1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * NVIDIA Tegra XUSB device mode controller
4 *
5 * Copyright (c) 2013-2019, NVIDIA CORPORATION. All rights reserved.
6 * Copyright (c) 2015, Google Inc.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/of_device.h>
20 #include <linux/phy/phy.h>
21 #include <linux/phy/tegra/xusb.h>
22 #include <linux/pm_domain.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/reset.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/otg.h>
30 #include <linux/usb/role.h>
31 #include <linux/usb/phy.h>
32 #include <linux/workqueue.h>
33
34 /* XUSB_DEV registers */
35 #define SPARAM 0x000
36 #define SPARAM_ERSTMAX_MASK GENMASK(20, 16)
37 #define SPARAM_ERSTMAX(x) (((x) << 16) & SPARAM_ERSTMAX_MASK)
38 #define DB 0x004
39 #define DB_TARGET_MASK GENMASK(15, 8)
40 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
41 #define DB_STREAMID_MASK GENMASK(31, 16)
42 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
43 #define ERSTSZ 0x008
44 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
45 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
46 #define ERSTXBALO(x) (0x010 + 8 * (x))
47 #define ERSTXBAHI(x) (0x014 + 8 * (x))
48 #define ERDPLO 0x020
49 #define ERDPLO_EHB BIT(3)
50 #define ERDPHI 0x024
51 #define EREPLO 0x028
52 #define EREPLO_ECS BIT(0)
53 #define EREPLO_SEGI BIT(1)
54 #define EREPHI 0x02c
55 #define CTRL 0x030
56 #define CTRL_RUN BIT(0)
57 #define CTRL_LSE BIT(1)
58 #define CTRL_IE BIT(4)
59 #define CTRL_SMI_EVT BIT(5)
60 #define CTRL_SMI_DSE BIT(6)
61 #define CTRL_EWE BIT(7)
62 #define CTRL_DEVADDR_MASK GENMASK(30, 24)
63 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
64 #define CTRL_ENABLE BIT(31)
65 #define ST 0x034
66 #define ST_RC BIT(0)
67 #define ST_IP BIT(4)
68 #define RT_IMOD 0x038
69 #define RT_IMOD_IMODI_MASK GENMASK(15, 0)
70 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
71 #define RT_IMOD_IMODC_MASK GENMASK(31, 16)
72 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
73 #define PORTSC 0x03c
74 #define PORTSC_CCS BIT(0)
75 #define PORTSC_PED BIT(1)
76 #define PORTSC_PR BIT(4)
77 #define PORTSC_PLS_SHIFT 5
78 #define PORTSC_PLS_MASK GENMASK(8, 5)
79 #define PORTSC_PLS_U0 0x0
80 #define PORTSC_PLS_U2 0x2
81 #define PORTSC_PLS_U3 0x3
82 #define PORTSC_PLS_DISABLED 0x4
83 #define PORTSC_PLS_RXDETECT 0x5
84 #define PORTSC_PLS_INACTIVE 0x6
85 #define PORTSC_PLS_RESUME 0xf
86 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
87 #define PORTSC_PS_SHIFT 10
88 #define PORTSC_PS_MASK GENMASK(13, 10)
89 #define PORTSC_PS_UNDEFINED 0x0
90 #define PORTSC_PS_FS 0x1
91 #define PORTSC_PS_LS 0x2
92 #define PORTSC_PS_HS 0x3
93 #define PORTSC_PS_SS 0x4
94 #define PORTSC_LWS BIT(16)
95 #define PORTSC_CSC BIT(17)
96 #define PORTSC_WRC BIT(19)
97 #define PORTSC_PRC BIT(21)
98 #define PORTSC_PLC BIT(22)
99 #define PORTSC_CEC BIT(23)
100 #define PORTSC_WPR BIT(30)
101 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
102 PORTSC_PLC | PORTSC_CEC)
103 #define ECPLO 0x040
104 #define ECPHI 0x044
105 #define MFINDEX 0x048
106 #define MFINDEX_FRAME_SHIFT 3
107 #define MFINDEX_FRAME_MASK GENMASK(13, 3)
108 #define PORTPM 0x04c
109 #define PORTPM_L1S_MASK GENMASK(1, 0)
110 #define PORTPM_L1S_DROP 0x0
111 #define PORTPM_L1S_ACCEPT 0x1
112 #define PORTPM_L1S_NYET 0x2
113 #define PORTPM_L1S_STALL 0x3
114 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
115 #define PORTPM_RWE BIT(3)
116 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
117 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
118 #define PORTPM_FLA BIT(24)
119 #define PORTPM_VBA BIT(25)
120 #define PORTPM_WOC BIT(26)
121 #define PORTPM_WOD BIT(27)
122 #define PORTPM_U1E BIT(28)
123 #define PORTPM_U2E BIT(29)
124 #define PORTPM_FRWE BIT(30)
125 #define PORTPM_PNG_CYA BIT(31)
126 #define EP_HALT 0x050
127 #define EP_PAUSE 0x054
128 #define EP_RELOAD 0x058
129 #define EP_STCHG 0x05c
130 #define DEVNOTIF_LO 0x064
131 #define DEVNOTIF_LO_TRIG BIT(0)
132 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
133 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK)
134 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
135 #define DEVNOTIF_HI 0x068
136 #define PORTHALT 0x06c
137 #define PORTHALT_HALT_LTSSM BIT(0)
138 #define PORTHALT_HALT_REJECT BIT(1)
139 #define PORTHALT_STCHG_REQ BIT(20)
140 #define PORTHALT_STCHG_INTR_EN BIT(24)
141 #define PORT_TM 0x070
142 #define EP_THREAD_ACTIVE 0x074
143 #define EP_STOPPED 0x078
144 #define HSFSPI_COUNT0 0x100
145 #define HSFSPI_COUNT13 0x134
146 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
147 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
148 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
149 #define BLCG 0x840
150 #define SSPX_CORE_CNT0 0x610
151 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
152 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
153 #define SSPX_CORE_CNT30 0x688
154 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
155 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
156 SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
157 #define SSPX_CORE_CNT32 0x690
158 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
159 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
160 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
161 #define SSPX_CORE_CNT56 0x6fc
162 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
163 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
164 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
165 #define SSPX_CORE_CNT57 0x700
166 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
167 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
168 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
169 #define SSPX_CORE_CNT65 0x720
170 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
171 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
172 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
173 #define SSPX_CORE_CNT66 0x724
174 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
175 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
176 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
177 #define SSPX_CORE_CNT67 0x728
178 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
179 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
180 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
181 #define SSPX_CORE_CNT72 0x73c
182 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
183 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
184 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
185 #define SSPX_CORE_PADCTL4 0x750
186 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
187 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
188 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
189 #define BLCG_DFPCI BIT(0)
190 #define BLCG_UFPCI BIT(1)
191 #define BLCG_FE BIT(2)
192 #define BLCG_COREPLL_PWRDN BIT(8)
193 #define BLCG_IOPLL_0_PWRDN BIT(9)
194 #define BLCG_IOPLL_1_PWRDN BIT(10)
195 #define BLCG_IOPLL_2_PWRDN BIT(11)
196 #define BLCG_ALL 0x1ff
197 #define CFG_DEV_SSPI_XFER 0x858
198 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
199 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
200 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
201 #define CFG_DEV_FE 0x85c
202 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
203 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1
204 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
205 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
206 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
207
208 /* FPCI registers */
209 #define XUSB_DEV_CFG_1 0x004
210 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
211 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
212 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
213 #define XUSB_DEV_CFG_4 0x010
214 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
215 #define XUSB_DEV_CFG_5 0x014
216
217 /* IPFS registers */
218 #define XUSB_DEV_CONFIGURATION_0 0x180
219 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
220 #define XUSB_DEV_INTR_MASK_0 0x188
221 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
222
223 struct tegra_xudc_ep_context {
224 __le32 info0;
225 __le32 info1;
226 __le32 deq_lo;
227 __le32 deq_hi;
228 __le32 tx_info;
229 __le32 rsvd[11];
230 };
231
232 #define EP_STATE_DISABLED 0
233 #define EP_STATE_RUNNING 1
234 #define EP_STATE_HALTED 2
235 #define EP_STATE_STOPPED 3
236 #define EP_STATE_ERROR 4
237
238 #define EP_TYPE_INVALID 0
239 #define EP_TYPE_ISOCH_OUT 1
240 #define EP_TYPE_BULK_OUT 2
241 #define EP_TYPE_INTERRUPT_OUT 3
242 #define EP_TYPE_CONTROL 4
243 #define EP_TYPE_ISCOH_IN 5
244 #define EP_TYPE_BULK_IN 6
245 #define EP_TYPE_INTERRUPT_IN 7
246
247 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \
248 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \
249 { \
250 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \
251 } \
252 static inline void \
253 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \
254 { \
255 u32 tmp; \
256 \
257 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \
258 tmp |= (val & (mask)) << (shift); \
259 ctx->member = cpu_to_le32(tmp); \
260 }
261
262 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
263 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
264 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
265 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
266 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
267 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
268 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
269 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
270 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
271 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
272 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
273 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
274 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
275 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
276 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
277 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
278 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 24, 0xff)
279 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
280 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
281 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
282 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
283 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
284
ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context * ctx)285 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
286 {
287 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
288 (ep_ctx_read_deq_lo(ctx) << 4);
289 }
290
291 static inline void
ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context * ctx,u64 addr)292 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
293 {
294 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
295 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
296 }
297
298 struct tegra_xudc_trb {
299 __le32 data_lo;
300 __le32 data_hi;
301 __le32 status;
302 __le32 control;
303 };
304
305 #define TRB_TYPE_RSVD 0
306 #define TRB_TYPE_NORMAL 1
307 #define TRB_TYPE_SETUP_STAGE 2
308 #define TRB_TYPE_DATA_STAGE 3
309 #define TRB_TYPE_STATUS_STAGE 4
310 #define TRB_TYPE_ISOCH 5
311 #define TRB_TYPE_LINK 6
312 #define TRB_TYPE_TRANSFER_EVENT 32
313 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
314 #define TRB_TYPE_STREAM 48
315 #define TRB_TYPE_SETUP_PACKET_EVENT 63
316
317 #define TRB_CMPL_CODE_INVALID 0
318 #define TRB_CMPL_CODE_SUCCESS 1
319 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
320 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
321 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
322 #define TRB_CMPL_CODE_TRB_ERR 5
323 #define TRB_CMPL_CODE_STALL 6
324 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
325 #define TRB_CMPL_CODE_SHORT_PACKET 13
326 #define TRB_CMPL_CODE_RING_UNDERRUN 14
327 #define TRB_CMPL_CODE_RING_OVERRUN 15
328 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
329 #define TRB_CMPL_CODE_STOPPED 26
330 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
331 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
332 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
333 #define TRB_CMPL_CODE_HOST_REJECTED 221
334 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
335 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
336
337 #define BUILD_TRB_RW(name, member, shift, mask) \
338 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \
339 { \
340 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \
341 } \
342 static inline void \
343 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \
344 { \
345 u32 tmp; \
346 \
347 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \
348 tmp |= (val & (mask)) << (shift); \
349 trb->member = cpu_to_le32(tmp); \
350 }
351
352 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
353 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
354 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
355 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
356 BUILD_TRB_RW(td_size, status, 17, 0x1f)
357 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
358 BUILD_TRB_RW(cycle, control, 0, 0x1)
359 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
360 BUILD_TRB_RW(isp, control, 2, 0x1)
361 BUILD_TRB_RW(chain, control, 4, 0x1)
362 BUILD_TRB_RW(ioc, control, 5, 0x1)
363 BUILD_TRB_RW(type, control, 10, 0x3f)
364 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
365 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
366 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
367 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
368 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
369 BUILD_TRB_RW(sia, control, 31, 0x1)
370
trb_read_data_ptr(struct tegra_xudc_trb * trb)371 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
372 {
373 return ((u64)trb_read_data_hi(trb) << 32) |
374 trb_read_data_lo(trb);
375 }
376
trb_write_data_ptr(struct tegra_xudc_trb * trb,u64 addr)377 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
378 {
379 trb_write_data_lo(trb, lower_32_bits(addr));
380 trb_write_data_hi(trb, upper_32_bits(addr));
381 }
382
383 struct tegra_xudc_request {
384 struct usb_request usb_req;
385
386 size_t buf_queued;
387 unsigned int trbs_queued;
388 unsigned int trbs_needed;
389 bool need_zlp;
390
391 struct tegra_xudc_trb *first_trb;
392 struct tegra_xudc_trb *last_trb;
393
394 struct list_head list;
395 };
396
397 struct tegra_xudc_ep {
398 struct tegra_xudc *xudc;
399 struct usb_ep usb_ep;
400 unsigned int index;
401 char name[8];
402
403 struct tegra_xudc_ep_context *context;
404
405 #define XUDC_TRANSFER_RING_SIZE 64
406 struct tegra_xudc_trb *transfer_ring;
407 dma_addr_t transfer_ring_phys;
408
409 unsigned int enq_ptr;
410 unsigned int deq_ptr;
411 bool pcs;
412 bool ring_full;
413 bool stream_rejected;
414
415 struct list_head queue;
416 const struct usb_endpoint_descriptor *desc;
417 const struct usb_ss_ep_comp_descriptor *comp_desc;
418 };
419
420 struct tegra_xudc_sel_timing {
421 __u8 u1sel;
422 __u8 u1pel;
423 __le16 u2sel;
424 __le16 u2pel;
425 };
426
427 enum tegra_xudc_setup_state {
428 WAIT_FOR_SETUP,
429 DATA_STAGE_XFER,
430 DATA_STAGE_RECV,
431 STATUS_STAGE_XFER,
432 STATUS_STAGE_RECV,
433 };
434
435 struct tegra_xudc_setup_packet {
436 struct usb_ctrlrequest ctrl_req;
437 unsigned int seq_num;
438 };
439
440 struct tegra_xudc_save_regs {
441 u32 ctrl;
442 u32 portpm;
443 };
444
445 struct tegra_xudc {
446 struct device *dev;
447 const struct tegra_xudc_soc *soc;
448 struct tegra_xusb_padctl *padctl;
449
450 spinlock_t lock;
451
452 struct usb_gadget gadget;
453 struct usb_gadget_driver *driver;
454
455 #define XUDC_NR_EVENT_RINGS 2
456 #define XUDC_EVENT_RING_SIZE 4096
457 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
458 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
459 unsigned int event_ring_index;
460 unsigned int event_ring_deq_ptr;
461 bool ccs;
462
463 #define XUDC_NR_EPS 32
464 struct tegra_xudc_ep ep[XUDC_NR_EPS];
465 struct tegra_xudc_ep_context *ep_context;
466 dma_addr_t ep_context_phys;
467
468 struct device *genpd_dev_device;
469 struct device *genpd_dev_ss;
470 struct device_link *genpd_dl_device;
471 struct device_link *genpd_dl_ss;
472
473 struct dma_pool *transfer_ring_pool;
474
475 bool queued_setup_packet;
476 struct tegra_xudc_setup_packet setup_packet;
477 enum tegra_xudc_setup_state setup_state;
478 u16 setup_seq_num;
479
480 u16 dev_addr;
481 u16 isoch_delay;
482 struct tegra_xudc_sel_timing sel_timing;
483 u8 test_mode_pattern;
484 u16 status_buf;
485 struct tegra_xudc_request *ep0_req;
486
487 bool pullup;
488
489 unsigned int nr_enabled_eps;
490 unsigned int nr_isoch_eps;
491
492 unsigned int device_state;
493 unsigned int resume_state;
494
495 int irq;
496
497 void __iomem *base;
498 resource_size_t phys_base;
499 void __iomem *ipfs;
500 void __iomem *fpci;
501
502 struct regulator_bulk_data *supplies;
503
504 struct clk_bulk_data *clks;
505
506 bool device_mode;
507 struct work_struct usb_role_sw_work;
508
509 struct phy **usb3_phy;
510 struct phy *curr_usb3_phy;
511 struct phy **utmi_phy;
512 struct phy *curr_utmi_phy;
513
514 struct tegra_xudc_save_regs saved_regs;
515 bool suspended;
516 bool powergated;
517
518 struct usb_phy **usbphy;
519 struct usb_phy *curr_usbphy;
520 struct notifier_block vbus_nb;
521
522 struct completion disconnect_complete;
523
524 bool selfpowered;
525
526 #define TOGGLE_VBUS_WAIT_MS 100
527 struct delayed_work plc_reset_work;
528 bool wait_csc;
529
530 struct delayed_work port_reset_war_work;
531 bool wait_for_sec_prc;
532 };
533
534 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
535 #define XUDC_MAX_ISOCH_EPS 4
536 #define XUDC_INTERRUPT_MODERATION_US 0
537
538 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
539 .bLength = USB_DT_ENDPOINT_SIZE,
540 .bDescriptorType = USB_DT_ENDPOINT,
541 .bEndpointAddress = 0,
542 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
543 .wMaxPacketSize = cpu_to_le16(64),
544 };
545
546 struct tegra_xudc_soc {
547 const char * const *supply_names;
548 unsigned int num_supplies;
549 const char * const *clock_names;
550 unsigned int num_clks;
551 unsigned int num_phys;
552 bool u1_enable;
553 bool u2_enable;
554 bool lpm_enable;
555 bool invalid_seq_num;
556 bool pls_quirk;
557 bool port_reset_quirk;
558 bool port_speed_quirk;
559 bool has_ipfs;
560 };
561
fpci_readl(struct tegra_xudc * xudc,unsigned int offset)562 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
563 {
