xref: /linux/include/linux/power_supply.h (revision ec2e0fb07d789976c601bec19ecced7a501c3705)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
14 
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/rwsem.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/notifier.h>
22 
23 /*
24  * All voltages, currents, charges, energies, time and temperatures in uV,
25  * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26  * stated. It's driver's job to convert its raw values to units in which
27  * this class operates.
28  */
29 
30 /*
31  * For systems where the charger determines the maximum battery capacity
32  * the min and max fields should be used to present these values to user
33  * space. Unused/unknown fields will not appear in sysfs.
34  */
35 
36 enum {
37 	POWER_SUPPLY_STATUS_UNKNOWN = 0,
38 	POWER_SUPPLY_STATUS_CHARGING,
39 	POWER_SUPPLY_STATUS_DISCHARGING,
40 	POWER_SUPPLY_STATUS_NOT_CHARGING,
41 	POWER_SUPPLY_STATUS_FULL,
42 };
43 
44 /* What algorithm is the charger using? */
45 enum power_supply_charge_type {
46 	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
47 	POWER_SUPPLY_CHARGE_TYPE_NONE,
48 	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
49 	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
50 	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
51 	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
52 	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
53 	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
54 	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
55 };
56 
57 enum {
58 	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
59 	POWER_SUPPLY_HEALTH_GOOD,
60 	POWER_SUPPLY_HEALTH_OVERHEAT,
61 	POWER_SUPPLY_HEALTH_DEAD,
62 	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
63 	POWER_SUPPLY_HEALTH_UNDERVOLTAGE,
64 	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
65 	POWER_SUPPLY_HEALTH_COLD,
66 	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
67 	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
68 	POWER_SUPPLY_HEALTH_OVERCURRENT,
69 	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
70 	POWER_SUPPLY_HEALTH_WARM,
71 	POWER_SUPPLY_HEALTH_COOL,
72 	POWER_SUPPLY_HEALTH_HOT,
73 	POWER_SUPPLY_HEALTH_NO_BATTERY,
74 	POWER_SUPPLY_HEALTH_BLOWN_FUSE,
75 	POWER_SUPPLY_HEALTH_CELL_IMBALANCE,
76 };
77 
78 enum {
79 	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
80 	POWER_SUPPLY_TECHNOLOGY_NiMH,
81 	POWER_SUPPLY_TECHNOLOGY_LION,
82 	POWER_SUPPLY_TECHNOLOGY_LIPO,
83 	POWER_SUPPLY_TECHNOLOGY_LiFe,
84 	POWER_SUPPLY_TECHNOLOGY_NiCd,
85 	POWER_SUPPLY_TECHNOLOGY_LiMn,
86 };
87 
88 enum {
89 	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
90 	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
91 	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
92 	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
93 	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
94 	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
95 };
96 
97 enum {
98 	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
99 	POWER_SUPPLY_SCOPE_SYSTEM,
100 	POWER_SUPPLY_SCOPE_DEVICE,
101 };
102 
103 enum power_supply_property {
104 	/* Properties of type `int' */
105 	POWER_SUPPLY_PROP_STATUS = 0,
106 	POWER_SUPPLY_PROP_CHARGE_TYPE,
107 	POWER_SUPPLY_PROP_CHARGE_TYPES,
108 	POWER_SUPPLY_PROP_HEALTH,
109 	POWER_SUPPLY_PROP_PRESENT,
110 	POWER_SUPPLY_PROP_ONLINE,
111 	POWER_SUPPLY_PROP_AUTHENTIC,
112 	POWER_SUPPLY_PROP_TECHNOLOGY,
113 	POWER_SUPPLY_PROP_CYCLE_COUNT,
114 	POWER_SUPPLY_PROP_VOLTAGE_MAX,
115 	POWER_SUPPLY_PROP_VOLTAGE_MIN,
116 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
117 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
118 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
119 	POWER_SUPPLY_PROP_VOLTAGE_AVG,
120 	POWER_SUPPLY_PROP_VOLTAGE_OCV,
121 	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
122 	POWER_SUPPLY_PROP_CURRENT_MAX,
123 	POWER_SUPPLY_PROP_CURRENT_NOW,
124 	POWER_SUPPLY_PROP_CURRENT_AVG,
125 	POWER_SUPPLY_PROP_CURRENT_BOOT,
126 	POWER_SUPPLY_PROP_POWER_NOW,
127 	POWER_SUPPLY_PROP_POWER_AVG,
128 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
129 	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
130 	POWER_SUPPLY_PROP_CHARGE_FULL,
131 	POWER_SUPPLY_PROP_CHARGE_EMPTY,
132 	POWER_SUPPLY_PROP_CHARGE_NOW,
133 	POWER_SUPPLY_PROP_CHARGE_AVG,
134 	POWER_SUPPLY_PROP_CHARGE_COUNTER,
135 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
136 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
137 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
138 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
139 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
140 	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
141 	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
142 	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
143 	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
144 	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
145 	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
146 	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
147 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
148 	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
149 	POWER_SUPPLY_PROP_ENERGY_FULL,
150 	POWER_SUPPLY_PROP_ENERGY_EMPTY,
151 	POWER_SUPPLY_PROP_ENERGY_NOW,
