xref: /linux/arch/arm64/Kconfig (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9	select ACPI_IORT if ACPI
10	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11	select ACPI_MCFG if (ACPI && PCI)
12	select ACPI_SPCR_TABLE if ACPI
13	select ACPI_PPTT if ACPI
14	select ARCH_HAS_DEBUG_WX
15	select ARCH_BINFMT_ELF_EXTRA_PHDRS
16	select ARCH_BINFMT_ELF_STATE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CC_PLATFORM
24	select ARCH_HAS_CURRENT_STACK_POINTER
25	select ARCH_HAS_DEBUG_VIRTUAL
26	select ARCH_HAS_DEBUG_VM_PGTABLE
27	select ARCH_HAS_DMA_OPS if XEN
28	select ARCH_HAS_DMA_PREP_COHERENT
29	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30	select ARCH_HAS_FAST_MULTIPLIER
31	select ARCH_HAS_FORTIFY_SOURCE
32	select ARCH_HAS_GCOV_PROFILE_ALL
33	select ARCH_HAS_GIGANTIC_PAGE
34	select ARCH_HAS_KCOV
35	select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36	select ARCH_HAS_KEEPINITRD
37	select ARCH_HAS_MEMBARRIER_SYNC_CORE
38	select ARCH_HAS_MEM_ENCRYPT
39	select ARCH_SUPPORTS_MSEAL_SYSTEM_MAPPINGS
40	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
41	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
42	select ARCH_HAS_NONLEAF_PMD_YOUNG if ARM64_HAFT
43	select ARCH_HAS_PREEMPT_LAZY
44	select ARCH_HAS_PTDUMP
45	select ARCH_HAS_PTE_SPECIAL
46	select ARCH_HAS_HW_PTE_YOUNG
47	select ARCH_HAS_SETUP_DMA_OPS
48	select ARCH_HAS_SET_DIRECT_MAP
49	select ARCH_HAS_SET_MEMORY
50	select ARCH_HAS_MEM_ENCRYPT
51	select ARCH_HAS_FORCE_DMA_UNENCRYPTED
52	select ARCH_STACKWALK
53	select ARCH_HAS_STRICT_KERNEL_RWX
54	select ARCH_HAS_STRICT_MODULE_RWX
55	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
56	select ARCH_HAS_SYNC_DMA_FOR_CPU
57	select ARCH_HAS_SYSCALL_WRAPPER
58	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
59	select ARCH_HAS_ZONE_DMA_SET if EXPERT
60	select ARCH_HAVE_ELF_PROT
61	select ARCH_HAVE_NMI_SAFE_CMPXCHG
62	select ARCH_HAVE_TRACE_MMIO_ACCESS
63	select ARCH_INLINE_READ_LOCK if !PREEMPTION
64	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
65	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
67	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
68	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
71	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
72	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
73	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
75	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
76	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
77	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
78	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
79	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
80	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
81	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
82	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
83	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
84	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
85	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
86	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
87	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
88	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
89	select ARCH_KEEP_MEMBLOCK
90	select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
91	select ARCH_USE_CMPXCHG_LOCKREF
92	select ARCH_USE_GNU_PROPERTY
93	select ARCH_USE_MEMTEST
94	select ARCH_USE_QUEUED_RWLOCKS
95	select ARCH_USE_QUEUED_SPINLOCKS
96	select ARCH_USE_SYM_ANNOTATIONS
97	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
98	select ARCH_SUPPORTS_HUGETLBFS
99	select ARCH_SUPPORTS_MEMORY_FAILURE
100	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
101	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
102	select ARCH_SUPPORTS_LTO_CLANG_THIN
103	select ARCH_SUPPORTS_CFI_CLANG
104	select ARCH_SUPPORTS_ATOMIC_RMW
105	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
106	select ARCH_SUPPORTS_NUMA_BALANCING
107	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
108	select ARCH_SUPPORTS_PER_VMA_LOCK
109	select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
110	select ARCH_SUPPORTS_RT
111	select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
112	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
113	select ARCH_WANT_DEFAULT_BPF_JIT
114	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
115	select ARCH_WANT_FRAME_POINTERS
116	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
117	select ARCH_WANT_LD_ORPHAN_WARN
118	select ARCH_WANTS_EXECMEM_LATE
119	select ARCH_WANTS_NO_INSTR
120	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
121	select ARCH_HAS_UBSAN
122	select ARM_AMBA
123	select ARM_ARCH_TIMER
124	select ARM_GIC
125	select AUDIT_ARCH_COMPAT_GENERIC
126	select ARM_GIC_V2M if PCI
127	select ARM_GIC_V3
128	select ARM_GIC_V3_ITS if PCI
129	select ARM_GIC_V5
130	select ARM_PSCI_FW
131	select BUILDTIME_TABLE_SORT
132	select CLONE_BACKWARDS
133	select COMMON_CLK
134	select CPU_PM if (SUSPEND || CPU_IDLE)
135	select CPUMASK_OFFSTACK if NR_CPUS > 256
136	select DCACHE_WORD_ACCESS
137	select HAVE_EXTRA_IPI_TRACEPOINTS
138	select DYNAMIC_FTRACE if FUNCTION_TRACER
139	select DMA_BOUNCE_UNALIGNED_KMALLOC
140	select DMA_DIRECT_REMAP
141	select EDAC_SUPPORT
142	select FRAME_POINTER
143	select FUNCTION_ALIGNMENT_4B
144	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
145	select GENERIC_ALLOCATOR
146	select GENERIC_ARCH_TOPOLOGY
147	select GENERIC_CLOCKEVENTS_BROADCAST
148	select GENERIC_CPU_AUTOPROBE
149	select GENERIC_CPU_DEVICES
150	select GENERIC_CPU_VULNERABILITIES
151	select GENERIC_EARLY_IOREMAP
152	select GENERIC_IDLE_POLL_SETUP
153	select GENERIC_IOREMAP
154	select GENERIC_IRQ_IPI
155	select GENERIC_IRQ_KEXEC_CLEAR_VM_FORWARD
156	select GENERIC_IRQ_PROBE
157	select GENERIC_IRQ_SHOW
158	select GENERIC_IRQ_SHOW_LEVEL
159	select GENERIC_LIB_DEVMEM_IS_ALLOWED
160	select GENERIC_PCI_IOMAP
161	select GENERIC_SCHED_CLOCK
162	select GENERIC_SMP_IDLE_THREAD
163	select GENERIC_TIME_VSYSCALL
164	select GENERIC_GETTIMEOFDAY
165	select GENERIC_VDSO_DATA_STORE
166	select GENERIC_VDSO_TIME_NS
167	select HARDIRQS_SW_RESEND
168	select HAS_IOPORT
169	select HAVE_MOVE_PMD
170	select HAVE_MOVE_PUD
171	select HAVE_PCI
172	select HAVE_ACPI_APEI if (ACPI && EFI)
173	select HAVE_ALIGNED_STRUCT_PAGE
174	select HAVE_ARCH_AUDITSYSCALL
175	select HAVE_ARCH_BITREVERSE
176	select HAVE_ARCH_COMPILER_H
177	select HAVE_ARCH_HUGE_VMALLOC
178	select HAVE_ARCH_HUGE_VMAP
179	select HAVE_ARCH_JUMP_LABEL
180	select HAVE_ARCH_JUMP_LABEL_RELATIVE
181	select HAVE_ARCH_KASAN
182	select HAVE_ARCH_KASAN_VMALLOC
183	select HAVE_ARCH_KASAN_SW_TAGS
184	select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
185	# Some instrumentation may be unsound, hence EXPERT
186	select HAVE_ARCH_KCSAN if EXPERT
187	select HAVE_ARCH_KFENCE
188	select HAVE_ARCH_KGDB
189	select HAVE_ARCH_KSTACK_ERASE
190	select HAVE_ARCH_MMAP_RND_BITS
191	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
192	select HAVE_ARCH_PREL32_RELOCATIONS
193	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
194	select HAVE_ARCH_SECCOMP_FILTER
195	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
196	select HAVE_ARCH_TRACEHOOK
197	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
198	select HAVE_ARCH_VMAP_STACK
199	select HAVE_ARM_SMCCC
200	select HAVE_ASM_MODVERSIONS
201	select HAVE_EBPF_JIT
202	select HAVE_C_RECORDMCOUNT
203	select HAVE_CMPXCHG_DOUBLE
204	select HAVE_CMPXCHG_LOCAL
205	select HAVE_CONTEXT_TRACKING_USER
206	select HAVE_DEBUG_KMEMLEAK
207	select HAVE_DMA_CONTIGUOUS
208	select HAVE_DYNAMIC_FTRACE
209	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
210		if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
211		    CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
212	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
213		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
214	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
215		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
216		    (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
217	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
218		if DYNAMIC_FTRACE_WITH_ARGS
219	select HAVE_SAMPLE_FTRACE_DIRECT
220	select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
221	select HAVE_BUILDTIME_MCOUNT_SORT
222	select HAVE_EFFICIENT_UNALIGNED_ACCESS
223	select HAVE_GUP_FAST
224	select HAVE_FTRACE_GRAPH_FUNC
225	select HAVE_FUNCTION_TRACER
226	select HAVE_FUNCTION_ERROR_INJECTION
227	select HAVE_FUNCTION_GRAPH_FREGS
228	select HAVE_FUNCTION_GRAPH_TRACER
229	select HAVE_GCC_PLUGINS
230	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
231		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
232	select HAVE_HW_BREAKPOINT if PERF_EVENTS
233	select HAVE_IOREMAP_PROT
234	select HAVE_IRQ_TIME_ACCOUNTING
235	select HAVE_LIVEPATCH
236	select HAVE_MOD_ARCH_SPECIFIC
237	select HAVE_NMI
238	select HAVE_PERF_EVENTS
239	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
240	select HAVE_PERF_REGS
241	select HAVE_PERF_USER_STACK_DUMP
242	select HAVE_PREEMPT_DYNAMIC_KEY
243	select HAVE_REGS_AND_STACK_ACCESS_API
244	select HAVE_RELIABLE_STACKTRACE
245	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
246	select HAVE_FUNCTION_ARG_ACCESS_API
247	select MMU_GATHER_RCU_TABLE_FREE
248	select HAVE_RSEQ
249	select HAVE_RUST if RUSTC_SUPPORTS_ARM64
250	select HAVE_STACKPROTECTOR
251	select HAVE_SYSCALL_TRACEPOINTS
252	select HAVE_KPROBES
253	select HAVE_KRETPROBES
254	select HAVE_GENERIC_VDSO
255	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
256	select HOTPLUG_SMT if HOTPLUG_CPU
257	select IRQ_DOMAIN
258	select IRQ_FORCED_THREADING
259	select JUMP_LABEL
260	select KASAN_VMALLOC if KASAN
261	select LOCK_MM_AND_FIND_VMA
262	select MODULES_USE_ELF_RELA
263	select NEED_DMA_MAP_STATE
264	select NEED_SG_DMA_LENGTH
265	select OF
266	select OF_EARLY_FLATTREE
267	select PCI_DOMAINS_GENERIC if PCI
268	select PCI_ECAM if (ACPI && PCI)
269	select PCI_SYSCALL if PCI
270	select POWER_RESET
271	select POWER_SUPPLY
272	select SPARSE_IRQ
273	select SWIOTLB
274	select SYSCTL_EXCEPTION_TRACE
275	select THREAD_INFO_IN_TASK
276	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
277	select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
278	select TRACE_IRQFLAGS_SUPPORT
279	select TRACE_IRQFLAGS_NMI_SUPPORT
280	select HAVE_SOFTIRQ_ON_OWN_STACK
281	select USER_STACKTRACE_SUPPORT
282	select VDSO_GETRANDOM
283	select VMAP_STACK
284	help
285	  ARM 64-bit (AArch64) Linux support.
286
287config RUSTC_SUPPORTS_ARM64
288	def_bool y
289	depends on CPU_LITTLE_ENDIAN
290	# Shadow call stack is only supported on certain rustc versions.
