1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct user_struct;
42 struct pt_regs;
43 struct folio_batch;
44
45 void arch_mm_preinit(void);
46 void mm_core_init(void);
47 void init_mm_internals(void);
48
49 extern atomic_long_t _totalram_pages;
totalram_pages(void)50 static inline unsigned long totalram_pages(void)
51 {
52 return (unsigned long)atomic_long_read(&_totalram_pages);
53 }
54
totalram_pages_inc(void)55 static inline void totalram_pages_inc(void)
56 {
57 atomic_long_inc(&_totalram_pages);
58 }
59
totalram_pages_dec(void)60 static inline void totalram_pages_dec(void)
61 {
62 atomic_long_dec(&_totalram_pages);
63 }
64
totalram_pages_add(long count)65 static inline void totalram_pages_add(long count)
66 {
67 atomic_long_add(count, &_totalram_pages);
68 }
69
70 extern void * high_memory;
71
72 #ifdef CONFIG_SYSCTL
73 extern int sysctl_legacy_va_layout;
74 #else
75 #define sysctl_legacy_va_layout 0
76 #endif
77
78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79 extern const int mmap_rnd_bits_min;
80 extern int mmap_rnd_bits_max __ro_after_init;
81 extern int mmap_rnd_bits __read_mostly;
82 #endif
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84 extern const int mmap_rnd_compat_bits_min;
85 extern const int mmap_rnd_compat_bits_max;
86 extern int mmap_rnd_compat_bits __read_mostly;
87 #endif
88
89 #ifndef DIRECT_MAP_PHYSMEM_END
90 # ifdef MAX_PHYSMEM_BITS
91 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
92 # else
93 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
94 # endif
95 #endif
96
97 #include <asm/page.h>
98 #include <asm/processor.h>
99
100 #ifndef __pa_symbol
101 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
102 #endif
103
104 #ifndef page_to_virt
105 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
106 #endif
107
108 #ifndef lm_alias
109 #define lm_alias(x) __va(__pa_symbol(x))
110 #endif
111
112 /*
113 * To prevent common memory management code establishing
114 * a zero page mapping on a read fault.
115 * This macro should be defined within <asm/pgtable.h>.
116 * s390 does this to prevent multiplexing of hardware bits
117 * related to the physical page in case of virtualization.
118 */
119 #ifndef mm_forbids_zeropage
120 #define mm_forbids_zeropage(X) (0)
121 #endif
122
123 /*
124 * On some architectures it is expensive to call memset() for small sizes.
125 * If an architecture decides to implement their own version of
126 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127 * define their own version of this macro in <asm/pgtable.h>
128 */
129 #if BITS_PER_LONG == 64
130 /* This function must be updated when the size of struct page grows above 96
131 * or reduces below 56. The idea that compiler optimizes out switch()
132 * statement, and only leaves move/store instructions. Also the compiler can
133 * combine write statements if they are both assignments and can be reordered,
134 * this can result in several of the writes here being dropped.
135 */
136 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)137 static inline void __mm_zero_struct_page(struct page *page)
138 {
139 unsigned long *_pp = (void *)page;
140
141 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 BUILD_BUG_ON(sizeof(struct page) & 7);
143 BUILD_BUG_ON(sizeof(struct page) < 56);
144 BUILD_BUG_ON(sizeof(struct page) > 96);
145
146 switch (sizeof(struct page)) {
147 case 96:
148 _pp[11] = 0;
149 fallthrough;
150 case 88:
151 _pp[10] = 0;
152 fallthrough;
153 case 80:
154 _pp[9] = 0;
155 fallthrough;
156 case 72:
157 _pp[8] = 0;
158 fallthrough;
159 case 64:
160 _pp[7] = 0;
161 fallthrough;
162 case 56:
163 _pp[6] = 0;
164 _pp[5] = 0;
165 _pp[4] = 0;
166 _pp[3] = 0;
167 _pp[2] = 0;
168 _pp[1] = 0;
169 _pp[0] = 0;
170 }
171 }
172 #else
173 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175
176 /*
177 * Default maximum number of active map areas, this limits the number of vmas
178 * per mm struct. Users can overwrite this number by sysctl but there is a
179 * problem.
180 *
181 * When a program's coredump is generated as ELF format, a section is created
182 * per a vma. In ELF, the number of sections is represented in unsigned short.
183 * This means the number of sections should be smaller than 65535 at coredump.
184 * Because the kernel adds some informative sections to a image of program at
185 * generating coredump, we need some margin. The number of extra sections is
186 * 1-3 now and depends on arch. We use "5" as safe margin, here.
187 *
188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189 * not a hard limit any more. Although some userspace tools can be surprised by
190 * that.
191 */
192 #define MAPCOUNT_ELF_CORE_MARGIN (5)
193 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194
195 extern int sysctl_max_map_count;
196
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199
200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
203 #else
204 #define nth_page(page,n) ((page) + (n))
205 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
206 #endif
207
208 /* to align the pointer to the (next) page boundary */
209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210
211 /* to align the pointer to the (prev) page boundary */
212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216
lru_to_folio(struct list_head * head)217 static inline struct folio *lru_to_folio(struct list_head *head)
218 {
219 return list_entry((head)->prev, struct folio, lru);
220 }
221
222 void setup_initial_init_mm(void *start_code, void *end_code,
223 void *end_data, void *brk);
224
225 /*
226 * Linux kernel virtual memory manager primitives.
227 * The idea being to have a "virtual" mm in the same way
228 * we have a virtual fs - giving a cleaner interface to the
229 * mm details, and allowing different kinds of memory mappings
230 * (from shared memory to executable loading to arbitrary
231 * mmap() functions).
232 */
233
234 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236 void vm_area_free(struct vm_area_struct *);
237
238 #ifndef CONFIG_MMU
239 extern struct rb_root nommu_region_tree;
240 extern struct rw_semaphore nommu_region_sem;
241
242 extern unsigned int kobjsize(const void *objp);
243 #endif
244
245 /*
246 * vm_flags in vm_area_struct, see mm_types.h.
247 * When changing, update also include/trace/events/mmflags.h
248 */
249 #define VM_NONE 0x00000000
250
251 #define VM_READ 0x00000001 /* currently active flags */
252 #define VM_WRITE 0x00000002
253 #define VM_EXEC 0x00000004
254 #define VM_SHARED 0x00000008
255
256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
258 #define VM_MAYWRITE 0x00000020
259 #define VM_MAYEXEC 0x00000040
260 #define VM_MAYSHARE 0x00000080
261
262 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
263 #ifdef CONFIG_MMU
264 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
265 #else /* CONFIG_MMU */
266 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267 #define VM_UFFD_MISSING 0
268 #endif /* CONFIG_MMU */
269 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
271
272 #define VM_LOCKED 0x00002000
273 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
274
275 /* Used by sys_madvise() */
276 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
277 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
278
279 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
283 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
284 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
285 #define VM_SYNC 0x00800000 /* Synchronous page faults */
286 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
287 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
288 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
289
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY 0
294 #endif
295
296 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
300
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
310 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
311 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
312 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
313 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
314 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
315 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
323 #if CONFIG_ARCH_PKEY_BITS > 3
324 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
325 #else
326 # define VM_PKEY_BIT3 0
327 #endif
328 #if CONFIG_ARCH_PKEY_BITS > 4
329 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4 0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334
335 #ifdef CONFIG_X86_USER_SHADOW_STACK
336 /*
337 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338 * support core mm.
339 *
340 * These VMAs will get a single end guard page. This helps userspace protect
341 * itself from attacks. A single page is enough for current shadow stack archs
342 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343 * for more details on the guard size.
344 */
345 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
346 #endif
347
348 #if defined(CONFIG_ARM64_GCS)
349 /*
350 * arm64's Guarded Control Stack implements similar functionality and
351 * has similar constraints to shadow stacks.
352 */
353 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
354 #endif
355
356 #ifndef VM_SHADOW_STACK
357 # define VM_SHADOW_STACK VM_NONE
358 #endif
359
360 #if defined(CONFIG_PPC64)
361 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
362 #elif defined(CONFIG_PARISC)
363 # define VM_GROWSUP VM_ARCH_1
364 #elif defined(CONFIG_SPARC64)
365 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
366 # define VM_ARCH_CLEAR VM_SPARC_ADI
367 #elif defined(CONFIG_ARM64)
368 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
369 # define VM_ARCH_CLEAR VM_ARM64_BTI
370 #elif !defined(CONFIG_MMU)
371 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
372 #endif
373
374 #if defined(CONFIG_ARM64_MTE)
375 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
376 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
377 #else
378 # define VM_MTE VM_NONE
379 # define VM_MTE_ALLOWED VM_NONE
380 #endif
381
382 #ifndef VM_GROWSUP
383 # define VM_GROWSUP VM_NONE
384 #endif
385
386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387 # define VM_UFFD_MINOR_BIT 41
388 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390 # define VM_UFFD_MINOR VM_NONE
391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392
393 /*
394 * This flag is used to connect VFIO to arch specific KVM code. It
395 * indicates that the memory under this VMA is safe for use with any
396 * non-cachable memory type inside KVM. Some VFIO devices, on some
397 * platforms, are thought to be unsafe and can cause machine crashes
398 * if KVM does not lock down the memory type.
399 */
400 #ifdef CONFIG_64BIT
401 #define VM_ALLOW_ANY_UNCACHED_BIT 39
402 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403 #else
404 #define VM_ALLOW_ANY_UNCACHED VM_NONE
405 #endif
406
407 #ifdef CONFIG_64BIT
408 #define VM_DROPPABLE_BIT 40
409 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
410 #elif defined(CONFIG_PPC32)
411 #define VM_DROPPABLE VM_ARCH_1
412 #else
413 #define VM_DROPPABLE VM_NONE
414 #endif
415
416 #ifdef CONFIG_64BIT
417 #define VM_SEALED_BIT 42
418 #define VM_SEALED BIT(VM_SEALED_BIT)
419 #else
420 #define VM_SEALED VM_NONE
421 #endif
422
423 /* Bits set in the VMA until the stack is in its final location */
424 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
425
426 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
427
428 /* Common data flag combinations */
429 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
430 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
432 VM_MAYWRITE | VM_MAYEXEC)
433 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
434 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
435
436 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
437 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
438 #endif
439
440 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
441 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
442 #endif
443
444 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
445
446 #ifdef CONFIG_STACK_GROWSUP
447 #define VM_STACK VM_GROWSUP
448 #define VM_STACK_EARLY VM_GROWSDOWN
449 #else
450 #define VM_STACK VM_GROWSDOWN
451 #define VM_STACK_EARLY 0
452 #endif
453
454 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
455
456 /* VMA basic access permission flags */
457 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
458
459
460 /*
461 * Special vmas that are non-mergable, non-mlock()able.
462 */
463 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
464
465 /* This mask prevents VMA from being scanned with khugepaged */
466 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
467
468 /* This mask defines which mm->def_flags a process can inherit its parent */
469 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
470
471 /* This mask represents all the VMA flag bits used by mlock */
472 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
473
474 /* Arch-specific flags to clear when updating VM flags on protection change */
475 #ifndef VM_ARCH_CLEAR
476 # define VM_ARCH_CLEAR VM_NONE
477 #endif
478 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
479
480 /*
481 * mapping from the currently active vm_flags protection bits (the
482 * low four bits) to a page protection mask..
483 */
484
485 /*
486 * The default fault flags that should be used by most of the
487 * arch-specific page fault handlers.
488 */
489 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
490 FAULT_FLAG_KILLABLE | \
491 FAULT_FLAG_INTERRUPTIBLE)
492
493 /**
494 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
495 * @flags: Fault flags.
496 *
497 * This is mostly used for places where we want to try to avoid taking
498 * the mmap_lock for too long a time when waiting for another condition
499 * to change, in which case we can try to be polite to release the
500 * mmap_lock in the first round to avoid potential starvation of other
501 * processes that would also want the mmap_lock.
502 *
503 * Return: true if the page fault allows retry and this is the first
504 * attempt of the fault handling; false otherwise.
505 */
fault_flag_allow_retry_first(enum fault_flag flags)506 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
507 {
508 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
509 (!(flags & FAULT_FLAG_TRIED));
510 }
511
512 #define FAULT_FLAG_TRACE \
513 { FAULT_FLAG_WRITE, "WRITE" }, \
514 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
515 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
516 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
517 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
518 { FAULT_FLAG_TRIED, "TRIED" }, \
519 { FAULT_FLAG_USER, "USER" }, \
520 { FAULT_FLAG_REMOTE, "REMOTE" }, \
521 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
522 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
523 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
524
525 /*
526 * vm_fault is filled by the pagefault handler and passed to the vma's
527 * ->fault function. The vma's ->fault is responsible for returning a bitmask
528 * of VM_FAULT_xxx flags that give details about how the fault was handled.
529 *
530 * MM layer fills up gfp_mask for page allocations but fault handler might
531 * alter it if its implementation requires a different allocation context.
532 *
533 * pgoff should be used in favour of virtual_address, if possible.
534 */
535 struct vm_fault {
536 const struct {
537 struct vm_area_struct *vma; /* Target VMA */
538 gfp_t gfp_mask; /* gfp mask to be used for allocations */
539 pgoff_t pgoff; /* Logical page offset based on vma */
540 unsigned long address; /* Faulting virtual address - masked */
541 unsigned long real_address; /* Faulting virtual address - unmasked */
542 };
543 enum fault_flag flags; /* FAULT_FLAG_xxx flags
544 * XXX: should really be 'const' */
545 pmd_t *pmd; /* Pointer to pmd entry matching
546 * the 'address' */
547 pud_t *pud; /* Pointer to pud entry matching
548 * the 'address'
549 */
550 union {
551 pte_t orig_pte; /* Value of PTE at the time of fault */
552 pmd_t orig_pmd; /* Value of PMD at the time of fault,
553 * used by PMD fault only.
554 */
555 };
556
557 struct page *cow_page; /* Page handler may use for COW fault */
558 struct page *page; /* ->fault handlers should return a
559 * page here, unless VM_FAULT_NOPAGE
560 * is set (which is also implied by
561 * VM_FAULT_ERROR).
562 */
563 /* These three entries are valid only while holding ptl lock */
564 pte_t *pte; /* Pointer to pte entry matching
565 * the 'address'. NULL if the page
566 * table hasn't been allocated.
567 */
568 spinlock_t *ptl; /* Page table lock.
569 * Protects pte page table if 'pte'
570 * is not NULL, otherwise pmd.
571 */
572 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
573 * vm_ops->map_pages() sets up a page
574 * table from atomic context.
575 * do_fault_around() pre-allocates
576 * page table to avoid allocation from
577 * atomic context.
578 */
579 };
580
581 /*
582 * These are the virtual MM functions - opening of an area, closing and
583 * unmapping it (needed to keep files on disk up-to-date etc), pointer
584 * to the functions called when a no-page or a wp-page exception occurs.
585 */
586 struct vm_operations_struct {
587 void (*open)(struct vm_area_struct * area);
588 /**
589 * @close: Called when the VMA is being removed from the MM.
590 * Context: User context. May sleep. Caller holds mmap_lock.
591 */
592 void (*close)(struct vm_area_struct * area);
593 /* Called any time before splitting to check if it's allowed */
594 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
595 int (*mremap)(struct vm_area_struct *area);
596 /*
597 * Called by mprotect() to make driver-specific permission
598 * checks before mprotect() is finalised. The VMA must not
599 * be modified. Returns 0 if mprotect() can proceed.
