1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 /* Copyright (c) 2018 Facebook */
3 /*! \file */
4
5 #ifndef __LIBBPF_BTF_H
6 #define __LIBBPF_BTF_H
7
8 #include <stdarg.h>
9 #include <stdbool.h>
10 #include <linux/btf.h>
11 #include <linux/types.h>
12
13 #include "libbpf_common.h"
14
15 #ifdef __cplusplus
16 extern "C" {
17 #endif
18
19 #define BTF_ELF_SEC ".BTF"
20 #define BTF_EXT_ELF_SEC ".BTF.ext"
21 #define BTF_BASE_ELF_SEC ".BTF.base"
22 #define MAPS_ELF_SEC ".maps"
23
24 struct btf;
25 struct btf_ext;
26 struct btf_type;
27
28 struct bpf_object;
29
30 enum btf_endianness {
31 BTF_LITTLE_ENDIAN = 0,
32 BTF_BIG_ENDIAN = 1,
33 };
34
35 /**
36 * @brief **btf__free()** frees all data of a BTF object
37 * @param btf BTF object to free
38 */
39 LIBBPF_API void btf__free(struct btf *btf);
40
41 /**
42 * @brief **btf__new()** creates a new instance of a BTF object from the raw
43 * bytes of an ELF's BTF section
44 * @param data raw bytes
45 * @param size number of bytes passed in `data`
46 * @return new BTF object instance which has to be eventually freed with
47 * **btf__free()**
48 *
49 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
50 * error code from such a pointer `libbpf_get_error()` should be used. If
51 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
52 * returned on error instead. In both cases thread-local `errno` variable is
53 * always set to error code as well.
54 */
55 LIBBPF_API struct btf *btf__new(const void *data, __u32 size);
56
57 /**
58 * @brief **btf__new_split()** create a new instance of a BTF object from the
59 * provided raw data bytes. It takes another BTF instance, **base_btf**, which
60 * serves as a base BTF, which is extended by types in a newly created BTF
61 * instance
62 * @param data raw bytes
63 * @param size length of raw bytes
64 * @param base_btf the base BTF object
65 * @return new BTF object instance which has to be eventually freed with
66 * **btf__free()**
67 *
68 * If *base_btf* is NULL, `btf__new_split()` is equivalent to `btf__new()` and
69 * creates non-split BTF.
70 *
71 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
72 * error code from such a pointer `libbpf_get_error()` should be used. If
73 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
74 * returned on error instead. In both cases thread-local `errno` variable is
75 * always set to error code as well.
76 */
77 LIBBPF_API struct btf *btf__new_split(const void *data, __u32 size, struct btf *base_btf);
78
79 /**
80 * @brief **btf__new_empty()** creates an empty BTF object. Use
81 * `btf__add_*()` to populate such BTF object.
82 * @return new BTF object instance which has to be eventually freed with
83 * **btf__free()**
84 *
85 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
86 * error code from such a pointer `libbpf_get_error()` should be used. If
87 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
88 * returned on error instead. In both cases thread-local `errno` variable is
89 * always set to error code as well.
90 */
91 LIBBPF_API struct btf *btf__new_empty(void);
92
93 /**
94 * @brief **btf__new_empty_split()** creates an unpopulated BTF object from an
95 * ELF BTF section except with a base BTF on top of which split BTF should be
96 * based
97 * @return new BTF object instance which has to be eventually freed with
98 * **btf__free()**
99 *
100 * If *base_btf* is NULL, `btf__new_empty_split()` is equivalent to
101 * `btf__new_empty()` and creates non-split BTF.
102 *
103 * On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
104 * error code from such a pointer `libbpf_get_error()` should be used. If
105 * `libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)` is enabled, NULL is
106 * returned on error instead. In both cases thread-local `errno` variable is
107 * always set to error code as well.
108 */
109 LIBBPF_API struct btf *btf__new_empty_split(struct btf *base_btf);
110
111 /**
112 * @brief **btf__distill_base()** creates new versions of the split BTF
113 * *src_btf* and its base BTF. The new base BTF will only contain the types
114 * needed to improve robustness of the split BTF to small changes in base BTF.
115 * When that split BTF is loaded against a (possibly changed) base, this
116 * distilled base BTF will help update references to that (possibly changed)
117 * base BTF.
118 *
119 * Both the new split and its associated new base BTF must be freed by
120 * the caller.