291	#
292	# When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
293	# required due to use of the -Zfixed-x18 flag.
294	#
295	# Otherwise, rustc version 1.82+ is required due to use of the
296	# -Zsanitizer=shadow-call-stack flag.
297	depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
298
299config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
300	def_bool CC_IS_CLANG
301	# https://github.com/ClangBuiltLinux/linux/issues/1507
302	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
303
304config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
305	def_bool CC_IS_GCC
306	depends on $(cc-option,-fpatchable-function-entry=2)
307
308config 64BIT
309	def_bool y
310
311config MMU
312	def_bool y
313
314config ARM64_CONT_PTE_SHIFT
315	int
316	default 5 if PAGE_SIZE_64KB
317	default 7 if PAGE_SIZE_16KB
318	default 4
319
320config ARM64_CONT_PMD_SHIFT
321	int
322	default 5 if PAGE_SIZE_64KB
323	default 5 if PAGE_SIZE_16KB
324	default 4
325
326config ARCH_MMAP_RND_BITS_MIN
327	default 14 if PAGE_SIZE_64KB
328	default 16 if PAGE_SIZE_16KB
329	default 18
330
331# max bits determined by the following formula:
332#  VA_BITS - PTDESC_TABLE_SHIFT
333config ARCH_MMAP_RND_BITS_MAX
334	default 19 if ARM64_VA_BITS=36
335	default 24 if ARM64_VA_BITS=39
336	default 27 if ARM64_VA_BITS=42
337	default 30 if ARM64_VA_BITS=47
338	default 29 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_64K_PAGES
339	default 31 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52) && ARM64_16K_PAGES
340	default 33 if (ARM64_VA_BITS=48 || ARM64_VA_BITS=52)
341	default 14 if ARM64_64K_PAGES
342	default 16 if ARM64_16K_PAGES
343	default 18
344
345config ARCH_MMAP_RND_COMPAT_BITS_MIN
346	default 7 if ARM64_64K_PAGES
347	default 9 if ARM64_16K_PAGES
348	default 11
349
350config ARCH_MMAP_RND_COMPAT_BITS_MAX
351	default 16
352
353config NO_IOPORT_MAP
354	def_bool y if !PCI
355
356config STACKTRACE_SUPPORT
357	def_bool y
358
359config ILLEGAL_POINTER_VALUE
360	hex
361	default 0xdead000000000000
362
363config LOCKDEP_SUPPORT
364	def_bool y
365
366config GENERIC_BUG
367	def_bool y
368	depends on BUG
369
370config GENERIC_BUG_RELATIVE_POINTERS
371	def_bool y
372	depends on GENERIC_BUG
373
374config GENERIC_HWEIGHT
375	def_bool y
376
377config GENERIC_CSUM
378	def_bool y
379
380config GENERIC_CALIBRATE_DELAY
381	def_bool y
382
383config SMP
384	def_bool y
385
386config KERNEL_MODE_NEON
387	def_bool y
388
389config FIX_EARLYCON_MEM
390	def_bool y
391
392config PGTABLE_LEVELS
393	int
394	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
395	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
396	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
397	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
398	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
399	default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
400	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
401	default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
402
403config ARCH_SUPPORTS_UPROBES
404	def_bool y
405
406config ARCH_PROC_KCORE_TEXT
407	def_bool y
408
409config BROKEN_GAS_INST
410	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
411
412config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
413	bool
414	# Clang's __builtin_return_address() strips the PAC since 12.0.0
415	# https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
416	default y if CC_IS_CLANG
417	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
418	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
419	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
420	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
421	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
422	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
423	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
424	default n
425
426config KASAN_SHADOW_OFFSET
427	hex
428	depends on KASAN_GENERIC || KASAN_SW_TAGS
429	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
430	default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
431	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
432	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
433	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
434	default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
435	default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
436	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
437	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
438	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
439	default 0xffffffffffffffff
440
441config UNWIND_TABLES
442	bool
443
444source "arch/arm64/Kconfig.platforms"
445
446menu "Kernel Features"
447
448menu "ARM errata workarounds via the alternatives framework"
449
450config AMPERE_ERRATUM_AC03_CPU_38
451        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
452	default y
453	help
454	  This option adds an alternative code sequence to work around Ampere
455	  errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
456
457	  The affected design reports FEAT_HAFDBS as not implemented in
458	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
459	  as required by the architecture. The unadvertised HAFDBS
460	  implementation suffers from an additional erratum where hardware
461	  A/D updates can occur after a PTE has been marked invalid.
462
463	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
464	  which avoids enabling unadvertised hardware Access Flag management
465	  at stage-2.
466
467	  If unsure, say Y.
468
469config AMPERE_ERRATUM_AC04_CPU_23
470        bool "AmpereOne: AC04_CPU_23:  Failure to synchronize writes to HCR_EL2 may corrupt address translations."
471	default y
472	help
473	  This option adds an alternative code sequence to work around Ampere
474	  errata AC04_CPU_23 on AmpereOne.
475
476	  Updates to HCR_EL2 can rarely corrupt simultaneous translations for
477	  data addresses initiated by load/store instructions. Only
478	  instruction initiated translations are vulnerable, not translations
479	  from prefetches for example. A DSB before the store to HCR_EL2 is
480	  sufficient to prevent older instructions from hitting the window
481	  for corruption, and an ISB after is sufficient to prevent younger
482	  instructions from hitting the window for corruption.
483
484	  If unsure, say Y.
485
486config ARM64_WORKAROUND_CLEAN_CACHE
487	bool
488
489config ARM64_ERRATUM_826319
490	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
491	default y
492	select ARM64_WORKAROUND_CLEAN_CACHE
493	help
494	  This option adds an alternative code sequence to work around ARM
495	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
496	  AXI master interface and an L2 cache.
497
498	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
499	  and is unable to accept a certain write via this interface, it will
500	  not progress on read data presented on the read data channel and the
501	  system can deadlock.
502
503	  The workaround promotes data cache clean instructions to
504	  data cache clean-and-invalidate.
505	  Please note that this does not necessarily enable the workaround,
506	  as it depends on the alternative framework, which will only patch
507	  the kernel if an affected CPU is detected.
508
509	  If unsure, say Y.
510
511config ARM64_ERRATUM_827319
512	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
513	default y
514	select ARM64_WORKAROUND_CLEAN_CACHE
515	help
516	  This option adds an alternative code sequence to work around ARM
517	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
518	  master interface and an L2 cache.
519
520	  Under certain conditions this erratum can cause a clean line eviction
521	  to occur at the same time as another transaction to the same address
522	  on the AMBA 5 CHI interface, which can cause data corruption if the
523	  interconnect reorders the two transactions.
524
525	  The workaround promotes data cache clean instructions to
526	  data cache clean-and-invalidate.
527	  Please note that this does not necessarily enable the workaround,
528	  as it depends on the alternative framework, which will only patch
529	  the kernel if an affected CPU is detected.
530
531	  If unsure, say Y.
532
533config ARM64_ERRATUM_824069
534	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
535	default y
536	select ARM64_WORKAROUND_CLEAN_CACHE
537	help
538	  This option adds an alternative code sequence to work around ARM
539	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
540	  to a coherent interconnect.
541
542	  If a Cortex-A53 processor is executing a store or prefetch for
543	  write instruction at the same time as a processor in another
544	  cluster is executing a cache maintenance operation to the same
545	  address, then this erratum might cause a clean cache line to be
546	  incorrectly marked as dirty.
547
548	  The workaround promotes data cache clean instructions to
549	  data cache clean-and-invalidate.
550	  Please note that this option does not necessarily enable the
551	  workaround, as it depends on the alternative framework, which will
552	  only patch the kernel if an affected CPU is detected.
553
554	  If unsure, say Y.
555
556config ARM64_ERRATUM_819472
557	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
558	default y
559	select ARM64_WORKAROUND_CLEAN_CACHE
560	help
561	  This option adds an alternative code sequence to work around ARM
562	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
563	  present when it is connected to a coherent interconnect.
564
565	  If the processor is executing a load and store exclusive sequence at
566	  the same time as a processor in another cluster is executing a cache
567	  maintenance operation to the same address, then this erratum might
568	  cause data corruption.
569
570	  The workaround promotes data cache clean instructions to
571	  data cache clean-and-invalidate.
572	  Please note that this does not necessarily enable the workaround,
573	  as it depends on the alternative framework, which will only patch
574	  the kernel if an affected CPU is detected.
575
576	  If unsure, say Y.
577
578config ARM64_ERRATUM_832075
579	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
580	default y
581	help
582	  This option adds an alternative code sequence to work around ARM
583	  erratum 832075 on Cortex-A57 parts up to r1p2.
584
585	  Affected Cortex-A57 parts might deadlock when exclusive load/store
586	  instructions to Write-Back memory are mixed with Device loads.
587
588	  The workaround is to promote device loads to use Load-Acquire
589	  semantics.
590	  Please note that this does not necessarily enable the workaround,
591	  as it depends on the alternative framework, which will only patch
592	  the kernel if an affected CPU is detected.