600 */
601 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
602 unsigned long end, unsigned long newflags);
603 vm_fault_t (*fault)(struct vm_fault *vmf);
604 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
605 vm_fault_t (*map_pages)(struct vm_fault *vmf,
606 pgoff_t start_pgoff, pgoff_t end_pgoff);
607 unsigned long (*pagesize)(struct vm_area_struct * area);
608
609 /* notification that a previously read-only page is about to become
610 * writable, if an error is returned it will cause a SIGBUS */
611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
612
613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
615
616 /* called by access_process_vm when get_user_pages() fails, typically
617 * for use by special VMAs. See also generic_access_phys() for a generic
618 * implementation useful for any iomem mapping.
619 */
620 int (*access)(struct vm_area_struct *vma, unsigned long addr,
621 void *buf, int len, int write);
622
623 /* Called by the /proc/PID/maps code to ask the vma whether it
624 * has a special name. Returning non-NULL will also cause this
625 * vma to be dumped unconditionally. */
626 const char *(*name)(struct vm_area_struct *vma);
627
628 #ifdef CONFIG_NUMA
629 /*
630 * set_policy() op must add a reference to any non-NULL @new mempolicy
631 * to hold the policy upon return. Caller should pass NULL @new to
632 * remove a policy and fall back to surrounding context--i.e. do not
633 * install a MPOL_DEFAULT policy, nor the task or system default
634 * mempolicy.
635 */
636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637
638 /*
639 * get_policy() op must add reference [mpol_get()] to any policy at
640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
641 * in mm/mempolicy.c will do this automatically.
642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
645 * must return NULL--i.e., do not "fallback" to task or system default
646 * policy.
647 */
648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
649 unsigned long addr, pgoff_t *ilx);
650 #endif
651 /*
652 * Called by vm_normal_page() for special PTEs to find the
653 * page for @addr. This is useful if the default behavior
654 * (using pte_page()) would not find the correct page.
655 */
656 struct page *(*find_special_page)(struct vm_area_struct *vma,
657 unsigned long addr);
658 };
659
660 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)661 static inline void vma_numab_state_init(struct vm_area_struct *vma)
662 {
663 vma->numab_state = NULL;
664 }
vma_numab_state_free(struct vm_area_struct * vma)665 static inline void vma_numab_state_free(struct vm_area_struct *vma)
666 {
667 kfree(vma->numab_state);
668 }
669 #else
vma_numab_state_init(struct vm_area_struct * vma)670 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)671 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
672 #endif /* CONFIG_NUMA_BALANCING */
673
674 /*
675 * These must be here rather than mmap_lock.h as dependent on vm_fault type,
676 * declared in this header.
677 */
678 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)679 static inline void release_fault_lock(struct vm_fault *vmf)
680 {
681 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
682 vma_end_read(vmf->vma);
683 else
684 mmap_read_unlock(vmf->vma->vm_mm);
685 }
686
assert_fault_locked(struct vm_fault * vmf)687 static inline void assert_fault_locked(struct vm_fault *vmf)
688 {
689 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
690 vma_assert_locked(vmf->vma);
691 else
692 mmap_assert_locked(vmf->vma->vm_mm);
693 }
694 #else
release_fault_lock(struct vm_fault * vmf)695 static inline void release_fault_lock(struct vm_fault *vmf)
696 {
697 mmap_read_unlock(vmf->vma->vm_mm);
698 }
699
assert_fault_locked(struct vm_fault * vmf)700 static inline void assert_fault_locked(struct vm_fault *vmf)
701 {
702 mmap_assert_locked(vmf->vma->vm_mm);
703 }
704 #endif /* CONFIG_PER_VMA_LOCK */
705
706 extern const struct vm_operations_struct vma_dummy_vm_ops;
707
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)708 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
709 {
710 memset(vma, 0, sizeof(*vma));
711 vma->vm_mm = mm;
712 vma->vm_ops = &vma_dummy_vm_ops;
713 INIT_LIST_HEAD(&vma->anon_vma_chain);
714 vma_lock_init(vma, false);
715 }
716
717 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)718 static inline void vm_flags_init(struct vm_area_struct *vma,
719 vm_flags_t flags)
720 {
721 ACCESS_PRIVATE(vma, __vm_flags) = flags;
722 }
723
724 /*
725 * Use when VMA is part of the VMA tree and modifications need coordination
726 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
727 * it should be locked explicitly beforehand.
728 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)729 static inline void vm_flags_reset(struct vm_area_struct *vma,
730 vm_flags_t flags)
731 {
732 vma_assert_write_locked(vma);
733 vm_flags_init(vma, flags);
734 }
735
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)736 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
737 vm_flags_t flags)
738 {
739 vma_assert_write_locked(vma);
740 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
741 }
742
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)743 static inline void vm_flags_set(struct vm_area_struct *vma,
744 vm_flags_t flags)
745 {
746 vma_start_write(vma);
747 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
748 }
749
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)750 static inline void vm_flags_clear(struct vm_area_struct *vma,
751 vm_flags_t flags)
752 {
753 vma_start_write(vma);
754 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
755 }
756
757 /*
758 * Use only if VMA is not part of the VMA tree or has no other users and
759 * therefore needs no locking.
760 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)761 static inline void __vm_flags_mod(struct vm_area_struct *vma,
762 vm_flags_t set, vm_flags_t clear)
763 {
764 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
765 }
766
767 /*
768 * Use only when the order of set/clear operations is unimportant, otherwise
769 * use vm_flags_{set|clear} explicitly.
770 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)771 static inline void vm_flags_mod(struct vm_area_struct *vma,
772 vm_flags_t set, vm_flags_t clear)
773 {
774 vma_start_write(vma);
775 __vm_flags_mod(vma, set, clear);
776 }
777
vma_set_anonymous(struct vm_area_struct * vma)778 static inline void vma_set_anonymous(struct vm_area_struct *vma)
779 {
780 vma->vm_ops = NULL;
781 }
782
vma_is_anonymous(struct vm_area_struct * vma)783 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
784 {
785 return !vma->vm_ops;
786 }
787
788 /*
789 * Indicate if the VMA is a heap for the given task; for
790 * /proc/PID/maps that is the heap of the main task.
791 */
vma_is_initial_heap(const struct vm_area_struct * vma)792 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
793 {
794 return vma->vm_start < vma->vm_mm->brk &&
795 vma->vm_end > vma->vm_mm->start_brk;
796 }
797
798 /*
799 * Indicate if the VMA is a stack for the given task; for
800 * /proc/PID/maps that is the stack of the main task.
801 */
vma_is_initial_stack(const struct vm_area_struct * vma)802 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
803 {
804 /*
805 * We make no effort to guess what a given thread considers to be
806 * its "stack". It's not even well-defined for programs written
807 * languages like Go.
808 */
809 return vma->vm_start <= vma->vm_mm->start_stack &&
810 vma->vm_end >= vma->vm_mm->start_stack;
811 }
812
vma_is_temporary_stack(struct vm_area_struct * vma)813 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
814 {
815 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
816
817 if (!maybe_stack)
818 return false;
819
820 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
821 VM_STACK_INCOMPLETE_SETUP)
822 return true;
823
824 return false;
825 }
826
vma_is_foreign(struct vm_area_struct * vma)827 static inline bool vma_is_foreign(struct vm_area_struct *vma)
828 {
829 if (!current->mm)
830 return true;
831
832 if (current->mm != vma->vm_mm)
833 return true;
834
835 return false;
836 }
837
vma_is_accessible(struct vm_area_struct * vma)838 static inline bool vma_is_accessible(struct vm_area_struct *vma)
839 {
840 return vma->vm_flags & VM_ACCESS_FLAGS;
841 }
842
is_shared_maywrite(vm_flags_t vm_flags)843 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
844 {
845 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
846 (VM_SHARED | VM_MAYWRITE);
847 }
848
vma_is_shared_maywrite(struct vm_area_struct * vma)849 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
850 {
851 return is_shared_maywrite(vma->vm_flags);
852 }
853
854 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)855 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856 {
857 return mas_find(&vmi->mas, max - 1);
858 }
859
vma_next(struct vma_iterator * vmi)860 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861 {
862 /*
863 * Uses mas_find() to get the first VMA when the iterator starts.
864 * Calling mas_next() could skip the first entry.
865 */
866 return mas_find(&vmi->mas, ULONG_MAX);
867 }
868
869 static inline
vma_iter_next_range(struct vma_iterator * vmi)870 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
871 {
872 return mas_next_range(&vmi->mas, ULONG_MAX);
873 }
874
875
vma_prev(struct vma_iterator * vmi)876 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
877 {
878 return mas_prev(&vmi->mas, 0);
879 }
880
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)881 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
882 unsigned long start, unsigned long end, gfp_t gfp)
883 {
884 __mas_set_range(&vmi->mas, start, end - 1);
885 mas_store_gfp(&vmi->mas, NULL, gfp);
886 if (unlikely(mas_is_err(&vmi->mas)))
887 return -ENOMEM;
888
889 return 0;
890 }
891
892 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)893 static inline void vma_iter_free(struct vma_iterator *vmi)
894 {
895 mas_destroy(&vmi->mas);
896 }
897
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)898 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
899 struct vm_area_struct *vma)
900 {
901 vmi->mas.index = vma->vm_start;
902 vmi->mas.last = vma->vm_end - 1;
903 mas_store(&vmi->mas, vma);
904 if (unlikely(mas_is_err(&vmi->mas)))
905 return -ENOMEM;
906
907 vma_mark_attached(vma);
908 return 0;
909 }
910
vma_iter_invalidate(struct vma_iterator * vmi)911 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
912 {
913 mas_pause(&vmi->mas);
914 }
915
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)916 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
917 {
918 mas_set(&vmi->mas, addr);
919 }
920
921 #define for_each_vma(__vmi, __vma) \
922 while (((__vma) = vma_next(&(__vmi))) != NULL)
923
924 /* The MM code likes to work with exclusive end addresses */
925 #define for_each_vma_range(__vmi, __vma, __end) \
926 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
927
928 #ifdef CONFIG_SHMEM
929 /*
930 * The vma_is_shmem is not inline because it is used only by slow
931 * paths in userfault.
932 */
933 bool vma_is_shmem(struct vm_area_struct *vma);
934 bool vma_is_anon_shmem(struct vm_area_struct *vma);
935 #else
vma_is_shmem(struct vm_area_struct * vma)936 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)937 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
938 #endif
939
940 int vma_is_stack_for_current(struct vm_area_struct *vma);
941
942 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
943 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
944
945 struct mmu_gather;
946 struct inode;
947
948 extern void prep_compound_page(struct page *page, unsigned int order);
949
folio_large_order(const struct folio * folio)950 static inline unsigned int folio_large_order(const struct folio *folio)
951 {
952 return folio->_flags_1 & 0xff;
953 }
954
955 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)956 static inline long folio_large_nr_pages(const struct folio *folio)
957 {
958 return folio->_nr_pages;
959 }
960 #else
folio_large_nr_pages(const struct folio * folio)961 static inline long folio_large_nr_pages(const struct folio *folio)
962 {
963 return 1L << folio_large_order(folio);
964 }
965 #endif
966
967 /*
968 * compound_order() can be called without holding a reference, which means
969 * that niceties like page_folio() don't work. These callers should be
970 * prepared to handle wild return values. For example, PG_head may be
971 * set before the order is initialised, or this may be a tail page.
972 * See compaction.c for some good examples.
973 */
compound_order(struct page * page)974 static inline unsigned int compound_order(struct page *page)
975 {
976 struct folio *folio = (struct folio *)page;
977
978 if (!test_bit(PG_head, &folio->flags))
979 return 0;
980 return folio_large_order(folio);
981 }
982
983 /**
984 * folio_order - The allocation order of a folio.
985 * @folio: The folio.
986 *
987 * A folio is composed of 2^order pages. See get_order() for the definition
988 * of order.
989 *
990 * Return: The order of the folio.
991 */
folio_order(const struct folio * folio)992 static inline unsigned int folio_order(const struct folio *folio)
993 {
994 if (!folio_test_large(folio))
995 return 0;
996 return folio_large_order(folio);
997 }
998
999 /**
1000 * folio_reset_order - Reset the folio order and derived _nr_pages
1001 * @folio: The folio.
1002 *
1003 * Reset the order and derived _nr_pages to 0. Must only be used in the
1004 * process of splitting large folios.
1005 */
folio_reset_order(struct folio * folio)1006 static inline void folio_reset_order(struct folio *folio)
1007 {
1008 if (WARN_ON_ONCE(!folio_test_large(folio)))
1009 return;
1010 folio->_flags_1 &= ~0xffUL;
1011 #ifdef NR_PAGES_IN_LARGE_FOLIO
1012 folio->_nr_pages = 0;
1013 #endif
1014 }
1015
1016 #include <linux/huge_mm.h>
1017
1018 /*
1019 * Methods to modify the page usage count.
1020 *
1021 * What counts for a page usage:
1022 * - cache mapping (page->mapping)
1023 * - private data (page->private)
1024 * - page mapped in a task's page tables, each mapping
1025 * is counted separately
1026 *
1027 * Also, many kernel routines increase the page count before a critical
1028 * routine so they can be sure the page doesn't go away from under them.
1029 */
1030
1031 /*
1032 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1033 */
put_page_testzero(struct page * page)1034 static inline int put_page_testzero(struct page *page)
1035 {
1036 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1037 return page_ref_dec_and_test(page);
1038 }
1039
folio_put_testzero(struct folio * folio)1040 static inline int folio_put_testzero(struct folio *folio)
1041 {
1042 return put_page_testzero(&folio->page);
1043 }
1044
1045 /*
1046 * Try to grab a ref unless the page has a refcount of zero, return false if
1047 * that is the case.
1048 * This can be called when MMU is off so it must not access
1049 * any of the virtual mappings.
1050 */
get_page_unless_zero(struct page * page)1051 static inline bool get_page_unless_zero(struct page *page)
1052 {
1053 return page_ref_add_unless(page, 1, 0);
1054 }
1055
folio_get_nontail_page(struct page * page)1056 static inline struct folio *folio_get_nontail_page(struct page *page)
1057 {
1058 if (unlikely(!get_page_unless_zero(page)))
1059 return NULL;
1060 return (struct folio *)page;
1061 }
1062
1063 extern int page_is_ram(unsigned long pfn);
1064
1065 enum {
1066 REGION_INTERSECTS,
1067 REGION_DISJOINT,
1068 REGION_MIXED,
1069 };
1070
1071 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1072 unsigned long desc);
1073
1074 /* Support for virtually mapped pages */
1075 struct page *vmalloc_to_page(const void *addr);
1076 unsigned long vmalloc_to_pfn(const void *addr);
1077
1078 /*
1079 * Determine if an address is within the vmalloc range
1080 *
1081 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1082 * is no special casing required.
1083 */
1084 #ifdef CONFIG_MMU
1085 extern bool is_vmalloc_addr(const void *x);
1086 extern int is_vmalloc_or_module_addr(const void *x);
1087 #else
is_vmalloc_addr(const void * x)1088 static inline bool is_vmalloc_addr(const void *x)
1089 {
1090 return false;
1091 }
is_vmalloc_or_module_addr(const void * x)1092 static inline int is_vmalloc_or_module_addr(const void *x)
1093 {
1094 return 0;
1095 }
1096 #endif
1097
1098 /*
1099 * How many times the entire folio is mapped as a single unit (eg by a
1100 * PMD or PUD entry). This is probably not what you want, except for
1101 * debugging purposes or implementation of other core folio_*() primitives.
1102 */
folio_entire_mapcount(const struct folio * folio)1103 static inline int folio_entire_mapcount(const struct folio *folio)
1104 {
1105 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1106 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1107 return 0;
1108 return atomic_read(&folio->_entire_mapcount) + 1;
1109 }
1110
folio_large_mapcount(const struct folio * folio)1111 static inline int folio_large_mapcount(const struct folio *folio)
1112 {
1113 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1114 return atomic_read(&folio->_large_mapcount) + 1;
1115 }
1116
1117 /**
1118 * folio_mapcount() - Number of mappings of this folio.