564 return readl(xudc->fpci + offset);
565 }
566
fpci_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)567 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
568 unsigned int offset)
569 {
570 writel(val, xudc->fpci + offset);
571 }
572
ipfs_readl(struct tegra_xudc * xudc,unsigned int offset)573 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
574 {
575 return readl(xudc->ipfs + offset);
576 }
577
ipfs_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)578 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
579 unsigned int offset)
580 {
581 writel(val, xudc->ipfs + offset);
582 }
583
xudc_readl(struct tegra_xudc * xudc,unsigned int offset)584 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
585 {
586 return readl(xudc->base + offset);
587 }
588
xudc_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)589 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
590 unsigned int offset)
591 {
592 writel(val, xudc->base + offset);
593 }
594
xudc_readl_poll(struct tegra_xudc * xudc,unsigned int offset,u32 mask,u32 val)595 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
596 unsigned int offset, u32 mask, u32 val)
597 {
598 u32 regval;
599
600 return readl_poll_timeout_atomic(xudc->base + offset, regval,
601 (regval & mask) == val, 1, 100);
602 }
603
to_xudc(struct usb_gadget * gadget)604 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
605 {
606 return container_of(gadget, struct tegra_xudc, gadget);
607 }
608
to_xudc_ep(struct usb_ep * ep)609 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
610 {
611 return container_of(ep, struct tegra_xudc_ep, usb_ep);
612 }
613
to_xudc_req(struct usb_request * req)614 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
615 {
616 return container_of(req, struct tegra_xudc_request, usb_req);
617 }
618
dump_trb(struct tegra_xudc * xudc,const char * type,struct tegra_xudc_trb * trb)619 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
620 struct tegra_xudc_trb *trb)
621 {
622 dev_dbg(xudc->dev,
623 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
624 type, trb, trb->data_lo, trb->data_hi, trb->status,
625 trb->control);
626 }
627
tegra_xudc_limit_port_speed(struct tegra_xudc * xudc)628 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
629 {
630 u32 val;
631
632 /* limit port speed to gen 1 */
633 val = xudc_readl(xudc, SSPX_CORE_CNT56);
634 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
635 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
636 xudc_writel(xudc, val, SSPX_CORE_CNT56);
637
638 val = xudc_readl(xudc, SSPX_CORE_CNT57);
639 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
640 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
641 xudc_writel(xudc, val, SSPX_CORE_CNT57);
642
643 val = xudc_readl(xudc, SSPX_CORE_CNT65);
644 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
645 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
646 xudc_writel(xudc, val, SSPX_CORE_CNT66);
647
648 val = xudc_readl(xudc, SSPX_CORE_CNT66);
649 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
650 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
651 xudc_writel(xudc, val, SSPX_CORE_CNT66);
652
653 val = xudc_readl(xudc, SSPX_CORE_CNT67);
654 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
655 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
656 xudc_writel(xudc, val, SSPX_CORE_CNT67);
657
658 val = xudc_readl(xudc, SSPX_CORE_CNT72);
659 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
660 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
661 xudc_writel(xudc, val, SSPX_CORE_CNT72);
662 }
663
tegra_xudc_restore_port_speed(struct tegra_xudc * xudc)664 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
665 {
666 u32 val;
667
668 /* restore port speed to gen2 */
669 val = xudc_readl(xudc, SSPX_CORE_CNT56);
670 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
671 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
672 xudc_writel(xudc, val, SSPX_CORE_CNT56);
673
674 val = xudc_readl(xudc, SSPX_CORE_CNT57);
675 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
676 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
677 xudc_writel(xudc, val, SSPX_CORE_CNT57);
678
679 val = xudc_readl(xudc, SSPX_CORE_CNT65);
680 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
681 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
682 xudc_writel(xudc, val, SSPX_CORE_CNT66);
683
684 val = xudc_readl(xudc, SSPX_CORE_CNT66);
685 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
686 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
687 xudc_writel(xudc, val, SSPX_CORE_CNT66);
688
689 val = xudc_readl(xudc, SSPX_CORE_CNT67);
690 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
691 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
692 xudc_writel(xudc, val, SSPX_CORE_CNT67);
693
694 val = xudc_readl(xudc, SSPX_CORE_CNT72);
695 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
696 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
697 xudc_writel(xudc, val, SSPX_CORE_CNT72);
698 }
699
tegra_xudc_device_mode_on(struct tegra_xudc * xudc)700 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
701 {
702 int err;
703
704 pm_runtime_get_sync(xudc->dev);
705
706 err = phy_power_on(xudc->curr_utmi_phy);
707 if (err < 0)
708 dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
709
710 err = phy_power_on(xudc->curr_usb3_phy);
711 if (err < 0)
712 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
713
714 dev_dbg(xudc->dev, "device mode on\n");
715
716 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
717 USB_ROLE_DEVICE);
718 }
719
tegra_xudc_device_mode_off(struct tegra_xudc * xudc)720 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
721 {
722 bool connected = false;
723 u32 pls, val;
724 int err;
725
726 dev_dbg(xudc->dev, "device mode off\n");
727
728 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
729
730 reinit_completion(&xudc->disconnect_complete);
731
732 if (xudc->soc->port_speed_quirk)
733 tegra_xudc_restore_port_speed(xudc);
734
735 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
736
737 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
738 PORTSC_PLS_SHIFT;
739
740 /* Direct link to U0 if disconnected in RESUME or U2. */
741 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
742 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
743 val = xudc_readl(xudc, PORTPM);
744 val |= PORTPM_FRWE;
745 xudc_writel(xudc, val, PORTPM);
746
747 val = xudc_readl(xudc, PORTSC);
748 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
749 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
750 xudc_writel(xudc, val, PORTSC);
751 }
752
753 /* Wait for disconnect event. */
754 if (connected)
755 wait_for_completion(&xudc->disconnect_complete);
756
757 /* Make sure interrupt handler has completed before powergating. */
758 synchronize_irq(xudc->irq);
759
760 err = phy_power_off(xudc->curr_utmi_phy);
761 if (err < 0)
762 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
763
764 err = phy_power_off(xudc->curr_usb3_phy);
765 if (err < 0)
766 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
767
768 pm_runtime_put(xudc->dev);
769 }
770
tegra_xudc_usb_role_sw_work(struct work_struct * work)771 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
772 {
773 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
774 usb_role_sw_work);
775
776 if (xudc->device_mode)
777 tegra_xudc_device_mode_on(xudc);
778 else
779 tegra_xudc_device_mode_off(xudc);
780 }
781
tegra_xudc_get_phy_index(struct tegra_xudc * xudc,struct usb_phy * usbphy)782 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
783 struct usb_phy *usbphy)
784 {
785 unsigned int i;
786
787 for (i = 0; i < xudc->soc->num_phys; i++) {
788 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
789 return i;
790 }
791
792 dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
793 return -1;
794 }
795
tegra_xudc_vbus_notify(struct notifier_block * nb,unsigned long action,void * data)796 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
797 unsigned long action, void *data)
798 {
799 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
800 vbus_nb);
801 struct usb_phy *usbphy = (struct usb_phy *)data;
802 int phy_index;
803
804 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
805
806 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
807 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
808 dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
809 xudc->device_mode);
810 return NOTIFY_OK;
811 }
812
813 xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
814 false;
815
816 phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
817 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
818 phy_index);
819
820 if (!xudc->suspended && phy_index != -1) {
821 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
822 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
823 xudc->curr_usbphy = usbphy;
824 schedule_work(&xudc->usb_role_sw_work);
825 }
826
827 return NOTIFY_OK;
828 }
829
tegra_xudc_plc_reset_work(struct work_struct * work)830 static void tegra_xudc_plc_reset_work(struct work_struct *work)
831 {
832 struct delayed_work *dwork = to_delayed_work(work);
833 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
834 plc_reset_work);
835 unsigned long flags;
836
837 spin_lock_irqsave(&xudc->lock, flags);
838
839 if (xudc->wait_csc) {
840 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
841 PORTSC_PLS_SHIFT;
842
843 if (pls == PORTSC_PLS_INACTIVE) {
844 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
845 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
846 USB_ROLE_NONE);
847 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
848 USB_ROLE_DEVICE);
849
850 xudc->wait_csc = false;
851 }
852 }
853
854 spin_unlock_irqrestore(&xudc->lock, flags);
855 }
856
tegra_xudc_port_reset_war_work(struct work_struct * work)857 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
858 {
859 struct delayed_work *dwork = to_delayed_work(work);
860 struct tegra_xudc *xudc =
861 container_of(dwork, struct tegra_xudc, port_reset_war_work);
862 unsigned long flags;
863 u32 pls;
864 int ret;
865
866 spin_lock_irqsave(&xudc->lock, flags);
867
868 if (xudc->device_mode && xudc->wait_for_sec_prc) {
869 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
870 PORTSC_PLS_SHIFT;
871 dev_dbg(xudc->dev, "pls = %x\n", pls);
872
873 if (pls == PORTSC_PLS_DISABLED) {
874 dev_dbg(xudc->dev, "toggle vbus\n");
875 /* PRC doesn't complete in 100ms, toggle the vbus */
876 ret = tegra_phy_xusb_utmi_port_reset(
877 xudc->curr_utmi_phy);
878 if (ret == 1)
879 xudc->wait_for_sec_prc = 0;
880 }
881 }
882
883 spin_unlock_irqrestore(&xudc->lock, flags);
884 }
885
trb_virt_to_phys(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)886 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
887 struct tegra_xudc_trb *trb)
888 {
889 unsigned int index;
890
891 index = trb - ep->transfer_ring;
892
893 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
894 return 0;
895
896 return (ep->transfer_ring_phys + index * sizeof(*trb));
897 }
898
trb_phys_to_virt(struct tegra_xudc_ep * ep,dma_addr_t addr)899 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
900 dma_addr_t addr)
901 {
902 struct tegra_xudc_trb *trb;
903 unsigned int index;
904
905 index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
906
907 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
908 return NULL;
909
910 trb = &ep->transfer_ring[index];
911
912 return trb;
913 }
914
ep_reload(struct tegra_xudc * xudc,unsigned int ep)915 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
916 {
917 xudc_writel(xudc, BIT(ep), EP_RELOAD);
918 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
919 }
920
ep_pause(struct tegra_xudc * xudc,unsigned int ep)921 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
922 {
923 u32 val;
924
925 val = xudc_readl(xudc, EP_PAUSE);
926 if (val & BIT(ep))
927 return;
928 val |= BIT(ep);
929
930 xudc_writel(xudc, val, EP_PAUSE);
931
932 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
933
934 xudc_writel(xudc, BIT(ep), EP_STCHG);
935 }
936
ep_unpause(struct tegra_xudc * xudc,unsigned int ep)937 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
938 {
939 u32 val;
940
941 val = xudc_readl(xudc, EP_PAUSE);
942 if (!(val & BIT(ep)))
943 return;
944 val &= ~BIT(ep);
945
946 xudc_writel(xudc, val, EP_PAUSE);
947
948 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
949
950 xudc_writel(xudc, BIT(ep), EP_STCHG);
951 }
952
ep_unpause_all(struct tegra_xudc * xudc)953 static void ep_unpause_all(struct tegra_xudc *xudc)
954 {
955 u32 val;
956
957 val = xudc_readl(xudc, EP_PAUSE);
958
959 xudc_writel(xudc, 0, EP_PAUSE);
960
961 xudc_readl_poll(xudc, EP_STCHG, val, val);
962
963 xudc_writel(xudc, val, EP_STCHG);
964 }
965
ep_halt(struct tegra_xudc * xudc,unsigned int ep)966 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
967 {
968 u32 val;
969
970 val = xudc_readl(xudc, EP_HALT);
971 if (val & BIT(ep))
972 return;
973 val |= BIT(ep);
974 xudc_writel(xudc, val, EP_HALT);
975
976 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
977
978 xudc_writel(xudc, BIT(ep), EP_STCHG);
979 }
980
ep_unhalt(struct tegra_xudc * xudc,unsigned int ep)981 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
982 {
983 u32 val;
984
985 val = xudc_readl(xudc, EP_HALT);
986 if (!(val & BIT(ep)))
987 return;
988 val &= ~BIT(ep);
989 xudc_writel(xudc, val, EP_HALT);
990
991 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
992
993 xudc_writel(xudc, BIT(ep), EP_STCHG);
994 }
995
ep_unhalt_all(struct tegra_xudc * xudc)996 static void ep_unhalt_all(struct tegra_xudc *xudc)
997 {
998 u32 val;
999
1000 val = xudc_readl(xudc, EP_HALT);
1001 if (!val)
1002 return;
1003 xudc_writel(xudc, 0, EP_HALT);
1004
1005 xudc_readl_poll(xudc, EP_STCHG, val, val);
1006
1007 xudc_writel(xudc, val, EP_STCHG);
1008 }
1009
ep_wait_for_stopped(struct tegra_xudc * xudc,unsigned int ep)1010 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1011 {
1012 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1013 xudc_writel(xudc, BIT(ep), EP_STOPPED);
1014 }
1015
ep_wait_for_inactive(struct tegra_xudc * xudc,unsigned int ep)1016 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1017 {
1018 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1019 }
1020
tegra_xudc_req_done(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,int status)1021 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1022 struct tegra_xudc_request *req, int status)
1023 {
1024 struct tegra_xudc *xudc = ep->xudc;
1025
1026 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1027 req, ep->index, status);
1028
1029 if (likely(req->usb_req.status == -EINPROGRESS))
1030 req->usb_req.status = status;
1031
1032 list_del_init(&req->list);
1033
1034 if (usb_endpoint_xfer_control(ep->desc)) {
1035 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1036 (xudc->setup_state ==
1037 DATA_STAGE_XFER));
1038 } else {
1039 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1040 usb_endpoint_dir_in(ep->desc));
1041 }
1042
1043 spin_unlock(&xudc->lock);
1044 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1045 spin_lock(&xudc->lock);
1046 }
1047
tegra_xudc_ep_nuke(struct tegra_xudc_ep * ep,int status)1048 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1049 {
1050 struct tegra_xudc_request *req;
1051
1052 while (!list_empty(&ep->queue)) {
1053 req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1054 list);
1055 tegra_xudc_req_done(ep, req, status);
1056 }
1057 }
1058
ep_available_trbs(struct tegra_xudc_ep * ep)1059 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1060 {
1061 if (ep->ring_full)
1062 return 0;
1063
1064 if (ep->deq_ptr > ep->enq_ptr)
1065 return ep->deq_ptr - ep->enq_ptr - 1;
1066
1067 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1068 }
1069
tegra_xudc_queue_one_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb,bool ioc)1070 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1071 struct tegra_xudc_request *req,
1072 struct tegra_xudc_trb *trb,
1073 bool ioc)
1074 {
1075 struct tegra_xudc *xudc = ep->xudc;
1076 dma_addr_t buf_addr;
1077 size_t len;
1078
1079 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1080 req->buf_queued);
1081 if (len > 0)
1082 buf_addr = req->usb_req.dma + req->buf_queued;
1083 else
1084 buf_addr = 0;
1085
1086 trb_write_data_ptr(trb, buf_addr);
1087
1088 trb_write_transfer_len(trb, len);
1089 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1090
1091 if (req->trbs_queued == req->trbs_needed - 1 ||
1092 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1093 trb_write_chain(trb, 0);
1094 else
1095 trb_write_chain(trb, 1);
1096
1097 trb_write_ioc(trb, ioc);
1098
1099 if (usb_endpoint_dir_out(ep->desc) ||
1100 (usb_endpoint_xfer_control(ep->desc) &&
1101 (xudc->setup_state == DATA_STAGE_RECV)))
1102 trb_write_isp(trb, 1);
1103 else
1104 trb_write_isp(trb, 0);
1105
1106 if (usb_endpoint_xfer_control(ep->desc)) {
1107 if (xudc->setup_state == DATA_STAGE_XFER ||
1108 xudc->setup_state == DATA_STAGE_RECV)
1109 trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1110 else
1111 trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1112
1113 if (xudc->setup_state == DATA_STAGE_XFER ||
1114 xudc->setup_state == STATUS_STAGE_XFER)
1115 trb_write_data_stage_dir(trb, 1);
1116 else
1117 trb_write_data_stage_dir(trb, 0);
1118 } else if (usb_endpoint_xfer_isoc(ep->desc)) {
1119 trb_write_type(trb, TRB_TYPE_ISOCH);
1120 trb_write_sia(trb, 1);
1121 trb_write_frame_id(trb, 0);
1122 trb_write_tlbpc(trb, 0);
1123 } else if (usb_ss_max_streams(ep->comp_desc)) {
1124 trb_write_type(trb, TRB_TYPE_STREAM);
1125 trb_write_stream_id(trb, req->usb_req.stream_id);
1126 } else {
1127 trb_write_type(trb, TRB_TYPE_NORMAL);
1128 trb_write_stream_id(trb, 0);
1129 }
1130
1131 trb_write_cycle(trb, ep->pcs);
1132
1133 req->trbs_queued++;
1134 req->buf_queued += len;
1135
1136 dump_trb(xudc, "TRANSFER", trb);
1137 }
1138
tegra_xudc_queue_trbs(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1139 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1140 struct tegra_xudc_request *req)
1141 {
1142 unsigned int i, count, available;
1143 bool wait_td = false;
1144
1145 available = ep_available_trbs(ep);
1146 count = req->trbs_needed - req->trbs_queued;
1147 if (available < count) {
1148 count = available;
1149 ep->ring_full = true;
1150 }
1151
1152 /*
1153 * To generate zero-length packet on USB bus, SW needs schedule a
1154 * standalone zero-length TD. According to HW's behavior, SW needs
1155 * to schedule TDs in different ways for different endpoint types.
