1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/alternative-macros.h>
10 #include <asm/cpucaps.h>
11 #include <asm/cputype.h>
12 #include <asm/hwcap.h>
13 #include <asm/sysreg.h>
14
15 #define MAX_CPU_FEATURES 192
16 #define cpu_feature(x) KERNEL_HWCAP_ ## x
17
18 #define ARM64_SW_FEATURE_OVERRIDE_NOKASLR 0
19 #define ARM64_SW_FEATURE_OVERRIDE_HVHE 4
20 #define ARM64_SW_FEATURE_OVERRIDE_RODATA_OFF 8
21
22 #ifndef __ASSEMBLY__
23
24 #include <linux/bug.h>
25 #include <linux/jump_label.h>
26 #include <linux/kernel.h>
27 #include <linux/cpumask.h>
28
29 /*
30 * CPU feature register tracking
31 *
32 * The safe value of a CPUID feature field is dependent on the implications
33 * of the values assigned to it by the architecture. Based on the relationship
34 * between the values, the features are classified into 3 types - LOWER_SAFE,
35 * HIGHER_SAFE and EXACT.
36 *
37 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
38 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
39 * a field when EXACT is specified, failing which, the safe value specified
40 * in the table is chosen.
41 */
42
43 enum ftr_type {
44 FTR_EXACT, /* Use a predefined safe value */
45 FTR_LOWER_SAFE, /* Smaller value is safe */
46 FTR_HIGHER_SAFE, /* Bigger value is safe */
47 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
48 };
49
50 #define FTR_STRICT true /* SANITY check strict matching required */
51 #define FTR_NONSTRICT false /* SANITY check ignored */
52
53 #define FTR_SIGNED true /* Value should be treated as signed */
54 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
55
56 #define FTR_VISIBLE true /* Feature visible to the user space */
57 #define FTR_HIDDEN false /* Feature is hidden from the user */
58
59 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
60 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
61
62 struct arm64_ftr_bits {
63 bool sign; /* Value is signed ? */
64 bool visible;
65 bool strict; /* CPU Sanity check: strict matching required ? */
66 enum ftr_type type;
67 u8 shift;
68 u8 width;
69 s64 safe_val; /* safe value for FTR_EXACT features */
70 };
71
72 /*
73 * Describe the early feature override to the core override code:
74 *
75 * @val Values that are to be merged into the final
76 * sanitised value of the register. Only the bitfields
77 * set to 1 in @mask are valid
78 * @mask Mask of the features that are overridden by @val
79 *
80 * A @mask field set to full-1 indicates that the corresponding field
81 * in @val is a valid override.
82 *
83 * A @mask field set to full-0 with the corresponding @val field set
84 * to full-0 denotes that this field has no override
85 *
86 * A @mask field set to full-0 with the corresponding @val field set
87 * to full-1 denotes that this field has an invalid override.
88 */
89 struct arm64_ftr_override {
90 u64 val;
91 u64 mask;
92 };
93
94 /*
95 * @arm64_ftr_reg - Feature register
96 * @strict_mask Bits which should match across all CPUs for sanity.
97 * @sys_val Safe value across the CPUs (system view)
98 */
99 struct arm64_ftr_reg {
100 const char *name;
101 u64 strict_mask;
102 u64 user_mask;
103 u64 sys_val;
104 u64 user_val;
105 struct arm64_ftr_override *override;
106 const struct arm64_ftr_bits *ftr_bits;
107 };
108
109 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
110
111 /*
112 * CPU capabilities:
113 *
114 * We use arm64_cpu_capabilities to represent system features, errata work
115 * arounds (both used internally by kernel and tracked in system_cpucaps) and
116 * ELF HWCAPs (which are exposed to user).
117 *
118 * To support systems with heterogeneous CPUs, we need to make sure that we
119 * detect the capabilities correctly on the system and take appropriate
120 * measures to ensure there are no incompatibilities.
121 *
122 * This comment tries to explain how we treat the capabilities.
123 * Each capability has the following list of attributes :
124 *
125 * 1) Scope of Detection : The system detects a given capability by
126 * performing some checks at runtime. This could be, e.g, checking the
127 * value of a field in CPU ID feature register or checking the cpu
128 * model. The capability provides a call back ( @matches() ) to
129 * perform the check. Scope defines how the checks should be performed.
