1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Macros for manipulating and testing page->flags
4 */
5
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16
17 /*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
34 * control pages, vmcoreinfo)
35 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
36 * not marked PG_reserved (as they might be in use by somebody else who does
37 * not respect the caching strategy).
38 * - MCA pages on ia64
39 * - Pages holding CPU notes for POWER Firmware Assisted Dump
40 * - Device memory (e.g. PMEM, DAX, HMM)
41 * Some PG_reserved pages will be excluded from the hibernation image.
42 * PG_reserved does in general not hinder anybody from dumping or swapping
43 * and is no longer required for remap_pfn_range(). ioremap might require it.
44 * Consequently, PG_reserved for a page mapped into user space can indicate
45 * the zero page, the vDSO, MMIO pages or device memory.
46 *
47 * The PG_private bitflag is set on pagecache pages if they contain filesystem
48 * specific data (which is normally at page->private). It can be used by
49 * private allocations for its own usage.
50 *
51 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
52 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
53 * is set before writeback starts and cleared when it finishes.
54 *
55 * PG_locked also pins a page in pagecache, and blocks truncation of the file
56 * while it is held.
57 *
58 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
59 * to become unlocked.
60 *
61 * PG_swapbacked is set when a page uses swap as a backing storage. This are
62 * usually PageAnon or shmem pages but please note that even anonymous pages
63 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
64 * a result of MADV_FREE).
65 *
66 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
67 * file-backed pagecache (see mm/vmscan.c).
68 *
69 * PG_arch_1 is an architecture specific page state bit. The generic code
70 * guarantees that this bit is cleared for a page when it first is entered into
71 * the page cache.
72 *
73 * PG_hwpoison indicates that a page got corrupted in hardware and contains
74 * data with incorrect ECC bits that triggered a machine check. Accessing is
75 * not safe since it may cause another machine check. Don't touch!
76 */
77
78 /*
79 * Don't use the pageflags directly. Use the PageFoo macros.
80 *
81 * The page flags field is split into two parts, the main flags area
82 * which extends from the low bits upwards, and the fields area which
83 * extends from the high bits downwards.
84 *
85 * | FIELD | ... | FLAGS |
86 * N-1 ^ 0
87 * (NR_PAGEFLAGS)
88 *
89 * The fields area is reserved for fields mapping zone, node (for NUMA) and
90 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
91 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
92 */
93 enum pageflags {
94 PG_locked, /* Page is locked. Don't touch. */
95 PG_writeback, /* Page is under writeback */
96 PG_referenced,
97 PG_uptodate,
98 PG_dirty,
99 PG_lru,
100 PG_head, /* Must be in bit 6 */
101 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
102 PG_active,
103 PG_workingset,
104 PG_owner_priv_1, /* Owner use. If pagecache, fs may use */
105 PG_owner_2, /* Owner use. If pagecache, fs may use */
106 PG_arch_1,
107 PG_reserved,
108 PG_private, /* If pagecache, has fs-private data */
109 PG_private_2, /* If pagecache, has fs aux data */
110 PG_reclaim, /* To be reclaimed asap */
111 PG_swapbacked, /* Page is backed by RAM/swap */
112 PG_unevictable, /* Page is "unevictable" */
113 PG_dropbehind, /* drop pages on IO completion */
114 #ifdef CONFIG_MMU
115 PG_mlocked, /* Page is vma mlocked */
116 #endif
117 #ifdef CONFIG_MEMORY_FAILURE
118 PG_hwpoison, /* hardware poisoned page. Don't touch */
119 #endif
120 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
121 PG_young,
122 PG_idle,
123 #endif
124 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
125 PG_arch_2,
126 #endif
127 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
128 PG_arch_3,
129 #endif
130 __NR_PAGEFLAGS,
131
132 PG_readahead = PG_reclaim,
133
134 /* Anonymous memory (and shmem) */
135 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
136 /* Some filesystems */
137 PG_checked = PG_owner_priv_1,
138
139 /*
140 * Depending on the way an anonymous folio can be mapped into a page
141 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
142 * THP), PG_anon_exclusive may be set only for the head page or for
143 * tail pages of an anonymous folio. For now, we only expect it to be
144 * set on tail pages for PTE-mapped THP.
145 */
146 PG_anon_exclusive = PG_owner_2,
147
148 /*
149 * Set if all buffer heads in the folio are mapped.
150 * Filesystems which do not use BHs can use it for their own purpose.
151 */
152 PG_mappedtodisk = PG_owner_2,
153
154 /* Two page bits are conscripted by FS-Cache to maintain local caching
155 * state. These bits are set on pages belonging to the netfs's inodes
156 * when those inodes are being locally cached.
157 */
158 PG_fscache = PG_private_2, /* page backed by cache */
159
160 /* XEN */
161 /* Pinned in Xen as a read-only pagetable page. */
162 PG_pinned = PG_owner_priv_1,
163 /* Pinned as part of domain save (see xen_mm_pin_all()). */
164 PG_savepinned = PG_dirty,
165 /* Has a grant mapping of another (foreign) domain's page. */
166 PG_foreign = PG_owner_priv_1,
167 /* Remapped by swiotlb-xen. */
168 PG_xen_remapped = PG_owner_priv_1,
169
170 #ifdef CONFIG_MIGRATION
171 /* movable_ops page that is isolated for migration */
172 PG_movable_ops_isolated = PG_reclaim,
173 /* this is a movable_ops page (for selected typed pages only) */
174 PG_movable_ops = PG_uptodate,
175 #endif
176
177 /* Only valid for buddy pages. Used to track pages that are reported */
178 PG_reported = PG_uptodate,
179
180 #ifdef CONFIG_MEMORY_HOTPLUG
181 /* For self-hosted memmap pages */
182 PG_vmemmap_self_hosted = PG_owner_priv_1,
183 #endif
184
185 /*
186 * Flags only valid for compound pages. Stored in first tail page's
187 * flags word. Cannot use the first 8 flags or any flag marked as
188 * PF_ANY.
