
24 #include "qemu/osdep.h"
25
26 #include "panic.h"
27 #include "cpu.h"
28 #include "x86_flags.h"
29 #include "x86.h"
30
31
32 /*
33 * The algorithms here are similar to those in Bochs. After an ALU
34 * operation, CC_DST can be used to compute ZF, SF and PF, whereas
35 * CC_SRC is used to compute AF, CF and OF. In reality, SF and PF are the
36 * XOR of the value computed from CC_DST and the value found in bits 7 and 2
37 * of CC_SRC; this way the same logic can be used to compute the flags
38 * both before and after an ALU operation.
39 *
40 * Compared to the TCG CC_OP codes, this avoids conditionals when converting
41 * to and from the RFLAGS representation.
42 */
43
44 #define LF_SIGN_BIT (TARGET_LONG_BITS - 1)
45
46 #define LF_BIT_PD (2) /* lazy Parity Delta, same bit as PF */
47 #define LF_BIT_AF (3) /* lazy Adjust flag */
48 #define LF_BIT_SD (7) /* lazy Sign Flag Delta, same bit as SF */
49 #define LF_BIT_CF (TARGET_LONG_BITS - 1) /* lazy Carry Flag */
50 #define LF_BIT_PO (TARGET_LONG_BITS - 2) /* lazy Partial Overflow = CF ^ OF */
51
52 #define LF_MASK_PD ((target_ulong)0x01 << LF_BIT_PD)
53 #define LF_MASK_AF ((target_ulong)0x01 << LF_BIT_AF)
54 #define LF_MASK_SD ((target_ulong)0x01 << LF_BIT_SD)
55 #define LF_MASK_CF ((target_ulong)0x01 << LF_BIT_CF)
56 #define LF_MASK_PO ((target_ulong)0x01 << LF_BIT_PO)
57
58 /* ******************* */
59 /* OSZAPC */
60 /* ******************* */
61
62 /* use carries to fill in AF, PO and CF, while ensuring PD and SD are clear.
63 * for full-word operations just clear PD and SD; for smaller operand
64 * sizes only keep AF in the low byte and shift the carries left to
65 * place PO and CF in the top two bits.
66 */
67 #define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \
68 env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
69 target_ulong temp = (lf_carries); \
70 if ((size) == TARGET_LONG_BITS) { \
71 temp = temp & ~(LF_MASK_PD | LF_MASK_SD); \
72 } else { \
73 temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
74 } \
75 env->cc_src = temp; \
76 }
77
78 /* carries, result */
79 #define SET_FLAGS_OSZAPC_8(carries, result) \
80 SET_FLAGS_OSZAPC_SIZE(8, carries, result)
81 #define SET_FLAGS_OSZAPC_16(carries, result) \
82 SET_FLAGS_OSZAPC_SIZE(16, carries, result)
83 #define SET_FLAGS_OSZAPC_32(carries, result) \
84 SET_FLAGS_OSZAPC_SIZE(32, carries, result)
85
86 /* ******************* */
87 /* OSZAP */
88 /* ******************* */
89 /* same as setting OSZAPC, but preserve CF and flip PO if the old value of CF
90 * did not match the high bit of lf_carries. */
91 #define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \
92 env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
93 target_ulong temp = (lf_carries); \
94 if ((size) == TARGET_LONG_BITS) { \
95 temp = (temp & ~(LF_MASK_PD | LF_MASK_SD)); \
96 } else { \
97 temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
98 } \
99 target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; \
100 env->cc_src = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \
101 }
102
103 /* carries, result */
104 #define SET_FLAGS_OSZAP_8(carries, result) \
105 SET_FLAGS_OSZAP_SIZE(8, carries, result)