1156 *
1157 * For control endpoint:
1158 * - Data stage TD (IOC = 1, CH = 0)
1159 * - Ring doorbell and wait transfer event
1160 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1161 * - Ring doorbell
1162 *
1163 * For bulk and interrupt endpoints:
1164 * - Normal transfer TD (IOC = 0, CH = 0)
1165 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1166 * - Ring doorbell
1167 */
1168
1169 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1170 wait_td = true;
1171
1172 if (!req->first_trb)
1173 req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1174
1175 for (i = 0; i < count; i++) {
1176 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1177 bool ioc = false;
1178
1179 if ((i == count - 1) || (wait_td && i == count - 2))
1180 ioc = true;
1181
1182 tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1183 req->last_trb = trb;
1184
1185 ep->enq_ptr++;
1186 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1187 trb = &ep->transfer_ring[ep->enq_ptr];
1188 trb_write_cycle(trb, ep->pcs);
1189 ep->pcs = !ep->pcs;
1190 ep->enq_ptr = 0;
1191 }
1192
1193 if (ioc)
1194 break;
1195 }
1196
1197 return count;
1198 }
1199
tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep * ep)1200 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1201 {
1202 struct tegra_xudc *xudc = ep->xudc;
1203 u32 val;
1204
1205 if (list_empty(&ep->queue))
1206 return;
1207
1208 val = DB_TARGET(ep->index);
1209 if (usb_endpoint_xfer_control(ep->desc)) {
1210 val |= DB_STREAMID(xudc->setup_seq_num);
1211 } else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1212 struct tegra_xudc_request *req;
1213
1214 /* Don't ring doorbell if the stream has been rejected. */
1215 if (ep->stream_rejected)
1216 return;
1217
1218 req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1219 list);
1220 val |= DB_STREAMID(req->usb_req.stream_id);
1221 }
1222
1223 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1224 xudc_writel(xudc, val, DB);
1225 }
1226
tegra_xudc_ep_kick_queue(struct tegra_xudc_ep * ep)1227 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1228 {
1229 struct tegra_xudc_request *req;
1230 bool trbs_queued = false;
1231
1232 list_for_each_entry(req, &ep->queue, list) {
1233 if (ep->ring_full)
1234 break;
1235
1236 if (tegra_xudc_queue_trbs(ep, req) > 0)
1237 trbs_queued = true;
1238 }
1239
1240 if (trbs_queued)
1241 tegra_xudc_ep_ring_doorbell(ep);
1242 }
1243
1244 static int
__tegra_xudc_ep_queue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1245 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1246 {
1247 struct tegra_xudc *xudc = ep->xudc;
1248 int err;
1249
1250 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1251 dev_err(xudc->dev, "control EP has pending transfers\n");
1252 return -EINVAL;
1253 }
1254
1255 if (usb_endpoint_xfer_control(ep->desc)) {
1256 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1257 (xudc->setup_state ==
1258 DATA_STAGE_XFER));
1259 } else {
1260 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1261 usb_endpoint_dir_in(ep->desc));
1262 }
1263
1264 if (err < 0) {
1265 dev_err(xudc->dev, "failed to map request: %d\n", err);
1266 return err;
1267 }
1268
1269 req->first_trb = NULL;
1270 req->last_trb = NULL;
1271 req->buf_queued = 0;
1272 req->trbs_queued = 0;
1273 req->need_zlp = false;
1274 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1275 XUDC_TRB_MAX_BUFFER_SIZE);
1276 if (req->usb_req.length == 0)
1277 req->trbs_needed++;
1278
1279 if (!usb_endpoint_xfer_isoc(ep->desc) &&
1280 req->usb_req.zero && req->usb_req.length &&
1281 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1282 req->trbs_needed++;
1283 req->need_zlp = true;
1284 }
1285
1286 req->usb_req.status = -EINPROGRESS;
1287 req->usb_req.actual = 0;
1288
1289 list_add_tail(&req->list, &ep->queue);
1290
1291 tegra_xudc_ep_kick_queue(ep);
1292
1293 return 0;
1294 }
1295
1296 static int
tegra_xudc_ep_queue(struct usb_ep * usb_ep,struct usb_request * usb_req,gfp_t gfp)1297 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1298 gfp_t gfp)
1299 {
1300 struct tegra_xudc_request *req;
1301 struct tegra_xudc_ep *ep;
1302 struct tegra_xudc *xudc;
1303 unsigned long flags;
1304 int ret;
1305
1306 if (!usb_ep || !usb_req)
1307 return -EINVAL;
1308
1309 ep = to_xudc_ep(usb_ep);
1310 req = to_xudc_req(usb_req);
1311 xudc = ep->xudc;
1312
1313 spin_lock_irqsave(&xudc->lock, flags);
1314 if (xudc->powergated || !ep->desc) {
1315 ret = -ESHUTDOWN;
1316 goto unlock;
1317 }
1318
1319 ret = __tegra_xudc_ep_queue(ep, req);
1320 unlock:
1321 spin_unlock_irqrestore(&xudc->lock, flags);
1322
1323 return ret;
1324 }
1325
squeeze_transfer_ring(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1326 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1327 struct tegra_xudc_request *req)
1328 {
1329 struct tegra_xudc_trb *trb = req->first_trb;
1330 bool pcs_enq = trb_read_cycle(trb);
1331 bool pcs;
1332
1333 /*
1334 * Clear out all the TRBs part of or after the cancelled request,
1335 * and must correct trb cycle bit to the last un-enqueued state.
1336 */
1337 while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1338 pcs = trb_read_cycle(trb);
1339 memset(trb, 0, sizeof(*trb));
1340 trb_write_cycle(trb, !pcs);
1341 trb++;
1342
1343 if (trb_read_type(trb) == TRB_TYPE_LINK)
1344 trb = ep->transfer_ring;
1345 }
1346
1347 /* Requests will be re-queued at the start of the cancelled request. */
1348 ep->enq_ptr = req->first_trb - ep->transfer_ring;
1349 /*
1350 * Retrieve the correct cycle bit state from the first trb of
1351 * the cancelled request.
1352 */
1353 ep->pcs = pcs_enq;
1354 ep->ring_full = false;
1355 list_for_each_entry_continue(req, &ep->queue, list) {
1356 req->usb_req.status = -EINPROGRESS;
1357 req->usb_req.actual = 0;
1358
1359 req->first_trb = NULL;
1360 req->last_trb = NULL;
1361 req->buf_queued = 0;
1362 req->trbs_queued = 0;
1363 }
1364 }
1365
1366 /*
1367 * Determine if the given TRB is in the range [first trb, last trb] for the
1368 * given request.
1369 */
trb_in_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1370 static bool trb_in_request(struct tegra_xudc_ep *ep,
1371 struct tegra_xudc_request *req,
1372 struct tegra_xudc_trb *trb)
1373 {
1374 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1375 req->first_trb, req->last_trb, trb);
1376
1377 if (trb >= req->first_trb && (trb <= req->last_trb ||
1378 req->last_trb < req->first_trb))
1379 return true;
1380
1381 if (trb < req->first_trb && trb <= req->last_trb &&
1382 req->last_trb < req->first_trb)
1383 return true;
1384
1385 return false;
1386 }
1387
1388 /*
1389 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1390 * for the given endpoint and request.
1391 */
trb_before_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1392 static bool trb_before_request(struct tegra_xudc_ep *ep,
1393 struct tegra_xudc_request *req,
1394 struct tegra_xudc_trb *trb)
1395 {
1396 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1397
1398 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1399 __func__, req->first_trb, req->last_trb, enq_trb, trb);
1400
1401 if (trb < req->first_trb && (enq_trb <= trb ||
1402 req->first_trb < enq_trb))
1403 return true;
1404
1405 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1406 return true;
1407
1408 return false;
1409 }
1410
1411 static int
__tegra_xudc_ep_dequeue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1412 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1413 struct tegra_xudc_request *req)
1414 {
1415 struct tegra_xudc *xudc = ep->xudc;
1416 struct tegra_xudc_request *r;
1417 struct tegra_xudc_trb *deq_trb;
1418 bool busy, kick_queue = false;
1419 int ret = 0;
1420
1421 /* Make sure the request is actually queued to this endpoint. */
1422 list_for_each_entry(r, &ep->queue, list) {
1423 if (r == req)
1424 break;
1425 }
1426
1427 if (r != req)
1428 return -EINVAL;
1429
1430 /* Request hasn't been queued in the transfer ring yet. */
1431 if (!req->trbs_queued) {
1432 tegra_xudc_req_done(ep, req, -ECONNRESET);
1433 return 0;
1434 }
1435
1436 /* Halt DMA for this endpiont. */
1437 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1438 ep_pause(xudc, ep->index);
1439 ep_wait_for_inactive(xudc, ep->index);
1440 }
1441
1442 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1443 /* Is the hardware processing the TRB at the dequeue pointer? */
1444 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1445
1446 if (trb_in_request(ep, req, deq_trb) && busy) {
1447 /*
1448 * Request has been partially completed or it hasn't
1449 * started processing yet.
1450 */
1451 dma_addr_t deq_ptr;
1452
1453 squeeze_transfer_ring(ep, req);
1454
1455 req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1456 tegra_xudc_req_done(ep, req, -ECONNRESET);
1457 kick_queue = true;
1458
1459 /* EDTLA is > 0: request has been partially completed */
1460 if (req->usb_req.actual > 0) {
1461 /*
1462 * Abort the pending transfer and update the dequeue
1463 * pointer
1464 */
1465 ep_ctx_write_edtla(ep->context, 0);
1466 ep_ctx_write_partial_td(ep->context, 0);
1467 ep_ctx_write_data_offset(ep->context, 0);
1468
1469 deq_ptr = trb_virt_to_phys(ep,
1470 &ep->transfer_ring[ep->enq_ptr]);
1471
1472 if (dma_mapping_error(xudc->dev, deq_ptr)) {
1473 ret = -EINVAL;
1474 } else {
1475 ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1476 ep_ctx_write_dcs(ep->context, ep->pcs);
1477 ep_reload(xudc, ep->index);
1478 }
1479 }
1480 } else if (trb_before_request(ep, req, deq_trb) && busy) {
1481 /* Request hasn't started processing yet. */
1482 squeeze_transfer_ring(ep, req);
1483
1484 tegra_xudc_req_done(ep, req, -ECONNRESET);
1485 kick_queue = true;
1486 } else {
1487 /*
1488 * Request has completed, but we haven't processed the
1489 * completion event yet.
