1 /*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #ifndef DRM_FOURCC_H
25 #define DRM_FOURCC_H
26
27 #include "drm.h"
28
29 #if defined(__cplusplus)
30 extern "C" {
31 #endif
32
33 /**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifier being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 * don't alias, otherwise two drivers might support the same format but use
78 * different aliases, preventing them from sharing buffers in an efficient
79 * format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 * see modifiers as opaque tokens they can check for equality and intersect.
82 * These users mustn't need to know to reason about the modifier value
83 * (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 *
92 * Open Source User Waiver
93 * -----------------------
94 *
95 * Because this is the authoritative source for pixel formats and modifiers
96 * referenced by GL, Vulkan extensions and other standards and hence used both
97 * by open source and closed source driver stacks, the usual requirement for an
98 * upstream in-kernel or open source userspace user does not apply.
99 *
100 * To ensure, as much as feasible, compatibility across stacks and avoid
101 * confusion with incompatible enumerations stakeholders for all relevant driver
102 * stacks should approve additions.
103 */
104
105 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106 ((__u32)(c) << 16) | ((__u32)(d) << 24))
107
108 #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109
110 /* Reserve 0 for the invalid format specifier */
111 #define DRM_FORMAT_INVALID 0
112
113 /* color index */
114 #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115 #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116 #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117 #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118
119 /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120 #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121
122 /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123 #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124
125 /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126 #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127
128 /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129 #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130
131 /* 1 bpp Red (direct relationship between channel value and brightness) */
132 #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133
134 /* 2 bpp Red (direct relationship between channel value and brightness) */
135 #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136
137 /* 4 bpp Red (direct relationship between channel value and brightness) */
138 #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139
140 /* 8 bpp Red (direct relationship between channel value and brightness) */
141 #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142
143 /* 10 bpp Red (direct relationship between channel value and brightness) */
144 #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145
146 /* 12 bpp Red (direct relationship between channel value and brightness) */
147 #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148
149 /* 16 bpp Red (direct relationship between channel value and brightness) */
150 #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151
152 /* 16 bpp RG */
153 #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154 #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155
156 /* 32 bpp RG */
157 #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158 #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159
160 /* 8 bpp RGB */
161 #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162 #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163
164 /* 16 bpp RGB */
165 #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166 #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167 #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168 #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169
170 #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171 #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172 #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173 #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174
175 #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176 #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177 #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178 #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179
180 #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181 #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182 #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183 #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184
185 #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186 #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187
188 /* 24 bpp RGB */
189 #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190 #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191
192 /* 32 bpp RGB */
193 #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194 #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195 #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196 #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197
198 #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199 #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200 #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201 #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202
203 #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204 #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205 #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206 #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207
208 #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209 #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210 #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211 #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212
213 /* 48 bpp RGB */
214 #define DRM_FORMAT_RGB161616 fourcc_code('R', 'G', '4', '8') /* [47:0] R:G:B 16:16:16 little endian */
215 #define DRM_FORMAT_BGR161616 fourcc_code('B', 'G', '4', '8') /* [47:0] B:G:R 16:16:16 little endian */
216
217 /* 64 bpp RGB */
218 #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
219 #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
220
221 #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
222 #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
223
224 /*
225 * Half-Floating point - 16b/component
226 * IEEE 754-2008 binary16 half-precision float
227 * [15:0] sign:exponent:mantissa 1:5:10
228 */
229 #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
230 #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
231
232 #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
233 #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
234
235 #define DRM_FORMAT_R16F fourcc_code('R', ' ', ' ', 'H') /* [15:0] R 16 little endian */
236 #define DRM_FORMAT_GR1616F fourcc_code('G', 'R', ' ', 'H') /* [31:0] G:R 16:16 little endian */
237 #define DRM_FORMAT_BGR161616F fourcc_code('B', 'G', 'R', 'H') /* [47:0] B:G:R 16:16:16 little endian */
238
239 /*
240 * Floating point - 32b/component
241 * IEEE 754-2008 binary32 float
242 * [31:0] sign:exponent:mantissa 1:8:23
243 */
244 #define DRM_FORMAT_R32F fourcc_code('R', ' ', ' ', 'F') /* [31:0] R 32 little endian */
245 #define DRM_FORMAT_GR3232F fourcc_code('G', 'R', ' ', 'F') /* [63:0] R:G 32:32 little endian */
246 #define DRM_FORMAT_BGR323232F fourcc_code('B', 'G', 'R', 'F') /* [95:0] R:G:B 32:32:32 little endian */
247 #define DRM_FORMAT_ABGR32323232F fourcc_code('A', 'B', '8', 'F') /* [127:0] R:G:B:A 32:32:32:32 little endian */
248
249 /*
250 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
251 * of unused padding per component:
252 */
253 #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
254
255 /* packed YCbCr */
256 #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
257 #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
258 #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
259 #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
260
261 #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
262 #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
263 #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
264 #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
265 #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
266 #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
267
268 /*
269 * packed Y2xx indicate for each component, xx valid data occupy msb
270 * 16-xx padding occupy lsb
271 */
272 #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
273 #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
274 #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
275
276 /*
277 * packed Y4xx indicate for each component, xx valid data occupy msb
278 * 16-xx padding occupy lsb except Y410
279 */
280 #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
281 #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
282 #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
283
284 #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
285 #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
286 #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
287
288 /*
289 * packed YCbCr420 2x2 tiled formats
290 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
291 */
292 /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
293 #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
294 /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
295 #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
296
297 /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
298 #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
299 /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
300 #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
301
302 /*
303 * 1-plane YUV 4:2:0
304 * In these formats, the component ordering is specified (Y, followed by U
305 * then V), but the exact Linear layout is undefined.
306 * These formats can only be used with a non-Linear modifier.
307 */
308 #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
309 #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
310
311 /*
312 * 2 plane RGB + A
313 * index 0 = RGB plane, same format as the corresponding non _A8 format has
314 * index 1 = A plane, [7:0] A
315 */
316 #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
317 #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
318 #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
319 #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
320 #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
321 #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
322 #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
323 #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
324
325 /*
326 * 2 plane YCbCr
327 * index 0 = Y plane, [7:0] Y
328 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
329 * or
330 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
331 */
332 #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
333 #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
334 #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
335 #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
336 #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
337 #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
338 /*
339 * 2 plane YCbCr
340 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
341 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
342 */
343 #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
344 #define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
345 #define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
346
347 /*
348 * 2 plane YCbCr MSB aligned
349 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
350 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
351 */
352 #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
353
354 /*
355 * 2 plane YCbCr MSB aligned
356 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
357 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
358 */
359 #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
360
361 /*
362 * 2 plane YCbCr MSB aligned
363 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
364 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
365 */
366 #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
367
368 /*
369 * 2 plane YCbCr MSB aligned
370 * index 0 = Y plane, [15:0] Y little endian
371 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
372 */
373 #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
374
375 /* 2 plane YCbCr420.