189 */
190
191 /* At least one page in this folio has the hwpoison flag set */
192 PG_has_hwpoisoned = PG_active,
193 PG_large_rmappable = PG_workingset, /* anon or file-backed */
194 PG_partially_mapped = PG_reclaim, /* was identified to be partially mapped */
195 };
196
197 #define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1)
198
199 #ifndef __GENERATING_BOUNDS_H
200
201 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
202 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
203
204 /*
205 * Return the real head page struct iff the @page is a fake head page, otherwise
206 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
207 */
page_fixed_fake_head(const struct page * page)208 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
209 {
210 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
211 return page;
212
213 /*
214 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
215 * struct page. The alignment check aims to avoid access the fields (
216 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
217 * cold cacheline in some cases.
218 */
219 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
220 test_bit(PG_head, &page->flags.f)) {
221 /*
222 * We can safely access the field of the @page[1] with PG_head
223 * because the @page is a compound page composed with at least
224 * two contiguous pages.
225 */
226 unsigned long head = READ_ONCE(page[1].compound_head);
227
228 if (likely(head & 1))
229 return (const struct page *)(head - 1);
230 }
231 return page;
232 }
233
page_count_writable(const struct page * page,int u)234 static __always_inline bool page_count_writable(const struct page *page, int u)
235 {
236 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
237 return true;
238
239 /*
240 * The refcount check is ordered before the fake-head check to prevent
241 * the following race:
242 * CPU 1 (HVO) CPU 2 (speculative PFN walker)
243 *
244 * page_ref_freeze()
245 * synchronize_rcu()
246 * rcu_read_lock()
247 * page_is_fake_head() is false
248 * vmemmap_remap_pte()
249 * XXX: struct page[] becomes r/o
250 *
251 * page_ref_unfreeze()
252 * page_ref_count() is not zero
253 *
254 * atomic_add_unless(&page->_refcount)
255 * XXX: try to modify r/o struct page[]
256 *
257 * The refcount check also prevents modification attempts to other (r/o)
258 * tail pages that are not fake heads.
259 */
260 if (atomic_read_acquire(&page->_refcount) == u)
261 return false;
262
263 return page_fixed_fake_head(page) == page;
264 }
265 #else
page_fixed_fake_head(const struct page * page)266 static inline const struct page *page_fixed_fake_head(const struct page *page)
267 {
268 return page;
269 }
270
page_count_writable(const struct page * page,int u)271 static inline bool page_count_writable(const struct page *page, int u)
272 {
273 return true;
274 }
275 #endif
276
page_is_fake_head(const struct page * page)277 static __always_inline int page_is_fake_head(const struct page *page)
278 {
279 return page_fixed_fake_head(page) != page;
280 }
281
_compound_head(const struct page * page)282 static __always_inline unsigned long _compound_head(const struct page *page)
283 {
284 unsigned long head = READ_ONCE(page->compound_head);
285
286 if (unlikely(head & 1))
287 return head - 1;
288 return (unsigned long)page_fixed_fake_head(page);
289 }
290
291 #define compound_head(page) ((typeof(page))_compound_head(page))
292
293 /**
294 * page_folio - Converts from page to folio.
295 * @p: The page.
296 *
297 * Every page is part of a folio. This function cannot be called on a
298 * NULL pointer.
299 *
300 * Context: No reference, nor lock is required on @page. If the caller
301 * does not hold a reference, this call may race with a folio split, so
302 * it should re-check the folio still contains this page after gaining
303 * a reference on the folio.
304 * Return: The folio which contains this page.
305 */
306 #define page_folio(p) (_Generic((p), \
307 const struct page *: (const struct folio *)_compound_head(p), \
308 struct page *: (struct folio *)_compound_head(p)))
309
310 /**
311 * folio_page - Return a page from a folio.
312 * @folio: The folio.
313 * @n: The page number to return.
314 *
315 * @n is relative to the start of the folio. This function does not
316 * check that the page number lies within @folio; the caller is presumed
317 * to have a reference to the page.
318 */
319 #define folio_page(folio, n) (&(folio)->page + (n))
320
PageTail(const struct page * page)321 static __always_inline int PageTail(const struct page *page)
322 {
323 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
324 }
325
PageCompound(const struct page * page)326 static __always_inline int PageCompound(const struct page *page)
327 {
328 return test_bit(PG_head, &page->flags.f) ||
329 READ_ONCE(page->compound_head) & 1;
330 }
331
332 #define PAGE_POISON_PATTERN -1l
PagePoisoned(const struct page * page)333 static inline int PagePoisoned(const struct page *page)
334 {
335 return READ_ONCE(page->flags.f) == PAGE_POISON_PATTERN;
336 }
337
338 #ifdef CONFIG_DEBUG_VM
339 void page_init_poison(struct page *page, size_t size);
340 #else
page_init_poison(struct page * page,size_t size)341 static inline void page_init_poison(struct page *page, size_t size)
342 {
343 }
344 #endif
345
const_folio_flags(const struct folio * folio,unsigned n)346 static const unsigned long *const_folio_flags(const struct folio *folio,
347 unsigned n)
348 {
349 const struct page *page = &folio->page;
350
351 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
352 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags.f), page);
353 return &page[n].flags.f;
354 }
355
folio_flags(struct folio * folio,unsigned n)356 static unsigned long *folio_flags(struct folio *folio, unsigned n)
357 {
358 struct page *page = &folio->page;
359
360 VM_BUG_ON_PGFLAGS(page->compound_head & 1, page);
361 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags.f), page);
362 return &page[n].flags.f;
363 }
364
365 /*
366 * Page flags policies wrt compound pages
367 *
368 * PF_POISONED_CHECK
369 * check if this struct page poisoned/uninitialized
370 *
371 * PF_ANY:
372 * the page flag is relevant for small, head and tail pages.
373 *
374 * PF_HEAD:
375 * for compound page all operations related to the page flag applied to
376 * head page.
377 *
378 * PF_NO_TAIL:
379 * modifications of the page flag must be done on small or head pages,
380 * checks can be done on tail pages too.
381 *
382 * PF_NO_COMPOUND:
383 * the page flag is not relevant for compound pages.
384 *
385 * PF_SECOND:
386 * the page flag is stored in the first tail page.