1490 */
1491 tegra_xudc_req_done(ep, req, -ECONNRESET);
1492 ret = -EINVAL;
1493 }
1494
1495 /* Resume the endpoint. */
1496 ep_unpause(xudc, ep->index);
1497
1498 if (kick_queue)
1499 tegra_xudc_ep_kick_queue(ep);
1500
1501 return ret;
1502 }
1503
1504 static int
tegra_xudc_ep_dequeue(struct usb_ep * usb_ep,struct usb_request * usb_req)1505 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1506 {
1507 struct tegra_xudc_request *req;
1508 struct tegra_xudc_ep *ep;
1509 struct tegra_xudc *xudc;
1510 unsigned long flags;
1511 int ret;
1512
1513 if (!usb_ep || !usb_req)
1514 return -EINVAL;
1515
1516 ep = to_xudc_ep(usb_ep);
1517 req = to_xudc_req(usb_req);
1518 xudc = ep->xudc;
1519
1520 spin_lock_irqsave(&xudc->lock, flags);
1521
1522 if (xudc->powergated || !ep->desc) {
1523 ret = -ESHUTDOWN;
1524 goto unlock;
1525 }
1526
1527 ret = __tegra_xudc_ep_dequeue(ep, req);
1528 unlock:
1529 spin_unlock_irqrestore(&xudc->lock, flags);
1530
1531 return ret;
1532 }
1533
__tegra_xudc_ep_set_halt(struct tegra_xudc_ep * ep,bool halt)1534 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1535 {
1536 struct tegra_xudc *xudc = ep->xudc;
1537
1538 if (!ep->desc)
1539 return -EINVAL;
1540
1541 if (usb_endpoint_xfer_isoc(ep->desc)) {
1542 dev_err(xudc->dev, "can't halt isochronous EP\n");
1543 return -ENOTSUPP;
1544 }
1545
1546 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1547 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1548 halt ? "halted" : "not halted");
1549 return 0;
1550 }
1551
1552 if (halt) {
1553 ep_halt(xudc, ep->index);
1554 } else {
1555 ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1556
1557 ep_reload(xudc, ep->index);
1558
1559 ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1560 ep_ctx_write_seq_num(ep->context, 0);
1561
1562 ep_reload(xudc, ep->index);
1563 ep_unpause(xudc, ep->index);
1564 ep_unhalt(xudc, ep->index);
1565
1566 tegra_xudc_ep_ring_doorbell(ep);
1567 }
1568
1569 return 0;
1570 }
1571
tegra_xudc_ep_set_halt(struct usb_ep * usb_ep,int value)1572 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1573 {
1574 struct tegra_xudc_ep *ep;
1575 struct tegra_xudc *xudc;
1576 unsigned long flags;
1577 int ret;
1578
1579 if (!usb_ep)
1580 return -EINVAL;
1581
1582 ep = to_xudc_ep(usb_ep);
1583 xudc = ep->xudc;
1584
1585 spin_lock_irqsave(&xudc->lock, flags);
1586 if (xudc->powergated) {
1587 ret = -ESHUTDOWN;
1588 goto unlock;
1589 }
1590
1591 if (value && usb_endpoint_dir_in(ep->desc) &&
1592 !list_empty(&ep->queue)) {
1593 dev_err(xudc->dev, "can't halt EP with requests pending\n");
1594 ret = -EAGAIN;
1595 goto unlock;
1596 }
1597
1598 ret = __tegra_xudc_ep_set_halt(ep, value);
1599 unlock:
1600 spin_unlock_irqrestore(&xudc->lock, flags);
1601
1602 return ret;
1603 }
1604
tegra_xudc_ep_context_setup(struct tegra_xudc_ep * ep)1605 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1606 {
1607 const struct usb_endpoint_descriptor *desc = ep->desc;
1608 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1609 struct tegra_xudc *xudc = ep->xudc;
1610 u16 maxpacket, maxburst = 0, esit = 0;
1611 u32 val;
1612
1613 maxpacket = usb_endpoint_maxp(desc) & 0x7ff;
1614 if (xudc->gadget.speed == USB_SPEED_SUPER) {
1615 if (!usb_endpoint_xfer_control(desc))
1616 maxburst = comp_desc->bMaxBurst;
1617
1618 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1619 esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1620 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1621 (usb_endpoint_xfer_int(desc) ||
1622 usb_endpoint_xfer_isoc(desc))) {
1623 if (xudc->gadget.speed == USB_SPEED_HIGH) {
1624 maxburst = (usb_endpoint_maxp(desc) >> 11) & 0x3;
1625 if (maxburst == 0x3) {
1626 dev_warn(xudc->dev,
1627 "invalid endpoint maxburst\n");
1628 maxburst = 0x2;
1629 }
1630 }
1631 esit = maxpacket * (maxburst + 1);
1632 }
1633
1634 memset(ep->context, 0, sizeof(*ep->context));
1635
1636 ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1637 ep_ctx_write_interval(ep->context, desc->bInterval);
1638 if (xudc->gadget.speed == USB_SPEED_SUPER) {
1639 if (usb_endpoint_xfer_isoc(desc)) {
1640 ep_ctx_write_mult(ep->context,
1641 comp_desc->bmAttributes & 0x3);
1642 }
1643
1644 if (usb_endpoint_xfer_bulk(desc)) {
1645 ep_ctx_write_max_pstreams(ep->context,
1646 comp_desc->bmAttributes &
1647 0x1f);
1648 ep_ctx_write_lsa(ep->context, 1);
1649 }
1650 }
1651
1652 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1653 val = usb_endpoint_type(desc);
1654 else
1655 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1656
1657 ep_ctx_write_type(ep->context, val);
1658 ep_ctx_write_cerr(ep->context, 0x3);
1659 ep_ctx_write_max_packet_size(ep->context, maxpacket);
1660 ep_ctx_write_max_burst_size(ep->context, maxburst);
1661
1662 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1663 ep_ctx_write_dcs(ep->context, ep->pcs);
1664
1665 /* Select a reasonable average TRB length based on endpoint type. */
1666 switch (usb_endpoint_type(desc)) {
1667 case USB_ENDPOINT_XFER_CONTROL:
1668 val = 8;
1669 break;
1670 case USB_ENDPOINT_XFER_INT:
1671 val = 1024;
1672 break;
1673 case USB_ENDPOINT_XFER_BULK:
1674 case USB_ENDPOINT_XFER_ISOC:
1675 default:
1676 val = 3072;
1677 break;
1678 }
1679
1680 ep_ctx_write_avg_trb_len(ep->context, val);
1681 ep_ctx_write_max_esit_payload(ep->context, esit);
1682
1683 ep_ctx_write_cerrcnt(ep->context, 0x3);
1684 }
1685
setup_link_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)1686 static void setup_link_trb(struct tegra_xudc_ep *ep,
1687 struct tegra_xudc_trb *trb)
1688 {
1689 trb_write_data_ptr(trb, ep->transfer_ring_phys);
1690 trb_write_type(trb, TRB_TYPE_LINK);
1691 trb_write_toggle_cycle(trb, 1);
1692 }
1693
__tegra_xudc_ep_disable(struct tegra_xudc_ep * ep)1694 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1695 {
1696 struct tegra_xudc *xudc = ep->xudc;
1697
1698 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1699 dev_err(xudc->dev, "endpoint %u already disabled\n",
1700 ep->index);
1701 return -EINVAL;
1702 }
1703
1704 ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1705
1706 ep_reload(xudc, ep->index);
1707
1708 tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1709
1710 xudc->nr_enabled_eps--;
1711 if (usb_endpoint_xfer_isoc(ep->desc))
1712 xudc->nr_isoch_eps--;
1713
1714 ep->desc = NULL;
1715 ep->comp_desc = NULL;
1716
1717 memset(ep->context, 0, sizeof(*ep->context));
1718
1719 ep_unpause(xudc, ep->index);
1720 ep_unhalt(xudc, ep->index);
1721 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1722 xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1723
1724 /*
1725 * If this is the last endpoint disabled in a de-configure request,
1726 * switch back to address state.
1727 */
1728 if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1729 (xudc->nr_enabled_eps == 1)) {
1730 u32 val;
1731
1732 xudc->device_state = USB_STATE_ADDRESS;
1733 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1734
1735 val = xudc_readl(xudc, CTRL);
1736 val &= ~CTRL_RUN;
1737 xudc_writel(xudc, val, CTRL);
1738 }
1739
1740 dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1741
1742 return 0;
1743 }
1744
tegra_xudc_ep_disable(struct usb_ep * usb_ep)1745 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1746 {
1747 struct tegra_xudc_ep *ep;
1748 struct tegra_xudc *xudc;
1749 unsigned long flags;
1750 int ret;
1751
1752 if (!usb_ep)
1753 return -EINVAL;
1754
1755 ep = to_xudc_ep(usb_ep);
1756 xudc = ep->xudc;
1757
1758 spin_lock_irqsave(&xudc->lock, flags);
1759 if (xudc->powergated) {
1760 ret = -ESHUTDOWN;
1761 goto unlock;
1762 }
1763
1764 ret = __tegra_xudc_ep_disable(ep);
1765 unlock:
1766 spin_unlock_irqrestore(&xudc->lock, flags);
1767
1768 return ret;
1769 }
1770
__tegra_xudc_ep_enable(struct tegra_xudc_ep * ep,const struct usb_endpoint_descriptor * desc)1771 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1772 const struct usb_endpoint_descriptor *desc)
1773 {
1774 struct tegra_xudc *xudc = ep->xudc;
1775 unsigned int i;
1776 u32 val;
1777
1778 if (xudc->gadget.speed == USB_SPEED_SUPER &&
1779 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1780 return -EINVAL;
1781
1782 /* Disable the EP if it is not disabled */
1783 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1784 __tegra_xudc_ep_disable(ep);
1785
1786 ep->desc = desc;
1787 ep->comp_desc = ep->usb_ep.comp_desc;
1788
1789 if (usb_endpoint_xfer_isoc(desc)) {
1790 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1791 dev_err(xudc->dev, "too many isochronous endpoints\n");
1792 return -EBUSY;
1793 }
1794 xudc->nr_isoch_eps++;
1795 }
1796
1797 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1798 sizeof(*ep->transfer_ring));
1799 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1800
1801 ep->enq_ptr = 0;
1802 ep->deq_ptr = 0;
1803 ep->pcs = true;
1804 ep->ring_full = false;
1805 xudc->nr_enabled_eps++;
1806
1807 tegra_xudc_ep_context_setup(ep);
1808
1809 /*
1810 * No need to reload and un-halt EP0. This will be done automatically
1811 * once a valid SETUP packet is received.
1812 */
1813 if (usb_endpoint_xfer_control(desc))
1814 goto out;
1815
1816 /*
1817 * Transition to configured state once the first non-control
1818 * endpoint is enabled.
1819 */
1820 if (xudc->device_state == USB_STATE_ADDRESS) {
1821 val = xudc_readl(xudc, CTRL);
1822 val |= CTRL_RUN;
1823 xudc_writel(xudc, val, CTRL);
1824
1825 xudc->device_state = USB_STATE_CONFIGURED;
1826 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1827 }
1828
1829 if (usb_endpoint_xfer_isoc(desc)) {
1830 /*
1831 * Pause all bulk endpoints when enabling an isoch endpoint
1832 * to ensure the isoch endpoint is allocated enough bandwidth.
1833 */
1834 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1835 if (xudc->ep[i].desc &&
1836 usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1837 ep_pause(xudc, i);
1838 }
1839 }
1840
1841 ep_reload(xudc, ep->index);
1842 ep_unpause(xudc, ep->index);
1843 ep_unhalt(xudc, ep->index);
1844
1845 if (usb_endpoint_xfer_isoc(desc)) {
1846 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1847 if (xudc->ep[i].desc &&
1848 usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1849 ep_unpause(xudc, i);
1850 }
1851 }
1852
1853 out:
1854 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1855 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1856 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1857
1858 return 0;
1859 }
1860
tegra_xudc_ep_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1861 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1862 const struct usb_endpoint_descriptor *desc)
1863 {
1864 struct tegra_xudc_ep *ep;
1865 struct tegra_xudc *xudc;
1866 unsigned long flags;
1867 int ret;
1868
1869 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1870 return -EINVAL;
1871
1872 ep = to_xudc_ep(usb_ep);
1873 xudc = ep->xudc;
1874
1875 spin_lock_irqsave(&xudc->lock, flags);
1876 if (xudc->powergated) {
1877 ret = -ESHUTDOWN;
1878 goto unlock;
1879 }
1880
1881 ret = __tegra_xudc_ep_enable(ep, desc);
1882 unlock:
1883 spin_unlock_irqrestore(&xudc->lock, flags);
1884
1885 return ret;
1886 }
1887
1888 static struct usb_request *
tegra_xudc_ep_alloc_request(struct usb_ep * usb_ep,gfp_t gfp)1889 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1890 {
1891 struct tegra_xudc_request *req;
1892
1893 req = kzalloc(sizeof(*req), gfp);
1894 if (!req)
1895 return NULL;
1896
1897 INIT_LIST_HEAD(&req->list);
1898
1899 return &req->usb_req;
1900 }
1901
tegra_xudc_ep_free_request(struct usb_ep * usb_ep,struct usb_request * usb_req)1902 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1903 struct usb_request *usb_req)
1904 {
1905 struct tegra_xudc_request *req = to_xudc_req(usb_req);
1906
1907 kfree(req);
1908 }
1909
1910 static struct usb_ep_ops tegra_xudc_ep_ops = {
1911 .enable = tegra_xudc_ep_enable,
1912 .disable = tegra_xudc_ep_disable,
1913 .alloc_request = tegra_xudc_ep_alloc_request,
1914 .free_request = tegra_xudc_ep_free_request,
1915 .queue = tegra_xudc_ep_queue,
1916 .dequeue = tegra_xudc_ep_dequeue,
1917 .set_halt = tegra_xudc_ep_set_halt,
1918 };
1919
tegra_xudc_ep0_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1920 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1921 const struct usb_endpoint_descriptor *desc)
1922 {
1923 return -EBUSY;
1924 }
1925
tegra_xudc_ep0_disable(struct usb_ep * usb_ep)1926 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1927 {
1928 return -EBUSY;
1929 }
1930
1931 static struct usb_ep_ops tegra_xudc_ep0_ops = {
1932 .enable = tegra_xudc_ep0_enable,
1933 .disable = tegra_xudc_ep0_disable,
1934 .alloc_request = tegra_xudc_ep_alloc_request,
1935 .free_request = tegra_xudc_ep_free_request,
1936 .queue = tegra_xudc_ep_queue,
1937 .dequeue = tegra_xudc_ep_dequeue,
1938 .set_halt = tegra_xudc_ep_set_halt,
1939 };
1940
tegra_xudc_gadget_get_frame(struct usb_gadget * gadget)1941 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1942 {
1943 struct tegra_xudc *xudc = to_xudc(gadget);
1944 unsigned long flags;
1945 int ret;
1946
1947 spin_lock_irqsave(&xudc->lock, flags);
1948 if (xudc->powergated) {
1949 ret = -ESHUTDOWN;
1950 goto unlock;
1951 }
1952
1953 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1954 MFINDEX_FRAME_SHIFT;
1955 unlock:
1956 spin_unlock_irqrestore(&xudc->lock, flags);
1957
1958 return ret;
1959 }
1960
tegra_xudc_resume_device_state(struct tegra_xudc * xudc)1961 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1962 {
1963 unsigned int i;
1964 u32 val;
1965
1966 ep_unpause_all(xudc);
1967
1968 /* Direct link to U0. */
1969 val = xudc_readl(xudc, PORTSC);
1970 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1971 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1972 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1973 xudc_writel(xudc, val, PORTSC);
1974 }
1975
1976 if (xudc->device_state == USB_STATE_SUSPENDED) {
1977 xudc->device_state = xudc->resume_state;
1978 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1979 xudc->resume_state = 0;
1980 }
1981
1982 /*
1983 * Doorbells may be dropped if they are sent too soon (< ~200ns)
1984 * after unpausing the endpoint. Wait for 500ns just to be safe.