1119 * @folio: The folio.
1120 *
1121 * The folio mapcount corresponds to the number of present user page table
1122 * entries that reference any part of a folio. Each such present user page
1123 * table entry must be paired with exactly on folio reference.
1124 *
1125 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1126 * exactly once.
1127 *
1128 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1129 * references the entire folio counts exactly once, even when such special
1130 * page table entries are comprised of multiple ordinary page table entries.
1131 *
1132 * Will report 0 for pages which cannot be mapped into userspace, such as
1133 * slab, page tables and similar.
1134 *
1135 * Return: The number of times this folio is mapped.
1136 */
folio_mapcount(const struct folio * folio)1137 static inline int folio_mapcount(const struct folio *folio)
1138 {
1139 int mapcount;
1140
1141 if (likely(!folio_test_large(folio))) {
1142 mapcount = atomic_read(&folio->_mapcount) + 1;
1143 if (page_mapcount_is_type(mapcount))
1144 mapcount = 0;
1145 return mapcount;
1146 }
1147 return folio_large_mapcount(folio);
1148 }
1149
1150 /**
1151 * folio_mapped - Is this folio mapped into userspace?
1152 * @folio: The folio.
1153 *
1154 * Return: True if any page in this folio is referenced by user page tables.
1155 */
folio_mapped(const struct folio * folio)1156 static inline bool folio_mapped(const struct folio *folio)
1157 {
1158 return folio_mapcount(folio) >= 1;
1159 }
1160
1161 /*
1162 * Return true if this page is mapped into pagetables.
1163 * For compound page it returns true if any sub-page of compound page is mapped,
1164 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1165 */
page_mapped(const struct page * page)1166 static inline bool page_mapped(const struct page *page)
1167 {
1168 return folio_mapped(page_folio(page));
1169 }
1170
virt_to_head_page(const void * x)1171 static inline struct page *virt_to_head_page(const void *x)
1172 {
1173 struct page *page = virt_to_page(x);
1174
1175 return compound_head(page);
1176 }
1177
virt_to_folio(const void * x)1178 static inline struct folio *virt_to_folio(const void *x)
1179 {
1180 struct page *page = virt_to_page(x);
1181
1182 return page_folio(page);
1183 }
1184
1185 void __folio_put(struct folio *folio);
1186
1187 void split_page(struct page *page, unsigned int order);
1188 void folio_copy(struct folio *dst, struct folio *src);
1189 int folio_mc_copy(struct folio *dst, struct folio *src);
1190
1191 unsigned long nr_free_buffer_pages(void);
1192
1193 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1194 static inline unsigned long page_size(struct page *page)
1195 {
1196 return PAGE_SIZE << compound_order(page);
1197 }
1198
1199 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1200 static inline unsigned int page_shift(struct page *page)
1201 {
1202 return PAGE_SHIFT + compound_order(page);
1203 }
1204
1205 /**
1206 * thp_order - Order of a transparent huge page.
1207 * @page: Head page of a transparent huge page.
1208 */
thp_order(struct page * page)1209 static inline unsigned int thp_order(struct page *page)
1210 {
1211 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1212 return compound_order(page);
1213 }
1214
1215 /**
1216 * thp_size - Size of a transparent huge page.
1217 * @page: Head page of a transparent huge page.
1218 *
1219 * Return: Number of bytes in this page.
1220 */
thp_size(struct page * page)1221 static inline unsigned long thp_size(struct page *page)
1222 {
1223 return PAGE_SIZE << thp_order(page);
1224 }
1225
1226 #ifdef CONFIG_MMU
1227 /*
1228 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1229 * servicing faults for write access. In the normal case, do always want
1230 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1231 * that do not have writing enabled, when used by access_process_vm.
1232 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1233 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1234 {
1235 if (likely(vma->vm_flags & VM_WRITE))
1236 pte = pte_mkwrite(pte, vma);
1237 return pte;
1238 }
1239
1240 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1241 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1242 struct page *page, unsigned int nr, unsigned long addr);
1243
1244 vm_fault_t finish_fault(struct vm_fault *vmf);
1245 #endif
1246
1247 /*
1248 * Multiple processes may "see" the same page. E.g. for untouched
1249 * mappings of /dev/null, all processes see the same page full of
1250 * zeroes, and text pages of executables and shared libraries have
1251 * only one copy in memory, at most, normally.
1252 *
1253 * For the non-reserved pages, page_count(page) denotes a reference count.
1254 * page_count() == 0 means the page is free. page->lru is then used for
1255 * freelist management in the buddy allocator.
1256 * page_count() > 0 means the page has been allocated.
1257 *
1258 * Pages are allocated by the slab allocator in order to provide memory
1259 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1260 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1261 * unless a particular usage is carefully commented. (the responsibility of
1262 * freeing the kmalloc memory is the caller's, of course).
1263 *
1264 * A page may be used by anyone else who does a __get_free_page().
1265 * In this case, page_count still tracks the references, and should only
1266 * be used through the normal accessor functions. The top bits of page->flags
1267 * and page->virtual store page management information, but all other fields
1268 * are unused and could be used privately, carefully. The management of this
1269 * page is the responsibility of the one who allocated it, and those who have
1270 * subsequently been given references to it.
1271 *
1272 * The other pages (we may call them "pagecache pages") are completely
1273 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1274 * The following discussion applies only to them.
1275 *
1276 * A pagecache page contains an opaque `private' member, which belongs to the
1277 * page's address_space. Usually, this is the address of a circular list of
1278 * the page's disk buffers. PG_private must be set to tell the VM to call
1279 * into the filesystem to release these pages.
1280 *
1281 * A folio may belong to an inode's memory mapping. In this case,
1282 * folio->mapping points to the inode, and folio->index is the file
1283 * offset of the folio, in units of PAGE_SIZE.
1284 *
1285 * If pagecache pages are not associated with an inode, they are said to be
1286 * anonymous pages. These may become associated with the swapcache, and in that
1287 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1288 *
1289 * In either case (swapcache or inode backed), the pagecache itself holds one
1290 * reference to the page. Setting PG_private should also increment the
1291 * refcount. The each user mapping also has a reference to the page.
1292 *
1293 * The pagecache pages are stored in a per-mapping radix tree, which is
1294 * rooted at mapping->i_pages, and indexed by offset.
1295 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1296 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1297 *
1298 * All pagecache pages may be subject to I/O:
1299 * - inode pages may need to be read from disk,
1300 * - inode pages which have been modified and are MAP_SHARED may need
1301 * to be written back to the inode on disk,
1302 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1303 * modified may need to be swapped out to swap space and (later) to be read
1304 * back into memory.
1305 */
1306
1307 /* 127: arbitrary random number, small enough to assemble well */
1308 #define folio_ref_zero_or_close_to_overflow(folio) \
1309 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1310
1311 /**
1312 * folio_get - Increment the reference count on a folio.
1313 * @folio: The folio.
1314 *
1315 * Context: May be called in any context, as long as you know that
1316 * you have a refcount on the folio. If you do not already have one,
1317 * folio_try_get() may be the right interface for you to use.
1318 */
folio_get(struct folio * folio)1319 static inline void folio_get(struct folio *folio)
1320 {
1321 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1322 folio_ref_inc(folio);
1323 }
1324
get_page(struct page * page)1325 static inline void get_page(struct page *page)
1326 {
1327 struct folio *folio = page_folio(page);
1328 if (WARN_ON_ONCE(folio_test_slab(folio)))
1329 return;
1330 if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1331 return;
1332 folio_get(folio);
1333 }
1334
try_get_page(struct page * page)1335 static inline __must_check bool try_get_page(struct page *page)
1336 {
1337 page = compound_head(page);
1338 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1339 return false;
1340 page_ref_inc(page);
1341 return true;
1342 }
1343
1344 /**
1345 * folio_put - Decrement the reference count on a folio.
1346 * @folio: The folio.
1347 *
1348 * If the folio's reference count reaches zero, the memory will be
1349 * released back to the page allocator and may be used by another
1350 * allocation immediately. Do not access the memory or the struct folio
1351 * after calling folio_put() unless you can be sure that it wasn't the
1352 * last reference.
1353 *
1354 * Context: May be called in process or interrupt context, but not in NMI
1355 * context. May be called while holding a spinlock.
1356 */
folio_put(struct folio * folio)1357 static inline void folio_put(struct folio *folio)
1358 {
1359 if (folio_put_testzero(folio))
1360 __folio_put(folio);
1361 }
1362
1363 /**
1364 * folio_put_refs - Reduce the reference count on a folio.
1365 * @folio: The folio.
1366 * @refs: The amount to subtract from the folio's reference count.
1367 *
1368 * If the folio's reference count reaches zero, the memory will be
1369 * released back to the page allocator and may be used by another
1370 * allocation immediately. Do not access the memory or the struct folio
1371 * after calling folio_put_refs() unless you can be sure that these weren't
1372 * the last references.
1373 *
1374 * Context: May be called in process or interrupt context, but not in NMI
1375 * context. May be called while holding a spinlock.
1376 */
folio_put_refs(struct folio * folio,int refs)1377 static inline void folio_put_refs(struct folio *folio, int refs)
1378 {
1379 if (folio_ref_sub_and_test(folio, refs))
1380 __folio_put(folio);
1381 }
1382
1383 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1384
1385 /*
1386 * union release_pages_arg - an array of pages or folios
1387 *
1388 * release_pages() releases a simple array of multiple pages, and
1389 * accepts various different forms of said page array: either
1390 * a regular old boring array of pages, an array of folios, or
1391 * an array of encoded page pointers.
1392 *
1393 * The transparent union syntax for this kind of "any of these
1394 * argument types" is all kinds of ugly, so look away.
1395 */
1396 typedef union {
1397 struct page **pages;
1398 struct folio **folios;
1399 struct encoded_page **encoded_pages;
1400 } release_pages_arg __attribute__ ((__transparent_union__));
1401
1402 void release_pages(release_pages_arg, int nr);
1403
1404 /**
1405 * folios_put - Decrement the reference count on an array of folios.
1406 * @folios: The folios.
1407 *
1408 * Like folio_put(), but for a batch of folios. This is more efficient
1409 * than writing the loop yourself as it will optimise the locks which need
1410 * to be taken if the folios are freed. The folios batch is returned
1411 * empty and ready to be reused for another batch; there is no need to
1412 * reinitialise it.
1413 *
1414 * Context: May be called in process or interrupt context, but not in NMI
1415 * context. May be called while holding a spinlock.
1416 */
folios_put(struct folio_batch * folios)1417 static inline void folios_put(struct folio_batch *folios)
1418 {
1419 folios_put_refs(folios, NULL);
1420 }
1421
put_page(struct page * page)1422 static inline void put_page(struct page *page)
1423 {
1424 struct folio *folio = page_folio(page);
1425
1426 if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1427 return;
1428
1429 folio_put(folio);
1430 }
1431
1432 /*
1433 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1434 * the page's refcount so that two separate items are tracked: the original page
1435 * reference count, and also a new count of how many pin_user_pages() calls were
1436 * made against the page. ("gup-pinned" is another term for the latter).
1437 *
1438 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1439 * distinct from normal pages. As such, the unpin_user_page() call (and its
1440 * variants) must be used in order to release gup-pinned pages.
1441 *
1442 * Choice of value:
1443 *
1444 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1445 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1446 * simpler, due to the fact that adding an even power of two to the page
1447 * refcount has the effect of using only the upper N bits, for the code that
1448 * counts up using the bias value. This means that the lower bits are left for
1449 * the exclusive use of the original code that increments and decrements by one
1450 * (or at least, by much smaller values than the bias value).
1451 *
1452 * Of course, once the lower bits overflow into the upper bits (and this is
1453 * OK, because subtraction recovers the original values), then visual inspection
1454 * no longer suffices to directly view the separate counts. However, for normal
1455 * applications that don't have huge page reference counts, this won't be an
1456 * issue.
1457 *
1458 * Locking: the lockless algorithm described in folio_try_get_rcu()
1459 * provides safe operation for get_user_pages(), folio_mkclean() and
1460 * other calls that race to set up page table entries.
1461 */
1462 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1463
1464 void unpin_user_page(struct page *page);
1465 void unpin_folio(struct folio *folio);
1466 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1467 bool make_dirty);
1468 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1469 bool make_dirty);
1470 void unpin_user_pages(struct page **pages, unsigned long npages);
1471 void unpin_user_folio(struct folio *folio, unsigned long npages);
1472 void unpin_folios(struct folio **folios, unsigned long nfolios);
1473
is_cow_mapping(vm_flags_t flags)1474 static inline bool is_cow_mapping(vm_flags_t flags)
1475 {
1476 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1477 }
1478
1479 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1480 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1481 {
1482 /*
1483 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1484 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1485 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1486 * underlying memory if ptrace is active, so this is only possible if
1487 * ptrace does not apply. Note that there is no mprotect() to upgrade
1488 * write permissions later.
1489 */
1490 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1491 }
1492 #endif
1493
1494 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1495 #define SECTION_IN_PAGE_FLAGS
1496 #endif
1497
1498 /*
1499 * The identification function is mainly used by the buddy allocator for
1500 * determining if two pages could be buddies. We are not really identifying
1501 * the zone since we could be using the section number id if we do not have
1502 * node id available in page flags.
1503 * We only guarantee that it will return the same value for two combinable
1504 * pages in a zone.