387 */
388 #define PF_POISONED_CHECK(page) ({ \
389 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
390 page; })
391 #define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
392 #define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
393 #define PF_NO_TAIL(page, enforce) ({ \
394 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
395 PF_POISONED_CHECK(compound_head(page)); })
396 #define PF_NO_COMPOUND(page, enforce) ({ \
397 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
398 PF_POISONED_CHECK(page); })
399 #define PF_SECOND(page, enforce) ({ \
400 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
401 PF_POISONED_CHECK(&page[1]); })
402
403 /* Which page is the flag stored in */
404 #define FOLIO_PF_ANY 0
405 #define FOLIO_PF_HEAD 0
406 #define FOLIO_PF_NO_TAIL 0
407 #define FOLIO_PF_NO_COMPOUND 0
408 #define FOLIO_PF_SECOND 1
409
410 #define FOLIO_HEAD_PAGE 0
411 #define FOLIO_SECOND_PAGE 1
412
413 /*
414 * Macros to create function definitions for page flags
415 */
416 #define FOLIO_TEST_FLAG(name, page) \
417 static __always_inline bool folio_test_##name(const struct folio *folio) \
418 { return test_bit(PG_##name, const_folio_flags(folio, page)); }
419
420 #define FOLIO_SET_FLAG(name, page) \
421 static __always_inline void folio_set_##name(struct folio *folio) \
422 { set_bit(PG_##name, folio_flags(folio, page)); }
423
424 #define FOLIO_CLEAR_FLAG(name, page) \
425 static __always_inline void folio_clear_##name(struct folio *folio) \
426 { clear_bit(PG_##name, folio_flags(folio, page)); }
427
428 #define __FOLIO_SET_FLAG(name, page) \
429 static __always_inline void __folio_set_##name(struct folio *folio) \
430 { __set_bit(PG_##name, folio_flags(folio, page)); }
431
432 #define __FOLIO_CLEAR_FLAG(name, page) \
433 static __always_inline void __folio_clear_##name(struct folio *folio) \
434 { __clear_bit(PG_##name, folio_flags(folio, page)); }
435
436 #define FOLIO_TEST_SET_FLAG(name, page) \
437 static __always_inline bool folio_test_set_##name(struct folio *folio) \
438 { return test_and_set_bit(PG_##name, folio_flags(folio, page)); }
439
440 #define FOLIO_TEST_CLEAR_FLAG(name, page) \
441 static __always_inline bool folio_test_clear_##name(struct folio *folio) \
442 { return test_and_clear_bit(PG_##name, folio_flags(folio, page)); }
443
444 #define FOLIO_FLAG(name, page) \
445 FOLIO_TEST_FLAG(name, page) \
446 FOLIO_SET_FLAG(name, page) \
447 FOLIO_CLEAR_FLAG(name, page)
448
449 #define TESTPAGEFLAG(uname, lname, policy) \
450 FOLIO_TEST_FLAG(lname, FOLIO_##policy) \
451 static __always_inline int Page##uname(const struct page *page) \
452 { return test_bit(PG_##lname, &policy(page, 0)->flags.f); }
453
454 #define SETPAGEFLAG(uname, lname, policy) \
455 FOLIO_SET_FLAG(lname, FOLIO_##policy) \
456 static __always_inline void SetPage##uname(struct page *page) \
457 { set_bit(PG_##lname, &policy(page, 1)->flags.f); }
458
459 #define CLEARPAGEFLAG(uname, lname, policy) \
460 FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \
461 static __always_inline void ClearPage##uname(struct page *page) \
462 { clear_bit(PG_##lname, &policy(page, 1)->flags.f); }
463
464 #define __SETPAGEFLAG(uname, lname, policy) \
465 __FOLIO_SET_FLAG(lname, FOLIO_##policy) \
466 static __always_inline void __SetPage##uname(struct page *page) \
467 { __set_bit(PG_##lname, &policy(page, 1)->flags.f); }
468
469 #define __CLEARPAGEFLAG(uname, lname, policy) \
470 __FOLIO_CLEAR_FLAG(lname, FOLIO_##policy) \
471 static __always_inline void __ClearPage##uname(struct page *page) \
472 { __clear_bit(PG_##lname, &policy(page, 1)->flags.f); }
473
474 #define TESTSETFLAG(uname, lname, policy) \
475 FOLIO_TEST_SET_FLAG(lname, FOLIO_##policy) \
476 static __always_inline int TestSetPage##uname(struct page *page) \
477 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags.f); }
478
479 #define TESTCLEARFLAG(uname, lname, policy) \
480 FOLIO_TEST_CLEAR_FLAG(lname, FOLIO_##policy) \
481 static __always_inline int TestClearPage##uname(struct page *page) \
482 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags.f); }
483
484 #define PAGEFLAG(uname, lname, policy) \
485 TESTPAGEFLAG(uname, lname, policy) \
486 SETPAGEFLAG(uname, lname, policy) \
487 CLEARPAGEFLAG(uname, lname, policy)
488
489 #define __PAGEFLAG(uname, lname, policy) \
490 TESTPAGEFLAG(uname, lname, policy) \
491 __SETPAGEFLAG(uname, lname, policy) \
492 __CLEARPAGEFLAG(uname, lname, policy)
493
494 #define TESTSCFLAG(uname, lname, policy) \
495 TESTSETFLAG(uname, lname, policy) \
496 TESTCLEARFLAG(uname, lname, policy)
497
498 #define FOLIO_TEST_FLAG_FALSE(name) \
499 static inline bool folio_test_##name(const struct folio *folio) \
500 { return false; }
501 #define FOLIO_SET_FLAG_NOOP(name) \