376 * 3 10 bit components and 2 padding bits packed into 4 bytes.
377 * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
378 * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
379 */
380 #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
381
382 /* 3 plane non-subsampled (444) YCbCr
383 * 16 bits per component, but only 10 bits are used and 6 bits are padded
384 * index 0: Y plane, [15:0] Y:x [10:6] little endian
385 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
386 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
387 */
388 #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
389
390 /* 3 plane non-subsampled (444) YCrCb
391 * 16 bits per component, but only 10 bits are used and 6 bits are padded
392 * index 0: Y plane, [15:0] Y:x [10:6] little endian
393 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
394 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
395 */
396 #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
397
398 /*
399 * 3 plane YCbCr LSB aligned
400 * In order to use these formats in a similar fashion to MSB aligned ones
401 * implementation can multiply the values by 2^6=64. For that reason the padding
402 * must only contain zeros.
403 * index 0 = Y plane, [15:0] z:Y [6:10] little endian
404 * index 1 = Cr plane, [15:0] z:Cr [6:10] little endian
405 * index 2 = Cb plane, [15:0] z:Cb [6:10] little endian
406 */
407 #define DRM_FORMAT_S010 fourcc_code('S', '0', '1', '0') /* 2x2 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
408 #define DRM_FORMAT_S210 fourcc_code('S', '2', '1', '0') /* 2x1 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
409 #define DRM_FORMAT_S410 fourcc_code('S', '4', '1', '0') /* non-subsampled Cb (1) and Cr (2) planes 10 bits per channel */
410
411 /*
412 * 3 plane YCbCr LSB aligned
413 * In order to use these formats in a similar fashion to MSB aligned ones
414 * implementation can multiply the values by 2^4=16. For that reason the padding
415 * must only contain zeros.
416 * index 0 = Y plane, [15:0] z:Y [4:12] little endian
417 * index 1 = Cr plane, [15:0] z:Cr [4:12] little endian
418 * index 2 = Cb plane, [15:0] z:Cb [4:12] little endian
419 */
420 #define DRM_FORMAT_S012 fourcc_code('S', '0', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
421 #define DRM_FORMAT_S212 fourcc_code('S', '2', '1', '2') /* 2x1 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
422 #define DRM_FORMAT_S412 fourcc_code('S', '4', '1', '2') /* non-subsampled Cb (1) and Cr (2) planes 12 bits per channel */
423
424 /*
425 * 3 plane YCbCr
426 * index 0 = Y plane, [15:0] Y little endian
427 * index 1 = Cr plane, [15:0] Cr little endian
428 * index 2 = Cb plane, [15:0] Cb little endian
429 */
430 #define DRM_FORMAT_S016 fourcc_code('S', '0', '1', '6') /* 2x2 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
431 #define DRM_FORMAT_S216 fourcc_code('S', '2', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
432 #define DRM_FORMAT_S416 fourcc_code('S', '4', '1', '6') /* non-subsampled Cb (1) and Cr (2) planes 16 bits per channel */
433
434 /*
435 * 3 plane YCbCr
436 * index 0: Y plane, [7:0] Y
437 * index 1: Cb plane, [7:0] Cb
438 * index 2: Cr plane, [7:0] Cr
439 * or
440 * index 1: Cr plane, [7:0] Cr
441 * index 2: Cb plane, [7:0] Cb
442 */
443 #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
444 #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
445 #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
446 #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
447 #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
448 #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
449 #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
450 #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
451 #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
452 #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
453
454
455 /*
456 * Format Modifiers:
457 *
458 * Format modifiers describe, typically, a re-ordering or modification
459 * of the data in a plane of an FB. This can be used to express tiled/
460 * swizzled formats, or compression, or a combination of the two.
461 *
462 * The upper 8 bits of the format modifier are a vendor-id as assigned
463 * below. The lower 56 bits are assigned as vendor sees fit.
464 */
465
466 /* Vendor Ids: */
467 #define DRM_FORMAT_MOD_VENDOR_NONE 0
468 #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
469 #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
470 #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
471 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
472 #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
473 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
474 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
475 #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
476 #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
477 #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
478 #define DRM_FORMAT_MOD_VENDOR_MTK 0x0b
479 #define DRM_FORMAT_MOD_VENDOR_APPLE 0x0c
480
481 /* add more to the end as needed */
482
483 #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
484
485 #define fourcc_mod_get_vendor(modifier) \
486 (((modifier) >> 56) & 0xff)
487
488 #define fourcc_mod_is_vendor(modifier, vendor) \
489 (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
490
491 #define fourcc_mod_code(vendor, val) \
492 ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
493
494 /*
495 * Format Modifier tokens:
496 *
497 * When adding a new token please document the layout with a code comment,
498 * similar to the fourcc codes above. drm_fourcc.h is considered the
499 * authoritative source for all of these.
500 *
501 * Generic modifier names:
502 *
503 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
504 * for layouts which are common across multiple vendors. To preserve
505 * compatibility, in cases where a vendor-specific definition already exists and
506 * a generic name for it is desired, the common name is a purely symbolic alias
507 * and must use the same numerical value as the original definition.
508 *
509 * Note that generic names should only be used for modifiers which describe
510 * generic layouts (such as pixel re-ordering), which may have
511 * independently-developed support across multiple vendors.
512 *
513 * In future cases where a generic layout is identified before merging with a
514 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
515 * 'NONE' could be considered. This should only be for obvious, exceptional
516 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
517 * apply to a single vendor.
518 *
519 * Generic names should not be used for cases where multiple hardware vendors
520 * have implementations of the same standardised compression scheme (such as
521 * AFBC). In those cases, all implementations should use the same format
522 * modifier(s), reflecting the vendor of the standard.
523 */
524
525 #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
526
527 /*
528 * Invalid Modifier
529 *
530 * This modifier can be used as a sentinel to terminate the format modifiers
531 * list, or to initialize a variable with an invalid modifier. It might also be
532 * used to report an error back to userspace for certain APIs.
533 */
534 #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
535
536 /*
537 * Linear Layout
538 *
539 * Just plain linear layout. Note that this is different from no specifying any
540 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
541 * which tells the driver to also take driver-internal information into account
542 * and so might actually result in a tiled framebuffer.