1505 */
page_zone_id(struct page * page)1506 static inline int page_zone_id(struct page *page)
1507 {
1508 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1509 }
1510
1511 #ifdef NODE_NOT_IN_PAGE_FLAGS
1512 int page_to_nid(const struct page *page);
1513 #else
page_to_nid(const struct page * page)1514 static inline int page_to_nid(const struct page *page)
1515 {
1516 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1517 }
1518 #endif
1519
folio_nid(const struct folio * folio)1520 static inline int folio_nid(const struct folio *folio)
1521 {
1522 return page_to_nid(&folio->page);
1523 }
1524
1525 #ifdef CONFIG_NUMA_BALANCING
1526 /* page access time bits needs to hold at least 4 seconds */
1527 #define PAGE_ACCESS_TIME_MIN_BITS 12
1528 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1529 #define PAGE_ACCESS_TIME_BUCKETS \
1530 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1531 #else
1532 #define PAGE_ACCESS_TIME_BUCKETS 0
1533 #endif
1534
1535 #define PAGE_ACCESS_TIME_MASK \
1536 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1537
cpu_pid_to_cpupid(int cpu,int pid)1538 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1539 {
1540 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1541 }
1542
cpupid_to_pid(int cpupid)1543 static inline int cpupid_to_pid(int cpupid)
1544 {
1545 return cpupid & LAST__PID_MASK;
1546 }
1547
cpupid_to_cpu(int cpupid)1548 static inline int cpupid_to_cpu(int cpupid)
1549 {
1550 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1551 }
1552
cpupid_to_nid(int cpupid)1553 static inline int cpupid_to_nid(int cpupid)
1554 {
1555 return cpu_to_node(cpupid_to_cpu(cpupid));
1556 }
1557
cpupid_pid_unset(int cpupid)1558 static inline bool cpupid_pid_unset(int cpupid)
1559 {
1560 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1561 }
1562
cpupid_cpu_unset(int cpupid)1563 static inline bool cpupid_cpu_unset(int cpupid)
1564 {
1565 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1566 }
1567
__cpupid_match_pid(pid_t task_pid,int cpupid)1568 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1569 {
1570 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1571 }
1572
1573 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1574 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1575 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1576 {
1577 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1578 }
1579
folio_last_cpupid(struct folio * folio)1580 static inline int folio_last_cpupid(struct folio *folio)
1581 {
1582 return folio->_last_cpupid;
1583 }
page_cpupid_reset_last(struct page * page)1584 static inline void page_cpupid_reset_last(struct page *page)
1585 {
1586 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1587 }
1588 #else
folio_last_cpupid(struct folio * folio)1589 static inline int folio_last_cpupid(struct folio *folio)
1590 {
1591 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1592 }
1593
1594 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1595
page_cpupid_reset_last(struct page * page)1596 static inline void page_cpupid_reset_last(struct page *page)
1597 {
1598 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1599 }
1600 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1601
folio_xchg_access_time(struct folio * folio,int time)1602 static inline int folio_xchg_access_time(struct folio *folio, int time)
1603 {
1604 int last_time;
1605
1606 last_time = folio_xchg_last_cpupid(folio,
1607 time >> PAGE_ACCESS_TIME_BUCKETS);
1608 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1609 }
1610
vma_set_access_pid_bit(struct vm_area_struct * vma)1611 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1612 {
1613 unsigned int pid_bit;
1614
1615 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1616 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1617 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1618 }
1619 }
1620
1621 bool folio_use_access_time(struct folio *folio);
1622 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1623 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1624 {
1625 return folio_nid(folio); /* XXX */
1626 }
1627
folio_xchg_access_time(struct folio * folio,int time)1628 static inline int folio_xchg_access_time(struct folio *folio, int time)
1629 {
1630 return 0;
1631 }
1632
folio_last_cpupid(struct folio * folio)1633 static inline int folio_last_cpupid(struct folio *folio)
1634 {
1635 return folio_nid(folio); /* XXX */
1636 }
1637
cpupid_to_nid(int cpupid)1638 static inline int cpupid_to_nid(int cpupid)
1639 {
1640 return -1;
1641 }
1642
cpupid_to_pid(int cpupid)1643 static inline int cpupid_to_pid(int cpupid)
1644 {
1645 return -1;
1646 }
1647
cpupid_to_cpu(int cpupid)1648 static inline int cpupid_to_cpu(int cpupid)
1649 {
1650 return -1;
1651 }
1652
cpu_pid_to_cpupid(int nid,int pid)1653 static inline int cpu_pid_to_cpupid(int nid, int pid)
1654 {
1655 return -1;
1656 }
1657
cpupid_pid_unset(int cpupid)1658 static inline bool cpupid_pid_unset(int cpupid)
1659 {
1660 return true;
1661 }
1662
page_cpupid_reset_last(struct page * page)1663 static inline void page_cpupid_reset_last(struct page *page)
1664 {
1665 }
1666
cpupid_match_pid(struct task_struct * task,int cpupid)1667 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1668 {
1669 return false;
1670 }
1671
vma_set_access_pid_bit(struct vm_area_struct * vma)1672 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1673 {
1674 }
folio_use_access_time(struct folio * folio)1675 static inline bool folio_use_access_time(struct folio *folio)
1676 {
1677 return false;
1678 }
1679 #endif /* CONFIG_NUMA_BALANCING */
1680
1681 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1682
1683 /*
1684 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1685 * setting tags for all pages to native kernel tag value 0xff, as the default
1686 * value 0x00 maps to 0xff.
1687 */
1688
page_kasan_tag(const struct page * page)1689 static inline u8 page_kasan_tag(const struct page *page)
1690 {
1691 u8 tag = KASAN_TAG_KERNEL;
1692
1693 if (kasan_enabled()) {
1694 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1695 tag ^= 0xff;
1696 }
1697
1698 return tag;
1699 }
1700
page_kasan_tag_set(struct page * page,u8 tag)1701 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1702 {
1703 unsigned long old_flags, flags;
1704
1705 if (!kasan_enabled())
1706 return;
1707
1708 tag ^= 0xff;
1709 old_flags = READ_ONCE(page->flags);
1710 do {
1711 flags = old_flags;
1712 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1713 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1714 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1715 }
1716
page_kasan_tag_reset(struct page * page)1717 static inline void page_kasan_tag_reset(struct page *page)
1718 {
1719 if (kasan_enabled())
1720 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1721 }
1722
1723 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1724
page_kasan_tag(const struct page * page)1725 static inline u8 page_kasan_tag(const struct page *page)
1726 {
1727 return 0xff;
1728 }
1729
page_kasan_tag_set(struct page * page,u8 tag)1730 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1731 static inline void page_kasan_tag_reset(struct page *page) { }
1732
1733 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1734
page_zone(const struct page * page)1735 static inline struct zone *page_zone(const struct page *page)
1736 {
1737 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1738 }
1739
page_pgdat(const struct page * page)1740 static inline pg_data_t *page_pgdat(const struct page *page)
1741 {
1742 return NODE_DATA(page_to_nid(page));
1743 }
1744
folio_zone(const struct folio * folio)1745 static inline struct zone *folio_zone(const struct folio *folio)
1746 {
1747 return page_zone(&folio->page);
1748 }
1749
folio_pgdat(const struct folio * folio)1750 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1751 {
1752 return page_pgdat(&folio->page);
1753 }
1754
1755 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1756 static inline void set_page_section(struct page *page, unsigned long section)
1757 {
1758 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1759 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1760 }
1761
page_to_section(const struct page * page)1762 static inline unsigned long page_to_section(const struct page *page)
1763 {
1764 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1765 }
1766 #endif
1767
1768 /**
1769 * folio_pfn - Return the Page Frame Number of a folio.
1770 * @folio: The folio.
1771 *
1772 * A folio may contain multiple pages. The pages have consecutive
1773 * Page Frame Numbers.
1774 *
1775 * Return: The Page Frame Number of the first page in the folio.
1776 */
folio_pfn(const struct folio * folio)1777 static inline unsigned long folio_pfn(const struct folio *folio)
1778 {
1779 return page_to_pfn(&folio->page);
1780 }
1781
pfn_folio(unsigned long pfn)1782 static inline struct folio *pfn_folio(unsigned long pfn)
1783 {
1784 return page_folio(pfn_to_page(pfn));
1785 }
1786
1787 #ifdef CONFIG_MMU
mk_pte(struct page * page,pgprot_t pgprot)1788 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1789 {
1790 return pfn_pte(page_to_pfn(page), pgprot);
1791 }
1792
1793 /**
1794 * folio_mk_pte - Create a PTE for this folio
1795 * @folio: The folio to create a PTE for
1796 * @pgprot: The page protection bits to use
1797 *
1798 * Create a page table entry for the first page of this folio.
1799 * This is suitable for passing to set_ptes().
1800 *
1801 * Return: A page table entry suitable for mapping this folio.
1802 */
folio_mk_pte(struct folio * folio,pgprot_t pgprot)1803 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1804 {
1805 return pfn_pte(folio_pfn(folio), pgprot);
1806 }
1807
1808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1809 /**
1810 * folio_mk_pmd - Create a PMD for this folio
1811 * @folio: The folio to create a PMD for
1812 * @pgprot: The page protection bits to use
1813 *
1814 * Create a page table entry for the first page of this folio.
1815 * This is suitable for passing to set_pmd_at().
1816 *
1817 * Return: A page table entry suitable for mapping this folio.
1818 */
folio_mk_pmd(struct folio * folio,pgprot_t pgprot)1819 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1820 {
1821 return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1822 }
1823
1824 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1825 /**
1826 * folio_mk_pud - Create a PUD for this folio
1827 * @folio: The folio to create a PUD for
1828 * @pgprot: The page protection bits to use
1829 *
1830 * Create a page table entry for the first page of this folio.
1831 * This is suitable for passing to set_pud_at().
1832 *
1833 * Return: A page table entry suitable for mapping this folio.
1834 */
folio_mk_pud(struct folio * folio,pgprot_t pgprot)1835 static inline pud_t folio_mk_pud(struct folio *folio, pgprot_t pgprot)
1836 {
1837 return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
1838 }
1839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1840 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1841 #endif /* CONFIG_MMU */
1842
folio_has_pincount(const struct folio * folio)1843 static inline bool folio_has_pincount(const struct folio *folio)
1844 {
1845 if (IS_ENABLED(CONFIG_64BIT))
1846 return folio_test_large(folio);
1847 return folio_order(folio) > 1;
1848 }
1849
1850 /**
1851 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1852 * @folio: The folio.
1853 *
1854 * This function checks if a folio has been pinned via a call to
1855 * a function in the pin_user_pages() family.
1856 *
1857 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1858 * because it means "definitely not pinned for DMA", but true means "probably
1859 * pinned for DMA, but possibly a false positive due to having at least
1860 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1861 *
1862 * False positives are OK, because: a) it's unlikely for a folio to
1863 * get that many refcounts, and b) all the callers of this routine are
1864 * expected to be able to deal gracefully with a false positive.
1865 *
1866 * For most large folios, the result will be exactly correct. That's because
1867 * we have more tracking data available: the _pincount field is used
1868 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1869 *
1870 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1871 *
1872 * Return: True, if it is likely that the folio has been "dma-pinned".
1873 * False, if the folio is definitely not dma-pinned.
1874 */
folio_maybe_dma_pinned(struct folio * folio)1875 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1876 {
1877 if (folio_has_pincount(folio))
1878 return atomic_read(&folio->_pincount) > 0;
1879
1880 /*
1881 * folio_ref_count() is signed. If that refcount overflows, then
1882 * folio_ref_count() returns a negative value, and callers will avoid
1883 * further incrementing the refcount.
1884 *
1885 * Here, for that overflow case, use the sign bit to count a little
1886 * bit higher via unsigned math, and thus still get an accurate result.
1887 */
1888 return ((unsigned int)folio_ref_count(folio)) >=
1889 GUP_PIN_COUNTING_BIAS;
1890 }
1891
1892 /*
1893 * This should most likely only be called during fork() to see whether we
1894 * should break the cow immediately for an anon page on the src mm.
1895 *
1896 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1897 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1898 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1899 struct folio *folio)
1900 {
1901 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1902
1903 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1904 return false;
1905
1906 return folio_maybe_dma_pinned(folio);
1907 }
1908
1909 /**
1910 * is_zero_page - Query if a page is a zero page
1911 * @page: The page to query
1912 *
1913 * This returns true if @page is one of the permanent zero pages.
1914 */
is_zero_page(const struct page * page)1915 static inline bool is_zero_page(const struct page *page)
1916 {
1917 return is_zero_pfn(page_to_pfn(page));
1918 }
1919
1920 /**
1921 * is_zero_folio - Query if a folio is a zero page
1922 * @folio: The folio to query
1923 *
1924 * This returns true if @folio is one of the permanent zero pages.
1925 */
is_zero_folio(const struct folio * folio)1926 static inline bool is_zero_folio(const struct folio *folio)
1927 {
1928 return is_zero_page(&folio->page);
1929 }
1930
1931 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1932 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1933 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1934 {
1935 #ifdef CONFIG_CMA
1936 int mt = folio_migratetype(folio);
1937
1938 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1939 return false;
1940 #endif
1941 /* The zero page can be "pinned" but gets special handling. */
1942 if (is_zero_folio(folio))
1943 return true;
1944
1945 /* Coherent device memory must always allow eviction. */
1946 if (folio_is_device_coherent(folio))
1947 return false;
1948
1949 /*
1950 * Filesystems can only tolerate transient delays to truncate and
1951 * hole-punch operations
1952 */
1953 if (folio_is_fsdax(folio))
1954 return false;
1955
1956 /* Otherwise, non-movable zone folios can be pinned. */
1957 return !folio_is_zone_movable(folio);
1958
1959 }
1960 #else
folio_is_longterm_pinnable(struct folio * folio)1961 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1962 {
1963 return true;
1964 }
1965 #endif
1966
set_page_zone(struct page * page,enum zone_type zone)1967 static inline void set_page_zone(struct page *page, enum zone_type zone)
1968 {
1969 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1970 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1971 }
1972
set_page_node(struct page * page,unsigned long node)1973 static inline void set_page_node(struct page *page, unsigned long node)
1974 {
1975 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1976 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1977 }
1978
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1979 static inline void set_page_links(struct page *page, enum zone_type zone,
1980 unsigned long node, unsigned long pfn)
1981 {
1982 set_page_zone(page, zone);
1983 set_page_node(page, node);
1984 #ifdef SECTION_IN_PAGE_FLAGS
1985 set_page_section(page, pfn_to_section_nr(pfn));
1986 #endif
1987 }
1988
1989 /**
1990 * folio_nr_pages - The number of pages in the folio.
1991 * @folio: The folio.
1992 *
1993 * Return: A positive power of two.
1994 */
folio_nr_pages(const struct folio * folio)1995 static inline long folio_nr_pages(const struct folio *folio)
1996 {
1997 if (!folio_test_large(folio))
1998 return 1;
1999 return folio_large_nr_pages(folio);
2000 }
2001
2002 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2003 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2004 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2005 #else
2006 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2007 #endif
2008
2009 /*
2010 * compound_nr() returns the number of pages in this potentially compound
2011 * page. compound_nr() can be called on a tail page, and is defined to
2012 * return 1 in that case.
2013 */
compound_nr(struct page * page)2014 static inline long compound_nr(struct page *page)
2015 {
2016 struct folio *folio = (struct folio *)page;
2017
2018 if (!test_bit(PG_head, &folio->flags))
2019 return 1;
2020 return folio_large_nr_pages(folio);
2021 }
2022
2023 /**
2024 * folio_next - Move to the next physical folio.
2025 * @folio: The folio we're currently operating on.
2026 *
2027 * If you have physically contiguous memory which may span more than
2028 * one folio (eg a &struct bio_vec), use this function to move from one
2029 * folio to the next. Do not use it if the memory is only virtually
2030 * contiguous as the folios are almost certainly not adjacent to each
2031 * other. This is the folio equivalent to writing ``page++``.
2032 *
2033 * Context: We assume that the folios are refcounted and/or locked at a
2034 * higher level and do not adjust the reference counts.
2035 * Return: The next struct folio.
2036 */
folio_next(struct folio * folio)2037 static inline struct folio *folio_next(struct folio *folio)
2038 {
2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040 }
2041
2042 /**
2043 * folio_shift - The size of the memory described by this folio.
2044 * @folio: The folio.
2045 *
2046 * A folio represents a number of bytes which is a power-of-two in size.
2047 * This function tells you which power-of-two the folio is. See also
2048 * folio_size() and folio_order().
2049 *
2050 * Context: The caller should have a reference on the folio to prevent
2051 * it from being split. It is not necessary for the folio to be locked.
2052 * Return: The base-2 logarithm of the size of this folio.
2053 */
folio_shift(const struct folio * folio)2054 static inline unsigned int folio_shift(const struct folio *folio)
2055 {
2056 return PAGE_SHIFT + folio_order(folio);
2057 }
2058
2059 /**
2060 * folio_size - The number of bytes in a folio.
2061 * @folio: The folio.
2062 *
2063 * Context: The caller should have a reference on the folio to prevent
2064 * it from being split. It is not necessary for the folio to be locked.
2065 * Return: The number of bytes in this folio.
2066 */
folio_size(const struct folio * folio)2067 static inline size_t folio_size(const struct folio *folio)
2068 {
2069 return PAGE_SIZE << folio_order(folio);
2070 }
2071
2072 /**
2073 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2074 * tables of more than one MM
2075 * @folio: The folio.
2076 *
2077 * This function checks if the folio maybe currently mapped into more than one
2078 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2079 * MM ("mapped exclusively").
