xref: /qemu/target/avr/cpu.h (revision 7cef6d686309e2792186504ae17cf4f3eb57ef68)
1 /*
2  * QEMU AVR CPU
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #ifndef QEMU_AVR_CPU_H
22 #define QEMU_AVR_CPU_H
23 
24 #include "cpu-qom.h"
25 #include "exec/cpu-common.h"
26 #include "exec/cpu-defs.h"
27 #include "exec/cpu-interrupt.h"
28 #include "system/memory.h"
29 
30 #ifdef CONFIG_USER_ONLY
31 #error "AVR 8-bit does not support user mode"
32 #endif
33 
34 #define CPU_RESOLVING_TYPE TYPE_AVR_CPU
35 
36 /*
37  * AVR has two memory spaces, data & code.
38  * e.g. both have 0 address
39  * ST/LD instructions access data space
40  * LPM/SPM and instruction fetching access code memory space
41  */
42 #define MMU_CODE_IDX 0
43 #define MMU_DATA_IDX 1
44 
45 #define EXCP_RESET 1
46 #define EXCP_INT(n) (EXCP_RESET + (n) + 1)
47 
48 /* Number of CPU registers */
49 #define NUMBER_OF_CPU_REGISTERS 32
50 
51 /* CPU registers mapped into i/o ports 0x38-0x3f. */
52 #define REG_38_RAMPD  0
53 #define REG_38_RAMPX  1
54 #define REG_38_RAMPY  2
55 #define REG_38_RAMPZ  3
56 #define REG_38_EIDN   4
57 #define REG_38_SPL    5
58 #define REG_38_SPH    6
59 #define REG_38_SREG   7
60 
61 /*
62  * Offsets of AVR memory regions in host memory space.
63  *
64  * This is needed because the AVR has separate code and data address
65  * spaces that both have start from zero but have to go somewhere in
66  * host memory.
67  *
68  * It's also useful to know where some things are, like the IO registers.
69  */
70 /* Flash program memory */
71 #define OFFSET_CODE 0x00000000
72 /* CPU registers, IO registers, and SRAM */
73 #define OFFSET_DATA 0x00800000
74 /*
75  * IO registers, including status register, stack pointer, and memory
76  * mapped peripherals, mapped just after CPU registers
77  */
78 #define OFFSET_IO_REGISTERS (OFFSET_DATA + NUMBER_OF_CPU_REGISTERS)
79 
80 typedef enum AVRFeature {
81     AVR_FEATURE_SRAM,
82 
83     AVR_FEATURE_1_BYTE_PC,
84     AVR_FEATURE_2_BYTE_PC,
85     AVR_FEATURE_3_BYTE_PC,
86 
87     AVR_FEATURE_1_BYTE_SP,
88     AVR_FEATURE_2_BYTE_SP,
89 
90     AVR_FEATURE_BREAK,
91     AVR_FEATURE_DES,
92     AVR_FEATURE_RMW, /* Read Modify Write - XCH LAC LAS LAT */
93 
94     AVR_FEATURE_EIJMP_EICALL,
95     AVR_FEATURE_IJMP_ICALL,
96     AVR_FEATURE_JMP_CALL,
97 
98     AVR_FEATURE_ADIW_SBIW,
99 
100     AVR_FEATURE_SPM,
101     AVR_FEATURE_SPMX,
102 
103     AVR_FEATURE_ELPMX,
104     AVR_FEATURE_ELPM,
105     AVR_FEATURE_LPMX,
106     AVR_FEATURE_LPM,
107 
108     AVR_FEATURE_MOVW,
109     AVR_FEATURE_MUL,
110     AVR_FEATURE_RAMPD,
111     AVR_FEATURE_RAMPX,
112     AVR_FEATURE_RAMPY,
113     AVR_FEATURE_RAMPZ,
114 } AVRFeature;
115 
116 typedef struct CPUArchState {
117     uint32_t pc_w; /* 0x003fffff up to 22 bits */
118 
119     uint32_t sregC; /* 0x00000001 1 bit */
120     uint32_t sregZ; /* 0x00000001 1 bit */
121     uint32_t sregN; /* 0x00000001 1 bit */
122     uint32_t sregV; /* 0x00000001 1 bit */
123     uint32_t sregS; /* 0x00000001 1 bit */
124     uint32_t sregH; /* 0x00000001 1 bit */
125     uint32_t sregT; /* 0x00000001 1 bit */
126     uint32_t sregI; /* 0x00000001 1 bit */
127 
128     uint32_t rampD; /* 0x00ff0000 8 bits */
129     uint32_t rampX; /* 0x00ff0000 8 bits */
130     uint32_t rampY; /* 0x00ff0000 8 bits */
131     uint32_t rampZ; /* 0x00ff0000 8 bits */
132     uint32_t eind; /* 0x00ff0000 8 bits */
133 
134     uint32_t r[NUMBER_OF_CPU_REGISTERS]; /* 8 bits each */
135     uint32_t sp; /* 16 bits */
136 
137     uint32_t skip; /* if set skip instruction */
138 
139     uint64_t intsrc; /* interrupt sources */
140     bool fullacc; /* CPU/MEM if true MEM only otherwise */
141 
142     uint64_t features;
143 } CPUAVRState;
144 
145 /**
146  *  AVRCPU:
147  *  @env: #CPUAVRState
148  *
149  *  A AVR CPU.