593
594	  If unsure, say Y.
595
596config ARM64_ERRATUM_834220
597	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
598	depends on KVM
599	help
600	  This option adds an alternative code sequence to work around ARM
601	  erratum 834220 on Cortex-A57 parts up to r1p2.
602
603	  Affected Cortex-A57 parts might report a Stage 2 translation
604	  fault as the result of a Stage 1 fault for load crossing a
605	  page boundary when there is a permission or device memory
606	  alignment fault at Stage 1 and a translation fault at Stage 2.
607
608	  The workaround is to verify that the Stage 1 translation
609	  doesn't generate a fault before handling the Stage 2 fault.
610	  Please note that this does not necessarily enable the workaround,
611	  as it depends on the alternative framework, which will only patch
612	  the kernel if an affected CPU is detected.
613
614	  If unsure, say N.
615
616config ARM64_ERRATUM_1742098
617	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
618	depends on COMPAT
619	default y
620	help
621	  This option removes the AES hwcap for aarch32 user-space to
622	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
623
624	  Affected parts may corrupt the AES state if an interrupt is
625	  taken between a pair of AES instructions. These instructions
626	  are only present if the cryptography extensions are present.
627	  All software should have a fallback implementation for CPUs
628	  that don't implement the cryptography extensions.
629
630	  If unsure, say Y.
631
632config ARM64_ERRATUM_845719
633	bool "Cortex-A53: 845719: a load might read incorrect data"
634	depends on COMPAT
635	default y
636	help
637	  This option adds an alternative code sequence to work around ARM
638	  erratum 845719 on Cortex-A53 parts up to r0p4.
639
640	  When running a compat (AArch32) userspace on an affected Cortex-A53
641	  part, a load at EL0 from a virtual address that matches the bottom 32
642	  bits of the virtual address used by a recent load at (AArch64) EL1
643	  might return incorrect data.
644
645	  The workaround is to write the contextidr_el1 register on exception
646	  return to a 32-bit task.
647	  Please note that this does not necessarily enable the workaround,
648	  as it depends on the alternative framework, which will only patch
649	  the kernel if an affected CPU is detected.
650
651	  If unsure, say Y.
652
653config ARM64_ERRATUM_843419
654	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
655	default y
656	help
657	  This option links the kernel with '--fix-cortex-a53-843419' and
658	  enables PLT support to replace certain ADRP instructions, which can
659	  cause subsequent memory accesses to use an incorrect address on
660	  Cortex-A53 parts up to r0p4.
661
662	  If unsure, say Y.
663
664config ARM64_ERRATUM_1024718
665	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
666	default y
667	help
668	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
669
670	  Affected Cortex-A55 cores (all revisions) could cause incorrect
671	  update of the hardware dirty bit when the DBM/AP bits are updated
672	  without a break-before-make. The workaround is to disable the usage
673	  of hardware DBM locally on the affected cores. CPUs not affected by
674	  this erratum will continue to use the feature.
675
676	  If unsure, say Y.
677
678config ARM64_ERRATUM_1418040
679	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
680	default y
681	depends on COMPAT
682	help
683	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
684	  errata 1188873 and 1418040.
685
686	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
687	  cause register corruption when accessing the timer registers
688	  from AArch32 userspace.
689
690	  If unsure, say Y.
691
692config ARM64_WORKAROUND_SPECULATIVE_AT
693	bool
694
695config ARM64_ERRATUM_1165522
696	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
697	default y
698	select ARM64_WORKAROUND_SPECULATIVE_AT
699	help
700	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
701
702	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
703	  corrupted TLBs by speculating an AT instruction during a guest
704	  context switch.
705
706	  If unsure, say Y.
707
708config ARM64_ERRATUM_1319367
709	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
710	default y
711	select ARM64_WORKAROUND_SPECULATIVE_AT
712	help
713	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
714	  and A72 erratum 1319367
715
716	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
717	  speculating an AT instruction during a guest context switch.
718
719	  If unsure, say Y.
720
721config ARM64_ERRATUM_1530923
722	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
723	default y
724	select ARM64_WORKAROUND_SPECULATIVE_AT
725	help
726	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
727
728	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
729	  corrupted TLBs by speculating an AT instruction during a guest
730	  context switch.
731
732	  If unsure, say Y.
733
734config ARM64_WORKAROUND_REPEAT_TLBI
735	bool
736
737config ARM64_ERRATUM_2441007
738	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
739	select ARM64_WORKAROUND_REPEAT_TLBI
740	help
741	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
742
743	  Under very rare circumstances, affected Cortex-A55 CPUs
744	  may not handle a race between a break-before-make sequence on one
745	  CPU, and another CPU accessing the same page. This could allow a
746	  store to a page that has been unmapped.
747
748	  Work around this by adding the affected CPUs to the list that needs
749	  TLB sequences to be done twice.
750
751	  If unsure, say N.
752
753config ARM64_ERRATUM_1286807
754	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
755	select ARM64_WORKAROUND_REPEAT_TLBI
756	help
757	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
758
759	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
760	  address for a cacheable mapping of a location is being
761	  accessed by a core while another core is remapping the virtual
762	  address to a new physical page using the recommended
763	  break-before-make sequence, then under very rare circumstances
764	  TLBI+DSB completes before a read using the translation being
765	  invalidated has been observed by other observers. The
766	  workaround repeats the TLBI+DSB operation.
767
768	  If unsure, say N.
769
770config ARM64_ERRATUM_1463225
771	bool "Cortex-A76: Software Step might prevent interrupt recognition"
772	default y
773	help
774	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
775
776	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
777	  of a system call instruction (SVC) can prevent recognition of
778	  subsequent interrupts when software stepping is disabled in the
779	  exception handler of the system call and either kernel debugging
780	  is enabled or VHE is in use.
781
782	  Work around the erratum by triggering a dummy step exception
783	  when handling a system call from a task that is being stepped
784	  in a VHE configuration of the kernel.
785
786	  If unsure, say Y.
787
788config ARM64_ERRATUM_1542419
789	bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
790	help
791	  This option adds a workaround for ARM Neoverse-N1 erratum
792	  1542419.
793
794	  Affected Neoverse-N1 cores could execute a stale instruction when
795	  modified by another CPU. The workaround depends on a firmware
796	  counterpart.
797
798	  Workaround the issue by hiding the DIC feature from EL0. This
799	  forces user-space to perform cache maintenance.
800
801	  If unsure, say N.
802
803config ARM64_ERRATUM_1508412
804	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
805	default y
806	help
807	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
808
809	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
810	  of a store-exclusive or read of PAR_EL1 and a load with device or
811	  non-cacheable memory attributes. The workaround depends on a firmware
812	  counterpart.
813
814	  KVM guests must also have the workaround implemented or they can
815	  deadlock the system.
816
817	  Work around the issue by inserting DMB SY barriers around PAR_EL1
818	  register reads and warning KVM users. The DMB barrier is sufficient
819	  to prevent a speculative PAR_EL1 read.
820
821	  If unsure, say Y.
822
823config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
824	bool
825
826config ARM64_ERRATUM_2051678
827	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
828	default y
829	help
830	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
831	  Affected Cortex-A510 might not respect the ordering rules for
832	  hardware update of the page table's dirty bit. The workaround
833	  is to not enable the feature on affected CPUs.
834
835	  If unsure, say Y.
836
837config ARM64_ERRATUM_2077057
838	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
839	default y
840	help
841	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
842	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
843	  expected, but a Pointer Authentication trap is taken instead. The
844	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
845	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
846
847	  This can only happen when EL2 is stepping EL1.
848
849	  When these conditions occur, the SPSR_EL2 value is unchanged from the
850	  previous guest entry, and can be restored from the in-memory copy.
851
852	  If unsure, say Y.
853
854config ARM64_ERRATUM_2658417
855	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
856	default y
857	help
858	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
859	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
860	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
861	  A510 CPUs are using shared neon hardware. As the sharing is not
862	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
863	  user-space should not be using these instructions.
864
865	  If unsure, say Y.
866
867config ARM64_ERRATUM_2119858
868	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
869	default y
870	depends on CORESIGHT_TRBE
871	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
872	help
873	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
874
875	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
876	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
877	  the event of a WRAP event.
878
879	  Work around the issue by always making sure we move the TRBPTR_EL1 by
880	  256 bytes before enabling the buffer and filling the first 256 bytes of
881	  the buffer with ETM ignore packets upon disabling.
882
883	  If unsure, say Y.
884
885config ARM64_ERRATUM_2139208
886	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
887	default y
888	depends on CORESIGHT_TRBE
889	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
890	help
891	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
892
893	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
894	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
895	  the event of a WRAP event.
896
897	  Work around the issue by always making sure we move the TRBPTR_EL1 by
898	  256 bytes before enabling the buffer and filling the first 256 bytes of
899	  the buffer with ETM ignore packets upon disabling.
900
901	  If unsure, say Y.
902
903config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
904	bool
905
906config ARM64_ERRATUM_2054223
907	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
908	default y
909	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
910	help
911	  Enable workaround for ARM Cortex-A710 erratum 2054223
912
913	  Affected cores may fail to flush the trace data on a TSB instruction, when
914	  the PE is in trace prohibited state. This will cause losing a few bytes
915	  of the trace cached.
916
917	  Workaround is to issue two TSB consecutively on affected cores.
918
919	  If unsure, say Y.
920
921config ARM64_ERRATUM_2067961
922	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
923	default y
924	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
925	help
926	  Enable workaround for ARM Neoverse-N2 erratum 2067961
927
928	  Affected cores may fail to flush the trace data on a TSB instruction, when
929	  the PE is in trace prohibited state. This will cause losing a few bytes
930	  of the trace cached.
931
932	  Workaround is to issue two TSB consecutively on affected cores.
933
934	  If unsure, say Y.
935
936config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
937	bool
938
939config ARM64_ERRATUM_2253138
940	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
941	depends on CORESIGHT_TRBE
942	default y
943	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
944	help
945	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
946
947	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
948	  for TRBE. Under some conditions, the TRBE might generate a write to the next
949	  virtually addressed page following the last page of the TRBE address space
950	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
951
952	  Work around this in the driver by always making sure that there is a
953	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
954
955	  If unsure, say Y.
956
957config ARM64_ERRATUM_2224489
958	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
959	depends on CORESIGHT_TRBE
960	default y
961	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
962	help
963	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
964
965	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
966	  for TRBE. Under some conditions, the TRBE might generate a write to the next
967	  virtually addressed page following the last page of the TRBE address space
968	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
969
970	  Work around this in the driver by always making sure that there is a
971	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
972
973	  If unsure, say Y.
974
975config ARM64_ERRATUM_2441009
976	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
977	select ARM64_WORKAROUND_REPEAT_TLBI
978	help
979	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
980
981	  Under very rare circumstances, affected Cortex-A510 CPUs
982	  may not handle a race between a break-before-make sequence on one
983	  CPU, and another CPU accessing the same page. This could allow a
984	  store to a page that has been unmapped.