152 	POWER_SUPPLY_PROP_ENERGY_AVG,
153 	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
154 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
155 	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
156 	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
157 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
158 	POWER_SUPPLY_PROP_TEMP,
159 	POWER_SUPPLY_PROP_TEMP_MAX,
160 	POWER_SUPPLY_PROP_TEMP_MIN,
161 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
162 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
163 	POWER_SUPPLY_PROP_TEMP_AMBIENT,
164 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
165 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
166 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
167 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
168 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
169 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
170 	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
171 	POWER_SUPPLY_PROP_USB_TYPE,
172 	POWER_SUPPLY_PROP_SCOPE,
173 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
174 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
175 	POWER_SUPPLY_PROP_CALIBRATE,
176 	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
177 	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
178 	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
179 	POWER_SUPPLY_PROP_INTERNAL_RESISTANCE,
180 	POWER_SUPPLY_PROP_STATE_OF_HEALTH,
181 	/* Properties of type `const char *' */
182 	POWER_SUPPLY_PROP_MODEL_NAME,
183 	POWER_SUPPLY_PROP_MANUFACTURER,
184 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
185 };
186 
187 enum power_supply_type {
188 	POWER_SUPPLY_TYPE_UNKNOWN = 0,
189 	POWER_SUPPLY_TYPE_BATTERY,
190 	POWER_SUPPLY_TYPE_UPS,
191 	POWER_SUPPLY_TYPE_MAINS,
192 	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
193 	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
194 	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
195 	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
196 	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
197 	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
198 	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
199 	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
200 	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
201 };
202 
203 enum power_supply_usb_type {
204 	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
205 	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
206 	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
207 	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
208 	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
209 	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
210 	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
211 	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
212 	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
213 	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
214 };
215 
216 enum power_supply_charge_behaviour {
217 	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
218 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
219 	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE_AWAKE,
220 	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
221 };
222 
223 enum power_supply_notifier_events {
224 	PSY_EVENT_PROP_CHANGED,
225 };
226 
227 union power_supply_propval {
228 	int intval;
229 	const char *strval;
230 };
231 
232 struct device_node;
233 struct power_supply;
234 
235 /* Run-time specific power supply configuration */
236 struct power_supply_config {
237 	struct fwnode_handle *fwnode;
238 
239 	/* Driver private data */
240 	void *drv_data;
241 
242 	/* Device specific sysfs attributes */
243 	const struct attribute_group **attr_grp;
244 
245 	char **supplied_to;
246 	size_t num_supplicants;
247 
248 	bool no_wakeup_source;
249 };
250 
251 /* Description of power supply */
252 struct power_supply_desc {
253 	const char *name;
254 	enum power_supply_type type;
255 	u8 charge_behaviours;
256 	u32 charge_types;
257 	u32 usb_types;
258 	const enum power_supply_property *properties;
259 	size_t num_properties;
260 
261 	/*
262 	 * Functions for drivers implementing power supply class.
263 	 * These shouldn't be called directly by other drivers for accessing
264 	 * this power supply. Instead use power_supply_*() functions (for
265 	 * example power_supply_get_property()).
266 	 */
267 	int (*get_property)(struct power_supply *psy,
268 			    enum power_supply_property psp,
269 			    union power_supply_propval *val);
270 	int (*set_property)(struct power_supply *psy,
271 			    enum power_supply_property psp,
272 			    const union power_supply_propval *val);
273 	/*
274 	 * property_is_writeable() will be called during registration
275 	 * of power supply. If this happens during device probe then it must
276 	 * not access internal data of device (because probe did not end).
277 	 */
278 	int (*property_is_writeable)(struct power_supply *psy,
279 				     enum power_supply_property psp);
280 	void (*external_power_changed)(struct power_supply *psy);
281 
282 	/*
283 	 * Set if thermal zone should not be created for this power supply.
284 	 * For example for virtual supplies forwarding calls to actual
285 	 * sensors or other supplies.
