1 /*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_device.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/core.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/mmc/slot-gpio.h>
38 #include <linux/io.h>
39 #include <linux/irq.h>
40 #include <linux/regulator/consumer.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/pm_wakeirq.h>
44 #include <linux/platform_data/hsmmc-omap.h>
45
46 /* OMAP HSMMC Host Controller Registers */
47 #define OMAP_HSMMC_SYSSTATUS 0x0014
48 #define OMAP_HSMMC_CON 0x002C
49 #define OMAP_HSMMC_SDMASA 0x0100
50 #define OMAP_HSMMC_BLK 0x0104
51 #define OMAP_HSMMC_ARG 0x0108
52 #define OMAP_HSMMC_CMD 0x010C
53 #define OMAP_HSMMC_RSP10 0x0110
54 #define OMAP_HSMMC_RSP32 0x0114
55 #define OMAP_HSMMC_RSP54 0x0118
56 #define OMAP_HSMMC_RSP76 0x011C
57 #define OMAP_HSMMC_DATA 0x0120
58 #define OMAP_HSMMC_PSTATE 0x0124
59 #define OMAP_HSMMC_HCTL 0x0128
60 #define OMAP_HSMMC_SYSCTL 0x012C
61 #define OMAP_HSMMC_STAT 0x0130
62 #define OMAP_HSMMC_IE 0x0134
63 #define OMAP_HSMMC_ISE 0x0138
64 #define OMAP_HSMMC_AC12 0x013C
65 #define OMAP_HSMMC_CAPA 0x0140
66
67 #define VS18 (1 << 26)
68 #define VS30 (1 << 25)
69 #define HSS (1 << 21)
70 #define SDVS18 (0x5 << 9)
71 #define SDVS30 (0x6 << 9)
72 #define SDVS33 (0x7 << 9)
73 #define SDVS_MASK 0x00000E00
74 #define SDVSCLR 0xFFFFF1FF
75 #define SDVSDET 0x00000400
76 #define AUTOIDLE 0x1
77 #define SDBP (1 << 8)
78 #define DTO 0xe
79 #define ICE 0x1
80 #define ICS 0x2
81 #define CEN (1 << 2)
82 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
83 #define CLKD_MASK 0x0000FFC0
84 #define CLKD_SHIFT 6
85 #define DTO_MASK 0x000F0000
86 #define DTO_SHIFT 16
87 #define INIT_STREAM (1 << 1)
88 #define ACEN_ACMD23 (2 << 2)
89 #define DP_SELECT (1 << 21)
90 #define DDIR (1 << 4)
91 #define DMAE 0x1
92 #define MSBS (1 << 5)
93 #define BCE (1 << 1)
94 #define FOUR_BIT (1 << 1)
95 #define HSPE (1 << 2)
96 #define IWE (1 << 24)
97 #define DDR (1 << 19)
98 #define CLKEXTFREE (1 << 16)
99 #define CTPL (1 << 11)
100 #define DW8 (1 << 5)
101 #define OD 0x1
102 #define STAT_CLEAR 0xFFFFFFFF
103 #define INIT_STREAM_CMD 0x00000000
104 #define DUAL_VOLT_OCR_BIT 7
105 #define SRC (1 << 25)
106 #define SRD (1 << 26)
107 #define SOFTRESET (1 << 1)
108
109 /* PSTATE */
110 #define DLEV_DAT(x) (1 << (20 + (x)))
111
112 /* Interrupt masks for IE and ISE register */
113 #define CC_EN (1 << 0)
114 #define TC_EN (1 << 1)
115 #define BWR_EN (1 << 4)
116 #define BRR_EN (1 << 5)
117 #define CIRQ_EN (1 << 8)
118 #define ERR_EN (1 << 15)
119 #define CTO_EN (1 << 16)
120 #define CCRC_EN (1 << 17)
121 #define CEB_EN (1 << 18)
122 #define CIE_EN (1 << 19)
123 #define DTO_EN (1 << 20)
124 #define DCRC_EN (1 << 21)
125 #define DEB_EN (1 << 22)
126 #define ACE_EN (1 << 24)
127 #define CERR_EN (1 << 28)
128 #define BADA_EN (1 << 29)
129
130 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
131 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
132 BRR_EN | BWR_EN | TC_EN | CC_EN)
133
134 #define CNI (1 << 7)
135 #define ACIE (1 << 4)
136 #define ACEB (1 << 3)
137 #define ACCE (1 << 2)
138 #define ACTO (1 << 1)
139 #define ACNE (1 << 0)
140
141 #define MMC_AUTOSUSPEND_DELAY 100
142 #define MMC_TIMEOUT_MS 20 /* 20 mSec */
143 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
144 #define OMAP_MMC_MIN_CLOCK 400000
145 #define OMAP_MMC_MAX_CLOCK 52000000
146 #define DRIVER_NAME "omap_hsmmc"
147
148 /*
149 * One controller can have multiple slots, like on some omap boards using
150 * omap.c controller driver. Luckily this is not currently done on any known
151 * omap_hsmmc.c device.
152 */
153 #define mmc_pdata(host) host->pdata
154
155 /*
156 * MMC Host controller read/write API's
157 */
158 #define OMAP_HSMMC_READ(base, reg) \
159 __raw_readl((base) + OMAP_HSMMC_##reg)
160
161 #define OMAP_HSMMC_WRITE(base, reg, val) \
162 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
163
164 struct omap_hsmmc_next {
165 unsigned int dma_len;
166 s32 cookie;
167 };
168
169 struct omap_hsmmc_host {
170 struct device *dev;
171 struct mmc_host *mmc;
172 struct mmc_request *mrq;
173 struct mmc_command *cmd;
174 struct mmc_data *data;
175 struct clk *fclk;
176 struct clk *dbclk;
177 struct regulator *pbias;
178 bool pbias_enabled;
179 void __iomem *base;
180 bool vqmmc_enabled;
181 resource_size_t mapbase;
182 spinlock_t irq_lock; /* Prevent races with irq handler */
183 unsigned int dma_len;
184 unsigned int dma_sg_idx;
185 unsigned char bus_mode;
186 unsigned char power_mode;
187 int suspended;
188 u32 con;
189 u32 hctl;
190 u32 sysctl;
191 u32 capa;
192 int irq;
193 int wake_irq;
194 int use_dma, dma_ch;
195 struct dma_chan *tx_chan;
196 struct dma_chan *rx_chan;
197 int response_busy;
198 int context_loss;
199 int reqs_blocked;
200 int req_in_progress;
201 unsigned long clk_rate;
202 unsigned int flags;
203 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
204 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
205 struct omap_hsmmc_next next_data;
206 struct omap_hsmmc_platform_data *pdata;
207 };
208
209 struct omap_mmc_of_data {
210 u32 reg_offset;
211 u8 controller_flags;
212 };
213
214 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
215
omap_hsmmc_enable_supply(struct mmc_host * mmc)216 static int omap_hsmmc_enable_supply(struct mmc_host *mmc)
217 {
218 int ret;
219 struct omap_hsmmc_host *host = mmc_priv(mmc);
220 struct mmc_ios *ios = &mmc->ios;
221
222 if (!IS_ERR(mmc->supply.vmmc)) {
223 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
224 if (ret)
225 return ret;
226 }
227
228 /* Enable interface voltage rail, if needed */
229 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
230 ret = regulator_enable(mmc->supply.vqmmc);
231 if (ret) {
232 dev_err(mmc_dev(mmc), "vmmc_aux reg enable failed\n");
233 goto err_vqmmc;
234 }
235 host->vqmmc_enabled = true;
236 }
237
238 return 0;
239
240 err_vqmmc:
241 if (!IS_ERR(mmc->supply.vmmc))
242 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
243
244 return ret;
245 }
246
omap_hsmmc_disable_supply(struct mmc_host * mmc)247 static int omap_hsmmc_disable_supply(struct mmc_host *mmc)
248 {
249 int ret;
250 int status;
251 struct omap_hsmmc_host *host = mmc_priv(mmc);
252
253 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
254 ret = regulator_disable(mmc->supply.vqmmc);
255 if (ret) {
256 dev_err(mmc_dev(mmc), "vmmc_aux reg disable failed\n");
257 return ret;
258 }
259 host->vqmmc_enabled = false;
260 }
261
262 if (!IS_ERR(mmc->supply.vmmc)) {
263 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
264 if (ret)
265 goto err_set_ocr;
266 }
267
268 return 0;
269
270 err_set_ocr:
271 if (!IS_ERR(mmc->supply.vqmmc)) {
272 status = regulator_enable(mmc->supply.vqmmc);
273 if (status)
274 dev_err(mmc_dev(mmc), "vmmc_aux re-enable failed\n");
275 }
276
277 return ret;
278 }
279
omap_hsmmc_set_pbias(struct omap_hsmmc_host * host,bool power_on)280 static int omap_hsmmc_set_pbias(struct omap_hsmmc_host *host, bool power_on)
281 {
282 int ret;
283
284 if (IS_ERR(host->pbias))
285 return 0;
286
287 if (power_on) {
288 if (!host->pbias_enabled) {
289 ret = regulator_enable(host->pbias);
290 if (ret) {
291 dev_err(host->dev, "pbias reg enable fail\n");
292 return ret;
293 }
294 host->pbias_enabled = true;
295 }
296 } else {
297 if (host->pbias_enabled) {
298 ret = regulator_disable(host->pbias);
299 if (ret) {
300 dev_err(host->dev, "pbias reg disable fail\n");
301 return ret;
302 }
303 host->pbias_enabled = false;
304 }
305 }
306
307 return 0;
308 }
309
omap_hsmmc_set_power(struct omap_hsmmc_host * host,int power_on)310 static int omap_hsmmc_set_power(struct omap_hsmmc_host *host, int power_on)
311 {
312 struct mmc_host *mmc = host->mmc;
313 int ret = 0;
314
315 /*
316 * If we don't see a Vcc regulator, assume it's a fixed
317 * voltage always-on regulator.
