xref: /qemu/rust/hw/char/pl011/src/registers.rs (revision 1843a0c01d06049f517fea7e155e5236e7287276)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Device registers exposed as typed structs which are backed by arbitrary
6 //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
7 
8 use bilge::prelude::*;
9 use qemu_api::impl_vmstate_bitsized;
10 
11 /// Offset of each register from the base memory address of the device.
12 ///
13 /// # Source
14 /// ARM DDI 0183G, Table 3-1 p.3-3
15 #[doc(alias = "offset")]
16 #[allow(non_camel_case_types)]
17 #[repr(u64)]
18 #[derive(Debug, Eq, PartialEq, qemu_api_macros::TryInto)]
19 pub enum RegisterOffset {
20     /// Data Register
21     ///
22     /// A write to this register initiates the actual data transmission
23     #[doc(alias = "UARTDR")]
24     DR = 0x000,
25     /// Receive Status Register or Error Clear Register
26     #[doc(alias = "UARTRSR")]
27     #[doc(alias = "UARTECR")]
28     RSR = 0x004,
29     /// Flag Register
30     ///
31     /// A read of this register shows if transmission is complete
32     #[doc(alias = "UARTFR")]
33     FR = 0x018,
34     /// Fractional Baud Rate Register
35     ///
36     /// responsible for baud rate speed
37     #[doc(alias = "UARTFBRD")]
38     FBRD = 0x028,
39     /// `IrDA` Low-Power Counter Register
40     #[doc(alias = "UARTILPR")]
41     ILPR = 0x020,
42     /// Integer Baud Rate Register
43     ///
44     /// Responsible for baud rate speed
45     #[doc(alias = "UARTIBRD")]
46     IBRD = 0x024,
47     /// line control register (data frame format)
48     #[doc(alias = "UARTLCR_H")]
49     LCR_H = 0x02C,
50     /// Toggle UART, transmission or reception
51     #[doc(alias = "UARTCR")]
52     CR = 0x030,
53     /// Interrupt FIFO Level Select Register
54     #[doc(alias = "UARTIFLS")]
55     FLS = 0x034,
56     /// Interrupt Mask Set/Clear Register
57     #[doc(alias = "UARTIMSC")]
58     IMSC = 0x038,
59     /// Raw Interrupt Status Register
60     #[doc(alias = "UARTRIS")]
61     RIS = 0x03C,
62     /// Masked Interrupt Status Register
63     #[doc(alias = "UARTMIS")]
64     MIS = 0x040,
65     /// Interrupt Clear Register
66     #[doc(alias = "UARTICR")]
67     ICR = 0x044,
68     /// DMA control Register
69     #[doc(alias = "UARTDMACR")]
70     DMACR = 0x048,
71     ///// Reserved, offsets `0x04C` to `0x07C`.
72     //Reserved = 0x04C,
73 }
74 
75 /// Receive Status Register / Data Register common error bits
76 ///
77 /// The `UARTRSR` register is updated only when a read occurs
78 /// from the `UARTDR` register with the same status information
79 /// that can also be obtained by reading the `UARTDR` register
80 #[bitsize(8)]
81 #[derive(Clone, Copy, Default, DebugBits, FromBits)]
82 pub struct Errors {
83     pub framing_error: bool,
84     pub parity_error: bool,
85     pub break_error: bool,
86     pub overrun_error: bool,
87     _reserved_unpredictable: u4,
88 }
89 
90 // TODO: FIFO Mode has different semantics
91 /// Data Register, `UARTDR`
92 ///
93 /// The `UARTDR` register is the data register.
94 ///
95 /// For words to be transmitted:
96 ///
97 /// - if the FIFOs are enabled, data written to this location is pushed onto the
98 ///   transmit
99 /// FIFO
100 /// - if the FIFOs are not enabled, data is stored in the transmitter holding
101 ///   register (the
102 /// bottom word of the transmit FIFO).
103 ///
104 /// The write operation initiates transmission from the UART. The data is
105 /// prefixed with a start bit, appended with the appropriate parity bit
106 /// (if parity is enabled), and a stop bit. The resultant word is then
107 /// transmitted.