286 	 */
287 	bool no_thermal;
288 	/* For APM emulation, think legacy userspace. */
289 	int use_for_apm;
290 };
291 
292 struct power_supply_ext {
293 	const char *const name;
294 	u8 charge_behaviours;
295 	u32 charge_types;
296 	const enum power_supply_property *properties;
297 	size_t num_properties;
298 
299 	int (*get_property)(struct power_supply *psy,
300 			    const struct power_supply_ext *ext,
301 			    void *data,
302 			    enum power_supply_property psp,
303 			    union power_supply_propval *val);
304 	int (*set_property)(struct power_supply *psy,
305 			    const struct power_supply_ext *ext,
306 			    void *data,
307 			    enum power_supply_property psp,
308 			    const union power_supply_propval *val);
309 	int (*property_is_writeable)(struct power_supply *psy,
310 				     const struct power_supply_ext *ext,
311 				     void *data,
312 				     enum power_supply_property psp);
313 };
314 
315 struct power_supply {
316 	const struct power_supply_desc *desc;
317 
318 	char **supplied_to;
319 	size_t num_supplicants;
320 
321 	char **supplied_from;
322 	size_t num_supplies;
323 
324 	/* Driver private data */
325 	void *drv_data;
326 
327 	/* private */
328 	struct device dev;
329 	struct work_struct changed_work;
330 	struct delayed_work deferred_register_work;
331 	spinlock_t changed_lock;
332 	bool changed;
333 	bool update_groups;
334 	bool initialized;
335 	bool removing;
336 	atomic_t use_cnt;
337 	struct power_supply_battery_info *battery_info;
338 	struct rw_semaphore extensions_sem; /* protects "extensions" */
339 	struct list_head extensions;
340 #ifdef CONFIG_THERMAL
341 	struct thermal_zone_device *tzd;
342 	struct thermal_cooling_device *tcd;
343 #endif
344 
345 #ifdef CONFIG_LEDS_TRIGGERS
346 	struct led_trigger *trig;
347 	struct led_trigger *charging_trig;
348 	struct led_trigger *full_trig;
349 	struct led_trigger *charging_blink_full_solid_trig;
350 	struct led_trigger *charging_orange_full_green_trig;
351 #endif
352 };
353 
354 #define dev_to_psy(__dev)	container_of_const(__dev, struct power_supply, dev)
355 
356 /*
357  * This is recommended structure to specify static power supply parameters.
358  * Generic one, parametrizable for different power supplies. Power supply
359  * class itself does not use it, but that's what implementing most platform
360  * drivers, should try reuse for consistency.
361  */
362 
363 struct power_supply_info {
364 	const char *name;
365 	int technology;
366 	int voltage_max_design;
367 	int voltage_min_design;
368 	int charge_full_design;
369 	int charge_empty_design;
370 	int energy_full_design;
371 	int energy_empty_design;
372 	int use_for_apm;
373 };
374 
375 struct power_supply_battery_ocv_table {
376 	int ocv;	/* microVolts */
377 	int capacity;	/* percent */
378 };
379 
380 struct power_supply_resistance_temp_table {
381 	int temp;	/* celsius */
382 	int resistance;	/* internal resistance percent */
383 };
384 
385 struct power_supply_vbat_ri_table {
386 	int vbat_uv;	/* Battery voltage in microvolt */
387 	int ri_uohm;	/* Internal resistance in microohm */
388 };
389 
390 /**
391  * struct power_supply_maintenance_charge_table - setting for maintenace charging
392  * @charge_current_max_ua: maintenance charging current that is used to keep
393  *   the charge of the battery full as current is consumed after full charging.
394  *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
395  *   reach this voltage the maintenance charging current is turned off. It is
396  *   turned back on if we fall below this voltage.
397  * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
398  *   lower than the constant_charge_voltage_max_uv. We can apply this settings
399  *   charge_current_max_ua until we get back up to this voltage.
400  * @safety_timer_minutes: maintenance charging safety timer, with an expiry
401  *   time in minutes. We will only use maintenance charging in this setting
402  *   for a certain amount of time, then we will first move to the next
403  *   maintenance charge current and voltage pair in respective array and wait
404  *   for the next safety timer timeout, or, if we reached the last maintencance
405  *   charging setting, disable charging until we reach
406  *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
407  *   These timers should be chosen to align with the typical discharge curve
408  *   for the battery.
409  *
410  * Ordinary CC/CV charging will stop charging when the charge current goes
411  * below charge_term_current_ua, and then restart it (if the device is still
412  * plugged into the charger) at charge_restart_voltage_uv. This happens in most
413  * consumer products because the power usage while connected to a charger is
414  * not zero, and devices are not manufactured to draw power directly from the
415  * charger: instead they will at all times dissipate the battery a little, like
416  * the power used in standby mode. This will over time give a charge graph
417  * such as this:
418  *
419  * Energy
420  *  ^      ...        ...      ...      ...      ...      ...      ...
421  *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
422  *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
423  *  |.          ..        ..       ..       ..       ..       ..
424  *  +-------------------------------------------------------------------> t
425  *
426  * Practically this means that the Li-ions are wandering back and forth in the
427  * battery and this causes degeneration of the battery anode and cathode.
428  * To prolong the life of the battery, maintenance charging is applied after
429  * reaching charge_term_current_ua to hold up the charge in the battery while
430  * consuming power, thus lowering the wear on the battery:
431  *
432  * Energy
433  *  ^      .......................................
434  *  |    .                                        ......................
435  *  |  ..
436  *  |.
437  *  +-------------------------------------------------------------------> t
438  *
439  * Maintenance charging uses the voltages from this table: a table of settings
440  * is traversed using a slightly lower current and voltage than what is used for
441  * CC/CV charging. The maintenance charging will for safety reasons not go on
442  * indefinately: we lower the current and voltage with successive maintenance
443  * settings, then disable charging completely after we reach the last one,
444  * and after that we do not restart charging until we reach
445  * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
446  * ordinary CC/CV charging from there.