502 static inline void folio_set_##name(struct folio *folio) { }
503 #define FOLIO_CLEAR_FLAG_NOOP(name) \
504 static inline void folio_clear_##name(struct folio *folio) { }
505 #define __FOLIO_SET_FLAG_NOOP(name) \
506 static inline void __folio_set_##name(struct folio *folio) { }
507 #define __FOLIO_CLEAR_FLAG_NOOP(name) \
508 static inline void __folio_clear_##name(struct folio *folio) { }
509 #define FOLIO_TEST_SET_FLAG_FALSE(name) \
510 static inline bool folio_test_set_##name(struct folio *folio) \
511 { return false; }
512 #define FOLIO_TEST_CLEAR_FLAG_FALSE(name) \
513 static inline bool folio_test_clear_##name(struct folio *folio) \
514 { return false; }
515
516 #define FOLIO_FLAG_FALSE(name) \
517 FOLIO_TEST_FLAG_FALSE(name) \
518 FOLIO_SET_FLAG_NOOP(name) \
519 FOLIO_CLEAR_FLAG_NOOP(name)
520
521 #define TESTPAGEFLAG_FALSE(uname, lname) \
522 FOLIO_TEST_FLAG_FALSE(lname) \
523 static inline int Page##uname(const struct page *page) { return 0; }
524
525 #define SETPAGEFLAG_NOOP(uname, lname) \
526 FOLIO_SET_FLAG_NOOP(lname) \
527 static inline void SetPage##uname(struct page *page) { }
528
529 #define CLEARPAGEFLAG_NOOP(uname, lname) \
530 FOLIO_CLEAR_FLAG_NOOP(lname) \
531 static inline void ClearPage##uname(struct page *page) { }
532
533 #define __CLEARPAGEFLAG_NOOP(uname, lname) \
534 __FOLIO_CLEAR_FLAG_NOOP(lname) \
535 static inline void __ClearPage##uname(struct page *page) { }
536
537 #define TESTSETFLAG_FALSE(uname, lname) \
538 FOLIO_TEST_SET_FLAG_FALSE(lname) \
539 static inline int TestSetPage##uname(struct page *page) { return 0; }
540
541 #define TESTCLEARFLAG_FALSE(uname, lname) \
542 FOLIO_TEST_CLEAR_FLAG_FALSE(lname) \
543 static inline int TestClearPage##uname(struct page *page) { return 0; }
544
545 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \
546 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
547
548 #define TESTSCFLAG_FALSE(uname, lname) \
549 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
550
551 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
552 FOLIO_FLAG(waiters, FOLIO_HEAD_PAGE)
553 FOLIO_FLAG(referenced, FOLIO_HEAD_PAGE)
554 FOLIO_TEST_CLEAR_FLAG(referenced, FOLIO_HEAD_PAGE)
555 __FOLIO_SET_FLAG(referenced, FOLIO_HEAD_PAGE)
556 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
557 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
558 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
559 TESTCLEARFLAG(LRU, lru, PF_HEAD)
560 FOLIO_FLAG(active, FOLIO_HEAD_PAGE)
561 __FOLIO_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
562 FOLIO_TEST_CLEAR_FLAG(active, FOLIO_HEAD_PAGE)
563 PAGEFLAG(Workingset, workingset, PF_HEAD)
564 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
565 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
566
567 /* Xen */
568 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
569 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
570 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
571 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)572 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
573 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
574
575 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
576 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
577 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
578 FOLIO_FLAG(swapbacked, FOLIO_HEAD_PAGE)
579 __FOLIO_CLEAR_FLAG(swapbacked, FOLIO_HEAD_PAGE)
580 __FOLIO_SET_FLAG(swapbacked, FOLIO_HEAD_PAGE)
581
582 /*
583 * Private page markings that may be used by the filesystem that owns the page
584 * for its own purposes.
585 * - PG_private and PG_private_2 cause release_folio() and co to be invoked
586 */
587 PAGEFLAG(Private, private, PF_ANY)
588 FOLIO_FLAG(private_2, FOLIO_HEAD_PAGE)
589
590 /* owner_2 can be set on tail pages for anon memory */
591 FOLIO_FLAG(owner_2, FOLIO_HEAD_PAGE)
592
593 /*
594 * Only test-and-set exist for PG_writeback. The unconditional operators are
595 * risky: they bypass page accounting.
596 */
597 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
598 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
599 FOLIO_FLAG(mappedtodisk, FOLIO_HEAD_PAGE)
600
601 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
602 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
603 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
604 FOLIO_FLAG(readahead, FOLIO_HEAD_PAGE)
605 FOLIO_TEST_CLEAR_FLAG(readahead, FOLIO_HEAD_PAGE)
606
607 FOLIO_FLAG(dropbehind, FOLIO_HEAD_PAGE)
608 FOLIO_TEST_CLEAR_FLAG(dropbehind, FOLIO_HEAD_PAGE)
609 __FOLIO_SET_FLAG(dropbehind, FOLIO_HEAD_PAGE)
610
611 #ifdef CONFIG_HIGHMEM
612 /*
613 * Must use a macro here due to header dependency issues. page_zone() is not
614 * available at this point.