543 */
544 #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
545
546 /*
547 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
548 *
549 * The "none" format modifier doesn't actually mean that the modifier is
550 * implicit, instead it means that the layout is linear. Whether modifiers are
551 * used is out-of-band information carried in an API-specific way (e.g. in a
552 * flag for drm_mode_fb_cmd2).
553 */
554 #define DRM_FORMAT_MOD_NONE 0
555
556 /* Intel framebuffer modifiers */
557
558 /*
559 * Intel X-tiling layout
560 *
561 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
562 * in row-major layout. Within the tile bytes are laid out row-major, with
563 * a platform-dependent stride. On top of that the memory can apply
564 * platform-depending swizzling of some higher address bits into bit6.
565 *
566 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
567 * On earlier platforms the is highly platforms specific and not useful for
568 * cross-driver sharing. It exists since on a given platform it does uniquely
569 * identify the layout in a simple way for i915-specific userspace, which
570 * facilitated conversion of userspace to modifiers. Additionally the exact
571 * format on some really old platforms is not known.
572 */
573 #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
574
575 /*
576 * Intel Y-tiling layout
577 *
578 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
579 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
580 * chunks column-major, with a platform-dependent height. On top of that the
581 * memory can apply platform-depending swizzling of some higher address bits
582 * into bit6.
583 *
584 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
585 * On earlier platforms the is highly platforms specific and not useful for
586 * cross-driver sharing. It exists since on a given platform it does uniquely
587 * identify the layout in a simple way for i915-specific userspace, which
588 * facilitated conversion of userspace to modifiers. Additionally the exact
589 * format on some really old platforms is not known.
590 */
591 #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
592
593 /*
594 * Intel Yf-tiling layout
595 *
596 * This is a tiled layout using 4Kb tiles in row-major layout.
597 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
598 * are arranged in four groups (two wide, two high) with column-major layout.
599 * Each group therefore consists out of four 256 byte units, which are also laid
600 * out as 2x2 column-major.
601 * 256 byte units are made out of four 64 byte blocks of pixels, producing
602 * either a square block or a 2:1 unit.
603 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
604 * in pixel depends on the pixel depth.
605 */
606 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
607
608 /*
609 * Intel color control surface (CCS) for render compression
610 *
611 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
612 * The main surface will be plane index 0 and must be Y/Yf-tiled,
613 * the CCS will be plane index 1.
614 *
615 * Each CCS tile matches a 1024x512 pixel area of the main surface.
616 * To match certain aspects of the 3D hardware the CCS is
617 * considered to be made up of normal 128Bx32 Y tiles, Thus
618 * the CCS pitch must be specified in multiples of 128 bytes.
619 *
620 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
621 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
622 * But that fact is not relevant unless the memory is accessed
623 * directly.
624 */
625 #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
626 #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
627
628 /*
629 * Intel color control surfaces (CCS) for Gen-12 render compression.
630 *
631 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
632 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
633 * main surface. In other words, 4 bits in CCS map to a main surface cache
634 * line pair. The main surface pitch is required to be a multiple of four
635 * Y-tile widths.
636 */
637 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
638
639 /*
640 * Intel color control surfaces (CCS) for Gen-12 media compression
641 *
642 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
643 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
644 * main surface. In other words, 4 bits in CCS map to a main surface cache
645 * line pair. The main surface pitch is required to be a multiple of four
646 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
647 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
648 * planes 2 and 3 for the respective CCS.
649 */
650 #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
651
652 /*
653 * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
654 * compression.
655 *
656 * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
657 * and at index 1. The clear color is stored at index 2, and the pitch should
658 * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
659 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
660 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
661 * the converted clear color of size 64 bits. The first 32 bits store the Lower
662 * Converted Clear Color value and the next 32 bits store the Higher Converted
663 * Clear Color value when applicable. The Converted Clear Color values are
664 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
665 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
666 * corresponds to an area of 4x1 tiles in the main surface. The main surface
667 * pitch is required to be a multiple of 4 tile widths.
668 */
669 #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
670
671 /*
672 * Intel Tile 4 layout
673 *
674 * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
675 * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
676 * only differs from Tile Y at the 256B granularity in between. At this
677 * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
678 * of 64B x 8 rows.
679 */
680 #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
681
682 /*
683 * Intel color control surfaces (CCS) for DG2 render compression.
684 *
685 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
686 * outside of the GEM object in a reserved memory area dedicated for the
687 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
688 * main surface pitch is required to be a multiple of four Tile 4 widths.
689 */
690 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
691
692 /*
693 * Intel color control surfaces (CCS) for DG2 media compression.
694 *
695 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
696 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
697 * 0 and 1, respectively. The CCS for all planes are stored outside of the
698 * GEM object in a reserved memory area dedicated for the storage of the
699 * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
700 * pitch is required to be a multiple of four Tile 4 widths.
701 */
702 #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
703
704 /*
705 * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
706 *
707 * The main surface is Tile 4 and at plane index 0. The CCS data is stored
708 * outside of the GEM object in a reserved memory area dedicated for the
709 * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
710 * main surface pitch is required to be a multiple of four Tile 4 widths. The
711 * clear color is stored at plane index 1 and the pitch should be 64 bytes
712 * aligned. The format of the 256 bits of clear color data matches the one used
713 * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
714 * for details.
715 */
716 #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
717
718 /*
719 * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
720 *
721 * The main surface is tile4 and at plane index 0, the CCS is linear and
722 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
723 * main surface. In other words, 4 bits in CCS map to a main surface cache
724 * line pair. The main surface pitch is required to be a multiple of four
725 * tile4 widths.
726 */
727 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
728
729 /*
730 * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
731 *
732 * The main surface is tile4 and at plane index 0, the CCS is linear and
733 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
734 * main surface. In other words, 4 bits in CCS map to a main surface cache
735 * line pair. The main surface pitch is required to be a multiple of four
736 * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
737 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
738 * planes 2 and 3 for the respective CCS.
739 */
740 #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
741
742 /*
743 * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
744 * compression.
745 *
746 * The main surface is tile4 and is at plane index 0 whereas CCS is linear
747 * and at index 1. The clear color is stored at index 2, and the pitch should
748 * be ignored. The clear color structure is 256 bits. The first 128 bits
749 * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
750 * by 32 bits. The raw clear color is consumed by the 3d engine and generates
751 * the converted clear color of size 64 bits. The first 32 bits store the Lower
752 * Converted Clear Color value and the next 32 bits store the Higher Converted
753 * Clear Color value when applicable. The Converted Clear Color values are
754 * consumed by the DE. The last 64 bits are used to store Color Discard Enable
755 * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
756 * corresponds to an area of 4x1 tiles in the main surface. The main surface
757 * pitch is required to be a multiple of 4 tile widths.
