1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * File: bssdb.c
20 *
21 * Purpose: Handles the Basic Service Set & Node Database functions
22 *
23 * Functions:
24 * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
25 * BSSvClearBSSList - Clear BSS List
26 * BSSbInsertToBSSList - Insert a BSS set into known BSS list
27 * BSSbUpdateToBSSList - Update BSS set in known BSS list
28 * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
29 * BSSvCreateOneNode - Allocate an Node for Node DB
30 * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
31 * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
32 * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control
33 *
34 * Revision History:
35 *
36 * Author: Lyndon Chen
37 *
38 * Date: July 17, 2002
39 *
40 */
41
42 #include "ttype.h"
43 #include "tmacro.h"
44 #include "tether.h"
45 #include "device.h"
46 #include "80211hdr.h"
47 #include "bssdb.h"
48 #include "wmgr.h"
49 #include "datarate.h"
50 #include "desc.h"
51 #include "wcmd.h"
52 #include "wpa.h"
53 #include "baseband.h"
54 #include "rf.h"
55 #include "card.h"
56 #include "mac.h"
57 #include "wpa2.h"
58 #include "control.h"
59 #include "rndis.h"
60 #include "iowpa.h"
61
62 /*--------------------- Static Definitions -------------------------*/
63
64
65
66
67 /*--------------------- Static Classes ----------------------------*/
68
69 /*--------------------- Static Variables --------------------------*/
70 static int msglevel =MSG_LEVEL_INFO;
71 //static int msglevel =MSG_LEVEL_DEBUG;
72
73
74
75 const WORD awHWRetry0[5][5] = {
76 {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
77 {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
78 {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
79 {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
80 {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
81 };
82 const WORD awHWRetry1[5][5] = {
83 {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
84 {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
85 {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
86 {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
87 {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
88 };
89
90
91
92 /*--------------------- Static Functions --------------------------*/
93
94 void s_vCheckSensitivity(void *hDeviceContext);
95 void s_vCheckPreEDThreshold(void *hDeviceContext);
96 void s_uCalculateLinkQual(void *hDeviceContext);
97
98 /*--------------------- Export Variables --------------------------*/
99
100
101 /*--------------------- Export Functions --------------------------*/
102
103
104
105
106
107 /*+
108 *
109 * Routine Description:
110 * Search known BSS list for Desire SSID or BSSID.
111 *
112 * Return Value:
113 * PTR to KnownBSS or NULL
114 *
115 -*/
116
BSSpSearchBSSList(void * hDeviceContext,PBYTE pbyDesireBSSID,PBYTE pbyDesireSSID,CARD_PHY_TYPE ePhyType)117 PKnownBSS BSSpSearchBSSList(void *hDeviceContext,
118 PBYTE pbyDesireBSSID,
119 PBYTE pbyDesireSSID,
120 CARD_PHY_TYPE ePhyType)
121 {
122 PSDevice pDevice = (PSDevice)hDeviceContext;
123 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
124 PBYTE pbyBSSID = NULL;
125 PWLAN_IE_SSID pSSID = NULL;
126 PKnownBSS pCurrBSS = NULL;
127 PKnownBSS pSelect = NULL;
128 BYTE ZeroBSSID[WLAN_BSSID_LEN]={0x00,0x00,0x00,0x00,0x00,0x00};
129 unsigned int ii = 0;
130 unsigned int jj = 0;
131 if (pbyDesireBSSID != NULL) {
132 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSpSearchBSSList BSSID[%02X %02X %02X-%02X %02X %02X]\n",
133 *pbyDesireBSSID,*(pbyDesireBSSID+1),*(pbyDesireBSSID+2),
134 *(pbyDesireBSSID+3),*(pbyDesireBSSID+4),*(pbyDesireBSSID+5));
135 if ((!is_broadcast_ether_addr(pbyDesireBSSID)) &&
136 (memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){
137 pbyBSSID = pbyDesireBSSID;
138 }
139 }
140 if (pbyDesireSSID != NULL) {
141 if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
142 pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
143 }
144 }
145
146 if ((pbyBSSID != NULL)&&(pDevice->bRoaming == FALSE)) {
147 // match BSSID first
148 for (ii = 0; ii <MAX_BSS_NUM; ii++) {
149 pCurrBSS = &(pMgmt->sBSSList[ii]);
150
151 pCurrBSS->bSelected = FALSE;
152
153 if ((pCurrBSS->bActive) &&
154 (pCurrBSS->bSelected == FALSE)) {
155 if (!compare_ether_addr(pCurrBSS->abyBSSID, pbyBSSID)) {
156 if (pSSID != NULL) {
157 // compare ssid
158 if ( !memcmp(pSSID->abySSID,
159 ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
160 pSSID->len)) {
161 if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
162 ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