318 */
319 if (IS_ERR(mmc->supply.vmmc))
320 return 0;
321
322 ret = omap_hsmmc_set_pbias(host, false);
323 if (ret)
324 return ret;
325
326 /*
327 * Assume Vcc regulator is used only to power the card ... OMAP
328 * VDDS is used to power the pins, optionally with a transceiver to
329 * support cards using voltages other than VDDS (1.8V nominal). When a
330 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
331 *
332 * In some cases this regulator won't support enable/disable;
333 * e.g. it's a fixed rail for a WLAN chip.
334 *
335 * In other cases vcc_aux switches interface power. Example, for
336 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
337 * chips/cards need an interface voltage rail too.
338 */
339 if (power_on) {
340 ret = omap_hsmmc_enable_supply(mmc);
341 if (ret)
342 return ret;
343
344 ret = omap_hsmmc_set_pbias(host, true);
345 if (ret)
346 goto err_set_voltage;
347 } else {
348 ret = omap_hsmmc_disable_supply(mmc);
349 if (ret)
350 return ret;
351 }
352
353 return 0;
354
355 err_set_voltage:
356 omap_hsmmc_disable_supply(mmc);
357
358 return ret;
359 }
360
omap_hsmmc_disable_boot_regulator(struct regulator * reg)361 static int omap_hsmmc_disable_boot_regulator(struct regulator *reg)
362 {
363 int ret;
364
365 if (IS_ERR(reg))
366 return 0;
367
368 if (regulator_is_enabled(reg)) {
369 ret = regulator_enable(reg);
370 if (ret)
371 return ret;
372
373 ret = regulator_disable(reg);
374 if (ret)
375 return ret;
376 }
377
378 return 0;
379 }
380
omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host * host)381 static int omap_hsmmc_disable_boot_regulators(struct omap_hsmmc_host *host)
382 {
383 struct mmc_host *mmc = host->mmc;
384 int ret;
385
386 /*
387 * disable regulators enabled during boot and get the usecount
388 * right so that regulators can be enabled/disabled by checking
389 * the return value of regulator_is_enabled
390 */
391 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vmmc);
392 if (ret) {
393 dev_err(host->dev, "fail to disable boot enabled vmmc reg\n");
394 return ret;
395 }
396
397 ret = omap_hsmmc_disable_boot_regulator(mmc->supply.vqmmc);
398 if (ret) {
399 dev_err(host->dev,
400 "fail to disable boot enabled vmmc_aux reg\n");
401 return ret;
402 }
403
404 ret = omap_hsmmc_disable_boot_regulator(host->pbias);
405 if (ret) {
406 dev_err(host->dev,
407 "failed to disable boot enabled pbias reg\n");
408 return ret;
409 }
410
411 return 0;
412 }
413
omap_hsmmc_reg_get(struct omap_hsmmc_host * host)414 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
415 {
416 int ret;
417 struct mmc_host *mmc = host->mmc;
418
419
420 ret = mmc_regulator_get_supply(mmc);
421 if (ret)
422 return ret;
423
424 /* Allow an aux regulator */
425 if (IS_ERR(mmc->supply.vqmmc)) {
426 mmc->supply.vqmmc = devm_regulator_get_optional(host->dev,
427 "vmmc_aux");
428 if (IS_ERR(mmc->supply.vqmmc)) {
429 ret = PTR_ERR(mmc->supply.vqmmc);
430 if ((ret != -ENODEV) && host->dev->of_node)
431 return ret;
432 dev_dbg(host->dev, "unable to get vmmc_aux regulator %ld\n",
433 PTR_ERR(mmc->supply.vqmmc));
434 }
435 }
436
437 host->pbias = devm_regulator_get_optional(host->dev, "pbias");
438 if (IS_ERR(host->pbias)) {
439 ret = PTR_ERR(host->pbias);
440 if ((ret != -ENODEV) && host->dev->of_node) {
441 dev_err(host->dev,
442 "SD card detect fail? enable CONFIG_REGULATOR_PBIAS\n");
443 return ret;
444 }
445 dev_dbg(host->dev, "unable to get pbias regulator %ld\n",
446 PTR_ERR(host->pbias));
447 }
448
449 /* For eMMC do not power off when not in sleep state */
450 if (mmc_pdata(host)->no_regulator_off_init)
451 return 0;
452
453 ret = omap_hsmmc_disable_boot_regulators(host);
454 if (ret)
455 return ret;
456
457 return 0;
458 }
459
460 /*
461 * Start clock to the card
462 */
omap_hsmmc_start_clock(struct omap_hsmmc_host * host)463 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
464 {
465 OMAP_HSMMC_WRITE(host->base, SYSCTL,
466 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
467 }
468
469 /*
470 * Stop clock to the card
471 */
omap_hsmmc_stop_clock(struct omap_hsmmc_host * host)472 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
473 {
474 OMAP_HSMMC_WRITE(host->base, SYSCTL,
475 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
476 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
477 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
478 }
479
omap_hsmmc_enable_irq(struct omap_hsmmc_host * host,struct mmc_command * cmd)480 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
481 struct mmc_command *cmd)
482 {
483 u32 irq_mask = INT_EN_MASK;
484 unsigned long flags;
485
486 if (host->use_dma)
487 irq_mask &= ~(BRR_EN | BWR_EN);
488
489 /* Disable timeout for erases */
490 if (cmd->opcode == MMC_ERASE)
491 irq_mask &= ~DTO_EN;
492
493 spin_lock_irqsave(&host->irq_lock, flags);
494 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
495 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
496
497 /* latch pending CIRQ, but don't signal MMC core */
498 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
499 irq_mask |= CIRQ_EN;
500 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
501 spin_unlock_irqrestore(&host->irq_lock, flags);
502 }
503
omap_hsmmc_disable_irq(struct omap_hsmmc_host * host)504 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
505 {
506 u32 irq_mask = 0;
507 unsigned long flags;
508
509 spin_lock_irqsave(&host->irq_lock, flags);
510 /* no transfer running but need to keep cirq if enabled */
511 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
512 irq_mask |= CIRQ_EN;
513 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
514 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
515 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
516 spin_unlock_irqrestore(&host->irq_lock, flags);
517 }
518
519 /* Calculate divisor for the given clock frequency */
calc_divisor(struct omap_hsmmc_host * host,struct mmc_ios * ios)520 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
521 {
522 u16 dsor = 0;
523
524 if (ios->clock) {
525 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
526 if (dsor > CLKD_MAX)
527 dsor = CLKD_MAX;
528 }
529
530 return dsor;
531 }
532
omap_hsmmc_set_clock(struct omap_hsmmc_host * host)533 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
534 {
535 struct mmc_ios *ios = &host->mmc->ios;
536 unsigned long regval;
537 unsigned long timeout;
538 unsigned long clkdiv;
539
540 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
541
542 omap_hsmmc_stop_clock(host);
543
544 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
545 regval = regval & ~(CLKD_MASK | DTO_MASK);
546 clkdiv = calc_divisor(host, ios);
547 regval = regval | (clkdiv << 6) | (DTO << 16);
548 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
549 OMAP_HSMMC_WRITE(host->base, SYSCTL,
550 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
551
552 /* Wait till the ICS bit is set */
553 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
554 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