758 */
759 #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
760
761 /*
762 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
763 * on integrated graphics
764 *
765 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
766 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
767 * 0 and 1, respectively. The CCS for all planes are stored outside of the
768 * GEM object in a reserved memory area dedicated for the storage of the
769 * CCS data for all compressible GEM objects.
770 */
771 #define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
772
773 /*
774 * Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
775 * on discrete graphics
776 *
777 * The main surface is Tile 4 and at plane index 0. For semi-planar formats
778 * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
779 * 0 and 1, respectively. The CCS for all planes are stored outside of the
780 * GEM object in a reserved memory area dedicated for the storage of the
781 * CCS data for all compressible GEM objects. The GEM object must be stored in
782 * contiguous memory with a size aligned to 64KB
783 */
784 #define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
785
786 /*
787 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
788 *
789 * Macroblocks are laid in a Z-shape, and each pixel data is following the
790 * standard NV12 style.
791 * As for NV12, an image is the result of two frame buffers: one for Y,
792 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
793 * Alignment requirements are (for each buffer):
794 * - multiple of 128 pixels for the width
795 * - multiple of 32 pixels for the height
796 *
797 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
798 */
799 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
800
801 /*
802 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
803 *
804 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
805 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
806 * they correspond to their 16x16 luma block.
807 */
808 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
809
810 /*
811 * Qualcomm Compressed Format
812 *
813 * Refers to a compressed variant of the base format that is compressed.
814 * Implementation may be platform and base-format specific.
815 *
816 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
817 * Pixel data pitch/stride is aligned with macrotile width.
818 * Pixel data height is aligned with macrotile height.
819 * Entire pixel data buffer is aligned with 4k(bytes).
820 */
821 #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
822
823 /*
824 * Qualcomm Tiled Format
825 *
826 * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
827 * Implementation may be platform and base-format specific.
828 *
829 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
830 * Pixel data pitch/stride is aligned with macrotile width.
831 * Pixel data height is aligned with macrotile height.
832 * Entire pixel data buffer is aligned with 4k(bytes).
833 */
834 #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
835
836 /*
837 * Qualcomm Alternate Tiled Format
838 *
839 * Alternate tiled format typically only used within GMEM.
840 * Implementation may be platform and base-format specific.
841 */
842 #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
843
844
845 /* Vivante framebuffer modifiers */
846
847 /*
848 * Vivante 4x4 tiling layout
849 *
850 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
851 * layout.
852 */
853 #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
854
855 /*
856 * Vivante 64x64 super-tiling layout
857 *
858 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
859 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
860 * major layout.
861 *
862 * For more information: see
863 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
864 */
865 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
866
867 /*
868 * Vivante 4x4 tiling layout for dual-pipe
869 *
870 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
871 * different base address. Offsets from the base addresses are therefore halved
872 * compared to the non-split tiled layout.
873 */
874 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
875
876 /*
877 * Vivante 64x64 super-tiling layout for dual-pipe
878 *
879 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
880 * starts at a different base address. Offsets from the base addresses are
881 * therefore halved compared to the non-split super-tiled layout.
882 */
883 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
884
885 /*
886 * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
887 * the color buffer tiling modifiers defined above. When TS is present it's a
888 * separate buffer containing the clear/compression status of each tile. The
889 * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
890 * tile size in bytes covered by one entry in the status buffer and s is the
891 * number of status bits per entry.
892 * We reserve the top 8 bits of the Vivante modifier space for tile status
893 * clear/compression modifiers, as future cores might add some more TS layout
894 * variations.
895 */
896 #define VIVANTE_MOD_TS_64_4 (1ULL << 48)
897 #define VIVANTE_MOD_TS_64_2 (2ULL << 48)
898 #define VIVANTE_MOD_TS_128_4 (3ULL << 48)
899 #define VIVANTE_MOD_TS_256_4 (4ULL << 48)
900 #define VIVANTE_MOD_TS_MASK (0xfULL << 48)
901
902 /*
903 * Vivante compression modifiers. Those depend on a TS modifier being present
904 * as the TS bits get reinterpreted as compression tags instead of simple
905 * clear markers when compression is enabled.
906 */
907 #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
908 #define VIVANTE_MOD_COMP_MASK (0xfULL << 52)
909
910 /* Masking out the extension bits will yield the base modifier. */
911 #define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \
912 VIVANTE_MOD_COMP_MASK)
913
914 /* NVIDIA frame buffer modifiers */
915
916 /*
917 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
918 *
919 * Pixels are arranged in simple tiles of 16 x 16 bytes.
920 */
921 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
922
923 /*
924 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
925 * and Tegra GPUs starting with Tegra K1.
926 *
927 * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
928 * based on the architecture generation. GOBs themselves are then arranged in
929 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
930 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
931 * a block depth or height of "4").
932 *
933 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
934 * in full detail.
935 *
936 * Macro
937 * Bits Param Description
938 * ---- ----- -----------------------------------------------------------------
939 *
940 * 3:0 h log2(height) of each block, in GOBs. Placed here for
941 * compatibility with the existing
942 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
943 *
944 * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
945 * compatibility with the existing
946 * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
947 *
948 * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
949 * size). Must be zero.
950 *
951 * Note there is no log2(width) parameter. Some portions of the
952 * hardware support a block width of two gobs, but it is impractical
953 * to use due to lack of support elsewhere, and has no known
954 * benefits.
955 *
956 * 11:9 - Reserved (To support 2D-array textures with variable array stride
957 * in blocks, specified via log2(tile width in blocks)). Must be
958 * zero.
959 *
960 * 19:12 k Page Kind. This value directly maps to a field in the page
961 * tables of all GPUs >= NV50. It affects the exact layout of bits
962 * in memory and can be derived from the tuple
963 *
964 * (format, GPU model, compression type, samples per pixel)
965 *
966 * Where compression type is defined below. If GPU model were
967 * implied by the format modifier, format, or memory buffer, page
968 * kind would not need to be included in the modifier itself, but
969 * since the modifier should define the layout of the associated
970 * memory buffer independent from any device or other context, it
971 * must be included here.
972 *
973 * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
974 * starting with Fermi GPUs. Additionally, the mapping between page
975 * kind and bit layout has changed at various points.
976 *
977 * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
978 * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
979 * 2 = Gob Height 8, Turing+ Page Kind mapping
980 * 3 = Reserved for future use.
981 *
982 * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
983 * bit remapping step that occurs at an even lower level than the
984 * page kind and block linear swizzles. This causes the layout of
985 * surfaces mapped in those SOC's GPUs to be incompatible with the
986 * equivalent mapping on other GPUs in the same system.