106 #define SET_FLAGS_OSZAP_16(carries, result) \
107 SET_FLAGS_OSZAP_SIZE(16, carries, result)
108 #define SET_FLAGS_OSZAP_32(carries, result) \
109 SET_FLAGS_OSZAP_SIZE(32, carries, result)
110
SET_FLAGS_OxxxxC(CPUX86State * env,bool new_of,bool new_cf)111 void SET_FLAGS_OxxxxC(CPUX86State *env, bool new_of, bool new_cf)
112 {
113 env->cc_src &= ~(LF_MASK_PO | LF_MASK_CF);
114 env->cc_src |= (-(target_ulong)new_cf << LF_BIT_PO);
115 env->cc_src ^= ((target_ulong)new_of << LF_BIT_PO);
116 }
117
SET_FLAGS_OSZAPC_SUB32(CPUX86State * env,uint32_t v1,uint32_t v2,uint32_t diff)118 void SET_FLAGS_OSZAPC_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
119 uint32_t diff)
120 {
121 SET_FLAGS_OSZAPC_32(SUB_COUT_VEC(v1, v2, diff), diff);
122 }
123
SET_FLAGS_OSZAPC_SUB16(CPUX86State * env,uint16_t v1,uint16_t v2,uint16_t diff)124 void SET_FLAGS_OSZAPC_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2,
125 uint16_t diff)
126 {
127 SET_FLAGS_OSZAPC_16(SUB_COUT_VEC(v1, v2, diff), diff);
128 }
129
SET_FLAGS_OSZAPC_SUB8(CPUX86State * env,uint8_t v1,uint8_t v2,uint8_t diff)130 void SET_FLAGS_OSZAPC_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2,
131 uint8_t diff)
132 {
133 SET_FLAGS_OSZAPC_8(SUB_COUT_VEC(v1, v2, diff), diff);
134 }
135
SET_FLAGS_OSZAPC_ADD32(CPUX86State * env,uint32_t v1,uint32_t v2,uint32_t diff)136 void SET_FLAGS_OSZAPC_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2,
137 uint32_t diff)
138 {
139 SET_FLAGS_OSZAPC_32(ADD_COUT_VEC(v1, v2, diff), diff);
140 }
141
SET_FLAGS_OSZAPC_ADD16(CPUX86State * env,uint16_t v1,uint16_t v2,uint16_t diff)142 void SET_FLAGS_OSZAPC_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2,
143 uint16_t diff)
144 {
145 SET_FLAGS_OSZAPC_16(ADD_COUT_VEC(v1, v2, diff), diff);
146 }
147
SET_FLAGS_OSZAPC_ADD8(CPUX86State * env,uint8_t v1,uint8_t v2,uint8_t diff)148 void SET_FLAGS_OSZAPC_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2,
149 uint8_t diff)
150 {
151 SET_FLAGS_OSZAPC_8(ADD_COUT_VEC(v1, v2, diff), diff);
152 }
153
SET_FLAGS_OSZAP_SUB32(CPUX86State * env,uint32_t v1,uint32_t v2,uint32_t diff)154 void SET_FLAGS_OSZAP_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
155 uint32_t diff)
156 {
157 SET_FLAGS_OSZAP_32(SUB_COUT_VEC(v1, v2, diff), diff);
158 }
159
SET_FLAGS_OSZAP_SUB16(CPUX86State * env,uint16_t v1,uint16_t v2,uint16_t diff)160 void SET_FLAGS_OSZAP_SUB16(CPUX86State *env, uint16_t v1, uint16_t v2,
161 uint16_t diff)
162 {
163 SET_FLAGS_OSZAP_16(SUB_COUT_VEC(v1, v2, diff), diff);
164 }
165
SET_FLAGS_OSZAP_SUB8(CPUX86State * env,uint8_t v1,uint8_t v2,uint8_t diff)166 void SET_FLAGS_OSZAP_SUB8(CPUX86State *env, uint8_t v1, uint8_t v2,
167 uint8_t diff)
168 {
169 SET_FLAGS_OSZAP_8(SUB_COUT_VEC(v1, v2, diff), diff);
170 }
171
SET_FLAGS_OSZAP_ADD32(CPUX86State * env,uint32_t v1,uint32_t v2,uint32_t diff)172 void SET_FLAGS_OSZAP_ADD32(CPUX86State *env, uint32_t v1, uint32_t v2,
173 uint32_t diff)
174 {
175 SET_FLAGS_OSZAP_32(ADD_COUT_VEC(v1, v2, diff), diff);
176 }
177
SET_FLAGS_OSZAP_ADD16(CPUX86State * env,uint16_t v1,uint16_t v2,uint16_t diff)178 void SET_FLAGS_OSZAP_ADD16(CPUX86State *env, uint16_t v1, uint16_t v2,
179 uint16_t diff)
180 {
