1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 drbd_receiver.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 */
12
13
14 #include <linux/module.h>
15
16 #include <linux/uaccess.h>
17 #include <net/sock.h>
18
19 #include <linux/drbd.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/in.h>
23 #include <linux/mm.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/slab.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/sched/signal.h>
29 #include <linux/pkt_sched.h>
30 #include <linux/unistd.h>
31 #include <linux/vmalloc.h>
32 #include <linux/random.h>
33 #include <linux/string.h>
34 #include <linux/scatterlist.h>
35 #include <linux/part_stat.h>
36 #include "drbd_int.h"
37 #include "drbd_protocol.h"
38 #include "drbd_req.h"
39 #include "drbd_vli.h"
40
41 #define PRO_FEATURES (DRBD_FF_TRIM|DRBD_FF_THIN_RESYNC|DRBD_FF_WSAME|DRBD_FF_WZEROES)
42
43 struct packet_info {
44 enum drbd_packet cmd;
45 unsigned int size;
46 unsigned int vnr;
47 void *data;
48 };
49
50 enum finish_epoch {
51 FE_STILL_LIVE,
52 FE_DESTROYED,
53 FE_RECYCLED,
54 };
55
56 static int drbd_do_features(struct drbd_connection *connection);
57 static int drbd_do_auth(struct drbd_connection *connection);
58 static int drbd_disconnected(struct drbd_peer_device *);
59 static void conn_wait_active_ee_empty(struct drbd_connection *connection);
60 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *, struct drbd_epoch *, enum epoch_event);
61 static int e_end_block(struct drbd_work *, int);
62
63
64 #define GFP_TRY (__GFP_HIGHMEM | __GFP_NOWARN)
65
66 /*
67 * some helper functions to deal with single linked page lists,
68 * page->private being our "next" pointer.
69 */
70
71 /* If at least n pages are linked at head, get n pages off.
72 * Otherwise, don't modify head, and return NULL.
73 * Locking is the responsibility of the caller.
74 */
page_chain_del(struct page ** head,int n)75 static struct page *page_chain_del(struct page **head, int n)
76 {
77 struct page *page;
78 struct page *tmp;
79
80 BUG_ON(!n);
81 BUG_ON(!head);
82
83 page = *head;
84
85 if (!page)
86 return NULL;
87
88 while (page) {
89 tmp = page_chain_next(page);
90 if (--n == 0)
91 break; /* found sufficient pages */
92 if (tmp == NULL)
93 /* insufficient pages, don't use any of them. */
94 return NULL;
95 page = tmp;
96 }
97
98 /* add end of list marker for the returned list */
99 set_page_private(page, 0);
100 /* actual return value, and adjustment of head */
101 page = *head;
102 *head = tmp;
103 return page;
104 }
105
106 /* may be used outside of locks to find the tail of a (usually short)
107 * "private" page chain, before adding it back to a global chain head
108 * with page_chain_add() under a spinlock. */
page_chain_tail(struct page * page,int * len)109 static struct page *page_chain_tail(struct page *page, int *len)
110 {
111 struct page *tmp;
112 int i = 1;
113 while ((tmp = page_chain_next(page))) {
114 ++i;
115 page = tmp;
116 }
117 if (len)
118 *len = i;
119 return page;
120 }
121
page_chain_free(struct page * page)122 static int page_chain_free(struct page *page)
123 {
124 struct page *tmp;
125 int i = 0;
126 page_chain_for_each_safe(page, tmp) {
127 put_page(page);
128 ++i;
129 }
130 return i;
131 }
132
page_chain_add(struct page ** head,struct page * chain_first,struct page * chain_last)133 static void page_chain_add(struct page **head,
134 struct page *chain_first, struct page *chain_last)
135 {
136 #if 1
137 struct page *tmp;
138 tmp = page_chain_tail(chain_first, NULL);
139 BUG_ON(tmp != chain_last);
140 #endif
141
142 /* add chain to head */
143 set_page_private(chain_last, (unsigned long)*head);
144 *head = chain_first;
145 }
146
__drbd_alloc_pages(struct drbd_device * device,unsigned int number)147 static struct page *__drbd_alloc_pages(struct drbd_device *device,
148 unsigned int number)
149 {
150 struct page *page = NULL;
151 struct page *tmp = NULL;
152 unsigned int i = 0;
153
154 /* Yes, testing drbd_pp_vacant outside the lock is racy.
155 * So what. It saves a spin_lock. */
156 if (drbd_pp_vacant >= number) {
157 spin_lock(&drbd_pp_lock);
158 page = page_chain_del(&drbd_pp_pool, number);
159 if (page)
160 drbd_pp_vacant -= number;
161 spin_unlock(&drbd_pp_lock);
162 if (page)
163 return page;
164 }
165
166 /* GFP_TRY, because we must not cause arbitrary write-out: in a DRBD
167 * "criss-cross" setup, that might cause write-out on some other DRBD,
168 * which in turn might block on the other node at this very place. */
169 for (i = 0; i < number; i++) {
170 tmp = alloc_page(GFP_TRY);
171 if (!tmp)
172 break;
173 set_page_private(tmp, (unsigned long)page);
174 page = tmp;
175 }
176
177 if (i == number)
178 return page;
179
180 /* Not enough pages immediately available this time.
181 * No need to jump around here, drbd_alloc_pages will retry this
182 * function "soon". */
183 if (page) {
184 tmp = page_chain_tail(page, NULL);
185 spin_lock(&drbd_pp_lock);
186 page_chain_add(&drbd_pp_pool, page, tmp);
187 drbd_pp_vacant += i;
188 spin_unlock(&drbd_pp_lock);
189 }
190 return NULL;
191 }
192
reclaim_finished_net_peer_reqs(struct drbd_device * device,struct list_head * to_be_freed)193 static void reclaim_finished_net_peer_reqs(struct drbd_device *device,
194 struct list_head *to_be_freed)
195 {
196 struct drbd_peer_request *peer_req, *tmp;
197
198 /* The EEs are always appended to the end of the list. Since
199 they are sent in order over the wire, they have to finish
200 in order. As soon as we see the first not finished we can
201 stop to examine the list... */
202
203 list_for_each_entry_safe(peer_req, tmp, &device->net_ee, w.list) {
204 if (drbd_peer_req_has_active_page(peer_req))
205 break;
206 list_move(&peer_req->w.list, to_be_freed);
207 }
208 }
209
drbd_reclaim_net_peer_reqs(struct drbd_device * device)210 static void drbd_reclaim_net_peer_reqs(struct drbd_device *device)
211 {
212 LIST_HEAD(reclaimed);
213 struct drbd_peer_request *peer_req, *t;
214
215 spin_lock_irq(&device->resource->req_lock);
216 reclaim_finished_net_peer_reqs(device, &reclaimed);
217 spin_unlock_irq(&device->resource->req_lock);
218 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
219 drbd_free_net_peer_req(device, peer_req);
220 }
221
conn_reclaim_net_peer_reqs(struct drbd_connection * connection)222 static void conn_reclaim_net_peer_reqs(struct drbd_connection *connection)
223 {
224 struct drbd_peer_device *peer_device;
225 int vnr;
226
227 rcu_read_lock();
228 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
229 struct drbd_device *device = peer_device->device;
230 if (!atomic_read(&device->pp_in_use_by_net))
231 continue;
232
233 kref_get(&device->kref);
234 rcu_read_unlock();
235 drbd_reclaim_net_peer_reqs(device);
236 kref_put(&device->kref, drbd_destroy_device);
237 rcu_read_lock();
238 }
239 rcu_read_unlock();
240 }
241
242 /**
243 * drbd_alloc_pages() - Returns @number pages, retries forever (or until signalled)
244 * @peer_device: DRBD device.
245 * @number: number of pages requested
246 * @retry: whether to retry, if not enough pages are available right now
247 *
248 * Tries to allocate number pages, first from our own page pool, then from
249 * the kernel.
250 * Possibly retry until DRBD frees sufficient pages somewhere else.
251 *
252 * If this allocation would exceed the max_buffers setting, we throttle
253 * allocation (schedule_timeout) to give the system some room to breathe.
254 *
255 * We do not use max-buffers as hard limit, because it could lead to
256 * congestion and further to a distributed deadlock during online-verify or
257 * (checksum based) resync, if the max-buffers, socket buffer sizes and
258 * resync-rate settings are mis-configured.
259 *
260 * Returns a page chain linked via page->private.
261 */
drbd_alloc_pages(struct drbd_peer_device * peer_device,unsigned int number,bool retry)262 struct page *drbd_alloc_pages(struct drbd_peer_device *peer_device, unsigned int number,
263 bool retry)
264 {
265 struct drbd_device *device = peer_device->device;
266 struct page *page = NULL;
267 struct net_conf *nc;
268 DEFINE_WAIT(wait);
269 unsigned int mxb;
270
271 rcu_read_lock();
272 nc = rcu_dereference(peer_device->connection->net_conf);
273 mxb = nc ? nc->max_buffers : 1000000;
274 rcu_read_unlock();
275
276 if (atomic_read(&device->pp_in_use) < mxb)
277 page = __drbd_alloc_pages(device, number);
278
279 /* Try to keep the fast path fast, but occasionally we need
280 * to reclaim the pages we lended to the network stack. */
281 if (page && atomic_read(&device->pp_in_use_by_net) > 512)
282 drbd_reclaim_net_peer_reqs(device);
283
284 while (page == NULL) {
285 prepare_to_wait(&drbd_pp_wait, &wait, TASK_INTERRUPTIBLE);
286
287 drbd_reclaim_net_peer_reqs(device);
288
289 if (atomic_read(&device->pp_in_use) < mxb) {
290 page = __drbd_alloc_pages(device, number);
291 if (page)
292 break;
293 }
294
295 if (!retry)
296 break;
297
298 if (signal_pending(current)) {
299 drbd_warn(device, "drbd_alloc_pages interrupted!\n");
300 break;
301 }
302
303 if (schedule_timeout(HZ/10) == 0)
304 mxb = UINT_MAX;
305 }
306 finish_wait(&drbd_pp_wait, &wait);
307
308 if (page)
309 atomic_add(number, &device->pp_in_use);
310 return page;
311 }
312
313 /* Must not be used from irq, as that may deadlock: see drbd_alloc_pages.
314 * Is also used from inside an other spin_lock_irq(&resource->req_lock);
315 * Either links the page chain back to the global pool,
316 * or returns all pages to the system. */
drbd_free_pages(struct drbd_device * device,struct page * page,int is_net)317 static void drbd_free_pages(struct drbd_device *device, struct page *page, int is_net)
318 {
319 atomic_t *a = is_net ? &device->pp_in_use_by_net : &device->pp_in_use;
320 int i;
321
322 if (page == NULL)
323 return;
324
325 if (drbd_pp_vacant > (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count)
326 i = page_chain_free(page);
327 else {
328 struct page *tmp;
329 tmp = page_chain_tail(page, &i);
330 spin_lock(&drbd_pp_lock);
331 page_chain_add(&drbd_pp_pool, page, tmp);
332 drbd_pp_vacant += i;
333 spin_unlock(&drbd_pp_lock);
334 }
335 i = atomic_sub_return(i, a);
336 if (i < 0)
337 drbd_warn(device, "ASSERTION FAILED: %s: %d < 0\n",
338 is_net ? "pp_in_use_by_net" : "pp_in_use", i);
339 wake_up(&drbd_pp_wait);
340 }
341
342 /*
343 You need to hold the req_lock:
344 _drbd_wait_ee_list_empty()
345
346 You must not have the req_lock:
347 drbd_free_peer_req()
348 drbd_alloc_peer_req()
349 drbd_free_peer_reqs()
350 drbd_ee_fix_bhs()
351 drbd_finish_peer_reqs()
352 drbd_clear_done_ee()
353 drbd_wait_ee_list_empty()
354 */
355
356 /* normal: payload_size == request size (bi_size)
357 * w_same: payload_size == logical_block_size
358 * trim: payload_size == 0 */
359 struct drbd_peer_request *
drbd_alloc_peer_req(struct drbd_peer_device * peer_device,u64 id,sector_t sector,unsigned int request_size,unsigned int payload_size,gfp_t gfp_mask)360 drbd_alloc_peer_req(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
361 unsigned int request_size, unsigned int payload_size, gfp_t gfp_mask) __must_hold(local)
362 {
363 struct drbd_device *device = peer_device->device;
364 struct drbd_peer_request *peer_req;
365 struct page *page = NULL;
366 unsigned int nr_pages = PFN_UP(payload_size);
367
368 if (drbd_insert_fault(device, DRBD_FAULT_AL_EE))
369 return NULL;
370
371 peer_req = mempool_alloc(&drbd_ee_mempool, gfp_mask & ~__GFP_HIGHMEM);
372 if (!peer_req) {
373 if (!(gfp_mask & __GFP_NOWARN))
374 drbd_err(device, "%s: allocation failed\n", __func__);
375 return NULL;
376 }
377
378 if (nr_pages) {
379 page = drbd_alloc_pages(peer_device, nr_pages,
380 gfpflags_allow_blocking(gfp_mask));
381 if (!page)
382 goto fail;
383 }
384
385 memset(peer_req, 0, sizeof(*peer_req));
386 INIT_LIST_HEAD(&peer_req->w.list);
387 drbd_clear_interval(&peer_req->i);
388 peer_req->i.size = request_size;
389 peer_req->i.sector = sector;
390 peer_req->submit_jif = jiffies;
391 peer_req->peer_device = peer_device;
392 peer_req->pages = page;
393 /*
394 * The block_id is opaque to the receiver. It is not endianness
395 * converted, and sent back to the sender unchanged.
396 */
397 peer_req->block_id = id;
398
399 return peer_req;
400
401 fail:
402 mempool_free(peer_req, &drbd_ee_mempool);
403 return NULL;
404 }
405
__drbd_free_peer_req(struct drbd_device * device,struct drbd_peer_request * peer_req,int is_net)406 void __drbd_free_peer_req(struct drbd_device *device, struct drbd_peer_request *peer_req,
407 int is_net)
408 {
409 might_sleep();
410 if (peer_req->flags & EE_HAS_DIGEST)
411 kfree(peer_req->digest);
412 drbd_free_pages(device, peer_req->pages, is_net);
413 D_ASSERT(device, atomic_read(&peer_req->pending_bios) == 0);
414 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
415 if (!expect(device, !(peer_req->flags & EE_CALL_AL_COMPLETE_IO))) {
416 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
417 drbd_al_complete_io(device, &peer_req->i);
418 }
419 mempool_free(peer_req, &drbd_ee_mempool);
420 }
421
drbd_free_peer_reqs(struct drbd_device * device,struct list_head * list)422 int drbd_free_peer_reqs(struct drbd_device *device, struct list_head *list)
423 {
424 LIST_HEAD(work_list);
425 struct drbd_peer_request *peer_req, *t;
426 int count = 0;
427 int is_net = list == &device->net_ee;
428
429 spin_lock_irq(&device->resource->req_lock);
430 list_splice_init(list, &work_list);
431 spin_unlock_irq(&device->resource->req_lock);
432
433 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
434 __drbd_free_peer_req(device, peer_req, is_net);
435 count++;
436 }
437 return count;
438 }
439
440 /*
441 * See also comments in _req_mod(,BARRIER_ACKED) and receive_Barrier.
442 */
drbd_finish_peer_reqs(struct drbd_device * device)443 static int drbd_finish_peer_reqs(struct drbd_device *device)
444 {
445 LIST_HEAD(work_list);
446 LIST_HEAD(reclaimed);
447 struct drbd_peer_request *peer_req, *t;
448 int err = 0;
449
450 spin_lock_irq(&device->resource->req_lock);
451 reclaim_finished_net_peer_reqs(device, &reclaimed);
452 list_splice_init(&device->done_ee, &work_list);
453 spin_unlock_irq(&device->resource->req_lock);
454
455 list_for_each_entry_safe(peer_req, t, &reclaimed, w.list)
456 drbd_free_net_peer_req(device, peer_req);
457
458 /* possible callbacks here:
459 * e_end_block, and e_end_resync_block, e_send_superseded.
460 * all ignore the last argument.
461 */
462 list_for_each_entry_safe(peer_req, t, &work_list, w.list) {
463 int err2;
464
465 /* list_del not necessary, next/prev members not touched */
466 err2 = peer_req->w.cb(&peer_req->w, !!err);
467 if (!err)
468 err = err2;
469 drbd_free_peer_req(device, peer_req);
470 }
471 wake_up(&device->ee_wait);
472
473 return err;
474 }
475
_drbd_wait_ee_list_empty(struct drbd_device * device,struct list_head * head)476 static void _drbd_wait_ee_list_empty(struct drbd_device *device,
477 struct list_head *head)
478 {
479 DEFINE_WAIT(wait);
480
481 /* avoids spin_lock/unlock
482 * and calling prepare_to_wait in the fast path */
483 while (!list_empty(head)) {
484 prepare_to_wait(&device->ee_wait, &wait, TASK_UNINTERRUPTIBLE);
485 spin_unlock_irq(&device->resource->req_lock);
486 io_schedule();
487 finish_wait(&device->ee_wait, &wait);
488 spin_lock_irq(&device->resource->req_lock);
489 }
490 }
491
drbd_wait_ee_list_empty(struct drbd_device * device,struct list_head * head)492 static void drbd_wait_ee_list_empty(struct drbd_device *device,
493 struct list_head *head)
494 {
495 spin_lock_irq(&device->resource->req_lock);
496 _drbd_wait_ee_list_empty(device, head);
497 spin_unlock_irq(&device->resource->req_lock);
498 }
499
drbd_recv_short(struct socket * sock,void * buf,size_t size,int flags)500 static int drbd_recv_short(struct socket *sock, void *buf, size_t size, int flags)
501 {
502 struct kvec iov = {
503 .iov_base = buf,
504 .iov_len = size,
505 };
506 struct msghdr msg = {
507 .msg_flags = (flags ? flags : MSG_WAITALL | MSG_NOSIGNAL)
508 };
509 iov_iter_kvec(&msg.msg_iter, ITER_DEST, &iov, 1, size);
510 return sock_recvmsg(sock, &msg, msg.msg_flags);
511 }
512
drbd_recv(struct drbd_connection * connection,void * buf,size_t size)513 static int drbd_recv(struct drbd_connection *connection, void *buf, size_t size)
514 {
515 int rv;
516
517 rv = drbd_recv_short(connection->data.socket, buf, size, 0);
518
519 if (rv < 0) {
520 if (rv == -ECONNRESET)
521 drbd_info(connection, "sock was reset by peer\n");
522 else if (rv != -ERESTARTSYS)
523 drbd_err(connection, "sock_recvmsg returned %d\n", rv);
524 } else if (rv == 0) {
525 if (test_bit(DISCONNECT_SENT, &connection->flags)) {
526 long t;
527 rcu_read_lock();
528 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
529 rcu_read_unlock();
530
531 t = wait_event_timeout(connection->ping_wait, connection->cstate < C_WF_REPORT_PARAMS, t);
532
533 if (t)
534 goto out;
535 }
536 drbd_info(connection, "sock was shut down by peer\n");
537 }
538
539 if (rv != size)
540 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
541
542 out:
543 return rv;
544 }
545
drbd_recv_all(struct drbd_connection * connection,void * buf,size_t size)546 static int drbd_recv_all(struct drbd_connection *connection, void *buf, size_t size)
547 {
548 int err;
549
550 err = drbd_recv(connection, buf, size);
551 if (err != size) {
552 if (err >= 0)
553 err = -EIO;
554 } else
555 err = 0;
556 return err;
557 }
558
drbd_recv_all_warn(struct drbd_connection * connection,void * buf,size_t size)559 static int drbd_recv_all_warn(struct drbd_connection *connection, void *buf, size_t size)
560 {
561 int err;
562
563 err = drbd_recv_all(connection, buf, size);
564 if (err && !signal_pending(current))
565 drbd_warn(connection, "short read (expected size %d)\n", (int)size);
566 return err;
567 }
568
569 /* quoting tcp(7):
570 * On individual connections, the socket buffer size must be set prior to the
571 * listen(2) or connect(2) calls in order to have it take effect.
572 * This is our wrapper to do so.
573 */
drbd_setbufsize(struct socket * sock,unsigned int snd,unsigned int rcv)574 static void drbd_setbufsize(struct socket *sock, unsigned int snd,
575 unsigned int rcv)
576 {
577 /* open coded SO_SNDBUF, SO_RCVBUF */
578 if (snd) {
579 sock->sk->sk_sndbuf = snd;
580 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
581 }
582 if (rcv) {
583 sock->sk->sk_rcvbuf = rcv;
584 sock->sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
585 }
586 }
587
drbd_try_connect(struct drbd_connection * connection)588 static struct socket *drbd_try_connect(struct drbd_connection *connection)
589 {
590 const char *what;
591 struct socket *sock;
592 struct sockaddr_in6 src_in6;
593 struct sockaddr_in6 peer_in6;
594 struct net_conf *nc;
595 int err, peer_addr_len, my_addr_len;
596 int sndbuf_size, rcvbuf_size, connect_int;
597 int disconnect_on_error = 1;
598
599 rcu_read_lock();
600 nc = rcu_dereference(connection->net_conf);
601 if (!nc) {
602 rcu_read_unlock();
603 return NULL;
604 }
605 sndbuf_size = nc->sndbuf_size;
606 rcvbuf_size = nc->rcvbuf_size;
607 connect_int = nc->connect_int;
608 rcu_read_unlock();
609
610 my_addr_len = min_t(int, connection->my_addr_len, sizeof(src_in6));
611 memcpy(&src_in6, &connection->my_addr, my_addr_len);
612
613 if (((struct sockaddr *)&connection->my_addr)->sa_family == AF_INET6)
614 src_in6.sin6_port = 0;
615 else
616 ((struct sockaddr_in *)&src_in6)->sin_port = 0; /* AF_INET & AF_SCI */
617
618 peer_addr_len = min_t(int, connection->peer_addr_len, sizeof(src_in6));
619 memcpy(&peer_in6, &connection->peer_addr, peer_addr_len);
620
621 what = "sock_create_kern";
622 err = sock_create_kern(&init_net, ((struct sockaddr *)&src_in6)->sa_family,
623 SOCK_STREAM, IPPROTO_TCP, &sock);
624 if (err < 0) {
625 sock = NULL;
626 goto out;
627 }
628
629 sock->sk->sk_rcvtimeo =
630 sock->sk->sk_sndtimeo = connect_int * HZ;
631 drbd_setbufsize(sock, sndbuf_size, rcvbuf_size);
632
633 /* explicitly bind to the configured IP as source IP
634 * for the outgoing connections.
635 * This is needed for multihomed hosts and to be
636 * able to use lo: interfaces for drbd.
637 * Make sure to use 0 as port number, so linux selects
638 * a free one dynamically.
639 */
640 what = "bind before connect";
641 err = sock->ops->bind(sock, (struct sockaddr *) &src_in6, my_addr_len);
642 if (err < 0)
643 goto out;
644
645 /* connect may fail, peer not yet available.
646 * stay C_WF_CONNECTION, don't go Disconnecting! */
647 disconnect_on_error = 0;
648 what = "connect";
649 err = sock->ops->connect(sock, (struct sockaddr *) &peer_in6, peer_addr_len, 0);
650
651 out:
652 if (err < 0) {
653 if (sock) {
654 sock_release(sock);
655 sock = NULL;
656 }
657 switch (-err) {
658 /* timeout, busy, signal pending */
659 case ETIMEDOUT: case EAGAIN: case EINPROGRESS:
660 case EINTR: case ERESTARTSYS:
661 /* peer not (yet) available, network problem */
662 case ECONNREFUSED: case ENETUNREACH:
663 case EHOSTDOWN: case EHOSTUNREACH:
664 disconnect_on_error = 0;
665 break;
666 default:
667 drbd_err(connection, "%s failed, err = %d\n", what, err);
668 }
669 if (disconnect_on_error)
670 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
671 }
672
673 return sock;
674 }
675
676 struct accept_wait_data {
677 struct drbd_connection *connection;
678 struct socket *s_listen;
679 struct completion door_bell;
680 void (*original_sk_state_change)(struct sock *sk);
681
682 };
683
drbd_incoming_connection(struct sock * sk)684 static void drbd_incoming_connection(struct sock *sk)
685 {
686 struct accept_wait_data *ad = sk->sk_user_data;
687 void (*state_change)(struct sock *sk);
688
689 state_change = ad->original_sk_state_change;
690 if (sk->sk_state == TCP_ESTABLISHED)
691 complete(&ad->door_bell);
692 state_change(sk);
693 }
694
prepare_listen_socket(struct drbd_connection * connection,struct accept_wait_data * ad)695 static int prepare_listen_socket(struct drbd_connection *connection, struct accept_wait_data *ad)
696 {
697 int err, sndbuf_size, rcvbuf_size, my_addr_len;
698 struct sockaddr_in6 my_addr;
699 struct socket *s_listen;
700 struct net_conf *nc;
701 const char *what;
702
703 rcu_read_lock();
704 nc = rcu_dereference(connection->net_conf);
705 if (!nc) {
706 rcu_read_unlock();
707 return -EIO;
708 }
709 sndbuf_size = nc->sndbuf_size;
710 rcvbuf_size = nc->rcvbuf_size;
711 rcu_read_unlock();
712
713 my_addr_len = min_t(int, connection->my_addr_len, sizeof(struct sockaddr_in6));
714 memcpy(&my_addr, &connection->my_addr, my_addr_len);
715
716 what = "sock_create_kern";
717 err = sock_create_kern(&init_net, ((struct sockaddr *)&my_addr)->sa_family,
718 SOCK_STREAM, IPPROTO_TCP, &s_listen);
719 if (err) {
720 s_listen = NULL;
721 goto out;
722 }
723
724 s_listen->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
725 drbd_setbufsize(s_listen, sndbuf_size, rcvbuf_size);
726
727 what = "bind before listen";
728 err = s_listen->ops->bind(s_listen, (struct sockaddr *)&my_addr, my_addr_len);
729 if (err < 0)
730 goto out;
731
732 ad->s_listen = s_listen;
733 write_lock_bh(&s_listen->sk->sk_callback_lock);
734 ad->original_sk_state_change = s_listen->sk->sk_state_change;
735 s_listen->sk->sk_state_change = drbd_incoming_connection;
736 s_listen->sk->sk_user_data = ad;
737 write_unlock_bh(&s_listen->sk->sk_callback_lock);
738
739 what = "listen";
740 err = s_listen->ops->listen(s_listen, 5);
741 if (err < 0)
742 goto out;
743
744 return 0;
745 out:
746 if (s_listen)
747 sock_release(s_listen);
748 if (err < 0) {
749 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
750 drbd_err(connection, "%s failed, err = %d\n", what, err);
751 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
752 }
753 }
754
755 return -EIO;
756 }
757
unregister_state_change(struct sock * sk,struct accept_wait_data * ad)758 static void unregister_state_change(struct sock *sk, struct accept_wait_data *ad)
759 {
760 write_lock_bh(&sk->sk_callback_lock);
761 sk->sk_state_change = ad->original_sk_state_change;
762 sk->sk_user_data = NULL;
763 write_unlock_bh(&sk->sk_callback_lock);
764 }
765
drbd_wait_for_connect(struct drbd_connection * connection,struct accept_wait_data * ad)766 static struct socket *drbd_wait_for_connect(struct drbd_connection *connection, struct accept_wait_data *ad)
767 {
768 int timeo, connect_int, err = 0;
769 struct socket *s_estab = NULL;
770 struct net_conf *nc;
771
772 rcu_read_lock();
773 nc = rcu_dereference(connection->net_conf);
774 if (!nc) {
775 rcu_read_unlock();
776 return NULL;
777 }
778 connect_int = nc->connect_int;
779 rcu_read_unlock();
780
781 timeo = connect_int * HZ;
782 /* 28.5% random jitter */
783 timeo += get_random_u32_below(2) ? timeo / 7 : -timeo / 7;
784
785 err = wait_for_completion_interruptible_timeout(&ad->door_bell, timeo);
786 if (err <= 0)
787 return NULL;
788
789 err = kernel_accept(ad->s_listen, &s_estab, 0);
790 if (err < 0) {
791 if (err != -EAGAIN && err != -EINTR && err != -ERESTARTSYS) {
792 drbd_err(connection, "accept failed, err = %d\n", err);
793 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
794 }
795 }
796
797 if (s_estab)
798 unregister_state_change(s_estab->sk, ad);
799
800 return s_estab;
801 }
802
803 static int decode_header(struct drbd_connection *, void *, struct packet_info *);
804
send_first_packet(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd)805 static int send_first_packet(struct drbd_connection *connection, struct drbd_socket *sock,
806 enum drbd_packet cmd)
807 {
808 if (!conn_prepare_command(connection, sock))
809 return -EIO;
810 return conn_send_command(connection, sock, cmd, 0, NULL, 0);
811 }
812
receive_first_packet(struct drbd_connection * connection,struct socket * sock)813 static int receive_first_packet(struct drbd_connection *connection, struct socket *sock)
814 {
815 unsigned int header_size = drbd_header_size(connection);
816 struct packet_info pi;
817 struct net_conf *nc;
818 int err;
819
820 rcu_read_lock();
821 nc = rcu_dereference(connection->net_conf);
822 if (!nc) {
823 rcu_read_unlock();
824 return -EIO;
825 }
826 sock->sk->sk_rcvtimeo = nc->ping_timeo * 4 * HZ / 10;
827 rcu_read_unlock();
828
829 err = drbd_recv_short(sock, connection->data.rbuf, header_size, 0);
830 if (err != header_size) {
831 if (err >= 0)
832 err = -EIO;
833 return err;
834 }
835 err = decode_header(connection, connection->data.rbuf, &pi);
836 if (err)
837 return err;
838 return pi.cmd;
839 }
840
841 /**
842 * drbd_socket_okay() - Free the socket if its connection is not okay
843 * @sock: pointer to the pointer to the socket.
844 */
drbd_socket_okay(struct socket ** sock)845 static bool drbd_socket_okay(struct socket **sock)
846 {
847 int rr;
848 char tb[4];
849
850 if (!*sock)
851 return false;
852
853 rr = drbd_recv_short(*sock, tb, 4, MSG_DONTWAIT | MSG_PEEK);
854
855 if (rr > 0 || rr == -EAGAIN) {
856 return true;
857 } else {
858 sock_release(*sock);
859 *sock = NULL;
860 return false;
861 }
862 }
863
connection_established(struct drbd_connection * connection,struct socket ** sock1,struct socket ** sock2)864 static bool connection_established(struct drbd_connection *connection,
865 struct socket **sock1,
866 struct socket **sock2)
867 {
868 struct net_conf *nc;
869 int timeout;
870 bool ok;
871
872 if (!*sock1 || !*sock2)
873 return false;
874
875 rcu_read_lock();
876 nc = rcu_dereference(connection->net_conf);
877 timeout = (nc->sock_check_timeo ?: nc->ping_timeo) * HZ / 10;
878 rcu_read_unlock();
879 schedule_timeout_interruptible(timeout);
880
881 ok = drbd_socket_okay(sock1);
882 ok = drbd_socket_okay(sock2) && ok;
883
884 return ok;
885 }
886
887 /* Gets called if a connection is established, or if a new minor gets created
888 in a connection */
drbd_connected(struct drbd_peer_device * peer_device)889 int drbd_connected(struct drbd_peer_device *peer_device)
890 {
891 struct drbd_device *device = peer_device->device;
892 int err;
893
894 atomic_set(&device->packet_seq, 0);
895 device->peer_seq = 0;
896
897 device->state_mutex = peer_device->connection->agreed_pro_version < 100 ?