985
986	  Work around this by adding the affected CPUs to the list that needs
987	  TLB sequences to be done twice.
988
989	  If unsure, say N.
990
991config ARM64_ERRATUM_2064142
992	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
993	depends on CORESIGHT_TRBE
994	default y
995	help
996	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
997
998	  Affected Cortex-A510 core might fail to write into system registers after the
999	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
1000	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
1001	  and TRBTRG_EL1 will be ignored and will not be effected.
1002
1003	  Work around this in the driver by executing TSB CSYNC and DSB after collection
1004	  is stopped and before performing a system register write to one of the affected
1005	  registers.
1006
1007	  If unsure, say Y.
1008
1009config ARM64_ERRATUM_2038923
1010	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
1011	depends on CORESIGHT_TRBE
1012	default y
1013	help
1014	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
1015
1016	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
1017	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
1018	  might be corrupted. This happens after TRBE buffer has been enabled by setting
1019	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
1020	  execution changes from a context, in which trace is prohibited to one where it
1021	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
1022	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
1023	  the trace buffer state might be corrupted.
1024
1025	  Work around this in the driver by preventing an inconsistent view of whether the
1026	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1027	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1028	  two ISB instructions if no ERET is to take place.
1029
1030	  If unsure, say Y.
1031
1032config ARM64_ERRATUM_1902691
1033	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1034	depends on CORESIGHT_TRBE
1035	default y
1036	help
1037	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1038
1039	  Affected Cortex-A510 core might cause trace data corruption, when being written
1040	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
1041	  trace data.
1042
1043	  Work around this problem in the driver by just preventing TRBE initialization on
1044	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
1045	  on such implementations. This will cover the kernel for any firmware that doesn't
1046	  do this already.
1047
1048	  If unsure, say Y.
1049
1050config ARM64_ERRATUM_2457168
1051	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1052	depends on ARM64_AMU_EXTN
1053	default y
1054	help
1055	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1056
1057	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1058	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1059	  incorrectly giving a significantly higher output value.
1060
1061	  Work around this problem by returning 0 when reading the affected counter in
1062	  key locations that results in disabling all users of this counter. This effect
1063	  is the same to firmware disabling affected counters.
1064
1065	  If unsure, say Y.
1066
1067config ARM64_ERRATUM_2645198
1068	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1069	default y
1070	help
1071	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1072
1073	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1074	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1075	  next instruction abort caused by permission fault.
1076
1077	  Only user-space does executable to non-executable permission transition via
1078	  mprotect() system call. Workaround the problem by doing a break-before-make
1079	  TLB invalidation, for all changes to executable user space mappings.
1080
1081	  If unsure, say Y.
1082
1083config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1084	bool
1085
1086config ARM64_ERRATUM_2966298
1087	bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1088	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1089	default y
1090	help
1091	  This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1092
1093	  On an affected Cortex-A520 core, a speculatively executed unprivileged
1094	  load might leak data from a privileged level via a cache side channel.
1095
1096	  Work around this problem by executing a TLBI before returning to EL0.
1097
1098	  If unsure, say Y.
1099
1100config ARM64_ERRATUM_3117295
1101	bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1102	select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1103	default y
1104	help
1105	  This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1106
1107	  On an affected Cortex-A510 core, a speculatively executed unprivileged
1108	  load might leak data from a privileged level via a cache side channel.
1109
1110	  Work around this problem by executing a TLBI before returning to EL0.
1111
1112	  If unsure, say Y.
1113
1114config ARM64_ERRATUM_3194386
1115	bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1116	default y
1117	help
1118	  This option adds the workaround for the following errata:
1119
1120	  * ARM Cortex-A76 erratum 3324349
1121	  * ARM Cortex-A77 erratum 3324348
1122	  * ARM Cortex-A78 erratum 3324344
1123	  * ARM Cortex-A78C erratum 3324346
1124	  * ARM Cortex-A78C erratum 3324347
1125	  * ARM Cortex-A710 erratam 3324338
1126	  * ARM Cortex-A715 errartum 3456084
1127	  * ARM Cortex-A720 erratum 3456091
1128	  * ARM Cortex-A725 erratum 3456106
1129	  * ARM Cortex-X1 erratum 3324344
1130	  * ARM Cortex-X1C erratum 3324346
1131	  * ARM Cortex-X2 erratum 3324338
1132	  * ARM Cortex-X3 erratum 3324335
1133	  * ARM Cortex-X4 erratum 3194386
1134	  * ARM Cortex-X925 erratum 3324334
1135	  * ARM Neoverse-N1 erratum 3324349
1136	  * ARM Neoverse N2 erratum 3324339
1137	  * ARM Neoverse-N3 erratum 3456111
1138	  * ARM Neoverse-V1 erratum 3324341
1139	  * ARM Neoverse V2 erratum 3324336
1140	  * ARM Neoverse-V3 erratum 3312417
1141
1142	  On affected cores "MSR SSBS, #0" instructions may not affect
1143	  subsequent speculative instructions, which may permit unexepected
1144	  speculative store bypassing.
1145
1146	  Work around this problem by placing a Speculation Barrier (SB) or
1147	  Instruction Synchronization Barrier (ISB) after kernel changes to
1148	  SSBS. The presence of the SSBS special-purpose register is hidden
1149	  from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1150	  will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1151
1152	  If unsure, say Y.
1153
1154config CAVIUM_ERRATUM_22375
1155	bool "Cavium erratum 22375, 24313"
1156	default y
1157	help
1158	  Enable workaround for errata 22375 and 24313.
1159
1160	  This implements two gicv3-its errata workarounds for ThunderX. Both
1161	  with a small impact affecting only ITS table allocation.
1162
1163	    erratum 22375: only alloc 8MB table size
1164	    erratum 24313: ignore memory access type
1165
1166	  The fixes are in ITS initialization and basically ignore memory access
1167	  type and table size provided by the TYPER and BASER registers.
1168
1169	  If unsure, say Y.
1170
1171config CAVIUM_ERRATUM_23144
1172	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1173	depends on NUMA
1174	default y
1175	help
1176	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1177
1178	  If unsure, say Y.
1179
1180config CAVIUM_ERRATUM_23154
1181	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1182	default y
1183	help
1184	  The ThunderX GICv3 implementation requires a modified version for
1185	  reading the IAR status to ensure data synchronization
1186	  (access to icc_iar1_el1 is not sync'ed before and after).
1187
1188	  It also suffers from erratum 38545 (also present on Marvell's
1189	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1190	  spuriously presented to the CPU interface.
1191
1192	  If unsure, say Y.
1193
1194config CAVIUM_ERRATUM_27456
1195	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1196	default y
1197	help
1198	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1199	  instructions may cause the icache to become corrupted if it
1200	  contains data for a non-current ASID.  The fix is to
1201	  invalidate the icache when changing the mm context.
1202
1203	  If unsure, say Y.
1204
1205config CAVIUM_ERRATUM_30115
1206	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1207	default y
1208	help
1209	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1210	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1211	  interrupts in host. Trapping both GICv3 group-0 and group-1
1212	  accesses sidesteps the issue.
1213
1214	  If unsure, say Y.
1215
1216config CAVIUM_TX2_ERRATUM_219
1217	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1218	default y
1219	help
1220	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1221	  TTBR update and the corresponding context synchronizing operation can
1222	  cause a spurious Data Abort to be delivered to any hardware thread in
1223	  the CPU core.
1224
1225	  Work around the issue by avoiding the problematic code sequence and
1226	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1227	  trap handler performs the corresponding register access, skips the
1228	  instruction and ensures context synchronization by virtue of the
1229	  exception return.
1230
1231	  If unsure, say Y.
1232
1233config FUJITSU_ERRATUM_010001
1234	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1235	default y
1236	help
1237	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1238	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1239	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1240	  This fault occurs under a specific hardware condition when a
1241	  load/store instruction performs an address translation using:
1242	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1243	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1244	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1245	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1246
1247	  The workaround is to ensure these bits are clear in TCR_ELx.
1248	  The workaround only affects the Fujitsu-A64FX.
1249
1250	  If unsure, say Y.
1251
1252config HISILICON_ERRATUM_161600802
1253	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1254	default y
1255	help
1256	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1257	  when issued ITS commands such as VMOVP and VMAPP, and requires
1258	  a 128kB offset to be applied to the target address in this commands.
1259
1260	  If unsure, say Y.
1261
1262config HISILICON_ERRATUM_162100801
1263	bool "Hip09 162100801 erratum support"
1264	default y
1265	help
1266	  When enabling GICv4.1 in hip09, VMAPP will fail to clear some caches
1267	  during unmapping operation, which will cause some vSGIs lost.
1268	  To fix the issue, invalidate related vPE cache through GICR_INVALLR
1269	  after VMOVP.
1270
1271	  If unsure, say Y.
1272
1273config QCOM_FALKOR_ERRATUM_1003
1274	bool "Falkor E1003: Incorrect translation due to ASID change"
1275	default y
1276	help
1277	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1278	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1279	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1280	  then only for entries in the walk cache, since the leaf translation
1281	  is unchanged. Work around the erratum by invalidating the walk cache
1282	  entries for the trampoline before entering the kernel proper.
1283
1284config QCOM_FALKOR_ERRATUM_1009
1285	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1286	default y
1287	select ARM64_WORKAROUND_REPEAT_TLBI
1288	help
1289	  On Falkor v1, the CPU may prematurely complete a DSB following a
1290	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1291	  one more time to fix the issue.
1292
1293	  If unsure, say Y.
1294
1295config QCOM_QDF2400_ERRATUM_0065
1296	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1297	default y
1298	help
1299	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1300	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1301	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1302
1303	  If unsure, say Y.
1304
1305config QCOM_FALKOR_ERRATUM_E1041
1306	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1307	default y
1308	help
1309	  Falkor CPU may speculatively fetch instructions from an improper
1310	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1311	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1312
1313	  If unsure, say Y.
1314
1315config NVIDIA_CARMEL_CNP_ERRATUM
1316	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1317	default y
1318	help
1319	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1320	  invalidate shared TLB entries installed by a different core, as it would
1321	  on standard ARM cores.