181 SET_FLAGS_OSZAP_16(ADD_COUT_VEC(v1, v2, diff), diff);
182 }
183
SET_FLAGS_OSZAP_ADD8(CPUX86State * env,uint8_t v1,uint8_t v2,uint8_t diff)184 void SET_FLAGS_OSZAP_ADD8(CPUX86State *env, uint8_t v1, uint8_t v2,
185 uint8_t diff)
186 {
187 SET_FLAGS_OSZAP_8(ADD_COUT_VEC(v1, v2, diff), diff);
188 }
189
190
SET_FLAGS_OSZAPC_LOGIC32(CPUX86State * env,uint32_t v1,uint32_t v2,uint32_t diff)191 void SET_FLAGS_OSZAPC_LOGIC32(CPUX86State *env, uint32_t v1, uint32_t v2,
192 uint32_t diff)
193 {
194 SET_FLAGS_OSZAPC_32(0, diff);
195 }
196
SET_FLAGS_OSZAPC_LOGIC16(CPUX86State * env,uint16_t v1,uint16_t v2,uint16_t diff)197 void SET_FLAGS_OSZAPC_LOGIC16(CPUX86State *env, uint16_t v1, uint16_t v2,
198 uint16_t diff)
199 {
200 SET_FLAGS_OSZAPC_16(0, diff);
201 }
202
SET_FLAGS_OSZAPC_LOGIC8(CPUX86State * env,uint8_t v1,uint8_t v2,uint8_t diff)203 void SET_FLAGS_OSZAPC_LOGIC8(CPUX86State *env, uint8_t v1, uint8_t v2,
204 uint8_t diff)
205 {
206 SET_FLAGS_OSZAPC_8(0, diff);
207 }
208
get_PF(CPUX86State * env)209 static inline uint32_t get_PF(CPUX86State *env)
210 {
211 return ((parity8(env->cc_dst) - 1) ^ env->cc_src) & CC_P;
212 }
213
get_OF(CPUX86State * env)214 static inline uint32_t get_OF(CPUX86State *env)
215 {
216 return ((env->cc_src >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O;
217 }
218
get_CF(CPUX86State * env)219 bool get_CF(CPUX86State *env)
220 {
221 return ((target_long)env->cc_src) < 0;
222 }
223
set_CF(CPUX86State * env,bool val)224 void set_CF(CPUX86State *env, bool val)
225 {
226 /* If CF changes, flip PO and CF */
227 target_ulong temp = -(target_ulong)val;
228 target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0;
229 env->cc_src ^= cf_changed * (LF_MASK_PO | LF_MASK_CF);
230 }
231
get_ZF(CPUX86State * env)232 static inline uint32_t get_ZF(CPUX86State *env)
233 {
234 return env->cc_dst ? 0 : CC_Z;
235 }
236
get_SF(CPUX86State * env)237 static inline uint32_t get_SF(CPUX86State *env)
238 {
239 return ((env->cc_dst >> (LF_SIGN_BIT - LF_BIT_SD)) ^
240 env->cc_src) & CC_S;
241 }
242
lflags_to_rflags(CPUX86State * env)243 void lflags_to_rflags(CPUX86State *env)
244 {
245 env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O);
246 /* rotate left by one to move carry-out bits into CF and AF */
247 env->eflags |= (
248 (env->cc_src << 1) |
249 (env->cc_src >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A);
250 env->eflags |= get_SF(env);
251 env->eflags |= get_PF(env);
252 env->eflags |= get_ZF(env);
253 env->eflags |= get_OF(env);
254 }
255
rflags_to_lflags(CPUX86State * env)256 void rflags_to_lflags(CPUX86State *env)
257 {
258 target_ulong cf_af, cf_xor_of;
259
260 /* Leave the low byte zero so that parity is always even... */
261 env->cc_dst = !(env->eflags & CC_Z) << 8;
262
263 /* ... and therefore cc_src always uses opposite polarity. */
264 env->cc_src = CC_P;
265 env->cc_src ^= env->eflags & (CC_S | CC_P);
266
267 /* rotate right by one to move CF and AF into the carry-out positions */
268 cf_af = env->eflags & (CC_C | CC_A);
269 env->cc_src |= ((cf_af >> 1) | (cf_af << (TARGET_LONG_BITS - 1)));
270
271 cf_xor_of = ((env->eflags & (CC_C | CC_O)) + (CC_O - CC_C)) & CC_O;
272 env->cc_src |= -cf_xor_of & LF_MASK_PO;
273 }
274