121 *
122 * If successful, 0 is returned and **new_base_btf** and **new_split_btf**
123 * will point at new base/split BTF. Both the new split and its associated
124 * new base BTF must be freed by the caller.
125 *
126 * A negative value is returned on error and the thread-local `errno` variable
127 * is set to the error code as well.
128 */
129 LIBBPF_API int btf__distill_base(const struct btf *src_btf, struct btf **new_base_btf,
130 struct btf **new_split_btf);
131
132 LIBBPF_API struct btf *btf__parse(const char *path, struct btf_ext **btf_ext);
133 LIBBPF_API struct btf *btf__parse_split(const char *path, struct btf *base_btf);
134 LIBBPF_API struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext);
135 LIBBPF_API struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf);
136 LIBBPF_API struct btf *btf__parse_raw(const char *path);
137 LIBBPF_API struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf);
138
139 LIBBPF_API struct btf *btf__load_vmlinux_btf(void);
140 LIBBPF_API struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf);
141
142 LIBBPF_API struct btf *btf__load_from_kernel_by_id(__u32 id);
143 LIBBPF_API struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf);
144
145 LIBBPF_API int btf__load_into_kernel(struct btf *btf);
146 LIBBPF_API __s32 btf__find_by_name(const struct btf *btf,
147 const char *type_name);
148 LIBBPF_API __s32 btf__find_by_name_kind(const struct btf *btf,
149 const char *type_name, __u32 kind);
150 LIBBPF_API __u32 btf__type_cnt(const struct btf *btf);
151 LIBBPF_API const struct btf *btf__base_btf(const struct btf *btf);
152 LIBBPF_API const struct btf_type *btf__type_by_id(const struct btf *btf,
153 __u32 id);
154 LIBBPF_API size_t btf__pointer_size(const struct btf *btf);
155 LIBBPF_API int btf__set_pointer_size(struct btf *btf, size_t ptr_sz);
156 LIBBPF_API enum btf_endianness btf__endianness(const struct btf *btf);
157 LIBBPF_API int btf__set_endianness(struct btf *btf, enum btf_endianness endian);
158 LIBBPF_API __s64 btf__resolve_size(const struct btf *btf, __u32 type_id);
159 LIBBPF_API int btf__resolve_type(const struct btf *btf, __u32 type_id);
160 LIBBPF_API int btf__align_of(const struct btf *btf, __u32 id);
161 LIBBPF_API int btf__fd(const struct btf *btf);
162 LIBBPF_API void btf__set_fd(struct btf *btf, int fd);
163 LIBBPF_API const void *btf__raw_data(const struct btf *btf, __u32 *size);
164 LIBBPF_API const char *btf__name_by_offset(const struct btf *btf, __u32 offset);
165 LIBBPF_API const char *btf__str_by_offset(const struct btf *btf, __u32 offset);
166
167 LIBBPF_API struct btf_ext *btf_ext__new(const __u8 *data, __u32 size);
168 LIBBPF_API void btf_ext__free(struct btf_ext *btf_ext);
169 LIBBPF_API const void *btf_ext__raw_data(const struct btf_ext *btf_ext, __u32 *size);
170 LIBBPF_API enum btf_endianness btf_ext__endianness(const struct btf_ext *btf_ext);
171 LIBBPF_API int btf_ext__set_endianness(struct btf_ext *btf_ext,
172 enum btf_endianness endian);
173
174 LIBBPF_API int btf__find_str(struct btf *btf, const char *s);
175 LIBBPF_API int btf__add_str(struct btf *btf, const char *s);
176 LIBBPF_API int btf__add_type(struct btf *btf, const struct btf *src_btf,
177 const struct btf_type *src_type);
178 /**
179 * @brief **btf__add_btf()** appends all the BTF types from *src_btf* into *btf*
180 * @param btf BTF object which all the BTF types and strings are added to
181 * @param src_btf BTF object which all BTF types and referenced strings are copied from
182 * @return BTF type ID of the first appended BTF type, or negative error code
183 *
184 * **btf__add_btf()** can be used to simply and efficiently append the entire
185 * contents of one BTF object to another one. All the BTF type data is copied
186 * over, all referenced type IDs are adjusted by adding a necessary ID offset.
187 * Only strings referenced from BTF types are copied over and deduplicated, so
188 * if there were some unused strings in *src_btf*, those won't be copied over,
189 * which is consistent with the general string deduplication semantics of BTF
190 * writing APIs.