1322
1323	  If unsure, say Y.
1324
1325config ROCKCHIP_ERRATUM_3568002
1326	bool "Rockchip 3568002: GIC600 can not access physical addresses higher than 4GB"
1327	default y
1328	help
1329	  The Rockchip RK3566 and RK3568 GIC600 SoC integrations have AXI
1330	  addressing limited to the first 32bit of physical address space.
1331
1332	  If unsure, say Y.
1333
1334config ROCKCHIP_ERRATUM_3588001
1335	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1336	default y
1337	help
1338	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1339	  This means, that its sharability feature may not be used, even though it
1340	  is supported by the IP itself.
1341
1342	  If unsure, say Y.
1343
1344config SOCIONEXT_SYNQUACER_PREITS
1345	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1346	default y
1347	help
1348	  Socionext Synquacer SoCs implement a separate h/w block to generate
1349	  MSI doorbell writes with non-zero values for the device ID.
1350
1351	  If unsure, say Y.
1352
1353endmenu # "ARM errata workarounds via the alternatives framework"
1354
1355choice
1356	prompt "Page size"
1357	default ARM64_4K_PAGES
1358	help
1359	  Page size (translation granule) configuration.
1360
1361config ARM64_4K_PAGES
1362	bool "4KB"
1363	select HAVE_PAGE_SIZE_4KB
1364	help
1365	  This feature enables 4KB pages support.
1366
1367config ARM64_16K_PAGES
1368	bool "16KB"
1369	select HAVE_PAGE_SIZE_16KB
1370	help
1371	  The system will use 16KB pages support. AArch32 emulation
1372	  requires applications compiled with 16K (or a multiple of 16K)
1373	  aligned segments.
1374
1375config ARM64_64K_PAGES
1376	bool "64KB"
1377	select HAVE_PAGE_SIZE_64KB
1378	help
1379	  This feature enables 64KB pages support (4KB by default)
1380	  allowing only two levels of page tables and faster TLB
1381	  look-up. AArch32 emulation requires applications compiled
1382	  with 64K aligned segments.
1383
1384endchoice
1385
1386choice
1387	prompt "Virtual address space size"
1388	default ARM64_VA_BITS_52
1389	help
1390	  Allows choosing one of multiple possible virtual address
1391	  space sizes. The level of translation table is determined by
1392	  a combination of page size and virtual address space size.
1393
1394config ARM64_VA_BITS_36
1395	bool "36-bit" if EXPERT
1396	depends on PAGE_SIZE_16KB
1397
1398config ARM64_VA_BITS_39
1399	bool "39-bit"
1400	depends on PAGE_SIZE_4KB
1401
1402config ARM64_VA_BITS_42
1403	bool "42-bit"
1404	depends on PAGE_SIZE_64KB
1405
1406config ARM64_VA_BITS_47
1407	bool "47-bit"
1408	depends on PAGE_SIZE_16KB
1409
1410config ARM64_VA_BITS_48
1411	bool "48-bit"
1412
1413config ARM64_VA_BITS_52
1414	bool "52-bit"
1415	help
1416	  Enable 52-bit virtual addressing for userspace when explicitly
1417	  requested via a hint to mmap(). The kernel will also use 52-bit
1418	  virtual addresses for its own mappings (provided HW support for
1419	  this feature is available, otherwise it reverts to 48-bit).
1420
1421	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1422	  ARMv8.3 Pointer Authentication will result in the PAC being
1423	  reduced from 7 bits to 3 bits, which may have a significant
1424	  impact on its susceptibility to brute-force attacks.
1425
1426	  If unsure, select 48-bit virtual addressing instead.
1427
1428endchoice
1429
1430config ARM64_FORCE_52BIT
1431	bool "Force 52-bit virtual addresses for userspace"
1432	depends on ARM64_VA_BITS_52 && EXPERT
1433	help
1434	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1435	  to maintain compatibility with older software by providing 48-bit VAs
1436	  unless a hint is supplied to mmap.
1437
1438	  This configuration option disables the 48-bit compatibility logic, and
1439	  forces all userspace addresses to be 52-bit on HW that supports it. One
1440	  should only enable this configuration option for stress testing userspace
1441	  memory management code. If unsure say N here.
1442
1443config ARM64_VA_BITS
1444	int
1445	default 36 if ARM64_VA_BITS_36
1446	default 39 if ARM64_VA_BITS_39
1447	default 42 if ARM64_VA_BITS_42
1448	default 47 if ARM64_VA_BITS_47
1449	default 48 if ARM64_VA_BITS_48
1450	default 52 if ARM64_VA_BITS_52
1451
1452choice
1453	prompt "Physical address space size"
1454	default ARM64_PA_BITS_48
1455	help
1456	  Choose the maximum physical address range that the kernel will
1457	  support.
1458
1459config ARM64_PA_BITS_48
1460	bool "48-bit"
1461	depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1462
1463config ARM64_PA_BITS_52
1464	bool "52-bit"
1465	depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1466	help
1467	  Enable support for a 52-bit physical address space, introduced as
1468	  part of the ARMv8.2-LPA extension.
1469
1470	  With this enabled, the kernel will also continue to work on CPUs that
1471	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1472	  minor performance overhead).
1473
1474endchoice
1475
1476config ARM64_PA_BITS
1477	int
1478	default 48 if ARM64_PA_BITS_48
1479	default 52 if ARM64_PA_BITS_52
1480
1481config ARM64_LPA2
1482	def_bool y
1483	depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1484
1485choice
1486	prompt "Endianness"
1487	default CPU_LITTLE_ENDIAN
1488	help
1489	  Select the endianness of data accesses performed by the CPU. Userspace
1490	  applications will need to be compiled and linked for the endianness
1491	  that is selected here.
1492
1493config CPU_BIG_ENDIAN
1494	bool "Build big-endian kernel"
1495	# https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1496	depends on AS_IS_GNU || AS_VERSION >= 150000
1497	help
1498	  Say Y if you plan on running a kernel with a big-endian userspace.
1499
1500config CPU_LITTLE_ENDIAN
1501	bool "Build little-endian kernel"
1502	help
1503	  Say Y if you plan on running a kernel with a little-endian userspace.
1504	  This is usually the case for distributions targeting arm64.
1505
1506endchoice
1507
1508config SCHED_MC
1509	bool "Multi-core scheduler support"
1510	help
1511	  Multi-core scheduler support improves the CPU scheduler's decision
1512	  making when dealing with multi-core CPU chips at a cost of slightly
1513	  increased overhead in some places. If unsure say N here.
1514
1515config SCHED_CLUSTER
1516	bool "Cluster scheduler support"
1517	help
1518	  Cluster scheduler support improves the CPU scheduler's decision
1519	  making when dealing with machines that have clusters of CPUs.
1520	  Cluster usually means a couple of CPUs which are placed closely
1521	  by sharing mid-level caches, last-level cache tags or internal
1522	  busses.
1523
1524config SCHED_SMT
1525	bool "SMT scheduler support"
1526	help
1527	  Improves the CPU scheduler's decision making when dealing with
1528	  MultiThreading at a cost of slightly increased overhead in some
1529	  places. If unsure say N here.
1530
1531config NR_CPUS
1532	int "Maximum number of CPUs (2-4096)"
1533	range 2 4096
1534	default "512"
1535
1536config HOTPLUG_CPU
1537	bool "Support for hot-pluggable CPUs"
1538	select GENERIC_IRQ_MIGRATION
1539	help
1540	  Say Y here to experiment with turning CPUs off and on.  CPUs
1541	  can be controlled through /sys/devices/system/cpu.
1542
1543# Common NUMA Features
1544config NUMA
1545	bool "NUMA Memory Allocation and Scheduler Support"
1546	select GENERIC_ARCH_NUMA
1547	select OF_NUMA
1548	select HAVE_SETUP_PER_CPU_AREA
1549	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1550	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1551	select USE_PERCPU_NUMA_NODE_ID
1552	help
1553	  Enable NUMA (Non-Uniform Memory Access) support.
1554
1555	  The kernel will try to allocate memory used by a CPU on the
1556	  local memory of the CPU and add some more
1557	  NUMA awareness to the kernel.
1558
1559config NODES_SHIFT
1560	int "Maximum NUMA Nodes (as a power of 2)"
1561	range 1 10
1562	default "4"
1563	depends on NUMA
1564	help
1565	  Specify the maximum number of NUMA Nodes available on the target
1566	  system.  Increases memory reserved to accommodate various tables.
1567
1568source "kernel/Kconfig.hz"
1569
1570config ARCH_SPARSEMEM_ENABLE
1571	def_bool y
1572	select SPARSEMEM_VMEMMAP_ENABLE
1573	select SPARSEMEM_VMEMMAP
1574
1575config HW_PERF_EVENTS
1576	def_bool y
1577	depends on ARM_PMU
1578
1579# Supported by clang >= 7.0 or GCC >= 12.0.0
1580config CC_HAVE_SHADOW_CALL_STACK
1581	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1582
1583config PARAVIRT
1584	bool "Enable paravirtualization code"
1585	help
1586	  This changes the kernel so it can modify itself when it is run
1587	  under a hypervisor, potentially improving performance significantly
1588	  over full virtualization.
1589
1590config PARAVIRT_TIME_ACCOUNTING
1591	bool "Paravirtual steal time accounting"
1592	select PARAVIRT
1593	help
1594	  Select this option to enable fine granularity task steal time
1595	  accounting. Time spent executing other tasks in parallel with
1596	  the current vCPU is discounted from the vCPU power. To account for
1597	  that, there can be a small performance impact.