1985 */
1986 ndelay(500);
1987 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
1988 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
1989 }
1990
tegra_xudc_gadget_wakeup(struct usb_gadget * gadget)1991 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
1992 {
1993 struct tegra_xudc *xudc = to_xudc(gadget);
1994 unsigned long flags;
1995 int ret = 0;
1996 u32 val;
1997
1998 spin_lock_irqsave(&xudc->lock, flags);
1999
2000 if (xudc->powergated) {
2001 ret = -ESHUTDOWN;
2002 goto unlock;
2003 }
2004 val = xudc_readl(xudc, PORTPM);
2005 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2006 val, gadget->speed);
2007
2008 if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2009 (val & PORTPM_RWE)) ||
2010 ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2011 (val & PORTPM_FRWE))) {
2012 tegra_xudc_resume_device_state(xudc);
2013
2014 /* Send Device Notification packet. */
2015 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2016 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2017 | DEVNOTIF_LO_TRIG;
2018 xudc_writel(xudc, 0, DEVNOTIF_HI);
2019 xudc_writel(xudc, val, DEVNOTIF_LO);
2020 }
2021 }
2022
2023 unlock:
2024 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2025 spin_unlock_irqrestore(&xudc->lock, flags);
2026
2027 return ret;
2028 }
2029
tegra_xudc_gadget_pullup(struct usb_gadget * gadget,int is_on)2030 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2031 {
2032 struct tegra_xudc *xudc = to_xudc(gadget);
2033 unsigned long flags;
2034 u32 val;
2035
2036 pm_runtime_get_sync(xudc->dev);
2037
2038 spin_lock_irqsave(&xudc->lock, flags);
2039
2040 if (is_on != xudc->pullup) {
2041 val = xudc_readl(xudc, CTRL);
2042 if (is_on)
2043 val |= CTRL_ENABLE;
2044 else
2045 val &= ~CTRL_ENABLE;
2046 xudc_writel(xudc, val, CTRL);
2047 }
2048
2049 xudc->pullup = is_on;
2050 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2051
2052 spin_unlock_irqrestore(&xudc->lock, flags);
2053
2054 pm_runtime_put(xudc->dev);
2055
2056 return 0;
2057 }
2058
tegra_xudc_gadget_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2059 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2060 struct usb_gadget_driver *driver)
2061 {
2062 struct tegra_xudc *xudc = to_xudc(gadget);
2063 unsigned long flags;
2064 u32 val;
2065 int ret;
2066 unsigned int i;
2067
2068 if (!driver)
2069 return -EINVAL;
2070
2071 pm_runtime_get_sync(xudc->dev);
2072
2073 spin_lock_irqsave(&xudc->lock, flags);
2074
2075 if (xudc->driver) {
2076 ret = -EBUSY;
2077 goto unlock;
2078 }
2079
2080 xudc->setup_state = WAIT_FOR_SETUP;
2081 xudc->device_state = USB_STATE_DEFAULT;
2082 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2083
2084 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2085 if (ret < 0)
2086 goto unlock;
2087
2088 val = xudc_readl(xudc, CTRL);
2089 val |= CTRL_IE | CTRL_LSE;
2090 xudc_writel(xudc, val, CTRL);
2091
2092 val = xudc_readl(xudc, PORTHALT);
2093 val |= PORTHALT_STCHG_INTR_EN;
2094 xudc_writel(xudc, val, PORTHALT);
2095
2096 if (xudc->pullup) {
2097 val = xudc_readl(xudc, CTRL);
2098 val |= CTRL_ENABLE;
2099 xudc_writel(xudc, val, CTRL);
2100 }
2101
2102 for (i = 0; i < xudc->soc->num_phys; i++)
2103 if (xudc->usbphy[i])
2104 otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2105
2106 xudc->driver = driver;
2107 unlock:
2108 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2109 spin_unlock_irqrestore(&xudc->lock, flags);
2110
2111 pm_runtime_put(xudc->dev);
2112
2113 return ret;
2114 }
2115
tegra_xudc_gadget_stop(struct usb_gadget * gadget)2116 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2117 {
2118 struct tegra_xudc *xudc = to_xudc(gadget);
2119 unsigned long flags;
2120 u32 val;
2121 unsigned int i;
2122
2123 pm_runtime_get_sync(xudc->dev);
2124
2125 spin_lock_irqsave(&xudc->lock, flags);
2126
2127 for (i = 0; i < xudc->soc->num_phys; i++)
2128 if (xudc->usbphy[i])
2129 otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2130
2131 val = xudc_readl(xudc, CTRL);
2132 val &= ~(CTRL_IE | CTRL_ENABLE);
2133 xudc_writel(xudc, val, CTRL);
2134
2135 __tegra_xudc_ep_disable(&xudc->ep[0]);
2136
2137 xudc->driver = NULL;
2138 dev_dbg(xudc->dev, "Gadget stopped");
2139
2140 spin_unlock_irqrestore(&xudc->lock, flags);
2141
2142 pm_runtime_put(xudc->dev);
2143
2144 return 0;
2145 }
2146
tegra_xudc_gadget_vbus_draw(struct usb_gadget * gadget,unsigned int m_a)2147 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2148 unsigned int m_a)
2149 {
2150 int ret = 0;
2151 struct tegra_xudc *xudc = to_xudc(gadget);
2152
2153 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2154
2155 if (xudc->curr_usbphy->chg_type == SDP_TYPE)
2156 ret = usb_phy_set_power(xudc->curr_usbphy, m_a);
2157
2158 return ret;
2159 }
2160
tegra_xudc_set_selfpowered(struct usb_gadget * gadget,int is_on)2161 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2162 {
2163 struct tegra_xudc *xudc = to_xudc(gadget);
2164
2165 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2166 xudc->selfpowered = !!is_on;
2167
2168 return 0;
2169 }
2170
2171 static struct usb_gadget_ops tegra_xudc_gadget_ops = {
2172 .get_frame = tegra_xudc_gadget_get_frame,
2173 .wakeup = tegra_xudc_gadget_wakeup,
2174 .pullup = tegra_xudc_gadget_pullup,
2175 .udc_start = tegra_xudc_gadget_start,
2176 .udc_stop = tegra_xudc_gadget_stop,
2177 .vbus_draw = tegra_xudc_gadget_vbus_draw,
2178 .set_selfpowered = tegra_xudc_set_selfpowered,
2179 };
2180
no_op_complete(struct usb_ep * ep,struct usb_request * req)2181 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2182 {
2183 }
2184
2185 static int
tegra_xudc_ep0_queue_status(struct tegra_xudc * xudc,void (* cmpl)(struct usb_ep *,struct usb_request *))2186 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2187 void (*cmpl)(struct usb_ep *, struct usb_request *))
2188 {
2189 xudc->ep0_req->usb_req.buf = NULL;
2190 xudc->ep0_req->usb_req.dma = 0;
2191 xudc->ep0_req->usb_req.length = 0;
2192 xudc->ep0_req->usb_req.complete = cmpl;
2193 xudc->ep0_req->usb_req.context = xudc;
2194
2195 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2196 }
2197
2198 static int
tegra_xudc_ep0_queue_data(struct tegra_xudc * xudc,void * buf,size_t len,void (* cmpl)(struct usb_ep *,struct usb_request *))2199 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2200 void (*cmpl)(struct usb_ep *, struct usb_request *))
2201 {
2202 xudc->ep0_req->usb_req.buf = buf;
2203 xudc->ep0_req->usb_req.length = len;
2204 xudc->ep0_req->usb_req.complete = cmpl;
2205 xudc->ep0_req->usb_req.context = xudc;
2206
2207 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2208 }
2209
tegra_xudc_ep0_req_done(struct tegra_xudc * xudc)2210 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2211 {
2212 switch (xudc->setup_state) {
2213 case DATA_STAGE_XFER:
2214 xudc->setup_state = STATUS_STAGE_RECV;
2215 tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2216 break;
2217 case DATA_STAGE_RECV:
2218 xudc->setup_state = STATUS_STAGE_XFER;
2219 tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2220 break;
2221 default:
2222 xudc->setup_state = WAIT_FOR_SETUP;
2223 break;
2224 }
2225 }
2226
tegra_xudc_ep0_delegate_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2227 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2228 struct usb_ctrlrequest *ctrl)
2229 {
2230 int ret;
2231
2232 spin_unlock(&xudc->lock);
2233 ret = xudc->driver->setup(&xudc->gadget, ctrl);
2234 spin_lock(&xudc->lock);
2235
2236 return ret;
2237 }
2238
set_feature_complete(struct usb_ep * ep,struct usb_request * req)2239 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2240 {
2241 struct tegra_xudc *xudc = req->context;
2242
2243 if (xudc->test_mode_pattern) {
2244 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2245 xudc->test_mode_pattern = 0;
2246 }
2247 }
2248
tegra_xudc_ep0_set_feature(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2249 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2250 struct usb_ctrlrequest *ctrl)
2251 {
2252 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2253 u32 feature = le16_to_cpu(ctrl->wValue);
2254 u32 index = le16_to_cpu(ctrl->wIndex);
2255 u32 val, ep;
2256 int ret;
2257
2258 if (le16_to_cpu(ctrl->wLength) != 0)
2259 return -EINVAL;
2260
2261 switch (ctrl->bRequestType & USB_RECIP_MASK) {
2262 case USB_RECIP_DEVICE:
2263 switch (feature) {
2264 case USB_DEVICE_REMOTE_WAKEUP:
2265 if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2266 (xudc->device_state == USB_STATE_DEFAULT))
2267 return -EINVAL;
2268
2269 val = xudc_readl(xudc, PORTPM);
2270 if (set)
2271 val |= PORTPM_RWE;
2272 else
2273 val &= ~PORTPM_RWE;
2274
2275 xudc_writel(xudc, val, PORTPM);
2276 break;
2277 case USB_DEVICE_U1_ENABLE:
2278 case USB_DEVICE_U2_ENABLE:
2279 if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2280 (xudc->gadget.speed != USB_SPEED_SUPER))
2281 return -EINVAL;
2282
2283 val = xudc_readl(xudc, PORTPM);
2284 if ((feature == USB_DEVICE_U1_ENABLE) &&
2285 xudc->soc->u1_enable) {
2286 if (set)
2287 val |= PORTPM_U1E;
2288 else
2289 val &= ~PORTPM_U1E;
2290 }
2291
2292 if ((feature == USB_DEVICE_U2_ENABLE) &&
2293 xudc->soc->u2_enable) {
2294 if (set)
2295 val |= PORTPM_U2E;
2296 else
2297 val &= ~PORTPM_U2E;
2298 }
2299
2300 xudc_writel(xudc, val, PORTPM);
2301 break;
2302 case USB_DEVICE_TEST_MODE:
2303 if (xudc->gadget.speed != USB_SPEED_HIGH)
2304 return -EINVAL;
2305
2306 if (!set)
2307 return -EINVAL;
2308
2309 xudc->test_mode_pattern = index >> 8;
2310 break;
2311 default:
2312 return -EINVAL;
2313 }
2314
2315 break;
2316 case USB_RECIP_INTERFACE:
2317 if (xudc->device_state != USB_STATE_CONFIGURED)
2318 return -EINVAL;
2319
2320 switch (feature) {
2321 case USB_INTRF_FUNC_SUSPEND:
2322 if (set) {
2323 val = xudc_readl(xudc, PORTPM);
2324
2325 if (index & USB_INTRF_FUNC_SUSPEND_RW)
2326 val |= PORTPM_FRWE;
2327 else
2328 val &= ~PORTPM_FRWE;
2329
2330 xudc_writel(xudc, val, PORTPM);
2331 }
2332
2333 return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2334 default:
2335 return -EINVAL;
2336 }
2337
2338 break;
2339 case USB_RECIP_ENDPOINT:
2340 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2341 ((index & USB_DIR_IN) ? 1 : 0);
2342
2343 if ((xudc->device_state == USB_STATE_DEFAULT) ||
2344 ((xudc->device_state == USB_STATE_ADDRESS) &&
2345 (index != 0)))
2346 return -EINVAL;
2347
2348 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2349 if (ret < 0)
2350 return ret;
2351 break;
2352 default:
2353 return -EINVAL;
2354 }
2355
2356 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2357 }
2358
tegra_xudc_ep0_get_status(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2359 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2360 struct usb_ctrlrequest *ctrl)
2361 {
2362 struct tegra_xudc_ep_context *ep_ctx;
2363 u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2364 u16 status = 0;
2365
2366 if (!(ctrl->bRequestType & USB_DIR_IN))
2367 return -EINVAL;
2368
2369 if ((le16_to_cpu(ctrl->wValue) != 0) ||
2370 (le16_to_cpu(ctrl->wLength) != 2))
2371 return -EINVAL;
2372
2373 switch (ctrl->bRequestType & USB_RECIP_MASK) {
2374 case USB_RECIP_DEVICE:
2375 val = xudc_readl(xudc, PORTPM);
2376
2377 if (xudc->selfpowered)
2378 status |= BIT(USB_DEVICE_SELF_POWERED);
2379
2380 if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2381 (val & PORTPM_RWE))
2382 status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2383
2384 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2385 if (val & PORTPM_U1E)
2386 status |= BIT(USB_DEV_STAT_U1_ENABLED);
2387 if (val & PORTPM_U2E)
2388 status |= BIT(USB_DEV_STAT_U2_ENABLED);
2389 }
2390 break;
2391 case USB_RECIP_INTERFACE:
2392 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2393 status |= USB_INTRF_STAT_FUNC_RW_CAP;
2394 val = xudc_readl(xudc, PORTPM);
2395 if (val & PORTPM_FRWE)
2396 status |= USB_INTRF_STAT_FUNC_RW;
2397 }
2398 break;
2399 case USB_RECIP_ENDPOINT:
2400 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2401 ((index & USB_DIR_IN) ? 1 : 0);
2402 ep_ctx = &xudc->ep_context[ep];
2403
2404 if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2405 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2406 return -EINVAL;
2407
2408 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2409 return -EINVAL;
2410
2411 if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2412 status |= BIT(USB_ENDPOINT_HALT);
2413 break;
2414 default:
2415 return -EINVAL;
2416 }
2417
2418 xudc->status_buf = cpu_to_le16(status);
2419 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2420 sizeof(xudc->status_buf),
2421 no_op_complete);
2422 }
2423
set_sel_complete(struct usb_ep * ep,struct usb_request * req)2424 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2425 {
2426 /* Nothing to do with SEL values */
2427 }
2428
tegra_xudc_ep0_set_sel(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2429 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2430 struct usb_ctrlrequest *ctrl)
2431 {
2432 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2433 USB_TYPE_STANDARD))
2434 return -EINVAL;
2435
2436 if (xudc->device_state == USB_STATE_DEFAULT)
2437 return -EINVAL;
2438
2439 if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2440 (le16_to_cpu(ctrl->wValue) != 0) ||
2441 (le16_to_cpu(ctrl->wLength) != 6))
2442 return -EINVAL;
2443
2444 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2445 sizeof(xudc->sel_timing),
2446 set_sel_complete);
2447 }
2448
set_isoch_delay_complete(struct usb_ep * ep,struct usb_request * req)2449 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2450 {
2451 /* Nothing to do with isoch delay */
2452 }
2453
tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2454 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2455 struct usb_ctrlrequest *ctrl)
2456 {
2457 u32 delay = le16_to_cpu(ctrl->wValue);
2458
2459 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2460 USB_TYPE_STANDARD))
2461 return -EINVAL;
2462
2463 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2464 (le16_to_cpu(ctrl->wLength) != 0))
2465 return -EINVAL;
2466
2467 xudc->isoch_delay = delay;
2468
2469 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2470 }
2471
set_address_complete(struct usb_ep * ep,struct usb_request * req)2472 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2473 {
2474 struct tegra_xudc *xudc = req->context;
2475
2476 if ((xudc->device_state == USB_STATE_DEFAULT) &&
2477 (xudc->dev_addr != 0)) {
2478 xudc->device_state = USB_STATE_ADDRESS;
2479 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2480 } else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2481 (xudc->dev_addr == 0)) {
2482 xudc->device_state = USB_STATE_DEFAULT;
2483 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2484 }
2485 }
2486
tegra_xudc_ep0_set_address(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2487 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2488 struct usb_ctrlrequest *ctrl)
2489 {
2490 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2491 u32 val, addr = le16_to_cpu(ctrl->wValue);
2492
2493 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2494 USB_TYPE_STANDARD))
2495 return -EINVAL;
2496
2497 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2498 (le16_to_cpu(ctrl->wLength) != 0))
2499 return -EINVAL;
2500
2501 if (xudc->device_state == USB_STATE_CONFIGURED)
2502 return -EINVAL;
2503
2504 dev_dbg(xudc->dev, "set address: %u\n", addr);
2505
2506 xudc->dev_addr = addr;
2507 val = xudc_readl(xudc, CTRL);
2508 val &= ~(CTRL_DEVADDR_MASK);
2509 val |= CTRL_DEVADDR(addr);
2510 xudc_writel(xudc, val, CTRL);
2511
2512 ep_ctx_write_devaddr(ep0->context, addr);
2513
2514 return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2515 }
2516
tegra_xudc_ep0_standard_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2517 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2518 struct usb_ctrlrequest *ctrl)
2519 {
2520 int ret;
2521
2522 switch (ctrl->bRequest) {
2523 case USB_REQ_GET_STATUS:
2524 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2525 ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2526 break;
2527 case USB_REQ_SET_ADDRESS:
2528 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2529 ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2530 break;
2531 case USB_REQ_SET_SEL:
2532 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2533 ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2534 break;
2535 case USB_REQ_SET_ISOCH_DELAY:
2536 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2537 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2538 break;
2539 case USB_REQ_CLEAR_FEATURE:
2540 case USB_REQ_SET_FEATURE:
2541 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2542 ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2543 break;
2544 case USB_REQ_SET_CONFIGURATION:
2545 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2546 /*
2547 * In theory we need to clear RUN bit before status stage of
2548 * deconfig request sent, but this seems to be causing problems.