2080 *
2081 * For KSM folios, this function also returns "mapped shared" when a folio is
2082 * mapped multiple times into the same MM, because the individual page mappings
2083 * are independent.
2084 *
2085 * For small anonymous folios and anonymous hugetlb folios, the return
2086 * value will be exactly correct: non-KSM folios can only be mapped at most once
2087 * into an MM, and they cannot be partially mapped. KSM folios are
2088 * considered shared even if mapped multiple times into the same MM.
2089 *
2090 * For other folios, the result can be fuzzy:
2091 * #. For partially-mappable large folios (THP), the return value can wrongly
2092 * indicate "mapped shared" (false positive) if a folio was mapped by
2093 * more than two MMs at one point in time.
2094 * #. For pagecache folios (including hugetlb), the return value can wrongly
2095 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2096 * cover the same file range.
2097 *
2098 * Further, this function only considers current page table mappings that
2099 * are tracked using the folio mapcount(s).
2100 *
2101 * This function does not consider:
2102 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2103 * pagecache, temporary unmapping for migration).
2104 * #. If the folio is mapped differently (VM_PFNMAP).
2105 * #. If hugetlb page table sharing applies. Callers might want to check
2106 * hugetlb_pmd_shared().
2107 *
2108 * Return: Whether the folio is estimated to be mapped into more than one MM.
2109 */
folio_maybe_mapped_shared(struct folio * folio)2110 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2111 {
2112 int mapcount = folio_mapcount(folio);
2113
2114 /* Only partially-mappable folios require more care. */
2115 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2116 return mapcount > 1;
2117
2118 /*
2119 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2120 * simply assume "mapped shared", nobody should really care
2121 * about this for arbitrary kernel allocations.
2122 */
2123 if (!IS_ENABLED(CONFIG_MM_ID))
2124 return true;
2125
2126 /*
2127 * A single mapping implies "mapped exclusively", even if the
2128 * folio flag says something different: it's easier to handle this
2129 * case here instead of on the RMAP hot path.
2130 */
2131 if (mapcount <= 1)
2132 return false;
2133 return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2134 }
2135
2136 /**
2137 * folio_expected_ref_count - calculate the expected folio refcount
2138 * @folio: the folio
2139 *
2140 * Calculate the expected folio refcount, taking references from the pagecache,
2141 * swapcache, PG_private and page table mappings into account. Useful in
2142 * combination with folio_ref_count() to detect unexpected references (e.g.,
2143 * GUP or other temporary references).
2144 *
2145 * Does currently not consider references from the LRU cache. If the folio
2146 * was isolated from the LRU (which is the case during migration or split),
2147 * the LRU cache does not apply.
2148 *
2149 * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2150 * locked will return a stable result.
2151 *
2152 * Calling this function on a mapped folio will not result in a stable result,
2153 * because nothing stops additional page table mappings from coming (e.g.,
2154 * fork()) or going (e.g., munmap()).
2155 *
2156 * Calling this function without the folio lock will also not result in a
2157 * stable result: for example, the folio might get dropped from the swapcache
2158 * concurrently.
2159 *
2160 * However, even when called without the folio lock or on a mapped folio,
2161 * this function can be used to detect unexpected references early (for example,
2162 * if it makes sense to even lock the folio and unmap it).
2163 *
2164 * The caller must add any reference (e.g., from folio_try_get()) it might be
2165 * holding itself to the result.
2166 *
2167 * Returns the expected folio refcount.
2168 */
folio_expected_ref_count(const struct folio * folio)2169 static inline int folio_expected_ref_count(const struct folio *folio)
2170 {
2171 const int order = folio_order(folio);
2172 int ref_count = 0;
2173
2174 if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2175 return 0;
2176
2177 if (folio_test_anon(folio)) {
2178 /* One reference per page from the swapcache. */
2179 ref_count += folio_test_swapcache(folio) << order;
2180 } else {
2181 /* One reference per page from the pagecache. */
2182 ref_count += !!folio->mapping << order;
2183 /* One reference from PG_private. */
2184 ref_count += folio_test_private(folio);
2185 }
2186
2187 /* One reference per page table mapping. */
2188 return ref_count + folio_mapcount(folio);
2189 }
2190
2191 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2192 static inline int arch_make_folio_accessible(struct folio *folio)
2193 {
2194 return 0;
2195 }
2196 #endif
2197
2198 /*
2199 * Some inline functions in vmstat.h depend on page_zone()
2200 */
2201 #include <linux/vmstat.h>
2202
2203 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2204 #define HASHED_PAGE_VIRTUAL
2205 #endif
2206
2207 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2208 static inline void *page_address(const struct page *page)
2209 {
2210 return page->virtual;
2211 }
set_page_address(struct page * page,void * address)2212 static inline void set_page_address(struct page *page, void *address)
2213 {
2214 page->virtual = address;
2215 }
2216 #define page_address_init() do { } while(0)
2217 #endif
2218
2219 #if defined(HASHED_PAGE_VIRTUAL)
2220 void *page_address(const struct page *page);
2221 void set_page_address(struct page *page, void *virtual);
2222 void page_address_init(void);
2223 #endif
2224
lowmem_page_address(const struct page * page)2225 static __always_inline void *lowmem_page_address(const struct page *page)
2226 {
2227 return page_to_virt(page);
2228 }
2229
2230 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2231 #define page_address(page) lowmem_page_address(page)
2232 #define set_page_address(page, address) do { } while(0)
2233 #define page_address_init() do { } while(0)
2234 #endif
2235
folio_address(const struct folio * folio)2236 static inline void *folio_address(const struct folio *folio)
2237 {
2238 return page_address(&folio->page);
2239 }
2240
2241 /*
2242 * Return true only if the page has been allocated with
2243 * ALLOC_NO_WATERMARKS and the low watermark was not
2244 * met implying that the system is under some pressure.
2245 */
page_is_pfmemalloc(const struct page * page)2246 static inline bool page_is_pfmemalloc(const struct page *page)
2247 {
2248 /*
2249 * lru.next has bit 1 set if the page is allocated from the
2250 * pfmemalloc reserves. Callers may simply overwrite it if
2251 * they do not need to preserve that information.
2252 */
2253 return (uintptr_t)page->lru.next & BIT(1);
2254 }
2255
2256 /*
2257 * Return true only if the folio has been allocated with
2258 * ALLOC_NO_WATERMARKS and the low watermark was not
2259 * met implying that the system is under some pressure.
2260 */
folio_is_pfmemalloc(const struct folio * folio)2261 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2262 {
2263 /*
2264 * lru.next has bit 1 set if the page is allocated from the
2265 * pfmemalloc reserves. Callers may simply overwrite it if
2266 * they do not need to preserve that information.
2267 */
2268 return (uintptr_t)folio->lru.next & BIT(1);
2269 }
2270
2271 /*
2272 * Only to be called by the page allocator on a freshly allocated
2273 * page.
2274 */
set_page_pfmemalloc(struct page * page)2275 static inline void set_page_pfmemalloc(struct page *page)
2276 {
2277 page->lru.next = (void *)BIT(1);
2278 }
2279
clear_page_pfmemalloc(struct page * page)2280 static inline void clear_page_pfmemalloc(struct page *page)
2281 {
2282 page->lru.next = NULL;
2283 }
2284
2285 /*
2286 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2287 */
2288 extern void pagefault_out_of_memory(void);
2289
2290 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2291 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2292
2293 /*
2294 * Parameter block passed down to zap_pte_range in exceptional cases.
2295 */
2296 struct zap_details {
2297 struct folio *single_folio; /* Locked folio to be unmapped */
2298 bool even_cows; /* Zap COWed private pages too? */
2299 bool reclaim_pt; /* Need reclaim page tables? */
2300 zap_flags_t zap_flags; /* Extra flags for zapping */
2301 };
2302
2303 /*
2304 * Whether to drop the pte markers, for example, the uffd-wp information for
2305 * file-backed memory. This should only be specified when we will completely
2306 * drop the page in the mm, either by truncation or unmapping of the vma. By
2307 * default, the flag is not set.
2308 */
2309 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2310 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2311 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2312
2313 #ifdef CONFIG_SCHED_MM_CID
2314 void sched_mm_cid_before_execve(struct task_struct *t);
2315 void sched_mm_cid_after_execve(struct task_struct *t);
2316 void sched_mm_cid_fork(struct task_struct *t);
2317 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2318 static inline int task_mm_cid(struct task_struct *t)
2319 {
2320 return t->mm_cid;
2321 }
2322 #else
sched_mm_cid_before_execve(struct task_struct * t)2323 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2324 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2325 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2326 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2327 static inline int task_mm_cid(struct task_struct *t)
2328 {
2329 /*
2330 * Use the processor id as a fall-back when the mm cid feature is
2331 * disabled. This provides functional per-cpu data structure accesses
2332 * in user-space, althrough it won't provide the memory usage benefits.
2333 */
2334 return raw_smp_processor_id();
2335 }
2336 #endif
2337
2338 #ifdef CONFIG_MMU
2339 extern bool can_do_mlock(void);
2340 #else
can_do_mlock(void)2341 static inline bool can_do_mlock(void) { return false; }
2342 #endif
2343 extern int user_shm_lock(size_t, struct ucounts *);
2344 extern void user_shm_unlock(size_t, struct ucounts *);
2345
2346 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2347 pte_t pte);
2348 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2349 pte_t pte);
2350 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2351 unsigned long addr, pmd_t pmd);
2352 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2353 pmd_t pmd);
2354
2355 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2356 unsigned long size);
2357 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2358 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2359 static inline void zap_vma_pages(struct vm_area_struct *vma)
2360 {
2361 zap_page_range_single(vma, vma->vm_start,
2362 vma->vm_end - vma->vm_start, NULL);
2363 }
2364 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2365 struct vm_area_struct *start_vma, unsigned long start,
2366 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2367
2368 struct mmu_notifier_range;
2369
2370 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2371 unsigned long end, unsigned long floor, unsigned long ceiling);
2372 int
2373 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2374 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2375 void *buf, int len, int write);
2376
2377 struct follow_pfnmap_args {
2378 /**
2379 * Inputs:
2380 * @vma: Pointer to @vm_area_struct struct
2381 * @address: the virtual address to walk
2382 */
2383 struct vm_area_struct *vma;
2384 unsigned long address;
2385 /**
2386 * Internals:
2387 *
2388 * The caller shouldn't touch any of these.
2389 */
2390 spinlock_t *lock;
2391 pte_t *ptep;
2392 /**
2393 * Outputs:
2394 *
2395 * @pfn: the PFN of the address
2396 * @addr_mask: address mask covering pfn
2397 * @pgprot: the pgprot_t of the mapping
2398 * @writable: whether the mapping is writable
2399 * @special: whether the mapping is a special mapping (real PFN maps)
2400 */
2401 unsigned long pfn;
2402 unsigned long addr_mask;
2403 pgprot_t pgprot;
2404 bool writable;
2405 bool special;
2406 };
2407 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2408 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2409
2410 extern void truncate_pagecache(struct inode *inode, loff_t new);
2411 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2412 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2413 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2414 int generic_error_remove_folio(struct address_space *mapping,
2415 struct folio *folio);
2416
2417 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2418 unsigned long address, struct pt_regs *regs);
2419
2420 #ifdef CONFIG_MMU
2421 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2422 unsigned long address, unsigned int flags,
2423 struct pt_regs *regs);
2424 extern int fixup_user_fault(struct mm_struct *mm,
2425 unsigned long address, unsigned int fault_flags,
2426 bool *unlocked);
2427 void unmap_mapping_pages(struct address_space *mapping,
2428 pgoff_t start, pgoff_t nr, bool even_cows);
2429 void unmap_mapping_range(struct address_space *mapping,
2430 loff_t const holebegin, loff_t const holelen, int even_cows);
2431 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2432 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2433 unsigned long address, unsigned int flags,
2434 struct pt_regs *regs)
2435 {
2436 /* should never happen if there's no MMU */
2437 BUG();
2438 return VM_FAULT_SIGBUS;
2439 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2440 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2441 unsigned int fault_flags, bool *unlocked)
2442 {
2443 /* should never happen if there's no MMU */
2444 BUG();
2445 return -EFAULT;
2446 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2447 static inline void unmap_mapping_pages(struct address_space *mapping,
2448 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2449 static inline void unmap_mapping_range(struct address_space *mapping,
2450 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2451 #endif
2452
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2453 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2454 loff_t const holebegin, loff_t const holelen)
2455 {
2456 unmap_mapping_range(mapping, holebegin, holelen, 0);
2457 }
2458
2459 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2460 unsigned long addr);
2461
2462 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2463 void *buf, int len, unsigned int gup_flags);
2464 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2465 void *buf, int len, unsigned int gup_flags);
2466
2467 #ifdef CONFIG_BPF_SYSCALL
2468 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2469 void *buf, int len, unsigned int gup_flags);
2470 #endif
2471
2472 long get_user_pages_remote(struct mm_struct *mm,
2473 unsigned long start, unsigned long nr_pages,
2474 unsigned int gup_flags, struct page **pages,
2475 int *locked);
2476 long pin_user_pages_remote(struct mm_struct *mm,
2477 unsigned long start, unsigned long nr_pages,
2478 unsigned int gup_flags, struct page **pages,
2479 int *locked);
2480
2481 /*
2482 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2483 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2484 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2485 unsigned long addr,
2486 int gup_flags,
2487 struct vm_area_struct **vmap)
2488 {
2489 struct page *page;
2490 struct vm_area_struct *vma;
2491 int got;
2492
2493 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2494 return ERR_PTR(-EINVAL);
2495
2496 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2497
2498 if (got < 0)
2499 return ERR_PTR(got);
2500
2501 vma = vma_lookup(mm, addr);
2502 if (WARN_ON_ONCE(!vma)) {
2503 put_page(page);
2504 return ERR_PTR(-EINVAL);
2505 }
2506
2507 *vmap = vma;
2508 return page;
2509 }
2510
2511 long get_user_pages(unsigned long start, unsigned long nr_pages,
2512 unsigned int gup_flags, struct page **pages);
2513 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2514 unsigned int gup_flags, struct page **pages);
2515 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2516 struct page **pages, unsigned int gup_flags);
2517 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2518 struct page **pages, unsigned int gup_flags);
2519 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2520 struct folio **folios, unsigned int max_folios,
2521 pgoff_t *offset);
2522 int folio_add_pins(struct folio *folio, unsigned int pins);
2523
2524 int get_user_pages_fast(unsigned long start, int nr_pages,
2525 unsigned int gup_flags, struct page **pages);
2526 int pin_user_pages_fast(unsigned long start, int nr_pages,
2527 unsigned int gup_flags, struct page **pages);
2528 void folio_add_pin(struct folio *folio);
2529
2530 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2531 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2532 struct task_struct *task, bool bypass_rlim);
2533
2534 struct kvec;
2535 struct page *get_dump_page(unsigned long addr, int *locked);
2536
2537 bool folio_mark_dirty(struct folio *folio);
2538 bool folio_mark_dirty_lock(struct folio *folio);
2539 bool set_page_dirty(struct page *page);
2540 int set_page_dirty_lock(struct page *page);
2541
2542 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2543
2544 /*
2545 * Flags used by change_protection(). For now we make it a bitmap so
2546 * that we can pass in multiple flags just like parameters. However
2547 * for now all the callers are only use one of the flags at the same
2548 * time.
2549 */
2550 /*
2551 * Whether we should manually check if we can map individual PTEs writable,
2552 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2553 * PTEs automatically in a writable mapping.