615 */
616 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
617 #define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f))
618 #else
619 PAGEFLAG_FALSE(HighMem, highmem)
620 #endif
621 #define PhysHighMem(__p) (PageHighMem(phys_to_page(__p)))
622
623 /* Does kmap_local_folio() only allow access to one page of the folio? */
624 #ifdef CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP
625 #define folio_test_partial_kmap(f) true
626 #else
627 #define folio_test_partial_kmap(f) folio_test_highmem(f)
628 #endif
629
630 #ifdef CONFIG_SWAP
631 static __always_inline bool folio_test_swapcache(const struct folio *folio)
632 {
633 return folio_test_swapbacked(folio) &&
634 test_bit(PG_swapcache, const_folio_flags(folio, 0));
635 }
636
FOLIO_SET_FLAG(swapcache,FOLIO_HEAD_PAGE)637 FOLIO_SET_FLAG(swapcache, FOLIO_HEAD_PAGE)
638 FOLIO_CLEAR_FLAG(swapcache, FOLIO_HEAD_PAGE)
639 #else
640 FOLIO_FLAG_FALSE(swapcache)
641 #endif
642
643 FOLIO_FLAG(unevictable, FOLIO_HEAD_PAGE)
644 __FOLIO_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
645 FOLIO_TEST_CLEAR_FLAG(unevictable, FOLIO_HEAD_PAGE)
646
647 #ifdef CONFIG_MMU
648 FOLIO_FLAG(mlocked, FOLIO_HEAD_PAGE)
649 __FOLIO_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
650 FOLIO_TEST_CLEAR_FLAG(mlocked, FOLIO_HEAD_PAGE)
651 FOLIO_TEST_SET_FLAG(mlocked, FOLIO_HEAD_PAGE)
652 #else
653 FOLIO_FLAG_FALSE(mlocked)
654 __FOLIO_CLEAR_FLAG_NOOP(mlocked)
655 FOLIO_TEST_CLEAR_FLAG_FALSE(mlocked)
656 FOLIO_TEST_SET_FLAG_FALSE(mlocked)
657 #endif
658
659 #ifdef CONFIG_MEMORY_FAILURE
660 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
661 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
662 #define __PG_HWPOISON (1UL << PG_hwpoison)
663 #else
664 PAGEFLAG_FALSE(HWPoison, hwpoison)
665 #define __PG_HWPOISON 0
666 #endif
667
668 #ifdef CONFIG_PAGE_IDLE_FLAG
669 #ifdef CONFIG_64BIT
670 FOLIO_TEST_FLAG(young, FOLIO_HEAD_PAGE)
671 FOLIO_SET_FLAG(young, FOLIO_HEAD_PAGE)
672 FOLIO_TEST_CLEAR_FLAG(young, FOLIO_HEAD_PAGE)
673 FOLIO_FLAG(idle, FOLIO_HEAD_PAGE)
674 #endif
675 /* See page_idle.h for !64BIT workaround */
676 #else /* !CONFIG_PAGE_IDLE_FLAG */
677 FOLIO_FLAG_FALSE(young)
678 FOLIO_TEST_CLEAR_FLAG_FALSE(young)
679 FOLIO_FLAG_FALSE(idle)
680 #endif
681
682 /*
683 * PageReported() is used to track reported free pages within the Buddy
684 * allocator. We can use the non-atomic version of the test and set
685 * operations as both should be shielded with the zone lock to prevent
686 * any possible races on the setting or clearing of the bit.
687 */
688 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
689
690 #ifdef CONFIG_MEMORY_HOTPLUG
691 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
692 #else
693 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
694 #endif
695
696 /*
697 * On an anonymous folio mapped into a user virtual memory area,
698 * folio->mapping points to its anon_vma, not to a struct address_space;
699 * with the FOLIO_MAPPING_ANON bit set to distinguish it. See rmap.h.
700 *
701 * On an anonymous folio in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
702 * the FOLIO_MAPPING_ANON_KSM bit may be set along with the FOLIO_MAPPING_ANON
703 * bit; and then folio->mapping points, not to an anon_vma, but to a private
704 * structure which KSM associates with that merged folio. See ksm.h.
705 *
706 * Please note that, confusingly, "folio_mapping" refers to the inode
707 * address_space which maps the folio from disk; whereas "folio_mapped"
708 * refers to user virtual address space into which the folio is mapped.
709 *
710 * For slab pages, since slab reuses the bits in struct page to store its
711 * internal states, the folio->mapping does not exist as such, nor do
712 * these flags below. So in order to avoid testing non-existent bits,
713 * please make sure that folio_test_slab(folio) actually evaluates to
714 * false before calling the following functions (e.g., folio_test_anon).
715 * See mm/slab.h.
716 */
717 #define FOLIO_MAPPING_ANON 0x1
718 #define FOLIO_MAPPING_ANON_KSM 0x2
719 #define FOLIO_MAPPING_KSM (FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM)
720 #define FOLIO_MAPPING_FLAGS (FOLIO_MAPPING_ANON | FOLIO_MAPPING_ANON_KSM)
721
722 static __always_inline bool folio_test_anon(const struct folio *folio)
723 {
724 return ((unsigned long)folio->mapping & FOLIO_MAPPING_ANON) != 0;
725 }
726
PageAnonNotKsm(const struct page * page)727 static __always_inline bool PageAnonNotKsm(const struct page *page)
728 {
729 unsigned long flags = (unsigned long)page_folio(page)->mapping;
730
731 return (flags & FOLIO_MAPPING_FLAGS) == FOLIO_MAPPING_ANON;
732 }
733
PageAnon(const struct page * page)734 static __always_inline bool PageAnon(const struct page *page)
735 {
736 return folio_test_anon(page_folio(page));
737 }
738 #ifdef CONFIG_KSM
739 /*
740 * A KSM page is one of those write-protected "shared pages" or "merged pages"
741 * which KSM maps into multiple mms, wherever identical anonymous page content
742 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
743 * anon_vma, but to that page's node of the stable tree.
744 */
folio_test_ksm(const struct folio * folio)745 static __always_inline bool folio_test_ksm(const struct folio *folio)
746 {
747 return ((unsigned long)folio->mapping & FOLIO_MAPPING_FLAGS) ==
748 FOLIO_MAPPING_KSM;
749 }
750 #else
751 FOLIO_TEST_FLAG_FALSE(ksm)
752 #endif
753
754 u64 stable_page_flags(const struct page *page);
755
756 /**
757 * folio_xor_flags_has_waiters - Change some folio flags.
758 * @folio: The folio.
759 * @mask: Bits set in this word will be changed.
760 *
761 * This must only be used for flags which are changed with the folio
762 * lock held. For example, it is unsafe to use for PG_dirty as that
763 * can be set without the folio lock held. It can also only be used
764 * on flags which are in the range 0-6 as some of the implementations
765 * only affect those bits.
766 *
767 * Return: Whether there are tasks waiting on the folio.
768 */
folio_xor_flags_has_waiters(struct folio * folio,unsigned long mask)769 static inline bool folio_xor_flags_has_waiters(struct folio *folio,
770 unsigned long mask)
771 {
772 return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
773 }
774
775 /**
776 * folio_test_uptodate - Is this folio up to date?
777 * @folio: The folio.
778 *
779 * The uptodate flag is set on a folio when every byte in the folio is
780 * at least as new as the corresponding bytes on storage. Anonymous
781 * and CoW folios are always uptodate. If the folio is not uptodate,
782 * some of the bytes in it may be; see the is_partially_uptodate()
783 * address_space operation.