130 * There are three cases:
131 *
132 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
133 * matches. This implies, we have to run the check on all the
134 * booting CPUs, until the system decides that state of the
135 * capability is finalised. (See section 2 below)
136 * Or
137 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
138 * matches. This implies, we run the check only once, when the
139 * system decides to finalise the state of the capability. If the
140 * capability relies on a field in one of the CPU ID feature
141 * registers, we use the sanitised value of the register from the
142 * CPU feature infrastructure to make the decision.
143 * Or
144 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
145 * feature. This category is for features that are "finalised"
146 * (or used) by the kernel very early even before the SMP cpus
147 * are brought up.
148 *
149 * The process of detection is usually denoted by "update" capability
150 * state in the code.
151 *
152 * 2) Finalise the state : The kernel should finalise the state of a
153 * capability at some point during its execution and take necessary
154 * actions if any. Usually, this is done, after all the boot-time
155 * enabled CPUs are brought up by the kernel, so that it can make
156 * better decision based on the available set of CPUs. However, there
157 * are some special cases, where the action is taken during the early
158 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
159 * Virtualisation Host Extensions). The kernel usually disallows any
160 * changes to the state of a capability once it finalises the capability
161 * and takes any action, as it may be impossible to execute the actions
162 * safely. A CPU brought up after a capability is "finalised" is
163 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
164 * CPUs are treated "late CPUs" for capabilities determined by the boot
165 * CPU.
166 *
167 * At the moment there are two passes of finalising the capabilities.
168 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
169 * setup_boot_cpu_capabilities().
170 * b) Everything except (a) - Run via setup_system_capabilities().
171 *
172 * 3) Verification: When a CPU is brought online (e.g, by user or by the
173 * kernel), the kernel should make sure that it is safe to use the CPU,
174 * by verifying that the CPU is compliant with the state of the
175 * capabilities finalised already. This happens via :
176 *
177 * secondary_start_kernel()-> check_local_cpu_capabilities()
178 *
179 * As explained in (2) above, capabilities could be finalised at
180 * different points in the execution. Each newly booted CPU is verified
181 * against the capabilities that have been finalised by the time it
182 * boots.
183 *
184 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
185 * except for the primary boot CPU.
186 *
187 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
188 * user after the kernel boot are verified against the capability.
189 *
190 * If there is a conflict, the kernel takes an action, based on the
191 * severity (e.g, a CPU could be prevented from booting or cause a
192 * kernel panic). The CPU is allowed to "affect" the state of the
193 * capability, if it has not been finalised already. See section 5
194 * for more details on conflicts.
195 *
196 * 4) Action: As mentioned in (2), the kernel can take an action for each
197 * detected capability, on all CPUs on the system. Appropriate actions
198 * include, turning on an architectural feature, modifying the control
199 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
200 * alternatives. The kernel patching is batched and performed at later
201 * point. The actions are always initiated only after the capability
202 * is finalised. This is usally denoted by "enabling" the capability.
203 * The actions are initiated as follows :
204 * a) Action is triggered on all online CPUs, after the capability is
205 * finalised, invoked within the stop_machine() context from
206 * enable_cpu_capabilitie().
207 *
208 * b) Any late CPU, brought up after (1), the action is triggered via:
209 *
210 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
211 *
212 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
213 * the system state, we could have the following combinations :
214 *
215 * x-----------------------------x
216 * | Type | System | Late CPU |
217 * |-----------------------------|
218 * | a | y | n |
219 * |-----------------------------|
220 * | b | n | y |
221 * x-----------------------------x
222 *
223 * Two separate flag bits are defined to indicate whether each kind of
224 * conflict can be allowed:
225 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
226 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
227 *
228 * Case (a) is not permitted for a capability that the system requires
229 * all CPUs to have in order for the capability to be enabled. This is
230 * typical for capabilities that represent enhanced functionality.
231 *
232 * Case (b) is not permitted for a capability that must be enabled
233 * during boot if any CPU in the system requires it in order to run
234 * safely. This is typical for erratum work arounds that cannot be
235 * enabled after the corresponding capability is finalised.
236 *
237 * In some non-typical cases either both (a) and (b), or neither,
238 * should be permitted. This can be described by including neither
239 * or both flags in the capability's type field.
240 *
241 * In case of a conflict, the CPU is prevented from booting. If the
242 * ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
243 * then a kernel panic is triggered.
244 */
245
246
247 /*
248 * Decide how the capability is detected.
249 * On any local CPU vs System wide vs the primary boot CPU
250 */
251 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
252 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
253 /*
254 * The capabilitiy is detected on the Boot CPU and is used by kernel
255 * during early boot. i.e, the capability should be "detected" and
256 * "enabled" as early as possibly on all booting CPUs.