447  *
448  * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
449  * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
450  * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
451  * After this the charge cycle is restarted waiting for
452  * charge_restart_voltage_uv.
453  *
454  * For most mobile electronics this type of maintenance charging is enough for
455  * the user to disconnect the device and make use of it before both maintenance
456  * charging cycles are complete, if the current and voltage has been chosen
457  * appropriately. These need to be determined from battery discharge curves
458  * and expected standby current.
459  *
460  * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
461  * charging, ordinary CC/CV charging is restarted. This can happen if the
462  * device is e.g. actively used during charging, so more current is drawn than
463  * the expected stand-by current. Also overvoltage protection will be applied
464  * as usual.
465  */
466 struct power_supply_maintenance_charge_table {
467 	int charge_current_max_ua;
468 	int charge_voltage_max_uv;
469 	int charge_safety_timer_minutes;
470 };
471 
472 #define POWER_SUPPLY_OCV_TEMP_MAX 20
473 
474 /**
475  * struct power_supply_battery_info - information about batteries
476  * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
477  * @energy_full_design_uwh: energy content when fully charged in microwatt
478  *   hours
479  * @charge_full_design_uah: charge content when fully charged in microampere
480  *   hours
481  * @voltage_min_design_uv: minimum voltage across the poles when the battery
482  *   is at minimum voltage level in microvolts. If the voltage drops below this
483  *   level the battery will need precharging when using CC/CV charging.
484  * @voltage_max_design_uv: voltage across the poles when the battery is fully
485  *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
486  *   printed on the label of the battery.
487  * @tricklecharge_current_ua: the tricklecharge current used when trickle
488  *   charging the battery in microamperes. This is the charging phase when the
489  *   battery is completely empty and we need to carefully trickle in some
490  *   charge until we reach the precharging voltage.
491  * @precharge_current_ua: current to use in the precharge phase in microamperes,
492  *   the precharge rate is limited by limiting the current to this value.
493  * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
494  *   microvolts. When we pass this voltage we will nominally switch over to the
495  *   CC (constant current) charging phase defined by constant_charge_current_ua
496  *   and constant_charge_voltage_max_uv.
497  * @charge_term_current_ua: when the current in the CV (constant voltage)
498  *   charging phase drops below this value in microamperes the charging will
499  *   terminate completely and not restart until the voltage over the battery
500  *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
501  * @charge_restart_voltage_uv: when the battery has been fully charged by
502  *   CC/CV charging and charging has been disabled, and the voltage subsequently
503  *   drops below this value in microvolts, the charging will be restarted
504  *   (typically using CV charging).
505  * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
506  *   voltage_max_design_uv and we reach this voltage level, all charging must
507  *   stop and emergency procedures take place, such as shutting down the system
508  *   in some cases.
509  * @constant_charge_current_max_ua: current in microamperes to use in the CC
510  *   (constant current) charging phase. The charging rate is limited
511  *   by this current. This is the main charging phase and as the current is
512  *   constant into the battery the voltage slowly ascends to
513  *   constant_charge_voltage_max_uv.
514  * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
515  *   the CC (constant current) charging phase and the beginning of the CV
516  *   (constant voltage) charging phase.
517  * @maintenance_charge: an array of maintenance charging settings to be used
518  *   after the main CC/CV charging phase is complete.
519  * @maintenance_charge_size: the number of maintenance charging settings in
520  *   maintenance_charge.
521  * @alert_low_temp_charge_current_ua: The charging current to use if the battery
522  *   enters low alert temperature, i.e. if the internal temperature is between
523  *   temp_alert_min and temp_min. No matter the charging phase, this
524  *   and alert_high_temp_charge_voltage_uv will be applied.
525  * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
526  *   but for the charging voltage.
527  * @alert_high_temp_charge_current_ua: The charging current to use if the
528  *   battery enters high alert temperature, i.e. if the internal temperature is
529  *   between temp_alert_max and temp_max. No matter the charging phase, this
530  *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
531  *   the charging current as an evasive manouver.
532  * @alert_high_temp_charge_voltage_uv: Same as
533  *   alert_high_temp_charge_current_ua, but for the charging voltage.
534  * @factory_internal_resistance_uohm: the internal resistance of the battery
535  *   at fabrication time, expressed in microohms. This resistance will vary
536  *   depending on the lifetime and charge of the battery, so this is just a
537  *   nominal ballpark figure. This internal resistance is given for the state
538  *   when the battery is discharging.
539  * @factory_internal_resistance_charging_uohm: the internal resistance of the
540  *   battery at fabrication time while charging, expressed in microohms.
541  *   The charging process will affect the internal resistance of the battery
542  *   so this value provides a better resistance under these circumstances.
543  *   This resistance will vary depending on the lifetime and charge of the
544  *   battery, so this is just a nominal ballpark figure.