108 ///
109 /// For received words:
110 ///
111 /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
112 ///   frame, parity,
113 /// and overrun) is pushed onto the 12-bit wide receive FIFO
114 /// - if the FIFOs are not enabled, the data byte and status are stored in the
115 ///   receiving
116 /// holding register (the bottom word of the receive FIFO).
117 ///
118 /// The received data byte is read by performing reads from the `UARTDR`
119 /// register along with the corresponding status information. The status
120 /// information can also be read by a read of the `UARTRSR/UARTECR`
121 /// register.
122 ///
123 /// # Note
124 ///
125 /// You must disable the UART before any of the control registers are
126 /// reprogrammed. When the UART is disabled in the middle of
127 /// transmission or reception, it completes the current character before
128 /// stopping.
129 ///
130 /// # Source
131 /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
132 #[bitsize(32)]
133 #[derive(Clone, Copy, Default, DebugBits, FromBits)]
134 #[doc(alias = "UARTDR")]
135 pub struct Data {
136     pub data: u8,
137     pub errors: Errors,
138     _reserved: u16,
139 }
140 impl_vmstate_bitsized!(Data);
141 
142 impl Data {
143     // bilge is not very const-friendly, unfortunately
144     pub const BREAK: Self = Self { value: 1 << 10 };
145 }
146 
147 // TODO: FIFO Mode has different semantics
148 /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
149 ///
150 /// The UARTRSR/UARTECR register is the receive status register/error clear
151 /// register. Receive status can also be read from the `UARTRSR`
152 /// register. If the status is read from this register, then the status
153 /// information for break, framing and parity corresponds to the
154 /// data character read from the [Data register](Data), `UARTDR` prior to
155 /// reading the UARTRSR register. The status information for overrun is
156 /// set immediately when an overrun condition occurs.
157 ///
158 ///
159 /// # Note
160 /// The received data character must be read first from the [Data
161 /// Register](Data), `UARTDR` before reading the error status associated
162 /// with that data character from the `UARTRSR` register. This read
163 /// sequence cannot be reversed, because the `UARTRSR` register is
164 /// updated only when a read occurs from the `UARTDR` register. However,
165 /// the status information can also be obtained by reading the `UARTDR`
166 /// register
167 ///
168 /// # Source
169 /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
170 /// UARTRSR/UARTECR
171 #[bitsize(32)]
172 #[derive(Clone, Copy, DebugBits, FromBits)]
173 pub struct ReceiveStatusErrorClear {
174     pub errors: Errors,
175     _reserved_unpredictable: u24,
176 }
177 impl_vmstate_bitsized!(ReceiveStatusErrorClear);
178 
179 impl ReceiveStatusErrorClear {
set_from_data(&mut self, data: Data)180     pub fn set_from_data(&mut self, data: Data) {
181         self.set_errors(data.errors());
182     }
183 
reset(&mut self)184     pub fn reset(&mut self) {
185         // All the bits are cleared to 0 on reset.
186         *self = Self::default();
187     }
188 }
189 
190 impl Default for ReceiveStatusErrorClear {
default() -> Self191     fn default() -> Self {
192         0.into()
193     }
194 }
195 
196 #[bitsize(32)]
197 #[derive(Clone, Copy, DebugBits, FromBits)]
198 /// Flag Register, `UARTFR`
199 #[doc(alias = "UARTFR")]
200 pub struct Flags {
201     /// CTS Clear to send. This bit is the complement of the UART clear to
202     /// send, `nUARTCTS`, modem status input. That is, the bit is 1
203     /// when `nUARTCTS` is LOW.
204     pub clear_to_send: bool,
205     /// DSR Data set ready. This bit is the complement of the UART data set
206     /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
207     /// `nUARTDSR` is LOW.
208     pub data_set_ready: bool,
209     /// DCD Data carrier detect. This bit is the complement of the UART data
210     /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
211     /// 1 when `nUARTDCD` is LOW.