1598
1599	  If in doubt, say N here.
1600
1601config ARCH_SUPPORTS_KEXEC
1602	def_bool PM_SLEEP_SMP
1603
1604config ARCH_SUPPORTS_KEXEC_FILE
1605	def_bool y
1606
1607config ARCH_SELECTS_KEXEC_FILE
1608	def_bool y
1609	depends on KEXEC_FILE
1610	select HAVE_IMA_KEXEC if IMA
1611
1612config ARCH_SUPPORTS_KEXEC_SIG
1613	def_bool y
1614
1615config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1616	def_bool y
1617
1618config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1619	def_bool y
1620
1621config ARCH_SUPPORTS_KEXEC_HANDOVER
1622	def_bool y
1623
1624config ARCH_SUPPORTS_CRASH_DUMP
1625	def_bool y
1626
1627config ARCH_DEFAULT_CRASH_DUMP
1628	def_bool y
1629
1630config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1631	def_bool CRASH_RESERVE
1632
1633config TRANS_TABLE
1634	def_bool y
1635	depends on HIBERNATION || KEXEC_CORE
1636
1637config XEN_DOM0
1638	def_bool y
1639	depends on XEN
1640
1641config XEN
1642	bool "Xen guest support on ARM64"
1643	depends on ARM64 && OF
1644	select SWIOTLB_XEN
1645	select PARAVIRT
1646	help
1647	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1648
1649# include/linux/mmzone.h requires the following to be true:
1650#
1651#   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1652#
1653# so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1654#
1655#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1656# ----+-------------------+--------------+----------------------+-------------------------+
1657# 4K  |       27          |      12      |       15             |         10              |
1658# 16K |       27          |      14      |       13             |         11              |
1659# 64K |       29          |      16      |       13             |         13              |
1660config ARCH_FORCE_MAX_ORDER
1661	int
1662	default "13" if ARM64_64K_PAGES
1663	default "11" if ARM64_16K_PAGES
1664	default "10"
1665	help
1666	  The kernel page allocator limits the size of maximal physically
1667	  contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1668	  defines the maximal power of two of number of pages that can be
1669	  allocated as a single contiguous block. This option allows
1670	  overriding the default setting when ability to allocate very
1671	  large blocks of physically contiguous memory is required.
1672
1673	  The maximal size of allocation cannot exceed the size of the
1674	  section, so the value of MAX_PAGE_ORDER should satisfy
1675
1676	    MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1677
1678	  Don't change if unsure.
1679
1680config UNMAP_KERNEL_AT_EL0
1681	bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1682	default y
1683	help
1684	  Speculation attacks against some high-performance processors can
1685	  be used to bypass MMU permission checks and leak kernel data to
1686	  userspace. This can be defended against by unmapping the kernel
1687	  when running in userspace, mapping it back in on exception entry
1688	  via a trampoline page in the vector table.
1689
1690	  If unsure, say Y.
1691
1692config MITIGATE_SPECTRE_BRANCH_HISTORY
1693	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1694	default y
1695	help
1696	  Speculation attacks against some high-performance processors can
1697	  make use of branch history to influence future speculation.
1698	  When taking an exception from user-space, a sequence of branches
1699	  or a firmware call overwrites the branch history.
1700
1701config RODATA_FULL_DEFAULT_ENABLED
1702	bool "Apply r/o permissions of VM areas also to their linear aliases"
1703	default y
1704	help
1705	  Apply read-only attributes of VM areas to the linear alias of
1706	  the backing pages as well. This prevents code or read-only data
1707	  from being modified (inadvertently or intentionally) via another
1708	  mapping of the same memory page. This additional enhancement can
1709	  be turned off at runtime by passing rodata=[off|on] (and turned on
1710	  with rodata=full if this option is set to 'n')
1711
1712	  This requires the linear region to be mapped down to pages,
1713	  which may adversely affect performance in some cases.
1714
1715config ARM64_SW_TTBR0_PAN
1716	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1717	depends on !KCSAN
1718	select ARM64_PAN
1719	help
1720	  Enabling this option prevents the kernel from accessing
1721	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1722	  zeroed area and reserved ASID. The user access routines
1723	  restore the valid TTBR0_EL1 temporarily.
1724
1725config ARM64_TAGGED_ADDR_ABI
1726	bool "Enable the tagged user addresses syscall ABI"
1727	default y
1728	help
1729	  When this option is enabled, user applications can opt in to a
1730	  relaxed ABI via prctl() allowing tagged addresses to be passed
1731	  to system calls as pointer arguments. For details, see
1732	  Documentation/arch/arm64/tagged-address-abi.rst.
1733
1734menuconfig COMPAT
1735	bool "Kernel support for 32-bit EL0"
1736	depends on ARM64_4K_PAGES || EXPERT
1737	select HAVE_UID16
1738	select OLD_SIGSUSPEND3
1739	select COMPAT_OLD_SIGACTION
1740	help
1741	  This option enables support for a 32-bit EL0 running under a 64-bit
1742	  kernel at EL1. AArch32-specific components such as system calls,
1743	  the user helper functions, VFP support and the ptrace interface are
1744	  handled appropriately by the kernel.
1745
1746	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1747	  that you will only be able to execute AArch32 binaries that were compiled
1748	  with page size aligned segments.
1749
1750	  If you want to execute 32-bit userspace applications, say Y.
1751
1752if COMPAT
1753
1754config KUSER_HELPERS
1755	bool "Enable kuser helpers page for 32-bit applications"
1756	default y
1757	help
1758	  Warning: disabling this option may break 32-bit user programs.
1759
1760	  Provide kuser helpers to compat tasks. The kernel provides
1761	  helper code to userspace in read only form at a fixed location
1762	  to allow userspace to be independent of the CPU type fitted to
1763	  the system. This permits binaries to be run on ARMv4 through
1764	  to ARMv8 without modification.
1765
1766	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1767
1768	  However, the fixed address nature of these helpers can be used
1769	  by ROP (return orientated programming) authors when creating
1770	  exploits.
1771
1772	  If all of the binaries and libraries which run on your platform
1773	  are built specifically for your platform, and make no use of
1774	  these helpers, then you can turn this option off to hinder
1775	  such exploits. However, in that case, if a binary or library
1776	  relying on those helpers is run, it will not function correctly.
1777
1778	  Say N here only if you are absolutely certain that you do not
1779	  need these helpers; otherwise, the safe option is to say Y.
1780
1781config COMPAT_VDSO
1782	bool "Enable vDSO for 32-bit applications"
1783	depends on !CPU_BIG_ENDIAN
1784	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1785	select GENERIC_COMPAT_VDSO
1786	default y
1787	help
1788	  Place in the process address space of 32-bit applications an
1789	  ELF shared object providing fast implementations of gettimeofday
1790	  and clock_gettime.
1791
1792	  You must have a 32-bit build of glibc 2.22 or later for programs
1793	  to seamlessly take advantage of this.
1794
1795config THUMB2_COMPAT_VDSO
1796	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1797	depends on COMPAT_VDSO
1798	default y
1799	help
1800	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1801	  otherwise with '-marm'.
1802
1803config COMPAT_ALIGNMENT_FIXUPS
1804	bool "Fix up misaligned multi-word loads and stores in user space"
1805
1806menuconfig ARMV8_DEPRECATED
1807	bool "Emulate deprecated/obsolete ARMv8 instructions"
1808	depends on SYSCTL
1809	help
1810	  Legacy software support may require certain instructions
1811	  that have been deprecated or obsoleted in the architecture.
1812
1813	  Enable this config to enable selective emulation of these
1814	  features.
1815
1816	  If unsure, say Y
1817
1818if ARMV8_DEPRECATED
1819
1820config SWP_EMULATION
1821	bool "Emulate SWP/SWPB instructions"
1822	help
1823	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1824	  they are always undefined. Say Y here to enable software
1825	  emulation of these instructions for userspace using LDXR/STXR.
1826	  This feature can be controlled at runtime with the abi.swp
1827	  sysctl which is disabled by default.
1828
1829	  In some older versions of glibc [<=2.8] SWP is used during futex
1830	  trylock() operations with the assumption that the code will not
1831	  be preempted. This invalid assumption may be more likely to fail
1832	  with SWP emulation enabled, leading to deadlock of the user
1833	  application.
1834
1835	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1836	  on an external transaction monitoring block called a global
1837	  monitor to maintain update atomicity. If your system does not
1838	  implement a global monitor, this option can cause programs that
1839	  perform SWP operations to uncached memory to deadlock.
1840
1841	  If unsure, say Y
1842
1843config CP15_BARRIER_EMULATION
1844	bool "Emulate CP15 Barrier instructions"
1845	help
1846	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1847	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1848	  strongly recommended to use the ISB, DSB, and DMB
1849	  instructions instead.
1850
1851	  Say Y here to enable software emulation of these
1852	  instructions for AArch32 userspace code. When this option is
1853	  enabled, CP15 barrier usage is traced which can help
1854	  identify software that needs updating. This feature can be
1855	  controlled at runtime with the abi.cp15_barrier sysctl.
1856
1857	  If unsure, say Y
1858
1859config SETEND_EMULATION
1860	bool "Emulate SETEND instruction"
1861	help
1862	  The SETEND instruction alters the data-endianness of the
1863	  AArch32 EL0, and is deprecated in ARMv8.
1864
1865	  Say Y here to enable software emulation of the instruction
1866	  for AArch32 userspace code. This feature can be controlled
1867	  at runtime with the abi.setend sysctl.
1868
1869	  Note: All the cpus on the system must have mixed endian support at EL0
1870	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1871	  endian - is hotplugged in after this feature has been enabled, there could
1872	  be unexpected results in the applications.
1873
1874	  If unsure, say Y
1875endif # ARMV8_DEPRECATED
1876
1877endif # COMPAT
1878
1879menu "ARMv8.1 architectural features"
1880
1881config ARM64_HW_AFDBM
1882	bool "Support for hardware updates of the Access and Dirty page flags"
1883	default y
1884	help
1885	  The ARMv8.1 architecture extensions introduce support for
1886	  hardware updates of the access and dirty information in page
1887	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1888	  capable processors, accesses to pages with PTE_AF cleared will
1889	  set this bit instead of raising an access flag fault.
1890	  Similarly, writes to read-only pages with the DBM bit set will
1891	  clear the read-only bit (AP[2]) instead of raising a
1892	  permission fault.
1893
1894	  Kernels built with this configuration option enabled continue
1895	  to work on pre-ARMv8.1 hardware and the performance impact is
1896	  minimal. If unsure, say Y.
1897
1898config ARM64_PAN
1899	bool "Enable support for Privileged Access Never (PAN)"
1900	default y
1901	help
1902	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1903	  prevents the kernel or hypervisor from accessing user-space (EL0)
1904	  memory directly.
1905
1906	  Choosing this option will cause any unprotected (not using
1907	  copy_to_user et al) memory access to fail with a permission fault.
1908
1909	  The feature is detected at runtime, and will remain as a 'nop'
1910	  instruction if the cpu does not implement the feature.
1911
1912config ARM64_LSE_ATOMICS
1913	bool
1914	default ARM64_USE_LSE_ATOMICS
1915
1916config ARM64_USE_LSE_ATOMICS
1917	bool "Atomic instructions"
1918	default y
1919	help
1920	  As part of the Large System Extensions, ARMv8.1 introduces new
1921	  atomic instructions that are designed specifically to scale in
1922	  very large systems.
1923
1924	  Say Y here to make use of these instructions for the in-kernel
1925	  atomic routines. This incurs a small overhead on CPUs that do
1926	  not support these instructions.