2554 */
2555 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2556 /* Whether this protection change is for NUMA hints */
2557 #define MM_CP_PROT_NUMA (1UL << 1)
2558 /* Whether this change is for write protecting */
2559 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2560 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2561 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2562 MM_CP_UFFD_WP_RESOLVE)
2563
2564 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2565 pte_t pte);
2566 extern long change_protection(struct mmu_gather *tlb,
2567 struct vm_area_struct *vma, unsigned long start,
2568 unsigned long end, unsigned long cp_flags);
2569 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2570 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2571 unsigned long start, unsigned long end, vm_flags_t newflags);
2572
2573 /*
2574 * doesn't attempt to fault and will return short.
2575 */
2576 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2577 unsigned int gup_flags, struct page **pages);
2578
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2579 static inline bool get_user_page_fast_only(unsigned long addr,
2580 unsigned int gup_flags, struct page **pagep)
2581 {
2582 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2583 }
2584 /*
2585 * per-process(per-mm_struct) statistics.
2586 */
get_mm_counter(struct mm_struct * mm,int member)2587 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2588 {
2589 return percpu_counter_read_positive(&mm->rss_stat[member]);
2590 }
2591
get_mm_counter_sum(struct mm_struct * mm,int member)2592 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2593 {
2594 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2595 }
2596
2597 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2598
add_mm_counter(struct mm_struct * mm,int member,long value)2599 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2600 {
2601 percpu_counter_add(&mm->rss_stat[member], value);
2602
2603 mm_trace_rss_stat(mm, member);
2604 }
2605
inc_mm_counter(struct mm_struct * mm,int member)2606 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2607 {
2608 percpu_counter_inc(&mm->rss_stat[member]);
2609
2610 mm_trace_rss_stat(mm, member);
2611 }
2612
dec_mm_counter(struct mm_struct * mm,int member)2613 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2614 {
2615 percpu_counter_dec(&mm->rss_stat[member]);
2616
2617 mm_trace_rss_stat(mm, member);
2618 }
2619
2620 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2621 static inline int mm_counter_file(struct folio *folio)
2622 {
2623 if (folio_test_swapbacked(folio))
2624 return MM_SHMEMPAGES;
2625 return MM_FILEPAGES;
2626 }
2627
mm_counter(struct folio * folio)2628 static inline int mm_counter(struct folio *folio)
2629 {
2630 if (folio_test_anon(folio))
2631 return MM_ANONPAGES;
2632 return mm_counter_file(folio);
2633 }
2634
get_mm_rss(struct mm_struct * mm)2635 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2636 {
2637 return get_mm_counter(mm, MM_FILEPAGES) +
2638 get_mm_counter(mm, MM_ANONPAGES) +
2639 get_mm_counter(mm, MM_SHMEMPAGES);
2640 }
2641
get_mm_hiwater_rss(struct mm_struct * mm)2642 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2643 {
2644 return max(mm->hiwater_rss, get_mm_rss(mm));
2645 }
2646
get_mm_hiwater_vm(struct mm_struct * mm)2647 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2648 {
2649 return max(mm->hiwater_vm, mm->total_vm);
2650 }
2651
update_hiwater_rss(struct mm_struct * mm)2652 static inline void update_hiwater_rss(struct mm_struct *mm)
2653 {
2654 unsigned long _rss = get_mm_rss(mm);
2655
2656 if (data_race(mm->hiwater_rss) < _rss)
2657 (mm)->hiwater_rss = _rss;
2658 }
2659
update_hiwater_vm(struct mm_struct * mm)2660 static inline void update_hiwater_vm(struct mm_struct *mm)
2661 {
2662 if (mm->hiwater_vm < mm->total_vm)
2663 mm->hiwater_vm = mm->total_vm;
2664 }
2665
reset_mm_hiwater_rss(struct mm_struct * mm)2666 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2667 {
2668 mm->hiwater_rss = get_mm_rss(mm);
2669 }
2670
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2671 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2672 struct mm_struct *mm)
2673 {
2674 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2675
2676 if (*maxrss < hiwater_rss)
2677 *maxrss = hiwater_rss;
2678 }
2679
2680 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2681 static inline int pte_special(pte_t pte)
2682 {
2683 return 0;
2684 }
2685
pte_mkspecial(pte_t pte)2686 static inline pte_t pte_mkspecial(pte_t pte)
2687 {
2688 return pte;
2689 }
2690 #endif
2691
2692 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2693 static inline bool pmd_special(pmd_t pmd)
2694 {
2695 return false;
2696 }
2697
pmd_mkspecial(pmd_t pmd)2698 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2699 {
2700 return pmd;
2701 }
2702 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2703
2704 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2705 static inline bool pud_special(pud_t pud)
2706 {
2707 return false;
2708 }
2709
pud_mkspecial(pud_t pud)2710 static inline pud_t pud_mkspecial(pud_t pud)
2711 {
2712 return pud;
2713 }
2714 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2715
2716 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2717 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2718 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2719 spinlock_t **ptl)
2720 {
2721 pte_t *ptep;
2722 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2723 return ptep;
2724 }
2725
2726 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2727 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2728 unsigned long address)
2729 {
2730 return 0;
2731 }
2732 #else
2733 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2734 #endif
2735
2736 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2737 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2738 unsigned long address)
2739 {
2740 return 0;
2741 }
mm_inc_nr_puds(struct mm_struct * mm)2742 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2743 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2744
2745 #else
2746 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2747
mm_inc_nr_puds(struct mm_struct * mm)2748 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2749 {
2750 if (mm_pud_folded(mm))
2751 return;
2752 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2753 }
2754
mm_dec_nr_puds(struct mm_struct * mm)2755 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2756 {
2757 if (mm_pud_folded(mm))
2758 return;
2759 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2760 }
2761 #endif
2762
2763 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2764 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2765 unsigned long address)
2766 {
2767 return 0;
2768 }
2769
mm_inc_nr_pmds(struct mm_struct * mm)2770 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2771 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2772
2773 #else
2774 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2775
mm_inc_nr_pmds(struct mm_struct * mm)2776 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2777 {
2778 if (mm_pmd_folded(mm))
2779 return;
2780 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2781 }
2782
mm_dec_nr_pmds(struct mm_struct * mm)2783 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2784 {
2785 if (mm_pmd_folded(mm))
2786 return;
2787 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2788 }
2789 #endif
2790
2791 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2792 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2793 {
2794 atomic_long_set(&mm->pgtables_bytes, 0);
2795 }
2796
mm_pgtables_bytes(const struct mm_struct * mm)2797 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2798 {
2799 return atomic_long_read(&mm->pgtables_bytes);
2800 }
2801
mm_inc_nr_ptes(struct mm_struct * mm)2802 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2803 {
2804 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2805 }
2806
mm_dec_nr_ptes(struct mm_struct * mm)2807 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2808 {
2809 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2810 }
2811 #else
2812
mm_pgtables_bytes_init(struct mm_struct * mm)2813 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2814 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2815 {
2816 return 0;
2817 }
2818
mm_inc_nr_ptes(struct mm_struct * mm)2819 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2820 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2821 #endif
2822
2823 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2824 int __pte_alloc_kernel(pmd_t *pmd);
2825
2826 #if defined(CONFIG_MMU)
2827
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2828 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2829 unsigned long address)
2830 {
2831 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2832 NULL : p4d_offset(pgd, address);
2833 }
2834
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2835 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2836 unsigned long address)
2837 {
2838 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2839 NULL : pud_offset(p4d, address);
2840 }
2841
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2842 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2843 {
2844 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2845 NULL: pmd_offset(pud, address);
2846 }
2847 #endif /* CONFIG_MMU */
2848
virt_to_ptdesc(const void * x)2849 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2850 {
2851 return page_ptdesc(virt_to_page(x));
2852 }
2853
ptdesc_to_virt(const struct ptdesc * pt)2854 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2855 {
2856 return page_to_virt(ptdesc_page(pt));
2857 }
2858
ptdesc_address(const struct ptdesc * pt)2859 static inline void *ptdesc_address(const struct ptdesc *pt)
2860 {
2861 return folio_address(ptdesc_folio(pt));
2862 }
2863
pagetable_is_reserved(struct ptdesc * pt)2864 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2865 {
2866 return folio_test_reserved(ptdesc_folio(pt));
2867 }
2868
2869 /**
2870 * pagetable_alloc - Allocate pagetables
2871 * @gfp: GFP flags
2872 * @order: desired pagetable order
2873 *
2874 * pagetable_alloc allocates memory for page tables as well as a page table
2875 * descriptor to describe that memory.
2876 *
2877 * Return: The ptdesc describing the allocated page tables.
2878 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2879 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2880 {
2881 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2882
2883 return page_ptdesc(page);
2884 }
2885 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2886
2887 /**
2888 * pagetable_free - Free pagetables
2889 * @pt: The page table descriptor
2890 *
2891 * pagetable_free frees the memory of all page tables described by a page
2892 * table descriptor and the memory for the descriptor itself.
2893 */
pagetable_free(struct ptdesc * pt)2894 static inline void pagetable_free(struct ptdesc *pt)
2895 {
2896 struct page *page = ptdesc_page(pt);
2897
2898 __free_pages(page, compound_order(page));
2899 }
2900
2901 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2902 #if ALLOC_SPLIT_PTLOCKS
2903 void __init ptlock_cache_init(void);
2904 bool ptlock_alloc(struct ptdesc *ptdesc);
2905 void ptlock_free(struct ptdesc *ptdesc);
2906
ptlock_ptr(struct ptdesc * ptdesc)2907 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2908 {
2909 return ptdesc->ptl;
2910 }
2911 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2912 static inline void ptlock_cache_init(void)
2913 {
2914 }
2915
ptlock_alloc(struct ptdesc * ptdesc)2916 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2917 {
2918 return true;
2919 }
2920
ptlock_free(struct ptdesc * ptdesc)2921 static inline void ptlock_free(struct ptdesc *ptdesc)
2922 {
2923 }
2924
ptlock_ptr(struct ptdesc * ptdesc)2925 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2926 {
2927 return &ptdesc->ptl;
2928 }
2929 #endif /* ALLOC_SPLIT_PTLOCKS */
2930
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2931 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2932 {
2933 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2934 }
2935
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2936 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2937 {
2938 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2939 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2940 return ptlock_ptr(virt_to_ptdesc(pte));
2941 }
2942
ptlock_init(struct ptdesc * ptdesc)2943 static inline bool ptlock_init(struct ptdesc *ptdesc)
2944 {
2945 /*
2946 * prep_new_page() initialize page->private (and therefore page->ptl)
2947 * with 0. Make sure nobody took it in use in between.
2948 *
2949 * It can happen if arch try to use slab for page table allocation:
2950 * slab code uses page->slab_cache, which share storage with page->ptl.
2951 */
2952 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2953 if (!ptlock_alloc(ptdesc))
2954 return false;
2955 spin_lock_init(ptlock_ptr(ptdesc));
2956 return true;
2957 }
2958
2959 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2960 /*
2961 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2962 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2963 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2964 {
2965 return &mm->page_table_lock;
2966 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2967 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2968 {
2969 return &mm->page_table_lock;
2970 }
ptlock_cache_init(void)2971 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2972 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2973 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2974 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2975
__pagetable_ctor(struct ptdesc * ptdesc)2976 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2977 {
2978 struct folio *folio = ptdesc_folio(ptdesc);
2979
2980 __folio_set_pgtable(folio);
2981 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2982 }
2983
pagetable_dtor(struct ptdesc * ptdesc)2984 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2985 {
2986 struct folio *folio = ptdesc_folio(ptdesc);
2987
2988 ptlock_free(ptdesc);
2989 __folio_clear_pgtable(folio);
2990 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2991 }
2992
pagetable_dtor_free(struct ptdesc * ptdesc)2993 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2994 {
2995 pagetable_dtor(ptdesc);
2996 pagetable_free(ptdesc);
2997 }
2998
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)2999 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3000 struct ptdesc *ptdesc)
3001 {
3002 if (mm != &init_mm && !ptlock_init(ptdesc))
3003 return false;
3004 __pagetable_ctor(ptdesc);
3005 return true;
3006 }
3007
3008 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3009 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3010 pmd_t *pmdvalp)
3011 {
3012 pte_t *pte;
3013
3014 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3015 return pte;
3016 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3017 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3018 {
3019 return __pte_offset_map(pmd, addr, NULL);
3020 }
3021
3022 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3023 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3024 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3025 unsigned long addr, spinlock_t **ptlp)
3026 {
3027 pte_t *pte;
3028
3029 __cond_lock(RCU, __cond_lock(*ptlp,
3030 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3031 return pte;
3032 }
3033
3034 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3035 unsigned long addr, spinlock_t **ptlp);
3036 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3037 unsigned long addr, pmd_t *pmdvalp,
3038 spinlock_t **ptlp);
3039
3040 #define pte_unmap_unlock(pte, ptl) do { \
3041 spin_unlock(ptl); \
3042 pte_unmap(pte); \
3043 } while (0)
3044
3045 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3046
3047 #define pte_alloc_map(mm, pmd, address) \
3048 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3049
3050 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3051 (pte_alloc(mm, pmd) ? \
3052 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3053
3054 #define pte_alloc_kernel(pmd, address) \
3055 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3056 NULL: pte_offset_kernel(pmd, address))
3057
3058 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3059
pmd_pgtable_page(pmd_t * pmd)3060 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3061 {
3062 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3063 return virt_to_page((void *)((unsigned long) pmd & mask));
3064 }
3065
pmd_ptdesc(pmd_t * pmd)3066 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3067 {
3068 return page_ptdesc(pmd_pgtable_page(pmd));
3069 }
3070
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3071 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3072 {
3073 return ptlock_ptr(pmd_ptdesc(pmd));
3074 }
3075
pmd_ptlock_init(struct ptdesc * ptdesc)3076 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3077 {
3078 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3079 ptdesc->pmd_huge_pte = NULL;
3080 #endif
3081 return ptlock_init(ptdesc);
3082 }
3083
3084 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3085
3086 #else
3087
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3088 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3089 {
3090 return &mm->page_table_lock;
3091 }
3092
pmd_ptlock_init(struct ptdesc * ptdesc)3093 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3094
3095 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3096
3097 #endif
3098
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3099 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3100 {
3101 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3102 spin_lock(ptl);
3103 return ptl;
3104 }
3105
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3106 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3107 struct ptdesc *ptdesc)
3108 {
3109 if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3110 return false;
3111 ptdesc_pmd_pts_init(ptdesc);
3112 __pagetable_ctor(ptdesc);
3113 return true;
3114 }
3115
3116 /*
3117 * No scalability reason to split PUD locks yet, but follow the same pattern
3118 * as the PMD locks to make it easier if we decide to. The VM should not be
3119 * considered ready to switch to split PUD locks yet; there may be places
3120 * which need to be converted from page_table_lock.
3121 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3122 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3123 {
3124 return &mm->page_table_lock;
3125 }
3126
pud_lock(struct mm_struct * mm,pud_t * pud)3127 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3128 {
3129 spinlock_t *ptl = pud_lockptr(mm, pud);
3130
3131 spin_lock(ptl);
3132 return ptl;
3133 }
3134
pagetable_pud_ctor(struct ptdesc * ptdesc)3135 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3136 {
3137 __pagetable_ctor(ptdesc);
3138 }
3139
pagetable_p4d_ctor(struct ptdesc * ptdesc)3140 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3141 {
3142 __pagetable_ctor(ptdesc);
3143 }
3144
pagetable_pgd_ctor(struct ptdesc * ptdesc)3145 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3146 {
3147 __pagetable_ctor(ptdesc);
3148 }
3149
3150 extern void __init pagecache_init(void);
3151 extern void free_initmem(void);
3152
3153 /*
3154 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3155 * into the buddy system. The freed pages will be poisoned with pattern
3156 * "poison" if it's within range [0, UCHAR_MAX].