212     pub data_carrier_detect: bool,
213     /// BUSY UART busy. If this bit is set to 1, the UART is busy
214     /// transmitting data. This bit remains set until the complete
215     /// byte, including all the stop bits, has been sent from the
216     /// shift register. This bit is set as soon as the transmit FIFO
217     /// becomes non-empty, regardless of whether the UART is enabled
218     /// or not.
219     pub busy: bool,
220     /// RXFE Receive FIFO empty. The meaning of this bit depends on the
221     /// state of the FEN bit in the UARTLCR_H register. If the FIFO
222     /// is disabled, this bit is set when the receive holding
223     /// register is empty. If the FIFO is enabled, the RXFE bit is
224     /// set when the receive FIFO is empty.
225     pub receive_fifo_empty: bool,
226     /// TXFF Transmit FIFO full. The meaning of this bit depends on the
227     /// state of the FEN bit in the UARTLCR_H register. If the FIFO
228     /// is disabled, this bit is set when the transmit holding
229     /// register is full. If the FIFO is enabled, the TXFF bit is
230     /// set when the transmit FIFO is full.
231     pub transmit_fifo_full: bool,
232     /// RXFF Receive FIFO full. The meaning of this bit depends on the state
233     /// of the FEN bit in the UARTLCR_H register. If the FIFO is
234     /// disabled, this bit is set when the receive holding register
235     /// is full. If the FIFO is enabled, the RXFF bit is set when
236     /// the receive FIFO is full.
237     pub receive_fifo_full: bool,
238     /// Transmit FIFO empty. The meaning of this bit depends on the state of
239     /// the FEN bit in the [Line Control register](LineControl),
240     /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
241     /// transmit holding register is empty. If the FIFO is enabled,
242     /// the TXFE bit is set when the transmit FIFO is empty. This
243     /// bit does not indicate if there is data in the transmit shift
244     /// register.
245     pub transmit_fifo_empty: bool,
246     /// `RI`, is `true` when `nUARTRI` is `LOW`.
247     pub ring_indicator: bool,
248     _reserved_zero_no_modify: u23,
249 }
250 impl_vmstate_bitsized!(Flags);
251 
252 impl Flags {
reset(&mut self)253     pub fn reset(&mut self) {
254         *self = Self::default();
255     }
256 }
257 
258 impl Default for Flags {
default() -> Self259     fn default() -> Self {
260         let mut ret: Self = 0.into();
261         // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
262         ret.set_receive_fifo_empty(true);
263         ret.set_transmit_fifo_empty(true);
264         ret
265     }
266 }
267 
268 #[bitsize(32)]
269 #[derive(Clone, Copy, DebugBits, FromBits)]
270 /// Line Control Register, `UARTLCR_H`
271 #[doc(alias = "UARTLCR_H")]
272 pub struct LineControl {
273     /// BRK Send break.
274     ///
275     /// If this bit is set to `1`, a low-level is continually output on the
276     /// `UARTTXD` output, after completing transmission of the
277     /// current character. For the proper execution of the break command,
278     /// the software must set this bit for at least two complete
279     /// frames. For normal use, this bit must be cleared to `0`.
280     pub send_break: bool,
281     /// 1 PEN Parity enable:
282     ///
283     /// - 0 = parity is disabled and no parity bit added to the data frame
284     /// - 1 = parity checking and generation is enabled.
285     ///
286     /// See Table 3-11 on page 3-14 for the parity truth table.
287     pub parity_enabled: bool,
288     /// EPS Even parity select. Controls the type of parity the UART uses
289     /// during transmission and reception:
290     /// - 0 = odd parity. The UART generates or checks for an odd number of 1s
291     ///   in the data and parity bits.
292     /// - 1 = even parity. The UART generates or checks for an even number of 1s
293     ///   in the data and parity bits.
294     /// This bit has no effect when the `PEN` bit disables parity checking
295     /// and generation. See Table 3-11 on page 3-14 for the parity
296     /// truth table.
297     pub parity: Parity,
298     /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
299     /// are transmitted at the end of the frame. The receive
300     /// logic does not check for two stop bits being received.
301     pub two_stops_bits: bool,
302     /// FEN Enable FIFOs:
303     /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
304     /// 1-byte-deep holding registers 1 = transmit and receive FIFO
305     /// buffers are enabled (FIFO mode).