257 */
258 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
259 #define ARM64_CPUCAP_SCOPE_MASK \
260 (ARM64_CPUCAP_SCOPE_SYSTEM | \
261 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
262 ARM64_CPUCAP_SCOPE_BOOT_CPU)
263
264 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
265 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
266 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
267 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
268
269 /*
270 * Is it permitted for a late CPU to have this capability when system
271 * hasn't already enabled it ?
272 */
273 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
274 /* Is it safe for a late CPU to miss this capability when system has it */
275 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
276 /* Panic when a conflict is detected */
277 #define ARM64_CPUCAP_PANIC_ON_CONFLICT ((u16)BIT(6))
278
279 /*
280 * CPU errata workarounds that need to be enabled at boot time if one or
281 * more CPUs in the system requires it. When one of these capabilities
282 * has been enabled, it is safe to allow any CPU to boot that doesn't
283 * require the workaround. However, it is not safe if a "late" CPU
284 * requires a workaround and the system hasn't enabled it already.
285 */
286 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
287 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
288 /*
289 * CPU feature detected at boot time based on system-wide value of a
290 * feature. It is safe for a late CPU to have this feature even though
291 * the system hasn't enabled it, although the feature will not be used
292 * by Linux in this case. If the system has enabled this feature already,
293 * then every late CPU must have it.
294 */
295 #define ARM64_CPUCAP_SYSTEM_FEATURE \
296 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
297 /*
298 * CPU feature detected at boot time based on feature of one or more CPUs.
299 * All possible conflicts for a late CPU are ignored.
300 * NOTE: this means that a late CPU with the feature will *not* cause the
301 * capability to be advertised by cpus_have_*cap()!
302 */
303 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
304 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
305 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
306 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
307
308 /*
309 * CPU feature detected at boot time, on one or more CPUs. A late CPU
310 * is not allowed to have the capability when the system doesn't have it.
311 * It is Ok for a late CPU to miss the feature.
312 */
313 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
314 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
315 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
316
317 /*
318 * CPU feature used early in the boot based on the boot CPU. All secondary
319 * CPUs must match the state of the capability as detected by the boot CPU. In
320 * case of a conflict, a kernel panic is triggered.
321 */
322 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE \
323 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
324
325 /*
326 * CPU feature used early in the boot based on the boot CPU. It is safe for a
327 * late CPU to have this feature even though the boot CPU hasn't enabled it,
328 * although the feature will not be used by Linux in this case. If the boot CPU
329 * has enabled this feature already, then every late CPU must have it.
330 */
331 #define ARM64_CPUCAP_BOOT_CPU_FEATURE \
332 (ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
333
334 struct arm64_cpu_capabilities {
335 const char *desc;
336 u16 capability;
337 u16 type;
338 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
339 /*
340 * Take the appropriate actions to configure this capability
341 * for this CPU. If the capability is detected by the kernel
342 * this will be called on all the CPUs in the system,
343 * including the hotplugged CPUs, regardless of whether the
344 * capability is available on that specific CPU. This is
345 * useful for some capabilities (e.g, working around CPU
346 * errata), where all the CPUs must take some action (e.g,
347 * changing system control/configuration). Thus, if an action
348 * is required only if the CPU has the capability, then the
349 * routine must check it before taking any action.
350 */
351 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
352 union {
353 struct { /* To be used for erratum handling only */
354 struct midr_range midr_range;
355 const struct arm64_midr_revidr {
356 u32 midr_rv; /* revision/variant */
357 u32 revidr_mask;
358 } * const fixed_revs;
359 };
360
361 const struct midr_range *midr_range_list;
362 struct { /* Feature register checking */
363 u32 sys_reg;
364 u8 field_pos;
365 u8 field_width;
366 u8 min_field_value;
367 u8 max_field_value;
368 u8 hwcap_type;
369 bool sign;
370 unsigned long hwcap;
371 };
372 };
373
374 /*
375 * An optional list of "matches/cpu_enable" pair for the same
376 * "capability" of the same "type" as described by the parent.
377 * Only matches(), cpu_enable() and fields relevant to these
378 * methods are significant in the list. The cpu_enable is
379 * invoked only if the corresponding entry "matches()".
380 * However, if a cpu_enable() method is associated
381 * with multiple matches(), care should be taken that either
382 * the match criteria are mutually exclusive, or that the
383 * method is robust against being called multiple times.
384 */
385 const struct arm64_cpu_capabilities *match_list;
386 const struct cpumask *cpus;
387 };
388
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)389 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
390 {
391 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
392 }
393
394 /*
395 * Generic helper for handling capabilities with multiple (match,enable) pairs
396 * of call backs, sharing the same capability bit.