987 *
988 * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
989 * 1 = Desktop GPU and Tegra Xavier+ Layout
990 *
991 * 25:23 c Lossless Framebuffer Compression type.
992 *
993 * 0 = none
994 * 1 = ROP/3D, layout 1, exact compression format implied by Page
995 * Kind field
996 * 2 = ROP/3D, layout 2, exact compression format implied by Page
997 * Kind field
998 * 3 = CDE horizontal
999 * 4 = CDE vertical
1000 * 5 = Reserved for future use
1001 * 6 = Reserved for future use
1002 * 7 = Reserved for future use
1003 *
1004 * 55:25 - Reserved for future use. Must be zero.
1005 */
1006 #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
1007 fourcc_mod_code(NVIDIA, (0x10 | \
1008 ((h) & 0xf) | \
1009 (((k) & 0xff) << 12) | \
1010 (((g) & 0x3) << 20) | \
1011 (((s) & 0x1) << 22) | \
1012 (((c) & 0x7) << 23)))
1013
1014 /* To grandfather in prior block linear format modifiers to the above layout,
1015 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
1016 * with block-linear layouts, is remapped within drivers to the value 0xfe,
1017 * which corresponds to the "generic" kind used for simple single-sample
1018 * uncompressed color formats on Fermi - Volta GPUs.
1019 */
1020 static inline __u64
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)1021 drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
1022 {
1023 if (!(modifier & 0x10) || (modifier & (0xff << 12)))
1024 return modifier;
1025 else
1026 return modifier | (0xfe << 12);
1027 }
1028
1029 /*
1030 * 16Bx2 Block Linear layout, used by Tegra K1 and later
1031 *
1032 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
1033 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
1034 *
1035 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
1036 *
1037 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
1038 * Valid values are:
1039 *
1040 * 0 == ONE_GOB
1041 * 1 == TWO_GOBS
1042 * 2 == FOUR_GOBS
1043 * 3 == EIGHT_GOBS
1044 * 4 == SIXTEEN_GOBS
1045 * 5 == THIRTYTWO_GOBS
1046 *
1047 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
1048 * in full detail.
1049 */
1050 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
1051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
1052
1053 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
1054 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
1055 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1056 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1057 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1058 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1059 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1060 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1061 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1062 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1063 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1064 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1065
1066 /*
1067 * Some Broadcom modifiers take parameters, for example the number of
1068 * vertical lines in the image. Reserve the lower 32 bits for modifier
1069 * type, and the next 24 bits for parameters. Top 8 bits are the
1070 * vendor code.
1071 */
1072 #define __fourcc_mod_broadcom_param_shift 8
1073 #define __fourcc_mod_broadcom_param_bits 48
1074 #define fourcc_mod_broadcom_code(val, params) \
1075 fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1076 #define fourcc_mod_broadcom_param(m) \
1077 ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
1078 ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1079 #define fourcc_mod_broadcom_mod(m) \
1080 ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
1081 __fourcc_mod_broadcom_param_shift))
1082
1083 /*
1084 * Broadcom VC4 "T" format
1085 *
1086 * This is the primary layout that the V3D GPU can texture from (it
1087 * can't do linear). The T format has:
1088 *
1089 * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
1090 * pixels at 32 bit depth.
1091 *
1092 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1093 * 16x16 pixels).
1094 *
1095 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
1096 * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1097 * they're (TR, BR, BL, TL), where bottom left is start of memory.
1098 *
1099 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1100 * tiles) or right-to-left (odd rows of 4k tiles).
1101 */
1102 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1103
1104 /*
1105 * Broadcom SAND format
1106 *
1107 * This is the native format that the H.264 codec block uses. For VC4
1108 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1109 *
1110 * The image can be considered to be split into columns, and the
1111 * columns are placed consecutively into memory. The width of those
1112 * columns can be either 32, 64, 128, or 256 pixels, but in practice
1113 * only 128 pixel columns are used.
1114 *
1115 * The pitch between the start of each column is set to optimally
1116 * switch between SDRAM banks. This is passed as the number of lines
1117 * of column width in the modifier (we can't use the stride value due
1118 * to various core checks that look at it , so you should set the
1119 * stride to width*cpp).
1120 *
1121 * Note that the column height for this format modifier is the same
1122 * for all of the planes, assuming that each column contains both Y
1123 * and UV. Some SAND-using hardware stores UV in a separate tiled
1124 * image from Y to reduce the column height, which is not supported
1125 * with these modifiers.
1126 *
1127 * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1128 * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1129 * wide, but as this is a 10 bpp format that translates to 96 pixels.
1130 */
1131
1132 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1133 fourcc_mod_broadcom_code(2, v)
1134 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1135 fourcc_mod_broadcom_code(3, v)
1136 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1137 fourcc_mod_broadcom_code(4, v)
1138 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1139 fourcc_mod_broadcom_code(5, v)
1140
1141 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1142 DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1143 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1144 DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1145 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1146 DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1147 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1148 DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1149
1150 /* Broadcom UIF format
1151 *
1152 * This is the common format for the current Broadcom multimedia
1153 * blocks, including V3D 3.x and newer, newer video codecs, and
1154 * displays.
1155 *
1156 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1157 * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
1158 * stored in columns, with padding between the columns to ensure that
1159 * moving from one column to the next doesn't hit the same SDRAM page
1160 * bank.
1161 *
1162 * To calculate the padding, it is assumed that each hardware block
1163 * and the software driving it knows the platform's SDRAM page size,
1164 * number of banks, and XOR address, and that it's identical between
1165 * all blocks using the format. This tiling modifier will use XOR as
1166 * necessary to reduce the padding. If a hardware block can't do XOR,
1167 * the assumption is that a no-XOR tiling modifier will be created.
1168 */
1169 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1170
1171 /*
1172 * Arm Framebuffer Compression (AFBC) modifiers
1173 *
1174 * AFBC is a proprietary lossless image compression protocol and format.
1175 * It provides fine-grained random access and minimizes the amount of data
1176 * transferred between IP blocks.
1177 *
1178 * AFBC has several features which may be supported and/or used, which are
1179 * represented using bits in the modifier. Not all combinations are valid,
1180 * and different devices or use-cases may support different combinations.
1181 *
1182 * Further information on the use of AFBC modifiers can be found in
1183 * Documentation/gpu/afbc.rst
1184 */
1185
1186 /*
1187 * The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1188 * modifiers) denote the category for modifiers. Currently we have three
1189 * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1190 * sixteen different categories.