545  * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
546  *   temperature indices. This is an array of temperatures in degrees Celsius
547  *   indicating which capacity table to use for a certain temperature, since
548  *   the capacity for reasons of chemistry will be different at different
549  *   temperatures. Determining capacity is a multivariate problem and the
550  *   temperature is the first variable we determine.
551  * @temp_ambient_alert_min: the battery will go outside of operating conditions
552  *   when the ambient temperature goes below this temperature in degrees
553  *   Celsius.
554  * @temp_ambient_alert_max: the battery will go outside of operating conditions
555  *   when the ambient temperature goes above this temperature in degrees
556  *   Celsius.
557  * @temp_alert_min: the battery should issue an alert if the internal
558  *   temperature goes below this temperature in degrees Celsius.
559  * @temp_alert_max: the battery should issue an alert if the internal
560  *   temperature goes above this temperature in degrees Celsius.
561  * @temp_min: the battery will go outside of operating conditions when
562  *   the internal temperature goes below this temperature in degrees Celsius.
563  *   Normally this means the system should shut down.
564  * @temp_max: the battery will go outside of operating conditions when
565  *   the internal temperature goes above this temperature in degrees Celsius.
566  *   Normally this means the system should shut down.
567  * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
568  *   ocv_table and a size for each entry in ocv_table_size. These arrays
569  *   determine the capacity in percent in relation to the voltage in microvolts
570  *   at the indexed temperature.
571  * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
572  *   each entry in the array of capacity arrays in ocv_table.
573  * @resist_table: this is a table that correlates a battery temperature to the
574  *   expected internal resistance at this temperature. The resistance is given
575  *   as a percentage of factory_internal_resistance_uohm. Knowing the
576  *   resistance of the battery is usually necessary for calculating the open
577  *   circuit voltage (OCV) that is then used with the ocv_table to calculate
578  *   the capacity of the battery. The resist_table must be ordered descending
579  *   by temperature: highest temperature with lowest resistance first, lowest
580  *   temperature with highest resistance last.
581  * @resist_table_size: the number of items in the resist_table.
582  * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
583  *   to internal resistance (Ri). The resistance is given in microohm for the
584  *   corresponding voltage in microvolts. The internal resistance is used to
585  *   determine the open circuit voltage so that we can determine the capacity
586  *   of the battery. These voltages to resistance tables apply when the battery
587  *   is discharging. The table must be ordered descending by voltage: highest
588  *   voltage first.
589  * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
590  *   table.
591  * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
592  *   when the battery is charging. Being under charge changes the battery's
593  *   internal resistance characteristics so a separate table is needed.*
594  *   The table must be ordered descending by voltage: highest voltage first.
595  * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
596  *   table.
597  * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
598  *   in ohms for this battery, if an identification resistor is mounted
599  *   between a third battery terminal and ground. This scheme is used by a lot
600  *   of mobile device batteries.
601  * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
602  *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
603  *   tolerance is 10% we will detect a proper battery if the BTI resistance
604  *   is between 6300 and 7700 Ohm.
605  *
606  * This is the recommended struct to manage static battery parameters,
607  * populated by power_supply_get_battery_info(). Most platform drivers should
608  * use these for consistency.
609  *
610  * Its field names must correspond to elements in enum power_supply_property.
611  * The default field value is -EINVAL or NULL for pointers.
612  *
613  * CC/CV CHARGING:
614  *
615  * The charging parameters here assume a CC/CV charging scheme. This method
616  * is most common with Lithium Ion batteries (other methods are possible) and
617  * looks as follows:
618  *
619  * ^ Battery voltage
620  * |                                               --- overvoltage_limit_uv
621  * |
622  * |                    ...................................................
623  * |                 .. constant_charge_voltage_max_uv
624  * |              ..
625  * |             .
626  * |            .
627  * |           .
628  * |          .
629  * |         .
630  * |     .. precharge_voltage_max_uv
631  * |  ..
632  * |. (trickle charging)
633  * +------------------------------------------------------------------> time
634  *
635  * ^ Current into the battery
636  * |
637  * |      ............. constant_charge_current_max_ua
638  * |      .            .
639  * |      .             .
640  * |      .              .
641  * |      .               .
642  * |      .                ..
643  * |      .                  ....
644  * |      .                       .....
645  * |    ... precharge_current_ua       .......  charge_term_current_ua
646  * |    .                                    .
647  * |    .                                    .
648  * |.... tricklecharge_current_ua            .
649  * |                                         .
650  * +-----------------------------------------------------------------> time
651  *
652  * These diagrams are synchronized on time and the voltage and current
653  * follow each other.
654  *
655  * With CC/CV charging commence over time like this for an empty battery:
656  *
657  * 1. When the battery is completely empty it may need to be charged with
658  *    an especially small current so that electrons just "trickle in",
659  *    this is the tricklecharge_current_ua.
660  *
661  * 2. Next a small initial pre-charge current (precharge_current_ua)
662  *    is applied if the voltage is below precharge_voltage_max_uv until we
663  *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
664  *    to as "trickle charging" but the use in the Linux kernel is different
665  *    see below!