163 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
164 ) {
165 pCurrBSS->bSelected = TRUE;
166 return(pCurrBSS);
167 }
168 }
169 } else {
170 if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
171 ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
172 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
173 ) {
174 pCurrBSS->bSelected = TRUE;
175 return(pCurrBSS);
176 }
177 }
178 }
179 }
180 }
181 } else {
182 // ignore BSSID
183 for (ii = 0; ii <MAX_BSS_NUM; ii++) {
184 pCurrBSS = &(pMgmt->sBSSList[ii]);
185
186 //2007-0721-01<Mark>by MikeLiu
187 // if ((pCurrBSS->bActive) &&
188 // (pCurrBSS->bSelected == FALSE)) {
189
190 pCurrBSS->bSelected = FALSE;
191 if (pCurrBSS->bActive) {
192
193 if (pSSID != NULL) {
194 // matched SSID
195 if (memcmp(pSSID->abySSID,
196 ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
197 pSSID->len) ||
198 (pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
199 // SSID not match skip this BSS
200 continue;
201 }
202 }
203 if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
204 ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
205 ){
206 // Type not match skip this BSS
207 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
208 continue;
209 }
210
211 if (ePhyType != PHY_TYPE_AUTO) {
212 if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
213 ((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
214 // PhyType not match skip this BSS
215 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
216 continue;
217 }
218 }
219
220 pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
221 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSpSearchBSSList pSelect1[%02X %02X %02X-%02X %02X %02X]\n",*pCurrBSS->abyBSSID,*(pCurrBSS->abyBSSID+1),*(pCurrBSS->abyBSSID+2),*(pCurrBSS->abyBSSID+3),*(pCurrBSS->abyBSSID+4),*(pCurrBSS->abyBSSID+5));
222 jj++;
223
224
225 if (pSelect == NULL) {
226 pSelect = pCurrBSS;
227 } else {
228 // compare RSSI, select signal strong one
229 if (pCurrBSS->uRSSI < pSelect->uRSSI) {
230 pSelect = pCurrBSS;
231 }
232 }
233 }
234 }
235
236 pDevice->bSameBSSMaxNum = jj;
237
238 if (pSelect != NULL) {
239 pSelect->bSelected = TRUE;
240 if (pDevice->bRoaming == FALSE) {
241 // Einsn Add @20070907
242 memset(pbyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
243 memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ;
244 }
245
246 return(pSelect);
247 }
248 }
249 return(NULL);
250
251 }
252
253
254 /*+
255 *
256 * Routine Description:
257 * Clear BSS List
258 *
259 * Return Value:
260 * None.
261 *
262 -*/
263
264
BSSvClearBSSList(void * hDeviceContext,BOOL bKeepCurrBSSID)265 void BSSvClearBSSList(void *hDeviceContext, BOOL bKeepCurrBSSID)
266 {
267 PSDevice pDevice = (PSDevice)hDeviceContext;
268 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
269 unsigned int ii;
270
271 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
272 if (bKeepCurrBSSID) {
273 if (pMgmt->sBSSList[ii].bActive &&
274 !compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
275 pMgmt->abyCurrBSSID)) {
276 //mike mark: there are two same BSSID in list if that AP is in hidden ssid mode,one 's SSID is null,
277 // but other's is obvious, so if it acssociate with your STA exactly,you must keep two
278 // of them!!!!!!!!!
279 // bKeepCurrBSSID = FALSE;
280 continue;
281 }
282 }
283
284 pMgmt->sBSSList[ii].bActive = FALSE;
285 memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
286 }
287 BSSvClearAnyBSSJoinRecord(pDevice);
288 }
289
290
291
292 /*+
293 *
294 * Routine Description:
295 * search BSS list by BSSID & SSID if matched
296 *
297 * Return Value:
298 * TRUE if found.
299 *
300 -*/
BSSpAddrIsInBSSList(void * hDeviceContext,PBYTE abyBSSID,PWLAN_IE_SSID pSSID)301 PKnownBSS BSSpAddrIsInBSSList(void *hDeviceContext,
302 PBYTE abyBSSID,
303 PWLAN_IE_SSID pSSID)
304 {
305 PSDevice pDevice = (PSDevice)hDeviceContext;
306 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
307 PKnownBSS pBSSList = NULL;
308 unsigned int ii;
309
310 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
311 pBSSList = &(pMgmt->sBSSList[ii]);
312 if (pBSSList->bActive) {
313 if (!compare_ether_addr(pBSSList->abyBSSID, abyBSSID)) {
314 if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){
315 if (memcmp(pSSID->abySSID,
316 ((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
317 pSSID->len) == 0)
318 return pBSSList;
319 }
320 }
321 }
322 }
323
324 return NULL;
325 };
326
327
328
329 /*+
330 *
331 * Routine Description:
332 * Insert a BSS set into known BSS list
333 *
334 * Return Value:
335 * TRUE if success.