1191 */
1192 #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1193 fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1194
1195 #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1196 #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1197
1198 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1199 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1200
1201 /*
1202 * AFBC superblock size
1203 *
1204 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
1205 * size (in pixels) must be aligned to a multiple of the superblock size.
1206 * Four lowest significant bits(LSBs) are reserved for block size.
1207 *
1208 * Where one superblock size is specified, it applies to all planes of the
1209 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1210 * the first applies to the Luma plane and the second applies to the Chroma
1211 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1212 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1213 */
1214 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
1215 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1216 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
1217 #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
1218 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1219
1220 /*
1221 * AFBC lossless colorspace transform
1222 *
1223 * Indicates that the buffer makes use of the AFBC lossless colorspace
1224 * transform.
1225 */
1226 #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1227
1228 /*
1229 * AFBC block-split
1230 *
1231 * Indicates that the payload of each superblock is split. The second
1232 * half of the payload is positioned at a predefined offset from the start
1233 * of the superblock payload.
1234 */
1235 #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1236
1237 /*
1238 * AFBC sparse layout
1239 *
1240 * This flag indicates that the payload of each superblock must be stored at a
1241 * predefined position relative to the other superblocks in the same AFBC
1242 * buffer. This order is the same order used by the header buffer. In this mode
1243 * each superblock is given the same amount of space as an uncompressed
1244 * superblock of the particular format would require, rounding up to the next
1245 * multiple of 128 bytes in size.
1246 */
1247 #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1248
1249 /*
1250 * AFBC copy-block restrict
1251 *
1252 * Buffers with this flag must obey the copy-block restriction. The restriction
1253 * is such that there are no copy-blocks referring across the border of 8x8
1254 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
1255 */
1256 #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1257
1258 /*
1259 * AFBC tiled layout
1260 *
1261 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1262 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
1263 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1264 * larger bpp formats. The order between the tiles is scan line.
1265 * When the tiled layout is used, the buffer size (in pixels) must be aligned
1266 * to the tile size.
1267 */
1268 #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1269
1270 /*
1271 * AFBC solid color blocks
1272 *
1273 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1274 * can be reduced if a whole superblock is a single color.
1275 */
1276 #define AFBC_FORMAT_MOD_SC (1ULL << 9)
1277
1278 /*
1279 * AFBC double-buffer
1280 *
1281 * Indicates that the buffer is allocated in a layout safe for front-buffer
1282 * rendering.
1283 */
1284 #define AFBC_FORMAT_MOD_DB (1ULL << 10)
1285
1286 /*
1287 * AFBC buffer content hints
1288 *
1289 * Indicates that the buffer includes per-superblock content hints.
1290 */
1291 #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1292
1293 /* AFBC uncompressed storage mode
1294 *
1295 * Indicates that the buffer is using AFBC uncompressed storage mode.
1296 * In this mode all superblock payloads in the buffer use the uncompressed
1297 * storage mode, which is usually only used for data which cannot be compressed.
1298 * The buffer layout is the same as for AFBC buffers without USM set, this only
1299 * affects the storage mode of the individual superblocks. Note that even a
1300 * buffer without USM set may use uncompressed storage mode for some or all
1301 * superblocks, USM just guarantees it for all.
1302 */
1303 #define AFBC_FORMAT_MOD_USM (1ULL << 12)
1304
1305 /*
1306 * Arm Fixed-Rate Compression (AFRC) modifiers
1307 *
1308 * AFRC is a proprietary fixed rate image compression protocol and format,
1309 * designed to provide guaranteed bandwidth and memory footprint
1310 * reductions in graphics and media use-cases.
1311 *
1312 * AFRC buffers consist of one or more planes, with the same components
1313 * and meaning as an uncompressed buffer using the same pixel format.
1314 *
1315 * Within each plane, the pixel/luma/chroma values are grouped into
1316 * "coding unit" blocks which are individually compressed to a
1317 * fixed size (in bytes). All coding units within a given plane of a buffer
1318 * store the same number of values, and have the same compressed size.
1319 *
1320 * The coding unit size is configurable, allowing different rates of compression.
1321 *
1322 * The start of each AFRC buffer plane must be aligned to an alignment granule which
1323 * depends on the coding unit size.
1324 *
1325 * Coding Unit Size Plane Alignment
1326 * ---------------- ---------------
1327 * 16 bytes 1024 bytes
1328 * 24 bytes 512 bytes
1329 * 32 bytes 2048 bytes
1330 *
1331 * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1332 * to a multiple of the paging tile dimensions.
1333 * The dimensions of each paging tile depend on whether the buffer is optimised for
1334 * scanline (SCAN layout) or rotated (ROT layout) access.
1335 *
1336 * Layout Paging Tile Width Paging Tile Height
1337 * ------ ----------------- ------------------
1338 * SCAN 16 coding units 4 coding units
1339 * ROT 8 coding units 8 coding units
1340 *
1341 * The dimensions of each coding unit depend on the number of components
1342 * in the compressed plane and whether the buffer is optimised for
1343 * scanline (SCAN layout) or rotated (ROT layout) access.
1344 *
1345 * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1346 * ----------------------------- --------- ----------------- ------------------
1347 * 1 SCAN 16 samples 4 samples
1348 * Example: 16x4 luma samples in a 'Y' plane
1349 * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1350 * ----------------------------- --------- ----------------- ------------------
1351 * 1 ROT 8 samples 8 samples
1352 * Example: 8x8 luma samples in a 'Y' plane
1353 * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1354 * ----------------------------- --------- ----------------- ------------------
1355 * 2 DONT CARE 8 samples 4 samples
1356 * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1357 * ----------------------------- --------- ----------------- ------------------
1358 * 3 DONT CARE 4 samples 4 samples
1359 * Example: 4x4 pixels in an RGB buffer without alpha
1360 * ----------------------------- --------- ----------------- ------------------
1361 * 4 DONT CARE 4 samples 4 samples
1362 * Example: 4x4 pixels in an RGB buffer with alpha
1363 */
1364
1365 #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1366
1367 #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1368 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1369
1370 /*
1371 * AFRC coding unit size modifier.
1372 *
1373 * Indicates the number of bytes used to store each compressed coding unit for
1374 * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1375 * is the same for both Cb and Cr, which may be stored in separate planes.
1376 *
1377 * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1378 * each compressed coding unit in the first plane of the buffer. For RGBA buffers
1379 * this is the only plane, while for semi-planar and fully-planar YUV buffers,
1380 * this corresponds to the luma plane.
1381 *
1382 * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1383 * each compressed coding unit in the second and third planes in the buffer.