191 *
192 * If any error is encountered during this process, the contents of *btf* is
193 * left intact, which means that **btf__add_btf()** follows the transactional
194 * semantics and the operation as a whole is all-or-nothing.
195 *
196 * *src_btf* has to be non-split BTF, as of now copying types from split BTF
197 * is not supported and will result in -ENOTSUP error code returned.
198 */
199 LIBBPF_API int btf__add_btf(struct btf *btf, const struct btf *src_btf);
200
201 LIBBPF_API int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding);
202 LIBBPF_API int btf__add_float(struct btf *btf, const char *name, size_t byte_sz);
203 LIBBPF_API int btf__add_ptr(struct btf *btf, int ref_type_id);
204 LIBBPF_API int btf__add_array(struct btf *btf,
205 int index_type_id, int elem_type_id, __u32 nr_elems);
206 /* struct/union construction APIs */
207 LIBBPF_API int btf__add_struct(struct btf *btf, const char *name, __u32 sz);
208 LIBBPF_API int btf__add_union(struct btf *btf, const char *name, __u32 sz);
209 LIBBPF_API int btf__add_field(struct btf *btf, const char *name, int field_type_id,
210 __u32 bit_offset, __u32 bit_size);
211
212 /* enum construction APIs */
213 LIBBPF_API int btf__add_enum(struct btf *btf, const char *name, __u32 bytes_sz);
214 LIBBPF_API int btf__add_enum_value(struct btf *btf, const char *name, __s64 value);
215 LIBBPF_API int btf__add_enum64(struct btf *btf, const char *name, __u32 bytes_sz, bool is_signed);
216 LIBBPF_API int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value);
217
218 enum btf_fwd_kind {
219 BTF_FWD_STRUCT = 0,
220 BTF_FWD_UNION = 1,
221 BTF_FWD_ENUM = 2,
222 };
223
224 LIBBPF_API int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind);
225 LIBBPF_API int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id);
226 LIBBPF_API int btf__add_volatile(struct btf *btf, int ref_type_id);
227 LIBBPF_API int btf__add_const(struct btf *btf, int ref_type_id);
228 LIBBPF_API int btf__add_restrict(struct btf *btf, int ref_type_id);
229 LIBBPF_API int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id);
230 LIBBPF_API int btf__add_type_attr(struct btf *btf, const char *value, int ref_type_id);
231
232 /* func and func_proto construction APIs */
233 LIBBPF_API int btf__add_func(struct btf *btf, const char *name,
234 enum btf_func_linkage linkage, int proto_type_id);
235 LIBBPF_API int btf__add_func_proto(struct btf *btf, int ret_type_id);
236 LIBBPF_API int btf__add_func_param(struct btf *btf, const char *name, int type_id);
237
238 /* var & datasec construction APIs */
239 LIBBPF_API int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id);
240 LIBBPF_API int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz);
241 LIBBPF_API int btf__add_datasec_var_info(struct btf *btf, int var_type_id,
242 __u32 offset, __u32 byte_sz);
243
244 /* tag construction API */
245 LIBBPF_API int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
246 int component_idx);
247 LIBBPF_API int btf__add_decl_attr(struct btf *btf, const char *value, int ref_type_id,
248 int component_idx);
249
250 struct btf_dedup_opts {
251 size_t sz;
252 /* optional .BTF.ext info to dedup along the main BTF info */
253 struct btf_ext *btf_ext;
254 /* force hash collisions (used for testing) */
255 bool force_collisions;
256 size_t :0;
257 };
258 #define btf_dedup_opts__last_field force_collisions
259
260 LIBBPF_API int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts);
261
262 /**
263 * @brief **btf__relocate()** will check the split BTF *btf* for references
264 * to base BTF kinds, and verify those references are compatible with
265 * *base_btf*; if they are, *btf* is adjusted such that is re-parented to
266 * *base_btf* and type ids and strings are adjusted to accommodate this.
267 *
268 * If successful, 0 is returned and **btf** now has **base_btf** as its
269 * base.
270 *
271 * A negative value is returned on error and the thread-local `errno` variable
272 * is set to the error code as well.