306     pub fifos_enabled: Mode,
307     /// WLEN Word length. These bits indicate the number of data bits
308     /// transmitted or received in a frame as follows: b11 = 8 bits
309     /// b10 = 7 bits
310     /// b01 = 6 bits
311     /// b00 = 5 bits.
312     pub word_length: WordLength,
313     /// 7 SPS Stick parity select.
314     /// 0 = stick parity is disabled
315     /// 1 = either:
316     /// • if the EPS bit is 0 then the parity bit is transmitted and checked
317     /// as a 1 • if the EPS bit is 1 then the parity bit is
318     /// transmitted and checked as a 0. This bit has no effect when
319     /// the PEN bit disables parity checking and generation. See Table 3-11
320     /// on page 3-14 for the parity truth table.
321     pub sticky_parity: bool,
322     /// 31:8 - Reserved, do not modify, read as zero.
323     _reserved_zero_no_modify: u24,
324 }
325 impl_vmstate_bitsized!(LineControl);
326 
327 impl LineControl {
reset(&mut self)328     pub fn reset(&mut self) {
329         // All the bits are cleared to 0 when reset.
330         *self = 0.into();
331     }
332 }
333 
334 impl Default for LineControl {
default() -> Self335     fn default() -> Self {
336         0.into()
337     }
338 }
339 
340 #[bitsize(1)]
341 #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
342 /// `EPS` "Even parity select", field of [Line Control
343 /// register](LineControl).
344 pub enum Parity {
345     /// - 0 = odd parity. The UART generates or checks for an odd number of 1s
346     ///   in the data and parity bits.
347     Odd = 0,
348     /// - 1 = even parity. The UART generates or checks for an even number of 1s
349     ///   in the data and parity bits.
350     Even = 1,
351 }
352 
353 #[bitsize(1)]
354 #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
355 /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
356 /// register](LineControl).
357 pub enum Mode {
358     /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
359     /// 1-byte-deep holding registers
360     Character = 0,
361     /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
362     FIFO = 1,
363 }
364 
365 #[bitsize(2)]
366 #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
367 /// `WLEN` Word length, field of [Line Control register](LineControl).
368 ///
369 /// These bits indicate the number of data bits transmitted or received in a
370 /// frame as follows:
371 pub enum WordLength {
372     /// b11 = 8 bits
373     _8Bits = 0b11,
374     /// b10 = 7 bits
375     _7Bits = 0b10,
376     /// b01 = 6 bits
377     _6Bits = 0b01,
378     /// b00 = 5 bits.
379     _5Bits = 0b00,
380 }
381 
382 /// Control Register, `UARTCR`
383 ///
384 /// The `UARTCR` register is the control register. All the bits are cleared
385 /// to `0` on reset except for bits `9` and `8` that are set to `1`.
386 ///
387 /// # Source
388 /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
389 #[bitsize(32)]
390 #[doc(alias = "UARTCR")]
391 #[derive(Clone, Copy, DebugBits, FromBits)]
392 pub struct Control {
393     /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
394     /// in the middle of transmission or reception, it completes the current
395     /// character before stopping. 1 = the UART is enabled. Data
396     /// transmission and reception occurs for either UART signals or SIR
397     /// signals depending on the setting of the SIREN bit.
398     pub enable_uart: bool,
399     /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
400     /// remains LOW (no light pulse generated), and signal transitions on
401     /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
402     /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
403     /// in the marking state. Signal transitions on UARTRXD or modem status
404     /// inputs have no effect. This bit has no effect if the UARTEN bit
405     /// disables the UART.
406     pub enable_sir: bool,
407     /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
408     /// mode. If this bit is cleared to 0, low-level bits are transmitted as
409     /// an active high pulse with a width of 3/ 16th of the bit period. If
410     /// this bit is set to 1, low-level bits are transmitted with a pulse
411     /// width that is 3 times the period of the IrLPBaud16 input signal,
412     /// regardless of the selected bit rate. Setting this bit uses less
413     /// power, but might reduce transmission distances.