1384 * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1385 *
1386 * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1387 * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1388 * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1389 * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1390 */
1391 #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1392 #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1393 #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1394 #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1395
1396 #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1397 #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1398
1399 /*
1400 * AFRC scanline memory layout.
1401 *
1402 * Indicates if the buffer uses the scanline-optimised layout
1403 * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1404 * The memory layout is the same for all planes.
1405 */
1406 #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1407
1408 /*
1409 * Arm 16x16 Block U-Interleaved modifier
1410 *
1411 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1412 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1413 * in the block are reordered.
1414 */
1415 #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1416 DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1417
1418 /*
1419 * Allwinner tiled modifier
1420 *
1421 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1422 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1423 * planes.
1424 *
1425 * With this tiling, the luminance samples are disposed in tiles representing
1426 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1427 * The pixel order in each tile is linear and the tiles are disposed linearly,
1428 * both in row-major order.
1429 */
1430 #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1431
1432 /*
1433 * Amlogic Video Framebuffer Compression modifiers
1434 *
1435 * Amlogic uses a proprietary lossless image compression protocol and format
1436 * for their hardware video codec accelerators, either video decoders or
1437 * video input encoders.
1438 *
1439 * It considerably reduces memory bandwidth while writing and reading
1440 * frames in memory.
1441 *
1442 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1443 * per component YCbCr 420, single plane :
1444 * - DRM_FORMAT_YUV420_8BIT
1445 * - DRM_FORMAT_YUV420_10BIT
1446 *
1447 * The first 8 bits of the mode defines the layout, then the following 8 bits
1448 * defines the options changing the layout.
1449 *
1450 * Not all combinations are valid, and different SoCs may support different
1451 * combinations of layout and options.
1452 */
1453 #define __fourcc_mod_amlogic_layout_mask 0xff
1454 #define __fourcc_mod_amlogic_options_shift 8
1455 #define __fourcc_mod_amlogic_options_mask 0xff
1456
1457 #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1458 fourcc_mod_code(AMLOGIC, \
1459 ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1460 (((__options) & __fourcc_mod_amlogic_options_mask) \
1461 << __fourcc_mod_amlogic_options_shift))
1462
1463 /* Amlogic FBC Layouts */
1464
1465 /*
1466 * Amlogic FBC Basic Layout
1467 *
1468 * The basic layout is composed of:
1469 * - a body content organized in 64x32 superblocks with 4096 bytes per
1470 * superblock in default mode.
1471 * - a 32 bytes per 128x64 header block
1472 *
1473 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1474 */
1475 #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1476
1477 /*
1478 * Amlogic FBC Scatter Memory layout
1479 *
1480 * Indicates the header contains IOMMU references to the compressed
1481 * frames content to optimize memory access and layout.
1482 *
1483 * In this mode, only the header memory address is needed, thus the
1484 * content memory organization is tied to the current producer
1485 * execution and cannot be saved/dumped neither transferrable between
1486 * Amlogic SoCs supporting this modifier.
1487 *
1488 * Due to the nature of the layout, these buffers are not expected to
1489 * be accessible by the user-space clients, but only accessible by the
1490 * hardware producers and consumers.
1491 *
1492 * The user-space clients should expect a failure while trying to mmap
1493 * the DMA-BUF handle returned by the producer.
1494 */
1495 #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1496
1497 /* Amlogic FBC Layout Options Bit Mask */
1498
1499 /*
1500 * Amlogic FBC Memory Saving mode
1501 *
1502 * Indicates the storage is packed when pixel size is multiple of word
1503 * boundaries, i.e. 8bit should be stored in this mode to save allocation
1504 * memory.
1505 *
1506 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1507 * the basic layout and 3200 bytes per 64x32 superblock combined with
1508 * the scatter layout.
1509 */
1510 #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1511
1512 /* MediaTek modifiers
1513 * Bits Parameter Notes
1514 * ----- ------------------------ ---------------------------------------------
1515 * 7: 0 TILE LAYOUT Values are MTK_FMT_MOD_TILE_*
1516 * 15: 8 COMPRESSION Values are MTK_FMT_MOD_COMPRESS_*
1517 * 23:16 10 BIT LAYOUT Values are MTK_FMT_MOD_10BIT_LAYOUT_*
1518 *
1519 */
1520
1521 #define DRM_FORMAT_MOD_MTK(__flags) fourcc_mod_code(MTK, __flags)
1522
1523 /*
1524 * MediaTek Tiled Modifier
1525 * The lowest 8 bits of the modifier is used to specify the tiling
1526 * layout. Only the 16L_32S tiling is used for now, but we define an
1527 * "untiled" version and leave room for future expansion.
1528 */
1529 #define MTK_FMT_MOD_TILE_MASK 0xf
1530 #define MTK_FMT_MOD_TILE_NONE 0x0
1531 #define MTK_FMT_MOD_TILE_16L32S 0x1
1532
1533 /*
1534 * Bits 8-15 specify compression options
1535 */
1536 #define MTK_FMT_MOD_COMPRESS_MASK (0xf << 8)
1537 #define MTK_FMT_MOD_COMPRESS_NONE (0x0 << 8)
1538 #define MTK_FMT_MOD_COMPRESS_V1 (0x1 << 8)
1539
1540 /*
1541 * Bits 16-23 specify how the bits of 10 bit formats are
1542 * stored out in memory
1543 */
1544 #define MTK_FMT_MOD_10BIT_LAYOUT_MASK (0xf << 16)
1545 #define MTK_FMT_MOD_10BIT_LAYOUT_PACKED (0x0 << 16)
1546 #define MTK_FMT_MOD_10BIT_LAYOUT_LSBTILED (0x1 << 16)
1547 #define MTK_FMT_MOD_10BIT_LAYOUT_LSBRASTER (0x2 << 16)
1548
1549 /* alias for the most common tiling format */
1550 #define DRM_FORMAT_MOD_MTK_16L_32S_TILE DRM_FORMAT_MOD_MTK(MTK_FMT_MOD_TILE_16L32S)
1551
1552 /*
1553 * Apple GPU-tiled layouts.
1554 *
1555 * Apple GPUs support nonlinear tilings with optional lossless compression.
1556 *
1557 * GPU-tiled images are divided into 16KiB tiles:
1558 *
1559 * Bytes per pixel Tile size
1560 * --------------- ---------
1561 * 1 128x128
1562 * 2 128x64
1563 * 4 64x64
1564 * 8 64x32
1565 * 16 32x32
1566 *
1567 * Tiles are raster-order. Pixels within a tile are interleaved (Morton order).
1568 *
1569 * Compressed images pad the body to 128-bytes and are immediately followed by a
1570 * metadata section. The metadata section rounds the image dimensions to
1571 * powers-of-two and contains 8 bytes for each 16x16 compression subtile.