273 */
274 LIBBPF_API int btf__relocate(struct btf *btf, const struct btf *base_btf);
275
276 struct btf_dump;
277
278 struct btf_dump_opts {
279 size_t sz;
280 };
281 #define btf_dump_opts__last_field sz
282
283 typedef void (*btf_dump_printf_fn_t)(void *ctx, const char *fmt, va_list args);
284
285 LIBBPF_API struct btf_dump *btf_dump__new(const struct btf *btf,
286 btf_dump_printf_fn_t printf_fn,
287 void *ctx,
288 const struct btf_dump_opts *opts);
289
290 LIBBPF_API void btf_dump__free(struct btf_dump *d);
291
292 LIBBPF_API int btf_dump__dump_type(struct btf_dump *d, __u32 id);
293
294 struct btf_dump_emit_type_decl_opts {
295 /* size of this struct, for forward/backward compatibility */
296 size_t sz;
297 /* optional field name for type declaration, e.g.:
298 * - struct my_struct <FNAME>
299 * - void (*<FNAME>)(int)
300 * - char (*<FNAME>)[123]
301 */
302 const char *field_name;
303 /* extra indentation level (in number of tabs) to emit for multi-line
304 * type declarations (e.g., anonymous struct); applies for lines
305 * starting from the second one (first line is assumed to have
306 * necessary indentation already
307 */
308 int indent_level;
309 /* strip all the const/volatile/restrict mods */
310 bool strip_mods;
311 size_t :0;
312 };
313 #define btf_dump_emit_type_decl_opts__last_field strip_mods
314
315 LIBBPF_API int
316 btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
317 const struct btf_dump_emit_type_decl_opts *opts);
318
319
320 struct btf_dump_type_data_opts {
321 /* size of this struct, for forward/backward compatibility */
322 size_t sz;
323 const char *indent_str;
324 int indent_level;
325 /* below match "show" flags for bpf_show_snprintf() */
326 bool compact; /* no newlines/indentation */
327 bool skip_names; /* skip member/type names */
328 bool emit_zeroes; /* show 0-valued fields */
329 bool emit_strings; /* print char arrays as strings */
330 size_t :0;
331 };
332 #define btf_dump_type_data_opts__last_field emit_strings
333
334 LIBBPF_API int
335 btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
336 const void *data, size_t data_sz,
337 const struct btf_dump_type_data_opts *opts);
338
339 /*
340 * A set of helpers for easier BTF types handling.
341 *
342 * The inline functions below rely on constants from the kernel headers which
343 * may not be available for applications including this header file. To avoid
344 * compilation errors, we define all the constants here that were added after
345 * the initial introduction of the BTF_KIND* constants.
346 */
347 #ifndef BTF_KIND_FUNC
348 #define BTF_KIND_FUNC 12 /* Function */
349 #define BTF_KIND_FUNC_PROTO 13 /* Function Proto */
350 #endif
351 #ifndef BTF_KIND_VAR
352 #define BTF_KIND_VAR 14 /* Variable */
353 #define BTF_KIND_DATASEC 15 /* Section */
354 #endif
355 #ifndef BTF_KIND_FLOAT
356 #define BTF_KIND_FLOAT 16 /* Floating point */
357 #endif
358 /* The kernel header switched to enums, so the following were never #defined */
359 #define BTF_KIND_DECL_TAG 17 /* Decl Tag */
360 #define BTF_KIND_TYPE_TAG 18 /* Type Tag */
361 #define BTF_KIND_ENUM64 19 /* Enum for up-to 64bit values */
362
btf_kind(const struct btf_type * t)363 static inline __u16 btf_kind(const struct btf_type *t)
364 {
365 return BTF_INFO_KIND(t->info);
366 }
367
btf_vlen(const struct btf_type * t)368 static inline __u16 btf_vlen(const struct btf_type *t)
369 {
370 return BTF_INFO_VLEN(t->info);
371 }
372
btf_kflag(const struct btf_type * t)373 static inline bool btf_kflag(const struct btf_type *t)
374 {
375 return BTF_INFO_KFLAG(t->info);
376 }
377
btf_is_void(const struct btf_type * t)378 static inline bool btf_is_void(const struct btf_type *t)
379 {
380 return btf_kind(t) == BTF_KIND_UNKN;
381 }
382
btf_is_int(const struct btf_type * t)383 static inline bool btf_is_int(const struct btf_type *t)
384 {
385 return btf_kind(t) == BTF_KIND_INT;