150  */
151 struct ArchCPU {
152     CPUState parent_obj;
153 
154     CPUAVRState env;
155 
156     MemoryRegion cpu_reg1;
157     MemoryRegion cpu_reg2;
158 
159     /* Initial value of stack pointer */
160     uint32_t init_sp;
161 };
162 
163 /**
164  *  AVRCPUClass:
165  *  @parent_realize: The parent class' realize handler.
166  *  @parent_phases: The parent class' reset phase handlers.
167  *
168  *  A AVR CPU model.
169  */
170 struct AVRCPUClass {
171     CPUClass parent_class;
172 
173     DeviceRealize parent_realize;
174     ResettablePhases parent_phases;
175 };
176 
177 extern const struct VMStateDescription vms_avr_cpu;
178 
179 void avr_cpu_do_interrupt(CPUState *cpu);
180 bool avr_cpu_exec_interrupt(CPUState *cpu, int int_req);
181 hwaddr avr_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
182 int avr_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
183 int avr_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
184 int avr_print_insn(bfd_vma addr, disassemble_info *info);
185 vaddr avr_cpu_gdb_adjust_breakpoint(CPUState *cpu, vaddr addr);
186 
avr_feature(CPUAVRState * env,AVRFeature feature)187 static inline int avr_feature(CPUAVRState *env, AVRFeature feature)
188 {
189     return (env->features & (1U << feature)) != 0;
190 }
191 
set_avr_feature(CPUAVRState * env,int feature)192 static inline void set_avr_feature(CPUAVRState *env, int feature)
193 {
194     env->features |= (1U << feature);
195 }
196 
197 void avr_cpu_tcg_init(void);
198 void avr_cpu_translate_code(CPUState *cs, TranslationBlock *tb,
199                             int *max_insns, vaddr pc, void *host_pc);
200 
201 int cpu_avr_exec(CPUState *cpu);
202 
203 enum {
204     TB_FLAGS_FULL_ACCESS = 1,
205     TB_FLAGS_SKIP = 2,
206 };
207 
cpu_interrupts_enabled(CPUAVRState * env)208 static inline int cpu_interrupts_enabled(CPUAVRState *env)
209 {
210     return env->sregI != 0;
211 }
212 
cpu_get_sreg(CPUAVRState * env)213 static inline uint8_t cpu_get_sreg(CPUAVRState *env)
214 {
215     return (env->sregC) << 0
216          | (env->sregZ) << 1
217          | (env->sregN) << 2
218          | (env->sregV) << 3
219          | (env->sregS) << 4
220          | (env->sregH) << 5
221          | (env->sregT) << 6
222          | (env->sregI) << 7;
223 }
224 
cpu_set_sreg(CPUAVRState * env,uint8_t sreg)225 static inline void cpu_set_sreg(CPUAVRState *env, uint8_t sreg)
226 {
227     env->sregC = (sreg >> 0) & 0x01;
228     env->sregZ = (sreg >> 1) & 0x01;
229     env->sregN = (sreg >> 2) & 0x01;
230     env->sregV = (sreg >> 3) & 0x01;
231     env->sregS = (sreg >> 4) & 0x01;
232     env->sregH = (sreg >> 5) & 0x01;
233     env->sregT = (sreg >> 6) & 0x01;
234     env->sregI = (sreg >> 7) & 0x01;
235 }
236 
237 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
238                       MMUAccessType access_type, int mmu_idx,
239                       bool probe, uintptr_t retaddr);
240 
241 extern const MemoryRegionOps avr_cpu_reg1;
242 extern const MemoryRegionOps avr_cpu_reg2;
243 
244 #endif /* QEMU_AVR_CPU_H */
245