898 &peer_device->connection->cstate_mutex :
899 &device->own_state_mutex;
900
901 err = drbd_send_sync_param(peer_device);
902 if (!err)
903 err = drbd_send_sizes(peer_device, 0, 0);
904 if (!err)
905 err = drbd_send_uuids(peer_device);
906 if (!err)
907 err = drbd_send_current_state(peer_device);
908 clear_bit(USE_DEGR_WFC_T, &device->flags);
909 clear_bit(RESIZE_PENDING, &device->flags);
910 atomic_set(&device->ap_in_flight, 0);
911 mod_timer(&device->request_timer, jiffies + HZ); /* just start it here. */
912 return err;
913 }
914
915 /*
916 * return values:
917 * 1 yes, we have a valid connection
918 * 0 oops, did not work out, please try again
919 * -1 peer talks different language,
920 * no point in trying again, please go standalone.
921 * -2 We do not have a network config...
922 */
conn_connect(struct drbd_connection * connection)923 static int conn_connect(struct drbd_connection *connection)
924 {
925 struct drbd_socket sock, msock;
926 struct drbd_peer_device *peer_device;
927 struct net_conf *nc;
928 int vnr, timeout, h;
929 bool discard_my_data, ok;
930 enum drbd_state_rv rv;
931 struct accept_wait_data ad = {
932 .connection = connection,
933 .door_bell = COMPLETION_INITIALIZER_ONSTACK(ad.door_bell),
934 };
935
936 clear_bit(DISCONNECT_SENT, &connection->flags);
937 if (conn_request_state(connection, NS(conn, C_WF_CONNECTION), CS_VERBOSE) < SS_SUCCESS)
938 return -2;
939
940 mutex_init(&sock.mutex);
941 sock.sbuf = connection->data.sbuf;
942 sock.rbuf = connection->data.rbuf;
943 sock.socket = NULL;
944 mutex_init(&msock.mutex);
945 msock.sbuf = connection->meta.sbuf;
946 msock.rbuf = connection->meta.rbuf;
947 msock.socket = NULL;
948
949 /* Assume that the peer only understands protocol 80 until we know better. */
950 connection->agreed_pro_version = 80;
951
952 if (prepare_listen_socket(connection, &ad))
953 return 0;
954
955 do {
956 struct socket *s;
957
958 s = drbd_try_connect(connection);
959 if (s) {
960 if (!sock.socket) {
961 sock.socket = s;
962 send_first_packet(connection, &sock, P_INITIAL_DATA);
963 } else if (!msock.socket) {
964 clear_bit(RESOLVE_CONFLICTS, &connection->flags);
965 msock.socket = s;
966 send_first_packet(connection, &msock, P_INITIAL_META);
967 } else {
968 drbd_err(connection, "Logic error in conn_connect()\n");
969 goto out_release_sockets;
970 }
971 }
972
973 if (connection_established(connection, &sock.socket, &msock.socket))
974 break;
975
976 retry:
977 s = drbd_wait_for_connect(connection, &ad);
978 if (s) {
979 int fp = receive_first_packet(connection, s);
980 drbd_socket_okay(&sock.socket);
981 drbd_socket_okay(&msock.socket);
982 switch (fp) {
983 case P_INITIAL_DATA:
984 if (sock.socket) {
985 drbd_warn(connection, "initial packet S crossed\n");
986 sock_release(sock.socket);
987 sock.socket = s;
988 goto randomize;
989 }
990 sock.socket = s;
991 break;
992 case P_INITIAL_META:
993 set_bit(RESOLVE_CONFLICTS, &connection->flags);
994 if (msock.socket) {
995 drbd_warn(connection, "initial packet M crossed\n");
996 sock_release(msock.socket);
997 msock.socket = s;
998 goto randomize;
999 }
1000 msock.socket = s;
1001 break;
1002 default:
1003 drbd_warn(connection, "Error receiving initial packet\n");
1004 sock_release(s);
1005 randomize:
1006 if (get_random_u32_below(2))
1007 goto retry;
1008 }
1009 }
1010
1011 if (connection->cstate <= C_DISCONNECTING)
1012 goto out_release_sockets;
1013 if (signal_pending(current)) {
1014 flush_signals(current);
1015 smp_rmb();
1016 if (get_t_state(&connection->receiver) == EXITING)
1017 goto out_release_sockets;
1018 }
1019
1020 ok = connection_established(connection, &sock.socket, &msock.socket);
1021 } while (!ok);
1022
1023 if (ad.s_listen)
1024 sock_release(ad.s_listen);
1025
1026 sock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1027 msock.socket->sk->sk_reuse = SK_CAN_REUSE; /* SO_REUSEADDR */
1028
1029 sock.socket->sk->sk_allocation = GFP_NOIO;
1030 msock.socket->sk->sk_allocation = GFP_NOIO;
1031
1032 sock.socket->sk->sk_use_task_frag = false;
1033 msock.socket->sk->sk_use_task_frag = false;
1034
1035 sock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE_BULK;
1036 msock.socket->sk->sk_priority = TC_PRIO_INTERACTIVE;
1037
1038 /* NOT YET ...
1039 * sock.socket->sk->sk_sndtimeo = connection->net_conf->timeout*HZ/10;
1040 * sock.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1041 * first set it to the P_CONNECTION_FEATURES timeout,
1042 * which we set to 4x the configured ping_timeout. */
1043 rcu_read_lock();
1044 nc = rcu_dereference(connection->net_conf);
1045
1046 sock.socket->sk->sk_sndtimeo =
1047 sock.socket->sk->sk_rcvtimeo = nc->ping_timeo*4*HZ/10;
1048
1049 msock.socket->sk->sk_rcvtimeo = nc->ping_int*HZ;
1050 timeout = nc->timeout * HZ / 10;
1051 discard_my_data = nc->discard_my_data;
1052 rcu_read_unlock();
1053
1054 msock.socket->sk->sk_sndtimeo = timeout;
1055
1056 /* we don't want delays.
1057 * we use TCP_CORK where appropriate, though */
1058 tcp_sock_set_nodelay(sock.socket->sk);
1059 tcp_sock_set_nodelay(msock.socket->sk);
1060
1061 connection->data.socket = sock.socket;
1062 connection->meta.socket = msock.socket;
1063 connection->last_received = jiffies;
1064
1065 h = drbd_do_features(connection);
1066 if (h <= 0)
1067 return h;
1068
1069 if (connection->cram_hmac_tfm) {
1070 /* drbd_request_state(device, NS(conn, WFAuth)); */
1071 switch (drbd_do_auth(connection)) {
1072 case -1:
1073 drbd_err(connection, "Authentication of peer failed\n");
1074 return -1;
1075 case 0:
1076 drbd_err(connection, "Authentication of peer failed, trying again.\n");
1077 return 0;
1078 }
1079 }
1080
1081 connection->data.socket->sk->sk_sndtimeo = timeout;
1082 connection->data.socket->sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1083
1084 if (drbd_send_protocol(connection) == -EOPNOTSUPP)
1085 return -1;
1086
1087 /* Prevent a race between resync-handshake and
1088 * being promoted to Primary.
1089 *
1090 * Grab and release the state mutex, so we know that any current
1091 * drbd_set_role() is finished, and any incoming drbd_set_role
1092 * will see the STATE_SENT flag, and wait for it to be cleared.
1093 */
1094 idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1095 mutex_lock(peer_device->device->state_mutex);
1096
1097 /* avoid a race with conn_request_state( C_DISCONNECTING ) */
1098 spin_lock_irq(&connection->resource->req_lock);
1099 set_bit(STATE_SENT, &connection->flags);
1100 spin_unlock_irq(&connection->resource->req_lock);
1101
1102 idr_for_each_entry(&connection->peer_devices, peer_device, vnr)
1103 mutex_unlock(peer_device->device->state_mutex);
1104
1105 rcu_read_lock();
1106 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1107 struct drbd_device *device = peer_device->device;
1108 kref_get(&device->kref);
1109 rcu_read_unlock();
1110
1111 if (discard_my_data)
1112 set_bit(DISCARD_MY_DATA, &device->flags);
1113 else
1114 clear_bit(DISCARD_MY_DATA, &device->flags);
1115
1116 drbd_connected(peer_device);
1117 kref_put(&device->kref, drbd_destroy_device);
1118 rcu_read_lock();
1119 }
1120 rcu_read_unlock();
1121
1122 rv = conn_request_state(connection, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE);
1123 if (rv < SS_SUCCESS || connection->cstate != C_WF_REPORT_PARAMS) {
1124 clear_bit(STATE_SENT, &connection->flags);
1125 return 0;
1126 }
1127
1128 drbd_thread_start(&connection->ack_receiver);
1129 /* opencoded create_singlethread_workqueue(),
1130 * to be able to use format string arguments */
1131 connection->ack_sender =
1132 alloc_ordered_workqueue("drbd_as_%s", WQ_MEM_RECLAIM, connection->resource->name);
1133 if (!connection->ack_sender) {
1134 drbd_err(connection, "Failed to create workqueue ack_sender\n");
1135 return 0;
1136 }
1137
1138 mutex_lock(&connection->resource->conf_update);
1139 /* The discard_my_data flag is a single-shot modifier to the next
1140 * connection attempt, the handshake of which is now well underway.
1141 * No need for rcu style copying of the whole struct
1142 * just to clear a single value. */
1143 connection->net_conf->discard_my_data = 0;
1144 mutex_unlock(&connection->resource->conf_update);
1145
1146 return h;
1147
1148 out_release_sockets:
1149 if (ad.s_listen)
1150 sock_release(ad.s_listen);
1151 if (sock.socket)
1152 sock_release(sock.socket);
1153 if (msock.socket)
1154 sock_release(msock.socket);
1155 return -1;
1156 }
1157
decode_header(struct drbd_connection * connection,void * header,struct packet_info * pi)1158 static int decode_header(struct drbd_connection *connection, void *header, struct packet_info *pi)
1159 {
1160 unsigned int header_size = drbd_header_size(connection);
1161
1162 if (header_size == sizeof(struct p_header100) &&
1163 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC_100)) {
1164 struct p_header100 *h = header;
1165 if (h->pad != 0) {
1166 drbd_err(connection, "Header padding is not zero\n");
1167 return -EINVAL;
1168 }
1169 pi->vnr = be16_to_cpu(h->volume);
1170 pi->cmd = be16_to_cpu(h->command);
1171 pi->size = be32_to_cpu(h->length);
1172 } else if (header_size == sizeof(struct p_header95) &&
1173 *(__be16 *)header == cpu_to_be16(DRBD_MAGIC_BIG)) {
1174 struct p_header95 *h = header;
1175 pi->cmd = be16_to_cpu(h->command);
1176 pi->size = be32_to_cpu(h->length);
1177 pi->vnr = 0;
1178 } else if (header_size == sizeof(struct p_header80) &&
1179 *(__be32 *)header == cpu_to_be32(DRBD_MAGIC)) {
1180 struct p_header80 *h = header;
1181 pi->cmd = be16_to_cpu(h->command);
1182 pi->size = be16_to_cpu(h->length);
1183 pi->vnr = 0;
1184 } else {
1185 drbd_err(connection, "Wrong magic value 0x%08x in protocol version %d\n",
1186 be32_to_cpu(*(__be32 *)header),
1187 connection->agreed_pro_version);
1188 return -EINVAL;
1189 }
1190 pi->data = header + header_size;
1191 return 0;
1192 }
1193
drbd_unplug_all_devices(struct drbd_connection * connection)1194 static void drbd_unplug_all_devices(struct drbd_connection *connection)
1195 {
1196 if (current->plug == &connection->receiver_plug) {
1197 blk_finish_plug(&connection->receiver_plug);
1198 blk_start_plug(&connection->receiver_plug);
1199 } /* else: maybe just schedule() ?? */
1200 }
1201
drbd_recv_header(struct drbd_connection * connection,struct packet_info * pi)1202 static int drbd_recv_header(struct drbd_connection *connection, struct packet_info *pi)
1203 {
1204 void *buffer = connection->data.rbuf;
1205 int err;
1206
1207 err = drbd_recv_all_warn(connection, buffer, drbd_header_size(connection));
1208 if (err)
1209 return err;
1210
1211 err = decode_header(connection, buffer, pi);
1212 connection->last_received = jiffies;
1213
1214 return err;
1215 }
1216
drbd_recv_header_maybe_unplug(struct drbd_connection * connection,struct packet_info * pi)1217 static int drbd_recv_header_maybe_unplug(struct drbd_connection *connection, struct packet_info *pi)
1218 {
1219 void *buffer = connection->data.rbuf;
1220 unsigned int size = drbd_header_size(connection);
1221 int err;
1222
1223 err = drbd_recv_short(connection->data.socket, buffer, size, MSG_NOSIGNAL|MSG_DONTWAIT);
1224 if (err != size) {
1225 /* If we have nothing in the receive buffer now, to reduce
1226 * application latency, try to drain the backend queues as
1227 * quickly as possible, and let remote TCP know what we have
1228 * received so far. */
1229 if (err == -EAGAIN) {
1230 tcp_sock_set_quickack(connection->data.socket->sk, 2);
1231 drbd_unplug_all_devices(connection);
1232 }
1233 if (err > 0) {
1234 buffer += err;
1235 size -= err;
1236 }
1237 err = drbd_recv_all_warn(connection, buffer, size);
1238 if (err)
1239 return err;
1240 }
1241
1242 err = decode_header(connection, connection->data.rbuf, pi);
1243 connection->last_received = jiffies;
1244
1245 return err;
1246 }
1247 /* This is blkdev_issue_flush, but asynchronous.
1248 * We want to submit to all component volumes in parallel,
1249 * then wait for all completions.
1250 */
1251 struct issue_flush_context {
1252 atomic_t pending;
1253 int error;
1254 struct completion done;
1255 };
1256 struct one_flush_context {
1257 struct drbd_device *device;
1258 struct issue_flush_context *ctx;
1259 };
1260
one_flush_endio(struct bio * bio)1261 static void one_flush_endio(struct bio *bio)
1262 {
1263 struct one_flush_context *octx = bio->bi_private;
1264 struct drbd_device *device = octx->device;
1265 struct issue_flush_context *ctx = octx->ctx;
1266
1267 if (bio->bi_status) {
1268 ctx->error = blk_status_to_errno(bio->bi_status);
1269 drbd_info(device, "local disk FLUSH FAILED with status %d\n", bio->bi_status);
1270 }
1271 kfree(octx);
1272 bio_put(bio);
1273
1274 clear_bit(FLUSH_PENDING, &device->flags);
1275 put_ldev(device);
1276 kref_put(&device->kref, drbd_destroy_device);
1277
1278 if (atomic_dec_and_test(&ctx->pending))
1279 complete(&ctx->done);
1280 }
1281
submit_one_flush(struct drbd_device * device,struct issue_flush_context * ctx)1282 static void submit_one_flush(struct drbd_device *device, struct issue_flush_context *ctx)
1283 {
1284 struct bio *bio = bio_alloc(device->ldev->backing_bdev, 0,
1285 REQ_OP_WRITE | REQ_PREFLUSH, GFP_NOIO);
1286 struct one_flush_context *octx = kmalloc(sizeof(*octx), GFP_NOIO);
1287
1288 if (!octx) {
1289 drbd_warn(device, "Could not allocate a octx, CANNOT ISSUE FLUSH\n");
1290 /* FIXME: what else can I do now? disconnecting or detaching
1291 * really does not help to improve the state of the world, either.
1292 */
1293 bio_put(bio);
1294
1295 ctx->error = -ENOMEM;
1296 put_ldev(device);
1297 kref_put(&device->kref, drbd_destroy_device);
1298 return;
1299 }
1300
1301 octx->device = device;
1302 octx->ctx = ctx;
1303 bio->bi_private = octx;
1304 bio->bi_end_io = one_flush_endio;
1305
1306 device->flush_jif = jiffies;
1307 set_bit(FLUSH_PENDING, &device->flags);
1308 atomic_inc(&ctx->pending);
1309 submit_bio(bio);
1310 }
1311
drbd_flush(struct drbd_connection * connection)1312 static void drbd_flush(struct drbd_connection *connection)
1313 {
1314 if (connection->resource->write_ordering >= WO_BDEV_FLUSH) {
1315 struct drbd_peer_device *peer_device;
1316 struct issue_flush_context ctx;
1317 int vnr;
1318
1319 atomic_set(&ctx.pending, 1);
1320 ctx.error = 0;
1321 init_completion(&ctx.done);
1322
1323 rcu_read_lock();
1324 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1325 struct drbd_device *device = peer_device->device;
1326
1327 if (!get_ldev(device))
1328 continue;
1329 kref_get(&device->kref);
1330 rcu_read_unlock();
1331
1332 submit_one_flush(device, &ctx);
1333
1334 rcu_read_lock();
1335 }
1336 rcu_read_unlock();
1337
1338 /* Do we want to add a timeout,
1339 * if disk-timeout is set? */
1340 if (!atomic_dec_and_test(&ctx.pending))
1341 wait_for_completion(&ctx.done);
1342
1343 if (ctx.error) {
1344 /* would rather check on EOPNOTSUPP, but that is not reliable.
1345 * don't try again for ANY return value != 0
1346 * if (rv == -EOPNOTSUPP) */
1347 /* Any error is already reported by bio_endio callback. */
1348 drbd_bump_write_ordering(connection->resource, NULL, WO_DRAIN_IO);
1349 }
1350 }
1351 }
1352
1353 /**
1354 * drbd_may_finish_epoch() - Applies an epoch_event to the epoch's state, eventually finishes it.
1355 * @connection: DRBD connection.
1356 * @epoch: Epoch object.
1357 * @ev: Epoch event.
1358 */
drbd_may_finish_epoch(struct drbd_connection * connection,struct drbd_epoch * epoch,enum epoch_event ev)1359 static enum finish_epoch drbd_may_finish_epoch(struct drbd_connection *connection,
1360 struct drbd_epoch *epoch,
1361 enum epoch_event ev)
1362 {
1363 int epoch_size;
1364 struct drbd_epoch *next_epoch;
1365 enum finish_epoch rv = FE_STILL_LIVE;
1366
1367 spin_lock(&connection->epoch_lock);
1368 do {
1369 next_epoch = NULL;
1370
1371 epoch_size = atomic_read(&epoch->epoch_size);
1372
1373 switch (ev & ~EV_CLEANUP) {
1374 case EV_PUT:
1375 atomic_dec(&epoch->active);
1376 break;
1377 case EV_GOT_BARRIER_NR:
1378 set_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags);
1379 break;
1380 case EV_BECAME_LAST:
1381 /* nothing to do*/
1382 break;
1383 }
1384
1385 if (epoch_size != 0 &&
1386 atomic_read(&epoch->active) == 0 &&
1387 (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags) || ev & EV_CLEANUP)) {
1388 if (!(ev & EV_CLEANUP)) {
1389 spin_unlock(&connection->epoch_lock);
1390 drbd_send_b_ack(epoch->connection, epoch->barrier_nr, epoch_size);
1391 spin_lock(&connection->epoch_lock);
1392 }
1393 #if 0
1394 /* FIXME: dec unacked on connection, once we have
1395 * something to count pending connection packets in. */
1396 if (test_bit(DE_HAVE_BARRIER_NUMBER, &epoch->flags))
1397 dec_unacked(epoch->connection);
1398 #endif
1399
1400 if (connection->current_epoch != epoch) {
1401 next_epoch = list_entry(epoch->list.next, struct drbd_epoch, list);
1402 list_del(&epoch->list);
1403 ev = EV_BECAME_LAST | (ev & EV_CLEANUP);
1404 connection->epochs--;
1405 kfree(epoch);
1406
1407 if (rv == FE_STILL_LIVE)
1408 rv = FE_DESTROYED;
1409 } else {
1410 epoch->flags = 0;
1411 atomic_set(&epoch->epoch_size, 0);
1412 /* atomic_set(&epoch->active, 0); is already zero */
1413 if (rv == FE_STILL_LIVE)
1414 rv = FE_RECYCLED;
1415 }
1416 }
1417
1418 if (!next_epoch)
1419 break;
1420
1421 epoch = next_epoch;
1422 } while (1);
1423
1424 spin_unlock(&connection->epoch_lock);
1425
1426 return rv;
1427 }
1428
1429 static enum write_ordering_e
max_allowed_wo(struct drbd_backing_dev * bdev,enum write_ordering_e wo)1430 max_allowed_wo(struct drbd_backing_dev *bdev, enum write_ordering_e wo)
1431 {
1432 struct disk_conf *dc;
1433
1434 dc = rcu_dereference(bdev->disk_conf);
1435
1436 if (wo == WO_BDEV_FLUSH && !dc->disk_flushes)
1437 wo = WO_DRAIN_IO;
1438 if (wo == WO_DRAIN_IO && !dc->disk_drain)
1439 wo = WO_NONE;
1440
1441 return wo;
1442 }
1443
1444 /*
1445 * drbd_bump_write_ordering() - Fall back to an other write ordering method
1446 * @wo: Write ordering method to try.
1447 */
drbd_bump_write_ordering(struct drbd_resource * resource,struct drbd_backing_dev * bdev,enum write_ordering_e wo)1448 void drbd_bump_write_ordering(struct drbd_resource *resource, struct drbd_backing_dev *bdev,
1449 enum write_ordering_e wo)
1450 {
1451 struct drbd_device *device;
1452 enum write_ordering_e pwo;
1453 int vnr;
1454 static char *write_ordering_str[] = {
1455 [WO_NONE] = "none",
1456 [WO_DRAIN_IO] = "drain",
1457 [WO_BDEV_FLUSH] = "flush",
1458 };
1459
1460 pwo = resource->write_ordering;
1461 if (wo != WO_BDEV_FLUSH)
1462 wo = min(pwo, wo);
1463 rcu_read_lock();
1464 idr_for_each_entry(&resource->devices, device, vnr) {
1465 if (get_ldev(device)) {
1466 wo = max_allowed_wo(device->ldev, wo);
1467 if (device->ldev == bdev)
1468 bdev = NULL;
1469 put_ldev(device);
1470 }
1471 }
1472
1473 if (bdev)
1474 wo = max_allowed_wo(bdev, wo);
1475
1476 rcu_read_unlock();
1477
1478 resource->write_ordering = wo;
1479 if (pwo != resource->write_ordering || wo == WO_BDEV_FLUSH)
1480 drbd_info(resource, "Method to ensure write ordering: %s\n", write_ordering_str[resource->write_ordering]);
1481 }
1482
1483 /*
1484 * Mapping "discard" to ZEROOUT with UNMAP does not work for us:
1485 * Drivers have to "announce" q->limits.max_write_zeroes_sectors, or it
1486 * will directly go to fallback mode, submitting normal writes, and
1487 * never even try to UNMAP.
1488 *
1489 * And dm-thin does not do this (yet), mostly because in general it has
1490 * to assume that "skip_block_zeroing" is set. See also:
1491 * https://www.mail-archive.com/dm-devel%40redhat.com/msg07965.html
1492 * https://www.redhat.com/archives/dm-devel/2018-January/msg00271.html
1493 *
1494 * We *may* ignore the discard-zeroes-data setting, if so configured.
1495 *
1496 * Assumption is that this "discard_zeroes_data=0" is only because the backend
1497 * may ignore partial unaligned discards.
1498 *
1499 * LVM/DM thin as of at least
1500 * LVM version: 2.02.115(2)-RHEL7 (2015-01-28)
1501 * Library version: 1.02.93-RHEL7 (2015-01-28)
1502 * Driver version: 4.29.0
1503 * still behaves this way.
1504 *
1505 * For unaligned (wrt. alignment and granularity) or too small discards,
1506 * we zero-out the initial (and/or) trailing unaligned partial chunks,
1507 * but discard all the aligned full chunks.
1508 *
1509 * At least for LVM/DM thin, with skip_block_zeroing=false,
1510 * the result is effectively "discard_zeroes_data=1".
1511 */
1512 /* flags: EE_TRIM|EE_ZEROOUT */
drbd_issue_discard_or_zero_out(struct drbd_device * device,sector_t start,unsigned int nr_sectors,int flags)1513 int drbd_issue_discard_or_zero_out(struct drbd_device *device, sector_t start, unsigned int nr_sectors, int flags)
1514 {
1515 struct block_device *bdev = device->ldev->backing_bdev;
1516 sector_t tmp, nr;
1517 unsigned int max_discard_sectors, granularity;
1518 int alignment;
1519 int err = 0;
1520
1521 if ((flags & EE_ZEROOUT) || !(flags & EE_TRIM))
1522 goto zero_out;
1523
1524 /* Zero-sector (unknown) and one-sector granularities are the same. */
1525 granularity = max(bdev_discard_granularity(bdev) >> 9, 1U);
1526 alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
1527
1528 max_discard_sectors = min(bdev_max_discard_sectors(bdev), (1U << 22));
1529 max_discard_sectors -= max_discard_sectors % granularity;
1530 if (unlikely(!max_discard_sectors))
1531 goto zero_out;
1532
1533 if (nr_sectors < granularity)
1534 goto zero_out;
1535
1536 tmp = start;
1537 if (sector_div(tmp, granularity) != alignment) {
1538 if (nr_sectors < 2*granularity)
1539 goto zero_out;
1540 /* start + gran - (start + gran - align) % gran */
1541 tmp = start + granularity - alignment;
1542 tmp = start + granularity - sector_div(tmp, granularity);
1543
1544 nr = tmp - start;
1545 /* don't flag BLKDEV_ZERO_NOUNMAP, we don't know how many
1546 * layers are below us, some may have smaller granularity */
1547 err |= blkdev_issue_zeroout(bdev, start, nr, GFP_NOIO, 0);
1548 nr_sectors -= nr;
1549 start = tmp;
1550 }
1551 while (nr_sectors >= max_discard_sectors) {
1552 err |= blkdev_issue_discard(bdev, start, max_discard_sectors,
1553 GFP_NOIO);
1554 nr_sectors -= max_discard_sectors;
1555 start += max_discard_sectors;
1556 }
1557 if (nr_sectors) {
1558 /* max_discard_sectors is unsigned int (and a multiple of
1559 * granularity, we made sure of that above already);
1560 * nr is < max_discard_sectors;
1561 * I don't need sector_div here, even though nr is sector_t */
1562 nr = nr_sectors;
1563 nr -= (unsigned int)nr % granularity;
1564 if (nr) {
1565 err |= blkdev_issue_discard(bdev, start, nr, GFP_NOIO);
1566 nr_sectors -= nr;
1567 start += nr;
1568 }
1569 }
1570 zero_out:
1571 if (nr_sectors) {
1572 err |= blkdev_issue_zeroout(bdev, start, nr_sectors, GFP_NOIO,
1573 (flags & EE_TRIM) ? 0 : BLKDEV_ZERO_NOUNMAP);
1574 }
1575 return err != 0;
1576 }
1577
can_do_reliable_discards(struct drbd_device * device)1578 static bool can_do_reliable_discards(struct drbd_device *device)
1579 {
1580 struct disk_conf *dc;
1581 bool can_do;
1582
1583 if (!bdev_max_discard_sectors(device->ldev->backing_bdev))
1584 return false;
1585
1586 rcu_read_lock();
1587 dc = rcu_dereference(device->ldev->disk_conf);
1588 can_do = dc->discard_zeroes_if_aligned;
1589 rcu_read_unlock();
1590 return can_do;
1591 }
1592
drbd_issue_peer_discard_or_zero_out(struct drbd_device * device,struct drbd_peer_request * peer_req)1593 static void drbd_issue_peer_discard_or_zero_out(struct drbd_device *device, struct drbd_peer_request *peer_req)
1594 {
1595 /* If the backend cannot discard, or does not guarantee
1596 * read-back zeroes in discarded ranges, we fall back to
1597 * zero-out. Unless configuration specifically requested
1598 * otherwise. */
1599 if (!can_do_reliable_discards(device))
1600 peer_req->flags |= EE_ZEROOUT;
1601
1602 if (drbd_issue_discard_or_zero_out(device, peer_req->i.sector,
1603 peer_req->i.size >> 9, peer_req->flags & (EE_ZEROOUT|EE_TRIM)))
1604 peer_req->flags |= EE_WAS_ERROR;
1605 drbd_endio_write_sec_final(peer_req);
1606 }
1607
peer_request_fault_type(struct drbd_peer_request * peer_req)1608 static int peer_request_fault_type(struct drbd_peer_request *peer_req)
1609 {
1610 if (peer_req_op(peer_req) == REQ_OP_READ) {
1611 return peer_req->flags & EE_APPLICATION ?
1612 DRBD_FAULT_DT_RD : DRBD_FAULT_RS_RD;
1613 } else {
1614 return peer_req->flags & EE_APPLICATION ?
1615 DRBD_FAULT_DT_WR : DRBD_FAULT_RS_WR;
1616 }
1617 }
1618
1619 /**
1620 * drbd_submit_peer_request()
1621 * @peer_req: peer request
1622 *
1623 * May spread the pages to multiple bios,
1624 * depending on bio_add_page restrictions.
1625 *
1626 * Returns 0 if all bios have been submitted,
1627 * -ENOMEM if we could not allocate enough bios,
1628 * -ENOSPC (any better suggestion?) if we have not been able to bio_add_page a
1629 * single page to an empty bio (which should never happen and likely indicates
1630 * that the lower level IO stack is in some way broken). This has been observed
1631 * on certain Xen deployments.
1632 */
1633 /* TODO allocate from our own bio_set. */
drbd_submit_peer_request(struct drbd_peer_request * peer_req)1634 int drbd_submit_peer_request(struct drbd_peer_request *peer_req)
1635 {
1636 struct drbd_device *device = peer_req->peer_device->device;
1637 struct bio *bios = NULL;
1638 struct bio *bio;
1639 struct page *page = peer_req->pages;
1640 sector_t sector = peer_req->i.sector;
1641 unsigned int data_size = peer_req->i.size;
1642 unsigned int n_bios = 0;
1643 unsigned int nr_pages = PFN_UP(data_size);
1644
1645 /* TRIM/DISCARD: for now, always use the helper function
1646 * blkdev_issue_zeroout(..., discard=true).
1647 * It's synchronous, but it does the right thing wrt. bio splitting.
1648 * Correctness first, performance later. Next step is to code an
1649 * asynchronous variant of the same.