397 * Iterate over each entry to see if at least one matches.
398 */
399 static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities * entry,int scope)400 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
401 int scope)
402 {
403 const struct arm64_cpu_capabilities *caps;
404
405 for (caps = entry->match_list; caps->matches; caps++)
406 if (caps->matches(caps, scope))
407 return true;
408
409 return false;
410 }
411
is_vhe_hyp_code(void)412 static __always_inline bool is_vhe_hyp_code(void)
413 {
414 /* Only defined for code run in VHE hyp context */
415 return __is_defined(__KVM_VHE_HYPERVISOR__);
416 }
417
is_nvhe_hyp_code(void)418 static __always_inline bool is_nvhe_hyp_code(void)
419 {
420 /* Only defined for code run in NVHE hyp context */
421 return __is_defined(__KVM_NVHE_HYPERVISOR__);
422 }
423
is_hyp_code(void)424 static __always_inline bool is_hyp_code(void)
425 {
426 return is_vhe_hyp_code() || is_nvhe_hyp_code();
427 }
428
429 extern DECLARE_BITMAP(system_cpucaps, ARM64_NCAPS);
430
431 extern DECLARE_BITMAP(boot_cpucaps, ARM64_NCAPS);
432
433 #define for_each_available_cap(cap) \
434 for_each_set_bit(cap, system_cpucaps, ARM64_NCAPS)
435
436 bool this_cpu_has_cap(unsigned int cap);
437 void cpu_set_feature(unsigned int num);
438 bool cpu_have_feature(unsigned int num);
439 unsigned long cpu_get_elf_hwcap(void);
440 unsigned long cpu_get_elf_hwcap2(void);
441 unsigned long cpu_get_elf_hwcap3(void);
442
443 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
444 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
445
boot_capabilities_finalized(void)446 static __always_inline bool boot_capabilities_finalized(void)
447 {
448 return alternative_has_cap_likely(ARM64_ALWAYS_BOOT);
449 }
450
system_capabilities_finalized(void)451 static __always_inline bool system_capabilities_finalized(void)
452 {
453 return alternative_has_cap_likely(ARM64_ALWAYS_SYSTEM);
454 }
455
456 /*
457 * Test for a capability with a runtime check.
458 *
459 * Before the capability is detected, this returns false.
460 */
cpus_have_cap(unsigned int num)461 static __always_inline bool cpus_have_cap(unsigned int num)
462 {
463 if (__builtin_constant_p(num) && !cpucap_is_possible(num))
464 return false;
465 if (num >= ARM64_NCAPS)
466 return false;
467 return arch_test_bit(num, system_cpucaps);
468 }
469
470 /*
471 * Test for a capability without a runtime check.
472 *
473 * Before boot capabilities are finalized, this will BUG().
474 * After boot capabilities are finalized, this is patched to avoid a runtime
475 * check.
476 *
477 * @num must be a compile-time constant.
478 */
cpus_have_final_boot_cap(int num)479 static __always_inline bool cpus_have_final_boot_cap(int num)
480 {
481 if (boot_capabilities_finalized())
482 return alternative_has_cap_unlikely(num);
483 else
484 BUG();
485 }
486
487 /*
488 * Test for a capability without a runtime check.
489 *
490 * Before system capabilities are finalized, this will BUG().
491 * After system capabilities are finalized, this is patched to avoid a runtime
492 * check.
493 *
494 * @num must be a compile-time constant.
495 */
cpus_have_final_cap(int num)496 static __always_inline bool cpus_have_final_cap(int num)
497 {
498 if (system_capabilities_finalized())
499 return alternative_has_cap_unlikely(num);
500 else
501 BUG();
502 }
503
504 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)505 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
506 {
507 return (s64)(features << (64 - width - field)) >> (64 - width);
508 }
509
510 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)511 cpuid_feature_extract_signed_field(u64 features, int field)
512 {
513 return cpuid_feature_extract_signed_field_width(features, field, 4);
514 }
515
516 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)517 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
518 {
519 return (u64)(features << (64 - width - field)) >> (64 - width);
520 }
521
522 static __always_inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)523 cpuid_feature_extract_unsigned_field(u64 features, int field)
524 {
525 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
526 }
527
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)528 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
529 {
530 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
531 }
532
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)533 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
534 {
535 return (reg->user_val | (reg->sys_val & reg->user_mask));
536 }
537
538 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)539 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
540 {
541 if (WARN_ON_ONCE(!width))
542 width = 4;
543 return (sign) ?