555 && time_before(jiffies, timeout))
556 cpu_relax();
557
558 /*
559 * Enable High-Speed Support
560 * Pre-Requisites
561 * - Controller should support High-Speed-Enable Bit
562 * - Controller should not be using DDR Mode
563 * - Controller should advertise that it supports High Speed
564 * in capabilities register
565 * - MMC/SD clock coming out of controller > 25MHz
566 */
567 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
568 (ios->timing != MMC_TIMING_MMC_DDR52) &&
569 (ios->timing != MMC_TIMING_UHS_DDR50) &&
570 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
571 regval = OMAP_HSMMC_READ(host->base, HCTL);
572 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
573 regval |= HSPE;
574 else
575 regval &= ~HSPE;
576
577 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
578 }
579
580 omap_hsmmc_start_clock(host);
581 }
582
omap_hsmmc_set_bus_width(struct omap_hsmmc_host * host)583 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
584 {
585 struct mmc_ios *ios = &host->mmc->ios;
586 u32 con;
587
588 con = OMAP_HSMMC_READ(host->base, CON);
589 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
590 ios->timing == MMC_TIMING_UHS_DDR50)
591 con |= DDR; /* configure in DDR mode */
592 else
593 con &= ~DDR;
594 switch (ios->bus_width) {
595 case MMC_BUS_WIDTH_8:
596 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
597 break;
598 case MMC_BUS_WIDTH_4:
599 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
600 OMAP_HSMMC_WRITE(host->base, HCTL,
601 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
602 break;
603 case MMC_BUS_WIDTH_1:
604 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
605 OMAP_HSMMC_WRITE(host->base, HCTL,
606 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
607 break;
608 }
609 }
610
omap_hsmmc_set_bus_mode(struct omap_hsmmc_host * host)611 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
612 {
613 struct mmc_ios *ios = &host->mmc->ios;
614 u32 con;
615
616 con = OMAP_HSMMC_READ(host->base, CON);
617 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
618 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
619 else
620 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
621 }
622
623 /*
624 * Restore the MMC host context, if it was lost as result of a
625 * power state change.
626 */
omap_hsmmc_context_restore(struct omap_hsmmc_host * host)627 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
628 {
629 struct mmc_ios *ios = &host->mmc->ios;
630 u32 hctl, capa;
631 unsigned long timeout;
632
633 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
634 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
635 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
636 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
637 return 0;
638
639 host->context_loss++;
640
641 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
642 if (host->power_mode != MMC_POWER_OFF &&
643 (1 << ios->vdd) <= MMC_VDD_23_24)
644 hctl = SDVS18;
645 else
646 hctl = SDVS30;
647 capa = VS30 | VS18;
648 } else {
649 hctl = SDVS18;
650 capa = VS18;
651 }
652
653 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
654 hctl |= IWE;
655
656 OMAP_HSMMC_WRITE(host->base, HCTL,
657 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
658
659 OMAP_HSMMC_WRITE(host->base, CAPA,
660 OMAP_HSMMC_READ(host->base, CAPA) | capa);
661
662 OMAP_HSMMC_WRITE(host->base, HCTL,
663 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
664
665 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
666 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
667 && time_before(jiffies, timeout))
668 ;
669
670 OMAP_HSMMC_WRITE(host->base, ISE, 0);
671 OMAP_HSMMC_WRITE(host->base, IE, 0);
672 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
673
674 /* Do not initialize card-specific things if the power is off */
675 if (host->power_mode == MMC_POWER_OFF)
676 goto out;
677
678 omap_hsmmc_set_bus_width(host);
679
680 omap_hsmmc_set_clock(host);
681
682 omap_hsmmc_set_bus_mode(host);
683
684 out:
685 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
686 host->context_loss);
687 return 0;
688 }
689
690 #ifdef CONFIG_PM
691 /*
692 * Save the MMC host context (store the number of power state changes so far).
693 */
omap_hsmmc_context_save(struct omap_hsmmc_host * host)694 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
695 {
696 host->con = OMAP_HSMMC_READ(host->base, CON);
697 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
698 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
699 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
700 }
701
702 #else
703
omap_hsmmc_context_save(struct omap_hsmmc_host * host)704 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
705 {
706 }
707
708 #endif
709
710 /*
711 * Send init stream sequence to card
712 * before sending IDLE command
713 */
send_init_stream(struct omap_hsmmc_host * host)714 static void send_init_stream(struct omap_hsmmc_host *host)
715 {
716 int reg = 0;
717 unsigned long timeout;
718
719 disable_irq(host->irq);
720
721 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
722 OMAP_HSMMC_WRITE(host->base, CON,
723 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
724 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
725
726 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
727 while ((reg != CC_EN) && time_before(jiffies, timeout))
728 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
729
730 OMAP_HSMMC_WRITE(host->base, CON,
731 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
732
733 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
734 OMAP_HSMMC_READ(host->base, STAT);
735
736 enable_irq(host->irq);
737 }
738
739 static ssize_t
omap_hsmmc_show_slot_name(struct device * dev,struct device_attribute * attr,char * buf)740 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
741 char *buf)
742 {
743 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
744 struct omap_hsmmc_host *host = mmc_priv(mmc);
745
746 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
747 }
748
749 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
750
751 /*
752 * Configure the response type and send the cmd.
753 */
754 static void
omap_hsmmc_start_command(struct omap_hsmmc_host * host,struct mmc_command * cmd,struct mmc_data * data)755 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
756 struct mmc_data *data)
757 {
758 int cmdreg = 0, resptype = 0, cmdtype = 0;
759
760 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
761 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
762 host->cmd = cmd;
763
764 omap_hsmmc_enable_irq(host, cmd);
765
766 host->response_busy = 0;
767 if (cmd->flags & MMC_RSP_PRESENT) {
768 if (cmd->flags & MMC_RSP_136)
769 resptype = 1;
770 else if (cmd->flags & MMC_RSP_BUSY) {
771 resptype = 3;
772 host->response_busy = 1;
773 } else
774 resptype = 2;
775 }
776
777 /*
778 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
779 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
780 * a val of 0x3, rest 0x0.