666  *
667  * 3. Then the main charging current is applied, which is called the constant
668  *    current (CC) phase. A current regulator is set up to allow
669  *    constant_charge_current_max_ua of current to flow into the battery.
670  *    The chemical reaction in the battery will make the voltage go up as
671  *    charge goes into the battery. This current is applied until we reach
672  *    the constant_charge_voltage_max_uv voltage.
673  *
674  * 4. At this voltage we switch over to the constant voltage (CV) phase. This
675  *    means we allow current to go into the battery, but we keep the voltage
676  *    fixed. This current will continue to charge the battery while keeping
677  *    the voltage the same. A chemical reaction in the battery goes on
678  *    storing energy without affecting the voltage. Over time the current
679  *    will slowly drop and when we reach charge_term_current_ua we will
680  *    end the constant voltage phase.
681  *
682  * After this the battery is fully charged, and if we do not support maintenance
683  * charging, the charging will not restart until power dissipation makes the
684  * voltage fall so that we reach charge_restart_voltage_uv and at this point
685  * we restart charging at the appropriate phase, usually this will be inside
686  * the CV phase.
687  *
688  * If we support maintenance charging the voltage is however kept high after
689  * the CV phase with a very low current. This is meant to let the same charge
690  * go in for usage while the charger is still connected, mainly for
691  * dissipation for the power consuming entity while connected to the
692  * charger.
693  *
694  * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
695  * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
696  * explosions.
697  *
698  * DETERMINING BATTERY CAPACITY:
699  *
700  * Several members of the struct deal with trying to determine the remaining
701  * capacity in the battery, usually as a percentage of charge. In practice
702  * many chargers uses a so-called fuel gauge or coloumb counter that measure
703  * how much charge goes into the battery and how much goes out (+/- leak
704  * consumption). This does not help if we do not know how much capacity the
705  * battery has to begin with, such as when it is first used or was taken out
706  * and charged in a separate charger. Therefore many capacity algorithms use
707  * the open circuit voltage with a look-up table to determine the rough
708  * capacity of the battery. The open circuit voltage can be conceptualized
709  * with an ideal voltage source (V) in series with an internal resistance (Ri)
710  * like this:
711  *
712  *      +-------> IBAT >----------------+
713  *      |                    ^          |
714  *     [ ] Ri                |          |
715  *      |                    | VBAT     |
716  *      o <----------        |          |
717  *     +|           ^        |         [ ] Rload
718  *    .---.         |        |          |
719  *    | V |         | OCV    |          |
720  *    '---'         |        |          |
721  *      |           |        |          |
722  *  GND +-------------------------------+
723  *
724  * If we disconnect the load (here simplified as a fixed resistance Rload)
725  * and measure VBAT with a infinite impedance voltage meter we will get
726  * VBAT = OCV and this assumption is sometimes made even under load, assuming
727  * Rload is insignificant. However this will be of dubious quality because the
728  * load is rarely that small and Ri is strongly nonlinear depending on
729  * temperature and how much capacity is left in the battery due to the
730  * chemistry involved.
731  *
732  * In many practical applications we cannot just disconnect the battery from
733  * the load, so instead we often try to measure the instantaneous IBAT (the
734  * current out from the battery), estimate the Ri and thus calculate the
735  * voltage drop over Ri and compensate like this:
736  *
737  *   OCV = VBAT - (IBAT * Ri)
738  *
739  * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
740  * (by interpolation) the Ri from the VBAT under load. These curves are highly
741  * nonlinear and may need many datapoints but can be found in datasheets for
742  * some batteries. This gives the compensated open circuit voltage (OCV) for
743  * the battery even under load. Using this method will also compensate for
744  * temperature changes in the environment: this will also make the internal
745  * resistance change, and it will affect the VBAT under load, so correlating
746  * VBAT to Ri takes both remaining capacity and temperature into consideration.
747  *
748  * Alternatively a manufacturer can specify how the capacity of the battery
749  * is dependent on the battery temperature which is the main factor affecting
750  * Ri. As we know all checmical reactions are faster when it is warm and slower
751  * when it is cold. You can put in 1500mAh and only get 800mAh out before the
752  * voltage drops too low for example. This effect is also highly nonlinear and
753  * the purpose of the table resist_table: this will take a temperature and
754  * tell us how big percentage of Ri the specified temperature correlates to.
755  * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
756  * Celsius.
757  *
758  * The power supply class itself doesn't use this struct as of now.