544 cpuid_feature_extract_signed_field_width(features, field, width) :
545 cpuid_feature_extract_unsigned_field_width(features, field, width);
546 }
547
548 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)549 cpuid_feature_extract_field(u64 features, int field, bool sign)
550 {
551 return cpuid_feature_extract_field_width(features, field, 4, sign);
552 }
553
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)554 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
555 {
556 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
557 }
558
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)559 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
560 {
561 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGEND_SHIFT) == 0x1 ||
562 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT) == 0x1;
563 }
564
id_aa64pfr0_32bit_el1(u64 pfr0)565 static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
566 {
567 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL1_SHIFT);
568
569 return val == ID_AA64PFR0_EL1_EL1_AARCH32;
570 }
571
id_aa64pfr0_32bit_el0(u64 pfr0)572 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
573 {
574 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_EL0_SHIFT);
575
576 return val == ID_AA64PFR0_EL1_EL0_AARCH32;
577 }
578
id_aa64pfr0_sve(u64 pfr0)579 static inline bool id_aa64pfr0_sve(u64 pfr0)
580 {
581 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SVE_SHIFT);
582
583 return val > 0;
584 }
585
id_aa64pfr1_sme(u64 pfr1)586 static inline bool id_aa64pfr1_sme(u64 pfr1)
587 {
588 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_SME_SHIFT);
589
590 return val > 0;
591 }
592
id_aa64pfr0_mpam(u64 pfr0)593 static inline bool id_aa64pfr0_mpam(u64 pfr0)
594 {
595 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_MPAM_SHIFT);
596
597 return val > 0;
598 }
599
id_aa64pfr1_mte(u64 pfr1)600 static inline bool id_aa64pfr1_mte(u64 pfr1)
601 {
602 u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_EL1_MTE_SHIFT);
603
604 return val >= ID_AA64PFR1_EL1_MTE_MTE2;
605 }
606
607 void __init setup_boot_cpu_features(void);
608 void __init setup_system_features(void);
609 void __init setup_user_features(void);
610
611 void check_local_cpu_capabilities(void);
612
613 u64 read_sanitised_ftr_reg(u32 id);
614 u64 __read_sysreg_by_encoding(u32 sys_id);
615
cpu_supports_mixed_endian_el0(void)616 static inline bool cpu_supports_mixed_endian_el0(void)
617 {
618 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
619 }
620
621
supports_csv2p3(int scope)622 static inline bool supports_csv2p3(int scope)
623 {
624 u64 pfr0;
625 u8 csv2_val;
626
627 if (scope == SCOPE_LOCAL_CPU)
628 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
629 else
630 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
631
632 csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
633 ID_AA64PFR0_EL1_CSV2_SHIFT);
634 return csv2_val == 3;
635 }
636
supports_clearbhb(int scope)637 static inline bool supports_clearbhb(int scope)
638 {
639 u64 isar2;
640
641 if (scope == SCOPE_LOCAL_CPU)
642 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
643 else
644 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
645
646 return cpuid_feature_extract_unsigned_field(isar2,
647 ID_AA64ISAR2_EL1_CLRBHB_SHIFT);
648 }
649
650 const struct cpumask *system_32bit_el0_cpumask(void);
651 const struct cpumask *fallback_32bit_el0_cpumask(void);
652 DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
653
system_supports_32bit_el0(void)654 static inline bool system_supports_32bit_el0(void)
655 {
656 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
657
658 return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
659 id_aa64pfr0_32bit_el0(pfr0);
660 }
661
system_supports_4kb_granule(void)662 static inline bool system_supports_4kb_granule(void)
663 {
664 u64 mmfr0;
665 u32 val;
666
667 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
668 val = cpuid_feature_extract_unsigned_field(mmfr0,
669 ID_AA64MMFR0_EL1_TGRAN4_SHIFT);
670