781 */
782 if (cmd == host->mrq->stop)
783 cmdtype = 0x3;
784
785 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
786
787 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
788 host->mrq->sbc) {
789 cmdreg |= ACEN_ACMD23;
790 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
791 }
792 if (data) {
793 cmdreg |= DP_SELECT | MSBS | BCE;
794 if (data->flags & MMC_DATA_READ)
795 cmdreg |= DDIR;
796 else
797 cmdreg &= ~(DDIR);
798 }
799
800 if (host->use_dma)
801 cmdreg |= DMAE;
802
803 host->req_in_progress = 1;
804
805 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
806 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
807 }
808
omap_hsmmc_get_dma_chan(struct omap_hsmmc_host * host,struct mmc_data * data)809 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
810 struct mmc_data *data)
811 {
812 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
813 }
814
omap_hsmmc_request_done(struct omap_hsmmc_host * host,struct mmc_request * mrq)815 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
816 {
817 int dma_ch;
818 unsigned long flags;
819
820 spin_lock_irqsave(&host->irq_lock, flags);
821 host->req_in_progress = 0;
822 dma_ch = host->dma_ch;
823 spin_unlock_irqrestore(&host->irq_lock, flags);
824
825 omap_hsmmc_disable_irq(host);
826 /* Do not complete the request if DMA is still in progress */
827 if (mrq->data && host->use_dma && dma_ch != -1)
828 return;
829 host->mrq = NULL;
830 mmc_request_done(host->mmc, mrq);
831 }
832
833 /*
834 * Notify the transfer complete to MMC core
835 */
836 static void
omap_hsmmc_xfer_done(struct omap_hsmmc_host * host,struct mmc_data * data)837 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
838 {
839 if (!data) {
840 struct mmc_request *mrq = host->mrq;
841
842 /* TC before CC from CMD6 - don't know why, but it happens */
843 if (host->cmd && host->cmd->opcode == 6 &&
844 host->response_busy) {
845 host->response_busy = 0;
846 return;
847 }
848
849 omap_hsmmc_request_done(host, mrq);
850 return;
851 }
852
853 host->data = NULL;
854
855 if (!data->error)
856 data->bytes_xfered += data->blocks * (data->blksz);
857 else
858 data->bytes_xfered = 0;
859
860 if (data->stop && (data->error || !host->mrq->sbc))
861 omap_hsmmc_start_command(host, data->stop, NULL);
862 else
863 omap_hsmmc_request_done(host, data->mrq);
864 }
865
866 /*
867 * Notify the core about command completion
868 */
869 static void
omap_hsmmc_cmd_done(struct omap_hsmmc_host * host,struct mmc_command * cmd)870 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
871 {
872 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
873 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
874 host->cmd = NULL;
875 omap_hsmmc_start_dma_transfer(host);
876 omap_hsmmc_start_command(host, host->mrq->cmd,
877 host->mrq->data);
878 return;
879 }
880
881 host->cmd = NULL;
882
883 if (cmd->flags & MMC_RSP_PRESENT) {
884 if (cmd->flags & MMC_RSP_136) {
885 /* response type 2 */
886 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
887 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
888 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
889 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
890 } else {
891 /* response types 1, 1b, 3, 4, 5, 6 */
892 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
893 }
894 }
895 if ((host->data == NULL && !host->response_busy) || cmd->error)
896 omap_hsmmc_request_done(host, host->mrq);
897 }
898
899 /*
900 * DMA clean up for command errors
901 */
omap_hsmmc_dma_cleanup(struct omap_hsmmc_host * host,int errno)902 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
903 {
904 int dma_ch;
905 unsigned long flags;
906
907 host->data->error = errno;
908
909 spin_lock_irqsave(&host->irq_lock, flags);
910 dma_ch = host->dma_ch;
911 host->dma_ch = -1;
912 spin_unlock_irqrestore(&host->irq_lock, flags);
913
914 if (host->use_dma && dma_ch != -1) {
915 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
916
917 dmaengine_terminate_all(chan);
918 dma_unmap_sg(chan->device->dev,
919 host->data->sg, host->data->sg_len,
920 mmc_get_dma_dir(host->data));
921
922 host->data->host_cookie = 0;
923 }
924 host->data = NULL;
925 }
926
927 /*
928 * Readable error output
929 */
930 #ifdef CONFIG_MMC_DEBUG
omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host * host,u32 status)931 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
932 {
933 /* --- means reserved bit without definition at documentation */
934 static const char *omap_hsmmc_status_bits[] = {
935 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
936 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
937 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
938 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
939 };
940 char res[256];
941 char *buf = res;
942 int len, i;
943
944 len = sprintf(buf, "MMC IRQ 0x%x :", status);
945 buf += len;
946
947 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
948 if (status & (1 << i)) {
949 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
950 buf += len;
951 }
952
953 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
954 }
955 #else
omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host * host,u32 status)956 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
957 u32 status)
958 {
959 }
960 #endif /* CONFIG_MMC_DEBUG */
961
962 /*
963 * MMC controller internal state machines reset
964 *
965 * Used to reset command or data internal state machines, using respectively
966 * SRC or SRD bit of SYSCTL register
967 * Can be called from interrupt context
968 */
omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host * host,unsigned long bit)969 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
970 unsigned long bit)
971 {
972 unsigned long i = 0;
973 unsigned long limit = MMC_TIMEOUT_US;
974
975 OMAP_HSMMC_WRITE(host->base, SYSCTL,
976 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
977
978 /*
979 * OMAP4 ES2 and greater has an updated reset logic.
980 * Monitor a 0->1 transition first
981 */
982 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
983 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
984 && (i++ < limit))
985 udelay(1);
986 }
987 i = 0;
988
989 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
990 (i++ < limit))
991 udelay(1);
992
993 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
994 dev_err(mmc_dev(host->mmc),
995 "Timeout waiting on controller reset in %s\n",
996 __func__);
997 }
998
hsmmc_command_incomplete(struct omap_hsmmc_host * host,int err,int end_cmd)999 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1000 int err, int end_cmd)
1001 {
1002 if (end_cmd) {
1003 omap_hsmmc_reset_controller_fsm(host, SRC);
1004 if (host->cmd)
1005 host->cmd->error = err;
1006 }
1007
1008 if (host->data) {
1009 omap_hsmmc_reset_controller_fsm(host, SRD);
1010 omap_hsmmc_dma_cleanup(host, err);
1011 } else if (host->mrq && host->mrq->cmd)
1012 host->mrq->cmd->error = err;
1013 }
1014
omap_hsmmc_do_irq(struct omap_hsmmc_host * host,int status)1015 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1016 {
1017 struct mmc_data *data;
1018 int end_cmd = 0, end_trans = 0;
1019 int error = 0;
1020
1021 data = host->data;
1022 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1023
1024 if (status & ERR_EN) {
1025 omap_hsmmc_dbg_report_irq(host, status);
1026
1027 if (status & (CTO_EN | CCRC_EN | CEB_EN))
1028 end_cmd = 1;
1029 if (host->data || host->response_busy) {
1030 end_trans = !end_cmd;
1031 host->response_busy = 0;
1032 }
1033 if (status & (CTO_EN | DTO_EN))
1034 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1035 else if (status & (CCRC_EN | DCRC_EN | DEB_EN | CEB_EN |
1036 BADA_EN))
1037 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1038
1039 if (status & ACE_EN) {
1040 u32 ac12;
1041 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1042 if (!(ac12 & ACNE) && host->mrq->sbc) {
1043 end_cmd = 1;
1044 if (ac12 & ACTO)
1045 error = -ETIMEDOUT;
1046 else if (ac12 & (ACCE | ACEB | ACIE))
1047 error = -EILSEQ;
1048 host->mrq->sbc->error = error;
1049 hsmmc_command_incomplete(host, error, end_cmd);
1050 }
1051 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1052 }
1053 }
1054
1055 OMAP_HSMMC_WRITE(host->base, STAT, status);
1056 if (end_cmd || ((status & CC_EN) && host->cmd))
1057 omap_hsmmc_cmd_done(host, host->cmd);
1058 if ((end_trans || (status & TC_EN)) && host->mrq)
1059 omap_hsmmc_xfer_done(host, data);
1060 }
1061
1062 /*
1063 * MMC controller IRQ handler
1064 */
omap_hsmmc_irq(int irq,void * dev_id)1065 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1066 {
1067 struct omap_hsmmc_host *host = dev_id;
1068 int status;
1069
1070 status = OMAP_HSMMC_READ(host->base, STAT);
1071 while (status & (INT_EN_MASK | CIRQ_EN)) {
1072 if (host->req_in_progress)
1073 omap_hsmmc_do_irq(host, status);
1074
1075 if (status & CIRQ_EN)
1076 mmc_signal_sdio_irq(host->mmc);
1077
1078 /* Flush posted write */
1079 status = OMAP_HSMMC_READ(host->base, STAT);
1080 }
1081
1082 return IRQ_HANDLED;
1083 }
1084
set_sd_bus_power(struct omap_hsmmc_host * host)1085 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1086 {
1087 unsigned long i;
1088
1089 OMAP_HSMMC_WRITE(host->base, HCTL,
1090 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1091 for (i = 0; i < loops_per_jiffy; i++) {
1092 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1093 break;
1094 cpu_relax();
1095 }
1096 }
1097
1098 /*
1099 * Switch MMC interface voltage ... only relevant for MMC1.
1100 *
1101 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1102 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1103 * Some chips, like eMMC ones, use internal transceivers.