1650 */
1651 if (peer_req->flags & (EE_TRIM | EE_ZEROOUT)) {
1652 /* wait for all pending IO completions, before we start
1653 * zeroing things out. */
1654 conn_wait_active_ee_empty(peer_req->peer_device->connection);
1655 /* add it to the active list now,
1656 * so we can find it to present it in debugfs */
1657 peer_req->submit_jif = jiffies;
1658 peer_req->flags |= EE_SUBMITTED;
1659
1660 /* If this was a resync request from receive_rs_deallocated(),
1661 * it is already on the sync_ee list */
1662 if (list_empty(&peer_req->w.list)) {
1663 spin_lock_irq(&device->resource->req_lock);
1664 list_add_tail(&peer_req->w.list, &device->active_ee);
1665 spin_unlock_irq(&device->resource->req_lock);
1666 }
1667
1668 drbd_issue_peer_discard_or_zero_out(device, peer_req);
1669 return 0;
1670 }
1671
1672 /* In most cases, we will only need one bio. But in case the lower
1673 * level restrictions happen to be different at this offset on this
1674 * side than those of the sending peer, we may need to submit the
1675 * request in more than one bio.
1676 *
1677 * Plain bio_alloc is good enough here, this is no DRBD internally
1678 * generated bio, but a bio allocated on behalf of the peer.
1679 */
1680 next_bio:
1681 /* _DISCARD, _WRITE_ZEROES handled above.
1682 * REQ_OP_FLUSH (empty flush) not expected,
1683 * should have been mapped to a "drbd protocol barrier".
1684 * REQ_OP_SECURE_ERASE: I don't see how we could ever support that.
1685 */
1686 if (!(peer_req_op(peer_req) == REQ_OP_WRITE ||
1687 peer_req_op(peer_req) == REQ_OP_READ)) {
1688 drbd_err(device, "Invalid bio op received: 0x%x\n", peer_req->opf);
1689 return -EINVAL;
1690 }
1691
1692 bio = bio_alloc(device->ldev->backing_bdev, nr_pages, peer_req->opf, GFP_NOIO);
1693 /* > peer_req->i.sector, unless this is the first bio */
1694 bio->bi_iter.bi_sector = sector;
1695 bio->bi_private = peer_req;
1696 bio->bi_end_io = drbd_peer_request_endio;
1697
1698 bio->bi_next = bios;
1699 bios = bio;
1700 ++n_bios;
1701
1702 page_chain_for_each(page) {
1703 unsigned len = min_t(unsigned, data_size, PAGE_SIZE);
1704 if (!bio_add_page(bio, page, len, 0))
1705 goto next_bio;
1706 data_size -= len;
1707 sector += len >> 9;
1708 --nr_pages;
1709 }
1710 D_ASSERT(device, data_size == 0);
1711 D_ASSERT(device, page == NULL);
1712
1713 atomic_set(&peer_req->pending_bios, n_bios);
1714 /* for debugfs: update timestamp, mark as submitted */
1715 peer_req->submit_jif = jiffies;
1716 peer_req->flags |= EE_SUBMITTED;
1717 do {
1718 bio = bios;
1719 bios = bios->bi_next;
1720 bio->bi_next = NULL;
1721
1722 drbd_submit_bio_noacct(device, peer_request_fault_type(peer_req), bio);
1723 } while (bios);
1724 return 0;
1725 }
1726
drbd_remove_epoch_entry_interval(struct drbd_device * device,struct drbd_peer_request * peer_req)1727 static void drbd_remove_epoch_entry_interval(struct drbd_device *device,
1728 struct drbd_peer_request *peer_req)
1729 {
1730 struct drbd_interval *i = &peer_req->i;
1731
1732 drbd_remove_interval(&device->write_requests, i);
1733 drbd_clear_interval(i);
1734
1735 /* Wake up any processes waiting for this peer request to complete. */
1736 if (i->waiting)
1737 wake_up(&device->misc_wait);
1738 }
1739
conn_wait_active_ee_empty(struct drbd_connection * connection)1740 static void conn_wait_active_ee_empty(struct drbd_connection *connection)
1741 {
1742 struct drbd_peer_device *peer_device;
1743 int vnr;
1744
1745 rcu_read_lock();
1746 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
1747 struct drbd_device *device = peer_device->device;
1748
1749 kref_get(&device->kref);
1750 rcu_read_unlock();
1751 drbd_wait_ee_list_empty(device, &device->active_ee);
1752 kref_put(&device->kref, drbd_destroy_device);
1753 rcu_read_lock();
1754 }
1755 rcu_read_unlock();
1756 }
1757
receive_Barrier(struct drbd_connection * connection,struct packet_info * pi)1758 static int receive_Barrier(struct drbd_connection *connection, struct packet_info *pi)
1759 {
1760 int rv;
1761 struct p_barrier *p = pi->data;
1762 struct drbd_epoch *epoch;
1763
1764 /* FIXME these are unacked on connection,
1765 * not a specific (peer)device.
1766 */
1767 connection->current_epoch->barrier_nr = p->barrier;
1768 connection->current_epoch->connection = connection;
1769 rv = drbd_may_finish_epoch(connection, connection->current_epoch, EV_GOT_BARRIER_NR);
1770
1771 /* P_BARRIER_ACK may imply that the corresponding extent is dropped from
1772 * the activity log, which means it would not be resynced in case the
1773 * R_PRIMARY crashes now.
1774 * Therefore we must send the barrier_ack after the barrier request was
1775 * completed. */
1776 switch (connection->resource->write_ordering) {
1777 case WO_NONE:
1778 if (rv == FE_RECYCLED)
1779 return 0;
1780
1781 /* receiver context, in the writeout path of the other node.
1782 * avoid potential distributed deadlock */
1783 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1784 if (epoch)
1785 break;
1786 else
1787 drbd_warn(connection, "Allocation of an epoch failed, slowing down\n");
1788 fallthrough;
1789
1790 case WO_BDEV_FLUSH:
1791 case WO_DRAIN_IO:
1792 conn_wait_active_ee_empty(connection);
1793 drbd_flush(connection);
1794
1795 if (atomic_read(&connection->current_epoch->epoch_size)) {
1796 epoch = kmalloc(sizeof(struct drbd_epoch), GFP_NOIO);
1797 if (epoch)
1798 break;
1799 }
1800
1801 return 0;
1802 default:
1803 drbd_err(connection, "Strangeness in connection->write_ordering %d\n",
1804 connection->resource->write_ordering);
1805 return -EIO;
1806 }
1807
1808 epoch->flags = 0;
1809 atomic_set(&epoch->epoch_size, 0);
1810 atomic_set(&epoch->active, 0);
1811
1812 spin_lock(&connection->epoch_lock);
1813 if (atomic_read(&connection->current_epoch->epoch_size)) {
1814 list_add(&epoch->list, &connection->current_epoch->list);
1815 connection->current_epoch = epoch;
1816 connection->epochs++;
1817 } else {
1818 /* The current_epoch got recycled while we allocated this one... */
1819 kfree(epoch);
1820 }
1821 spin_unlock(&connection->epoch_lock);
1822
1823 return 0;
1824 }
1825
1826 /* quick wrapper in case payload size != request_size (write same) */
drbd_csum_ee_size(struct crypto_shash * h,struct drbd_peer_request * r,void * d,unsigned int payload_size)1827 static void drbd_csum_ee_size(struct crypto_shash *h,
1828 struct drbd_peer_request *r, void *d,
1829 unsigned int payload_size)
1830 {
1831 unsigned int tmp = r->i.size;
1832 r->i.size = payload_size;
1833 drbd_csum_ee(h, r, d);
1834 r->i.size = tmp;
1835 }
1836
1837 /* used from receive_RSDataReply (recv_resync_read)
1838 * and from receive_Data.
1839 * data_size: actual payload ("data in")
1840 * for normal writes that is bi_size.
1841 * for discards, that is zero.
1842 * for write same, it is logical_block_size.
1843 * both trim and write same have the bi_size ("data len to be affected")
1844 * as extra argument in the packet header.
1845 */
1846 static struct drbd_peer_request *
read_in_block(struct drbd_peer_device * peer_device,u64 id,sector_t sector,struct packet_info * pi)1847 read_in_block(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
1848 struct packet_info *pi) __must_hold(local)
1849 {
1850 struct drbd_device *device = peer_device->device;
1851 const sector_t capacity = get_capacity(device->vdisk);
1852 struct drbd_peer_request *peer_req;
1853 struct page *page;
1854 int digest_size, err;
1855 unsigned int data_size = pi->size, ds;
1856 void *dig_in = peer_device->connection->int_dig_in;
1857 void *dig_vv = peer_device->connection->int_dig_vv;
1858 unsigned long *data;
1859 struct p_trim *trim = (pi->cmd == P_TRIM) ? pi->data : NULL;
1860 struct p_trim *zeroes = (pi->cmd == P_ZEROES) ? pi->data : NULL;
1861
1862 digest_size = 0;
1863 if (!trim && peer_device->connection->peer_integrity_tfm) {
1864 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1865 /*
1866 * FIXME: Receive the incoming digest into the receive buffer
1867 * here, together with its struct p_data?
1868 */
1869 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1870 if (err)
1871 return NULL;
1872 data_size -= digest_size;
1873 }
1874
1875 /* assume request_size == data_size, but special case trim. */
1876 ds = data_size;
1877 if (trim) {
1878 if (!expect(peer_device, data_size == 0))
1879 return NULL;
1880 ds = be32_to_cpu(trim->size);
1881 } else if (zeroes) {
1882 if (!expect(peer_device, data_size == 0))
1883 return NULL;
1884 ds = be32_to_cpu(zeroes->size);
1885 }
1886
1887 if (!expect(peer_device, IS_ALIGNED(ds, 512)))
1888 return NULL;
1889 if (trim || zeroes) {
1890 if (!expect(peer_device, ds <= (DRBD_MAX_BBIO_SECTORS << 9)))
1891 return NULL;
1892 } else if (!expect(peer_device, ds <= DRBD_MAX_BIO_SIZE))
1893 return NULL;
1894
1895 /* even though we trust out peer,
1896 * we sometimes have to double check. */
1897 if (sector + (ds>>9) > capacity) {
1898 drbd_err(device, "request from peer beyond end of local disk: "
1899 "capacity: %llus < sector: %llus + size: %u\n",
1900 (unsigned long long)capacity,
1901 (unsigned long long)sector, ds);
1902 return NULL;
1903 }
1904
1905 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
1906 * "criss-cross" setup, that might cause write-out on some other DRBD,
1907 * which in turn might block on the other node at this very place. */
1908 peer_req = drbd_alloc_peer_req(peer_device, id, sector, ds, data_size, GFP_NOIO);
1909 if (!peer_req)
1910 return NULL;
1911
1912 peer_req->flags |= EE_WRITE;
1913 if (trim) {
1914 peer_req->flags |= EE_TRIM;
1915 return peer_req;
1916 }
1917 if (zeroes) {
1918 peer_req->flags |= EE_ZEROOUT;
1919 return peer_req;
1920 }
1921
1922 /* receive payload size bytes into page chain */
1923 ds = data_size;
1924 page = peer_req->pages;
1925 page_chain_for_each(page) {
1926 unsigned len = min_t(int, ds, PAGE_SIZE);
1927 data = kmap(page);
1928 err = drbd_recv_all_warn(peer_device->connection, data, len);
1929 if (drbd_insert_fault(device, DRBD_FAULT_RECEIVE)) {
1930 drbd_err(device, "Fault injection: Corrupting data on receive\n");
1931 data[0] = data[0] ^ (unsigned long)-1;
1932 }
1933 kunmap(page);
1934 if (err) {
1935 drbd_free_peer_req(device, peer_req);
1936 return NULL;
1937 }
1938 ds -= len;
1939 }
1940
1941 if (digest_size) {
1942 drbd_csum_ee_size(peer_device->connection->peer_integrity_tfm, peer_req, dig_vv, data_size);
1943 if (memcmp(dig_in, dig_vv, digest_size)) {
1944 drbd_err(device, "Digest integrity check FAILED: %llus +%u\n",
1945 (unsigned long long)sector, data_size);
1946 drbd_free_peer_req(device, peer_req);
1947 return NULL;
1948 }
1949 }
1950 device->recv_cnt += data_size >> 9;
1951 return peer_req;
1952 }
1953
1954 /* drbd_drain_block() just takes a data block
1955 * out of the socket input buffer, and discards it.
1956 */
drbd_drain_block(struct drbd_peer_device * peer_device,int data_size)1957 static int drbd_drain_block(struct drbd_peer_device *peer_device, int data_size)
1958 {
1959 struct page *page;
1960 int err = 0;
1961 void *data;
1962
1963 if (!data_size)
1964 return 0;
1965
1966 page = drbd_alloc_pages(peer_device, 1, 1);
1967
1968 data = kmap(page);
1969 while (data_size) {
1970 unsigned int len = min_t(int, data_size, PAGE_SIZE);
1971
1972 err = drbd_recv_all_warn(peer_device->connection, data, len);
1973 if (err)
1974 break;
1975 data_size -= len;
1976 }
1977 kunmap(page);
1978 drbd_free_pages(peer_device->device, page, 0);
1979 return err;
1980 }
1981
recv_dless_read(struct drbd_peer_device * peer_device,struct drbd_request * req,sector_t sector,int data_size)1982 static int recv_dless_read(struct drbd_peer_device *peer_device, struct drbd_request *req,
1983 sector_t sector, int data_size)
1984 {
1985 struct bio_vec bvec;
1986 struct bvec_iter iter;
1987 struct bio *bio;
1988 int digest_size, err, expect;
1989 void *dig_in = peer_device->connection->int_dig_in;
1990 void *dig_vv = peer_device->connection->int_dig_vv;
1991
1992 digest_size = 0;
1993 if (peer_device->connection->peer_integrity_tfm) {
1994 digest_size = crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1995 err = drbd_recv_all_warn(peer_device->connection, dig_in, digest_size);
1996 if (err)
1997 return err;
1998 data_size -= digest_size;
1999 }
2000
2001 /* optimistically update recv_cnt. if receiving fails below,
2002 * we disconnect anyways, and counters will be reset. */
2003 peer_device->device->recv_cnt += data_size>>9;
2004
2005 bio = req->master_bio;
2006 D_ASSERT(peer_device->device, sector == bio->bi_iter.bi_sector);
2007
2008 bio_for_each_segment(bvec, bio, iter) {
2009 void *mapped = bvec_kmap_local(&bvec);
2010 expect = min_t(int, data_size, bvec.bv_len);
2011 err = drbd_recv_all_warn(peer_device->connection, mapped, expect);
2012 kunmap_local(mapped);
2013 if (err)
2014 return err;
2015 data_size -= expect;
2016 }
2017
2018 if (digest_size) {
2019 drbd_csum_bio(peer_device->connection->peer_integrity_tfm, bio, dig_vv);
2020 if (memcmp(dig_in, dig_vv, digest_size)) {
2021 drbd_err(peer_device, "Digest integrity check FAILED. Broken NICs?\n");
2022 return -EINVAL;
2023 }
2024 }
2025
2026 D_ASSERT(peer_device->device, data_size == 0);
2027 return 0;
2028 }
2029
2030 /*
2031 * e_end_resync_block() is called in ack_sender context via
2032 * drbd_finish_peer_reqs().
2033 */
e_end_resync_block(struct drbd_work * w,int unused)2034 static int e_end_resync_block(struct drbd_work *w, int unused)
2035 {
2036 struct drbd_peer_request *peer_req =
2037 container_of(w, struct drbd_peer_request, w);
2038 struct drbd_peer_device *peer_device = peer_req->peer_device;
2039 struct drbd_device *device = peer_device->device;
2040 sector_t sector = peer_req->i.sector;
2041 int err;
2042
2043 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2044
2045 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2046 drbd_set_in_sync(peer_device, sector, peer_req->i.size);
2047 err = drbd_send_ack(peer_device, P_RS_WRITE_ACK, peer_req);
2048 } else {
2049 /* Record failure to sync */
2050 drbd_rs_failed_io(peer_device, sector, peer_req->i.size);
2051
2052 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2053 }
2054 dec_unacked(device);
2055
2056 return err;
2057 }
2058
recv_resync_read(struct drbd_peer_device * peer_device,sector_t sector,struct packet_info * pi)2059 static int recv_resync_read(struct drbd_peer_device *peer_device, sector_t sector,
2060 struct packet_info *pi) __releases(local)
2061 {
2062 struct drbd_device *device = peer_device->device;
2063 struct drbd_peer_request *peer_req;
2064
2065 peer_req = read_in_block(peer_device, ID_SYNCER, sector, pi);
2066 if (!peer_req)
2067 goto fail;
2068
2069 dec_rs_pending(peer_device);
2070
2071 inc_unacked(device);
2072 /* corresponding dec_unacked() in e_end_resync_block()
2073 * respective _drbd_clear_done_ee */
2074
2075 peer_req->w.cb = e_end_resync_block;
2076 peer_req->opf = REQ_OP_WRITE;
2077 peer_req->submit_jif = jiffies;
2078
2079 spin_lock_irq(&device->resource->req_lock);
2080 list_add_tail(&peer_req->w.list, &device->sync_ee);
2081 spin_unlock_irq(&device->resource->req_lock);
2082
2083 atomic_add(pi->size >> 9, &device->rs_sect_ev);
2084 if (drbd_submit_peer_request(peer_req) == 0)
2085 return 0;
2086
2087 /* don't care for the reason here */
2088 drbd_err(device, "submit failed, triggering re-connect\n");
2089 spin_lock_irq(&device->resource->req_lock);
2090 list_del(&peer_req->w.list);
2091 spin_unlock_irq(&device->resource->req_lock);
2092
2093 drbd_free_peer_req(device, peer_req);
2094 fail:
2095 put_ldev(device);
2096 return -EIO;
2097 }
2098
2099 static struct drbd_request *
find_request(struct drbd_device * device,struct rb_root * root,u64 id,sector_t sector,bool missing_ok,const char * func)2100 find_request(struct drbd_device *device, struct rb_root *root, u64 id,
2101 sector_t sector, bool missing_ok, const char *func)
2102 {
2103 struct drbd_request *req;
2104
2105 /* Request object according to our peer */
2106 req = (struct drbd_request *)(unsigned long)id;
2107 if (drbd_contains_interval(root, sector, &req->i) && req->i.local)
2108 return req;
2109 if (!missing_ok) {
2110 drbd_err(device, "%s: failed to find request 0x%lx, sector %llus\n", func,
2111 (unsigned long)id, (unsigned long long)sector);
2112 }
2113 return NULL;
2114 }
2115
receive_DataReply(struct drbd_connection * connection,struct packet_info * pi)2116 static int receive_DataReply(struct drbd_connection *connection, struct packet_info *pi)
2117 {
2118 struct drbd_peer_device *peer_device;
2119 struct drbd_device *device;
2120 struct drbd_request *req;
2121 sector_t sector;
2122 int err;
2123 struct p_data *p = pi->data;
2124
2125 peer_device = conn_peer_device(connection, pi->vnr);
2126 if (!peer_device)
2127 return -EIO;
2128 device = peer_device->device;
2129
2130 sector = be64_to_cpu(p->sector);
2131
2132 spin_lock_irq(&device->resource->req_lock);
2133 req = find_request(device, &device->read_requests, p->block_id, sector, false, __func__);
2134 spin_unlock_irq(&device->resource->req_lock);
2135 if (unlikely(!req))
2136 return -EIO;
2137
2138 err = recv_dless_read(peer_device, req, sector, pi->size);
2139 if (!err)
2140 req_mod(req, DATA_RECEIVED, peer_device);
2141 /* else: nothing. handled from drbd_disconnect...
2142 * I don't think we may complete this just yet
2143 * in case we are "on-disconnect: freeze" */
2144
2145 return err;
2146 }
2147
receive_RSDataReply(struct drbd_connection * connection,struct packet_info * pi)2148 static int receive_RSDataReply(struct drbd_connection *connection, struct packet_info *pi)
2149 {
2150 struct drbd_peer_device *peer_device;
2151 struct drbd_device *device;
2152 sector_t sector;
2153 int err;
2154 struct p_data *p = pi->data;
2155
2156 peer_device = conn_peer_device(connection, pi->vnr);
2157 if (!peer_device)
2158 return -EIO;
2159 device = peer_device->device;
2160
2161 sector = be64_to_cpu(p->sector);
2162 D_ASSERT(device, p->block_id == ID_SYNCER);
2163
2164 if (get_ldev(device)) {
2165 /* data is submitted to disk within recv_resync_read.
2166 * corresponding put_ldev done below on error,
2167 * or in drbd_peer_request_endio. */
2168 err = recv_resync_read(peer_device, sector, pi);
2169 } else {
2170 if (drbd_ratelimit())
2171 drbd_err(device, "Can not write resync data to local disk.\n");
2172
2173 err = drbd_drain_block(peer_device, pi->size);
2174
2175 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2176 }
2177
2178 atomic_add(pi->size >> 9, &device->rs_sect_in);
2179
2180 return err;
2181 }
2182
restart_conflicting_writes(struct drbd_device * device,sector_t sector,int size)2183 static void restart_conflicting_writes(struct drbd_device *device,
2184 sector_t sector, int size)
2185 {
2186 struct drbd_interval *i;
2187 struct drbd_request *req;
2188
2189 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2190 if (!i->local)
2191 continue;
2192 req = container_of(i, struct drbd_request, i);
2193 if (req->rq_state & RQ_LOCAL_PENDING ||
2194 !(req->rq_state & RQ_POSTPONED))
2195 continue;
2196 /* as it is RQ_POSTPONED, this will cause it to
2197 * be queued on the retry workqueue. */
2198 __req_mod(req, CONFLICT_RESOLVED, NULL, NULL);
2199 }
2200 }
2201
2202 /*
2203 * e_end_block() is called in ack_sender context via drbd_finish_peer_reqs().
2204 */
e_end_block(struct drbd_work * w,int cancel)2205 static int e_end_block(struct drbd_work *w, int cancel)
2206 {
2207 struct drbd_peer_request *peer_req =
2208 container_of(w, struct drbd_peer_request, w);
2209 struct drbd_peer_device *peer_device = peer_req->peer_device;
2210 struct drbd_device *device = peer_device->device;
2211 sector_t sector = peer_req->i.sector;
2212 int err = 0, pcmd;
2213
2214 if (peer_req->flags & EE_SEND_WRITE_ACK) {
2215 if (likely((peer_req->flags & EE_WAS_ERROR) == 0)) {
2216 pcmd = (device->state.conn >= C_SYNC_SOURCE &&
2217 device->state.conn <= C_PAUSED_SYNC_T &&
2218 peer_req->flags & EE_MAY_SET_IN_SYNC) ?
2219 P_RS_WRITE_ACK : P_WRITE_ACK;
2220 err = drbd_send_ack(peer_device, pcmd, peer_req);
2221 if (pcmd == P_RS_WRITE_ACK)
2222 drbd_set_in_sync(peer_device, sector, peer_req->i.size);
2223 } else {
2224 err = drbd_send_ack(peer_device, P_NEG_ACK, peer_req);
2225 /* we expect it to be marked out of sync anyways...
2226 * maybe assert this? */
2227 }
2228 dec_unacked(device);
2229 }
2230
2231 /* we delete from the conflict detection hash _after_ we sent out the
2232 * P_WRITE_ACK / P_NEG_ACK, to get the sequence number right. */
2233 if (peer_req->flags & EE_IN_INTERVAL_TREE) {
2234 spin_lock_irq(&device->resource->req_lock);
2235 D_ASSERT(device, !drbd_interval_empty(&peer_req->i));
2236 drbd_remove_epoch_entry_interval(device, peer_req);
2237 if (peer_req->flags & EE_RESTART_REQUESTS)
2238 restart_conflicting_writes(device, sector, peer_req->i.size);
2239 spin_unlock_irq(&device->resource->req_lock);
2240 } else
2241 D_ASSERT(device, drbd_interval_empty(&peer_req->i));
2242
2243 drbd_may_finish_epoch(peer_device->connection, peer_req->epoch, EV_PUT + (cancel ? EV_CLEANUP : 0));
2244
2245 return err;
2246 }
2247
e_send_ack(struct drbd_work * w,enum drbd_packet ack)2248 static int e_send_ack(struct drbd_work *w, enum drbd_packet ack)
2249 {
2250 struct drbd_peer_request *peer_req =
2251 container_of(w, struct drbd_peer_request, w);
2252 struct drbd_peer_device *peer_device = peer_req->peer_device;
2253 int err;
2254
2255 err = drbd_send_ack(peer_device, ack, peer_req);
2256 dec_unacked(peer_device->device);
2257
2258 return err;
2259 }
2260
e_send_superseded(struct drbd_work * w,int unused)2261 static int e_send_superseded(struct drbd_work *w, int unused)
2262 {
2263 return e_send_ack(w, P_SUPERSEDED);
2264 }
2265
e_send_retry_write(struct drbd_work * w,int unused)2266 static int e_send_retry_write(struct drbd_work *w, int unused)
2267 {
2268 struct drbd_peer_request *peer_req =
2269 container_of(w, struct drbd_peer_request, w);
2270 struct drbd_connection *connection = peer_req->peer_device->connection;
2271
2272 return e_send_ack(w, connection->agreed_pro_version >= 100 ?
2273 P_RETRY_WRITE : P_SUPERSEDED);
2274 }
2275
seq_greater(u32 a,u32 b)2276 static bool seq_greater(u32 a, u32 b)
2277 {
2278 /*
2279 * We assume 32-bit wrap-around here.
2280 * For 24-bit wrap-around, we would have to shift:
2281 * a <<= 8; b <<= 8;
2282 */
2283 return (s32)a - (s32)b > 0;
2284 }
2285
seq_max(u32 a,u32 b)2286 static u32 seq_max(u32 a, u32 b)
2287 {
2288 return seq_greater(a, b) ? a : b;
2289 }
2290
update_peer_seq(struct drbd_peer_device * peer_device,unsigned int peer_seq)2291 static void update_peer_seq(struct drbd_peer_device *peer_device, unsigned int peer_seq)
2292 {
2293 struct drbd_device *device = peer_device->device;
2294 unsigned int newest_peer_seq;
2295
2296 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)) {
2297 spin_lock(&device->peer_seq_lock);
2298 newest_peer_seq = seq_max(device->peer_seq, peer_seq);
2299 device->peer_seq = newest_peer_seq;
2300 spin_unlock(&device->peer_seq_lock);
2301 /* wake up only if we actually changed device->peer_seq */
2302 if (peer_seq == newest_peer_seq)
2303 wake_up(&device->seq_wait);
2304 }
2305 }
2306
overlaps(sector_t s1,int l1,sector_t s2,int l2)2307 static inline int overlaps(sector_t s1, int l1, sector_t s2, int l2)
2308 {
2309 return !((s1 + (l1>>9) <= s2) || (s1 >= s2 + (l2>>9)));
2310 }
2311
2312 /* maybe change sync_ee into interval trees as well? */
overlapping_resync_write(struct drbd_device * device,struct drbd_peer_request * peer_req)2313 static bool overlapping_resync_write(struct drbd_device *device, struct drbd_peer_request *peer_req)
2314 {
2315 struct drbd_peer_request *rs_req;
2316 bool rv = false;
2317
2318 spin_lock_irq(&device->resource->req_lock);
2319 list_for_each_entry(rs_req, &device->sync_ee, w.list) {
2320 if (overlaps(peer_req->i.sector, peer_req->i.size,
2321 rs_req->i.sector, rs_req->i.size)) {
2322 rv = true;
2323 break;
2324 }
2325 }
2326 spin_unlock_irq(&device->resource->req_lock);
2327
2328 return rv;
2329 }
2330
2331 /* Called from receive_Data.
2332 * Synchronize packets on sock with packets on msock.
2333 *
2334 * This is here so even when a P_DATA packet traveling via sock overtook an Ack
2335 * packet traveling on msock, they are still processed in the order they have
2336 * been sent.
2337 *
2338 * Note: we don't care for Ack packets overtaking P_DATA packets.
2339 *
2340 * In case packet_seq is larger than device->peer_seq number, there are
2341 * outstanding packets on the msock. We wait for them to arrive.
2342 * In case we are the logically next packet, we update device->peer_seq
2343 * ourselves. Correctly handles 32bit wrap around.
2344 *
2345 * Assume we have a 10 GBit connection, that is about 1<<30 byte per second,
2346 * about 1<<21 sectors per second. So "worst" case, we have 1<<3 == 8 seconds
2347 * for the 24bit wrap (historical atomic_t guarantee on some archs), and we have
2348 * 1<<9 == 512 seconds aka ages for the 32bit wrap around...
2349 *
2350 * returns 0 if we may process the packet,
2351 * -ERESTARTSYS if we were interrupted (by disconnect signal). */
wait_for_and_update_peer_seq(struct drbd_peer_device * peer_device,const u32 peer_seq)2352 static int wait_for_and_update_peer_seq(struct drbd_peer_device *peer_device, const u32 peer_seq)
2353 {
2354 struct drbd_device *device = peer_device->device;
2355 DEFINE_WAIT(wait);
2356 long timeout;
2357 int ret = 0, tp;
2358
2359 if (!test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags))
2360 return 0;
2361
2362 spin_lock(&device->peer_seq_lock);
2363 for (;;) {
2364 if (!seq_greater(peer_seq - 1, device->peer_seq)) {
2365 device->peer_seq = seq_max(device->peer_seq, peer_seq);
2366 break;
2367 }
2368
2369 if (signal_pending(current)) {
2370 ret = -ERESTARTSYS;
2371 break;
2372 }
2373
2374 rcu_read_lock();
2375 tp = rcu_dereference(peer_device->connection->net_conf)->two_primaries;
2376 rcu_read_unlock();
2377
2378 if (!tp)
2379 break;
2380
2381 /* Only need to wait if two_primaries is enabled */
2382 prepare_to_wait(&device->seq_wait, &wait, TASK_INTERRUPTIBLE);
2383 spin_unlock(&device->peer_seq_lock);
2384 rcu_read_lock();
2385 timeout = rcu_dereference(peer_device->connection->net_conf)->ping_timeo*HZ/10;
2386 rcu_read_unlock();
2387 timeout = schedule_timeout(timeout);
2388 spin_lock(&device->peer_seq_lock);
2389 if (!timeout) {
2390 ret = -ETIMEDOUT;
2391 drbd_err(device, "Timed out waiting for missing ack packets; disconnecting\n");
2392 break;
2393 }
2394 }
2395 spin_unlock(&device->peer_seq_lock);
2396 finish_wait(&device->seq_wait, &wait);
2397 return ret;
2398 }
2399
wire_flags_to_bio_op(u32 dpf)2400 static enum req_op wire_flags_to_bio_op(u32 dpf)
2401 {
2402 if (dpf & DP_ZEROES)
2403 return REQ_OP_WRITE_ZEROES;
2404 if (dpf & DP_DISCARD)
2405 return REQ_OP_DISCARD;
2406 else
2407 return REQ_OP_WRITE;
2408 }
2409
2410 /* see also bio_flags_to_wire() */
wire_flags_to_bio(struct drbd_connection * connection,u32 dpf)2411 static blk_opf_t wire_flags_to_bio(struct drbd_connection *connection, u32 dpf)
2412 {
2413 return wire_flags_to_bio_op(dpf) |
2414 (dpf & DP_RW_SYNC ? REQ_SYNC : 0) |
2415 (dpf & DP_FUA ? REQ_FUA : 0) |
2416 (dpf & DP_FLUSH ? REQ_PREFLUSH : 0);
2417 }
2418
fail_postponed_requests(struct drbd_device * device,sector_t sector,unsigned int size)2419 static void fail_postponed_requests(struct drbd_device *device, sector_t sector,
2420 unsigned int size)
2421 {
2422 struct drbd_peer_device *peer_device = first_peer_device(device);
2423 struct drbd_interval *i;
2424
2425 repeat:
2426 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2427 struct drbd_request *req;
2428 struct bio_and_error m;
2429
2430 if (!i->local)
2431 continue;
2432 req = container_of(i, struct drbd_request, i);
2433 if (!(req->rq_state & RQ_POSTPONED))
2434 continue;
2435 req->rq_state &= ~RQ_POSTPONED;
2436 __req_mod(req, NEG_ACKED, peer_device, &m);
2437 spin_unlock_irq(&device->resource->req_lock);
2438 if (m.bio)
2439 complete_master_bio(device, &m);
2440 spin_lock_irq(&device->resource->req_lock);
2441 goto repeat;
2442 }
2443 }
2444
handle_write_conflicts(struct drbd_device * device,struct drbd_peer_request * peer_req)2445 static int handle_write_conflicts(struct drbd_device *device,
2446 struct drbd_peer_request *peer_req)
2447 {
2448 struct drbd_connection *connection = peer_req->peer_device->connection;
2449 bool resolve_conflicts = test_bit(RESOLVE_CONFLICTS, &connection->flags);
2450 sector_t sector = peer_req->i.sector;
2451 const unsigned int size = peer_req->i.size;
2452 struct drbd_interval *i;
2453 bool equal;
2454 int err;
2455
2456 /*
2457 * Inserting the peer request into the write_requests tree will prevent
2458 * new conflicting local requests from being added.