386 }
387
btf_is_ptr(const struct btf_type * t)388 static inline bool btf_is_ptr(const struct btf_type *t)
389 {
390 return btf_kind(t) == BTF_KIND_PTR;
391 }
392
btf_is_array(const struct btf_type * t)393 static inline bool btf_is_array(const struct btf_type *t)
394 {
395 return btf_kind(t) == BTF_KIND_ARRAY;
396 }
397
btf_is_struct(const struct btf_type * t)398 static inline bool btf_is_struct(const struct btf_type *t)
399 {
400 return btf_kind(t) == BTF_KIND_STRUCT;
401 }
402
btf_is_union(const struct btf_type * t)403 static inline bool btf_is_union(const struct btf_type *t)
404 {
405 return btf_kind(t) == BTF_KIND_UNION;
406 }
407
btf_is_composite(const struct btf_type * t)408 static inline bool btf_is_composite(const struct btf_type *t)
409 {
410 __u16 kind = btf_kind(t);
411
412 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
413 }
414
btf_is_enum(const struct btf_type * t)415 static inline bool btf_is_enum(const struct btf_type *t)
416 {
417 return btf_kind(t) == BTF_KIND_ENUM;
418 }
419
btf_is_enum64(const struct btf_type * t)420 static inline bool btf_is_enum64(const struct btf_type *t)
421 {
422 return btf_kind(t) == BTF_KIND_ENUM64;
423 }
424
btf_is_fwd(const struct btf_type * t)425 static inline bool btf_is_fwd(const struct btf_type *t)
426 {
427 return btf_kind(t) == BTF_KIND_FWD;
428 }
429
btf_is_typedef(const struct btf_type * t)430 static inline bool btf_is_typedef(const struct btf_type *t)
431 {
432 return btf_kind(t) == BTF_KIND_TYPEDEF;
433 }
434
btf_is_volatile(const struct btf_type * t)435 static inline bool btf_is_volatile(const struct btf_type *t)
436 {
437 return btf_kind(t) == BTF_KIND_VOLATILE;
438 }
439
btf_is_const(const struct btf_type * t)440 static inline bool btf_is_const(const struct btf_type *t)
441 {
442 return btf_kind(t) == BTF_KIND_CONST;
443 }
444
btf_is_restrict(const struct btf_type * t)445 static inline bool btf_is_restrict(const struct btf_type *t)
446 {
447 return btf_kind(t) == BTF_KIND_RESTRICT;
448 }
449
btf_is_mod(const struct btf_type * t)450 static inline bool btf_is_mod(const struct btf_type *t)
451 {
452 __u16 kind = btf_kind(t);
453
454 return kind == BTF_KIND_VOLATILE ||
455 kind == BTF_KIND_CONST ||
456 kind == BTF_KIND_RESTRICT ||
457 kind == BTF_KIND_TYPE_TAG;
458 }
459
btf_is_func(const struct btf_type * t)460 static inline bool btf_is_func(const struct btf_type *t)
461 {
462 return btf_kind(t) == BTF_KIND_FUNC;
463 }
464
btf_is_func_proto(const struct btf_type * t)465 static inline bool btf_is_func_proto(const struct btf_type *t)
466 {
467 return btf_kind(t) == BTF_KIND_FUNC_PROTO;
468 }
469
btf_is_var(const struct btf_type * t)470 static inline bool btf_is_var(const struct btf_type *t)
471 {
472 return btf_kind(t) == BTF_KIND_VAR;
473 }
474
btf_is_datasec(const struct btf_type * t)475 static inline bool btf_is_datasec(const struct btf_type *t)
476 {
477 return btf_kind(t) == BTF_KIND_DATASEC;
478 }
479
btf_is_float(const struct btf_type * t)480 static inline bool btf_is_float(const struct btf_type *t)
481 {
482 return btf_kind(t) == BTF_KIND_FLOAT;
483 }
484
btf_is_decl_tag(const struct btf_type * t)485 static inline bool btf_is_decl_tag(const struct btf_type *t)
486 {
487 return btf_kind(t) == BTF_KIND_DECL_TAG;
488 }
489
btf_is_type_tag(const struct btf_type * t)490 static inline bool btf_is_type_tag(const struct btf_type *t)
491 {
492 return btf_kind(t) == BTF_KIND_TYPE_TAG;
493 }
494
btf_is_any_enum(const struct btf_type * t)495 static inline bool btf_is_any_enum(const struct btf_type *t)
496 {
497 return btf_is_enum(t) || btf_is_enum64(t);
498 }
499
btf_kind_core_compat(const struct btf_type * t1,const struct btf_type * t2)500 static inline bool btf_kind_core_compat(const struct btf_type *t1,
501 const struct btf_type *t2)
502 {
503 return btf_kind(t1) == btf_kind(t2) ||
504 (btf_is_any_enum(t1) && btf_is_any_enum(t2));