784 */
folio_test_uptodate(const struct folio * folio)785 static inline bool folio_test_uptodate(const struct folio *folio)
786 {
787 bool ret = test_bit(PG_uptodate, const_folio_flags(folio, 0));
788 /*
789 * Must ensure that the data we read out of the folio is loaded
790 * _after_ we've loaded folio->flags to check the uptodate bit.
791 * We can skip the barrier if the folio is not uptodate, because
792 * we wouldn't be reading anything from it.
793 *
794 * See folio_mark_uptodate() for the other side of the story.
795 */
796 if (ret)
797 smp_rmb();
798
799 return ret;
800 }
801
PageUptodate(const struct page * page)802 static inline bool PageUptodate(const struct page *page)
803 {
804 return folio_test_uptodate(page_folio(page));
805 }
806
__folio_mark_uptodate(struct folio * folio)807 static __always_inline void __folio_mark_uptodate(struct folio *folio)
808 {
809 smp_wmb();
810 __set_bit(PG_uptodate, folio_flags(folio, 0));
811 }
812
folio_mark_uptodate(struct folio * folio)813 static __always_inline void folio_mark_uptodate(struct folio *folio)
814 {
815 /*
816 * Memory barrier must be issued before setting the PG_uptodate bit,
817 * so that all previous stores issued in order to bring the folio
818 * uptodate are actually visible before folio_test_uptodate becomes true.
819 */
820 smp_wmb();
821 set_bit(PG_uptodate, folio_flags(folio, 0));
822 }
823
__SetPageUptodate(struct page * page)824 static __always_inline void __SetPageUptodate(struct page *page)
825 {
826 __folio_mark_uptodate((struct folio *)page);
827 }
828
SetPageUptodate(struct page * page)829 static __always_inline void SetPageUptodate(struct page *page)
830 {
831 folio_mark_uptodate((struct folio *)page);
832 }
833
834 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
835
836 void __folio_start_writeback(struct folio *folio, bool keep_write);
837 void set_page_writeback(struct page *page);
838
839 #define folio_start_writeback(folio) \
840 __folio_start_writeback(folio, false)
841
folio_test_head(const struct folio * folio)842 static __always_inline bool folio_test_head(const struct folio *folio)
843 {
844 return test_bit(PG_head, const_folio_flags(folio, FOLIO_PF_ANY));
845 }
846
PageHead(const struct page * page)847 static __always_inline int PageHead(const struct page *page)
848 {
849 PF_POISONED_CHECK(page);
850 return test_bit(PG_head, &page->flags.f) && !page_is_fake_head(page);
851 }
852
__SETPAGEFLAG(Head,head,PF_ANY)853 __SETPAGEFLAG(Head, head, PF_ANY)
854 __CLEARPAGEFLAG(Head, head, PF_ANY)
855 CLEARPAGEFLAG(Head, head, PF_ANY)
856
857 /**
858 * folio_test_large() - Does this folio contain more than one page?
859 * @folio: The folio to test.
860 *
861 * Return: True if the folio is larger than one page.
862 */
863 static inline bool folio_test_large(const struct folio *folio)
864 {
865 return folio_test_head(folio);
866 }
867
set_compound_head(struct page * page,struct page * head)868 static __always_inline void set_compound_head(struct page *page, struct page *head)
869 {
870 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
871 }
872
clear_compound_head(struct page * page)873 static __always_inline void clear_compound_head(struct page *page)
874 {
875 WRITE_ONCE(page->compound_head, 0);
876 }
877
878 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)879 static inline void ClearPageCompound(struct page *page)
880 {
881 BUG_ON(!PageHead(page));
882 ClearPageHead(page);
883 }
FOLIO_FLAG(large_rmappable,FOLIO_SECOND_PAGE)884 FOLIO_FLAG(large_rmappable, FOLIO_SECOND_PAGE)
885 FOLIO_FLAG(partially_mapped, FOLIO_SECOND_PAGE)
886 #else
887 FOLIO_FLAG_FALSE(large_rmappable)
888 FOLIO_FLAG_FALSE(partially_mapped)
889 #endif
890
891 #define PG_head_mask ((1UL << PG_head))
892
893 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
894 /*
895 * PageTransCompound returns true for both transparent huge pages
896 * and hugetlbfs pages, so it should only be called when it's known
897 * that hugetlbfs pages aren't involved.
898 */
899 static inline int PageTransCompound(const struct page *page)
900 {
901 return PageCompound(page);
902 }
903 #else
904 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
905 #endif
906
907 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
908 /*
909 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
910 * compound page.
911 *
912 * This flag is set by hwpoison handler. Cleared by THP split or free page.
913 */
914 FOLIO_FLAG(has_hwpoisoned, FOLIO_SECOND_PAGE)
915 #else
916 FOLIO_FLAG_FALSE(has_hwpoisoned)
917 #endif
918
919 /*
920 * For pages that do not use mapcount, page_type may be used.
921 * The low 24 bits of pagetype may be used for your own purposes, as long
922 * as you are careful to not affect the top 8 bits. The low bits of
923 * pagetype will be overwritten when you clear the page_type from the page.