1927
1928endmenu # "ARMv8.1 architectural features"
1929
1930menu "ARMv8.2 architectural features"
1931
1932config ARM64_PMEM
1933	bool "Enable support for persistent memory"
1934	select ARCH_HAS_PMEM_API
1935	select ARCH_HAS_UACCESS_FLUSHCACHE
1936	help
1937	  Say Y to enable support for the persistent memory API based on the
1938	  ARMv8.2 DCPoP feature.
1939
1940	  The feature is detected at runtime, and the kernel will use DC CVAC
1941	  operations if DC CVAP is not supported (following the behaviour of
1942	  DC CVAP itself if the system does not define a point of persistence).
1943
1944config ARM64_RAS_EXTN
1945	bool "Enable support for RAS CPU Extensions"
1946	default y
1947	help
1948	  CPUs that support the Reliability, Availability and Serviceability
1949	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1950	  errors, classify them and report them to software.
1951
1952	  On CPUs with these extensions system software can use additional
1953	  barriers to determine if faults are pending and read the
1954	  classification from a new set of registers.
1955
1956	  Selecting this feature will allow the kernel to use these barriers
1957	  and access the new registers if the system supports the extension.
1958	  Platform RAS features may additionally depend on firmware support.
1959
1960config ARM64_CNP
1961	bool "Enable support for Common Not Private (CNP) translations"
1962	default y
1963	help
1964	  Common Not Private (CNP) allows translation table entries to
1965	  be shared between different PEs in the same inner shareable
1966	  domain, so the hardware can use this fact to optimise the
1967	  caching of such entries in the TLB.
1968
1969	  Selecting this option allows the CNP feature to be detected
1970	  at runtime, and does not affect PEs that do not implement
1971	  this feature.
1972
1973endmenu # "ARMv8.2 architectural features"
1974
1975menu "ARMv8.3 architectural features"
1976
1977config ARM64_PTR_AUTH
1978	bool "Enable support for pointer authentication"
1979	default y
1980	help
1981	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1982	  instructions for signing and authenticating pointers against secret
1983	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1984	  and other attacks.
1985
1986	  This option enables these instructions at EL0 (i.e. for userspace).
1987	  Choosing this option will cause the kernel to initialise secret keys
1988	  for each process at exec() time, with these keys being
1989	  context-switched along with the process.
1990
1991	  The feature is detected at runtime. If the feature is not present in
1992	  hardware it will not be advertised to userspace/KVM guest nor will it
1993	  be enabled.
1994
1995	  If the feature is present on the boot CPU but not on a late CPU, then
1996	  the late CPU will be parked. Also, if the boot CPU does not have
1997	  address auth and the late CPU has then the late CPU will still boot
1998	  but with the feature disabled. On such a system, this option should
1999	  not be selected.
2000
2001config ARM64_PTR_AUTH_KERNEL
2002	bool "Use pointer authentication for kernel"
2003	default y
2004	depends on ARM64_PTR_AUTH
2005	# Modern compilers insert a .note.gnu.property section note for PAC
2006	# which is only understood by binutils starting with version 2.33.1.
2007	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
2008	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
2009	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2010	help
2011	  If the compiler supports the -mbranch-protection or
2012	  -msign-return-address flag (e.g. GCC 7 or later), then this option
2013	  will cause the kernel itself to be compiled with return address
2014	  protection. In this case, and if the target hardware is known to
2015	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
2016	  disabled with minimal loss of protection.
2017
2018	  This feature works with FUNCTION_GRAPH_TRACER option only if
2019	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
2020
2021config CC_HAS_BRANCH_PROT_PAC_RET
2022	# GCC 9 or later, clang 8 or later
2023	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
2024
2025config AS_HAS_CFI_NEGATE_RA_STATE
2026	# binutils 2.34+
2027	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
2028
2029endmenu # "ARMv8.3 architectural features"
2030
2031menu "ARMv8.4 architectural features"
2032
2033config ARM64_AMU_EXTN
2034	bool "Enable support for the Activity Monitors Unit CPU extension"
2035	default y
2036	help
2037	  The activity monitors extension is an optional extension introduced
2038	  by the ARMv8.4 CPU architecture. This enables support for version 1
2039	  of the activity monitors architecture, AMUv1.
2040
2041	  To enable the use of this extension on CPUs that implement it, say Y.
2042
2043	  Note that for architectural reasons, firmware _must_ implement AMU
2044	  support when running on CPUs that present the activity monitors
2045	  extension. The required support is present in:
2046	    * Version 1.5 and later of the ARM Trusted Firmware
2047
2048	  For kernels that have this configuration enabled but boot with broken
2049	  firmware, you may need to say N here until the firmware is fixed.
2050	  Otherwise you may experience firmware panics or lockups when
2051	  accessing the counter registers. Even if you are not observing these
2052	  symptoms, the values returned by the register reads might not
2053	  correctly reflect reality. Most commonly, the value read will be 0,
2054	  indicating that the counter is not enabled.
2055
2056config ARM64_TLB_RANGE
2057	bool "Enable support for tlbi range feature"
2058	default y
2059	help
2060	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2061	  range of input addresses.
2062
2063endmenu # "ARMv8.4 architectural features"
2064
2065menu "ARMv8.5 architectural features"
2066
2067config AS_HAS_ARMV8_5
2068	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2069
2070config ARM64_BTI
2071	bool "Branch Target Identification support"
2072	default y
2073	help
2074	  Branch Target Identification (part of the ARMv8.5 Extensions)
2075	  provides a mechanism to limit the set of locations to which computed
2076	  branch instructions such as BR or BLR can jump.
2077
2078	  To make use of BTI on CPUs that support it, say Y.
2079
2080	  BTI is intended to provide complementary protection to other control
2081	  flow integrity protection mechanisms, such as the Pointer
2082	  authentication mechanism provided as part of the ARMv8.3 Extensions.
2083	  For this reason, it does not make sense to enable this option without
2084	  also enabling support for pointer authentication.  Thus, when
2085	  enabling this option you should also select ARM64_PTR_AUTH=y.
2086
2087	  Userspace binaries must also be specifically compiled to make use of
2088	  this mechanism.  If you say N here or the hardware does not support
2089	  BTI, such binaries can still run, but you get no additional
2090	  enforcement of branch destinations.
2091
2092config ARM64_BTI_KERNEL
2093	bool "Use Branch Target Identification for kernel"
2094	default y
2095	depends on ARM64_BTI
2096	depends on ARM64_PTR_AUTH_KERNEL
2097	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2098	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2099	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2100	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2101	depends on !CC_IS_GCC
2102	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2103	help
2104	  Build the kernel with Branch Target Identification annotations
2105	  and enable enforcement of this for kernel code. When this option
2106	  is enabled and the system supports BTI all kernel code including
2107	  modular code must have BTI enabled.
2108
2109config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2110	# GCC 9 or later, clang 8 or later
2111	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2112
2113config ARM64_E0PD
2114	bool "Enable support for E0PD"
2115	default y
2116	help
2117	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2118	  that EL0 accesses made via TTBR1 always fault in constant time,
2119	  providing similar benefits to KASLR as those provided by KPTI, but
2120	  with lower overhead and without disrupting legitimate access to
2121	  kernel memory such as SPE.
2122
2123	  This option enables E0PD for TTBR1 where available.
2124
2125config ARM64_AS_HAS_MTE
2126	# Initial support for MTE went in binutils 2.32.0, checked with
2127	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2128	# as a late addition to the final architecture spec (LDGM/STGM)
2129	# is only supported in the newer 2.32.x and 2.33 binutils
2130	# versions, hence the extra "stgm" instruction check below.
2131	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2132
2133config ARM64_MTE
2134	bool "Memory Tagging Extension support"
2135	default y
2136	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2137	depends on AS_HAS_ARMV8_5
2138	# Required for tag checking in the uaccess routines
2139	select ARM64_PAN
2140	select ARCH_HAS_SUBPAGE_FAULTS
2141	select ARCH_USES_HIGH_VMA_FLAGS
2142	select ARCH_USES_PG_ARCH_2
2143	select ARCH_USES_PG_ARCH_3
2144	help
2145	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2146	  architectural support for run-time, always-on detection of
2147	  various classes of memory error to aid with software debugging
2148	  to eliminate vulnerabilities arising from memory-unsafe
2149	  languages.
2150
2151	  This option enables the support for the Memory Tagging
2152	  Extension at EL0 (i.e. for userspace).
2153
2154	  Selecting this option allows the feature to be detected at
2155	  runtime. Any secondary CPU not implementing this feature will
2156	  not be allowed a late bring-up.
2157
2158	  Userspace binaries that want to use this feature must
2159	  explicitly opt in. The mechanism for the userspace is
2160	  described in:
2161
2162	  Documentation/arch/arm64/memory-tagging-extension.rst.
2163
2164endmenu # "ARMv8.5 architectural features"
2165
2166menu "ARMv8.7 architectural features"
2167
2168config ARM64_EPAN
2169	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2170	default y
2171	depends on ARM64_PAN
2172	help
2173	  Enhanced Privileged Access Never (EPAN) allows Privileged
2174	  Access Never to be used with Execute-only mappings.
2175
2176	  The feature is detected at runtime, and will remain disabled
2177	  if the cpu does not implement the feature.
2178endmenu # "ARMv8.7 architectural features"
2179
2180config AS_HAS_MOPS
2181	def_bool $(as-instr,.arch_extension mops)
2182
2183menu "ARMv8.9 architectural features"
2184
2185config ARM64_POE
2186	prompt "Permission Overlay Extension"
2187	def_bool y
2188	select ARCH_USES_HIGH_VMA_FLAGS
2189	select ARCH_HAS_PKEYS
2190	help
2191	  The Permission Overlay Extension is used to implement Memory
2192	  Protection Keys. Memory Protection Keys provides a mechanism for
2193	  enforcing page-based protections, but without requiring modification
2194	  of the page tables when an application changes protection domains.
2195
2196	  For details, see Documentation/core-api/protection-keys.rst
2197
2198	  If unsure, say y.
2199
2200config ARCH_PKEY_BITS
2201	int
2202	default 3
2203
2204config ARM64_HAFT
2205	bool "Support for Hardware managed Access Flag for Table Descriptors"
2206	depends on ARM64_HW_AFDBM
2207	default y
2208	help
2209	  The ARMv8.9/ARMv9.5 introduces the feature Hardware managed Access
2210	  Flag for Table descriptors. When enabled an architectural executed
2211	  memory access will update the Access Flag in each Table descriptor
2212	  which is accessed during the translation table walk and for which
2213	  the Access Flag is 0. The Access Flag of the Table descriptor use
2214	  the same bit of PTE_AF.