505 }
506
btf_int_encoding(const struct btf_type * t)507 static inline __u8 btf_int_encoding(const struct btf_type *t)
508 {
509 return BTF_INT_ENCODING(*(__u32 *)(t + 1));
510 }
511
btf_int_offset(const struct btf_type * t)512 static inline __u8 btf_int_offset(const struct btf_type *t)
513 {
514 return BTF_INT_OFFSET(*(__u32 *)(t + 1));
515 }
516
btf_int_bits(const struct btf_type * t)517 static inline __u8 btf_int_bits(const struct btf_type *t)
518 {
519 return BTF_INT_BITS(*(__u32 *)(t + 1));
520 }
521
btf_array(const struct btf_type * t)522 static inline struct btf_array *btf_array(const struct btf_type *t)
523 {
524 return (struct btf_array *)(t + 1);
525 }
526
btf_enum(const struct btf_type * t)527 static inline struct btf_enum *btf_enum(const struct btf_type *t)
528 {
529 return (struct btf_enum *)(t + 1);
530 }
531
532 struct btf_enum64;
533
btf_enum64(const struct btf_type * t)534 static inline struct btf_enum64 *btf_enum64(const struct btf_type *t)
535 {
536 return (struct btf_enum64 *)(t + 1);
537 }
538
btf_enum64_value(const struct btf_enum64 * e)539 static inline __u64 btf_enum64_value(const struct btf_enum64 *e)
540 {
541 /* struct btf_enum64 is introduced in Linux 6.0, which is very
542 * bleeding-edge. Here we are avoiding relying on struct btf_enum64
543 * definition coming from kernel UAPI headers to support wider range
544 * of system-wide kernel headers.
545 *
546 * Given this header can be also included from C++ applications, that
547 * further restricts C tricks we can use (like using compatible
548 * anonymous struct). So just treat struct btf_enum64 as
549 * a three-element array of u32 and access second (lo32) and third
550 * (hi32) elements directly.
551 *
552 * For reference, here is a struct btf_enum64 definition:
553 *
554 * const struct btf_enum64 {
555 * __u32 name_off;
556 * __u32 val_lo32;
557 * __u32 val_hi32;
558 * };
559 */
560 const __u32 *e64 = (const __u32 *)e;
561
562 return ((__u64)e64[2] << 32) | e64[1];
563 }
564
btf_members(const struct btf_type * t)565 static inline struct btf_member *btf_members(const struct btf_type *t)
566 {
567 return (struct btf_member *)(t + 1);
568 }
569
570 /* Get bit offset of a member with specified index. */
btf_member_bit_offset(const struct btf_type * t,__u32 member_idx)571 static inline __u32 btf_member_bit_offset(const struct btf_type *t,
572 __u32 member_idx)
573 {
574 const struct btf_member *m = btf_members(t) + member_idx;
575 bool kflag = btf_kflag(t);
576
577 return kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset;
578 }
579 /*
580 * Get bitfield size of a member, assuming t is BTF_KIND_STRUCT or
581 * BTF_KIND_UNION. If member is not a bitfield, zero is returned.
582 */
btf_member_bitfield_size(const struct btf_type * t,__u32 member_idx)583 static inline __u32 btf_member_bitfield_size(const struct btf_type *t,
584 __u32 member_idx)
585 {
586 const struct btf_member *m = btf_members(t) + member_idx;
587 bool kflag = btf_kflag(t);
588
589 return kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
590 }
591
btf_params(const struct btf_type * t)592 static inline struct btf_param *btf_params(const struct btf_type *t)
593 {
594 return (struct btf_param *)(t + 1);
595 }
596
btf_var(const struct btf_type * t)597 static inline struct btf_var *btf_var(const struct btf_type *t)
598 {
599 return (struct btf_var *)(t + 1);
600 }
601
602 static inline struct btf_var_secinfo *
btf_var_secinfos(const struct btf_type * t)603 btf_var_secinfos(const struct btf_type *t)
604 {
605 return (struct btf_var_secinfo *)(t + 1);
606 }
607
608 struct btf_decl_tag;
btf_decl_tag(const struct btf_type * t)609 static inline struct btf_decl_tag *btf_decl_tag(const struct btf_type *t)
610 {
611 return (struct btf_decl_tag *)(t + 1);
612 }
613
614 #ifdef __cplusplus
615 } /* extern "C" */
616 #endif
617
618 #endif /* __LIBBPF_BTF_H */
619