671 return (val >= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MIN) &&
672 (val <= ID_AA64MMFR0_EL1_TGRAN4_SUPPORTED_MAX);
673 }
674
system_supports_64kb_granule(void)675 static inline bool system_supports_64kb_granule(void)
676 {
677 u64 mmfr0;
678 u32 val;
679
680 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
681 val = cpuid_feature_extract_unsigned_field(mmfr0,
682 ID_AA64MMFR0_EL1_TGRAN64_SHIFT);
683
684 return (val >= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MIN) &&
685 (val <= ID_AA64MMFR0_EL1_TGRAN64_SUPPORTED_MAX);
686 }
687
system_supports_16kb_granule(void)688 static inline bool system_supports_16kb_granule(void)
689 {
690 u64 mmfr0;
691 u32 val;
692
693 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
694 val = cpuid_feature_extract_unsigned_field(mmfr0,
695 ID_AA64MMFR0_EL1_TGRAN16_SHIFT);
696
697 return (val >= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MIN) &&
698 (val <= ID_AA64MMFR0_EL1_TGRAN16_SUPPORTED_MAX);
699 }
700
system_supports_mixed_endian_el0(void)701 static inline bool system_supports_mixed_endian_el0(void)
702 {
703 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
704 }
705
system_supports_mixed_endian(void)706 static inline bool system_supports_mixed_endian(void)
707 {
708 u64 mmfr0;
709 u32 val;
710
711 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
712 val = cpuid_feature_extract_unsigned_field(mmfr0,
713 ID_AA64MMFR0_EL1_BIGEND_SHIFT);
714
715 return val == 0x1;
716 }
717
system_supports_fpsimd(void)718 static __always_inline bool system_supports_fpsimd(void)
719 {
720 return alternative_has_cap_likely(ARM64_HAS_FPSIMD);
721 }
722
system_uses_hw_pan(void)723 static inline bool system_uses_hw_pan(void)
724 {
725 return alternative_has_cap_unlikely(ARM64_HAS_PAN);
726 }
727
system_uses_ttbr0_pan(void)728 static inline bool system_uses_ttbr0_pan(void)
729 {
730 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
731 !system_uses_hw_pan();
732 }
733
system_supports_sve(void)734 static __always_inline bool system_supports_sve(void)
735 {
736 return alternative_has_cap_unlikely(ARM64_SVE);
737 }
738
system_supports_sme(void)739 static __always_inline bool system_supports_sme(void)
740 {
741 return alternative_has_cap_unlikely(ARM64_SME);
742 }
743
system_supports_sme2(void)744 static __always_inline bool system_supports_sme2(void)
745 {
746 return alternative_has_cap_unlikely(ARM64_SME2);
747 }
748
system_supports_fa64(void)749 static __always_inline bool system_supports_fa64(void)
750 {
751 return alternative_has_cap_unlikely(ARM64_SME_FA64);
752 }
753
system_supports_tpidr2(void)754 static __always_inline bool system_supports_tpidr2(void)
755 {
756 return system_supports_sme();
757 }
758
system_supports_fpmr(void)759 static __always_inline bool system_supports_fpmr(void)
760 {
761 return alternative_has_cap_unlikely(ARM64_HAS_FPMR);
762 }
763
system_supports_cnp(void)764 static __always_inline bool system_supports_cnp(void)
765 {
766 return alternative_has_cap_unlikely(ARM64_HAS_CNP);
767 }
768
system_supports_address_auth(void)769 static inline bool system_supports_address_auth(void)
770 {
771 return cpus_have_final_boot_cap(ARM64_HAS_ADDRESS_AUTH);
772 }
773
system_supports_generic_auth(void)774 static inline bool system_supports_generic_auth(void)
775 {
776 return alternative_has_cap_unlikely(ARM64_HAS_GENERIC_AUTH);
777 }
778
system_has_full_ptr_auth(void)779 static inline bool system_has_full_ptr_auth(void)
780 {
781 return system_supports_address_auth() && system_supports_generic_auth();
782 }
783
system_uses_irq_prio_masking(void)784 static __always_inline bool system_uses_irq_prio_masking(void)
785 {
786 return alternative_has_cap_unlikely(ARM64_HAS_GIC_PRIO_MASKING);
787 }
788
system_supports_mte(void)789 static inline bool system_supports_mte(void)
790 {
791 return alternative_has_cap_unlikely(ARM64_MTE);
792 }
793
system_has_prio_mask_debugging(void)794 static inline bool system_has_prio_mask_debugging(void)
795 {
796 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