2215
2216	  The feature will only be enabled if all the CPUs in the system
2217	  support this feature. If unsure, say Y.
2218
2219endmenu # "ARMv8.9 architectural features"
2220
2221menu "v9.4 architectural features"
2222
2223config ARM64_GCS
2224	bool "Enable support for Guarded Control Stack (GCS)"
2225	default y
2226	select ARCH_HAS_USER_SHADOW_STACK
2227	select ARCH_USES_HIGH_VMA_FLAGS
2228	depends on !UPROBES
2229	help
2230	  Guarded Control Stack (GCS) provides support for a separate
2231	  stack with restricted access which contains only return
2232	  addresses.  This can be used to harden against some attacks
2233	  by comparing return address used by the program with what is
2234	  stored in the GCS, and may also be used to efficiently obtain
2235	  the call stack for applications such as profiling.
2236
2237	  The feature is detected at runtime, and will remain disabled
2238	  if the system does not implement the feature.
2239
2240endmenu # "v9.4 architectural features"
2241
2242config ARM64_SVE
2243	bool "ARM Scalable Vector Extension support"
2244	default y
2245	help
2246	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2247	  execution state which complements and extends the SIMD functionality
2248	  of the base architecture to support much larger vectors and to enable
2249	  additional vectorisation opportunities.
2250
2251	  To enable use of this extension on CPUs that implement it, say Y.
2252
2253	  On CPUs that support the SVE2 extensions, this option will enable
2254	  those too.
2255
2256	  Note that for architectural reasons, firmware _must_ implement SVE
2257	  support when running on SVE capable hardware.  The required support
2258	  is present in:
2259
2260	    * version 1.5 and later of the ARM Trusted Firmware
2261	    * the AArch64 boot wrapper since commit 5e1261e08abf
2262	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2263
2264	  For other firmware implementations, consult the firmware documentation
2265	  or vendor.
2266
2267	  If you need the kernel to boot on SVE-capable hardware with broken
2268	  firmware, you may need to say N here until you get your firmware
2269	  fixed.  Otherwise, you may experience firmware panics or lockups when
2270	  booting the kernel.  If unsure and you are not observing these
2271	  symptoms, you should assume that it is safe to say Y.
2272
2273config ARM64_SME
2274	bool "ARM Scalable Matrix Extension support"
2275	default y
2276	depends on ARM64_SVE
2277	help
2278	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2279	  execution state which utilises a substantial subset of the SVE
2280	  instruction set, together with the addition of new architectural
2281	  register state capable of holding two dimensional matrix tiles to
2282	  enable various matrix operations.
2283
2284config ARM64_PSEUDO_NMI
2285	bool "Support for NMI-like interrupts"
2286	select ARM_GIC_V3
2287	help
2288	  Adds support for mimicking Non-Maskable Interrupts through the use of
2289	  GIC interrupt priority. This support requires version 3 or later of
2290	  ARM GIC.
2291
2292	  This high priority configuration for interrupts needs to be
2293	  explicitly enabled by setting the kernel parameter
2294	  "irqchip.gicv3_pseudo_nmi" to 1.
2295
2296	  If unsure, say N
2297
2298if ARM64_PSEUDO_NMI
2299config ARM64_DEBUG_PRIORITY_MASKING
2300	bool "Debug interrupt priority masking"
2301	help
2302	  This adds runtime checks to functions enabling/disabling
2303	  interrupts when using priority masking. The additional checks verify
2304	  the validity of ICC_PMR_EL1 when calling concerned functions.
2305
2306	  If unsure, say N
2307endif # ARM64_PSEUDO_NMI
2308
2309config RELOCATABLE
2310	bool "Build a relocatable kernel image" if EXPERT
2311	select ARCH_HAS_RELR
2312	default y
2313	help
2314	  This builds the kernel as a Position Independent Executable (PIE),
2315	  which retains all relocation metadata required to relocate the
2316	  kernel binary at runtime to a different virtual address than the
2317	  address it was linked at.
2318	  Since AArch64 uses the RELA relocation format, this requires a
2319	  relocation pass at runtime even if the kernel is loaded at the
2320	  same address it was linked at.
2321
2322config RANDOMIZE_BASE
2323	bool "Randomize the address of the kernel image"
2324	select RELOCATABLE
2325	help
2326	  Randomizes the virtual address at which the kernel image is
2327	  loaded, as a security feature that deters exploit attempts
2328	  relying on knowledge of the location of kernel internals.
2329
2330	  It is the bootloader's job to provide entropy, by passing a
2331	  random u64 value in /chosen/kaslr-seed at kernel entry.
2332
2333	  When booting via the UEFI stub, it will invoke the firmware's
2334	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2335	  to the kernel proper. In addition, it will randomise the physical
2336	  location of the kernel Image as well.
2337
2338	  If unsure, say N.
2339
2340config RANDOMIZE_MODULE_REGION_FULL
2341	bool "Randomize the module region over a 2 GB range"
2342	depends on RANDOMIZE_BASE
2343	default y
2344	help
2345	  Randomizes the location of the module region inside a 2 GB window
2346	  covering the core kernel. This way, it is less likely for modules
2347	  to leak information about the location of core kernel data structures
2348	  but it does imply that function calls between modules and the core
2349	  kernel will need to be resolved via veneers in the module PLT.
2350
2351	  When this option is not set, the module region will be randomized over
2352	  a limited range that contains the [_stext, _etext] interval of the
2353	  core kernel, so branch relocations are almost always in range unless
2354	  the region is exhausted. In this particular case of region
2355	  exhaustion, modules might be able to fall back to a larger 2GB area.
2356
2357config CC_HAVE_STACKPROTECTOR_SYSREG
2358	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2359
2360config STACKPROTECTOR_PER_TASK
2361	def_bool y
2362	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2363
2364config UNWIND_PATCH_PAC_INTO_SCS
2365	bool "Enable shadow call stack dynamically using code patching"
2366	# needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2367	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2368	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2369	depends on SHADOW_CALL_STACK
2370	select UNWIND_TABLES
2371	select DYNAMIC_SCS
2372
2373config ARM64_CONTPTE
2374	bool "Contiguous PTE mappings for user memory" if EXPERT
2375	depends on TRANSPARENT_HUGEPAGE
2376	default y
2377	help
2378	  When enabled, user mappings are configured using the PTE contiguous
2379	  bit, for any mappings that meet the size and alignment requirements.
2380	  This reduces TLB pressure and improves performance.
2381
2382endmenu # "Kernel Features"
2383
2384menu "Boot options"
2385
2386config ARM64_ACPI_PARKING_PROTOCOL
2387	bool "Enable support for the ARM64 ACPI parking protocol"
2388	depends on ACPI
2389	help
2390	  Enable support for the ARM64 ACPI parking protocol. If disabled
2391	  the kernel will not allow booting through the ARM64 ACPI parking
2392	  protocol even if the corresponding data is present in the ACPI
2393	  MADT table.
2394
2395config CMDLINE
2396	string "Default kernel command string"
2397	default ""
2398	help
2399	  Provide a set of default command-line options at build time by
2400	  entering them here. As a minimum, you should specify the the
2401	  root device (e.g. root=/dev/nfs).
2402
2403choice
2404	prompt "Kernel command line type"
2405	depends on CMDLINE != ""
2406	default CMDLINE_FROM_BOOTLOADER
2407	help
2408	  Choose how the kernel will handle the provided default kernel
2409	  command line string.
2410
2411config CMDLINE_FROM_BOOTLOADER
2412	bool "Use bootloader kernel arguments if available"
2413	help
2414	  Uses the command-line options passed by the boot loader. If
2415	  the boot loader doesn't provide any, the default kernel command
2416	  string provided in CMDLINE will be used.
2417
2418config CMDLINE_FORCE
2419	bool "Always use the default kernel command string"
2420	help
2421	  Always use the default kernel command string, even if the boot
2422	  loader passes other arguments to the kernel.
2423	  This is useful if you cannot or don't want to change the
2424	  command-line options your boot loader passes to the kernel.
2425
2426endchoice
2427
2428config EFI_STUB
2429	bool
2430
2431config EFI
2432	bool "UEFI runtime support"
2433	depends on OF && !CPU_BIG_ENDIAN
2434	depends on KERNEL_MODE_NEON
2435	select ARCH_SUPPORTS_ACPI
2436	select LIBFDT
2437	select UCS2_STRING
2438	select EFI_PARAMS_FROM_FDT
2439	select EFI_RUNTIME_WRAPPERS
2440	select EFI_STUB
2441	select EFI_GENERIC_STUB
2442	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2443	default y
2444	help
2445	  This option provides support for runtime services provided
2446	  by UEFI firmware (such as non-volatile variables, realtime
2447	  clock, and platform reset). A UEFI stub is also provided to
2448	  allow the kernel to be booted as an EFI application. This
2449	  is only useful on systems that have UEFI firmware.
2450
2451config COMPRESSED_INSTALL
2452	bool "Install compressed image by default"
2453	help
2454	  This makes the regular "make install" install the compressed
2455	  image we built, not the legacy uncompressed one.
2456
2457	  You can check that a compressed image works for you by doing
2458	  "make zinstall" first, and verifying that everything is fine
2459	  in your environment before making "make install" do this for
2460	  you.
2461
2462config DMI
2463	bool "Enable support for SMBIOS (DMI) tables"
2464	depends on EFI
2465	default y
2466	help
2467	  This enables SMBIOS/DMI feature for systems.
2468
2469	  This option is only useful on systems that have UEFI firmware.
2470	  However, even with this option, the resultant kernel should
2471	  continue to boot on existing non-UEFI platforms.
2472
2473endmenu # "Boot options"
2474
2475menu "Power management options"
2476
2477source "kernel/power/Kconfig"
2478
2479config ARCH_HIBERNATION_POSSIBLE
2480	def_bool y
2481	depends on CPU_PM
2482
2483config ARCH_HIBERNATION_HEADER
2484	def_bool y
2485	depends on HIBERNATION
2486
2487config ARCH_SUSPEND_POSSIBLE
2488	def_bool y
2489
2490endmenu # "Power management options"
2491
2492menu "CPU Power Management"
2493
2494source "drivers/cpuidle/Kconfig"
2495
2496source "drivers/cpufreq/Kconfig"
2497
2498endmenu # "CPU Power Management"
2499
2500source "drivers/acpi/Kconfig"
2501
2502source "arch/arm64/kvm/Kconfig"
2503
2504source "kernel/livepatch/Kconfig"
2505