924 */
925 enum pagetype {
926 /* 0x00-0x7f are positive numbers, ie mapcount */
927 /* Reserve 0x80-0xef for mapcount overflow. */
928 PGTY_buddy = 0xf0,
929 PGTY_offline = 0xf1,
930 PGTY_table = 0xf2,
931 PGTY_guard = 0xf3,
932 PGTY_hugetlb = 0xf4,
933 PGTY_slab = 0xf5,
934 PGTY_zsmalloc = 0xf6,
935 PGTY_unaccepted = 0xf7,
936 PGTY_large_kmalloc = 0xf8,
937
938 PGTY_mapcount_underflow = 0xff
939 };
940
page_type_has_type(int page_type)941 static inline bool page_type_has_type(int page_type)
942 {
943 return page_type < (PGTY_mapcount_underflow << 24);
944 }
945
946 /* This takes a mapcount which is one more than page->_mapcount */
page_mapcount_is_type(unsigned int mapcount)947 static inline bool page_mapcount_is_type(unsigned int mapcount)
948 {
949 return page_type_has_type(mapcount - 1);
950 }
951
page_has_type(const struct page * page)952 static inline bool page_has_type(const struct page *page)
953 {
954 return page_type_has_type(data_race(page->page_type));
955 }
956
957 #define FOLIO_TYPE_OPS(lname, fname) \
958 static __always_inline bool folio_test_##fname(const struct folio *folio) \
959 { \
960 return data_race(folio->page.page_type >> 24) == PGTY_##lname; \
961 } \
962 static __always_inline void __folio_set_##fname(struct folio *folio) \
963 { \
964 if (folio_test_##fname(folio)) \
965 return; \
966 VM_BUG_ON_FOLIO(data_race(folio->page.page_type) != UINT_MAX, \
967 folio); \
968 folio->page.page_type = (unsigned int)PGTY_##lname << 24; \
969 } \
970 static __always_inline void __folio_clear_##fname(struct folio *folio) \
971 { \
972 if (folio->page.page_type == UINT_MAX) \
973 return; \
974 VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio); \
975 folio->page.page_type = UINT_MAX; \
976 }
977
978 #define PAGE_TYPE_OPS(uname, lname, fname) \
979 FOLIO_TYPE_OPS(lname, fname) \
980 static __always_inline int Page##uname(const struct page *page) \
981 { \
982 return data_race(page->page_type >> 24) == PGTY_##lname; \
983 } \
984 static __always_inline void __SetPage##uname(struct page *page) \
985 { \
986 if (Page##uname(page)) \
987 return; \
988 VM_BUG_ON_PAGE(data_race(page->page_type) != UINT_MAX, page); \
989 page->page_type = (unsigned int)PGTY_##lname << 24; \
990 } \
991 static __always_inline void __ClearPage##uname(struct page *page) \
992 { \
993 if (page->page_type == UINT_MAX) \
994 return; \
995 VM_BUG_ON_PAGE(!Page##uname(page), page); \
996 page->page_type = UINT_MAX; \
997 }
998
999 /*
1000 * PageBuddy() indicates that the page is free and in the buddy system
1001 * (see mm/page_alloc.c).
1002 */
1003 PAGE_TYPE_OPS(Buddy, buddy, buddy)
1004
1005 /*
1006 * PageOffline() indicates that the page is logically offline although the
1007 * containing section is online. (e.g. inflated in a balloon driver or
1008 * not onlined when onlining the section).
1009 * The content of these pages is effectively stale. Such pages should not
1010 * be touched (read/write/dump/save) except by their owner.
1011 *
1012 * When a memory block gets onlined, all pages are initialized with a
1013 * refcount of 1 and PageOffline(). generic_online_page() will
1014 * take care of clearing PageOffline().
1015 *
1016 * If a driver wants to allow to offline unmovable PageOffline() pages without
1017 * putting them back to the buddy, it can do so via the memory notifier by
1018 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1019 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1020 * pages (now with a reference count of zero) are treated like free (unmanaged)
1021 * pages, allowing the containing memory block to get offlined. A driver that
1022 * relies on this feature is aware that re-onlining the memory block will
1023 * require not giving them to the buddy via generic_online_page().
1024 *
1025 * Memory offlining code will not adjust the managed page count for any
1026 * PageOffline() pages, treating them like they were never exposed to the
1027 * buddy using generic_online_page().
1028 *
1029 * There are drivers that mark a page PageOffline() and expect there won't be
1030 * any further access to page content. PFN walkers that read content of random
1031 * pages should check PageOffline() and synchronize with such drivers using
1032 * page_offline_freeze()/page_offline_thaw().
1033 */
1034 PAGE_TYPE_OPS(Offline, offline, offline)
1035
1036 extern void page_offline_freeze(void);
1037 extern void page_offline_thaw(void);
1038 extern void page_offline_begin(void);
1039 extern void page_offline_end(void);
1040
1041 /*
1042 * Marks pages in use as page tables.
1043 */
PAGE_TYPE_OPS(Table,table,pgtable)1044 PAGE_TYPE_OPS(Table, table, pgtable)
1045
1046 /*
1047 * Marks guardpages used with debug_pagealloc.
1048 */
1049 PAGE_TYPE_OPS(Guard, guard, guard)
1050
1051 FOLIO_TYPE_OPS(slab, slab)
1052
1053 /**
1054 * PageSlab - Determine if the page belongs to the slab allocator
1055 * @page: The page to test.
1056 *
1057 * Context: Any context.
1058 * Return: True for slab pages, false for any other kind of page.
1059 */
1060 static inline bool PageSlab(const struct page *page)
1061 {
1062 return folio_test_slab(page_folio(page));
1063 }
1064
1065 #ifdef CONFIG_HUGETLB_PAGE
FOLIO_TYPE_OPS(hugetlb,hugetlb)1066 FOLIO_TYPE_OPS(hugetlb, hugetlb)
1067 #else
1068 FOLIO_TEST_FLAG_FALSE(hugetlb)
1069 #endif
1070
1071 PAGE_TYPE_OPS(Zsmalloc, zsmalloc, zsmalloc)
1072
1073 /*
1074 * Mark pages that has to be accepted before touched for the first time.
1075 *
1076 * Serialized with zone lock.
1077 */
1078 PAGE_TYPE_OPS(Unaccepted, unaccepted, unaccepted)
1079 FOLIO_TYPE_OPS(large_kmalloc, large_kmalloc)
1080
1081 /**
1082 * PageHuge - Determine if the page belongs to hugetlbfs
1083 * @page: The page to test.
1084 *
1085 * Context: Any context.
1086 * Return: True for hugetlbfs pages, false for anon pages or pages
1087 * belonging to other filesystems.
1088 */
1089 static inline bool PageHuge(const struct page *page)
1090 {
1091 return folio_test_hugetlb(page_folio(page));
1092 }
1093
1094 /*
1095 * Check if a page is currently marked HWPoisoned. Note that this check is
1096 * best effort only and inherently racy: there is no way to synchronize with
1097 * failing hardware.