1104 */
omap_hsmmc_switch_opcond(struct omap_hsmmc_host * host,int vdd)1105 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1106 {
1107 u32 reg_val = 0;
1108 int ret;
1109
1110 /* Disable the clocks */
1111 clk_disable_unprepare(host->dbclk);
1112
1113 /* Turn the power off */
1114 ret = omap_hsmmc_set_power(host, 0);
1115
1116 /* Turn the power ON with given VDD 1.8 or 3.0v */
1117 if (!ret)
1118 ret = omap_hsmmc_set_power(host, 1);
1119 clk_prepare_enable(host->dbclk);
1120
1121 if (ret != 0)
1122 goto err;
1123
1124 OMAP_HSMMC_WRITE(host->base, HCTL,
1125 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1126 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1127
1128 /*
1129 * If a MMC dual voltage card is detected, the set_ios fn calls
1130 * this fn with VDD bit set for 1.8V. Upon card removal from the
1131 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1132 *
1133 * Cope with a bit of slop in the range ... per data sheets:
1134 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1135 * but recommended values are 1.71V to 1.89V
1136 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1137 * but recommended values are 2.7V to 3.3V
1138 *
1139 * Board setup code shouldn't permit anything very out-of-range.
1140 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1141 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1142 */
1143 if ((1 << vdd) <= MMC_VDD_23_24)
1144 reg_val |= SDVS18;
1145 else
1146 reg_val |= SDVS30;
1147
1148 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1149 set_sd_bus_power(host);
1150
1151 return 0;
1152 err:
1153 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1154 return ret;
1155 }
1156
omap_hsmmc_dma_callback(void * param)1157 static void omap_hsmmc_dma_callback(void *param)
1158 {
1159 struct omap_hsmmc_host *host = param;
1160 struct dma_chan *chan;
1161 struct mmc_data *data;
1162 int req_in_progress;
1163
1164 spin_lock_irq(&host->irq_lock);
1165 if (host->dma_ch < 0) {
1166 spin_unlock_irq(&host->irq_lock);
1167 return;
1168 }
1169
1170 data = host->mrq->data;
1171 chan = omap_hsmmc_get_dma_chan(host, data);
1172 if (!data->host_cookie)
1173 dma_unmap_sg(chan->device->dev,
1174 data->sg, data->sg_len,
1175 mmc_get_dma_dir(data));
1176
1177 req_in_progress = host->req_in_progress;
1178 host->dma_ch = -1;
1179 spin_unlock_irq(&host->irq_lock);
1180
1181 /* If DMA has finished after TC, complete the request */
1182 if (!req_in_progress) {
1183 struct mmc_request *mrq = host->mrq;
1184
1185 host->mrq = NULL;
1186 mmc_request_done(host->mmc, mrq);
1187 }
1188 }
1189
omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host * host,struct mmc_data * data,struct omap_hsmmc_next * next,struct dma_chan * chan)1190 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1191 struct mmc_data *data,
1192 struct omap_hsmmc_next *next,
1193 struct dma_chan *chan)
1194 {
1195 int dma_len;
1196
1197 if (!next && data->host_cookie &&
1198 data->host_cookie != host->next_data.cookie) {
1199 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1200 " host->next_data.cookie %d\n",
1201 __func__, data->host_cookie, host->next_data.cookie);
1202 data->host_cookie = 0;
1203 }
1204
1205 /* Check if next job is already prepared */
1206 if (next || data->host_cookie != host->next_data.cookie) {
1207 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1208 mmc_get_dma_dir(data));
1209
1210 } else {
1211 dma_len = host->next_data.dma_len;
1212 host->next_data.dma_len = 0;
1213 }
1214
1215
1216 if (dma_len == 0)
1217 return -EINVAL;
1218
1219 if (next) {
1220 next->dma_len = dma_len;
1221 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1222 } else
1223 host->dma_len = dma_len;
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * Routine to configure and start DMA for the MMC card
1230 */
omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host * host,struct mmc_request * req)1231 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1232 struct mmc_request *req)
1233 {
1234 struct dma_async_tx_descriptor *tx;
1235 int ret = 0, i;
1236 struct mmc_data *data = req->data;
1237 struct dma_chan *chan;
1238 struct dma_slave_config cfg = {
1239 .src_addr = host->mapbase + OMAP_HSMMC_DATA,
1240 .dst_addr = host->mapbase + OMAP_HSMMC_DATA,
1241 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1242 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
1243 .src_maxburst = data->blksz / 4,
1244 .dst_maxburst = data->blksz / 4,
1245 };
1246
1247 /* Sanity check: all the SG entries must be aligned by block size. */
1248 for (i = 0; i < data->sg_len; i++) {
1249 struct scatterlist *sgl;
1250
1251 sgl = data->sg + i;
1252 if (sgl->length % data->blksz)
1253 return -EINVAL;
1254 }
1255 if ((data->blksz % 4) != 0)
1256 /* REVISIT: The MMC buffer increments only when MSB is written.
1257 * Return error for blksz which is non multiple of four.
1258 */
1259 return -EINVAL;
1260
1261 BUG_ON(host->dma_ch != -1);
1262
1263 chan = omap_hsmmc_get_dma_chan(host, data);
1264
1265 ret = dmaengine_slave_config(chan, &cfg);
1266 if (ret)
1267 return ret;
1268
1269 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1270 if (ret)
1271 return ret;
1272
1273 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1274 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1275 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1276 if (!tx) {
1277 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1278 /* FIXME: cleanup */
1279 return -1;
1280 }
1281
1282 tx->callback = omap_hsmmc_dma_callback;
1283 tx->callback_param = host;
1284
1285 /* Does not fail */
1286 dmaengine_submit(tx);
1287
1288 host->dma_ch = 1;
1289
1290 return 0;
1291 }
1292
set_data_timeout(struct omap_hsmmc_host * host,unsigned long long timeout_ns,unsigned int timeout_clks)1293 static void set_data_timeout(struct omap_hsmmc_host *host,
1294 unsigned long long timeout_ns,
1295 unsigned int timeout_clks)
1296 {
1297 unsigned long long timeout = timeout_ns;
1298 unsigned int cycle_ns;
1299 uint32_t reg, clkd, dto = 0;
1300
1301 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1302 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1303 if (clkd == 0)
1304 clkd = 1;
1305
1306 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1307 do_div(timeout, cycle_ns);
1308 timeout += timeout_clks;
1309 if (timeout) {
1310 while ((timeout & 0x80000000) == 0) {
1311 dto += 1;
1312 timeout <<= 1;
1313 }
1314 dto = 31 - dto;
1315 timeout <<= 1;
1316 if (timeout && dto)
1317 dto += 1;
1318 if (dto >= 13)
1319 dto -= 13;
1320 else
1321 dto = 0;
1322 if (dto > 14)
1323 dto = 14;
1324 }
1325
1326 reg &= ~DTO_MASK;
1327 reg |= dto << DTO_SHIFT;
1328 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1329 }
1330
omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host * host)1331 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1332 {
1333 struct mmc_request *req = host->mrq;
1334 struct dma_chan *chan;
1335
1336 if (!req->data)
1337 return;
1338 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1339 | (req->data->blocks << 16));
1340 set_data_timeout(host, req->data->timeout_ns,
1341 req->data->timeout_clks);
1342 chan = omap_hsmmc_get_dma_chan(host, req->data);
1343 dma_async_issue_pending(chan);
1344 }
1345
1346 /*
1347 * Configure block length for MMC/SD cards and initiate the transfer.
1348 */
1349 static int
omap_hsmmc_prepare_data(struct omap_hsmmc_host * host,struct mmc_request * req)1350 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1351 {
1352 int ret;
1353 unsigned long long timeout;
1354
1355 host->data = req->data;
1356
1357 if (req->data == NULL) {
1358 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1359 if (req->cmd->flags & MMC_RSP_BUSY) {
1360 timeout = req->cmd->busy_timeout * NSEC_PER_MSEC;
1361
1362 /*
1363 * Set an arbitrary 100ms data timeout for commands with
1364 * busy signal and no indication of busy_timeout.