2549 * Clear RUN once all endpoints are disabled instead.
2550 */
2551 fallthrough;
2552 default:
2553 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2554 break;
2555 }
2556
2557 return ret;
2558 }
2559
tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl,u16 seq_num)2560 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2561 struct usb_ctrlrequest *ctrl,
2562 u16 seq_num)
2563 {
2564 int ret;
2565
2566 xudc->setup_seq_num = seq_num;
2567
2568 /* Ensure EP0 is unhalted. */
2569 ep_unhalt(xudc, 0);
2570
2571 /*
2572 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2573 * are invalid. Halt EP0 until we get a valid packet.
2574 */
2575 if (xudc->soc->invalid_seq_num &&
2576 (seq_num == 0xfffe || seq_num == 0xffff)) {
2577 dev_warn(xudc->dev, "invalid sequence number detected\n");
2578 ep_halt(xudc, 0);
2579 return;
2580 }
2581
2582 if (ctrl->wLength)
2583 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2584 DATA_STAGE_XFER : DATA_STAGE_RECV;
2585 else
2586 xudc->setup_state = STATUS_STAGE_XFER;
2587
2588 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2589 ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2590 else
2591 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2592
2593 if (ret < 0) {
2594 dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2595 xudc->setup_state = WAIT_FOR_SETUP;
2596 ep_halt(xudc, 0);
2597 }
2598 }
2599
tegra_xudc_handle_ep0_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2600 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2601 struct tegra_xudc_trb *event)
2602 {
2603 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2604 u16 seq_num = trb_read_seq_num(event);
2605
2606 if (xudc->setup_state != WAIT_FOR_SETUP) {
2607 /*
2608 * The controller is in the process of handling another
2609 * setup request. Queue subsequent requests and handle
2610 * the last one once the controller reports a sequence
2611 * number error.
2612 */
2613 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2614 xudc->setup_packet.seq_num = seq_num;
2615 xudc->queued_setup_packet = true;
2616 } else {
2617 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2618 }
2619 }
2620
2621 static struct tegra_xudc_request *
trb_to_request(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)2622 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2623 {
2624 struct tegra_xudc_request *req;
2625
2626 list_for_each_entry(req, &ep->queue, list) {
2627 if (!req->trbs_queued)
2628 break;
2629
2630 if (trb_in_request(ep, req, trb))
2631 return req;
2632 }
2633
2634 return NULL;
2635 }
2636
tegra_xudc_handle_transfer_completion(struct tegra_xudc * xudc,struct tegra_xudc_ep * ep,struct tegra_xudc_trb * event)2637 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2638 struct tegra_xudc_ep *ep,
2639 struct tegra_xudc_trb *event)
2640 {
2641 struct tegra_xudc_request *req;
2642 struct tegra_xudc_trb *trb;
2643 bool short_packet;
2644
2645 short_packet = (trb_read_cmpl_code(event) ==
2646 TRB_CMPL_CODE_SHORT_PACKET);
2647
2648 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2649 req = trb_to_request(ep, trb);
2650
2651 /*
2652 * TDs are complete on short packet or when the completed TRB is the
2653 * last TRB in the TD (the CHAIN bit is unset).
2654 */
2655 if (req && (short_packet || (!trb_read_chain(trb) &&
2656 (req->trbs_needed == req->trbs_queued)))) {
2657 struct tegra_xudc_trb *last = req->last_trb;
2658 unsigned int residual;
2659
2660 residual = trb_read_transfer_len(event);
2661 req->usb_req.actual = req->usb_req.length - residual;
2662
2663 dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2664 req->usb_req.actual, req->usb_req.length);
2665
2666 tegra_xudc_req_done(ep, req, 0);
2667
2668 if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2669 tegra_xudc_ep0_req_done(xudc);
2670
2671 /*
2672 * Advance the dequeue pointer past the end of the current TD
2673 * on short packet completion.
2674 */
2675 if (short_packet) {
2676 ep->deq_ptr = (last - ep->transfer_ring) + 1;
2677 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2678 ep->deq_ptr = 0;
2679 }
2680 } else if (!req) {
2681 dev_warn(xudc->dev, "transfer event on dequeued request\n");
2682 }
2683
2684 if (ep->desc)
2685 tegra_xudc_ep_kick_queue(ep);
2686 }
2687
tegra_xudc_handle_transfer_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2688 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2689 struct tegra_xudc_trb *event)
2690 {
2691 unsigned int ep_index = trb_read_endpoint_id(event);
2692 struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2693 struct tegra_xudc_trb *trb;
2694 u16 comp_code;
2695
2696 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2697 dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2698 ep_index);
2699 return;
2700 }
2701
2702 /* Update transfer ring dequeue pointer. */
2703 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2704 comp_code = trb_read_cmpl_code(event);
2705 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2706 ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2707
2708 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2709 ep->deq_ptr = 0;
2710 ep->ring_full = false;
2711 }
2712
2713 switch (comp_code) {
2714 case TRB_CMPL_CODE_SUCCESS:
2715 case TRB_CMPL_CODE_SHORT_PACKET:
2716 tegra_xudc_handle_transfer_completion(xudc, ep, event);
2717 break;
2718 case TRB_CMPL_CODE_HOST_REJECTED:
2719 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2720
2721 ep->stream_rejected = true;
2722 break;
2723 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2724 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2725
2726 if (ep->stream_rejected) {
2727 ep->stream_rejected = false;
2728 /*
2729 * An EP is stopped when a stream is rejected. Wait
2730 * for the EP to report that it is stopped and then
2731 * un-stop it.
2732 */
2733 ep_wait_for_stopped(xudc, ep_index);
2734 }
2735 tegra_xudc_ep_ring_doorbell(ep);
2736 break;
2737 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2738 /*
2739 * Wait for the EP to be stopped so the controller stops
2740 * processing doorbells.
2741 */
2742 ep_wait_for_stopped(xudc, ep_index);
2743 ep->enq_ptr = ep->deq_ptr;
2744 tegra_xudc_ep_nuke(ep, -EIO);
2745 fallthrough;
2746 case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2747 case TRB_CMPL_CODE_CTRL_DIR_ERR:
2748 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2749 case TRB_CMPL_CODE_RING_UNDERRUN:
2750 case TRB_CMPL_CODE_RING_OVERRUN:
2751 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2752 case TRB_CMPL_CODE_USB_TRANS_ERR:
2753 case TRB_CMPL_CODE_TRB_ERR:
2754 dev_err(xudc->dev, "completion error %#x on EP %u\n",
2755 comp_code, ep_index);
2756
2757 ep_halt(xudc, ep_index);
2758 break;
2759 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2760 dev_info(xudc->dev, "sequence number error\n");
2761
2762 /*
2763 * Kill any queued control request and skip to the last
2764 * setup packet we received.
2765 */
2766 tegra_xudc_ep_nuke(ep, -EINVAL);
2767 xudc->setup_state = WAIT_FOR_SETUP;
2768 if (!xudc->queued_setup_packet)
2769 break;
2770
2771 tegra_xudc_handle_ep0_setup_packet(xudc,
2772 &xudc->setup_packet.ctrl_req,
2773 xudc->setup_packet.seq_num);
2774 xudc->queued_setup_packet = false;
2775 break;
2776 case TRB_CMPL_CODE_STOPPED:
2777 dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2778 ep_index);
2779
2780 /* Disconnected. */
2781 tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2782 break;
2783 default:
2784 dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2785 comp_code, ep_index);
2786 break;
2787 }
2788 }
2789
tegra_xudc_reset(struct tegra_xudc * xudc)2790 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2791 {
2792 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2793 dma_addr_t deq_ptr;
2794 unsigned int i;
2795
2796 xudc->setup_state = WAIT_FOR_SETUP;
2797 xudc->device_state = USB_STATE_DEFAULT;
2798 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2799
2800 ep_unpause_all(xudc);
2801
2802 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2803 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2804
2805 /*
2806 * Reset sequence number and dequeue pointer to flush the transfer
2807 * ring.
2808 */
2809 ep0->deq_ptr = ep0->enq_ptr;
2810 ep0->ring_full = false;
2811
2812 xudc->setup_seq_num = 0;
2813 xudc->queued_setup_packet = false;
2814
2815 ep_ctx_write_seq_num(ep0->context, xudc->setup_seq_num);
2816
2817 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2818
2819 if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2820 ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2821 ep_ctx_write_dcs(ep0->context, ep0->pcs);
2822 }
2823
2824 ep_unhalt_all(xudc);
2825 ep_reload(xudc, 0);
2826 ep_unpause(xudc, 0);
2827 }
2828
tegra_xudc_port_connect(struct tegra_xudc * xudc)2829 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2830 {
2831 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2832 u16 maxpacket;
2833 u32 val;
2834
2835 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2836 switch (val) {
2837 case PORTSC_PS_LS:
2838 xudc->gadget.speed = USB_SPEED_LOW;
2839 break;
2840 case PORTSC_PS_FS:
2841 xudc->gadget.speed = USB_SPEED_FULL;
2842 break;
2843 case PORTSC_PS_HS:
2844 xudc->gadget.speed = USB_SPEED_HIGH;
2845 break;
2846 case PORTSC_PS_SS:
2847 xudc->gadget.speed = USB_SPEED_SUPER;
2848 break;
2849 default:
2850 xudc->gadget.speed = USB_SPEED_UNKNOWN;
2851 break;
2852 }
2853
2854 xudc->device_state = USB_STATE_DEFAULT;
2855 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2856
2857 xudc->setup_state = WAIT_FOR_SETUP;
2858
2859 if (xudc->gadget.speed == USB_SPEED_SUPER)
2860 maxpacket = 512;
2861 else
2862 maxpacket = 64;
2863
2864 ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2865 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2866 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2867
2868 if (!xudc->soc->u1_enable) {
2869 val = xudc_readl(xudc, PORTPM);
2870 val &= ~(PORTPM_U1TIMEOUT_MASK);
2871 xudc_writel(xudc, val, PORTPM);
2872 }
2873
2874 if (!xudc->soc->u2_enable) {
2875 val = xudc_readl(xudc, PORTPM);
2876 val &= ~(PORTPM_U2TIMEOUT_MASK);
2877 xudc_writel(xudc, val, PORTPM);
2878 }
2879
2880 if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2881 val = xudc_readl(xudc, PORTPM);
2882 val &= ~(PORTPM_L1S_MASK);
2883 if (xudc->soc->lpm_enable)
2884 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2885 else
2886 val |= PORTPM_L1S(PORTPM_L1S_NYET);
2887 xudc_writel(xudc, val, PORTPM);
2888 }
2889
2890 val = xudc_readl(xudc, ST);
2891 if (val & ST_RC)
2892 xudc_writel(xudc, ST_RC, ST);
2893 }
2894
tegra_xudc_port_disconnect(struct tegra_xudc * xudc)2895 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2896 {
2897 tegra_xudc_reset(xudc);
2898
2899 if (xudc->driver && xudc->driver->disconnect) {
2900 spin_unlock(&xudc->lock);
2901 xudc->driver->disconnect(&xudc->gadget);
2902 spin_lock(&xudc->lock);
2903 }
2904
2905 xudc->device_state = USB_STATE_NOTATTACHED;
2906 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2907
2908 complete(&xudc->disconnect_complete);
2909 }
2910
tegra_xudc_port_reset(struct tegra_xudc * xudc)2911 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2912 {
2913 tegra_xudc_reset(xudc);
2914
2915 if (xudc->driver) {
2916 spin_unlock(&xudc->lock);
2917 usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2918 spin_lock(&xudc->lock);
2919 }
2920
2921 tegra_xudc_port_connect(xudc);
2922 }
2923
tegra_xudc_port_suspend(struct tegra_xudc * xudc)2924 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2925 {
2926 dev_dbg(xudc->dev, "port suspend\n");
2927
2928 xudc->resume_state = xudc->device_state;
2929 xudc->device_state = USB_STATE_SUSPENDED;
2930 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2931
2932 if (xudc->driver->suspend) {
2933 spin_unlock(&xudc->lock);
2934 xudc->driver->suspend(&xudc->gadget);
2935 spin_lock(&xudc->lock);
2936 }
2937 }
2938
tegra_xudc_port_resume(struct tegra_xudc * xudc)2939 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2940 {
2941 dev_dbg(xudc->dev, "port resume\n");
2942
2943 tegra_xudc_resume_device_state(xudc);
2944
2945 if (xudc->driver->resume) {
2946 spin_unlock(&xudc->lock);
2947 xudc->driver->resume(&xudc->gadget);
2948 spin_lock(&xudc->lock);
2949 }
2950 }
2951
clear_port_change(struct tegra_xudc * xudc,u32 flag)2952 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2953 {
2954 u32 val;
2955
2956 val = xudc_readl(xudc, PORTSC);
2957 val &= ~PORTSC_CHANGE_MASK;
2958 val |= flag;
2959 xudc_writel(xudc, val, PORTSC);
2960 }
2961
__tegra_xudc_handle_port_status(struct tegra_xudc * xudc)2962 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2963 {
2964 u32 portsc, porthalt;
2965
2966 porthalt = xudc_readl(xudc, PORTHALT);
2967 if ((porthalt & PORTHALT_STCHG_REQ) &&
2968 (porthalt & PORTHALT_HALT_LTSSM)) {
2969 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2970 porthalt &= ~PORTHALT_HALT_LTSSM;
2971 xudc_writel(xudc, porthalt, PORTHALT);
2972 }
2973
2974 portsc = xudc_readl(xudc, PORTSC);
2975 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2976 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2977 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2978 #define TOGGLE_VBUS_WAIT_MS 100
2979 if (xudc->soc->port_reset_quirk) {
2980 schedule_delayed_work(&xudc->port_reset_war_work,
2981 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2982 xudc->wait_for_sec_prc = 1;
2983 }
2984 }
2985
2986 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
2987 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
2988 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2989 tegra_xudc_port_reset(xudc);
2990 cancel_delayed_work(&xudc->port_reset_war_work);
2991 xudc->wait_for_sec_prc = 0;
2992 }
2993
2994 portsc = xudc_readl(xudc, PORTSC);
2995 if (portsc & PORTSC_WRC) {
2996 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
2997 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
2998 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
2999 tegra_xudc_port_reset(xudc);
3000 }
3001
3002 portsc = xudc_readl(xudc, PORTSC);
3003 if (portsc & PORTSC_CSC) {
3004 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3005 clear_port_change(xudc, PORTSC_CSC);
3006
3007 if (portsc & PORTSC_CCS)
3008 tegra_xudc_port_connect(xudc);
3009 else
3010 tegra_xudc_port_disconnect(xudc);
3011
3012 if (xudc->wait_csc) {
3013 cancel_delayed_work(&xudc->plc_reset_work);
3014 xudc->wait_csc = false;
3015 }
3016 }
3017
3018 portsc = xudc_readl(xudc, PORTSC);
3019 if (portsc & PORTSC_PLC) {
3020 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3021
3022 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3023 clear_port_change(xudc, PORTSC_PLC);
3024 switch (pls) {
3025 case PORTSC_PLS_U3:
3026 tegra_xudc_port_suspend(xudc);
3027 break;
3028 case PORTSC_PLS_U0:
3029 if (xudc->gadget.speed < USB_SPEED_SUPER)
3030 tegra_xudc_port_resume(xudc);
3031 break;
3032 case PORTSC_PLS_RESUME:
3033 if (xudc->gadget.speed == USB_SPEED_SUPER)
3034 tegra_xudc_port_resume(xudc);
3035 break;
3036 case PORTSC_PLS_INACTIVE:
3037 schedule_delayed_work(&xudc->plc_reset_work,
3038 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3039 xudc->wait_csc = true;
3040 break;
3041 default:
3042 break;
3043 }
3044 }
3045
3046 if (portsc & PORTSC_CEC) {
3047 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3048 clear_port_change(xudc, PORTSC_CEC);
3049 }
3050
3051 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3052 }
3053
tegra_xudc_handle_port_status(struct tegra_xudc * xudc)3054 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3055 {
3056 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3057 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3058 __tegra_xudc_handle_port_status(xudc);
3059 }
3060
tegra_xudc_handle_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)3061 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3062 struct tegra_xudc_trb *event)
3063 {
3064 u32 type = trb_read_type(event);
3065
3066 dump_trb(xudc, "EVENT", event);
3067
3068 switch (type) {
3069 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3070 tegra_xudc_handle_port_status(xudc);
3071 break;
3072 case TRB_TYPE_TRANSFER_EVENT:
3073 tegra_xudc_handle_transfer_event(xudc, event);
3074 break;
3075 case TRB_TYPE_SETUP_PACKET_EVENT:
3076 tegra_xudc_handle_ep0_event(xudc, event);
3077 break;
3078 default:
3079 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3080 break;
3081 }
3082 }
3083
tegra_xudc_process_event_ring(struct tegra_xudc * xudc)3084 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3085 {
3086 struct tegra_xudc_trb *event;
3087 dma_addr_t erdp;
3088
3089 while (true) {
3090 event = xudc->event_ring[xudc->event_ring_index] +
3091 xudc->event_ring_deq_ptr;
3092
3093 if (trb_read_cycle(event) != xudc->ccs)
3094 break;
3095
3096 tegra_xudc_handle_event(xudc, event);
3097
3098 xudc->event_ring_deq_ptr++;
3099 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3100 xudc->event_ring_deq_ptr = 0;
3101 xudc->event_ring_index++;
3102 }
3103
3104 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3105 xudc->event_ring_index = 0;
3106 xudc->ccs = !xudc->ccs;
3107 }
3108 }
3109
3110 erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3111 xudc->event_ring_deq_ptr * sizeof(*event);
3112
3113 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3114 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3115 }
3116
tegra_xudc_irq(int irq,void * data)3117 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3118 {
3119 struct tegra_xudc *xudc = data;
3120 unsigned long flags;
3121 u32 val;
3122
3123 val = xudc_readl(xudc, ST);
3124 if (!(val & ST_IP))
3125 return IRQ_NONE;
3126 xudc_writel(xudc, ST_IP, ST);
3127
3128 spin_lock_irqsave(&xudc->lock, flags);
3129 tegra_xudc_process_event_ring(xudc);
3130 spin_unlock_irqrestore(&xudc->lock, flags);
3131
3132 return IRQ_HANDLED;
3133 }
3134
tegra_xudc_alloc_ep(struct tegra_xudc * xudc,unsigned int index)3135 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3136 {
3137 struct tegra_xudc_ep *ep = &xudc->ep[index];
3138
3139 ep->xudc = xudc;
3140 ep->index = index;
3141 ep->context = &xudc->ep_context[index];
3142 INIT_LIST_HEAD(&ep->queue);
3143
3144 /*
3145 * EP1 would be the input endpoint corresponding to EP0, but since
3146 * EP0 is bi-directional, EP1 is unused.