3157 * Return pages freed into the buddy system.
3158 */
3159 extern unsigned long free_reserved_area(void *start, void *end,
3160 int poison, const char *s);
3161
3162 extern void adjust_managed_page_count(struct page *page, long count);
3163
3164 extern void reserve_bootmem_region(phys_addr_t start,
3165 phys_addr_t end, int nid);
3166
3167 /* Free the reserved page into the buddy system, so it gets managed. */
3168 void free_reserved_page(struct page *page);
3169
mark_page_reserved(struct page * page)3170 static inline void mark_page_reserved(struct page *page)
3171 {
3172 SetPageReserved(page);
3173 adjust_managed_page_count(page, -1);
3174 }
3175
free_reserved_ptdesc(struct ptdesc * pt)3176 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3177 {
3178 free_reserved_page(ptdesc_page(pt));
3179 }
3180
3181 /*
3182 * Default method to free all the __init memory into the buddy system.
3183 * The freed pages will be poisoned with pattern "poison" if it's within
3184 * range [0, UCHAR_MAX].
3185 * Return pages freed into the buddy system.
3186 */
free_initmem_default(int poison)3187 static inline unsigned long free_initmem_default(int poison)
3188 {
3189 extern char __init_begin[], __init_end[];
3190
3191 return free_reserved_area(&__init_begin, &__init_end,
3192 poison, "unused kernel image (initmem)");
3193 }
3194
get_num_physpages(void)3195 static inline unsigned long get_num_physpages(void)
3196 {
3197 int nid;
3198 unsigned long phys_pages = 0;
3199
3200 for_each_online_node(nid)
3201 phys_pages += node_present_pages(nid);
3202
3203 return phys_pages;
3204 }
3205
3206 /*
3207 * Using memblock node mappings, an architecture may initialise its
3208 * zones, allocate the backing mem_map and account for memory holes in an
3209 * architecture independent manner.
3210 *
3211 * An architecture is expected to register range of page frames backed by
3212 * physical memory with memblock_add[_node]() before calling
3213 * free_area_init() passing in the PFN each zone ends at. At a basic
3214 * usage, an architecture is expected to do something like
3215 *
3216 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3217 * max_highmem_pfn};
3218 * for_each_valid_physical_page_range()
3219 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3220 * free_area_init(max_zone_pfns);
3221 */
3222 void free_area_init(unsigned long *max_zone_pfn);
3223 unsigned long node_map_pfn_alignment(void);
3224 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3225 unsigned long end_pfn);
3226 extern void get_pfn_range_for_nid(unsigned int nid,
3227 unsigned long *start_pfn, unsigned long *end_pfn);
3228
3229 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3230 static inline int early_pfn_to_nid(unsigned long pfn)
3231 {
3232 return 0;
3233 }
3234 #else
3235 /* please see mm/page_alloc.c */
3236 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3237 #endif
3238
3239 extern void mem_init(void);
3240 extern void __init mmap_init(void);
3241
3242 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3243 static inline void show_mem(void)
3244 {
3245 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3246 }
3247 extern long si_mem_available(void);
3248 extern void si_meminfo(struct sysinfo * val);
3249 extern void si_meminfo_node(struct sysinfo *val, int nid);
3250
3251 extern __printf(3, 4)
3252 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3253
3254 extern void setup_per_cpu_pageset(void);
3255
3256 /* nommu.c */
3257 extern atomic_long_t mmap_pages_allocated;
3258 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3259
3260 /* interval_tree.c */
3261 void vma_interval_tree_insert(struct vm_area_struct *node,
3262 struct rb_root_cached *root);
3263 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3264 struct vm_area_struct *prev,
3265 struct rb_root_cached *root);
3266 void vma_interval_tree_remove(struct vm_area_struct *node,
3267 struct rb_root_cached *root);
3268 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 unsigned long start, unsigned long last);
3270 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3271 unsigned long start, unsigned long last);
3272
3273 #define vma_interval_tree_foreach(vma, root, start, last) \
3274 for (vma = vma_interval_tree_iter_first(root, start, last); \
3275 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3276
3277 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3278 struct rb_root_cached *root);
3279 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3280 struct rb_root_cached *root);
3281 struct anon_vma_chain *
3282 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3283 unsigned long start, unsigned long last);
3284 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3285 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3286 #ifdef CONFIG_DEBUG_VM_RB
3287 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3288 #endif
3289
3290 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3291 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3292 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3293
3294 /* mmap.c */
3295 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3296 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3297 extern void exit_mmap(struct mm_struct *);
3298 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3299 unsigned long addr, bool write);
3300
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3301 static inline int check_data_rlimit(unsigned long rlim,
3302 unsigned long new,
3303 unsigned long start,
3304 unsigned long end_data,
3305 unsigned long start_data)
3306 {
3307 if (rlim < RLIM_INFINITY) {
3308 if (((new - start) + (end_data - start_data)) > rlim)
3309 return -ENOSPC;
3310 }
3311
3312 return 0;
3313 }
3314
3315 extern int mm_take_all_locks(struct mm_struct *mm);
3316 extern void mm_drop_all_locks(struct mm_struct *mm);
3317
3318 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3319 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3320 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3321 extern struct file *get_task_exe_file(struct task_struct *task);
3322
3323 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3324 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3325
3326 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3327 const struct vm_special_mapping *sm);
3328 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3329 unsigned long addr, unsigned long len,
3330 vm_flags_t vm_flags,
3331 const struct vm_special_mapping *spec);
3332
3333 unsigned long randomize_stack_top(unsigned long stack_top);
3334 unsigned long randomize_page(unsigned long start, unsigned long range);
3335
3336 unsigned long
3337 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3338 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3339
3340 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3341 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3342 unsigned long pgoff, unsigned long flags)
3343 {
3344 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3345 }
3346
3347 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3348 unsigned long len, unsigned long prot, unsigned long flags,
3349 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3350 struct list_head *uf);
3351 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3352 unsigned long start, size_t len, struct list_head *uf,
3353 bool unlock);
3354 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3355 struct mm_struct *mm, unsigned long start,
3356 unsigned long end, struct list_head *uf, bool unlock);
3357 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3358 struct list_head *uf);
3359 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3360
3361 #ifdef CONFIG_MMU
3362 extern int __mm_populate(unsigned long addr, unsigned long len,
3363 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3364 static inline void mm_populate(unsigned long addr, unsigned long len)
3365 {
3366 /* Ignore errors */
3367 (void) __mm_populate(addr, len, 1);
3368 }
3369 #else
mm_populate(unsigned long addr,unsigned long len)3370 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3371 #endif
3372
3373 /* This takes the mm semaphore itself */
3374 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3375 extern int vm_munmap(unsigned long, size_t);
3376 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3377 unsigned long, unsigned long,
3378 unsigned long, unsigned long);
3379
3380 struct vm_unmapped_area_info {
3381 #define VM_UNMAPPED_AREA_TOPDOWN 1
3382 unsigned long flags;
3383 unsigned long length;
3384 unsigned long low_limit;
3385 unsigned long high_limit;
3386 unsigned long align_mask;
3387 unsigned long align_offset;
3388 unsigned long start_gap;
3389 };
3390
3391 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3392
3393 /* truncate.c */
3394 extern void truncate_inode_pages(struct address_space *, loff_t);
3395 extern void truncate_inode_pages_range(struct address_space *,
3396 loff_t lstart, loff_t lend);
3397 extern void truncate_inode_pages_final(struct address_space *);
3398
3399 /* generic vm_area_ops exported for stackable file systems */
3400 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3401 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3402 pgoff_t start_pgoff, pgoff_t end_pgoff);
3403 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3404
3405 extern unsigned long stack_guard_gap;
3406 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3407 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3408 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3409
3410 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3411 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3412 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3413 struct vm_area_struct **pprev);
3414
3415 /*
3416 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3417 * NULL if none. Assume start_addr < end_addr.
3418 */
3419 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3420 unsigned long start_addr, unsigned long end_addr);
3421
3422 /**
3423 * vma_lookup() - Find a VMA at a specific address
3424 * @mm: The process address space.
3425 * @addr: The user address.
3426 *
3427 * Return: The vm_area_struct at the given address, %NULL otherwise.
3428 */
3429 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3430 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3431 {
3432 return mtree_load(&mm->mm_mt, addr);
3433 }
3434
stack_guard_start_gap(struct vm_area_struct * vma)3435 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3436 {
3437 if (vma->vm_flags & VM_GROWSDOWN)
3438 return stack_guard_gap;
3439
3440 /* See reasoning around the VM_SHADOW_STACK definition */
3441 if (vma->vm_flags & VM_SHADOW_STACK)
3442 return PAGE_SIZE;
3443
3444 return 0;
3445 }
3446
vm_start_gap(struct vm_area_struct * vma)3447 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3448 {
3449 unsigned long gap = stack_guard_start_gap(vma);
3450 unsigned long vm_start = vma->vm_start;
3451
3452 vm_start -= gap;
3453 if (vm_start > vma->vm_start)
3454 vm_start = 0;
3455 return vm_start;
3456 }
3457
vm_end_gap(struct vm_area_struct * vma)3458 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3459 {
3460 unsigned long vm_end = vma->vm_end;
3461
3462 if (vma->vm_flags & VM_GROWSUP) {
3463 vm_end += stack_guard_gap;
3464 if (vm_end < vma->vm_end)
3465 vm_end = -PAGE_SIZE;
3466 }
3467 return vm_end;
3468 }
3469
vma_pages(struct vm_area_struct * vma)3470 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3471 {
3472 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3473 }
3474
3475 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3476 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3477 unsigned long vm_start, unsigned long vm_end)
3478 {
3479 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3480
3481 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3482 vma = NULL;
3483
3484 return vma;
3485 }
3486
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3487 static inline bool range_in_vma(struct vm_area_struct *vma,
3488 unsigned long start, unsigned long end)
3489 {
3490 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3491 }
3492
3493 #ifdef CONFIG_MMU
3494 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3495 void vma_set_page_prot(struct vm_area_struct *vma);
3496 #else
vm_get_page_prot(vm_flags_t vm_flags)3497 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3498 {
3499 return __pgprot(0);
3500 }
vma_set_page_prot(struct vm_area_struct * vma)3501 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3502 {
3503 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3504 }
3505 #endif
3506
3507 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3508
3509 #ifdef CONFIG_NUMA_BALANCING
3510 unsigned long change_prot_numa(struct vm_area_struct *vma,
3511 unsigned long start, unsigned long end);
3512 #endif
3513
3514 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3515 unsigned long addr);
3516 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3517 unsigned long pfn, unsigned long size, pgprot_t);
3518 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3519 unsigned long pfn, unsigned long size, pgprot_t prot);
3520 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3521 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3522 struct page **pages, unsigned long *num);
3523 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3524 unsigned long num);
3525 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3526 unsigned long num);
3527 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3528 bool write);
3529 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3530 unsigned long pfn);
3531 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3532 unsigned long pfn, pgprot_t pgprot);
3533 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3534 unsigned long pfn);
3535 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3536 unsigned long addr, unsigned long pfn);
3537 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3538
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3539 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3540 unsigned long addr, struct page *page)
3541 {
3542 int err = vm_insert_page(vma, addr, page);
3543
3544 if (err == -ENOMEM)
3545 return VM_FAULT_OOM;
3546 if (err < 0 && err != -EBUSY)
3547 return VM_FAULT_SIGBUS;
3548
3549 return VM_FAULT_NOPAGE;
3550 }
3551
3552 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3553 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3554 unsigned long addr, unsigned long pfn,
3555 unsigned long size, pgprot_t prot)
3556 {
3557 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3558 }
3559 #endif
3560
vmf_error(int err)3561 static inline vm_fault_t vmf_error(int err)
3562 {
3563 if (err == -ENOMEM)
3564 return VM_FAULT_OOM;
3565 else if (err == -EHWPOISON)
3566 return VM_FAULT_HWPOISON;
3567 return VM_FAULT_SIGBUS;
3568 }
3569
3570 /*
3571 * Convert errno to return value for ->page_mkwrite() calls.
3572 *
3573 * This should eventually be merged with vmf_error() above, but will need a
3574 * careful audit of all vmf_error() callers.
3575 */
vmf_fs_error(int err)3576 static inline vm_fault_t vmf_fs_error(int err)
3577 {
3578 if (err == 0)
3579 return VM_FAULT_LOCKED;
3580 if (err == -EFAULT || err == -EAGAIN)
3581 return VM_FAULT_NOPAGE;
3582 if (err == -ENOMEM)
3583 return VM_FAULT_OOM;
3584 /* -ENOSPC, -EDQUOT, -EIO ... */
3585 return VM_FAULT_SIGBUS;
3586 }
3587
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3588 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3589 {
3590 if (vm_fault & VM_FAULT_OOM)
3591 return -ENOMEM;
3592 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3593 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3594 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3595 return -EFAULT;
3596 return 0;
3597 }
3598
3599 /*
3600 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3601 * a (NUMA hinting) fault is required.
3602 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3603 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3604 unsigned int flags)
3605 {
3606 /*
3607 * If callers don't want to honor NUMA hinting faults, no need to
3608 * determine if we would actually have to trigger a NUMA hinting fault.
3609 */
3610 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3611 return true;
3612
3613 /*
3614 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3615 *
3616 * Requiring a fault here even for inaccessible VMAs would mean that
3617 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3618 * refuses to process NUMA hinting faults in inaccessible VMAs.
3619 */
3620 return !vma_is_accessible(vma);
3621 }
3622
3623 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3624 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3625 unsigned long size, pte_fn_t fn, void *data);
3626 extern int apply_to_existing_page_range(struct mm_struct *mm,
3627 unsigned long address, unsigned long size,
3628 pte_fn_t fn, void *data);
3629
3630 #ifdef CONFIG_PAGE_POISONING
3631 extern void __kernel_poison_pages(struct page *page, int numpages);
3632 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3633 extern bool _page_poisoning_enabled_early;
3634 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3635 static inline bool page_poisoning_enabled(void)
3636 {
3637 return _page_poisoning_enabled_early;
3638 }
3639 /*
3640 * For use in fast paths after init_mem_debugging() has run, or when a
3641 * false negative result is not harmful when called too early.
3642 */
page_poisoning_enabled_static(void)3643 static inline bool page_poisoning_enabled_static(void)
3644 {
3645 return static_branch_unlikely(&_page_poisoning_enabled);
3646 }
kernel_poison_pages(struct page * page,int numpages)3647 static inline void kernel_poison_pages(struct page *page, int numpages)
3648 {
3649 if (page_poisoning_enabled_static())
3650 __kernel_poison_pages(page, numpages);
3651 }
kernel_unpoison_pages(struct page * page,int numpages)3652 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3653 {
3654 if (page_poisoning_enabled_static())
3655 __kernel_unpoison_pages(page, numpages);
3656 }
3657 #else
page_poisoning_enabled(void)3658 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3659 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3660 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3661 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3662 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3663 #endif
3664
3665 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3666 static inline bool want_init_on_alloc(gfp_t flags)
3667 {
3668 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3669 &init_on_alloc))
3670 return true;
3671 return flags & __GFP_ZERO;
3672 }
3673
3674 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3675 static inline bool want_init_on_free(void)
3676 {
3677 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3678 &init_on_free);
3679 }
3680
3681 extern bool _debug_pagealloc_enabled_early;
3682 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3683
debug_pagealloc_enabled(void)3684 static inline bool debug_pagealloc_enabled(void)
3685 {
3686 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3687 _debug_pagealloc_enabled_early;
3688 }
3689
3690 /*
3691 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3692 * or when a false negative result is not harmful when called too early.