1365 */
1366 if (!timeout)
1367 timeout = 100000000U;
1368
1369 set_data_timeout(host, timeout, 0);
1370 }
1371 return 0;
1372 }
1373
1374 if (host->use_dma) {
1375 ret = omap_hsmmc_setup_dma_transfer(host, req);
1376 if (ret != 0) {
1377 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1378 return ret;
1379 }
1380 }
1381 return 0;
1382 }
1383
omap_hsmmc_post_req(struct mmc_host * mmc,struct mmc_request * mrq,int err)1384 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1385 int err)
1386 {
1387 struct omap_hsmmc_host *host = mmc_priv(mmc);
1388 struct mmc_data *data = mrq->data;
1389
1390 if (host->use_dma && data->host_cookie) {
1391 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1392
1393 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1394 mmc_get_dma_dir(data));
1395 data->host_cookie = 0;
1396 }
1397 }
1398
omap_hsmmc_pre_req(struct mmc_host * mmc,struct mmc_request * mrq)1399 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
1400 {
1401 struct omap_hsmmc_host *host = mmc_priv(mmc);
1402
1403 if (mrq->data->host_cookie) {
1404 mrq->data->host_cookie = 0;
1405 return ;
1406 }
1407
1408 if (host->use_dma) {
1409 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1410
1411 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1412 &host->next_data, c))
1413 mrq->data->host_cookie = 0;
1414 }
1415 }
1416
1417 /*
1418 * Request function. for read/write operation
1419 */
omap_hsmmc_request(struct mmc_host * mmc,struct mmc_request * req)1420 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1421 {
1422 struct omap_hsmmc_host *host = mmc_priv(mmc);
1423 int err;
1424
1425 BUG_ON(host->req_in_progress);
1426 BUG_ON(host->dma_ch != -1);
1427 if (host->reqs_blocked)
1428 host->reqs_blocked = 0;
1429 WARN_ON(host->mrq != NULL);
1430 host->mrq = req;
1431 host->clk_rate = clk_get_rate(host->fclk);
1432 err = omap_hsmmc_prepare_data(host, req);
1433 if (err) {
1434 req->cmd->error = err;
1435 if (req->data)
1436 req->data->error = err;
1437 host->mrq = NULL;
1438 mmc_request_done(mmc, req);
1439 return;
1440 }
1441 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1442 omap_hsmmc_start_command(host, req->sbc, NULL);
1443 return;
1444 }
1445
1446 omap_hsmmc_start_dma_transfer(host);
1447 omap_hsmmc_start_command(host, req->cmd, req->data);
1448 }
1449
1450 /* Routine to configure clock values. Exposed API to core */
omap_hsmmc_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1451 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1452 {
1453 struct omap_hsmmc_host *host = mmc_priv(mmc);
1454 int do_send_init_stream = 0;
1455
1456 if (ios->power_mode != host->power_mode) {
1457 switch (ios->power_mode) {
1458 case MMC_POWER_OFF:
1459 omap_hsmmc_set_power(host, 0);
1460 break;
1461 case MMC_POWER_UP:
1462 omap_hsmmc_set_power(host, 1);
1463 break;
1464 case MMC_POWER_ON:
1465 do_send_init_stream = 1;
1466 break;
1467 }
1468 host->power_mode = ios->power_mode;
1469 }
1470
1471 /* FIXME: set registers based only on changes to ios */
1472
1473 omap_hsmmc_set_bus_width(host);
1474
1475 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1476 /* Only MMC1 can interface at 3V without some flavor
1477 * of external transceiver; but they all handle 1.8V.
1478 */
1479 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1480 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1481 /*
1482 * The mmc_select_voltage fn of the core does
1483 * not seem to set the power_mode to
1484 * MMC_POWER_UP upon recalculating the voltage.
1485 * vdd 1.8v.
1486 */
1487 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1488 dev_dbg(mmc_dev(host->mmc),
1489 "Switch operation failed\n");
1490 }
1491 }
1492
1493 omap_hsmmc_set_clock(host);
1494
1495 if (do_send_init_stream)
1496 send_init_stream(host);
1497
1498 omap_hsmmc_set_bus_mode(host);
1499 }
1500
omap_hsmmc_enable_sdio_irq(struct mmc_host * mmc,int enable)1501 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1502 {
1503 struct omap_hsmmc_host *host = mmc_priv(mmc);
1504 u32 irq_mask, con;
1505 unsigned long flags;
1506
1507 spin_lock_irqsave(&host->irq_lock, flags);
1508
1509 con = OMAP_HSMMC_READ(host->base, CON);
1510 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1511 if (enable) {
1512 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1513 irq_mask |= CIRQ_EN;
1514 con |= CTPL | CLKEXTFREE;
1515 } else {
1516 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1517 irq_mask &= ~CIRQ_EN;
1518 con &= ~(CTPL | CLKEXTFREE);
1519 }
1520 OMAP_HSMMC_WRITE(host->base, CON, con);
1521 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1522
1523 /*
1524 * if enable, piggy back detection on current request
1525 * but always disable immediately
1526 */
1527 if (!host->req_in_progress || !enable)
1528 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1529
1530 /* flush posted write */
1531 OMAP_HSMMC_READ(host->base, IE);
1532
1533 spin_unlock_irqrestore(&host->irq_lock, flags);
1534 }
1535
omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host * host)1536 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1537 {
1538 int ret;
1539
1540 /*
1541 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1542 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1543 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1544 * with functional clock disabled.
1545 */
1546 if (!host->dev->of_node || !host->wake_irq)
1547 return -ENODEV;
1548
1549 ret = dev_pm_set_dedicated_wake_irq(host->dev, host->wake_irq);
1550 if (ret) {
1551 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1552 goto err;
1553 }
1554
1555 /*
1556 * Some omaps don't have wake-up path from deeper idle states
1557 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1558 */
1559 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1560 struct pinctrl *p = devm_pinctrl_get(host->dev);
1561 if (IS_ERR(p)) {
1562 ret = PTR_ERR(p);
1563 goto err_free_irq;
1564 }
1565
1566 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1567 dev_info(host->dev, "missing idle pinctrl state\n");
1568 devm_pinctrl_put(p);
1569 ret = -EINVAL;
1570 goto err_free_irq;
1571 }
1572 devm_pinctrl_put(p);
1573 }
1574
1575 OMAP_HSMMC_WRITE(host->base, HCTL,
1576 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1577 return 0;
1578
1579 err_free_irq:
1580 dev_pm_clear_wake_irq(host->dev);
1581 err:
1582 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1583 host->wake_irq = 0;
1584 return ret;
1585 }
1586
omap_hsmmc_conf_bus_power(struct omap_hsmmc_host * host)1587 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1588 {
1589 u32 hctl, capa, value;
1590
1591 /* Only MMC1 supports 3.0V */
1592 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1593 hctl = SDVS30;
1594 capa = VS30 | VS18;
1595 } else {
1596 hctl = SDVS18;
1597 capa = VS18;
1598 }
1599
1600 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1601 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1602
1603 value = OMAP_HSMMC_READ(host->base, CAPA);
1604 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1605
1606 /* Set SD bus power bit */
1607 set_sd_bus_power(host);
1608 }
1609
omap_hsmmc_multi_io_quirk(struct mmc_card * card,unsigned int direction,int blk_size)1610 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1611 unsigned int direction, int blk_size)