414     pub sir_lowpower_irda_mode: u1,
415     /// Reserved, do not modify, read as zero.
416     _reserved_zero_no_modify: u4,
417     /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
418     /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
419     /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
420     /// through to the SIRIN path. The SIRTEST bit in the test register must
421     /// be set to 1 to override the normal half-duplex SIR operation. This
422     /// must be the requirement for accessing the test registers during
423     /// normal operation, and SIRTEST must be cleared to 0 when loopback
424     /// testing is finished. This feature reduces the amount of external
425     /// coupling required during system test. If this bit is set to 1, and
426     /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
427     /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
428     /// the modem outputs are also fed through to the modem inputs. This bit
429     /// is cleared to 0 on reset, to disable loopback.
430     pub enable_loopback: bool,
431     /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
432     /// of the UART is enabled. Data transmission occurs for either UART
433     /// signals, or SIR signals depending on the setting of the SIREN bit.
434     /// When the UART is disabled in the middle of transmission, it
435     /// completes the current character before stopping.
436     pub enable_transmit: bool,
437     /// `RXE` Receive enable. If this bit is set to 1, the receive section
438     /// of the UART is enabled. Data reception occurs for either UART
439     /// signals or SIR signals depending on the setting of the SIREN bit.
440     /// When the UART is disabled in the middle of reception, it completes
441     /// the current character before stopping.
442     pub enable_receive: bool,
443     /// `DTR` Data transmit ready. This bit is the complement of the UART
444     /// data transmit ready, `nUARTDTR`, modem status output. That is, when
445     /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
446     pub data_transmit_ready: bool,
447     /// `RTS` Request to send. This bit is the complement of the UART
448     /// request to send, `nUARTRTS`, modem status output. That is, when the
449     /// bit is programmed to a 1 then `nUARTRTS` is LOW.
450     pub request_to_send: bool,
451     /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
452     /// modem status output. That is, when the bit is programmed to a 1 the
453     /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
454     pub out_1: bool,
455     /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
456     /// modem status output. That is, when the bit is programmed to a 1, the
457     /// output is 0. For DTE this can be used as Ring Indicator (RI).
458     pub out_2: bool,
459     /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
460     /// RTS hardware flow control is enabled. Data is only requested when
461     /// there is space in the receive FIFO for it to be received.
462     pub rts_hardware_flow_control_enable: bool,
463     /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
464     /// CTS hardware flow control is enabled. Data is only transmitted when
465     /// the `nUARTCTS` signal is asserted.
466     pub cts_hardware_flow_control_enable: bool,
467     /// 31:16 - Reserved, do not modify, read as zero.
468     _reserved_zero_no_modify2: u16,
469 }
470 impl_vmstate_bitsized!(Control);
471 
472 impl Control {
reset(&mut self)473     pub fn reset(&mut self) {
474         *self = 0.into();
475         self.set_enable_receive(true);
476         self.set_enable_transmit(true);
477     }
478 }
479 
480 impl Default for Control {
default() -> Self481     fn default() -> Self {
482         let mut ret: Self = 0.into();
483         ret.reset();
484         ret
485     }
486 }
487 
488 /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
489 pub struct Interrupt(pub u32);
490 
491 impl Interrupt {
492     pub const OE: Self = Self(1 << 10);
493     pub const BE: Self = Self(1 << 9);
494     pub const PE: Self = Self(1 << 8);
495     pub const FE: Self = Self(1 << 7);
496     pub const RT: Self = Self(1 << 6);
497     pub const TX: Self = Self(1 << 5);
498     pub const RX: Self = Self(1 << 4);
499     pub const DSR: Self = Self(1 << 3);
500     pub const DCD: Self = Self(1 << 2);
501     pub const CTS: Self = Self(1 << 1);
502     pub const RI: Self = Self(1 << 0);
503 
504     pub const E: Self = Self(Self::OE.0 | Self::BE.0 | Self::PE.0 | Self::FE.0);
505     pub const MS: Self = Self(Self::RI.0 | Self::DSR.0 | Self::DCD.0 | Self::CTS.0);
506 }
507