1572 * Subtiles are interleaved (Morton order).
1573 *
1574 * All images are 128-byte aligned.
1575 *
1576 * These layouts fundamentally do not have meaningful strides. No matter how we
1577 * specify strides for these layouts, userspace unaware of Apple image layouts
1578 * will be unable to use correctly the specified stride for any purpose.
1579 * Userspace aware of the image layouts do not use strides. The most "correct"
1580 * convention would be setting the image stride to 0. Unfortunately, some
1581 * software assumes the stride is at least (width * bytes per pixel). We
1582 * therefore require that stride equals (width * bytes per pixel). Since the
1583 * stride is arbitrary here, we pick the simplest convention.
1584 *
1585 * Although containing two sections, compressed image layouts are treated in
1586 * software as a single plane. This is modelled after AFBC, a similar
1587 * scheme. Attempting to separate the sections to be "explicit" in DRM would
1588 * only generate more confusion, as software does not treat the image this way.
1589 *
1590 * For detailed information on the hardware image layouts, see
1591 * https://docs.mesa3d.org/drivers/asahi.html#image-layouts
1592 */
1593 #define DRM_FORMAT_MOD_APPLE_GPU_TILED fourcc_mod_code(APPLE, 1)
1594 #define DRM_FORMAT_MOD_APPLE_GPU_TILED_COMPRESSED fourcc_mod_code(APPLE, 2)
1595
1596 /*
1597 * AMD modifiers
1598 *
1599 * Memory layout:
1600 *
1601 * without DCC:
1602 * - main surface
1603 *
1604 * with DCC & without DCC_RETILE:
1605 * - main surface in plane 0
1606 * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1607 *
1608 * with DCC & DCC_RETILE:
1609 * - main surface in plane 0
1610 * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1611 * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1612 *
1613 * For multi-plane formats the above surfaces get merged into one plane for
1614 * each format plane, based on the required alignment only.
1615 *
1616 * Bits Parameter Notes
1617 * ----- ------------------------ ---------------------------------------------
1618 *
1619 * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1620 * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1621 * 13 DCC
1622 * 14 DCC_RETILE
1623 * 15 DCC_PIPE_ALIGN
1624 * 16 DCC_INDEPENDENT_64B
1625 * 17 DCC_INDEPENDENT_128B
1626 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1627 * 20 DCC_CONSTANT_ENCODE
1628 * 23:21 PIPE_XOR_BITS Only for some chips
1629 * 26:24 BANK_XOR_BITS Only for some chips
1630 * 29:27 PACKERS Only for some chips
1631 * 32:30 RB Only for some chips
1632 * 35:33 PIPE Only for some chips
1633 * 55:36 - Reserved for future use, must be zero
1634 */
1635 #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1636
1637 #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1638
1639 /* Reserve 0 for GFX8 and older */
1640 #define AMD_FMT_MOD_TILE_VER_GFX9 1
1641 #define AMD_FMT_MOD_TILE_VER_GFX10 2
1642 #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1643 #define AMD_FMT_MOD_TILE_VER_GFX11 4
1644 #define AMD_FMT_MOD_TILE_VER_GFX12 5
1645
1646 /*
1647 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1648 * version.
1649 */
1650 #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1651
1652 /*
1653 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1654 * GFX9 as canonical version.
1655 *
1656 * 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1657 */
1658 #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1659 #define AMD_FMT_MOD_TILE_GFX9_4K_D_X 22
1660 #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1661 #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1662 #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1663 #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1664
1665 /* Gfx12 swizzle modes:
1666 * 0 - LINEAR
1667 * 1 - 256B_2D - 2D block dimensions
1668 * 2 - 4KB_2D
1669 * 3 - 64KB_2D
1670 * 4 - 256KB_2D
1671 * 5 - 4KB_3D - 3D block dimensions
1672 * 6 - 64KB_3D
1673 * 7 - 256KB_3D
1674 */
1675 #define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1676 #define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1677 #define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1678 #define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1679
1680 #define AMD_FMT_MOD_DCC_BLOCK_64B 0
1681 #define AMD_FMT_MOD_DCC_BLOCK_128B 1
1682 #define AMD_FMT_MOD_DCC_BLOCK_256B 2
1683
1684 #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1685 #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1686 #define AMD_FMT_MOD_TILE_SHIFT 8
1687 #define AMD_FMT_MOD_TILE_MASK 0x1F
1688
1689 /* Whether DCC compression is enabled. */
1690 #define AMD_FMT_MOD_DCC_SHIFT 13
1691 #define AMD_FMT_MOD_DCC_MASK 0x1
1692
1693 /*
1694 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1695 * one which is not-aligned.
1696 */
1697 #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1698 #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1699
1700 /* Only set if DCC_RETILE = false */
1701 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1702 #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1703
1704 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1705 #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1706 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1707 #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1708 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1709 #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1710
1711 /*
1712 * DCC supports embedding some clear colors directly in the DCC surface.
1713 * However, on older GPUs the rendering HW ignores the embedded clear color
1714 * and prefers the driver provided color. This necessitates doing a fastclear
1715 * eliminate operation before a process transfers control.
1716 *
1717 * If this bit is set that means the fastclear eliminate is not needed for these
1718 * embeddable colors.
1719 */
1720 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1721 #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1722
1723 /*
1724 * The below fields are for accounting for per GPU differences. These are only
1725 * relevant for GFX9 and later and if the tile field is *_X/_T.
1726 *
1727 * PIPE_XOR_BITS = always needed
1728 * BANK_XOR_BITS = only for TILE_VER_GFX9
1729 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1730 * RB = only for TILE_VER_GFX9 & DCC
1731 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1732 */
1733 #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1734 #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1735 #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1736 #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1737 #define AMD_FMT_MOD_PACKERS_SHIFT 27
1738 #define AMD_FMT_MOD_PACKERS_MASK 0x7
1739 #define AMD_FMT_MOD_RB_SHIFT 30
1740 #define AMD_FMT_MOD_RB_MASK 0x7
1741 #define AMD_FMT_MOD_PIPE_SHIFT 33
1742 #define AMD_FMT_MOD_PIPE_MASK 0x7
1743
1744 #define AMD_FMT_MOD_SET(field, value) \
1745 ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1746 #define AMD_FMT_MOD_GET(field, value) \
1747 (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1748 #define AMD_FMT_MOD_CLEAR(field) \
1749 (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1750
1751 #if defined(__cplusplus)
1752 }
1753 #endif
1754
1755 #endif /* DRM_FOURCC_H */
1756