2459 */
2460 drbd_insert_interval(&device->write_requests, &peer_req->i);
2461
2462 repeat:
2463 drbd_for_each_overlap(i, &device->write_requests, sector, size) {
2464 if (i == &peer_req->i)
2465 continue;
2466 if (i->completed)
2467 continue;
2468
2469 if (!i->local) {
2470 /*
2471 * Our peer has sent a conflicting remote request; this
2472 * should not happen in a two-node setup. Wait for the
2473 * earlier peer request to complete.
2474 */
2475 err = drbd_wait_misc(device, i);
2476 if (err)
2477 goto out;
2478 goto repeat;
2479 }
2480
2481 equal = i->sector == sector && i->size == size;
2482 if (resolve_conflicts) {
2483 /*
2484 * If the peer request is fully contained within the
2485 * overlapping request, it can be considered overwritten
2486 * and thus superseded; otherwise, it will be retried
2487 * once all overlapping requests have completed.
2488 */
2489 bool superseded = i->sector <= sector && i->sector +
2490 (i->size >> 9) >= sector + (size >> 9);
2491
2492 if (!equal)
2493 drbd_alert(device, "Concurrent writes detected: "
2494 "local=%llus +%u, remote=%llus +%u, "
2495 "assuming %s came first\n",
2496 (unsigned long long)i->sector, i->size,
2497 (unsigned long long)sector, size,
2498 superseded ? "local" : "remote");
2499
2500 peer_req->w.cb = superseded ? e_send_superseded :
2501 e_send_retry_write;
2502 list_add_tail(&peer_req->w.list, &device->done_ee);
2503 /* put is in drbd_send_acks_wf() */
2504 kref_get(&device->kref);
2505 if (!queue_work(connection->ack_sender,
2506 &peer_req->peer_device->send_acks_work))
2507 kref_put(&device->kref, drbd_destroy_device);
2508
2509 err = -ENOENT;
2510 goto out;
2511 } else {
2512 struct drbd_request *req =
2513 container_of(i, struct drbd_request, i);
2514
2515 if (!equal)
2516 drbd_alert(device, "Concurrent writes detected: "
2517 "local=%llus +%u, remote=%llus +%u\n",
2518 (unsigned long long)i->sector, i->size,
2519 (unsigned long long)sector, size);
2520
2521 if (req->rq_state & RQ_LOCAL_PENDING ||
2522 !(req->rq_state & RQ_POSTPONED)) {
2523 /*
2524 * Wait for the node with the discard flag to
2525 * decide if this request has been superseded
2526 * or needs to be retried.
2527 * Requests that have been superseded will
2528 * disappear from the write_requests tree.
2529 *
2530 * In addition, wait for the conflicting
2531 * request to finish locally before submitting
2532 * the conflicting peer request.
2533 */
2534 err = drbd_wait_misc(device, &req->i);
2535 if (err) {
2536 _conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
2537 fail_postponed_requests(device, sector, size);
2538 goto out;
2539 }
2540 goto repeat;
2541 }
2542 /*
2543 * Remember to restart the conflicting requests after
2544 * the new peer request has completed.
2545 */
2546 peer_req->flags |= EE_RESTART_REQUESTS;
2547 }
2548 }
2549 err = 0;
2550
2551 out:
2552 if (err)
2553 drbd_remove_epoch_entry_interval(device, peer_req);
2554 return err;
2555 }
2556
2557 /* mirrored write */
receive_Data(struct drbd_connection * connection,struct packet_info * pi)2558 static int receive_Data(struct drbd_connection *connection, struct packet_info *pi)
2559 {
2560 struct drbd_peer_device *peer_device;
2561 struct drbd_device *device;
2562 struct net_conf *nc;
2563 sector_t sector;
2564 struct drbd_peer_request *peer_req;
2565 struct p_data *p = pi->data;
2566 u32 peer_seq = be32_to_cpu(p->seq_num);
2567 u32 dp_flags;
2568 int err, tp;
2569
2570 peer_device = conn_peer_device(connection, pi->vnr);
2571 if (!peer_device)
2572 return -EIO;
2573 device = peer_device->device;
2574
2575 if (!get_ldev(device)) {
2576 int err2;
2577
2578 err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2579 drbd_send_ack_dp(peer_device, P_NEG_ACK, p, pi->size);
2580 atomic_inc(&connection->current_epoch->epoch_size);
2581 err2 = drbd_drain_block(peer_device, pi->size);
2582 if (!err)
2583 err = err2;
2584 return err;
2585 }
2586
2587 /*
2588 * Corresponding put_ldev done either below (on various errors), or in
2589 * drbd_peer_request_endio, if we successfully submit the data at the
2590 * end of this function.
2591 */
2592
2593 sector = be64_to_cpu(p->sector);
2594 peer_req = read_in_block(peer_device, p->block_id, sector, pi);
2595 if (!peer_req) {
2596 put_ldev(device);
2597 return -EIO;
2598 }
2599
2600 peer_req->w.cb = e_end_block;
2601 peer_req->submit_jif = jiffies;
2602 peer_req->flags |= EE_APPLICATION;
2603
2604 dp_flags = be32_to_cpu(p->dp_flags);
2605 peer_req->opf = wire_flags_to_bio(connection, dp_flags);
2606 if (pi->cmd == P_TRIM) {
2607 D_ASSERT(peer_device, peer_req->i.size > 0);
2608 D_ASSERT(peer_device, peer_req_op(peer_req) == REQ_OP_DISCARD);
2609 D_ASSERT(peer_device, peer_req->pages == NULL);
2610 /* need to play safe: an older DRBD sender
2611 * may mean zero-out while sending P_TRIM. */
2612 if (0 == (connection->agreed_features & DRBD_FF_WZEROES))
2613 peer_req->flags |= EE_ZEROOUT;
2614 } else if (pi->cmd == P_ZEROES) {
2615 D_ASSERT(peer_device, peer_req->i.size > 0);
2616 D_ASSERT(peer_device, peer_req_op(peer_req) == REQ_OP_WRITE_ZEROES);
2617 D_ASSERT(peer_device, peer_req->pages == NULL);
2618 /* Do (not) pass down BLKDEV_ZERO_NOUNMAP? */
2619 if (dp_flags & DP_DISCARD)
2620 peer_req->flags |= EE_TRIM;
2621 } else if (peer_req->pages == NULL) {
2622 D_ASSERT(device, peer_req->i.size == 0);
2623 D_ASSERT(device, dp_flags & DP_FLUSH);
2624 }
2625
2626 if (dp_flags & DP_MAY_SET_IN_SYNC)
2627 peer_req->flags |= EE_MAY_SET_IN_SYNC;
2628
2629 spin_lock(&connection->epoch_lock);
2630 peer_req->epoch = connection->current_epoch;
2631 atomic_inc(&peer_req->epoch->epoch_size);
2632 atomic_inc(&peer_req->epoch->active);
2633 spin_unlock(&connection->epoch_lock);
2634
2635 rcu_read_lock();
2636 nc = rcu_dereference(peer_device->connection->net_conf);
2637 tp = nc->two_primaries;
2638 if (peer_device->connection->agreed_pro_version < 100) {
2639 switch (nc->wire_protocol) {
2640 case DRBD_PROT_C:
2641 dp_flags |= DP_SEND_WRITE_ACK;
2642 break;
2643 case DRBD_PROT_B:
2644 dp_flags |= DP_SEND_RECEIVE_ACK;
2645 break;
2646 }
2647 }
2648 rcu_read_unlock();
2649
2650 if (dp_flags & DP_SEND_WRITE_ACK) {
2651 peer_req->flags |= EE_SEND_WRITE_ACK;
2652 inc_unacked(device);
2653 /* corresponding dec_unacked() in e_end_block()
2654 * respective _drbd_clear_done_ee */
2655 }
2656
2657 if (dp_flags & DP_SEND_RECEIVE_ACK) {
2658 /* I really don't like it that the receiver thread
2659 * sends on the msock, but anyways */
2660 drbd_send_ack(peer_device, P_RECV_ACK, peer_req);
2661 }
2662
2663 if (tp) {
2664 /* two primaries implies protocol C */
2665 D_ASSERT(device, dp_flags & DP_SEND_WRITE_ACK);
2666 peer_req->flags |= EE_IN_INTERVAL_TREE;
2667 err = wait_for_and_update_peer_seq(peer_device, peer_seq);
2668 if (err)
2669 goto out_interrupted;
2670 spin_lock_irq(&device->resource->req_lock);
2671 err = handle_write_conflicts(device, peer_req);
2672 if (err) {
2673 spin_unlock_irq(&device->resource->req_lock);
2674 if (err == -ENOENT) {
2675 put_ldev(device);
2676 return 0;
2677 }
2678 goto out_interrupted;
2679 }
2680 } else {
2681 update_peer_seq(peer_device, peer_seq);
2682 spin_lock_irq(&device->resource->req_lock);
2683 }
2684 /* TRIM and is processed synchronously,
2685 * we wait for all pending requests, respectively wait for
2686 * active_ee to become empty in drbd_submit_peer_request();
2687 * better not add ourselves here. */
2688 if ((peer_req->flags & (EE_TRIM | EE_ZEROOUT)) == 0)
2689 list_add_tail(&peer_req->w.list, &device->active_ee);
2690 spin_unlock_irq(&device->resource->req_lock);
2691
2692 if (device->state.conn == C_SYNC_TARGET)
2693 wait_event(device->ee_wait, !overlapping_resync_write(device, peer_req));
2694
2695 if (device->state.pdsk < D_INCONSISTENT) {
2696 /* In case we have the only disk of the cluster, */
2697 drbd_set_out_of_sync(peer_device, peer_req->i.sector, peer_req->i.size);
2698 peer_req->flags &= ~EE_MAY_SET_IN_SYNC;
2699 drbd_al_begin_io(device, &peer_req->i);
2700 peer_req->flags |= EE_CALL_AL_COMPLETE_IO;
2701 }
2702
2703 err = drbd_submit_peer_request(peer_req);
2704 if (!err)
2705 return 0;
2706
2707 /* don't care for the reason here */
2708 drbd_err(device, "submit failed, triggering re-connect\n");
2709 spin_lock_irq(&device->resource->req_lock);
2710 list_del(&peer_req->w.list);
2711 drbd_remove_epoch_entry_interval(device, peer_req);
2712 spin_unlock_irq(&device->resource->req_lock);
2713 if (peer_req->flags & EE_CALL_AL_COMPLETE_IO) {
2714 peer_req->flags &= ~EE_CALL_AL_COMPLETE_IO;
2715 drbd_al_complete_io(device, &peer_req->i);
2716 }
2717
2718 out_interrupted:
2719 drbd_may_finish_epoch(connection, peer_req->epoch, EV_PUT | EV_CLEANUP);
2720 put_ldev(device);
2721 drbd_free_peer_req(device, peer_req);
2722 return err;
2723 }
2724
2725 /* We may throttle resync, if the lower device seems to be busy,
2726 * and current sync rate is above c_min_rate.
2727 *
2728 * To decide whether or not the lower device is busy, we use a scheme similar
2729 * to MD RAID is_mddev_idle(): if the partition stats reveal "significant"
2730 * (more than 64 sectors) of activity we cannot account for with our own resync
2731 * activity, it obviously is "busy".
2732 *
2733 * The current sync rate used here uses only the most recent two step marks,
2734 * to have a short time average so we can react faster.
2735 */
drbd_rs_should_slow_down(struct drbd_peer_device * peer_device,sector_t sector,bool throttle_if_app_is_waiting)2736 bool drbd_rs_should_slow_down(struct drbd_peer_device *peer_device, sector_t sector,
2737 bool throttle_if_app_is_waiting)
2738 {
2739 struct drbd_device *device = peer_device->device;
2740 struct lc_element *tmp;
2741 bool throttle = drbd_rs_c_min_rate_throttle(device);
2742
2743 if (!throttle || throttle_if_app_is_waiting)
2744 return throttle;
2745
2746 spin_lock_irq(&device->al_lock);
2747 tmp = lc_find(device->resync, BM_SECT_TO_EXT(sector));
2748 if (tmp) {
2749 struct bm_extent *bm_ext = lc_entry(tmp, struct bm_extent, lce);
2750 if (test_bit(BME_PRIORITY, &bm_ext->flags))
2751 throttle = false;
2752 /* Do not slow down if app IO is already waiting for this extent,
2753 * and our progress is necessary for application IO to complete. */
2754 }
2755 spin_unlock_irq(&device->al_lock);
2756
2757 return throttle;
2758 }
2759
drbd_rs_c_min_rate_throttle(struct drbd_device * device)2760 bool drbd_rs_c_min_rate_throttle(struct drbd_device *device)
2761 {
2762 struct gendisk *disk = device->ldev->backing_bdev->bd_disk;
2763 unsigned long db, dt, dbdt;
2764 unsigned int c_min_rate;
2765 int curr_events;
2766
2767 rcu_read_lock();
2768 c_min_rate = rcu_dereference(device->ldev->disk_conf)->c_min_rate;
2769 rcu_read_unlock();
2770
2771 /* feature disabled? */
2772 if (c_min_rate == 0)
2773 return false;
2774
2775 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
2776 atomic_read(&device->rs_sect_ev);
2777
2778 if (atomic_read(&device->ap_actlog_cnt)
2779 || curr_events - device->rs_last_events > 64) {
2780 unsigned long rs_left;
2781 int i;
2782
2783 device->rs_last_events = curr_events;
2784
2785 /* sync speed average over the last 2*DRBD_SYNC_MARK_STEP,
2786 * approx. */
2787 i = (device->rs_last_mark + DRBD_SYNC_MARKS-1) % DRBD_SYNC_MARKS;
2788
2789 if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T)
2790 rs_left = device->ov_left;
2791 else
2792 rs_left = drbd_bm_total_weight(device) - device->rs_failed;
2793
2794 dt = ((long)jiffies - (long)device->rs_mark_time[i]) / HZ;
2795 if (!dt)
2796 dt++;
2797 db = device->rs_mark_left[i] - rs_left;
2798 dbdt = Bit2KB(db/dt);
2799
2800 if (dbdt > c_min_rate)
2801 return true;
2802 }
2803 return false;
2804 }
2805
receive_DataRequest(struct drbd_connection * connection,struct packet_info * pi)2806 static int receive_DataRequest(struct drbd_connection *connection, struct packet_info *pi)
2807 {
2808 struct drbd_peer_device *peer_device;
2809 struct drbd_device *device;
2810 sector_t sector;
2811 sector_t capacity;
2812 struct drbd_peer_request *peer_req;
2813 struct digest_info *di = NULL;
2814 int size, verb;
2815 struct p_block_req *p = pi->data;
2816
2817 peer_device = conn_peer_device(connection, pi->vnr);
2818 if (!peer_device)
2819 return -EIO;
2820 device = peer_device->device;
2821 capacity = get_capacity(device->vdisk);
2822
2823 sector = be64_to_cpu(p->sector);
2824 size = be32_to_cpu(p->blksize);
2825
2826 if (size <= 0 || !IS_ALIGNED(size, 512) || size > DRBD_MAX_BIO_SIZE) {
2827 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2828 (unsigned long long)sector, size);
2829 return -EINVAL;
2830 }
2831 if (sector + (size>>9) > capacity) {
2832 drbd_err(device, "%s:%d: sector: %llus, size: %u\n", __FILE__, __LINE__,
2833 (unsigned long long)sector, size);
2834 return -EINVAL;
2835 }
2836
2837 if (!get_ldev_if_state(device, D_UP_TO_DATE)) {
2838 verb = 1;
2839 switch (pi->cmd) {
2840 case P_DATA_REQUEST:
2841 drbd_send_ack_rp(peer_device, P_NEG_DREPLY, p);
2842 break;
2843 case P_RS_THIN_REQ:
2844 case P_RS_DATA_REQUEST:
2845 case P_CSUM_RS_REQUEST:
2846 case P_OV_REQUEST:
2847 drbd_send_ack_rp(peer_device, P_NEG_RS_DREPLY , p);
2848 break;
2849 case P_OV_REPLY:
2850 verb = 0;
2851 dec_rs_pending(peer_device);
2852 drbd_send_ack_ex(peer_device, P_OV_RESULT, sector, size, ID_IN_SYNC);
2853 break;
2854 default:
2855 BUG();
2856 }
2857 if (verb && drbd_ratelimit())
2858 drbd_err(device, "Can not satisfy peer's read request, "
2859 "no local data.\n");
2860
2861 /* drain possibly payload */
2862 return drbd_drain_block(peer_device, pi->size);
2863 }
2864
2865 /* GFP_NOIO, because we must not cause arbitrary write-out: in a DRBD
2866 * "criss-cross" setup, that might cause write-out on some other DRBD,
2867 * which in turn might block on the other node at this very place. */
2868 peer_req = drbd_alloc_peer_req(peer_device, p->block_id, sector, size,
2869 size, GFP_NOIO);
2870 if (!peer_req) {
2871 put_ldev(device);
2872 return -ENOMEM;
2873 }
2874 peer_req->opf = REQ_OP_READ;
2875
2876 switch (pi->cmd) {
2877 case P_DATA_REQUEST:
2878 peer_req->w.cb = w_e_end_data_req;
2879 /* application IO, don't drbd_rs_begin_io */
2880 peer_req->flags |= EE_APPLICATION;
2881 goto submit;
2882
2883 case P_RS_THIN_REQ:
2884 /* If at some point in the future we have a smart way to
2885 find out if this data block is completely deallocated,
2886 then we would do something smarter here than reading
2887 the block... */
2888 peer_req->flags |= EE_RS_THIN_REQ;
2889 fallthrough;
2890 case P_RS_DATA_REQUEST:
2891 peer_req->w.cb = w_e_end_rsdata_req;
2892 /* used in the sector offset progress display */
2893 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2894 break;
2895
2896 case P_OV_REPLY:
2897 case P_CSUM_RS_REQUEST:
2898 di = kmalloc(sizeof(*di) + pi->size, GFP_NOIO);
2899 if (!di)
2900 goto out_free_e;
2901
2902 di->digest_size = pi->size;
2903 di->digest = (((char *)di)+sizeof(struct digest_info));
2904
2905 peer_req->digest = di;
2906 peer_req->flags |= EE_HAS_DIGEST;
2907
2908 if (drbd_recv_all(peer_device->connection, di->digest, pi->size))
2909 goto out_free_e;
2910
2911 if (pi->cmd == P_CSUM_RS_REQUEST) {
2912 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
2913 peer_req->w.cb = w_e_end_csum_rs_req;
2914 /* used in the sector offset progress display */
2915 device->bm_resync_fo = BM_SECT_TO_BIT(sector);
2916 /* remember to report stats in drbd_resync_finished */
2917 device->use_csums = true;
2918 } else if (pi->cmd == P_OV_REPLY) {
2919 /* track progress, we may need to throttle */
2920 atomic_add(size >> 9, &device->rs_sect_in);
2921 peer_req->w.cb = w_e_end_ov_reply;
2922 dec_rs_pending(peer_device);
2923 /* drbd_rs_begin_io done when we sent this request,
2924 * but accounting still needs to be done. */
2925 goto submit_for_resync;
2926 }
2927 break;
2928
2929 case P_OV_REQUEST:
2930 if (device->ov_start_sector == ~(sector_t)0 &&
2931 peer_device->connection->agreed_pro_version >= 90) {
2932 unsigned long now = jiffies;
2933 int i;
2934 device->ov_start_sector = sector;
2935 device->ov_position = sector;
2936 device->ov_left = drbd_bm_bits(device) - BM_SECT_TO_BIT(sector);
2937 device->rs_total = device->ov_left;
2938 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2939 device->rs_mark_left[i] = device->ov_left;
2940 device->rs_mark_time[i] = now;
2941 }
2942 drbd_info(device, "Online Verify start sector: %llu\n",
2943 (unsigned long long)sector);
2944 }
2945 peer_req->w.cb = w_e_end_ov_req;
2946 break;
2947
2948 default:
2949 BUG();
2950 }
2951
2952 /* Throttle, drbd_rs_begin_io and submit should become asynchronous
2953 * wrt the receiver, but it is not as straightforward as it may seem.
2954 * Various places in the resync start and stop logic assume resync
2955 * requests are processed in order, requeuing this on the worker thread
2956 * introduces a bunch of new code for synchronization between threads.
2957 *
2958 * Unlimited throttling before drbd_rs_begin_io may stall the resync
2959 * "forever", throttling after drbd_rs_begin_io will lock that extent
2960 * for application writes for the same time. For now, just throttle
2961 * here, where the rest of the code expects the receiver to sleep for
2962 * a while, anyways.
2963 */
2964
2965 /* Throttle before drbd_rs_begin_io, as that locks out application IO;
2966 * this defers syncer requests for some time, before letting at least
2967 * on request through. The resync controller on the receiving side
2968 * will adapt to the incoming rate accordingly.
2969 *
2970 * We cannot throttle here if remote is Primary/SyncTarget:
2971 * we would also throttle its application reads.
2972 * In that case, throttling is done on the SyncTarget only.
2973 */
2974
2975 /* Even though this may be a resync request, we do add to "read_ee";
2976 * "sync_ee" is only used for resync WRITEs.
2977 * Add to list early, so debugfs can find this request
2978 * even if we have to sleep below. */
2979 spin_lock_irq(&device->resource->req_lock);
2980 list_add_tail(&peer_req->w.list, &device->read_ee);
2981 spin_unlock_irq(&device->resource->req_lock);
2982
2983 update_receiver_timing_details(connection, drbd_rs_should_slow_down);
2984 if (device->state.peer != R_PRIMARY
2985 && drbd_rs_should_slow_down(peer_device, sector, false))
2986 schedule_timeout_uninterruptible(HZ/10);
2987 update_receiver_timing_details(connection, drbd_rs_begin_io);
2988 if (drbd_rs_begin_io(device, sector))
2989 goto out_free_e;
2990
2991 submit_for_resync:
2992 atomic_add(size >> 9, &device->rs_sect_ev);
2993
2994 submit:
2995 update_receiver_timing_details(connection, drbd_submit_peer_request);
2996 inc_unacked(device);
2997 if (drbd_submit_peer_request(peer_req) == 0)
2998 return 0;
2999
3000 /* don't care for the reason here */
3001 drbd_err(device, "submit failed, triggering re-connect\n");
3002
3003 out_free_e:
3004 spin_lock_irq(&device->resource->req_lock);
3005 list_del(&peer_req->w.list);
3006 spin_unlock_irq(&device->resource->req_lock);
3007 /* no drbd_rs_complete_io(), we are dropping the connection anyways */
3008
3009 put_ldev(device);
3010 drbd_free_peer_req(device, peer_req);
3011 return -EIO;
3012 }
3013
3014 /*
3015 * drbd_asb_recover_0p - Recover after split-brain with no remaining primaries
3016 */
drbd_asb_recover_0p(struct drbd_peer_device * peer_device)3017 static int drbd_asb_recover_0p(struct drbd_peer_device *peer_device) __must_hold(local)
3018 {
3019 struct drbd_device *device = peer_device->device;
3020 int self, peer, rv = -100;
3021 unsigned long ch_self, ch_peer;
3022 enum drbd_after_sb_p after_sb_0p;
3023
3024 self = device->ldev->md.uuid[UI_BITMAP] & 1;
3025 peer = device->p_uuid[UI_BITMAP] & 1;
3026
3027 ch_peer = device->p_uuid[UI_SIZE];
3028 ch_self = device->comm_bm_set;
3029
3030 rcu_read_lock();
3031 after_sb_0p = rcu_dereference(peer_device->connection->net_conf)->after_sb_0p;
3032 rcu_read_unlock();
3033 switch (after_sb_0p) {
3034 case ASB_CONSENSUS:
3035 case ASB_DISCARD_SECONDARY:
3036 case ASB_CALL_HELPER:
3037 case ASB_VIOLENTLY:
3038 drbd_err(device, "Configuration error.\n");
3039 break;
3040 case ASB_DISCONNECT:
3041 break;
3042 case ASB_DISCARD_YOUNGER_PRI:
3043 if (self == 0 && peer == 1) {
3044 rv = -1;
3045 break;
3046 }
3047 if (self == 1 && peer == 0) {
3048 rv = 1;
3049 break;
3050 }
3051 fallthrough; /* to one of the other strategies */
3052 case ASB_DISCARD_OLDER_PRI:
3053 if (self == 0 && peer == 1) {
3054 rv = 1;
3055 break;
3056 }
3057 if (self == 1 && peer == 0) {
3058 rv = -1;
3059 break;
3060 }
3061 /* Else fall through to one of the other strategies... */
3062 drbd_warn(device, "Discard younger/older primary did not find a decision\n"
3063 "Using discard-least-changes instead\n");
3064 fallthrough;
3065 case ASB_DISCARD_ZERO_CHG:
3066 if (ch_peer == 0 && ch_self == 0) {
3067 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3068 ? -1 : 1;
3069 break;
3070 } else {
3071 if (ch_peer == 0) { rv = 1; break; }
3072 if (ch_self == 0) { rv = -1; break; }
3073 }
3074 if (after_sb_0p == ASB_DISCARD_ZERO_CHG)
3075 break;
3076 fallthrough;
3077 case ASB_DISCARD_LEAST_CHG:
3078 if (ch_self < ch_peer)
3079 rv = -1;
3080 else if (ch_self > ch_peer)
3081 rv = 1;
3082 else /* ( ch_self == ch_peer ) */
3083 /* Well, then use something else. */
3084 rv = test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags)
3085 ? -1 : 1;
3086 break;
3087 case ASB_DISCARD_LOCAL:
3088 rv = -1;
3089 break;
3090 case ASB_DISCARD_REMOTE:
3091 rv = 1;
3092 }
3093
3094 return rv;
3095 }
3096
3097 /*
3098 * drbd_asb_recover_1p - Recover after split-brain with one remaining primary
3099 */
drbd_asb_recover_1p(struct drbd_peer_device * peer_device)3100 static int drbd_asb_recover_1p(struct drbd_peer_device *peer_device) __must_hold(local)
3101 {
3102 struct drbd_device *device = peer_device->device;
3103 int hg, rv = -100;
3104 enum drbd_after_sb_p after_sb_1p;
3105
3106 rcu_read_lock();
3107 after_sb_1p = rcu_dereference(peer_device->connection->net_conf)->after_sb_1p;
3108 rcu_read_unlock();
3109 switch (after_sb_1p) {
3110 case ASB_DISCARD_YOUNGER_PRI:
3111 case ASB_DISCARD_OLDER_PRI:
3112 case ASB_DISCARD_LEAST_CHG:
3113 case ASB_DISCARD_LOCAL:
3114 case ASB_DISCARD_REMOTE:
3115 case ASB_DISCARD_ZERO_CHG:
3116 drbd_err(device, "Configuration error.\n");
3117 break;
3118 case ASB_DISCONNECT:
3119 break;
3120 case ASB_CONSENSUS:
3121 hg = drbd_asb_recover_0p(peer_device);
3122 if (hg == -1 && device->state.role == R_SECONDARY)
3123 rv = hg;
3124 if (hg == 1 && device->state.role == R_PRIMARY)
3125 rv = hg;
3126 break;
3127 case ASB_VIOLENTLY:
3128 rv = drbd_asb_recover_0p(peer_device);
3129 break;
3130 case ASB_DISCARD_SECONDARY:
3131 return device->state.role == R_PRIMARY ? 1 : -1;
3132 case ASB_CALL_HELPER:
3133 hg = drbd_asb_recover_0p(peer_device);
3134 if (hg == -1 && device->state.role == R_PRIMARY) {
3135 enum drbd_state_rv rv2;
3136
3137 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3138 * we might be here in C_WF_REPORT_PARAMS which is transient.
3139 * we do not need to wait for the after state change work either. */
3140 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3141 if (rv2 != SS_SUCCESS) {
3142 drbd_khelper(device, "pri-lost-after-sb");
3143 } else {
3144 drbd_warn(device, "Successfully gave up primary role.\n");
3145 rv = hg;
3146 }
3147 } else
3148 rv = hg;
3149 }
3150
3151 return rv;
3152 }
3153
3154 /*
3155 * drbd_asb_recover_2p - Recover after split-brain with two remaining primaries
3156 */
drbd_asb_recover_2p(struct drbd_peer_device * peer_device)3157 static int drbd_asb_recover_2p(struct drbd_peer_device *peer_device) __must_hold(local)
3158 {
3159 struct drbd_device *device = peer_device->device;
3160 int hg, rv = -100;
3161 enum drbd_after_sb_p after_sb_2p;
3162
3163 rcu_read_lock();
3164 after_sb_2p = rcu_dereference(peer_device->connection->net_conf)->after_sb_2p;
3165 rcu_read_unlock();
3166 switch (after_sb_2p) {
3167 case ASB_DISCARD_YOUNGER_PRI:
3168 case ASB_DISCARD_OLDER_PRI:
3169 case ASB_DISCARD_LEAST_CHG:
3170 case ASB_DISCARD_LOCAL:
3171 case ASB_DISCARD_REMOTE:
3172 case ASB_CONSENSUS:
3173 case ASB_DISCARD_SECONDARY:
3174 case ASB_DISCARD_ZERO_CHG:
3175 drbd_err(device, "Configuration error.\n");
3176 break;
3177 case ASB_VIOLENTLY:
3178 rv = drbd_asb_recover_0p(peer_device);
3179 break;
3180 case ASB_DISCONNECT:
3181 break;
3182 case ASB_CALL_HELPER:
3183 hg = drbd_asb_recover_0p(peer_device);
3184 if (hg == -1) {
3185 enum drbd_state_rv rv2;
3186
3187 /* drbd_change_state() does not sleep while in SS_IN_TRANSIENT_STATE,
3188 * we might be here in C_WF_REPORT_PARAMS which is transient.