1612 {
1613 /* This controller can't do multiblock reads due to hw bugs */
1614 if (direction == MMC_DATA_READ)
1615 return 1;
1616
1617 return blk_size;
1618 }
1619
1620 static struct mmc_host_ops omap_hsmmc_ops = {
1621 .post_req = omap_hsmmc_post_req,
1622 .pre_req = omap_hsmmc_pre_req,
1623 .request = omap_hsmmc_request,
1624 .set_ios = omap_hsmmc_set_ios,
1625 .get_cd = mmc_gpio_get_cd,
1626 .get_ro = mmc_gpio_get_ro,
1627 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1628 };
1629
1630 #ifdef CONFIG_DEBUG_FS
1631
mmc_regs_show(struct seq_file * s,void * data)1632 static int mmc_regs_show(struct seq_file *s, void *data)
1633 {
1634 struct mmc_host *mmc = s->private;
1635 struct omap_hsmmc_host *host = mmc_priv(mmc);
1636
1637 seq_printf(s, "mmc%d:\n", mmc->index);
1638 seq_printf(s, "sdio irq mode\t%s\n",
1639 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1640
1641 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1642 seq_printf(s, "sdio irq \t%s\n",
1643 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1644 : "disabled");
1645 }
1646 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1647
1648 pm_runtime_get_sync(host->dev);
1649 seq_puts(s, "\nregs:\n");
1650 seq_printf(s, "CON:\t\t0x%08x\n",
1651 OMAP_HSMMC_READ(host->base, CON));
1652 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1653 OMAP_HSMMC_READ(host->base, PSTATE));
1654 seq_printf(s, "HCTL:\t\t0x%08x\n",
1655 OMAP_HSMMC_READ(host->base, HCTL));
1656 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1657 OMAP_HSMMC_READ(host->base, SYSCTL));
1658 seq_printf(s, "IE:\t\t0x%08x\n",
1659 OMAP_HSMMC_READ(host->base, IE));
1660 seq_printf(s, "ISE:\t\t0x%08x\n",
1661 OMAP_HSMMC_READ(host->base, ISE));
1662 seq_printf(s, "CAPA:\t\t0x%08x\n",
1663 OMAP_HSMMC_READ(host->base, CAPA));
1664
1665 pm_runtime_put_autosuspend(host->dev);
1666
1667 return 0;
1668 }
1669
1670 DEFINE_SHOW_ATTRIBUTE(mmc_regs);
1671
omap_hsmmc_debugfs(struct mmc_host * mmc)1672 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1673 {
1674 if (mmc->debugfs_root)
1675 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1676 mmc, &mmc_regs_fops);
1677 }
1678
1679 #else
1680
omap_hsmmc_debugfs(struct mmc_host * mmc)1681 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1682 {
1683 }
1684
1685 #endif
1686
1687 #ifdef CONFIG_OF
1688 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1689 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1690 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1691 };
1692
1693 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1694 .reg_offset = 0x100,
1695 };
1696 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1697 .reg_offset = 0x100,
1698 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1699 };
1700
1701 static const struct of_device_id omap_mmc_of_match[] = {
1702 {
1703 .compatible = "ti,omap2-hsmmc",
1704 },
1705 {
1706 .compatible = "ti,omap3-pre-es3-hsmmc",
1707 .data = &omap3_pre_es3_mmc_of_data,
1708 },
1709 {
1710 .compatible = "ti,omap3-hsmmc",
1711 },
1712 {
1713 .compatible = "ti,omap4-hsmmc",
1714 .data = &omap4_mmc_of_data,
1715 },
1716 {
1717 .compatible = "ti,am33xx-hsmmc",
1718 .data = &am33xx_mmc_of_data,
1719 },
1720 {},
1721 };
1722 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1723
of_get_hsmmc_pdata(struct device * dev)1724 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1725 {
1726 struct omap_hsmmc_platform_data *pdata, *legacy;
1727 struct device_node *np = dev->of_node;
1728
1729 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1730 if (!pdata)
1731 return ERR_PTR(-ENOMEM); /* out of memory */
1732
1733 legacy = dev_get_platdata(dev);
1734 if (legacy && legacy->name)
1735 pdata->name = legacy->name;
1736
1737 if (of_property_read_bool(np, "ti,dual-volt"))
1738 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1739
1740 if (of_property_read_bool(np, "ti,non-removable")) {
1741 pdata->nonremovable = true;
1742 pdata->no_regulator_off_init = true;
1743 }
1744
1745 if (of_property_read_bool(np, "ti,needs-special-reset"))
1746 pdata->features |= HSMMC_HAS_UPDATED_RESET;
1747
1748 if (of_property_read_bool(np, "ti,needs-special-hs-handling"))
1749 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
1750
1751 return pdata;
1752 }
1753 #else
1754 static inline struct omap_hsmmc_platform_data
of_get_hsmmc_pdata(struct device * dev)1755 *of_get_hsmmc_pdata(struct device *dev)
1756 {
1757 return ERR_PTR(-EINVAL);
1758 }
1759 #endif
1760
omap_hsmmc_probe(struct platform_device * pdev)1761 static int omap_hsmmc_probe(struct platform_device *pdev)
1762 {
1763 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
1764 struct mmc_host *mmc;
1765 struct omap_hsmmc_host *host = NULL;
1766 struct resource *res;
1767 int ret, irq;
1768 const struct of_device_id *match;
1769 const struct omap_mmc_of_data *data;
1770 void __iomem *base;
1771
1772 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1773 if (match) {
1774 pdata = of_get_hsmmc_pdata(&pdev->dev);
1775
1776 if (IS_ERR(pdata))
1777 return PTR_ERR(pdata);
1778
1779 if (match->data) {
1780 data = match->data;
1781 pdata->reg_offset = data->reg_offset;
1782 pdata->controller_flags |= data->controller_flags;
1783 }
1784 }
1785
1786 if (pdata == NULL) {
1787 dev_err(&pdev->dev, "Platform Data is missing\n");
1788 return -ENXIO;
1789 }
1790
1791 irq = platform_get_irq(pdev, 0);
1792 if (irq < 0)
1793 return irq;
1794
1795 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1796 if (IS_ERR(base))
1797 return PTR_ERR(base);
1798
1799 mmc = devm_mmc_alloc_host(&pdev->dev, sizeof(*host));
1800 if (!mmc)
1801 return -ENOMEM;
1802
1803 ret = mmc_of_parse(mmc);
1804 if (ret)
1805 return ret;
1806
1807 host = mmc_priv(mmc);
1808 host->mmc = mmc;
1809 host->pdata = pdata;
1810 host->dev = &pdev->dev;
1811 host->use_dma = 1;
1812 host->dma_ch = -1;
1813 host->irq = irq;
1814 host->mapbase = res->start + pdata->reg_offset;
1815 host->base = base + pdata->reg_offset;
1816 host->power_mode = MMC_POWER_OFF;
1817 host->next_data.cookie = 1;
1818 host->pbias_enabled = false;
1819 host->vqmmc_enabled = false;
1820
1821 platform_set_drvdata(pdev, host);
1822
1823 if (pdev->dev.of_node)
1824 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
1825
1826 mmc->ops = &omap_hsmmc_ops;
1827
1828 mmc->f_min = OMAP_MMC_MIN_CLOCK;
1829
1830 if (pdata->max_freq > 0)
1831 mmc->f_max = pdata->max_freq;
1832 else if (mmc->f_max == 0)
1833 mmc->f_max = OMAP_MMC_MAX_CLOCK;
1834
1835 spin_lock_init(&host->irq_lock);
1836
1837 host->fclk = devm_clk_get(&pdev->dev, "fck");
1838 if (IS_ERR(host->fclk)) {
1839 ret = PTR_ERR(host->fclk);
1840 host->fclk = NULL;
1841 return ret;
1842 }
1843
1844 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1845 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1846 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
1847 }
1848
1849 device_init_wakeup(&pdev->dev, true);
1850 pm_runtime_enable(host->dev);
1851 pm_runtime_get_sync(host->dev);
1852 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
1853 pm_runtime_use_autosuspend(host->dev);
1854
1855 omap_hsmmc_context_save(host);
1856
1857 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
1858 /*
1859 * MMC can still work without debounce clock.