3693 */
debug_pagealloc_enabled_static(void)3694 static inline bool debug_pagealloc_enabled_static(void)
3695 {
3696 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3697 return false;
3698
3699 return static_branch_unlikely(&_debug_pagealloc_enabled);
3700 }
3701
3702 /*
3703 * To support DEBUG_PAGEALLOC architecture must ensure that
3704 * __kernel_map_pages() never fails
3705 */
3706 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3707 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3708 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3709 {
3710 if (debug_pagealloc_enabled_static())
3711 __kernel_map_pages(page, numpages, 1);
3712 }
3713
debug_pagealloc_unmap_pages(struct page * page,int numpages)3714 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3715 {
3716 if (debug_pagealloc_enabled_static())
3717 __kernel_map_pages(page, numpages, 0);
3718 }
3719
3720 extern unsigned int _debug_guardpage_minorder;
3721 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3722
debug_guardpage_minorder(void)3723 static inline unsigned int debug_guardpage_minorder(void)
3724 {
3725 return _debug_guardpage_minorder;
3726 }
3727
debug_guardpage_enabled(void)3728 static inline bool debug_guardpage_enabled(void)
3729 {
3730 return static_branch_unlikely(&_debug_guardpage_enabled);
3731 }
3732
page_is_guard(struct page * page)3733 static inline bool page_is_guard(struct page *page)
3734 {
3735 if (!debug_guardpage_enabled())
3736 return false;
3737
3738 return PageGuard(page);
3739 }
3740
3741 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3742 static inline bool set_page_guard(struct zone *zone, struct page *page,
3743 unsigned int order)
3744 {
3745 if (!debug_guardpage_enabled())
3746 return false;
3747 return __set_page_guard(zone, page, order);
3748 }
3749
3750 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3751 static inline void clear_page_guard(struct zone *zone, struct page *page,
3752 unsigned int order)
3753 {
3754 if (!debug_guardpage_enabled())
3755 return;
3756 __clear_page_guard(zone, page, order);
3757 }
3758
3759 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3760 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3761 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3762 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3763 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3764 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3765 static inline bool set_page_guard(struct zone *zone, struct page *page,
3766 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3767 static inline void clear_page_guard(struct zone *zone, struct page *page,
3768 unsigned int order) {}
3769 #endif /* CONFIG_DEBUG_PAGEALLOC */
3770
3771 #ifdef __HAVE_ARCH_GATE_AREA
3772 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3773 extern int in_gate_area_no_mm(unsigned long addr);
3774 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3775 #else
get_gate_vma(struct mm_struct * mm)3776 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3777 {
3778 return NULL;
3779 }
in_gate_area_no_mm(unsigned long addr)3780 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3781 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3782 {
3783 return 0;
3784 }
3785 #endif /* __HAVE_ARCH_GATE_AREA */
3786
3787 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3788
3789 void drop_slab(void);
3790
3791 #ifndef CONFIG_MMU
3792 #define randomize_va_space 0
3793 #else
3794 extern int randomize_va_space;
3795 #endif
3796
3797 const char * arch_vma_name(struct vm_area_struct *vma);
3798 #ifdef CONFIG_MMU
3799 void print_vma_addr(char *prefix, unsigned long rip);
3800 #else
print_vma_addr(char * prefix,unsigned long rip)3801 static inline void print_vma_addr(char *prefix, unsigned long rip)
3802 {
3803 }
3804 #endif
3805
3806 void *sparse_buffer_alloc(unsigned long size);
3807 unsigned long section_map_size(void);
3808 struct page * __populate_section_memmap(unsigned long pfn,
3809 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3810 struct dev_pagemap *pgmap);
3811 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3812 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3813 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3814 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3815 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3816 struct vmem_altmap *altmap, unsigned long ptpfn,
3817 unsigned long flags);
3818 void *vmemmap_alloc_block(unsigned long size, int node);
3819 struct vmem_altmap;
3820 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3821 struct vmem_altmap *altmap);
3822 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3823 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3824 unsigned long addr, unsigned long next);
3825 int vmemmap_check_pmd(pmd_t *pmd, int node,
3826 unsigned long addr, unsigned long next);
3827 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3828 int node, struct vmem_altmap *altmap);
3829 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3830 int node, struct vmem_altmap *altmap);
3831 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3832 struct vmem_altmap *altmap);
3833 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3834 unsigned long headsize);
3835 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3836 unsigned long headsize);
3837 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3838 unsigned long headsize);
3839 void vmemmap_populate_print_last(void);
3840 #ifdef CONFIG_MEMORY_HOTPLUG
3841 void vmemmap_free(unsigned long start, unsigned long end,
3842 struct vmem_altmap *altmap);
3843 #endif
3844
3845 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3846 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3847 {
3848 /* number of pfns from base where pfn_to_page() is valid */
3849 if (altmap)
3850 return altmap->reserve + altmap->free;
3851 return 0;
3852 }
3853
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3854 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3855 unsigned long nr_pfns)
3856 {
3857 altmap->alloc -= nr_pfns;
3858 }
3859 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3860 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3861 {
3862 return 0;
3863 }
3864
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3865 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3866 unsigned long nr_pfns)
3867 {
3868 }
3869 #endif
3870
3871 #define VMEMMAP_RESERVE_NR 2
3872 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3873 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3874 struct dev_pagemap *pgmap)
3875 {
3876 unsigned long nr_pages;
3877 unsigned long nr_vmemmap_pages;
3878
3879 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3880 return false;
3881
3882 nr_pages = pgmap_vmemmap_nr(pgmap);
3883 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3884 /*
3885 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3886 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3887 */
3888 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3889 }
3890 /*
3891 * If we don't have an architecture override, use the generic rule
3892 */
3893 #ifndef vmemmap_can_optimize
3894 #define vmemmap_can_optimize __vmemmap_can_optimize
3895 #endif
3896
3897 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3898 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3899 struct dev_pagemap *pgmap)
3900 {
3901 return false;
3902 }
3903 #endif
3904
3905 enum mf_flags {
3906 MF_COUNT_INCREASED = 1 << 0,
3907 MF_ACTION_REQUIRED = 1 << 1,
3908 MF_MUST_KILL = 1 << 2,
3909 MF_SOFT_OFFLINE = 1 << 3,
3910 MF_UNPOISON = 1 << 4,
3911 MF_SW_SIMULATED = 1 << 5,
3912 MF_NO_RETRY = 1 << 6,
3913 MF_MEM_PRE_REMOVE = 1 << 7,
3914 };
3915 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3916 unsigned long count, int mf_flags);
3917 extern int memory_failure(unsigned long pfn, int flags);
3918 extern int unpoison_memory(unsigned long pfn);
3919 extern atomic_long_t num_poisoned_pages __read_mostly;
3920 extern int soft_offline_page(unsigned long pfn, int flags);
3921 #ifdef CONFIG_MEMORY_FAILURE
3922 /*
3923 * Sysfs entries for memory failure handling statistics.
3924 */
3925 extern const struct attribute_group memory_failure_attr_group;
3926 extern void memory_failure_queue(unsigned long pfn, int flags);
3927 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3928 bool *migratable_cleared);
3929 void num_poisoned_pages_inc(unsigned long pfn);
3930 void num_poisoned_pages_sub(unsigned long pfn, long i);
3931 #else
memory_failure_queue(unsigned long pfn,int flags)3932 static inline void memory_failure_queue(unsigned long pfn, int flags)
3933 {
3934 }
3935
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3936 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3937 bool *migratable_cleared)
3938 {
3939 return 0;
3940 }
3941
num_poisoned_pages_inc(unsigned long pfn)3942 static inline void num_poisoned_pages_inc(unsigned long pfn)
3943 {
3944 }
3945
num_poisoned_pages_sub(unsigned long pfn,long i)3946 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3947 {
3948 }
3949 #endif
3950
3951 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3952 extern void memblk_nr_poison_inc(unsigned long pfn);
3953 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3954 #else
memblk_nr_poison_inc(unsigned long pfn)3955 static inline void memblk_nr_poison_inc(unsigned long pfn)
3956 {
3957 }
3958
memblk_nr_poison_sub(unsigned long pfn,long i)3959 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3960 {
3961 }
3962 #endif
3963
3964 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3965 static inline int arch_memory_failure(unsigned long pfn, int flags)
3966 {
3967 return -ENXIO;
3968 }
3969 #endif
3970
3971 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3972 static inline bool arch_is_platform_page(u64 paddr)
3973 {
3974 return false;
3975 }
3976 #endif
3977
3978 /*
3979 * Error handlers for various types of pages.
3980 */
3981 enum mf_result {
3982 MF_IGNORED, /* Error: cannot be handled */
3983 MF_FAILED, /* Error: handling failed */
3984 MF_DELAYED, /* Will be handled later */
3985 MF_RECOVERED, /* Successfully recovered */
3986 };
3987
3988 enum mf_action_page_type {
3989 MF_MSG_KERNEL,
3990 MF_MSG_KERNEL_HIGH_ORDER,
3991 MF_MSG_DIFFERENT_COMPOUND,
3992 MF_MSG_HUGE,
3993 MF_MSG_FREE_HUGE,
3994 MF_MSG_GET_HWPOISON,
3995 MF_MSG_UNMAP_FAILED,
3996 MF_MSG_DIRTY_SWAPCACHE,
3997 MF_MSG_CLEAN_SWAPCACHE,
3998 MF_MSG_DIRTY_MLOCKED_LRU,
3999 MF_MSG_CLEAN_MLOCKED_LRU,
4000 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4001 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4002 MF_MSG_DIRTY_LRU,
4003 MF_MSG_CLEAN_LRU,
4004 MF_MSG_TRUNCATED_LRU,
4005 MF_MSG_BUDDY,
4006 MF_MSG_DAX,
4007 MF_MSG_UNSPLIT_THP,
4008 MF_MSG_ALREADY_POISONED,
4009 MF_MSG_UNKNOWN,
4010 };
4011
4012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4013 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4014 int copy_user_large_folio(struct folio *dst, struct folio *src,
4015 unsigned long addr_hint,
4016 struct vm_area_struct *vma);
4017 long copy_folio_from_user(struct folio *dst_folio,
4018 const void __user *usr_src,
4019 bool allow_pagefault);
4020
4021 /**
4022 * vma_is_special_huge - Are transhuge page-table entries considered special?
4023 * @vma: Pointer to the struct vm_area_struct to consider
4024 *
4025 * Whether transhuge page-table entries are considered "special" following
4026 * the definition in vm_normal_page().
4027 *
4028 * Return: true if transhuge page-table entries should be considered special,
4029 * false otherwise.
4030 */
vma_is_special_huge(const struct vm_area_struct * vma)4031 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4032 {
4033 return vma_is_dax(vma) || (vma->vm_file &&
4034 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4035 }
4036
4037 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4038
4039 #if MAX_NUMNODES > 1
4040 void __init setup_nr_node_ids(void);
4041 #else
setup_nr_node_ids(void)4042 static inline void setup_nr_node_ids(void) {}
4043 #endif
4044
4045 extern int memcmp_pages(struct page *page1, struct page *page2);
4046
pages_identical(struct page * page1,struct page * page2)4047 static inline int pages_identical(struct page *page1, struct page *page2)
4048 {
4049 return !memcmp_pages(page1, page2);
4050 }
4051
4052 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4053 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4054 pgoff_t first_index, pgoff_t nr,
4055 pgoff_t bitmap_pgoff,
4056 unsigned long *bitmap,
4057 pgoff_t *start,
4058 pgoff_t *end);
4059
4060 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4061 pgoff_t first_index, pgoff_t nr);
4062 #endif
4063
4064 #ifdef CONFIG_ANON_VMA_NAME
4065 int set_anon_vma_name(unsigned long addr, unsigned long size,
4066 const char __user *uname);
4067 #else
4068 static inline
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)4069 int set_anon_vma_name(unsigned long addr, unsigned long size,
4070 const char __user *uname)
4071 {
4072 return -EINVAL;
4073 }
4074 #endif
4075
4076 #ifdef CONFIG_UNACCEPTED_MEMORY
4077
4078 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4079 void accept_memory(phys_addr_t start, unsigned long size);
4080
4081 #else
4082
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4083 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4084 unsigned long size)
4085 {
4086 return false;
4087 }
4088
accept_memory(phys_addr_t start,unsigned long size)4089 static inline void accept_memory(phys_addr_t start, unsigned long size)
4090 {
4091 }
4092
4093 #endif
4094
pfn_is_unaccepted_memory(unsigned long pfn)4095 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4096 {
4097 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4098 }
4099
4100 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4101 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4102
4103 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4104 int reserve_mem_release_by_name(const char *name);
4105
4106 #ifdef CONFIG_64BIT
4107 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4108 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4109 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4110 {
4111 /* noop on 32 bit */
4112 return 0;
4113 }
4114 #endif
4115
4116 /*
4117 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4118 * be zeroed or not.
4119 */
user_alloc_needs_zeroing(void)4120 static inline bool user_alloc_needs_zeroing(void)
4121 {
4122 /*
4123 * for user folios, arch with cache aliasing requires cache flush and
4124 * arc changes folio->flags to make icache coherent with dcache, so
4125 * always return false to make caller use
4126 * clear_user_page()/clear_user_highpage().
4127 */
4128 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4129 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4130 &init_on_alloc);
4131 }
4132
4133 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4134 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4135 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4136
4137
4138 /*
4139 * mseal of userspace process's system mappings.
4140 */
4141 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4142 #define VM_SEALED_SYSMAP VM_SEALED
4143 #else
4144 #define VM_SEALED_SYSMAP VM_NONE
4145 #endif
4146
4147 /*
4148 * DMA mapping IDs for page_pool
4149 *
4150 * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4151 * stashes it in the upper bits of page->pp_magic. We always want to be able to
4152 * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4153 * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4154 * (since it overlaps with page->lru.next), so we must ensure that we cannot
4155 * mistake a valid kernel pointer with any of the values we write into this
4156 * field.
4157 *
4158 * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4159 * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4160 * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4161 * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4162 * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4163 * we won't mistake a valid kernel pointer for a value we set, regardless of the
4164 * VMSPLIT setting.
4165 *
4166 * Altogether, this means that the number of bits available is constrained by
4167 * the size of an unsigned long (at the upper end, subtracting two bits per the
4168 * above), and the definition of PP_SIGNATURE (with or without
4169 * POISON_POINTER_DELTA).
4170 */
4171 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4172 #if POISON_POINTER_DELTA > 0
4173 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4174 * index to not overlap with that if set
4175 */
4176 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4177 #else
4178 /* Always leave out the topmost two; see above. */
4179 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4180 #endif
4181
4182 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4183 PP_DMA_INDEX_SHIFT)
4184
4185 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4186 * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4187 * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4188 * bits used for the DMA index. page_is_pfmemalloc() is checked in
4189 * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4190 */
4191 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4192
4193 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(const struct page * page)4194 static inline bool page_pool_page_is_pp(const struct page *page)
4195 {
4196 return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4197 }
4198 #else
page_pool_page_is_pp(const struct page * page)4199 static inline bool page_pool_page_is_pp(const struct page *page)
4200 {
4201 return false;
4202 }
4203 #endif
4204
4205 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4206 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4207 #define PAGE_SNAPSHOT_PG_IDLE (1 << 2)
4208
4209 struct page_snapshot {
4210 struct folio folio_snapshot;
4211 struct page page_snapshot;
4212 unsigned long pfn;
4213 unsigned long idx;
4214 unsigned long flags;
4215 };
4216
snapshot_page_is_faithful(const struct page_snapshot * ps)4217 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4218 {
4219 return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4220 }
4221
4222 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4223
4224 #endif /* _LINUX_MM_H */
4225