3189 * we do not need to wait for the after state change work either. */
3190 rv2 = drbd_change_state(device, CS_VERBOSE, NS(role, R_SECONDARY));
3191 if (rv2 != SS_SUCCESS) {
3192 drbd_khelper(device, "pri-lost-after-sb");
3193 } else {
3194 drbd_warn(device, "Successfully gave up primary role.\n");
3195 rv = hg;
3196 }
3197 } else
3198 rv = hg;
3199 }
3200
3201 return rv;
3202 }
3203
drbd_uuid_dump(struct drbd_device * device,char * text,u64 * uuid,u64 bits,u64 flags)3204 static void drbd_uuid_dump(struct drbd_device *device, char *text, u64 *uuid,
3205 u64 bits, u64 flags)
3206 {
3207 if (!uuid) {
3208 drbd_info(device, "%s uuid info vanished while I was looking!\n", text);
3209 return;
3210 }
3211 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX bits:%llu flags:%llX\n",
3212 text,
3213 (unsigned long long)uuid[UI_CURRENT],
3214 (unsigned long long)uuid[UI_BITMAP],
3215 (unsigned long long)uuid[UI_HISTORY_START],
3216 (unsigned long long)uuid[UI_HISTORY_END],
3217 (unsigned long long)bits,
3218 (unsigned long long)flags);
3219 }
3220
3221 /*
3222 100 after split brain try auto recover
3223 2 C_SYNC_SOURCE set BitMap
3224 1 C_SYNC_SOURCE use BitMap
3225 0 no Sync
3226 -1 C_SYNC_TARGET use BitMap
3227 -2 C_SYNC_TARGET set BitMap
3228 -100 after split brain, disconnect
3229 -1000 unrelated data
3230 -1091 requires proto 91
3231 -1096 requires proto 96
3232 */
3233
drbd_uuid_compare(struct drbd_peer_device * const peer_device,enum drbd_role const peer_role,int * rule_nr)3234 static int drbd_uuid_compare(struct drbd_peer_device *const peer_device,
3235 enum drbd_role const peer_role, int *rule_nr) __must_hold(local)
3236 {
3237 struct drbd_connection *const connection = peer_device->connection;
3238 struct drbd_device *device = peer_device->device;
3239 u64 self, peer;
3240 int i, j;
3241
3242 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3243 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3244
3245 *rule_nr = 10;
3246 if (self == UUID_JUST_CREATED && peer == UUID_JUST_CREATED)
3247 return 0;
3248
3249 *rule_nr = 20;
3250 if ((self == UUID_JUST_CREATED || self == (u64)0) &&
3251 peer != UUID_JUST_CREATED)
3252 return -2;
3253
3254 *rule_nr = 30;
3255 if (self != UUID_JUST_CREATED &&
3256 (peer == UUID_JUST_CREATED || peer == (u64)0))
3257 return 2;
3258
3259 if (self == peer) {
3260 int rct, dc; /* roles at crash time */
3261
3262 if (device->p_uuid[UI_BITMAP] == (u64)0 && device->ldev->md.uuid[UI_BITMAP] != (u64)0) {
3263
3264 if (connection->agreed_pro_version < 91)
3265 return -1091;
3266
3267 if ((device->ldev->md.uuid[UI_BITMAP] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) &&
3268 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1))) {
3269 drbd_info(device, "was SyncSource, missed the resync finished event, corrected myself:\n");
3270 drbd_uuid_move_history(device);
3271 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3272 device->ldev->md.uuid[UI_BITMAP] = 0;
3273
3274 drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3275 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3276 *rule_nr = 34;
3277 } else {
3278 drbd_info(device, "was SyncSource (peer failed to write sync_uuid)\n");
3279 *rule_nr = 36;
3280 }
3281
3282 return 1;
3283 }
3284
3285 if (device->ldev->md.uuid[UI_BITMAP] == (u64)0 && device->p_uuid[UI_BITMAP] != (u64)0) {
3286
3287 if (connection->agreed_pro_version < 91)
3288 return -1091;
3289
3290 if ((device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) == (device->p_uuid[UI_BITMAP] & ~((u64)1)) &&
3291 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) == (device->p_uuid[UI_HISTORY_START] & ~((u64)1))) {
3292 drbd_info(device, "was SyncTarget, peer missed the resync finished event, corrected peer:\n");
3293
3294 device->p_uuid[UI_HISTORY_START + 1] = device->p_uuid[UI_HISTORY_START];
3295 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_BITMAP];
3296 device->p_uuid[UI_BITMAP] = 0UL;
3297
3298 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3299 *rule_nr = 35;
3300 } else {
3301 drbd_info(device, "was SyncTarget (failed to write sync_uuid)\n");
3302 *rule_nr = 37;
3303 }
3304
3305 return -1;
3306 }
3307
3308 /* Common power [off|failure] */
3309 rct = (test_bit(CRASHED_PRIMARY, &device->flags) ? 1 : 0) +
3310 (device->p_uuid[UI_FLAGS] & 2);
3311 /* lowest bit is set when we were primary,
3312 * next bit (weight 2) is set when peer was primary */
3313 *rule_nr = 40;
3314
3315 /* Neither has the "crashed primary" flag set,
3316 * only a replication link hickup. */
3317 if (rct == 0)
3318 return 0;
3319
3320 /* Current UUID equal and no bitmap uuid; does not necessarily
3321 * mean this was a "simultaneous hard crash", maybe IO was
3322 * frozen, so no UUID-bump happened.
3323 * This is a protocol change, overload DRBD_FF_WSAME as flag
3324 * for "new-enough" peer DRBD version. */
3325 if (device->state.role == R_PRIMARY || peer_role == R_PRIMARY) {
3326 *rule_nr = 41;
3327 if (!(connection->agreed_features & DRBD_FF_WSAME)) {
3328 drbd_warn(peer_device, "Equivalent unrotated UUIDs, but current primary present.\n");
3329 return -(0x10000 | PRO_VERSION_MAX | (DRBD_FF_WSAME << 8));
3330 }
3331 if (device->state.role == R_PRIMARY && peer_role == R_PRIMARY) {
3332 /* At least one has the "crashed primary" bit set,
3333 * both are primary now, but neither has rotated its UUIDs?
3334 * "Can not happen." */
3335 drbd_err(peer_device, "Equivalent unrotated UUIDs, but both are primary. Can not resolve this.\n");
3336 return -100;
3337 }
3338 if (device->state.role == R_PRIMARY)
3339 return 1;
3340 return -1;
3341 }
3342
3343 /* Both are secondary.
3344 * Really looks like recovery from simultaneous hard crash.
3345 * Check which had been primary before, and arbitrate. */
3346 switch (rct) {
3347 case 0: /* !self_pri && !peer_pri */ return 0; /* already handled */
3348 case 1: /* self_pri && !peer_pri */ return 1;
3349 case 2: /* !self_pri && peer_pri */ return -1;
3350 case 3: /* self_pri && peer_pri */
3351 dc = test_bit(RESOLVE_CONFLICTS, &connection->flags);
3352 return dc ? -1 : 1;
3353 }
3354 }
3355
3356 *rule_nr = 50;
3357 peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3358 if (self == peer)
3359 return -1;
3360
3361 *rule_nr = 51;
3362 peer = device->p_uuid[UI_HISTORY_START] & ~((u64)1);
3363 if (self == peer) {
3364 if (connection->agreed_pro_version < 96 ?
3365 (device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1)) ==
3366 (device->p_uuid[UI_HISTORY_START + 1] & ~((u64)1)) :
3367 peer + UUID_NEW_BM_OFFSET == (device->p_uuid[UI_BITMAP] & ~((u64)1))) {
3368 /* The last P_SYNC_UUID did not get though. Undo the last start of
3369 resync as sync source modifications of the peer's UUIDs. */
3370
3371 if (connection->agreed_pro_version < 91)
3372 return -1091;
3373
3374 device->p_uuid[UI_BITMAP] = device->p_uuid[UI_HISTORY_START];
3375 device->p_uuid[UI_HISTORY_START] = device->p_uuid[UI_HISTORY_START + 1];
3376
3377 drbd_info(device, "Lost last syncUUID packet, corrected:\n");
3378 drbd_uuid_dump(device, "peer", device->p_uuid, device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3379
3380 return -1;
3381 }
3382 }
3383
3384 *rule_nr = 60;
3385 self = device->ldev->md.uuid[UI_CURRENT] & ~((u64)1);
3386 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3387 peer = device->p_uuid[i] & ~((u64)1);
3388 if (self == peer)
3389 return -2;
3390 }
3391
3392 *rule_nr = 70;
3393 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3394 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3395 if (self == peer)
3396 return 1;
3397
3398 *rule_nr = 71;
3399 self = device->ldev->md.uuid[UI_HISTORY_START] & ~((u64)1);
3400 if (self == peer) {
3401 if (connection->agreed_pro_version < 96 ?
3402 (device->ldev->md.uuid[UI_HISTORY_START + 1] & ~((u64)1)) ==
3403 (device->p_uuid[UI_HISTORY_START] & ~((u64)1)) :
3404 self + UUID_NEW_BM_OFFSET == (device->ldev->md.uuid[UI_BITMAP] & ~((u64)1))) {
3405 /* The last P_SYNC_UUID did not get though. Undo the last start of
3406 resync as sync source modifications of our UUIDs. */
3407
3408 if (connection->agreed_pro_version < 91)
3409 return -1091;
3410
3411 __drbd_uuid_set(device, UI_BITMAP, device->ldev->md.uuid[UI_HISTORY_START]);
3412 __drbd_uuid_set(device, UI_HISTORY_START, device->ldev->md.uuid[UI_HISTORY_START + 1]);
3413
3414 drbd_info(device, "Last syncUUID did not get through, corrected:\n");
3415 drbd_uuid_dump(device, "self", device->ldev->md.uuid,
3416 device->state.disk >= D_NEGOTIATING ? drbd_bm_total_weight(device) : 0, 0);
3417
3418 return 1;
3419 }
3420 }
3421
3422
3423 *rule_nr = 80;
3424 peer = device->p_uuid[UI_CURRENT] & ~((u64)1);
3425 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3426 self = device->ldev->md.uuid[i] & ~((u64)1);
3427 if (self == peer)
3428 return 2;
3429 }
3430
3431 *rule_nr = 90;
3432 self = device->ldev->md.uuid[UI_BITMAP] & ~((u64)1);
3433 peer = device->p_uuid[UI_BITMAP] & ~((u64)1);
3434 if (self == peer && self != ((u64)0))
3435 return 100;
3436
3437 *rule_nr = 100;
3438 for (i = UI_HISTORY_START; i <= UI_HISTORY_END; i++) {
3439 self = device->ldev->md.uuid[i] & ~((u64)1);
3440 for (j = UI_HISTORY_START; j <= UI_HISTORY_END; j++) {
3441 peer = device->p_uuid[j] & ~((u64)1);
3442 if (self == peer)
3443 return -100;
3444 }
3445 }
3446
3447 return -1000;
3448 }
3449
3450 /* drbd_sync_handshake() returns the new conn state on success, or
3451 CONN_MASK (-1) on failure.
3452 */
drbd_sync_handshake(struct drbd_peer_device * peer_device,enum drbd_role peer_role,enum drbd_disk_state peer_disk)3453 static enum drbd_conns drbd_sync_handshake(struct drbd_peer_device *peer_device,
3454 enum drbd_role peer_role,
3455 enum drbd_disk_state peer_disk) __must_hold(local)
3456 {
3457 struct drbd_device *device = peer_device->device;
3458 enum drbd_conns rv = C_MASK;
3459 enum drbd_disk_state mydisk;
3460 struct net_conf *nc;
3461 int hg, rule_nr, rr_conflict, tentative, always_asbp;
3462
3463 mydisk = device->state.disk;
3464 if (mydisk == D_NEGOTIATING)
3465 mydisk = device->new_state_tmp.disk;
3466
3467 drbd_info(device, "drbd_sync_handshake:\n");
3468
3469 spin_lock_irq(&device->ldev->md.uuid_lock);
3470 drbd_uuid_dump(device, "self", device->ldev->md.uuid, device->comm_bm_set, 0);
3471 drbd_uuid_dump(device, "peer", device->p_uuid,
3472 device->p_uuid[UI_SIZE], device->p_uuid[UI_FLAGS]);
3473
3474 hg = drbd_uuid_compare(peer_device, peer_role, &rule_nr);
3475 spin_unlock_irq(&device->ldev->md.uuid_lock);
3476
3477 drbd_info(device, "uuid_compare()=%d by rule %d\n", hg, rule_nr);
3478
3479 if (hg == -1000) {
3480 drbd_alert(device, "Unrelated data, aborting!\n");
3481 return C_MASK;
3482 }
3483 if (hg < -0x10000) {
3484 int proto, fflags;
3485 hg = -hg;
3486 proto = hg & 0xff;
3487 fflags = (hg >> 8) & 0xff;
3488 drbd_alert(device, "To resolve this both sides have to support at least protocol %d and feature flags 0x%x\n",
3489 proto, fflags);
3490 return C_MASK;
3491 }
3492 if (hg < -1000) {
3493 drbd_alert(device, "To resolve this both sides have to support at least protocol %d\n", -hg - 1000);
3494 return C_MASK;
3495 }
3496
3497 if ((mydisk == D_INCONSISTENT && peer_disk > D_INCONSISTENT) ||
3498 (peer_disk == D_INCONSISTENT && mydisk > D_INCONSISTENT)) {
3499 int f = (hg == -100) || abs(hg) == 2;
3500 hg = mydisk > D_INCONSISTENT ? 1 : -1;
3501 if (f)
3502 hg = hg*2;
3503 drbd_info(device, "Becoming sync %s due to disk states.\n",
3504 hg > 0 ? "source" : "target");
3505 }
3506
3507 if (abs(hg) == 100)
3508 drbd_khelper(device, "initial-split-brain");
3509
3510 rcu_read_lock();
3511 nc = rcu_dereference(peer_device->connection->net_conf);
3512 always_asbp = nc->always_asbp;
3513 rr_conflict = nc->rr_conflict;
3514 tentative = nc->tentative;
3515 rcu_read_unlock();
3516
3517 if (hg == 100 || (hg == -100 && always_asbp)) {
3518 int pcount = (device->state.role == R_PRIMARY)
3519 + (peer_role == R_PRIMARY);
3520 int forced = (hg == -100);
3521
3522 switch (pcount) {
3523 case 0:
3524 hg = drbd_asb_recover_0p(peer_device);
3525 break;
3526 case 1:
3527 hg = drbd_asb_recover_1p(peer_device);
3528 break;
3529 case 2:
3530 hg = drbd_asb_recover_2p(peer_device);
3531 break;
3532 }
3533 if (abs(hg) < 100) {
3534 drbd_warn(device, "Split-Brain detected, %d primaries, "
3535 "automatically solved. Sync from %s node\n",
3536 pcount, (hg < 0) ? "peer" : "this");
3537 if (forced) {
3538 drbd_warn(device, "Doing a full sync, since"
3539 " UUIDs where ambiguous.\n");
3540 hg = hg*2;
3541 }
3542 }
3543 }
3544
3545 if (hg == -100) {
3546 if (test_bit(DISCARD_MY_DATA, &device->flags) && !(device->p_uuid[UI_FLAGS]&1))
3547 hg = -1;
3548 if (!test_bit(DISCARD_MY_DATA, &device->flags) && (device->p_uuid[UI_FLAGS]&1))
3549 hg = 1;
3550
3551 if (abs(hg) < 100)
3552 drbd_warn(device, "Split-Brain detected, manually solved. "
3553 "Sync from %s node\n",
3554 (hg < 0) ? "peer" : "this");
3555 }
3556
3557 if (hg == -100) {
3558 /* FIXME this log message is not correct if we end up here
3559 * after an attempted attach on a diskless node.
3560 * We just refuse to attach -- well, we drop the "connection"
3561 * to that disk, in a way... */
3562 drbd_alert(device, "Split-Brain detected but unresolved, dropping connection!\n");
3563 drbd_khelper(device, "split-brain");
3564 return C_MASK;
3565 }
3566
3567 if (hg > 0 && mydisk <= D_INCONSISTENT) {
3568 drbd_err(device, "I shall become SyncSource, but I am inconsistent!\n");
3569 return C_MASK;
3570 }
3571
3572 if (hg < 0 && /* by intention we do not use mydisk here. */
3573 device->state.role == R_PRIMARY && device->state.disk >= D_CONSISTENT) {
3574 switch (rr_conflict) {
3575 case ASB_CALL_HELPER:
3576 drbd_khelper(device, "pri-lost");
3577 fallthrough;
3578 case ASB_DISCONNECT:
3579 drbd_err(device, "I shall become SyncTarget, but I am primary!\n");
3580 return C_MASK;
3581 case ASB_VIOLENTLY:
3582 drbd_warn(device, "Becoming SyncTarget, violating the stable-data"
3583 "assumption\n");
3584 }
3585 }
3586
3587 if (tentative || test_bit(CONN_DRY_RUN, &peer_device->connection->flags)) {
3588 if (hg == 0)
3589 drbd_info(device, "dry-run connect: No resync, would become Connected immediately.\n");
3590 else
3591 drbd_info(device, "dry-run connect: Would become %s, doing a %s resync.",
3592 drbd_conn_str(hg > 0 ? C_SYNC_SOURCE : C_SYNC_TARGET),
3593 abs(hg) >= 2 ? "full" : "bit-map based");
3594 return C_MASK;
3595 }
3596
3597 if (abs(hg) >= 2) {
3598 drbd_info(device, "Writing the whole bitmap, full sync required after drbd_sync_handshake.\n");
3599 if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from sync_handshake",
3600 BM_LOCKED_SET_ALLOWED, NULL))
3601 return C_MASK;
3602 }
3603
3604 if (hg > 0) { /* become sync source. */
3605 rv = C_WF_BITMAP_S;
3606 } else if (hg < 0) { /* become sync target */
3607 rv = C_WF_BITMAP_T;
3608 } else {
3609 rv = C_CONNECTED;
3610 if (drbd_bm_total_weight(device)) {
3611 drbd_info(device, "No resync, but %lu bits in bitmap!\n",
3612 drbd_bm_total_weight(device));
3613 }
3614 }
3615
3616 return rv;
3617 }
3618
convert_after_sb(enum drbd_after_sb_p peer)3619 static enum drbd_after_sb_p convert_after_sb(enum drbd_after_sb_p peer)
3620 {
3621 /* ASB_DISCARD_REMOTE - ASB_DISCARD_LOCAL is valid */
3622 if (peer == ASB_DISCARD_REMOTE)
3623 return ASB_DISCARD_LOCAL;
3624
3625 /* any other things with ASB_DISCARD_REMOTE or ASB_DISCARD_LOCAL are invalid */
3626 if (peer == ASB_DISCARD_LOCAL)
3627 return ASB_DISCARD_REMOTE;
3628
3629 /* everything else is valid if they are equal on both sides. */
3630 return peer;
3631 }
3632
receive_protocol(struct drbd_connection * connection,struct packet_info * pi)3633 static int receive_protocol(struct drbd_connection *connection, struct packet_info *pi)
3634 {
3635 struct p_protocol *p = pi->data;
3636 enum drbd_after_sb_p p_after_sb_0p, p_after_sb_1p, p_after_sb_2p;
3637 int p_proto, p_discard_my_data, p_two_primaries, cf;
3638 struct net_conf *nc, *old_net_conf, *new_net_conf = NULL;
3639 char integrity_alg[SHARED_SECRET_MAX] = "";
3640 struct crypto_shash *peer_integrity_tfm = NULL;
3641 void *int_dig_in = NULL, *int_dig_vv = NULL;
3642
3643 p_proto = be32_to_cpu(p->protocol);
3644 p_after_sb_0p = be32_to_cpu(p->after_sb_0p);
3645 p_after_sb_1p = be32_to_cpu(p->after_sb_1p);
3646 p_after_sb_2p = be32_to_cpu(p->after_sb_2p);
3647 p_two_primaries = be32_to_cpu(p->two_primaries);
3648 cf = be32_to_cpu(p->conn_flags);
3649 p_discard_my_data = cf & CF_DISCARD_MY_DATA;
3650
3651 if (connection->agreed_pro_version >= 87) {
3652 int err;
3653
3654 if (pi->size > sizeof(integrity_alg))
3655 return -EIO;
3656 err = drbd_recv_all(connection, integrity_alg, pi->size);
3657 if (err)
3658 return err;
3659 integrity_alg[SHARED_SECRET_MAX - 1] = 0;
3660 }
3661
3662 if (pi->cmd != P_PROTOCOL_UPDATE) {
3663 clear_bit(CONN_DRY_RUN, &connection->flags);
3664
3665 if (cf & CF_DRY_RUN)
3666 set_bit(CONN_DRY_RUN, &connection->flags);
3667
3668 rcu_read_lock();
3669 nc = rcu_dereference(connection->net_conf);
3670
3671 if (p_proto != nc->wire_protocol) {
3672 drbd_err(connection, "incompatible %s settings\n", "protocol");
3673 goto disconnect_rcu_unlock;
3674 }
3675
3676 if (convert_after_sb(p_after_sb_0p) != nc->after_sb_0p) {
3677 drbd_err(connection, "incompatible %s settings\n", "after-sb-0pri");
3678 goto disconnect_rcu_unlock;
3679 }
3680
3681 if (convert_after_sb(p_after_sb_1p) != nc->after_sb_1p) {
3682 drbd_err(connection, "incompatible %s settings\n", "after-sb-1pri");
3683 goto disconnect_rcu_unlock;
3684 }
3685
3686 if (convert_after_sb(p_after_sb_2p) != nc->after_sb_2p) {
3687 drbd_err(connection, "incompatible %s settings\n", "after-sb-2pri");
3688 goto disconnect_rcu_unlock;
3689 }
3690
3691 if (p_discard_my_data && nc->discard_my_data) {
3692 drbd_err(connection, "incompatible %s settings\n", "discard-my-data");
3693 goto disconnect_rcu_unlock;
3694 }
3695
3696 if (p_two_primaries != nc->two_primaries) {
3697 drbd_err(connection, "incompatible %s settings\n", "allow-two-primaries");
3698 goto disconnect_rcu_unlock;
3699 }
3700
3701 if (strcmp(integrity_alg, nc->integrity_alg)) {
3702 drbd_err(connection, "incompatible %s settings\n", "data-integrity-alg");
3703 goto disconnect_rcu_unlock;
3704 }
3705
3706 rcu_read_unlock();
3707 }
3708
3709 if (integrity_alg[0]) {
3710 int hash_size;
3711
3712 /*
3713 * We can only change the peer data integrity algorithm
3714 * here. Changing our own data integrity algorithm
3715 * requires that we send a P_PROTOCOL_UPDATE packet at
3716 * the same time; otherwise, the peer has no way to
3717 * tell between which packets the algorithm should
3718 * change.
3719 */
3720
3721 peer_integrity_tfm = crypto_alloc_shash(integrity_alg, 0, 0);
3722 if (IS_ERR(peer_integrity_tfm)) {
3723 peer_integrity_tfm = NULL;
3724 drbd_err(connection, "peer data-integrity-alg %s not supported\n",
3725 integrity_alg);
3726 goto disconnect;
3727 }
3728
3729 hash_size = crypto_shash_digestsize(peer_integrity_tfm);
3730 int_dig_in = kmalloc(hash_size, GFP_KERNEL);
3731 int_dig_vv = kmalloc(hash_size, GFP_KERNEL);
3732 if (!(int_dig_in && int_dig_vv)) {
3733 drbd_err(connection, "Allocation of buffers for data integrity checking failed\n");
3734 goto disconnect;
3735 }
3736 }
3737
3738 new_net_conf = kmalloc(sizeof(struct net_conf), GFP_KERNEL);
3739 if (!new_net_conf)
3740 goto disconnect;
3741
3742 mutex_lock(&connection->data.mutex);
3743 mutex_lock(&connection->resource->conf_update);
3744 old_net_conf = connection->net_conf;
3745 *new_net_conf = *old_net_conf;
3746
3747 new_net_conf->wire_protocol = p_proto;
3748 new_net_conf->after_sb_0p = convert_after_sb(p_after_sb_0p);
3749 new_net_conf->after_sb_1p = convert_after_sb(p_after_sb_1p);
3750 new_net_conf->after_sb_2p = convert_after_sb(p_after_sb_2p);
3751 new_net_conf->two_primaries = p_two_primaries;
3752
3753 rcu_assign_pointer(connection->net_conf, new_net_conf);
3754 mutex_unlock(&connection->resource->conf_update);
3755 mutex_unlock(&connection->data.mutex);
3756
3757 crypto_free_shash(connection->peer_integrity_tfm);
3758 kfree(connection->int_dig_in);
3759 kfree(connection->int_dig_vv);
3760 connection->peer_integrity_tfm = peer_integrity_tfm;
3761 connection->int_dig_in = int_dig_in;
3762 connection->int_dig_vv = int_dig_vv;
3763
3764 if (strcmp(old_net_conf->integrity_alg, integrity_alg))
3765 drbd_info(connection, "peer data-integrity-alg: %s\n",
3766 integrity_alg[0] ? integrity_alg : "(none)");
3767
3768 kvfree_rcu_mightsleep(old_net_conf);
3769 return 0;
3770
3771 disconnect_rcu_unlock:
3772 rcu_read_unlock();
3773 disconnect:
3774 crypto_free_shash(peer_integrity_tfm);
3775 kfree(int_dig_in);
3776 kfree(int_dig_vv);
3777 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
3778 return -EIO;
3779 }
3780
3781 /* helper function
3782 * input: alg name, feature name
3783 * return: NULL (alg name was "")
3784 * ERR_PTR(error) if something goes wrong
3785 * or the crypto hash ptr, if it worked out ok. */
drbd_crypto_alloc_digest_safe(const struct drbd_device * device,const char * alg,const char * name)3786 static struct crypto_shash *drbd_crypto_alloc_digest_safe(
3787 const struct drbd_device *device,
3788 const char *alg, const char *name)
3789 {
3790 struct crypto_shash *tfm;
3791
3792 if (!alg[0])
3793 return NULL;
3794
3795 tfm = crypto_alloc_shash(alg, 0, 0);
3796 if (IS_ERR(tfm)) {
3797 drbd_err(device, "Can not allocate \"%s\" as %s (reason: %ld)\n",
3798 alg, name, PTR_ERR(tfm));
3799 return tfm;
3800 }
3801 return tfm;
3802 }
3803
ignore_remaining_packet(struct drbd_connection * connection,struct packet_info * pi)3804 static int ignore_remaining_packet(struct drbd_connection *connection, struct packet_info *pi)
3805 {
3806 void *buffer = connection->data.rbuf;
3807 int size = pi->size;
3808
3809 while (size) {
3810 int s = min_t(int, size, DRBD_SOCKET_BUFFER_SIZE);
3811 s = drbd_recv(connection, buffer, s);
3812 if (s <= 0) {
3813 if (s < 0)
3814 return s;
3815 break;
3816 }
3817 size -= s;
3818 }
3819 if (size)
3820 return -EIO;
3821 return 0;
3822 }
3823
3824 /*
3825 * config_unknown_volume - device configuration command for unknown volume
3826 *
3827 * When a device is added to an existing connection, the node on which the
3828 * device is added first will send configuration commands to its peer but the
3829 * peer will not know about the device yet. It will warn and ignore these
3830 * commands. Once the device is added on the second node, the second node will
3831 * send the same device configuration commands, but in the other direction.
3832 *
3833 * (We can also end up here if drbd is misconfigured.)