759  */
760 
761 struct power_supply_battery_info {
762 	unsigned int technology;
763 	int energy_full_design_uwh;
764 	int charge_full_design_uah;
765 	int voltage_min_design_uv;
766 	int voltage_max_design_uv;
767 	int tricklecharge_current_ua;
768 	int precharge_current_ua;
769 	int precharge_voltage_max_uv;
770 	int charge_term_current_ua;
771 	int charge_restart_voltage_uv;
772 	int overvoltage_limit_uv;
773 	int constant_charge_current_max_ua;
774 	int constant_charge_voltage_max_uv;
775 	const struct power_supply_maintenance_charge_table *maintenance_charge;
776 	int maintenance_charge_size;
777 	int alert_low_temp_charge_current_ua;
778 	int alert_low_temp_charge_voltage_uv;
779 	int alert_high_temp_charge_current_ua;
780 	int alert_high_temp_charge_voltage_uv;
781 	int factory_internal_resistance_uohm;
782 	int factory_internal_resistance_charging_uohm;
783 	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
784 	int temp_ambient_alert_min;
785 	int temp_ambient_alert_max;
786 	int temp_alert_min;
787 	int temp_alert_max;
788 	int temp_min;
789 	int temp_max;
790 	const struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
791 	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
792 	const struct power_supply_resistance_temp_table *resist_table;
793 	int resist_table_size;
794 	const struct power_supply_vbat_ri_table *vbat2ri_discharging;
795 	int vbat2ri_discharging_size;
796 	const struct power_supply_vbat_ri_table *vbat2ri_charging;
797 	int vbat2ri_charging_size;
798 	int bti_resistance_ohm;
799 	int bti_resistance_tolerance;
800 };
801 
802 extern int power_supply_reg_notifier(struct notifier_block *nb);
803 extern void power_supply_unreg_notifier(struct notifier_block *nb);
804 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
805 extern struct power_supply *power_supply_get_by_name(const char *name);
806 extern void power_supply_put(struct power_supply *psy);
807 #else
power_supply_put(struct power_supply * psy)808 static inline void power_supply_put(struct power_supply *psy) {}
power_supply_get_by_name(const char * name)809 static inline struct power_supply *power_supply_get_by_name(const char *name)
810 { return NULL; }
811 #endif
812 extern struct power_supply *power_supply_get_by_reference(struct fwnode_handle *fwnode,
813 							  const char *property);
814 extern struct power_supply *devm_power_supply_get_by_reference(
815 				    struct device *dev, const char *property);
816 
817 extern const enum power_supply_property power_supply_battery_info_properties[];
818 extern const size_t power_supply_battery_info_properties_size;
819 extern int power_supply_get_battery_info(struct power_supply *psy,
820 					 struct power_supply_battery_info **info_out);
821 extern void power_supply_put_battery_info(struct power_supply *psy,
822 					  struct power_supply_battery_info *info);
823 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
824 					       enum power_supply_property psp);
825 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
826 					      enum power_supply_property psp,
827 					      union power_supply_propval *val);
828 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table *table,
829 				       int table_len, int ocv);
830 extern const struct power_supply_battery_ocv_table *
831 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
832 				int temp, int *table_len);
833 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
834 					int ocv, int temp);
835 extern int
836 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table *table,
837 				int table_len, int temp);
838 extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
839 				int vbat_uv, bool charging);
840 extern const struct power_supply_maintenance_charge_table *
841 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
842 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
843 					      int resistance);
844 extern void power_supply_changed(struct power_supply *psy);
845 extern int power_supply_am_i_supplied(struct power_supply *psy);
846 int power_supply_get_property_from_supplier(struct power_supply *psy,
847 					    enum power_supply_property psp,
848 					    union power_supply_propval *val);
849 
850 static inline bool
power_supply_supports_maintenance_charging(struct power_supply_battery_info * info)851 power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
852 {
853 	const struct power_supply_maintenance_charge_table *mt;
854 
855 	mt = power_supply_get_maintenance_charging_setting(info, 0);
856 
857 	return (mt != NULL);
858 }
859 
860 static inline bool
power_supply_supports_vbat2ri(struct power_supply_battery_info * info)861 power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
862 {
863 	return ((info->vbat2ri_discharging != NULL) &&
864 		info->vbat2ri_discharging_size > 0);
865 }
866 
867 static inline bool
power_supply_supports_temp2ri(struct power_supply_battery_info * info)868 power_supply_supports_temp2ri(struct power_supply_battery_info *info)
869 {
870 	return ((info->resist_table != NULL) &&
871 		info->resist_table_size > 0);
872 }
873 
874 #ifdef CONFIG_POWER_SUPPLY
875 extern int power_supply_is_system_supplied(void);
876 #else
power_supply_is_system_supplied(void)877 static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
878 #endif
879 
880 extern int power_supply_get_property(struct power_supply *psy,
881 			    enum power_supply_property psp,
882 			    union power_supply_propval *val);
883 int power_supply_get_property_direct(struct power_supply *psy, enum power_supply_property psp,
884 				     union power_supply_propval *val);
885 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
886 extern int power_supply_set_property(struct power_supply *psy,
887 			    enum power_supply_property psp,
888 			    const union power_supply_propval *val);
889 int power_supply_set_property_direct(struct power_supply *psy, enum power_supply_property psp,