3147 */
3148 if (index == 1)
3149 return 0;
3150
3151 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3152 GFP_KERNEL,
3153 &ep->transfer_ring_phys);
3154 if (!ep->transfer_ring)
3155 return -ENOMEM;
3156
3157 if (index) {
3158 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3159 (index % 2 == 0) ? "out" : "in");
3160 ep->usb_ep.name = ep->name;
3161 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3162 ep->usb_ep.max_streams = 16;
3163 ep->usb_ep.ops = &tegra_xudc_ep_ops;
3164 ep->usb_ep.caps.type_bulk = true;
3165 ep->usb_ep.caps.type_int = true;
3166 if (index & 1)
3167 ep->usb_ep.caps.dir_in = true;
3168 else
3169 ep->usb_ep.caps.dir_out = true;
3170 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3171 } else {
3172 strscpy(ep->name, "ep0", 3);
3173 ep->usb_ep.name = ep->name;
3174 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3175 ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3176 ep->usb_ep.caps.type_control = true;
3177 ep->usb_ep.caps.dir_in = true;
3178 ep->usb_ep.caps.dir_out = true;
3179 }
3180
3181 return 0;
3182 }
3183
tegra_xudc_free_ep(struct tegra_xudc * xudc,unsigned int index)3184 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3185 {
3186 struct tegra_xudc_ep *ep = &xudc->ep[index];
3187
3188 /*
3189 * EP1 would be the input endpoint corresponding to EP0, but since
3190 * EP0 is bi-directional, EP1 is unused.
3191 */
3192 if (index == 1)
3193 return;
3194
3195 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3196 ep->transfer_ring_phys);
3197 }
3198
tegra_xudc_alloc_eps(struct tegra_xudc * xudc)3199 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3200 {
3201 struct usb_request *req;
3202 unsigned int i;
3203 int err;
3204
3205 xudc->ep_context =
3206 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3207 sizeof(*xudc->ep_context),
3208 &xudc->ep_context_phys, GFP_KERNEL);
3209 if (!xudc->ep_context)
3210 return -ENOMEM;
3211
3212 xudc->transfer_ring_pool =
3213 dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3214 XUDC_TRANSFER_RING_SIZE *
3215 sizeof(struct tegra_xudc_trb),
3216 sizeof(struct tegra_xudc_trb), 0);
3217 if (!xudc->transfer_ring_pool) {
3218 err = -ENOMEM;
3219 goto free_ep_context;
3220 }
3221
3222 INIT_LIST_HEAD(&xudc->gadget.ep_list);
3223 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3224 err = tegra_xudc_alloc_ep(xudc, i);
3225 if (err < 0)
3226 goto free_eps;
3227 }
3228
3229 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3230 if (!req) {
3231 err = -ENOMEM;
3232 goto free_eps;
3233 }
3234 xudc->ep0_req = to_xudc_req(req);
3235
3236 return 0;
3237
3238 free_eps:
3239 for (; i > 0; i--)
3240 tegra_xudc_free_ep(xudc, i - 1);
3241 free_ep_context:
3242 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3243 xudc->ep_context, xudc->ep_context_phys);
3244 return err;
3245 }
3246
tegra_xudc_init_eps(struct tegra_xudc * xudc)3247 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3248 {
3249 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3250 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3251 }
3252
tegra_xudc_free_eps(struct tegra_xudc * xudc)3253 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3254 {
3255 unsigned int i;
3256
3257 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3258 &xudc->ep0_req->usb_req);
3259
3260 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3261 tegra_xudc_free_ep(xudc, i);
3262
3263 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3264 xudc->ep_context, xudc->ep_context_phys);
3265 }
3266
tegra_xudc_alloc_event_ring(struct tegra_xudc * xudc)3267 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3268 {
3269 unsigned int i;
3270
3271 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3272 xudc->event_ring[i] =
3273 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3274 sizeof(*xudc->event_ring[i]),
3275 &xudc->event_ring_phys[i],
3276 GFP_KERNEL);
3277 if (!xudc->event_ring[i])
3278 goto free_dma;
3279 }
3280
3281 return 0;
3282
3283 free_dma:
3284 for (; i > 0; i--) {
3285 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3286 sizeof(*xudc->event_ring[i - 1]),
3287 xudc->event_ring[i - 1],
3288 xudc->event_ring_phys[i - 1]);
3289 }
3290 return -ENOMEM;
3291 }
3292
tegra_xudc_init_event_ring(struct tegra_xudc * xudc)3293 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3294 {
3295 unsigned int i;
3296 u32 val;
3297
3298 val = xudc_readl(xudc, SPARAM);
3299 val &= ~(SPARAM_ERSTMAX_MASK);
3300 val |= SPARAM_ERSTMAX(XUDC_NR_EVENT_RINGS);
3301 xudc_writel(xudc, val, SPARAM);
3302
3303 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3304 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3305 sizeof(*xudc->event_ring[i]));
3306
3307 val = xudc_readl(xudc, ERSTSZ);
3308 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3309 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3310 xudc_writel(xudc, val, ERSTSZ);
3311
3312 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3313 ERSTXBALO(i));
3314 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3315 ERSTXBAHI(i));
3316 }
3317
3318 val = lower_32_bits(xudc->event_ring_phys[0]);
3319 xudc_writel(xudc, val, ERDPLO);
3320 val |= EREPLO_ECS;
3321 xudc_writel(xudc, val, EREPLO);
3322
3323 val = upper_32_bits(xudc->event_ring_phys[0]);
3324 xudc_writel(xudc, val, ERDPHI);
3325 xudc_writel(xudc, val, EREPHI);
3326
3327 xudc->ccs = true;
3328 xudc->event_ring_index = 0;
3329 xudc->event_ring_deq_ptr = 0;
3330 }
3331
tegra_xudc_free_event_ring(struct tegra_xudc * xudc)3332 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3333 {
3334 unsigned int i;
3335
3336 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3337 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3338 sizeof(*xudc->event_ring[i]),
3339 xudc->event_ring[i],
3340 xudc->event_ring_phys[i]);
3341 }
3342 }
3343
tegra_xudc_fpci_ipfs_init(struct tegra_xudc * xudc)3344 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3345 {
3346 u32 val;
3347
3348 if (xudc->soc->has_ipfs) {
3349 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3350 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3351 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3352 usleep_range(10, 15);
3353 }
3354
3355 /* Enable bus master */
3356 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3357 XUSB_DEV_CFG_1_BUS_MASTER_EN;
3358 fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3359
3360 /* Program BAR0 space */
3361 val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3362 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3363 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3364
3365 fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3366 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3367
3368 usleep_range(100, 200);
3369
3370 if (xudc->soc->has_ipfs) {
3371 /* Enable interrupt assertion */
3372 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3373 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3374 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3375 }
3376 }
3377
tegra_xudc_device_params_init(struct tegra_xudc * xudc)3378 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3379 {
3380 u32 val, imod;
3381
3382 if (xudc->soc->has_ipfs) {
3383 val = xudc_readl(xudc, BLCG);
3384 val |= BLCG_ALL;
3385 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3386 BLCG_COREPLL_PWRDN);
3387 val |= BLCG_IOPLL_0_PWRDN;
3388 val |= BLCG_IOPLL_1_PWRDN;
3389 val |= BLCG_IOPLL_2_PWRDN;
3390
3391 xudc_writel(xudc, val, BLCG);
3392 }
3393
3394 if (xudc->soc->port_speed_quirk)
3395 tegra_xudc_limit_port_speed(xudc);
3396
3397 /* Set a reasonable U3 exit timer value. */
3398 val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3399 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3400 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3401 xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3402
3403 /* Default ping LFPS tBurst is too large. */
3404 val = xudc_readl(xudc, SSPX_CORE_CNT0);
3405 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3406 val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3407 xudc_writel(xudc, val, SSPX_CORE_CNT0);
3408
3409 /* Default tPortConfiguration timeout is too small. */
3410 val = xudc_readl(xudc, SSPX_CORE_CNT30);
3411 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3412 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3413 xudc_writel(xudc, val, SSPX_CORE_CNT30);
3414
3415 if (xudc->soc->lpm_enable) {
3416 /* Set L1 resume duration to 95 us. */
3417 val = xudc_readl(xudc, HSFSPI_COUNT13);
3418 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3419 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3420 xudc_writel(xudc, val, HSFSPI_COUNT13);
3421 }
3422
3423 /*
3424 * Compliacne suite appears to be violating polling LFPS tBurst max
3425 * of 1.4us. Send 1.45us instead.
3426 */
3427 val = xudc_readl(xudc, SSPX_CORE_CNT32);
3428 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3429 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3430 xudc_writel(xudc, val, SSPX_CORE_CNT32);
3431
3432 /* Direct HS/FS port instance to RxDetect. */
3433 val = xudc_readl(xudc, CFG_DEV_FE);
3434 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3435 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3436 xudc_writel(xudc, val, CFG_DEV_FE);
3437
3438 val = xudc_readl(xudc, PORTSC);
3439 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3440 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3441 xudc_writel(xudc, val, PORTSC);
3442
3443 /* Direct SS port instance to RxDetect. */
3444 val = xudc_readl(xudc, CFG_DEV_FE);
3445 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3446 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3447 xudc_writel(xudc, val, CFG_DEV_FE);
3448
3449 val = xudc_readl(xudc, PORTSC);
3450 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3451 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3452 xudc_writel(xudc, val, PORTSC);
3453
3454 /* Restore port instance. */
3455 val = xudc_readl(xudc, CFG_DEV_FE);
3456 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3457 xudc_writel(xudc, val, CFG_DEV_FE);
3458
3459 /*
3460 * Enable INFINITE_SS_RETRY to prevent device from entering
3461 * Disabled.Error when attached to buggy SuperSpeed hubs.