3834 */
config_unknown_volume(struct drbd_connection * connection,struct packet_info * pi)3835 static int config_unknown_volume(struct drbd_connection *connection, struct packet_info *pi)
3836 {
3837 drbd_warn(connection, "%s packet received for volume %u, which is not configured locally\n",
3838 cmdname(pi->cmd), pi->vnr);
3839 return ignore_remaining_packet(connection, pi);
3840 }
3841
receive_SyncParam(struct drbd_connection * connection,struct packet_info * pi)3842 static int receive_SyncParam(struct drbd_connection *connection, struct packet_info *pi)
3843 {
3844 struct drbd_peer_device *peer_device;
3845 struct drbd_device *device;
3846 struct p_rs_param_95 *p;
3847 unsigned int header_size, data_size, exp_max_sz;
3848 struct crypto_shash *verify_tfm = NULL;
3849 struct crypto_shash *csums_tfm = NULL;
3850 struct net_conf *old_net_conf, *new_net_conf = NULL;
3851 struct disk_conf *old_disk_conf = NULL, *new_disk_conf = NULL;
3852 const int apv = connection->agreed_pro_version;
3853 struct fifo_buffer *old_plan = NULL, *new_plan = NULL;
3854 unsigned int fifo_size = 0;
3855 int err;
3856
3857 peer_device = conn_peer_device(connection, pi->vnr);
3858 if (!peer_device)
3859 return config_unknown_volume(connection, pi);
3860 device = peer_device->device;
3861
3862 exp_max_sz = apv <= 87 ? sizeof(struct p_rs_param)
3863 : apv == 88 ? sizeof(struct p_rs_param)
3864 + SHARED_SECRET_MAX
3865 : apv <= 94 ? sizeof(struct p_rs_param_89)
3866 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
3867
3868 if (pi->size > exp_max_sz) {
3869 drbd_err(device, "SyncParam packet too long: received %u, expected <= %u bytes\n",
3870 pi->size, exp_max_sz);
3871 return -EIO;
3872 }
3873
3874 if (apv <= 88) {
3875 header_size = sizeof(struct p_rs_param);
3876 data_size = pi->size - header_size;
3877 } else if (apv <= 94) {
3878 header_size = sizeof(struct p_rs_param_89);
3879 data_size = pi->size - header_size;
3880 D_ASSERT(device, data_size == 0);
3881 } else {
3882 header_size = sizeof(struct p_rs_param_95);
3883 data_size = pi->size - header_size;
3884 D_ASSERT(device, data_size == 0);
3885 }
3886
3887 /* initialize verify_alg and csums_alg */
3888 p = pi->data;
3889 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
3890 memset(&p->algs, 0, sizeof(p->algs));
3891
3892 err = drbd_recv_all(peer_device->connection, p, header_size);
3893 if (err)
3894 return err;
3895
3896 mutex_lock(&connection->resource->conf_update);
3897 old_net_conf = peer_device->connection->net_conf;
3898 if (get_ldev(device)) {
3899 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
3900 if (!new_disk_conf) {
3901 put_ldev(device);
3902 mutex_unlock(&connection->resource->conf_update);
3903 drbd_err(device, "Allocation of new disk_conf failed\n");
3904 return -ENOMEM;
3905 }
3906
3907 old_disk_conf = device->ldev->disk_conf;
3908 *new_disk_conf = *old_disk_conf;
3909
3910 new_disk_conf->resync_rate = be32_to_cpu(p->resync_rate);
3911 }
3912
3913 if (apv >= 88) {
3914 if (apv == 88) {
3915 if (data_size > SHARED_SECRET_MAX || data_size == 0) {
3916 drbd_err(device, "verify-alg of wrong size, "
3917 "peer wants %u, accepting only up to %u byte\n",
3918 data_size, SHARED_SECRET_MAX);
3919 goto reconnect;
3920 }
3921
3922 err = drbd_recv_all(peer_device->connection, p->verify_alg, data_size);
3923 if (err)
3924 goto reconnect;
3925 /* we expect NUL terminated string */
3926 /* but just in case someone tries to be evil */
3927 D_ASSERT(device, p->verify_alg[data_size-1] == 0);
3928 p->verify_alg[data_size-1] = 0;
3929
3930 } else /* apv >= 89 */ {
3931 /* we still expect NUL terminated strings */
3932 /* but just in case someone tries to be evil */
3933 D_ASSERT(device, p->verify_alg[SHARED_SECRET_MAX-1] == 0);
3934 D_ASSERT(device, p->csums_alg[SHARED_SECRET_MAX-1] == 0);
3935 p->verify_alg[SHARED_SECRET_MAX-1] = 0;
3936 p->csums_alg[SHARED_SECRET_MAX-1] = 0;
3937 }
3938
3939 if (strcmp(old_net_conf->verify_alg, p->verify_alg)) {
3940 if (device->state.conn == C_WF_REPORT_PARAMS) {
3941 drbd_err(device, "Different verify-alg settings. me=\"%s\" peer=\"%s\"\n",
3942 old_net_conf->verify_alg, p->verify_alg);
3943 goto disconnect;
3944 }
3945 verify_tfm = drbd_crypto_alloc_digest_safe(device,
3946 p->verify_alg, "verify-alg");
3947 if (IS_ERR(verify_tfm)) {
3948 verify_tfm = NULL;
3949 goto disconnect;
3950 }
3951 }
3952
3953 if (apv >= 89 && strcmp(old_net_conf->csums_alg, p->csums_alg)) {
3954 if (device->state.conn == C_WF_REPORT_PARAMS) {
3955 drbd_err(device, "Different csums-alg settings. me=\"%s\" peer=\"%s\"\n",
3956 old_net_conf->csums_alg, p->csums_alg);
3957 goto disconnect;
3958 }
3959 csums_tfm = drbd_crypto_alloc_digest_safe(device,
3960 p->csums_alg, "csums-alg");
3961 if (IS_ERR(csums_tfm)) {
3962 csums_tfm = NULL;
3963 goto disconnect;
3964 }
3965 }
3966
3967 if (apv > 94 && new_disk_conf) {
3968 new_disk_conf->c_plan_ahead = be32_to_cpu(p->c_plan_ahead);
3969 new_disk_conf->c_delay_target = be32_to_cpu(p->c_delay_target);
3970 new_disk_conf->c_fill_target = be32_to_cpu(p->c_fill_target);
3971 new_disk_conf->c_max_rate = be32_to_cpu(p->c_max_rate);
3972
3973 fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ;
3974 if (fifo_size != device->rs_plan_s->size) {
3975 new_plan = fifo_alloc(fifo_size);
3976 if (!new_plan) {
3977 drbd_err(device, "kmalloc of fifo_buffer failed");
3978 put_ldev(device);
3979 goto disconnect;
3980 }
3981 }
3982 }
3983
3984 if (verify_tfm || csums_tfm) {
3985 new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL);
3986 if (!new_net_conf)
3987 goto disconnect;
3988
3989 *new_net_conf = *old_net_conf;
3990
3991 if (verify_tfm) {
3992 strcpy(new_net_conf->verify_alg, p->verify_alg);
3993 new_net_conf->verify_alg_len = strlen(p->verify_alg) + 1;
3994 crypto_free_shash(peer_device->connection->verify_tfm);
3995 peer_device->connection->verify_tfm = verify_tfm;
3996 drbd_info(device, "using verify-alg: \"%s\"\n", p->verify_alg);
3997 }
3998 if (csums_tfm) {
3999 strcpy(new_net_conf->csums_alg, p->csums_alg);
4000 new_net_conf->csums_alg_len = strlen(p->csums_alg) + 1;
4001 crypto_free_shash(peer_device->connection->csums_tfm);
4002 peer_device->connection->csums_tfm = csums_tfm;
4003 drbd_info(device, "using csums-alg: \"%s\"\n", p->csums_alg);
4004 }
4005 rcu_assign_pointer(connection->net_conf, new_net_conf);
4006 }
4007 }
4008
4009 if (new_disk_conf) {
4010 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4011 put_ldev(device);
4012 }
4013
4014 if (new_plan) {
4015 old_plan = device->rs_plan_s;
4016 rcu_assign_pointer(device->rs_plan_s, new_plan);
4017 }
4018
4019 mutex_unlock(&connection->resource->conf_update);
4020 synchronize_rcu();
4021 if (new_net_conf)
4022 kfree(old_net_conf);
4023 kfree(old_disk_conf);
4024 kfree(old_plan);
4025
4026 return 0;
4027
4028 reconnect:
4029 if (new_disk_conf) {
4030 put_ldev(device);
4031 kfree(new_disk_conf);
4032 }
4033 mutex_unlock(&connection->resource->conf_update);
4034 return -EIO;
4035
4036 disconnect:
4037 kfree(new_plan);
4038 if (new_disk_conf) {
4039 put_ldev(device);
4040 kfree(new_disk_conf);
4041 }
4042 mutex_unlock(&connection->resource->conf_update);
4043 /* just for completeness: actually not needed,
4044 * as this is not reached if csums_tfm was ok. */
4045 crypto_free_shash(csums_tfm);
4046 /* but free the verify_tfm again, if csums_tfm did not work out */
4047 crypto_free_shash(verify_tfm);
4048 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4049 return -EIO;
4050 }
4051
4052 /* warn if the arguments differ by more than 12.5% */
warn_if_differ_considerably(struct drbd_device * device,const char * s,sector_t a,sector_t b)4053 static void warn_if_differ_considerably(struct drbd_device *device,
4054 const char *s, sector_t a, sector_t b)
4055 {
4056 sector_t d;
4057 if (a == 0 || b == 0)
4058 return;
4059 d = (a > b) ? (a - b) : (b - a);
4060 if (d > (a>>3) || d > (b>>3))
4061 drbd_warn(device, "Considerable difference in %s: %llus vs. %llus\n", s,
4062 (unsigned long long)a, (unsigned long long)b);
4063 }
4064
receive_sizes(struct drbd_connection * connection,struct packet_info * pi)4065 static int receive_sizes(struct drbd_connection *connection, struct packet_info *pi)
4066 {
4067 struct drbd_peer_device *peer_device;
4068 struct drbd_device *device;
4069 struct p_sizes *p = pi->data;
4070 struct o_qlim *o = (connection->agreed_features & DRBD_FF_WSAME) ? p->qlim : NULL;
4071 enum determine_dev_size dd = DS_UNCHANGED;
4072 sector_t p_size, p_usize, p_csize, my_usize;
4073 sector_t new_size, cur_size;
4074 int ldsc = 0; /* local disk size changed */
4075 enum dds_flags ddsf;
4076
4077 peer_device = conn_peer_device(connection, pi->vnr);
4078 if (!peer_device)
4079 return config_unknown_volume(connection, pi);
4080 device = peer_device->device;
4081 cur_size = get_capacity(device->vdisk);
4082
4083 p_size = be64_to_cpu(p->d_size);
4084 p_usize = be64_to_cpu(p->u_size);
4085 p_csize = be64_to_cpu(p->c_size);
4086
4087 /* just store the peer's disk size for now.
4088 * we still need to figure out whether we accept that. */
4089 device->p_size = p_size;
4090
4091 if (get_ldev(device)) {
4092 rcu_read_lock();
4093 my_usize = rcu_dereference(device->ldev->disk_conf)->disk_size;
4094 rcu_read_unlock();
4095
4096 warn_if_differ_considerably(device, "lower level device sizes",
4097 p_size, drbd_get_max_capacity(device->ldev));
4098 warn_if_differ_considerably(device, "user requested size",
4099 p_usize, my_usize);
4100
4101 /* if this is the first connect, or an otherwise expected
4102 * param exchange, choose the minimum */
4103 if (device->state.conn == C_WF_REPORT_PARAMS)
4104 p_usize = min_not_zero(my_usize, p_usize);
4105
4106 /* Never shrink a device with usable data during connect,
4107 * or "attach" on the peer.
4108 * But allow online shrinking if we are connected. */
4109 new_size = drbd_new_dev_size(device, device->ldev, p_usize, 0);
4110 if (new_size < cur_size &&
4111 device->state.disk >= D_OUTDATED &&
4112 (device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS)) {
4113 drbd_err(device, "The peer's disk size is too small! (%llu < %llu sectors)\n",
4114 (unsigned long long)new_size, (unsigned long long)cur_size);
4115 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4116 put_ldev(device);
4117 return -EIO;
4118 }
4119
4120 if (my_usize != p_usize) {
4121 struct disk_conf *old_disk_conf, *new_disk_conf = NULL;
4122
4123 new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL);
4124 if (!new_disk_conf) {
4125 put_ldev(device);
4126 return -ENOMEM;
4127 }
4128
4129 mutex_lock(&connection->resource->conf_update);
4130 old_disk_conf = device->ldev->disk_conf;
4131 *new_disk_conf = *old_disk_conf;
4132 new_disk_conf->disk_size = p_usize;
4133
4134 rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf);
4135 mutex_unlock(&connection->resource->conf_update);
4136 kvfree_rcu_mightsleep(old_disk_conf);
4137
4138 drbd_info(device, "Peer sets u_size to %lu sectors (old: %lu)\n",
4139 (unsigned long)p_usize, (unsigned long)my_usize);
4140 }
4141
4142 put_ldev(device);
4143 }
4144
4145 device->peer_max_bio_size = be32_to_cpu(p->max_bio_size);
4146 /* Leave drbd_reconsider_queue_parameters() before drbd_determine_dev_size().
4147 In case we cleared the QUEUE_FLAG_DISCARD from our queue in
4148 drbd_reconsider_queue_parameters(), we can be sure that after
4149 drbd_determine_dev_size() no REQ_DISCARDs are in the queue. */
4150
4151 ddsf = be16_to_cpu(p->dds_flags);
4152 if (get_ldev(device)) {
4153 drbd_reconsider_queue_parameters(device, device->ldev, o);
4154 dd = drbd_determine_dev_size(device, ddsf, NULL);
4155 put_ldev(device);
4156 if (dd == DS_ERROR)
4157 return -EIO;
4158 drbd_md_sync(device);
4159 } else {
4160 /*
4161 * I am diskless, need to accept the peer's *current* size.
4162 * I must NOT accept the peers backing disk size,
4163 * it may have been larger than mine all along...
4164 *
4165 * At this point, the peer knows more about my disk, or at
4166 * least about what we last agreed upon, than myself.
4167 * So if his c_size is less than his d_size, the most likely
4168 * reason is that *my* d_size was smaller last time we checked.
4169 *
4170 * However, if he sends a zero current size,
4171 * take his (user-capped or) backing disk size anyways.
4172 *
4173 * Unless of course he does not have a disk himself.
4174 * In which case we ignore this completely.
4175 */
4176 sector_t new_size = p_csize ?: p_usize ?: p_size;
4177 drbd_reconsider_queue_parameters(device, NULL, o);
4178 if (new_size == 0) {
4179 /* Ignore, peer does not know nothing. */
4180 } else if (new_size == cur_size) {
4181 /* nothing to do */
4182 } else if (cur_size != 0 && p_size == 0) {
4183 drbd_warn(device, "Ignored diskless peer device size (peer:%llu != me:%llu sectors)!\n",
4184 (unsigned long long)new_size, (unsigned long long)cur_size);
4185 } else if (new_size < cur_size && device->state.role == R_PRIMARY) {
4186 drbd_err(device, "The peer's device size is too small! (%llu < %llu sectors); demote me first!\n",
4187 (unsigned long long)new_size, (unsigned long long)cur_size);
4188 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4189 return -EIO;
4190 } else {
4191 /* I believe the peer, if
4192 * - I don't have a current size myself
4193 * - we agree on the size anyways
4194 * - I do have a current size, am Secondary,
4195 * and he has the only disk
4196 * - I do have a current size, am Primary,
4197 * and he has the only disk,
4198 * which is larger than my current size
4199 */
4200 drbd_set_my_capacity(device, new_size);
4201 }
4202 }
4203
4204 if (get_ldev(device)) {
4205 if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) {
4206 device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev);
4207 ldsc = 1;
4208 }
4209
4210 put_ldev(device);
4211 }
4212
4213 if (device->state.conn > C_WF_REPORT_PARAMS) {
4214 if (be64_to_cpu(p->c_size) != get_capacity(device->vdisk) ||
4215 ldsc) {
4216 /* we have different sizes, probably peer
4217 * needs to know my new size... */
4218 drbd_send_sizes(peer_device, 0, ddsf);
4219 }
4220 if (test_and_clear_bit(RESIZE_PENDING, &device->flags) ||
4221 (dd == DS_GREW && device->state.conn == C_CONNECTED)) {
4222 if (device->state.pdsk >= D_INCONSISTENT &&
4223 device->state.disk >= D_INCONSISTENT) {
4224 if (ddsf & DDSF_NO_RESYNC)
4225 drbd_info(device, "Resync of new storage suppressed with --assume-clean\n");
4226 else
4227 resync_after_online_grow(device);
4228 } else
4229 set_bit(RESYNC_AFTER_NEG, &device->flags);
4230 }
4231 }
4232
4233 return 0;
4234 }
4235
receive_uuids(struct drbd_connection * connection,struct packet_info * pi)4236 static int receive_uuids(struct drbd_connection *connection, struct packet_info *pi)
4237 {
4238 struct drbd_peer_device *peer_device;
4239 struct drbd_device *device;
4240 struct p_uuids *p = pi->data;
4241 u64 *p_uuid;
4242 int i, updated_uuids = 0;
4243
4244 peer_device = conn_peer_device(connection, pi->vnr);
4245 if (!peer_device)
4246 return config_unknown_volume(connection, pi);
4247 device = peer_device->device;
4248
4249 p_uuid = kmalloc_array(UI_EXTENDED_SIZE, sizeof(*p_uuid), GFP_NOIO);
4250 if (!p_uuid)
4251 return false;
4252
4253 for (i = UI_CURRENT; i < UI_EXTENDED_SIZE; i++)
4254 p_uuid[i] = be64_to_cpu(p->uuid[i]);
4255
4256 kfree(device->p_uuid);
4257 device->p_uuid = p_uuid;
4258
4259 if ((device->state.conn < C_CONNECTED || device->state.pdsk == D_DISKLESS) &&
4260 device->state.disk < D_INCONSISTENT &&
4261 device->state.role == R_PRIMARY &&
4262 (device->ed_uuid & ~((u64)1)) != (p_uuid[UI_CURRENT] & ~((u64)1))) {
4263 drbd_err(device, "Can only connect to data with current UUID=%016llX\n",
4264 (unsigned long long)device->ed_uuid);
4265 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4266 return -EIO;
4267 }
4268
4269 if (get_ldev(device)) {
4270 int skip_initial_sync =
4271 device->state.conn == C_CONNECTED &&
4272 peer_device->connection->agreed_pro_version >= 90 &&
4273 device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED &&
4274 (p_uuid[UI_FLAGS] & 8);
4275 if (skip_initial_sync) {
4276 drbd_info(device, "Accepted new current UUID, preparing to skip initial sync\n");
4277 drbd_bitmap_io(device, &drbd_bmio_clear_n_write,
4278 "clear_n_write from receive_uuids",
4279 BM_LOCKED_TEST_ALLOWED, NULL);
4280 _drbd_uuid_set(device, UI_CURRENT, p_uuid[UI_CURRENT]);
4281 _drbd_uuid_set(device, UI_BITMAP, 0);
4282 _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE),
4283 CS_VERBOSE, NULL);
4284 drbd_md_sync(device);
4285 updated_uuids = 1;
4286 }
4287 put_ldev(device);
4288 } else if (device->state.disk < D_INCONSISTENT &&
4289 device->state.role == R_PRIMARY) {
4290 /* I am a diskless primary, the peer just created a new current UUID
4291 for me. */
4292 updated_uuids = drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4293 }
4294
4295 /* Before we test for the disk state, we should wait until an eventually
4296 ongoing cluster wide state change is finished. That is important if
4297 we are primary and are detaching from our disk. We need to see the
4298 new disk state... */
4299 mutex_lock(device->state_mutex);
4300 mutex_unlock(device->state_mutex);
4301 if (device->state.conn >= C_CONNECTED && device->state.disk < D_INCONSISTENT)
4302 updated_uuids |= drbd_set_ed_uuid(device, p_uuid[UI_CURRENT]);
4303
4304 if (updated_uuids)
4305 drbd_print_uuids(device, "receiver updated UUIDs to");
4306
4307 return 0;
4308 }
4309
4310 /**
4311 * convert_state() - Converts the peer's view of the cluster state to our point of view
4312 * @ps: The state as seen by the peer.
4313 */
convert_state(union drbd_state ps)4314 static union drbd_state convert_state(union drbd_state ps)
4315 {
4316 union drbd_state ms;
4317
4318 static enum drbd_conns c_tab[] = {
4319 [C_WF_REPORT_PARAMS] = C_WF_REPORT_PARAMS,
4320 [C_CONNECTED] = C_CONNECTED,
4321
4322 [C_STARTING_SYNC_S] = C_STARTING_SYNC_T,
4323 [C_STARTING_SYNC_T] = C_STARTING_SYNC_S,
4324 [C_DISCONNECTING] = C_TEAR_DOWN, /* C_NETWORK_FAILURE, */
4325 [C_VERIFY_S] = C_VERIFY_T,
4326 [C_MASK] = C_MASK,
4327 };
4328
4329 ms.i = ps.i;
4330
4331 ms.conn = c_tab[ps.conn];
4332 ms.peer = ps.role;
4333 ms.role = ps.peer;
4334 ms.pdsk = ps.disk;
4335 ms.disk = ps.pdsk;
4336 ms.peer_isp = (ps.aftr_isp | ps.user_isp);
4337
4338 return ms;
4339 }
4340
receive_req_state(struct drbd_connection * connection,struct packet_info * pi)4341 static int receive_req_state(struct drbd_connection *connection, struct packet_info *pi)
4342 {
4343 struct drbd_peer_device *peer_device;
4344 struct drbd_device *device;
4345 struct p_req_state *p = pi->data;
4346 union drbd_state mask, val;
4347 enum drbd_state_rv rv;
4348
4349 peer_device = conn_peer_device(connection, pi->vnr);
4350 if (!peer_device)
4351 return -EIO;
4352 device = peer_device->device;
4353
4354 mask.i = be32_to_cpu(p->mask);
4355 val.i = be32_to_cpu(p->val);
4356
4357 if (test_bit(RESOLVE_CONFLICTS, &peer_device->connection->flags) &&
4358 mutex_is_locked(device->state_mutex)) {
4359 drbd_send_sr_reply(peer_device, SS_CONCURRENT_ST_CHG);
4360 return 0;
4361 }
4362
4363 mask = convert_state(mask);
4364 val = convert_state(val);
4365
4366 rv = drbd_change_state(device, CS_VERBOSE, mask, val);
4367 drbd_send_sr_reply(peer_device, rv);
4368
4369 drbd_md_sync(device);
4370
4371 return 0;
4372 }
4373
receive_req_conn_state(struct drbd_connection * connection,struct packet_info * pi)4374 static int receive_req_conn_state(struct drbd_connection *connection, struct packet_info *pi)
4375 {
4376 struct p_req_state *p = pi->data;
4377 union drbd_state mask, val;
4378 enum drbd_state_rv rv;
4379
4380 mask.i = be32_to_cpu(p->mask);
4381 val.i = be32_to_cpu(p->val);
4382
4383 if (test_bit(RESOLVE_CONFLICTS, &connection->flags) &&
4384 mutex_is_locked(&connection->cstate_mutex)) {
4385 conn_send_sr_reply(connection, SS_CONCURRENT_ST_CHG);
4386 return 0;
4387 }
4388
4389 mask = convert_state(mask);
4390 val = convert_state(val);
4391
4392 rv = conn_request_state(connection, mask, val, CS_VERBOSE | CS_LOCAL_ONLY | CS_IGN_OUTD_FAIL);
4393 conn_send_sr_reply(connection, rv);
4394
4395 return 0;
4396 }
4397
receive_state(struct drbd_connection * connection,struct packet_info * pi)4398 static int receive_state(struct drbd_connection *connection, struct packet_info *pi)
4399 {
4400 struct drbd_peer_device *peer_device;
4401 struct drbd_device *device;
4402 struct p_state *p = pi->data;
4403 union drbd_state os, ns, peer_state;
4404 enum drbd_disk_state real_peer_disk;
4405 enum chg_state_flags cs_flags;
4406 int rv;
4407
4408 peer_device = conn_peer_device(connection, pi->vnr);
4409 if (!peer_device)
4410 return config_unknown_volume(connection, pi);
4411 device = peer_device->device;
4412
4413 peer_state.i = be32_to_cpu(p->state);
4414
4415 real_peer_disk = peer_state.disk;
4416 if (peer_state.disk == D_NEGOTIATING) {
4417 real_peer_disk = device->p_uuid[UI_FLAGS] & 4 ? D_INCONSISTENT : D_CONSISTENT;
4418 drbd_info(device, "real peer disk state = %s\n", drbd_disk_str(real_peer_disk));
4419 }
4420
4421 spin_lock_irq(&device->resource->req_lock);
4422 retry:
4423 os = ns = drbd_read_state(device);
4424 spin_unlock_irq(&device->resource->req_lock);
4425
4426 /* If some other part of the code (ack_receiver thread, timeout)
4427 * already decided to close the connection again,
4428 * we must not "re-establish" it here. */
4429 if (os.conn <= C_TEAR_DOWN)
4430 return -ECONNRESET;
4431
4432 /* If this is the "end of sync" confirmation, usually the peer disk
4433 * transitions from D_INCONSISTENT to D_UP_TO_DATE. For empty (0 bits
4434 * set) resync started in PausedSyncT, or if the timing of pause-/
4435 * unpause-sync events has been "just right", the peer disk may
4436 * transition from D_CONSISTENT to D_UP_TO_DATE as well.
4437 */
4438 if ((os.pdsk == D_INCONSISTENT || os.pdsk == D_CONSISTENT) &&
4439 real_peer_disk == D_UP_TO_DATE &&
4440 os.conn > C_CONNECTED && os.disk == D_UP_TO_DATE) {
4441 /* If we are (becoming) SyncSource, but peer is still in sync
4442 * preparation, ignore its uptodate-ness to avoid flapping, it
4443 * will change to inconsistent once the peer reaches active
4444 * syncing states.
4445 * It may have changed syncer-paused flags, however, so we
4446 * cannot ignore this completely. */
4447 if (peer_state.conn > C_CONNECTED &&
4448 peer_state.conn < C_SYNC_SOURCE)
4449 real_peer_disk = D_INCONSISTENT;
4450
4451 /* if peer_state changes to connected at the same time,
4452 * it explicitly notifies us that it finished resync.
4453 * Maybe we should finish it up, too? */
4454 else if (os.conn >= C_SYNC_SOURCE &&
4455 peer_state.conn == C_CONNECTED) {
4456 if (drbd_bm_total_weight(device) <= device->rs_failed)
4457 drbd_resync_finished(peer_device);
4458 return 0;
4459 }
4460 }
4461
4462 /* explicit verify finished notification, stop sector reached. */
4463 if (os.conn == C_VERIFY_T && os.disk == D_UP_TO_DATE &&
4464 peer_state.conn == C_CONNECTED && real_peer_disk == D_UP_TO_DATE) {
4465 ov_out_of_sync_print(peer_device);
4466 drbd_resync_finished(peer_device);
4467 return 0;
4468 }
4469
4470 /* peer says his disk is inconsistent, while we think it is uptodate,
4471 * and this happens while the peer still thinks we have a sync going on,
4472 * but we think we are already done with the sync.
4473 * We ignore this to avoid flapping pdsk.
4474 * This should not happen, if the peer is a recent version of drbd. */
4475 if (os.pdsk == D_UP_TO_DATE && real_peer_disk == D_INCONSISTENT &&
4476 os.conn == C_CONNECTED && peer_state.conn > C_SYNC_SOURCE)
4477 real_peer_disk = D_UP_TO_DATE;
4478
4479 if (ns.conn == C_WF_REPORT_PARAMS)
4480 ns.conn = C_CONNECTED;
4481
4482 if (peer_state.conn == C_AHEAD)
4483 ns.conn = C_BEHIND;
4484
4485 /* TODO:
4486 * if (primary and diskless and peer uuid != effective uuid)
4487 * abort attach on peer;
4488 *
4489 * If this node does not have good data, was already connected, but
4490 * the peer did a late attach only now, trying to "negotiate" with me,
4491 * AND I am currently Primary, possibly frozen, with some specific
4492 * "effective" uuid, this should never be reached, really, because
4493 * we first send the uuids, then the current state.
4494 *
4495 * In this scenario, we already dropped the connection hard
4496 * when we received the unsuitable uuids (receive_uuids().
4497 *
4498 * Should we want to change this, that is: not drop the connection in
4499 * receive_uuids() already, then we would need to add a branch here
4500 * that aborts the attach of "unsuitable uuids" on the peer in case
4501 * this node is currently Diskless Primary.
4502 */
4503
4504 if (device->p_uuid && peer_state.disk >= D_NEGOTIATING &&
4505 get_ldev_if_state(device, D_NEGOTIATING)) {
4506 int cr; /* consider resync */
4507
4508 /* if we established a new connection */
4509 cr = (os.conn < C_CONNECTED);
4510 /* if we had an established connection
4511 * and one of the nodes newly attaches a disk */
4512 cr |= (os.conn == C_CONNECTED &&
4513 (peer_state.disk == D_NEGOTIATING ||
4514 os.disk == D_NEGOTIATING));
4515 /* if we have both been inconsistent, and the peer has been
4516 * forced to be UpToDate with --force */
4517 cr |= test_bit(CONSIDER_RESYNC, &device->flags);
4518 /* if we had been plain connected, and the admin requested to
4519 * start a sync by "invalidate" or "invalidate-remote" */
4520 cr |= (os.conn == C_CONNECTED &&
4521 (peer_state.conn >= C_STARTING_SYNC_S &&
4522 peer_state.conn <= C_WF_BITMAP_T));
4523
4524 if (cr)
4525 ns.conn = drbd_sync_handshake(peer_device, peer_state.role, real_peer_disk);
4526
4527 put_ldev(device);
4528 if (ns.conn == C_MASK) {
4529 ns.conn = C_CONNECTED;
4530 if (device->state.disk == D_NEGOTIATING) {
4531 drbd_force_state(device, NS(disk, D_FAILED));
4532 } else if (peer_state.disk == D_NEGOTIATING) {
4533 drbd_err(device, "Disk attach process on the peer node was aborted.\n");
4534 peer_state.disk = D_DISKLESS;
4535 real_peer_disk = D_DISKLESS;
4536 } else {
4537 if (test_and_clear_bit(CONN_DRY_RUN, &peer_device->connection->flags))
4538 return -EIO;
4539 D_ASSERT(device, os.conn == C_WF_REPORT_PARAMS);
4540 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4541 return -EIO;
4542 }
4543 }
4544 }
4545
4546 spin_lock_irq(&device->resource->req_lock);
4547 if (os.i != drbd_read_state(device).i)
4548 goto retry;
4549 clear_bit(CONSIDER_RESYNC, &device->flags);
4550 ns.peer = peer_state.role;
4551 ns.pdsk = real_peer_disk;
4552 ns.peer_isp = (peer_state.aftr_isp | peer_state.user_isp);
4553 if ((ns.conn == C_CONNECTED || ns.conn == C_WF_BITMAP_S) && ns.disk == D_NEGOTIATING)
4554 ns.disk = device->new_state_tmp.disk;
4555 cs_flags = CS_VERBOSE + (os.conn < C_CONNECTED && ns.conn >= C_CONNECTED ? 0 : CS_HARD);
4556 if (ns.pdsk == D_CONSISTENT && drbd_suspended(device) && ns.conn == C_CONNECTED && os.conn < C_CONNECTED &&
4557 test_bit(NEW_CUR_UUID, &device->flags)) {
4558 /* Do not allow tl_restart(RESEND) for a rebooted peer. We can only allow this
4559 for temporal network outages! */
4560 spin_unlock_irq(&device->resource->req_lock);
4561 drbd_err(device, "Aborting Connect, can not thaw IO with an only Consistent peer\n");
4562 tl_clear(peer_device->connection);
4563 drbd_uuid_new_current(device);
4564 clear_bit(NEW_CUR_UUID, &device->flags);
4565 conn_request_state(peer_device->connection, NS2(conn, C_PROTOCOL_ERROR, susp, 0), CS_HARD);
4566 return -EIO;
4567 }
4568 rv = _drbd_set_state(device, ns, cs_flags, NULL);
4569 ns = drbd_read_state(device);
4570 spin_unlock_irq(&device->resource->req_lock);
4571
4572 if (rv < SS_SUCCESS) {
4573 conn_request_state(peer_device->connection, NS(conn, C_DISCONNECTING), CS_HARD);
4574 return -EIO;
4575 }
4576
4577 if (os.conn > C_WF_REPORT_PARAMS) {
4578 if (ns.conn > C_CONNECTED && peer_state.conn <= C_CONNECTED &&
4579 peer_state.disk != D_NEGOTIATING ) {
4580 /* we want resync, peer has not yet decided to sync... */
4581 /* Nowadays only used when forcing a node into primary role and
4582 setting its disk to UpToDate with that */
4583 drbd_send_uuids(peer_device);
4584 drbd_send_current_state(peer_device);
4585 }
4586 }
4587
4588 clear_bit(DISCARD_MY_DATA, &device->flags);
4589
4590 drbd_md_sync(device); /* update connected indicator, la_size_sect, ... */
4591
4592 return 0;
4593 }
4594
receive_sync_uuid(struct drbd_connection * connection,struct packet_info * pi)4595 static int receive_sync_uuid(struct drbd_connection *connection, struct packet_info *pi)
4596 {
4597 struct drbd_peer_device *peer_device;
4598 struct drbd_device *device;
4599 struct p_rs_uuid *p = pi->data;
4600
4601 peer_device = conn_peer_device(connection, pi->vnr);
4602 if (!peer_device)
4603 return -EIO;
4604 device = peer_device->device;
4605
4606 wait_event(device->misc_wait,
4607 device->state.conn == C_WF_SYNC_UUID ||
4608 device->state.conn == C_BEHIND ||
4609 device->state.conn < C_CONNECTED ||
4610 device->state.disk < D_NEGOTIATING);
4611
4612 /* D_ASSERT(device, device->state.conn == C_WF_SYNC_UUID ); */
4613
4614 /* Here the _drbd_uuid_ functions are right, current should
4615 _not_ be rotated into the history */
4616 if (get_ldev_if_state(device, D_NEGOTIATING)) {
4617 _drbd_uuid_set(device, UI_CURRENT, be64_to_cpu(p->uuid));
4618 _drbd_uuid_set(device, UI_BITMAP, 0UL);
4619
4620 drbd_print_uuids(device, "updated sync uuid");
4621 drbd_start_resync(device, C_SYNC_TARGET);
4622
4623 put_ldev(device);
4624 } else
4625 drbd_err(device, "Ignoring SyncUUID packet!\n");
4626
4627 return 0;
4628 }
4629
4630 /*
4631 * receive_bitmap_plain
4632 *
4633 * Return 0 when done, 1 when another iteration is needed, and a negative error
4634 * code upon failure.