1860 */
1861 if (IS_ERR(host->dbclk)) {
1862 host->dbclk = NULL;
1863 } else if (clk_prepare_enable(host->dbclk) != 0) {
1864 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1865 host->dbclk = NULL;
1866 }
1867
1868 /* Set this to a value that allows allocating an entire descriptor
1869 * list within a page (zero order allocation). */
1870 mmc->max_segs = 64;
1871
1872 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1873 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1874 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1875
1876 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
1877 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_CMD23;
1878
1879 mmc->caps |= mmc_pdata(host)->caps;
1880 if (mmc->caps & MMC_CAP_8_BIT_DATA)
1881 mmc->caps |= MMC_CAP_4_BIT_DATA;
1882
1883 if (mmc_pdata(host)->nonremovable)
1884 mmc->caps |= MMC_CAP_NONREMOVABLE;
1885
1886 mmc->pm_caps |= mmc_pdata(host)->pm_caps;
1887
1888 omap_hsmmc_conf_bus_power(host);
1889
1890 host->rx_chan = dma_request_chan(&pdev->dev, "rx");
1891 if (IS_ERR(host->rx_chan)) {
1892 dev_err(mmc_dev(host->mmc), "RX DMA channel request failed\n");
1893 ret = PTR_ERR(host->rx_chan);
1894 goto err_irq;
1895 }
1896
1897 host->tx_chan = dma_request_chan(&pdev->dev, "tx");
1898 if (IS_ERR(host->tx_chan)) {
1899 dev_err(mmc_dev(host->mmc), "TX DMA channel request failed\n");
1900 ret = PTR_ERR(host->tx_chan);
1901 goto err_irq;
1902 }
1903
1904 /*
1905 * Limit the maximum segment size to the lower of the request size
1906 * and the DMA engine device segment size limits. In reality, with
1907 * 32-bit transfers, the DMA engine can do longer segments than this
1908 * but there is no way to represent that in the DMA model - if we
1909 * increase this figure here, we get warnings from the DMA API debug.
1910 */
1911 mmc->max_seg_size = min3(mmc->max_req_size,
1912 dma_get_max_seg_size(host->rx_chan->device->dev),
1913 dma_get_max_seg_size(host->tx_chan->device->dev));
1914
1915 /* Request IRQ for MMC operations */
1916 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
1917 mmc_hostname(mmc), host);
1918 if (ret) {
1919 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1920 goto err_irq;
1921 }
1922
1923 ret = omap_hsmmc_reg_get(host);
1924 if (ret)
1925 goto err_irq;
1926
1927 if (!mmc->ocr_avail)
1928 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
1929
1930 omap_hsmmc_disable_irq(host);
1931
1932 /*
1933 * For now, only support SDIO interrupt if we have a separate
1934 * wake-up interrupt configured from device tree. This is because
1935 * the wake-up interrupt is needed for idle state and some
1936 * platforms need special quirks. And we don't want to add new
1937 * legacy mux platform init code callbacks any longer as we
1938 * are moving to DT based booting anyways.
1939 */
1940 ret = omap_hsmmc_configure_wake_irq(host);
1941 if (!ret)
1942 mmc->caps |= MMC_CAP_SDIO_IRQ;
1943
1944 ret = mmc_add_host(mmc);
1945 if (ret)
1946 goto err_irq;
1947
1948 if (mmc_pdata(host)->name != NULL) {
1949 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1950 if (ret < 0)
1951 goto err_slot_name;
1952 }
1953
1954 omap_hsmmc_debugfs(mmc);
1955 pm_runtime_put_autosuspend(host->dev);
1956
1957 return 0;
1958
1959 err_slot_name:
1960 mmc_remove_host(mmc);
1961 err_irq:
1962 device_init_wakeup(&pdev->dev, false);
1963 if (!IS_ERR_OR_NULL(host->tx_chan))
1964 dma_release_channel(host->tx_chan);
1965 if (!IS_ERR_OR_NULL(host->rx_chan))
1966 dma_release_channel(host->rx_chan);
1967 pm_runtime_dont_use_autosuspend(host->dev);
1968 pm_runtime_put_sync(host->dev);
1969 pm_runtime_disable(host->dev);
1970 clk_disable_unprepare(host->dbclk);
1971 return ret;
1972 }
1973
omap_hsmmc_remove(struct platform_device * pdev)1974 static void omap_hsmmc_remove(struct platform_device *pdev)
1975 {
1976 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1977
1978 pm_runtime_get_sync(host->dev);
1979 mmc_remove_host(host->mmc);
1980
1981 dma_release_channel(host->tx_chan);
1982 dma_release_channel(host->rx_chan);
1983
1984 dev_pm_clear_wake_irq(host->dev);
1985 pm_runtime_dont_use_autosuspend(host->dev);
1986 pm_runtime_put_sync(host->dev);
1987 pm_runtime_disable(host->dev);
1988 device_init_wakeup(&pdev->dev, false);
1989 clk_disable_unprepare(host->dbclk);
1990 }
1991
omap_hsmmc_suspend(struct device * dev)1992 static int omap_hsmmc_suspend(struct device *dev)
1993 {
1994 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
1995
1996 if (!host)
1997 return 0;
1998
1999 pm_runtime_get_sync(host->dev);
2000
2001 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2002 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2003 OMAP_HSMMC_WRITE(host->base, IE, 0);
2004 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2005 OMAP_HSMMC_WRITE(host->base, HCTL,
2006 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2007 }
2008
2009 clk_disable_unprepare(host->dbclk);
2010
2011 pm_runtime_put_sync(host->dev);
2012 return 0;
2013 }
2014
2015 /* Routine to resume the MMC device */
omap_hsmmc_resume(struct device * dev)2016 static int omap_hsmmc_resume(struct device *dev)
2017 {
2018 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2019
2020 if (!host)
2021 return 0;
2022
2023 pm_runtime_get_sync(host->dev);
2024
2025 clk_prepare_enable(host->dbclk);
2026
2027 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2028 omap_hsmmc_conf_bus_power(host);
2029
2030 pm_runtime_put_autosuspend(host->dev);
2031 return 0;
2032 }
2033
omap_hsmmc_runtime_suspend(struct device * dev)2034 static int omap_hsmmc_runtime_suspend(struct device *dev)
2035 {
2036 struct omap_hsmmc_host *host;
2037 unsigned long flags;
2038 int ret = 0;
2039
2040 host = dev_get_drvdata(dev);
2041 omap_hsmmc_context_save(host);
2042 dev_dbg(dev, "disabled\n");
2043
2044 spin_lock_irqsave(&host->irq_lock, flags);
2045 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2046 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2047 /* disable sdio irq handling to prevent race */
2048 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2049 OMAP_HSMMC_WRITE(host->base, IE, 0);
2050
2051 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2052 /*
2053 * dat1 line low, pending sdio irq
2054 * race condition: possible irq handler running on
2055 * multi-core, abort
2056 */
2057 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2058 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2059 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2060 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2061 pm_runtime_mark_last_busy(dev);
2062 ret = -EBUSY;
2063 goto abort;
2064 }
2065
2066 pinctrl_pm_select_idle_state(dev);
2067 } else {
2068 pinctrl_pm_select_idle_state(dev);
2069 }
2070
2071 abort:
2072 spin_unlock_irqrestore(&host->irq_lock, flags);
2073 return ret;
2074 }
2075
omap_hsmmc_runtime_resume(struct device * dev)2076 static int omap_hsmmc_runtime_resume(struct device *dev)
2077 {
2078 struct omap_hsmmc_host *host;
2079 unsigned long flags;
2080
2081 host = dev_get_drvdata(dev);
2082 omap_hsmmc_context_restore(host);
2083 dev_dbg(dev, "enabled\n");
2084
2085 spin_lock_irqsave(&host->irq_lock, flags);
2086 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2087 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2088
2089 pinctrl_select_default_state(host->dev);
2090
2091 /* irq lost, if pinmux incorrect */
2092 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2093 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2094 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2095 } else {
2096 pinctrl_select_default_state(host->dev);
2097 }
2098 spin_unlock_irqrestore(&host->irq_lock, flags);
2099 return 0;
2100 }
2101
2102 static const struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2103 SYSTEM_SLEEP_PM_OPS(omap_hsmmc_suspend, omap_hsmmc_resume)
2104 RUNTIME_PM_OPS(omap_hsmmc_runtime_suspend, omap_hsmmc_runtime_resume, NULL)
2105 };
2106
2107 static struct platform_driver omap_hsmmc_driver = {
2108 .probe = omap_hsmmc_probe,
2109 .remove = omap_hsmmc_remove,
2110 .driver = {
2111 .name = DRIVER_NAME,
2112 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2113 .pm = pm_ptr(&omap_hsmmc_dev_pm_ops),
2114 .of_match_table = of_match_ptr(omap_mmc_of_match),
2115 },
2116 };
2117
2118 module_platform_driver(omap_hsmmc_driver);
2119 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2120 MODULE_LICENSE("GPL");
2121 MODULE_ALIAS("platform:" DRIVER_NAME);
2122 MODULE_AUTHOR("Texas Instruments Inc");
2123