797 system_uses_irq_prio_masking();
798 }
799
system_supports_bti(void)800 static inline bool system_supports_bti(void)
801 {
802 return cpus_have_final_cap(ARM64_BTI);
803 }
804
system_supports_bti_kernel(void)805 static inline bool system_supports_bti_kernel(void)
806 {
807 return IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) &&
808 cpus_have_final_boot_cap(ARM64_BTI);
809 }
810
system_supports_tlb_range(void)811 static inline bool system_supports_tlb_range(void)
812 {
813 return alternative_has_cap_unlikely(ARM64_HAS_TLB_RANGE);
814 }
815
system_supports_lpa2(void)816 static inline bool system_supports_lpa2(void)
817 {
818 return cpus_have_final_cap(ARM64_HAS_LPA2);
819 }
820
system_supports_poe(void)821 static inline bool system_supports_poe(void)
822 {
823 return alternative_has_cap_unlikely(ARM64_HAS_S1POE);
824 }
825
system_supports_gcs(void)826 static inline bool system_supports_gcs(void)
827 {
828 return alternative_has_cap_unlikely(ARM64_HAS_GCS);
829 }
830
system_supports_haft(void)831 static inline bool system_supports_haft(void)
832 {
833 return cpus_have_final_cap(ARM64_HAFT);
834 }
835
system_supports_mpam(void)836 static __always_inline bool system_supports_mpam(void)
837 {
838 return alternative_has_cap_unlikely(ARM64_MPAM);
839 }
840
system_supports_mpam_hcr(void)841 static __always_inline bool system_supports_mpam_hcr(void)
842 {
843 return alternative_has_cap_unlikely(ARM64_MPAM_HCR);
844 }
845
system_supports_pmuv3(void)846 static inline bool system_supports_pmuv3(void)
847 {
848 return cpus_have_final_cap(ARM64_HAS_PMUV3);
849 }
850
851 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
852 bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
853
id_aa64mmfr0_parange_to_phys_shift(int parange)854 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
855 {
856 switch (parange) {
857 case ID_AA64MMFR0_EL1_PARANGE_32: return 32;
858 case ID_AA64MMFR0_EL1_PARANGE_36: return 36;
859 case ID_AA64MMFR0_EL1_PARANGE_40: return 40;
860 case ID_AA64MMFR0_EL1_PARANGE_42: return 42;
861 case ID_AA64MMFR0_EL1_PARANGE_44: return 44;
862 case ID_AA64MMFR0_EL1_PARANGE_48: return 48;
863 case ID_AA64MMFR0_EL1_PARANGE_52: return 52;
864 /*
865 * A future PE could use a value unknown to the kernel.
866 * However, by the "D10.1.4 Principles of the ID scheme
867 * for fields in ID registers", ARM DDI 0487C.a, any new
868 * value is guaranteed to be higher than what we know already.
869 * As a safe limit, we return the limit supported by the kernel.
870 */
871 default: return CONFIG_ARM64_PA_BITS;
872 }
873 }
874
875 /* Check whether hardware update of the Access flag is supported */
cpu_has_hw_af(void)876 static inline bool cpu_has_hw_af(void)
877 {
878 u64 mmfr1;
879
880 if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
881 return false;
882
883 /*
884 * Use cached version to avoid emulated msr operation on KVM
885 * guests.
886 */
887 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
888 return cpuid_feature_extract_unsigned_field(mmfr1,
889 ID_AA64MMFR1_EL1_HAFDBS_SHIFT);
890 }
891
cpu_has_pan(void)892 static inline bool cpu_has_pan(void)
893 {
894 u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
895 return cpuid_feature_extract_unsigned_field(mmfr1,
896 ID_AA64MMFR1_EL1_PAN_SHIFT);
897 }
898
899 #ifdef CONFIG_ARM64_AMU_EXTN
900 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
901 extern bool cpu_has_amu_feat(int cpu);
902 #else
cpu_has_amu_feat(int cpu)903 static inline bool cpu_has_amu_feat(int cpu)
904 {
905 return false;
906 }
907 #endif
908
909 /* Get a cpu that supports the Activity Monitors Unit (AMU) */
910 extern int get_cpu_with_amu_feat(void);
911
get_vmid_bits(u64 mmfr1)912 static inline unsigned int get_vmid_bits(u64 mmfr1)
913 {
914 int vmid_bits;
915
916 vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
917 ID_AA64MMFR1_EL1_VMIDBits_SHIFT);
918 if (vmid_bits == ID_AA64MMFR1_EL1_VMIDBits_16)
919 return 16;
920
921 /*
922 * Return the default here even if any reserved
923 * value is fetched from the system register.