4635 */
4636 static int
receive_bitmap_plain(struct drbd_peer_device * peer_device,unsigned int size,unsigned long * p,struct bm_xfer_ctx * c)4637 receive_bitmap_plain(struct drbd_peer_device *peer_device, unsigned int size,
4638 unsigned long *p, struct bm_xfer_ctx *c)
4639 {
4640 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE -
4641 drbd_header_size(peer_device->connection);
4642 unsigned int num_words = min_t(size_t, data_size / sizeof(*p),
4643 c->bm_words - c->word_offset);
4644 unsigned int want = num_words * sizeof(*p);
4645 int err;
4646
4647 if (want != size) {
4648 drbd_err(peer_device, "%s:want (%u) != size (%u)\n", __func__, want, size);
4649 return -EIO;
4650 }
4651 if (want == 0)
4652 return 0;
4653 err = drbd_recv_all(peer_device->connection, p, want);
4654 if (err)
4655 return err;
4656
4657 drbd_bm_merge_lel(peer_device->device, c->word_offset, num_words, p);
4658
4659 c->word_offset += num_words;
4660 c->bit_offset = c->word_offset * BITS_PER_LONG;
4661 if (c->bit_offset > c->bm_bits)
4662 c->bit_offset = c->bm_bits;
4663
4664 return 1;
4665 }
4666
dcbp_get_code(struct p_compressed_bm * p)4667 static enum drbd_bitmap_code dcbp_get_code(struct p_compressed_bm *p)
4668 {
4669 return (enum drbd_bitmap_code)(p->encoding & 0x0f);
4670 }
4671
dcbp_get_start(struct p_compressed_bm * p)4672 static int dcbp_get_start(struct p_compressed_bm *p)
4673 {
4674 return (p->encoding & 0x80) != 0;
4675 }
4676
dcbp_get_pad_bits(struct p_compressed_bm * p)4677 static int dcbp_get_pad_bits(struct p_compressed_bm *p)
4678 {
4679 return (p->encoding >> 4) & 0x7;
4680 }
4681
4682 /*
4683 * recv_bm_rle_bits
4684 *
4685 * Return 0 when done, 1 when another iteration is needed, and a negative error
4686 * code upon failure.
4687 */
4688 static int
recv_bm_rle_bits(struct drbd_peer_device * peer_device,struct p_compressed_bm * p,struct bm_xfer_ctx * c,unsigned int len)4689 recv_bm_rle_bits(struct drbd_peer_device *peer_device,
4690 struct p_compressed_bm *p,
4691 struct bm_xfer_ctx *c,
4692 unsigned int len)
4693 {
4694 struct bitstream bs;
4695 u64 look_ahead;
4696 u64 rl;
4697 u64 tmp;
4698 unsigned long s = c->bit_offset;
4699 unsigned long e;
4700 int toggle = dcbp_get_start(p);
4701 int have;
4702 int bits;
4703
4704 bitstream_init(&bs, p->code, len, dcbp_get_pad_bits(p));
4705
4706 bits = bitstream_get_bits(&bs, &look_ahead, 64);
4707 if (bits < 0)
4708 return -EIO;
4709
4710 for (have = bits; have > 0; s += rl, toggle = !toggle) {
4711 bits = vli_decode_bits(&rl, look_ahead);
4712 if (bits <= 0)
4713 return -EIO;
4714
4715 if (toggle) {
4716 e = s + rl -1;
4717 if (e >= c->bm_bits) {
4718 drbd_err(peer_device, "bitmap overflow (e:%lu) while decoding bm RLE packet\n", e);
4719 return -EIO;
4720 }
4721 _drbd_bm_set_bits(peer_device->device, s, e);
4722 }
4723
4724 if (have < bits) {
4725 drbd_err(peer_device, "bitmap decoding error: h:%d b:%d la:0x%08llx l:%u/%u\n",
4726 have, bits, look_ahead,
4727 (unsigned int)(bs.cur.b - p->code),
4728 (unsigned int)bs.buf_len);
4729 return -EIO;
4730 }
4731 /* if we consumed all 64 bits, assign 0; >> 64 is "undefined"; */
4732 if (likely(bits < 64))
4733 look_ahead >>= bits;
4734 else
4735 look_ahead = 0;
4736 have -= bits;
4737
4738 bits = bitstream_get_bits(&bs, &tmp, 64 - have);
4739 if (bits < 0)
4740 return -EIO;
4741 look_ahead |= tmp << have;
4742 have += bits;
4743 }
4744
4745 c->bit_offset = s;
4746 bm_xfer_ctx_bit_to_word_offset(c);
4747
4748 return (s != c->bm_bits);
4749 }
4750
4751 /*
4752 * decode_bitmap_c
4753 *
4754 * Return 0 when done, 1 when another iteration is needed, and a negative error
4755 * code upon failure.
4756 */
4757 static int
decode_bitmap_c(struct drbd_peer_device * peer_device,struct p_compressed_bm * p,struct bm_xfer_ctx * c,unsigned int len)4758 decode_bitmap_c(struct drbd_peer_device *peer_device,
4759 struct p_compressed_bm *p,
4760 struct bm_xfer_ctx *c,
4761 unsigned int len)
4762 {
4763 if (dcbp_get_code(p) == RLE_VLI_Bits)
4764 return recv_bm_rle_bits(peer_device, p, c, len - sizeof(*p));
4765
4766 /* other variants had been implemented for evaluation,
4767 * but have been dropped as this one turned out to be "best"
4768 * during all our tests. */
4769
4770 drbd_err(peer_device, "receive_bitmap_c: unknown encoding %u\n", p->encoding);
4771 conn_request_state(peer_device->connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
4772 return -EIO;
4773 }
4774
INFO_bm_xfer_stats(struct drbd_peer_device * peer_device,const char * direction,struct bm_xfer_ctx * c)4775 void INFO_bm_xfer_stats(struct drbd_peer_device *peer_device,
4776 const char *direction, struct bm_xfer_ctx *c)
4777 {
4778 /* what would it take to transfer it "plaintext" */
4779 unsigned int header_size = drbd_header_size(peer_device->connection);
4780 unsigned int data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
4781 unsigned int plain =
4782 header_size * (DIV_ROUND_UP(c->bm_words, data_size) + 1) +
4783 c->bm_words * sizeof(unsigned long);
4784 unsigned int total = c->bytes[0] + c->bytes[1];
4785 unsigned int r;
4786
4787 /* total can not be zero. but just in case: */
4788 if (total == 0)
4789 return;
4790
4791 /* don't report if not compressed */
4792 if (total >= plain)
4793 return;
4794
4795 /* total < plain. check for overflow, still */
4796 r = (total > UINT_MAX/1000) ? (total / (plain/1000))
4797 : (1000 * total / plain);
4798
4799 if (r > 1000)
4800 r = 1000;
4801
4802 r = 1000 - r;
4803 drbd_info(peer_device, "%s bitmap stats [Bytes(packets)]: plain %u(%u), RLE %u(%u), "
4804 "total %u; compression: %u.%u%%\n",
4805 direction,
4806 c->bytes[1], c->packets[1],
4807 c->bytes[0], c->packets[0],
4808 total, r/10, r % 10);
4809 }
4810
4811 /* Since we are processing the bitfield from lower addresses to higher,
4812 it does not matter if the process it in 32 bit chunks or 64 bit
4813 chunks as long as it is little endian. (Understand it as byte stream,
4814 beginning with the lowest byte...) If we would use big endian
4815 we would need to process it from the highest address to the lowest,
4816 in order to be agnostic to the 32 vs 64 bits issue.
4817
4818 returns 0 on failure, 1 if we successfully received it. */
receive_bitmap(struct drbd_connection * connection,struct packet_info * pi)4819 static int receive_bitmap(struct drbd_connection *connection, struct packet_info *pi)
4820 {
4821 struct drbd_peer_device *peer_device;
4822 struct drbd_device *device;
4823 struct bm_xfer_ctx c;
4824 int err;
4825
4826 peer_device = conn_peer_device(connection, pi->vnr);
4827 if (!peer_device)
4828 return -EIO;
4829 device = peer_device->device;
4830
4831 drbd_bm_lock(device, "receive bitmap", BM_LOCKED_SET_ALLOWED);
4832 /* you are supposed to send additional out-of-sync information
4833 * if you actually set bits during this phase */
4834
4835 c = (struct bm_xfer_ctx) {
4836 .bm_bits = drbd_bm_bits(device),
4837 .bm_words = drbd_bm_words(device),
4838 };
4839
4840 for(;;) {
4841 if (pi->cmd == P_BITMAP)
4842 err = receive_bitmap_plain(peer_device, pi->size, pi->data, &c);
4843 else if (pi->cmd == P_COMPRESSED_BITMAP) {
4844 /* MAYBE: sanity check that we speak proto >= 90,
4845 * and the feature is enabled! */
4846 struct p_compressed_bm *p = pi->data;
4847
4848 if (pi->size > DRBD_SOCKET_BUFFER_SIZE - drbd_header_size(connection)) {
4849 drbd_err(device, "ReportCBitmap packet too large\n");
4850 err = -EIO;
4851 goto out;
4852 }
4853 if (pi->size <= sizeof(*p)) {
4854 drbd_err(device, "ReportCBitmap packet too small (l:%u)\n", pi->size);
4855 err = -EIO;
4856 goto out;
4857 }
4858 err = drbd_recv_all(peer_device->connection, p, pi->size);
4859 if (err)
4860 goto out;
4861 err = decode_bitmap_c(peer_device, p, &c, pi->size);
4862 } else {
4863 drbd_warn(device, "receive_bitmap: cmd neither ReportBitMap nor ReportCBitMap (is 0x%x)", pi->cmd);
4864 err = -EIO;
4865 goto out;
4866 }
4867
4868 c.packets[pi->cmd == P_BITMAP]++;
4869 c.bytes[pi->cmd == P_BITMAP] += drbd_header_size(connection) + pi->size;
4870
4871 if (err <= 0) {
4872 if (err < 0)
4873 goto out;
4874 break;
4875 }
4876 err = drbd_recv_header(peer_device->connection, pi);
4877 if (err)
4878 goto out;
4879 }
4880
4881 INFO_bm_xfer_stats(peer_device, "receive", &c);
4882
4883 if (device->state.conn == C_WF_BITMAP_T) {
4884 enum drbd_state_rv rv;
4885
4886 err = drbd_send_bitmap(device, peer_device);
4887 if (err)
4888 goto out;
4889 /* Omit CS_ORDERED with this state transition to avoid deadlocks. */
4890 rv = _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE);
4891 D_ASSERT(device, rv == SS_SUCCESS);
4892 } else if (device->state.conn != C_WF_BITMAP_S) {
4893 /* admin may have requested C_DISCONNECTING,
4894 * other threads may have noticed network errors */
4895 drbd_info(device, "unexpected cstate (%s) in receive_bitmap\n",
4896 drbd_conn_str(device->state.conn));
4897 }
4898 err = 0;
4899
4900 out:
4901 drbd_bm_unlock(device);
4902 if (!err && device->state.conn == C_WF_BITMAP_S)
4903 drbd_start_resync(device, C_SYNC_SOURCE);
4904 return err;
4905 }
4906
receive_skip(struct drbd_connection * connection,struct packet_info * pi)4907 static int receive_skip(struct drbd_connection *connection, struct packet_info *pi)
4908 {
4909 drbd_warn(connection, "skipping unknown optional packet type %d, l: %d!\n",
4910 pi->cmd, pi->size);
4911
4912 return ignore_remaining_packet(connection, pi);
4913 }
4914
receive_UnplugRemote(struct drbd_connection * connection,struct packet_info * pi)4915 static int receive_UnplugRemote(struct drbd_connection *connection, struct packet_info *pi)
4916 {
4917 /* Make sure we've acked all the TCP data associated
4918 * with the data requests being unplugged */
4919 tcp_sock_set_quickack(connection->data.socket->sk, 2);
4920 return 0;
4921 }
4922
receive_out_of_sync(struct drbd_connection * connection,struct packet_info * pi)4923 static int receive_out_of_sync(struct drbd_connection *connection, struct packet_info *pi)
4924 {
4925 struct drbd_peer_device *peer_device;
4926 struct drbd_device *device;
4927 struct p_block_desc *p = pi->data;
4928
4929 peer_device = conn_peer_device(connection, pi->vnr);
4930 if (!peer_device)
4931 return -EIO;
4932 device = peer_device->device;
4933
4934 switch (device->state.conn) {
4935 case C_WF_SYNC_UUID:
4936 case C_WF_BITMAP_T:
4937 case C_BEHIND:
4938 break;
4939 default:
4940 drbd_err(device, "ASSERT FAILED cstate = %s, expected: WFSyncUUID|WFBitMapT|Behind\n",
4941 drbd_conn_str(device->state.conn));
4942 }
4943
4944 drbd_set_out_of_sync(peer_device, be64_to_cpu(p->sector), be32_to_cpu(p->blksize));
4945
4946 return 0;
4947 }
4948
receive_rs_deallocated(struct drbd_connection * connection,struct packet_info * pi)4949 static int receive_rs_deallocated(struct drbd_connection *connection, struct packet_info *pi)
4950 {
4951 struct drbd_peer_device *peer_device;
4952 struct p_block_desc *p = pi->data;
4953 struct drbd_device *device;
4954 sector_t sector;
4955 int size, err = 0;
4956
4957 peer_device = conn_peer_device(connection, pi->vnr);
4958 if (!peer_device)
4959 return -EIO;
4960 device = peer_device->device;
4961
4962 sector = be64_to_cpu(p->sector);
4963 size = be32_to_cpu(p->blksize);
4964
4965 dec_rs_pending(peer_device);
4966
4967 if (get_ldev(device)) {
4968 struct drbd_peer_request *peer_req;
4969
4970 peer_req = drbd_alloc_peer_req(peer_device, ID_SYNCER, sector,
4971 size, 0, GFP_NOIO);
4972 if (!peer_req) {
4973 put_ldev(device);
4974 return -ENOMEM;
4975 }
4976
4977 peer_req->w.cb = e_end_resync_block;
4978 peer_req->opf = REQ_OP_DISCARD;
4979 peer_req->submit_jif = jiffies;
4980 peer_req->flags |= EE_TRIM;
4981
4982 spin_lock_irq(&device->resource->req_lock);
4983 list_add_tail(&peer_req->w.list, &device->sync_ee);
4984 spin_unlock_irq(&device->resource->req_lock);
4985
4986 atomic_add(pi->size >> 9, &device->rs_sect_ev);
4987 err = drbd_submit_peer_request(peer_req);
4988
4989 if (err) {
4990 spin_lock_irq(&device->resource->req_lock);
4991 list_del(&peer_req->w.list);
4992 spin_unlock_irq(&device->resource->req_lock);
4993
4994 drbd_free_peer_req(device, peer_req);
4995 put_ldev(device);
4996 err = 0;
4997 goto fail;
4998 }
4999
5000 inc_unacked(device);
5001
5002 /* No put_ldev() here. Gets called in drbd_endio_write_sec_final(),
5003 as well as drbd_rs_complete_io() */
5004 } else {
5005 fail:
5006 drbd_rs_complete_io(device, sector);
5007 drbd_send_ack_ex(peer_device, P_NEG_ACK, sector, size, ID_SYNCER);
5008 }
5009
5010 atomic_add(size >> 9, &device->rs_sect_in);
5011
5012 return err;
5013 }
5014
5015 struct data_cmd {
5016 int expect_payload;
5017 unsigned int pkt_size;
5018 int (*fn)(struct drbd_connection *, struct packet_info *);
5019 };
5020
5021 static struct data_cmd drbd_cmd_handler[] = {
5022 [P_DATA] = { 1, sizeof(struct p_data), receive_Data },
5023 [P_DATA_REPLY] = { 1, sizeof(struct p_data), receive_DataReply },
5024 [P_RS_DATA_REPLY] = { 1, sizeof(struct p_data), receive_RSDataReply } ,
5025 [P_BARRIER] = { 0, sizeof(struct p_barrier), receive_Barrier } ,
5026 [P_BITMAP] = { 1, 0, receive_bitmap } ,
5027 [P_COMPRESSED_BITMAP] = { 1, 0, receive_bitmap } ,
5028 [P_UNPLUG_REMOTE] = { 0, 0, receive_UnplugRemote },
5029 [P_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5030 [P_RS_DATA_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5031 [P_SYNC_PARAM] = { 1, 0, receive_SyncParam },
5032 [P_SYNC_PARAM89] = { 1, 0, receive_SyncParam },
5033 [P_PROTOCOL] = { 1, sizeof(struct p_protocol), receive_protocol },
5034 [P_UUIDS] = { 0, sizeof(struct p_uuids), receive_uuids },
5035 [P_SIZES] = { 0, sizeof(struct p_sizes), receive_sizes },
5036 [P_STATE] = { 0, sizeof(struct p_state), receive_state },
5037 [P_STATE_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_state },
5038 [P_SYNC_UUID] = { 0, sizeof(struct p_rs_uuid), receive_sync_uuid },
5039 [P_OV_REQUEST] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5040 [P_OV_REPLY] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5041 [P_CSUM_RS_REQUEST] = { 1, sizeof(struct p_block_req), receive_DataRequest },
5042 [P_RS_THIN_REQ] = { 0, sizeof(struct p_block_req), receive_DataRequest },
5043 [P_DELAY_PROBE] = { 0, sizeof(struct p_delay_probe93), receive_skip },
5044 [P_OUT_OF_SYNC] = { 0, sizeof(struct p_block_desc), receive_out_of_sync },
5045 [P_CONN_ST_CHG_REQ] = { 0, sizeof(struct p_req_state), receive_req_conn_state },
5046 [P_PROTOCOL_UPDATE] = { 1, sizeof(struct p_protocol), receive_protocol },
5047 [P_TRIM] = { 0, sizeof(struct p_trim), receive_Data },
5048 [P_ZEROES] = { 0, sizeof(struct p_trim), receive_Data },
5049 [P_RS_DEALLOCATED] = { 0, sizeof(struct p_block_desc), receive_rs_deallocated },
5050 };
5051
drbdd(struct drbd_connection * connection)5052 static void drbdd(struct drbd_connection *connection)
5053 {
5054 struct packet_info pi;
5055 size_t shs; /* sub header size */
5056 int err;
5057
5058 while (get_t_state(&connection->receiver) == RUNNING) {
5059 struct data_cmd const *cmd;
5060
5061 drbd_thread_current_set_cpu(&connection->receiver);
5062 update_receiver_timing_details(connection, drbd_recv_header_maybe_unplug);
5063 if (drbd_recv_header_maybe_unplug(connection, &pi))
5064 goto err_out;
5065
5066 cmd = &drbd_cmd_handler[pi.cmd];
5067 if (unlikely(pi.cmd >= ARRAY_SIZE(drbd_cmd_handler) || !cmd->fn)) {
5068 drbd_err(connection, "Unexpected data packet %s (0x%04x)",
5069 cmdname(pi.cmd), pi.cmd);
5070 goto err_out;
5071 }
5072
5073 shs = cmd->pkt_size;
5074 if (pi.cmd == P_SIZES && connection->agreed_features & DRBD_FF_WSAME)
5075 shs += sizeof(struct o_qlim);
5076 if (pi.size > shs && !cmd->expect_payload) {
5077 drbd_err(connection, "No payload expected %s l:%d\n",
5078 cmdname(pi.cmd), pi.size);
5079 goto err_out;
5080 }
5081 if (pi.size < shs) {
5082 drbd_err(connection, "%s: unexpected packet size, expected:%d received:%d\n",
5083 cmdname(pi.cmd), (int)shs, pi.size);
5084 goto err_out;
5085 }
5086
5087 if (shs) {
5088 update_receiver_timing_details(connection, drbd_recv_all_warn);
5089 err = drbd_recv_all_warn(connection, pi.data, shs);
5090 if (err)
5091 goto err_out;
5092 pi.size -= shs;
5093 }
5094
5095 update_receiver_timing_details(connection, cmd->fn);
5096 err = cmd->fn(connection, &pi);
5097 if (err) {
5098 drbd_err(connection, "error receiving %s, e: %d l: %d!\n",
5099 cmdname(pi.cmd), err, pi.size);
5100 goto err_out;
5101 }
5102 }
5103 return;
5104
5105 err_out:
5106 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
5107 }
5108
conn_disconnect(struct drbd_connection * connection)5109 static void conn_disconnect(struct drbd_connection *connection)
5110 {
5111 struct drbd_peer_device *peer_device;
5112 enum drbd_conns oc;
5113 int vnr;
5114
5115 if (connection->cstate == C_STANDALONE)
5116 return;
5117
5118 /* We are about to start the cleanup after connection loss.
5119 * Make sure drbd_make_request knows about that.
5120 * Usually we should be in some network failure state already,
5121 * but just in case we are not, we fix it up here.
5122 */
5123 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
5124
5125 /* ack_receiver does not clean up anything. it must not interfere, either */
5126 drbd_thread_stop(&connection->ack_receiver);
5127 if (connection->ack_sender) {
5128 destroy_workqueue(connection->ack_sender);
5129 connection->ack_sender = NULL;
5130 }
5131 drbd_free_sock(connection);
5132
5133 rcu_read_lock();
5134 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5135 struct drbd_device *device = peer_device->device;
5136 kref_get(&device->kref);
5137 rcu_read_unlock();
5138 drbd_disconnected(peer_device);
5139 kref_put(&device->kref, drbd_destroy_device);
5140 rcu_read_lock();
5141 }
5142 rcu_read_unlock();
5143
5144 if (!list_empty(&connection->current_epoch->list))
5145 drbd_err(connection, "ASSERTION FAILED: connection->current_epoch->list not empty\n");
5146 /* ok, no more ee's on the fly, it is safe to reset the epoch_size */
5147 atomic_set(&connection->current_epoch->epoch_size, 0);
5148 connection->send.seen_any_write_yet = false;
5149
5150 drbd_info(connection, "Connection closed\n");
5151
5152 if (conn_highest_role(connection) == R_PRIMARY && conn_highest_pdsk(connection) >= D_UNKNOWN)
5153 conn_try_outdate_peer_async(connection);
5154
5155 spin_lock_irq(&connection->resource->req_lock);
5156 oc = connection->cstate;
5157 if (oc >= C_UNCONNECTED)
5158 _conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE);
5159
5160 spin_unlock_irq(&connection->resource->req_lock);
5161
5162 if (oc == C_DISCONNECTING)
5163 conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD);
5164 }
5165
drbd_disconnected(struct drbd_peer_device * peer_device)5166 static int drbd_disconnected(struct drbd_peer_device *peer_device)
5167 {
5168 struct drbd_device *device = peer_device->device;
5169 unsigned int i;
5170
5171 /* wait for current activity to cease. */
5172 spin_lock_irq(&device->resource->req_lock);
5173 _drbd_wait_ee_list_empty(device, &device->active_ee);
5174 _drbd_wait_ee_list_empty(device, &device->sync_ee);
5175 _drbd_wait_ee_list_empty(device, &device->read_ee);
5176 spin_unlock_irq(&device->resource->req_lock);
5177
5178 /* We do not have data structures that would allow us to
5179 * get the rs_pending_cnt down to 0 again.
5180 * * On C_SYNC_TARGET we do not have any data structures describing
5181 * the pending RSDataRequest's we have sent.
5182 * * On C_SYNC_SOURCE there is no data structure that tracks
5183 * the P_RS_DATA_REPLY blocks that we sent to the SyncTarget.
5184 * And no, it is not the sum of the reference counts in the
5185 * resync_LRU. The resync_LRU tracks the whole operation including
5186 * the disk-IO, while the rs_pending_cnt only tracks the blocks
5187 * on the fly. */
5188 drbd_rs_cancel_all(device);
5189 device->rs_total = 0;
5190 device->rs_failed = 0;
5191 atomic_set(&device->rs_pending_cnt, 0);
5192 wake_up(&device->misc_wait);
5193
5194 timer_delete_sync(&device->resync_timer);
5195 resync_timer_fn(&device->resync_timer);
5196
5197 /* wait for all w_e_end_data_req, w_e_end_rsdata_req, w_send_barrier,
5198 * w_make_resync_request etc. which may still be on the worker queue
5199 * to be "canceled" */
5200 drbd_flush_workqueue(&peer_device->connection->sender_work);
5201
5202 drbd_finish_peer_reqs(device);
5203
5204 /* This second workqueue flush is necessary, since drbd_finish_peer_reqs()
5205 might have issued a work again. The one before drbd_finish_peer_reqs() is
5206 necessary to reclain net_ee in drbd_finish_peer_reqs(). */
5207 drbd_flush_workqueue(&peer_device->connection->sender_work);
5208
5209 /* need to do it again, drbd_finish_peer_reqs() may have populated it
5210 * again via drbd_try_clear_on_disk_bm(). */
5211 drbd_rs_cancel_all(device);
5212
5213 kfree(device->p_uuid);
5214 device->p_uuid = NULL;
5215
5216 if (!drbd_suspended(device))
5217 tl_clear(peer_device->connection);
5218
5219 drbd_md_sync(device);
5220
5221 if (get_ldev(device)) {
5222 drbd_bitmap_io(device, &drbd_bm_write_copy_pages,
5223 "write from disconnected", BM_LOCKED_CHANGE_ALLOWED, NULL);
5224 put_ldev(device);
5225 }
5226
5227 /* tcp_close and release of sendpage pages can be deferred. I don't
5228 * want to use SO_LINGER, because apparently it can be deferred for
5229 * more than 20 seconds (longest time I checked).
5230 *
5231 * Actually we don't care for exactly when the network stack does its
5232 * put_page(), but release our reference on these pages right here.
5233 */
5234 i = drbd_free_peer_reqs(device, &device->net_ee);
5235 if (i)
5236 drbd_info(device, "net_ee not empty, killed %u entries\n", i);
5237 i = atomic_read(&device->pp_in_use_by_net);
5238 if (i)
5239 drbd_info(device, "pp_in_use_by_net = %d, expected 0\n", i);
5240 i = atomic_read(&device->pp_in_use);
5241 if (i)
5242 drbd_info(device, "pp_in_use = %d, expected 0\n", i);
5243
5244 D_ASSERT(device, list_empty(&device->read_ee));
5245 D_ASSERT(device, list_empty(&device->active_ee));
5246 D_ASSERT(device, list_empty(&device->sync_ee));
5247 D_ASSERT(device, list_empty(&device->done_ee));
5248
5249 return 0;
5250 }
5251
5252 /*
5253 * We support PRO_VERSION_MIN to PRO_VERSION_MAX. The protocol version
5254 * we can agree on is stored in agreed_pro_version.
5255 *
5256 * feature flags and the reserved array should be enough room for future
5257 * enhancements of the handshake protocol, and possible plugins...
5258 *
5259 * for now, they are expected to be zero, but ignored.
5260 */
drbd_send_features(struct drbd_connection * connection)5261 static int drbd_send_features(struct drbd_connection *connection)
5262 {
5263 struct drbd_socket *sock;
5264 struct p_connection_features *p;
5265
5266 sock = &connection->data;
5267 p = conn_prepare_command(connection, sock);
5268 if (!p)
5269 return -EIO;
5270 memset(p, 0, sizeof(*p));
5271 p->protocol_min = cpu_to_be32(PRO_VERSION_MIN);
5272 p->protocol_max = cpu_to_be32(PRO_VERSION_MAX);
5273 p->feature_flags = cpu_to_be32(PRO_FEATURES);
5274 return conn_send_command(connection, sock, P_CONNECTION_FEATURES, sizeof(*p), NULL, 0);
5275 }
5276
5277 /*
5278 * return values:
5279 * 1 yes, we have a valid connection
5280 * 0 oops, did not work out, please try again
5281 * -1 peer talks different language,
5282 * no point in trying again, please go standalone.