890 				     const union power_supply_propval *val);
891 #else
power_supply_set_property(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)892 static inline int power_supply_set_property(struct power_supply *psy,
893 			    enum power_supply_property psp,
894 			    const union power_supply_propval *val)
895 { return 0; }
power_supply_set_property_direct(struct power_supply * psy,enum power_supply_property psp,const union power_supply_propval * val)896 static inline int power_supply_set_property_direct(struct power_supply *psy,
897 						   enum power_supply_property psp,
898 						   const union power_supply_propval *val)
899 { return 0; }
900 #endif
901 extern void power_supply_external_power_changed(struct power_supply *psy);
902 
903 extern struct power_supply *__must_check
904 power_supply_register(struct device *parent,
905 				 const struct power_supply_desc *desc,
906 				 const struct power_supply_config *cfg);
907 extern struct power_supply *__must_check
908 devm_power_supply_register(struct device *parent,
909 				 const struct power_supply_desc *desc,
910 				 const struct power_supply_config *cfg);
911 extern void power_supply_unregister(struct power_supply *psy);
912 extern int power_supply_powers(struct power_supply *psy, struct device *dev);
913 
914 extern int __must_check
915 power_supply_register_extension(struct power_supply *psy,
916 				const struct power_supply_ext *ext,
917 				struct device *dev,
918 				void *data);
919 extern void power_supply_unregister_extension(struct power_supply *psy,
920 					      const struct power_supply_ext *ext);
921 
922 #define to_power_supply(device) container_of(device, struct power_supply, dev)
923 
924 extern void *power_supply_get_drvdata(struct power_supply *psy);
925 extern int power_supply_for_each_psy(void *data, int (*fn)(struct power_supply *psy, void *data));
926 
power_supply_is_amp_property(enum power_supply_property psp)927 static inline bool power_supply_is_amp_property(enum power_supply_property psp)
928 {
929 	switch (psp) {
930 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
931 	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
932 	case POWER_SUPPLY_PROP_CHARGE_FULL:
933 	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
934 	case POWER_SUPPLY_PROP_CHARGE_NOW:
935 	case POWER_SUPPLY_PROP_CHARGE_AVG:
936 	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
937 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
938 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
939 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
940 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
941 	case POWER_SUPPLY_PROP_CURRENT_MAX:
942 	case POWER_SUPPLY_PROP_CURRENT_NOW:
943 	case POWER_SUPPLY_PROP_CURRENT_AVG:
944 	case POWER_SUPPLY_PROP_CURRENT_BOOT:
945 		return true;
946 	default:
947 		break;
948 	}
949 
950 	return false;
951 }
952 
power_supply_is_watt_property(enum power_supply_property psp)953 static inline bool power_supply_is_watt_property(enum power_supply_property psp)
954 {
955 	switch (psp) {
956 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
957 	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
958 	case POWER_SUPPLY_PROP_ENERGY_FULL:
959 	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
960 	case POWER_SUPPLY_PROP_ENERGY_NOW:
961 	case POWER_SUPPLY_PROP_ENERGY_AVG:
962 	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
963 	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
964 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
965 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
966 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
967 	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
968 	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
969 	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
970 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
971 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
972 	case POWER_SUPPLY_PROP_POWER_NOW:
973 		return true;
974 	default:
975 		break;
976 	}
977 
978 	return false;
979 }
980 
981 #ifdef CONFIG_SYSFS
982 ssize_t power_supply_charge_behaviour_show(struct device *dev,
983 					   unsigned int available_behaviours,
984 					   enum power_supply_charge_behaviour behaviour,
985 					   char *buf);
986 
987 int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
988 ssize_t power_supply_charge_types_show(struct device *dev,
989 				       unsigned int available_types,
990 				       enum power_supply_charge_type current_type,
991 				       char *buf);
992 int power_supply_charge_types_parse(unsigned int available_types, const char *buf);
993 #else
994 static inline
power_supply_charge_behaviour_show(struct device * dev,unsigned int available_behaviours,enum power_supply_charge_behaviour behaviour,char * buf)995 ssize_t power_supply_charge_behaviour_show(struct device *dev,
996 					   unsigned int available_behaviours,
997 					   enum power_supply_charge_behaviour behaviour,
998 					   char *buf)
999 {
1000 	return -EOPNOTSUPP;
1001 }
1002 
power_supply_charge_behaviour_parse(unsigned int available_behaviours,const char * buf)1003 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
1004 						      const char *buf)
1005 {
1006 	return -EOPNOTSUPP;
1007 }
1008 
1009 static inline
power_supply_charge_types_show(struct device * dev,unsigned int available_types,enum power_supply_charge_type current_type,char * buf)1010 ssize_t power_supply_charge_types_show(struct device *dev,
1011 				       unsigned int available_types,
1012 				       enum power_supply_charge_type current_type,
1013 				       char *buf)
1014 {
1015 	return -EOPNOTSUPP;
1016 }
1017 
power_supply_charge_types_parse(unsigned int available_types,const char * buf)1018 static inline int power_supply_charge_types_parse(unsigned int available_types, const char *buf)
1019 {
1020 	return -EOPNOTSUPP;
1021 }
1022 #endif
1023 
1024 #endif /* __LINUX_POWER_SUPPLY_H__ */
1025