3462 */
3463 val = xudc_readl(xudc, CFG_DEV_FE);
3464 val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3465 xudc_writel(xudc, val, CFG_DEV_FE);
3466
3467 /* Set interrupt moderation. */
3468 imod = XUDC_INTERRUPT_MODERATION_US * 4;
3469 val = xudc_readl(xudc, RT_IMOD);
3470 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3471 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3472 xudc_writel(xudc, val, RT_IMOD);
3473
3474 /* increase SSPI transaction timeout from 32us to 512us */
3475 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3476 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3477 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3478 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3479 }
3480
tegra_xudc_phy_get(struct tegra_xudc * xudc)3481 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3482 {
3483 int err = 0, usb3;
3484 unsigned int i;
3485
3486 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3487 sizeof(*xudc->utmi_phy), GFP_KERNEL);
3488 if (!xudc->utmi_phy)
3489 return -ENOMEM;
3490
3491 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3492 sizeof(*xudc->usb3_phy), GFP_KERNEL);
3493 if (!xudc->usb3_phy)
3494 return -ENOMEM;
3495
3496 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3497 sizeof(*xudc->usbphy), GFP_KERNEL);
3498 if (!xudc->usbphy)
3499 return -ENOMEM;
3500
3501 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3502
3503 for (i = 0; i < xudc->soc->num_phys; i++) {
3504 char phy_name[] = "usb.-.";
3505
3506 /* Get USB2 phy */
3507 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3508 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3509 if (IS_ERR(xudc->utmi_phy[i])) {
3510 err = PTR_ERR(xudc->utmi_phy[i]);
3511 if (err != -EPROBE_DEFER)
3512 dev_err(xudc->dev, "failed to get usb2-%d PHY: %d\n",
3513 i, err);
3514
3515 goto clean_up;
3516 } else if (xudc->utmi_phy[i]) {
3517 /* Get usb-phy, if utmi phy is available */
3518 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3519 xudc->utmi_phy[i]->dev.of_node,
3520 &xudc->vbus_nb);
3521 if (IS_ERR(xudc->usbphy[i])) {
3522 err = PTR_ERR(xudc->usbphy[i]);
3523 dev_err(xudc->dev, "failed to get usbphy-%d: %d\n",
3524 i, err);
3525 goto clean_up;
3526 }
3527 } else if (!xudc->utmi_phy[i]) {
3528 /* if utmi phy is not available, ignore USB3 phy get */
3529 continue;
3530 }
3531
3532 /* Get USB3 phy */
3533 usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3534 if (usb3 < 0)
3535 continue;
3536
3537 snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3);
3538 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3539 if (IS_ERR(xudc->usb3_phy[i])) {
3540 err = PTR_ERR(xudc->usb3_phy[i]);
3541 if (err != -EPROBE_DEFER)
3542 dev_err(xudc->dev, "failed to get usb3-%d PHY: %d\n",
3543 usb3, err);
3544
3545 goto clean_up;
3546 } else if (xudc->usb3_phy[i])
3547 dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3);
3548 }
3549
3550 return err;
3551
3552 clean_up:
3553 for (i = 0; i < xudc->soc->num_phys; i++) {
3554 xudc->usb3_phy[i] = NULL;
3555 xudc->utmi_phy[i] = NULL;
3556 xudc->usbphy[i] = NULL;
3557 }
3558
3559 return err;
3560 }
3561
tegra_xudc_phy_exit(struct tegra_xudc * xudc)3562 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3563 {
3564 unsigned int i;
3565
3566 for (i = 0; i < xudc->soc->num_phys; i++) {
3567 phy_exit(xudc->usb3_phy[i]);
3568 phy_exit(xudc->utmi_phy[i]);
3569 }
3570 }
3571
tegra_xudc_phy_init(struct tegra_xudc * xudc)3572 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3573 {
3574 int err;
3575 unsigned int i;
3576
3577 for (i = 0; i < xudc->soc->num_phys; i++) {
3578 err = phy_init(xudc->utmi_phy[i]);
3579 if (err < 0) {
3580 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3581 goto exit_phy;
3582 }
3583
3584 err = phy_init(xudc->usb3_phy[i]);
3585 if (err < 0) {
3586 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3587 goto exit_phy;
3588 }
3589 }
3590 return 0;
3591
3592 exit_phy:
3593 tegra_xudc_phy_exit(xudc);
3594 return err;
3595 }
3596
3597 static const char * const tegra210_xudc_supply_names[] = {
3598 "hvdd-usb",
3599 "avddio-usb",
3600 };
3601
3602 static const char * const tegra210_xudc_clock_names[] = {
3603 "dev",
3604 "ss",
3605 "ss_src",
3606 "hs_src",
3607 "fs_src",
3608 };
3609
3610 static const char * const tegra186_xudc_clock_names[] = {
3611 "dev",
3612 "ss",
3613 "ss_src",
3614 "fs_src",
3615 };
3616
3617 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3618 .supply_names = tegra210_xudc_supply_names,
3619 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3620 .clock_names = tegra210_xudc_clock_names,
3621 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3622 .num_phys = 4,
3623 .u1_enable = false,
3624 .u2_enable = true,
3625 .lpm_enable = false,
3626 .invalid_seq_num = true,
3627 .pls_quirk = true,
3628 .port_reset_quirk = true,
3629 .port_speed_quirk = false,
3630 .has_ipfs = true,
3631 };
3632
3633 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3634 .clock_names = tegra186_xudc_clock_names,
3635 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3636 .num_phys = 4,
3637 .u1_enable = true,
3638 .u2_enable = true,
3639 .lpm_enable = false,
3640 .invalid_seq_num = false,
3641 .pls_quirk = false,
3642 .port_reset_quirk = false,
3643 .port_speed_quirk = false,
3644 .has_ipfs = false,
3645 };
3646
3647 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3648 .clock_names = tegra186_xudc_clock_names,
3649 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3650 .num_phys = 4,
3651 .u1_enable = true,
3652 .u2_enable = true,
3653 .lpm_enable = true,
3654 .invalid_seq_num = false,
3655 .pls_quirk = false,
3656 .port_reset_quirk = false,
3657 .port_speed_quirk = true,
3658 .has_ipfs = false,
3659 };
3660
3661 static const struct of_device_id tegra_xudc_of_match[] = {
3662 {
3663 .compatible = "nvidia,tegra210-xudc",
3664 .data = &tegra210_xudc_soc_data
3665 },
3666 {
3667 .compatible = "nvidia,tegra186-xudc",
3668 .data = &tegra186_xudc_soc_data
3669 },
3670 {
3671 .compatible = "nvidia,tegra194-xudc",
3672 .data = &tegra194_xudc_soc_data
3673 },
3674 { }
3675 };
3676 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3677
tegra_xudc_powerdomain_remove(struct tegra_xudc * xudc)3678 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3679 {
3680 if (xudc->genpd_dl_ss)
3681 device_link_del(xudc->genpd_dl_ss);
3682 if (xudc->genpd_dl_device)
3683 device_link_del(xudc->genpd_dl_device);
3684 if (xudc->genpd_dev_ss)
3685 dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3686 if (xudc->genpd_dev_device)
3687 dev_pm_domain_detach(xudc->genpd_dev_device, true);
3688 }
3689
tegra_xudc_powerdomain_init(struct tegra_xudc * xudc)3690 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3691 {
3692 struct device *dev = xudc->dev;
3693 int err;
3694
3695 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3696 if (IS_ERR(xudc->genpd_dev_device)) {
3697 err = PTR_ERR(xudc->genpd_dev_device);
3698 dev_err(dev, "failed to get device power domain: %d\n", err);
3699 return err;
3700 }
3701
3702 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3703 if (IS_ERR(xudc->genpd_dev_ss)) {
3704 err = PTR_ERR(xudc->genpd_dev_ss);
3705 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3706 return err;
3707 }
3708
3709 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3710 DL_FLAG_PM_RUNTIME |
3711 DL_FLAG_STATELESS);
3712 if (!xudc->genpd_dl_device) {
3713 dev_err(dev, "failed to add USB device link\n");
3714 return -ENODEV;
3715 }
3716
3717 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3718 DL_FLAG_PM_RUNTIME |
3719 DL_FLAG_STATELESS);
3720 if (!xudc->genpd_dl_ss) {
3721 dev_err(dev, "failed to add SuperSpeed device link\n");
3722 return -ENODEV;
3723 }
3724
3725 return 0;
3726 }
3727
tegra_xudc_probe(struct platform_device * pdev)3728 static int tegra_xudc_probe(struct platform_device *pdev)
3729 {
3730 struct tegra_xudc *xudc;
3731 struct resource *res;
3732 unsigned int i;
3733 int err;
3734
3735 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3736 if (!xudc)
3737 return -ENOMEM;
3738
3739 xudc->dev = &pdev->dev;
3740 platform_set_drvdata(pdev, xudc);
3741
3742 xudc->soc = of_device_get_match_data(&pdev->dev);
3743 if (!xudc->soc)
3744 return -ENODEV;
3745
3746 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3747 xudc->base = devm_ioremap_resource(&pdev->dev, res);
3748 if (IS_ERR(xudc->base))
3749 return PTR_ERR(xudc->base);
3750 xudc->phys_base = res->start;
3751
3752 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3753 if (IS_ERR(xudc->fpci))
3754 return PTR_ERR(xudc->fpci);
3755
3756 if (xudc->soc->has_ipfs) {
3757 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3758 if (IS_ERR(xudc->ipfs))
3759 return PTR_ERR(xudc->ipfs);
3760 }
3761
3762 xudc->irq = platform_get_irq(pdev, 0);
3763 if (xudc->irq < 0)
3764 return xudc->irq;
3765
3766 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3767 dev_name(&pdev->dev), xudc);
3768 if (err < 0) {
3769 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3770 err);
3771 return err;
3772 }
3773
3774 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3775 GFP_KERNEL);
3776 if (!xudc->clks)
3777 return -ENOMEM;
3778
3779 for (i = 0; i < xudc->soc->num_clks; i++)
3780 xudc->clks[i].id = xudc->soc->clock_names[i];
3781
3782 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3783 if (err) {
3784 if (err != -EPROBE_DEFER)
3785 dev_err(xudc->dev, "failed to request clocks: %d\n", err);
3786
3787 return err;
3788 }
3789
3790 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3791 sizeof(*xudc->supplies), GFP_KERNEL);
3792 if (!xudc->supplies)
3793 return -ENOMEM;
3794
3795 for (i = 0; i < xudc->soc->num_supplies; i++)
3796 xudc->supplies[i].supply = xudc->soc->supply_names[i];
3797
3798 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3799 xudc->supplies);
3800 if (err) {
3801 if (err != -EPROBE_DEFER)
3802 dev_err(xudc->dev, "failed to request regulators: %d\n", err);
3803
3804 return err;
3805 }
3806
3807 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3808 if (IS_ERR(xudc->padctl))
3809 return PTR_ERR(xudc->padctl);
3810
3811 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3812 if (err) {
3813 dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3814 goto put_padctl;
3815 }
3816
3817 err = tegra_xudc_phy_get(xudc);
3818 if (err)
3819 goto disable_regulator;
3820
3821 err = tegra_xudc_powerdomain_init(xudc);
3822 if (err)
3823 goto put_powerdomains;
3824
3825 err = tegra_xudc_phy_init(xudc);
3826 if (err)
3827 goto put_powerdomains;
3828
3829 err = tegra_xudc_alloc_event_ring(xudc);
3830 if (err)
3831 goto disable_phy;
3832
3833 err = tegra_xudc_alloc_eps(xudc);
3834 if (err)
3835 goto free_event_ring;
3836
3837 spin_lock_init(&xudc->lock);
3838
3839 init_completion(&xudc->disconnect_complete);
3840
3841 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3842
3843 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3844
3845 INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3846 tegra_xudc_port_reset_war_work);
3847
3848 pm_runtime_enable(&pdev->dev);
3849
3850 xudc->gadget.ops = &tegra_xudc_gadget_ops;
3851 xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3852 xudc->gadget.name = "tegra-xudc";
3853 xudc->gadget.max_speed = USB_SPEED_SUPER;
3854
3855 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3856 if (err) {
3857 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3858 goto free_eps;
3859 }
3860
3861 return 0;
3862
3863 free_eps:
3864 tegra_xudc_free_eps(xudc);
3865 free_event_ring:
3866 tegra_xudc_free_event_ring(xudc);
3867 disable_phy:
3868 tegra_xudc_phy_exit(xudc);
3869 put_powerdomains:
3870 tegra_xudc_powerdomain_remove(xudc);
3871 disable_regulator:
3872 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3873 put_padctl:
3874 tegra_xusb_padctl_put(xudc->padctl);
3875
3876 return err;
3877 }
3878
tegra_xudc_remove(struct platform_device * pdev)3879 static int tegra_xudc_remove(struct platform_device *pdev)
3880 {
3881 struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3882 unsigned int i;
3883
3884 pm_runtime_get_sync(xudc->dev);
3885
3886 cancel_delayed_work(&xudc->plc_reset_work);
3887 cancel_work_sync(&xudc->usb_role_sw_work);
3888
3889 usb_del_gadget_udc(&xudc->gadget);
3890
3891 tegra_xudc_free_eps(xudc);
3892 tegra_xudc_free_event_ring(xudc);
3893
3894 tegra_xudc_powerdomain_remove(xudc);
3895
3896 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3897
3898 for (i = 0; i < xudc->soc->num_phys; i++) {
3899 phy_power_off(xudc->utmi_phy[i]);
3900 phy_power_off(xudc->usb3_phy[i]);
3901 }
3902
3903 tegra_xudc_phy_exit(xudc);
3904
3905 pm_runtime_disable(xudc->dev);
3906 pm_runtime_put(xudc->dev);
3907
3908 tegra_xusb_padctl_put(xudc->padctl);
3909
3910 return 0;
3911 }
3912
tegra_xudc_powergate(struct tegra_xudc * xudc)3913 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3914 {
3915 unsigned long flags;
3916
3917 dev_dbg(xudc->dev, "entering ELPG\n");
3918
3919 spin_lock_irqsave(&xudc->lock, flags);
3920
3921 xudc->powergated = true;
3922 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3923 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3924 xudc_writel(xudc, 0, CTRL);
3925
3926 spin_unlock_irqrestore(&xudc->lock, flags);
3927
3928 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3929
3930 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3931
3932 dev_dbg(xudc->dev, "entering ELPG done\n");
3933 return 0;
3934 }
3935
tegra_xudc_unpowergate(struct tegra_xudc * xudc)3936 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3937 {
3938 unsigned long flags;
3939 int err;
3940
3941 dev_dbg(xudc->dev, "exiting ELPG\n");
3942
3943 err = regulator_bulk_enable(xudc->soc->num_supplies,
3944 xudc->supplies);
3945 if (err < 0)
3946 return err;
3947
3948 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3949 if (err < 0)
3950 return err;
3951
3952 tegra_xudc_fpci_ipfs_init(xudc);
3953
3954 tegra_xudc_device_params_init(xudc);
3955
3956 tegra_xudc_init_event_ring(xudc);
3957
3958 tegra_xudc_init_eps(xudc);
3959
3960 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
3961 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
3962
3963 spin_lock_irqsave(&xudc->lock, flags);
3964 xudc->powergated = false;
3965 spin_unlock_irqrestore(&xudc->lock, flags);
3966
3967 dev_dbg(xudc->dev, "exiting ELPG done\n");
3968 return 0;
3969 }
3970
tegra_xudc_suspend(struct device * dev)3971 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
3972 {
3973 struct tegra_xudc *xudc = dev_get_drvdata(dev);
3974 unsigned long flags;
3975
3976 spin_lock_irqsave(&xudc->lock, flags);
3977 xudc->suspended = true;
3978 spin_unlock_irqrestore(&xudc->lock, flags);
3979
3980 flush_work(&xudc->usb_role_sw_work);
3981
3982 if (!pm_runtime_status_suspended(dev)) {
3983 /* Forcibly disconnect before powergating. */
3984 tegra_xudc_device_mode_off(xudc);
3985 tegra_xudc_powergate(xudc);
3986 }
3987
3988 pm_runtime_disable(dev);
3989
3990 return 0;
3991 }
3992
tegra_xudc_resume(struct device * dev)3993 static int __maybe_unused tegra_xudc_resume(struct device *dev)
3994 {
3995 struct tegra_xudc *xudc = dev_get_drvdata(dev);
3996 unsigned long flags;
3997 int err;
3998
3999 err = tegra_xudc_unpowergate(xudc);
4000 if (err < 0)
4001 return err;
4002
4003 spin_lock_irqsave(&xudc->lock, flags);
4004 xudc->suspended = false;
4005 spin_unlock_irqrestore(&xudc->lock, flags);
4006
4007 schedule_work(&xudc->usb_role_sw_work);
4008
4009 pm_runtime_enable(dev);
4010
4011 return 0;
4012 }
4013
tegra_xudc_runtime_suspend(struct device * dev)4014 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4015 {
4016 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4017
4018 return tegra_xudc_powergate(xudc);
4019 }
4020
tegra_xudc_runtime_resume(struct device * dev)4021 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4022 {
4023 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4024
4025 return tegra_xudc_unpowergate(xudc);
4026 }
4027
4028 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4029 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4030 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4031 tegra_xudc_runtime_resume, NULL)
4032 };
4033
4034 static struct platform_driver tegra_xudc_driver = {
4035 .probe = tegra_xudc_probe,
4036 .remove = tegra_xudc_remove,
4037 .driver = {
4038 .name = "tegra-xudc",
4039 .pm = &tegra_xudc_pm_ops,
4040 .of_match_table = tegra_xudc_of_match,
4041 },
4042 };
4043 module_platform_driver(tegra_xudc_driver);
4044
4045 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4046 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4047 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4048 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4049 MODULE_LICENSE("GPL v2");
4050