5283 */
drbd_do_features(struct drbd_connection * connection)5284 static int drbd_do_features(struct drbd_connection *connection)
5285 {
5286 /* ASSERT current == connection->receiver ... */
5287 struct p_connection_features *p;
5288 const int expect = sizeof(struct p_connection_features);
5289 struct packet_info pi;
5290 int err;
5291
5292 err = drbd_send_features(connection);
5293 if (err)
5294 return 0;
5295
5296 err = drbd_recv_header(connection, &pi);
5297 if (err)
5298 return 0;
5299
5300 if (pi.cmd != P_CONNECTION_FEATURES) {
5301 drbd_err(connection, "expected ConnectionFeatures packet, received: %s (0x%04x)\n",
5302 cmdname(pi.cmd), pi.cmd);
5303 return -1;
5304 }
5305
5306 if (pi.size != expect) {
5307 drbd_err(connection, "expected ConnectionFeatures length: %u, received: %u\n",
5308 expect, pi.size);
5309 return -1;
5310 }
5311
5312 p = pi.data;
5313 err = drbd_recv_all_warn(connection, p, expect);
5314 if (err)
5315 return 0;
5316
5317 p->protocol_min = be32_to_cpu(p->protocol_min);
5318 p->protocol_max = be32_to_cpu(p->protocol_max);
5319 if (p->protocol_max == 0)
5320 p->protocol_max = p->protocol_min;
5321
5322 if (PRO_VERSION_MAX < p->protocol_min ||
5323 PRO_VERSION_MIN > p->protocol_max)
5324 goto incompat;
5325
5326 connection->agreed_pro_version = min_t(int, PRO_VERSION_MAX, p->protocol_max);
5327 connection->agreed_features = PRO_FEATURES & be32_to_cpu(p->feature_flags);
5328
5329 drbd_info(connection, "Handshake successful: "
5330 "Agreed network protocol version %d\n", connection->agreed_pro_version);
5331
5332 drbd_info(connection, "Feature flags enabled on protocol level: 0x%x%s%s%s%s.\n",
5333 connection->agreed_features,
5334 connection->agreed_features & DRBD_FF_TRIM ? " TRIM" : "",
5335 connection->agreed_features & DRBD_FF_THIN_RESYNC ? " THIN_RESYNC" : "",
5336 connection->agreed_features & DRBD_FF_WSAME ? " WRITE_SAME" : "",
5337 connection->agreed_features & DRBD_FF_WZEROES ? " WRITE_ZEROES" :
5338 connection->agreed_features ? "" : " none");
5339
5340 return 1;
5341
5342 incompat:
5343 drbd_err(connection, "incompatible DRBD dialects: "
5344 "I support %d-%d, peer supports %d-%d\n",
5345 PRO_VERSION_MIN, PRO_VERSION_MAX,
5346 p->protocol_min, p->protocol_max);
5347 return -1;
5348 }
5349
5350 #if !defined(CONFIG_CRYPTO_HMAC) && !defined(CONFIG_CRYPTO_HMAC_MODULE)
drbd_do_auth(struct drbd_connection * connection)5351 static int drbd_do_auth(struct drbd_connection *connection)
5352 {
5353 drbd_err(connection, "This kernel was build without CONFIG_CRYPTO_HMAC.\n");
5354 drbd_err(connection, "You need to disable 'cram-hmac-alg' in drbd.conf.\n");
5355 return -1;
5356 }
5357 #else
5358 #define CHALLENGE_LEN 64
5359
5360 /* Return value:
5361 1 - auth succeeded,
5362 0 - failed, try again (network error),
5363 -1 - auth failed, don't try again.
5364 */
5365
drbd_do_auth(struct drbd_connection * connection)5366 static int drbd_do_auth(struct drbd_connection *connection)
5367 {
5368 struct drbd_socket *sock;
5369 char my_challenge[CHALLENGE_LEN]; /* 64 Bytes... */
5370 char *response = NULL;
5371 char *right_response = NULL;
5372 char *peers_ch = NULL;
5373 unsigned int key_len;
5374 char secret[SHARED_SECRET_MAX]; /* 64 byte */
5375 unsigned int resp_size;
5376 struct shash_desc *desc;
5377 struct packet_info pi;
5378 struct net_conf *nc;
5379 int err, rv;
5380
5381 /* FIXME: Put the challenge/response into the preallocated socket buffer. */
5382
5383 rcu_read_lock();
5384 nc = rcu_dereference(connection->net_conf);
5385 key_len = strlen(nc->shared_secret);
5386 memcpy(secret, nc->shared_secret, key_len);
5387 rcu_read_unlock();
5388
5389 desc = kmalloc(sizeof(struct shash_desc) +
5390 crypto_shash_descsize(connection->cram_hmac_tfm),
5391 GFP_KERNEL);
5392 if (!desc) {
5393 rv = -1;
5394 goto fail;
5395 }
5396 desc->tfm = connection->cram_hmac_tfm;
5397
5398 rv = crypto_shash_setkey(connection->cram_hmac_tfm, (u8 *)secret, key_len);
5399 if (rv) {
5400 drbd_err(connection, "crypto_shash_setkey() failed with %d\n", rv);
5401 rv = -1;
5402 goto fail;
5403 }
5404
5405 get_random_bytes(my_challenge, CHALLENGE_LEN);
5406
5407 sock = &connection->data;
5408 if (!conn_prepare_command(connection, sock)) {
5409 rv = 0;
5410 goto fail;
5411 }
5412 rv = !conn_send_command(connection, sock, P_AUTH_CHALLENGE, 0,
5413 my_challenge, CHALLENGE_LEN);
5414 if (!rv)
5415 goto fail;
5416
5417 err = drbd_recv_header(connection, &pi);
5418 if (err) {
5419 rv = 0;
5420 goto fail;
5421 }
5422
5423 if (pi.cmd != P_AUTH_CHALLENGE) {
5424 drbd_err(connection, "expected AuthChallenge packet, received: %s (0x%04x)\n",
5425 cmdname(pi.cmd), pi.cmd);
5426 rv = -1;
5427 goto fail;
5428 }
5429
5430 if (pi.size > CHALLENGE_LEN * 2) {
5431 drbd_err(connection, "expected AuthChallenge payload too big.\n");
5432 rv = -1;
5433 goto fail;
5434 }
5435
5436 if (pi.size < CHALLENGE_LEN) {
5437 drbd_err(connection, "AuthChallenge payload too small.\n");
5438 rv = -1;
5439 goto fail;
5440 }
5441
5442 peers_ch = kmalloc(pi.size, GFP_NOIO);
5443 if (!peers_ch) {
5444 rv = -1;
5445 goto fail;
5446 }
5447
5448 err = drbd_recv_all_warn(connection, peers_ch, pi.size);
5449 if (err) {
5450 rv = 0;
5451 goto fail;
5452 }
5453
5454 if (!memcmp(my_challenge, peers_ch, CHALLENGE_LEN)) {
5455 drbd_err(connection, "Peer presented the same challenge!\n");
5456 rv = -1;
5457 goto fail;
5458 }
5459
5460 resp_size = crypto_shash_digestsize(connection->cram_hmac_tfm);
5461 response = kmalloc(resp_size, GFP_NOIO);
5462 if (!response) {
5463 rv = -1;
5464 goto fail;
5465 }
5466
5467 rv = crypto_shash_digest(desc, peers_ch, pi.size, response);
5468 if (rv) {
5469 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5470 rv = -1;
5471 goto fail;
5472 }
5473
5474 if (!conn_prepare_command(connection, sock)) {
5475 rv = 0;
5476 goto fail;
5477 }
5478 rv = !conn_send_command(connection, sock, P_AUTH_RESPONSE, 0,
5479 response, resp_size);
5480 if (!rv)
5481 goto fail;
5482
5483 err = drbd_recv_header(connection, &pi);
5484 if (err) {
5485 rv = 0;
5486 goto fail;
5487 }
5488
5489 if (pi.cmd != P_AUTH_RESPONSE) {
5490 drbd_err(connection, "expected AuthResponse packet, received: %s (0x%04x)\n",
5491 cmdname(pi.cmd), pi.cmd);
5492 rv = 0;
5493 goto fail;
5494 }
5495
5496 if (pi.size != resp_size) {
5497 drbd_err(connection, "expected AuthResponse payload of wrong size\n");
5498 rv = 0;
5499 goto fail;
5500 }
5501
5502 err = drbd_recv_all_warn(connection, response , resp_size);
5503 if (err) {
5504 rv = 0;
5505 goto fail;
5506 }
5507
5508 right_response = kmalloc(resp_size, GFP_NOIO);
5509 if (!right_response) {
5510 rv = -1;
5511 goto fail;
5512 }
5513
5514 rv = crypto_shash_digest(desc, my_challenge, CHALLENGE_LEN,
5515 right_response);
5516 if (rv) {
5517 drbd_err(connection, "crypto_hash_digest() failed with %d\n", rv);
5518 rv = -1;
5519 goto fail;
5520 }
5521
5522 rv = !memcmp(response, right_response, resp_size);
5523
5524 if (rv)
5525 drbd_info(connection, "Peer authenticated using %d bytes HMAC\n",
5526 resp_size);
5527 else
5528 rv = -1;
5529
5530 fail:
5531 kfree(peers_ch);
5532 kfree(response);
5533 kfree(right_response);
5534 if (desc) {
5535 shash_desc_zero(desc);
5536 kfree(desc);
5537 }
5538
5539 return rv;
5540 }
5541 #endif
5542
drbd_receiver(struct drbd_thread * thi)5543 int drbd_receiver(struct drbd_thread *thi)
5544 {
5545 struct drbd_connection *connection = thi->connection;
5546 int h;
5547
5548 drbd_info(connection, "receiver (re)started\n");
5549
5550 do {
5551 h = conn_connect(connection);
5552 if (h == 0) {
5553 conn_disconnect(connection);
5554 schedule_timeout_interruptible(HZ);
5555 }
5556 if (h == -1) {
5557 drbd_warn(connection, "Discarding network configuration.\n");
5558 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
5559 }
5560 } while (h == 0);
5561
5562 if (h > 0) {
5563 blk_start_plug(&connection->receiver_plug);
5564 drbdd(connection);
5565 blk_finish_plug(&connection->receiver_plug);
5566 }
5567
5568 conn_disconnect(connection);
5569
5570 drbd_info(connection, "receiver terminated\n");
5571 return 0;
5572 }
5573
5574 /* ********* acknowledge sender ******** */
5575
got_conn_RqSReply(struct drbd_connection * connection,struct packet_info * pi)5576 static int got_conn_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5577 {
5578 struct p_req_state_reply *p = pi->data;
5579 int retcode = be32_to_cpu(p->retcode);
5580
5581 if (retcode >= SS_SUCCESS) {
5582 set_bit(CONN_WD_ST_CHG_OKAY, &connection->flags);
5583 } else {
5584 set_bit(CONN_WD_ST_CHG_FAIL, &connection->flags);
5585 drbd_err(connection, "Requested state change failed by peer: %s (%d)\n",
5586 drbd_set_st_err_str(retcode), retcode);
5587 }
5588 wake_up(&connection->ping_wait);
5589
5590 return 0;
5591 }
5592
got_RqSReply(struct drbd_connection * connection,struct packet_info * pi)5593 static int got_RqSReply(struct drbd_connection *connection, struct packet_info *pi)
5594 {
5595 struct drbd_peer_device *peer_device;
5596 struct drbd_device *device;
5597 struct p_req_state_reply *p = pi->data;
5598 int retcode = be32_to_cpu(p->retcode);
5599
5600 peer_device = conn_peer_device(connection, pi->vnr);
5601 if (!peer_device)
5602 return -EIO;
5603 device = peer_device->device;
5604
5605 if (test_bit(CONN_WD_ST_CHG_REQ, &connection->flags)) {
5606 D_ASSERT(device, connection->agreed_pro_version < 100);
5607 return got_conn_RqSReply(connection, pi);
5608 }
5609
5610 if (retcode >= SS_SUCCESS) {
5611 set_bit(CL_ST_CHG_SUCCESS, &device->flags);
5612 } else {
5613 set_bit(CL_ST_CHG_FAIL, &device->flags);
5614 drbd_err(device, "Requested state change failed by peer: %s (%d)\n",
5615 drbd_set_st_err_str(retcode), retcode);
5616 }
5617 wake_up(&device->state_wait);
5618
5619 return 0;
5620 }
5621
got_Ping(struct drbd_connection * connection,struct packet_info * pi)5622 static int got_Ping(struct drbd_connection *connection, struct packet_info *pi)
5623 {
5624 return drbd_send_ping_ack(connection);
5625
5626 }
5627
got_PingAck(struct drbd_connection * connection,struct packet_info * pi)5628 static int got_PingAck(struct drbd_connection *connection, struct packet_info *pi)
5629 {
5630 /* restore idle timeout */
5631 connection->meta.socket->sk->sk_rcvtimeo = connection->net_conf->ping_int*HZ;
5632 if (!test_and_set_bit(GOT_PING_ACK, &connection->flags))
5633 wake_up(&connection->ping_wait);
5634
5635 return 0;
5636 }
5637
got_IsInSync(struct drbd_connection * connection,struct packet_info * pi)5638 static int got_IsInSync(struct drbd_connection *connection, struct packet_info *pi)
5639 {
5640 struct drbd_peer_device *peer_device;
5641 struct drbd_device *device;
5642 struct p_block_ack *p = pi->data;
5643 sector_t sector = be64_to_cpu(p->sector);
5644 int blksize = be32_to_cpu(p->blksize);
5645
5646 peer_device = conn_peer_device(connection, pi->vnr);
5647 if (!peer_device)
5648 return -EIO;
5649 device = peer_device->device;
5650
5651 D_ASSERT(device, peer_device->connection->agreed_pro_version >= 89);
5652
5653 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5654
5655 if (get_ldev(device)) {
5656 drbd_rs_complete_io(device, sector);
5657 drbd_set_in_sync(peer_device, sector, blksize);
5658 /* rs_same_csums is supposed to count in units of BM_BLOCK_SIZE */
5659 device->rs_same_csum += (blksize >> BM_BLOCK_SHIFT);
5660 put_ldev(device);
5661 }
5662 dec_rs_pending(peer_device);
5663 atomic_add(blksize >> 9, &device->rs_sect_in);
5664
5665 return 0;
5666 }
5667
5668 static int
validate_req_change_req_state(struct drbd_peer_device * peer_device,u64 id,sector_t sector,struct rb_root * root,const char * func,enum drbd_req_event what,bool missing_ok)5669 validate_req_change_req_state(struct drbd_peer_device *peer_device, u64 id, sector_t sector,
5670 struct rb_root *root, const char *func,
5671 enum drbd_req_event what, bool missing_ok)
5672 {
5673 struct drbd_device *device = peer_device->device;
5674 struct drbd_request *req;
5675 struct bio_and_error m;
5676
5677 spin_lock_irq(&device->resource->req_lock);
5678 req = find_request(device, root, id, sector, missing_ok, func);
5679 if (unlikely(!req)) {
5680 spin_unlock_irq(&device->resource->req_lock);
5681 return -EIO;
5682 }
5683 __req_mod(req, what, peer_device, &m);
5684 spin_unlock_irq(&device->resource->req_lock);
5685
5686 if (m.bio)
5687 complete_master_bio(device, &m);
5688 return 0;
5689 }
5690
got_BlockAck(struct drbd_connection * connection,struct packet_info * pi)5691 static int got_BlockAck(struct drbd_connection *connection, struct packet_info *pi)
5692 {
5693 struct drbd_peer_device *peer_device;
5694 struct drbd_device *device;
5695 struct p_block_ack *p = pi->data;
5696 sector_t sector = be64_to_cpu(p->sector);
5697 int blksize = be32_to_cpu(p->blksize);
5698 enum drbd_req_event what;
5699
5700 peer_device = conn_peer_device(connection, pi->vnr);
5701 if (!peer_device)
5702 return -EIO;
5703 device = peer_device->device;
5704
5705 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5706
5707 if (p->block_id == ID_SYNCER) {
5708 drbd_set_in_sync(peer_device, sector, blksize);
5709 dec_rs_pending(peer_device);
5710 return 0;
5711 }
5712 switch (pi->cmd) {
5713 case P_RS_WRITE_ACK:
5714 what = WRITE_ACKED_BY_PEER_AND_SIS;
5715 break;
5716 case P_WRITE_ACK:
5717 what = WRITE_ACKED_BY_PEER;
5718 break;
5719 case P_RECV_ACK:
5720 what = RECV_ACKED_BY_PEER;
5721 break;
5722 case P_SUPERSEDED:
5723 what = CONFLICT_RESOLVED;
5724 break;
5725 case P_RETRY_WRITE:
5726 what = POSTPONE_WRITE;
5727 break;
5728 default:
5729 BUG();
5730 }
5731
5732 return validate_req_change_req_state(peer_device, p->block_id, sector,
5733 &device->write_requests, __func__,
5734 what, false);
5735 }
5736
got_NegAck(struct drbd_connection * connection,struct packet_info * pi)5737 static int got_NegAck(struct drbd_connection *connection, struct packet_info *pi)
5738 {
5739 struct drbd_peer_device *peer_device;
5740 struct drbd_device *device;
5741 struct p_block_ack *p = pi->data;
5742 sector_t sector = be64_to_cpu(p->sector);
5743 int size = be32_to_cpu(p->blksize);
5744 int err;
5745
5746 peer_device = conn_peer_device(connection, pi->vnr);
5747 if (!peer_device)
5748 return -EIO;
5749 device = peer_device->device;
5750
5751 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5752
5753 if (p->block_id == ID_SYNCER) {
5754 dec_rs_pending(peer_device);
5755 drbd_rs_failed_io(peer_device, sector, size);
5756 return 0;
5757 }
5758
5759 err = validate_req_change_req_state(peer_device, p->block_id, sector,
5760 &device->write_requests, __func__,
5761 NEG_ACKED, true);
5762 if (err) {
5763 /* Protocol A has no P_WRITE_ACKs, but has P_NEG_ACKs.
5764 The master bio might already be completed, therefore the
5765 request is no longer in the collision hash. */
5766 /* In Protocol B we might already have got a P_RECV_ACK
5767 but then get a P_NEG_ACK afterwards. */
5768 drbd_set_out_of_sync(peer_device, sector, size);
5769 }
5770 return 0;
5771 }
5772
got_NegDReply(struct drbd_connection * connection,struct packet_info * pi)5773 static int got_NegDReply(struct drbd_connection *connection, struct packet_info *pi)
5774 {
5775 struct drbd_peer_device *peer_device;
5776 struct drbd_device *device;
5777 struct p_block_ack *p = pi->data;
5778 sector_t sector = be64_to_cpu(p->sector);
5779
5780 peer_device = conn_peer_device(connection, pi->vnr);
5781 if (!peer_device)
5782 return -EIO;
5783 device = peer_device->device;
5784
5785 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5786
5787 drbd_err(device, "Got NegDReply; Sector %llus, len %u.\n",
5788 (unsigned long long)sector, be32_to_cpu(p->blksize));
5789
5790 return validate_req_change_req_state(peer_device, p->block_id, sector,
5791 &device->read_requests, __func__,
5792 NEG_ACKED, false);
5793 }
5794
got_NegRSDReply(struct drbd_connection * connection,struct packet_info * pi)5795 static int got_NegRSDReply(struct drbd_connection *connection, struct packet_info *pi)
5796 {
5797 struct drbd_peer_device *peer_device;
5798 struct drbd_device *device;
5799 sector_t sector;
5800 int size;
5801 struct p_block_ack *p = pi->data;
5802
5803 peer_device = conn_peer_device(connection, pi->vnr);
5804 if (!peer_device)
5805 return -EIO;
5806 device = peer_device->device;
5807
5808 sector = be64_to_cpu(p->sector);
5809 size = be32_to_cpu(p->blksize);
5810
5811 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5812
5813 dec_rs_pending(peer_device);
5814
5815 if (get_ldev_if_state(device, D_FAILED)) {
5816 drbd_rs_complete_io(device, sector);
5817 switch (pi->cmd) {
5818 case P_NEG_RS_DREPLY:
5819 drbd_rs_failed_io(peer_device, sector, size);
5820 break;
5821 case P_RS_CANCEL:
5822 break;
5823 default:
5824 BUG();
5825 }
5826 put_ldev(device);
5827 }
5828
5829 return 0;
5830 }
5831
got_BarrierAck(struct drbd_connection * connection,struct packet_info * pi)5832 static int got_BarrierAck(struct drbd_connection *connection, struct packet_info *pi)
5833 {
5834 struct p_barrier_ack *p = pi->data;
5835 struct drbd_peer_device *peer_device;
5836 int vnr;
5837
5838 tl_release(connection, p->barrier, be32_to_cpu(p->set_size));
5839
5840 rcu_read_lock();
5841 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
5842 struct drbd_device *device = peer_device->device;
5843
5844 if (device->state.conn == C_AHEAD &&
5845 atomic_read(&device->ap_in_flight) == 0 &&
5846 !test_and_set_bit(AHEAD_TO_SYNC_SOURCE, &device->flags)) {
5847 device->start_resync_timer.expires = jiffies + HZ;
5848 add_timer(&device->start_resync_timer);
5849 }
5850 }
5851 rcu_read_unlock();
5852
5853 return 0;
5854 }
5855
got_OVResult(struct drbd_connection * connection,struct packet_info * pi)5856 static int got_OVResult(struct drbd_connection *connection, struct packet_info *pi)
5857 {
5858 struct drbd_peer_device *peer_device;
5859 struct drbd_device *device;
5860 struct p_block_ack *p = pi->data;
5861 struct drbd_device_work *dw;
5862 sector_t sector;
5863 int size;
5864
5865 peer_device = conn_peer_device(connection, pi->vnr);
5866 if (!peer_device)
5867 return -EIO;
5868 device = peer_device->device;
5869
5870 sector = be64_to_cpu(p->sector);
5871 size = be32_to_cpu(p->blksize);
5872
5873 update_peer_seq(peer_device, be32_to_cpu(p->seq_num));
5874
5875 if (be64_to_cpu(p->block_id) == ID_OUT_OF_SYNC)
5876 drbd_ov_out_of_sync_found(peer_device, sector, size);
5877 else
5878 ov_out_of_sync_print(peer_device);
5879
5880 if (!get_ldev(device))
5881 return 0;
5882
5883 drbd_rs_complete_io(device, sector);
5884 dec_rs_pending(peer_device);
5885
5886 --device->ov_left;
5887
5888 /* let's advance progress step marks only for every other megabyte */
5889 if ((device->ov_left & 0x200) == 0x200)
5890 drbd_advance_rs_marks(peer_device, device->ov_left);
5891
5892 if (device->ov_left == 0) {
5893 dw = kmalloc(sizeof(*dw), GFP_NOIO);
5894 if (dw) {
5895 dw->w.cb = w_ov_finished;
5896 dw->device = device;
5897 drbd_queue_work(&peer_device->connection->sender_work, &dw->w);
5898 } else {
5899 drbd_err(device, "kmalloc(dw) failed.");
5900 ov_out_of_sync_print(peer_device);
5901 drbd_resync_finished(peer_device);
5902 }
5903 }
5904 put_ldev(device);
5905 return 0;
5906 }
5907
got_skip(struct drbd_connection * connection,struct packet_info * pi)5908 static int got_skip(struct drbd_connection *connection, struct packet_info *pi)
5909 {
5910 return 0;
5911 }
5912
5913 struct meta_sock_cmd {
5914 size_t pkt_size;
5915 int (*fn)(struct drbd_connection *connection, struct packet_info *);
5916 };
5917
set_rcvtimeo(struct drbd_connection * connection,bool ping_timeout)5918 static void set_rcvtimeo(struct drbd_connection *connection, bool ping_timeout)
5919 {
5920 long t;
5921 struct net_conf *nc;
5922
5923 rcu_read_lock();
5924 nc = rcu_dereference(connection->net_conf);
5925 t = ping_timeout ? nc->ping_timeo : nc->ping_int;
5926 rcu_read_unlock();
5927
5928 t *= HZ;
5929 if (ping_timeout)
5930 t /= 10;
5931
5932 connection->meta.socket->sk->sk_rcvtimeo = t;
5933 }
5934
set_ping_timeout(struct drbd_connection * connection)5935 static void set_ping_timeout(struct drbd_connection *connection)
5936 {
5937 set_rcvtimeo(connection, 1);
5938 }
5939
set_idle_timeout(struct drbd_connection * connection)5940 static void set_idle_timeout(struct drbd_connection *connection)
5941 {
5942 set_rcvtimeo(connection, 0);
5943 }
5944
5945 static struct meta_sock_cmd ack_receiver_tbl[] = {
5946 [P_PING] = { 0, got_Ping },
5947 [P_PING_ACK] = { 0, got_PingAck },
5948 [P_RECV_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5949 [P_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5950 [P_RS_WRITE_ACK] = { sizeof(struct p_block_ack), got_BlockAck },
5951 [P_SUPERSEDED] = { sizeof(struct p_block_ack), got_BlockAck },
5952 [P_NEG_ACK] = { sizeof(struct p_block_ack), got_NegAck },
5953 [P_NEG_DREPLY] = { sizeof(struct p_block_ack), got_NegDReply },
5954 [P_NEG_RS_DREPLY] = { sizeof(struct p_block_ack), got_NegRSDReply },
5955 [P_OV_RESULT] = { sizeof(struct p_block_ack), got_OVResult },
5956 [P_BARRIER_ACK] = { sizeof(struct p_barrier_ack), got_BarrierAck },
5957 [P_STATE_CHG_REPLY] = { sizeof(struct p_req_state_reply), got_RqSReply },
5958 [P_RS_IS_IN_SYNC] = { sizeof(struct p_block_ack), got_IsInSync },
5959 [P_DELAY_PROBE] = { sizeof(struct p_delay_probe93), got_skip },
5960 [P_RS_CANCEL] = { sizeof(struct p_block_ack), got_NegRSDReply },
5961 [P_CONN_ST_CHG_REPLY]={ sizeof(struct p_req_state_reply), got_conn_RqSReply },
5962 [P_RETRY_WRITE] = { sizeof(struct p_block_ack), got_BlockAck },
5963 };
5964
drbd_ack_receiver(struct drbd_thread * thi)5965 int drbd_ack_receiver(struct drbd_thread *thi)
5966 {
5967 struct drbd_connection *connection = thi->connection;
5968 struct meta_sock_cmd *cmd = NULL;
5969 struct packet_info pi;
5970 unsigned long pre_recv_jif;
5971 int rv;
5972 void *buf = connection->meta.rbuf;
5973 int received = 0;
5974 unsigned int header_size = drbd_header_size(connection);
5975 int expect = header_size;
5976 bool ping_timeout_active = false;
5977
5978 sched_set_fifo_low(current);
5979
5980 while (get_t_state(thi) == RUNNING) {
5981 drbd_thread_current_set_cpu(thi);
5982
5983 conn_reclaim_net_peer_reqs(connection);
5984
5985 if (test_and_clear_bit(SEND_PING, &connection->flags)) {
5986 if (drbd_send_ping(connection)) {
5987 drbd_err(connection, "drbd_send_ping has failed\n");
5988 goto reconnect;
5989 }
5990 set_ping_timeout(connection);
5991 ping_timeout_active = true;
5992 }
5993
5994 pre_recv_jif = jiffies;
5995 rv = drbd_recv_short(connection->meta.socket, buf, expect-received, 0);
5996
5997 /* Note:
5998 * -EINTR (on meta) we got a signal
5999 * -EAGAIN (on meta) rcvtimeo expired
6000 * -ECONNRESET other side closed the connection
6001 * -ERESTARTSYS (on data) we got a signal
6002 * rv < 0 other than above: unexpected error!
6003 * rv == expected: full header or command
6004 * rv < expected: "woken" by signal during receive
6005 * rv == 0 : "connection shut down by peer"
6006 */
6007 if (likely(rv > 0)) {
6008 received += rv;
6009 buf += rv;
6010 } else if (rv == 0) {
6011 if (test_bit(DISCONNECT_SENT, &connection->flags)) {
6012 long t;
6013 rcu_read_lock();
6014 t = rcu_dereference(connection->net_conf)->ping_timeo * HZ/10;
6015 rcu_read_unlock();
6016
6017 t = wait_event_timeout(connection->ping_wait,
6018 connection->cstate < C_WF_REPORT_PARAMS,
6019 t);
6020 if (t)
6021 break;
6022 }
6023 drbd_err(connection, "meta connection shut down by peer.\n");
6024 goto reconnect;
6025 } else if (rv == -EAGAIN) {
6026 /* If the data socket received something meanwhile,
6027 * that is good enough: peer is still alive. */
6028 if (time_after(connection->last_received, pre_recv_jif))
6029 continue;
6030 if (ping_timeout_active) {
6031 drbd_err(connection, "PingAck did not arrive in time.\n");
6032 goto reconnect;
6033 }
6034 set_bit(SEND_PING, &connection->flags);
6035 continue;
6036 } else if (rv == -EINTR) {
6037 /* maybe drbd_thread_stop(): the while condition will notice.
6038 * maybe woken for send_ping: we'll send a ping above,
6039 * and change the rcvtimeo */
6040 flush_signals(current);
6041 continue;
6042 } else {
6043 drbd_err(connection, "sock_recvmsg returned %d\n", rv);
6044 goto reconnect;
6045 }
6046
6047 if (received == expect && cmd == NULL) {
6048 if (decode_header(connection, connection->meta.rbuf, &pi))
6049 goto reconnect;
6050 cmd = &ack_receiver_tbl[pi.cmd];
6051 if (pi.cmd >= ARRAY_SIZE(ack_receiver_tbl) || !cmd->fn) {
6052 drbd_err(connection, "Unexpected meta packet %s (0x%04x)\n",
6053 cmdname(pi.cmd), pi.cmd);
6054 goto disconnect;
6055 }
6056 expect = header_size + cmd->pkt_size;
6057 if (pi.size != expect - header_size) {
6058 drbd_err(connection, "Wrong packet size on meta (c: %d, l: %d)\n",
6059 pi.cmd, pi.size);
6060 goto reconnect;
6061 }
6062 }
6063 if (received == expect) {
6064 bool err;
6065
6066 err = cmd->fn(connection, &pi);
6067 if (err) {
6068 drbd_err(connection, "%ps failed\n", cmd->fn);
6069 goto reconnect;
6070 }
6071
6072 connection->last_received = jiffies;
6073
6074 if (cmd == &ack_receiver_tbl[P_PING_ACK]) {
6075 set_idle_timeout(connection);
6076 ping_timeout_active = false;
6077 }
6078
6079 buf = connection->meta.rbuf;
6080 received = 0;
6081 expect = header_size;
6082 cmd = NULL;
6083 }
6084 }
6085
6086 if (0) {
6087 reconnect:
6088 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6089 conn_md_sync(connection);
6090 }
6091 if (0) {
6092 disconnect:
6093 conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD);
6094 }
6095
6096 drbd_info(connection, "ack_receiver terminated\n");
6097
6098 return 0;
6099 }
6100
drbd_send_acks_wf(struct work_struct * ws)6101 void drbd_send_acks_wf(struct work_struct *ws)
6102 {
6103 struct drbd_peer_device *peer_device =
6104 container_of(ws, struct drbd_peer_device, send_acks_work);
6105 struct drbd_connection *connection = peer_device->connection;
6106 struct drbd_device *device = peer_device->device;
6107 struct net_conf *nc;
6108 int tcp_cork, err;
6109
6110 rcu_read_lock();
6111 nc = rcu_dereference(connection->net_conf);
6112 tcp_cork = nc->tcp_cork;
6113 rcu_read_unlock();
6114
6115 if (tcp_cork)
6116 tcp_sock_set_cork(connection->meta.socket->sk, true);
6117
6118 err = drbd_finish_peer_reqs(device);
6119 kref_put(&device->kref, drbd_destroy_device);
6120 /* get is in drbd_endio_write_sec_final(). That is necessary to keep the
6121 struct work_struct send_acks_work alive, which is in the peer_device object */
6122
6123 if (err) {
6124 conn_request_state(connection, NS(conn, C_NETWORK_FAILURE), CS_HARD);
6125 return;
6126 }
6127
6128 if (tcp_cork)
6129 tcp_sock_set_cork(connection->meta.socket->sk, false);
6130
6131 return;
6132 }
6133