924 */
925 return 8;
926 }
927
928 s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new, s64 cur);
929 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id);
930
931 extern struct arm64_ftr_override id_aa64mmfr0_override;
932 extern struct arm64_ftr_override id_aa64mmfr1_override;
933 extern struct arm64_ftr_override id_aa64mmfr2_override;
934 extern struct arm64_ftr_override id_aa64pfr0_override;
935 extern struct arm64_ftr_override id_aa64pfr1_override;
936 extern struct arm64_ftr_override id_aa64zfr0_override;
937 extern struct arm64_ftr_override id_aa64smfr0_override;
938 extern struct arm64_ftr_override id_aa64isar1_override;
939 extern struct arm64_ftr_override id_aa64isar2_override;
940
941 extern struct arm64_ftr_override arm64_sw_feature_override;
942
943 static inline
arm64_apply_feature_override(u64 val,int feat,int width,const struct arm64_ftr_override * override)944 u64 arm64_apply_feature_override(u64 val, int feat, int width,
945 const struct arm64_ftr_override *override)
946 {
947 u64 oval = override->val;
948
949 /*
950 * When it encounters an invalid override (e.g., an override that
951 * cannot be honoured due to a missing CPU feature), the early idreg
952 * override code will set the mask to 0x0 and the value to non-zero for
953 * the field in question. In order to determine whether the override is
954 * valid or not for the field we are interested in, we first need to
955 * disregard bits belonging to other fields.
956 */
957 oval &= GENMASK_ULL(feat + width - 1, feat);
958
959 /*
960 * The override is valid if all value bits are accounted for in the
961 * mask. If so, replace the masked bits with the override value.
962 */
963 if (oval == (oval & override->mask)) {
964 val &= ~override->mask;
965 val |= oval;
966 }
967
968 /* Extract the field from the updated value */
969 return cpuid_feature_extract_unsigned_field(val, feat);
970 }
971
arm64_test_sw_feature_override(int feat)972 static inline bool arm64_test_sw_feature_override(int feat)
973 {
974 /*
975 * Software features are pseudo CPU features that have no underlying
976 * CPUID system register value to apply the override to.
977 */
978 return arm64_apply_feature_override(0, feat, 4,
979 &arm64_sw_feature_override);
980 }
981
kaslr_disabled_cmdline(void)982 static inline bool kaslr_disabled_cmdline(void)
983 {
984 return arm64_test_sw_feature_override(ARM64_SW_FEATURE_OVERRIDE_NOKASLR);
985 }
986
987 u32 get_kvm_ipa_limit(void);
988 void dump_cpu_features(void);
989
cpu_has_bti(void)990 static inline bool cpu_has_bti(void)
991 {
992 if (!IS_ENABLED(CONFIG_ARM64_BTI))
993 return false;
994
995 return arm64_apply_feature_override(read_cpuid(ID_AA64PFR1_EL1),
996 ID_AA64PFR1_EL1_BT_SHIFT, 4,
997 &id_aa64pfr1_override);
998 }
999
cpu_has_pac(void)1000 static inline bool cpu_has_pac(void)
1001 {
1002 u64 isar1, isar2;
1003
1004 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
1005 return false;
1006
1007 isar1 = read_cpuid(ID_AA64ISAR1_EL1);
1008 isar2 = read_cpuid(ID_AA64ISAR2_EL1);
1009
1010 if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_APA_SHIFT, 4,
1011 &id_aa64isar1_override))
1012 return true;
1013
1014 if (arm64_apply_feature_override(isar1, ID_AA64ISAR1_EL1_API_SHIFT, 4,
1015 &id_aa64isar1_override))
1016 return true;
1017
1018 return arm64_apply_feature_override(isar2, ID_AA64ISAR2_EL1_APA3_SHIFT, 4,
1019 &id_aa64isar2_override);
1020 }
1021
cpu_has_lva(void)1022 static inline bool cpu_has_lva(void)
1023 {
1024 u64 mmfr2;
1025
1026 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1027 mmfr2 &= ~id_aa64mmfr2_override.mask;
1028 mmfr2 |= id_aa64mmfr2_override.val;
1029 return cpuid_feature_extract_unsigned_field(mmfr2,
1030 ID_AA64MMFR2_EL1_VARange_SHIFT);
1031 }
1032
cpu_has_lpa2(void)1033 static inline bool cpu_has_lpa2(void)
1034 {
1035 #ifdef CONFIG_ARM64_LPA2
1036 u64 mmfr0;
1037 int feat;
1038
1039 mmfr0 = read_sysreg(id_aa64mmfr0_el1);
1040 mmfr0 &= ~id_aa64mmfr0_override.mask;
1041 mmfr0 |= id_aa64mmfr0_override.val;
1042 feat = cpuid_feature_extract_signed_field(mmfr0,
1043 ID_AA64MMFR0_EL1_TGRAN_SHIFT);
1044
1045 return feat >= ID_AA64MMFR0_EL1_TGRAN_LPA2;
1046 #else
1047 return false;
1048 #endif
1049 }
1050
1051 #endif /* __ASSEMBLY__ */
1052
1053 #endif
1054