1098 */
is_page_hwpoison(const struct page * page)1099 static inline bool is_page_hwpoison(const struct page *page)
1100 {
1101 const struct folio *folio;
1102
1103 if (PageHWPoison(page))
1104 return true;
1105 folio = page_folio(page);
1106 return folio_test_hugetlb(folio) && PageHWPoison(&folio->page);
1107 }
1108
folio_contain_hwpoisoned_page(struct folio * folio)1109 static inline bool folio_contain_hwpoisoned_page(struct folio *folio)
1110 {
1111 return folio_test_hwpoison(folio) ||
1112 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio));
1113 }
1114
1115 bool is_free_buddy_page(const struct page *page);
1116
1117 #ifdef CONFIG_MIGRATION
1118 /*
1119 * This page is migratable through movable_ops (for selected typed pages
1120 * only).
1121 *
1122 * Page migration of such pages might fail, for example, if the page is
1123 * already isolated by somebody else, or if the page is about to get freed.
1124 *
1125 * While a subsystem might set selected typed pages that support page migration
1126 * as being movable through movable_ops, it must never clear this flag.
1127 *
1128 * This flag is only cleared when the page is freed back to the buddy.
1129 *
1130 * Only selected page types support this flag (see page_movable_ops()) and
1131 * the flag might be used in other context for other pages. Always use
1132 * page_has_movable_ops() instead.
1133 */
1134 TESTPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL);
1135 SETPAGEFLAG(MovableOps, movable_ops, PF_NO_TAIL);
1136 /*
1137 * A movable_ops page has this flag set while it is isolated for migration.
1138 * This flag primarily protects against concurrent migration attempts.
1139 *
1140 * Once migration ended (success or failure), the flag is cleared. The
1141 * flag is managed by the migration core.
1142 */
1143 PAGEFLAG(MovableOpsIsolated, movable_ops_isolated, PF_NO_TAIL);
1144 #else /* !CONFIG_MIGRATION */
1145 TESTPAGEFLAG_FALSE(MovableOps, movable_ops);
1146 SETPAGEFLAG_NOOP(MovableOps, movable_ops);
1147 PAGEFLAG_FALSE(MovableOpsIsolated, movable_ops_isolated);
1148 #endif /* CONFIG_MIGRATION */
1149
1150 /**
1151 * page_has_movable_ops - test for a movable_ops page
1152 * @page: The page to test.
1153 *
1154 * Test whether this is a movable_ops page. Such pages will stay that
1155 * way until freed.
1156 *
1157 * Returns true if this is a movable_ops page, otherwise false.
1158 */
page_has_movable_ops(const struct page * page)1159 static inline bool page_has_movable_ops(const struct page *page)
1160 {
1161 return PageMovableOps(page) &&
1162 (PageOffline(page) || PageZsmalloc(page));
1163 }
1164
PageAnonExclusive(const struct page * page)1165 static __always_inline int PageAnonExclusive(const struct page *page)
1166 {
1167 VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1168 /*
1169 * HugeTLB stores this information on the head page; THP keeps it per
1170 * page
1171 */
1172 if (PageHuge(page))
1173 page = compound_head(page);
1174 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f);
1175 }
1176
SetPageAnonExclusive(struct page * page)1177 static __always_inline void SetPageAnonExclusive(struct page *page)
1178 {
1179 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1180 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1181 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f);
1182 }
1183
ClearPageAnonExclusive(struct page * page)1184 static __always_inline void ClearPageAnonExclusive(struct page *page)
1185 {
1186 VM_BUG_ON_PGFLAGS(!PageAnonNotKsm(page), page);
1187 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1188 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f);
1189 }
1190
__ClearPageAnonExclusive(struct page * page)1191 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1192 {
1193 VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1194 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1195 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags.f);
1196 }
1197
1198 #ifdef CONFIG_MMU
1199 #define __PG_MLOCKED (1UL << PG_mlocked)
1200 #else
1201 #define __PG_MLOCKED 0
1202 #endif
1203
1204 /*
1205 * Flags checked when a page is freed. Pages being freed should not have
1206 * these flags set. If they are, there is a problem.
1207 */
1208 #define PAGE_FLAGS_CHECK_AT_FREE \
1209 (1UL << PG_lru | 1UL << PG_locked | \
1210 1UL << PG_private | 1UL << PG_private_2 | \
1211 1UL << PG_writeback | 1UL << PG_reserved | \
1212 1UL << PG_active | \
1213 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK)
1214
1215 /*
1216 * Flags checked when a page is prepped for return by the page allocator.
1217 * Pages being prepped should not have these flags set. If they are set,
1218 * there has been a kernel bug or struct page corruption.
1219 *
1220 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1221 * alloc-free cycle to prevent from reusing the page.
1222 */
1223 #define PAGE_FLAGS_CHECK_AT_PREP \
1224 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1225
1226 /*
1227 * Flags stored in the second page of a compound page. They may overlap
1228 * the CHECK_AT_FREE flags above, so need to be cleared.
1229 */
1230 #define PAGE_FLAGS_SECOND \
1231 (0xffUL /* order */ | 1UL << PG_has_hwpoisoned | \
1232 1UL << PG_large_rmappable | 1UL << PG_partially_mapped)
1233
1234 #define PAGE_FLAGS_PRIVATE \
1235 (1UL << PG_private | 1UL << PG_private_2)
1236 /**
1237 * folio_has_private - Determine if folio has private stuff
1238 * @folio: The folio to be checked
1239 *
1240 * Determine if a folio has private stuff, indicating that release routines
1241 * should be invoked upon it.
1242 */
folio_has_private(const struct folio * folio)1243 static inline int folio_has_private(const struct folio *folio)
1244 {
1245 return !!(folio->flags.f & PAGE_FLAGS_PRIVATE);
1246 }
1247
1248 #undef PF_ANY
1249 #undef PF_HEAD
1250 #undef PF_NO_TAIL
1251 #undef PF_NO_COMPOUND
1252 #undef PF_SECOND
1253 #endif /* !__GENERATING_BOUNDS_H */
1254
1255 #endif /* PAGE_FLAGS_H */
1256