336 *
337 -*/
338
BSSbInsertToBSSList(void * hDeviceContext,PBYTE abyBSSIDAddr,QWORD qwTimestamp,WORD wBeaconInterval,WORD wCapInfo,BYTE byCurrChannel,PWLAN_IE_SSID pSSID,PWLAN_IE_SUPP_RATES pSuppRates,PWLAN_IE_SUPP_RATES pExtSuppRates,PERPObject psERP,PWLAN_IE_RSN pRSN,PWLAN_IE_RSN_EXT pRSNWPA,PWLAN_IE_COUNTRY pIE_Country,PWLAN_IE_QUIET pIE_Quiet,unsigned int uIELength,PBYTE pbyIEs,void * pRxPacketContext)339 BOOL BSSbInsertToBSSList(void *hDeviceContext,
340 PBYTE abyBSSIDAddr,
341 QWORD qwTimestamp,
342 WORD wBeaconInterval,
343 WORD wCapInfo,
344 BYTE byCurrChannel,
345 PWLAN_IE_SSID pSSID,
346 PWLAN_IE_SUPP_RATES pSuppRates,
347 PWLAN_IE_SUPP_RATES pExtSuppRates,
348 PERPObject psERP,
349 PWLAN_IE_RSN pRSN,
350 PWLAN_IE_RSN_EXT pRSNWPA,
351 PWLAN_IE_COUNTRY pIE_Country,
352 PWLAN_IE_QUIET pIE_Quiet,
353 unsigned int uIELength,
354 PBYTE pbyIEs,
355 void *pRxPacketContext)
356 {
357
358 PSDevice pDevice = (PSDevice)hDeviceContext;
359 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
360 PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
361 PKnownBSS pBSSList = NULL;
362 unsigned int ii;
363 BOOL bParsingQuiet = FALSE;
364
365
366
367 pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
368
369 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
370 pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
371 if (!pBSSList->bActive)
372 break;
373 }
374
375 if (ii == MAX_BSS_NUM){
376 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
377 return FALSE;
378 }
379 // save the BSS info
380 pBSSList->bActive = TRUE;
381 memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
382 HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
383 LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
384 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
385 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
386 pBSSList->uClearCount = 0;
387
388 if (pSSID->len > WLAN_SSID_MAXLEN)
389 pSSID->len = WLAN_SSID_MAXLEN;
390 memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
391
392 pBSSList->uChannel = byCurrChannel;
393
394 if (pSuppRates->len > WLAN_RATES_MAXLEN)
395 pSuppRates->len = WLAN_RATES_MAXLEN;
396 memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
397
398 if (pExtSuppRates != NULL) {
399 if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
400 pExtSuppRates->len = WLAN_RATES_MAXLEN;
401 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
402 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
403
404 } else {
405 memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
406 }
407 pBSSList->sERP.byERP = psERP->byERP;
408 pBSSList->sERP.bERPExist = psERP->bERPExist;
409
410 // Check if BSS is 802.11a/b/g
411 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
412 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
413 } else {
414 if (pBSSList->sERP.bERPExist == TRUE) {
415 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
416 } else {
417 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
418 }
419 }
420
421 pBSSList->byRxRate = pRxPacket->byRxRate;
422 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
423 pBSSList->uRSSI = pRxPacket->uRSSI;
424 pBSSList->bySQ = pRxPacket->bySQ;
425
426 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
427 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
428 // assoc with BSS
429 if (pBSSList == pMgmt->pCurrBSS) {
430 bParsingQuiet = TRUE;
431 }
432 }
433
434 WPA_ClearRSN(pBSSList);
435
436 if (pRSNWPA != NULL) {
437 unsigned int uLen = pRSNWPA->len + 2;
438
439 if (uLen <= (uIELength -
440 (unsigned int) (ULONG_PTR) ((PBYTE) pRSNWPA - pbyIEs))) {
441 pBSSList->wWPALen = uLen;
442 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
443 WPA_ParseRSN(pBSSList, pRSNWPA);
444 }
445 }
446
447 WPA2_ClearRSN(pBSSList);
448
449 if (pRSN != NULL) {
450 unsigned int uLen = pRSN->len + 2;
451
452 if (uLen <= (uIELength -
453 (unsigned int) (ULONG_PTR) ((PBYTE) pRSN - pbyIEs))) {
454 pBSSList->wRSNLen = uLen;
455 memcpy(pBSSList->byRSNIE, pRSN, uLen);
456 WPA2vParseRSN(pBSSList, pRSN);
457 }
458 }
459
460 if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == TRUE)) {
461
462 PSKeyItem pTransmitKey = NULL;
463 BOOL bIs802_1x = FALSE;
464
465 for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) {
466 if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
467 bIs802_1x = TRUE;
468 break;
469 }
470 }
471 if ((bIs802_1x == TRUE) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
472 ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
473
474 bAdd_PMKID_Candidate((void *) pDevice,
475 pBSSList->abyBSSID,
476 &pBSSList->sRSNCapObj);
477
478 if ((pDevice->bLinkPass == TRUE) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
479 if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == TRUE) ||
480 (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == TRUE)) {
481 pDevice->gsPMKIDCandidate.StatusType = Ndis802_11StatusType_PMKID_CandidateList;
482 pDevice->gsPMKIDCandidate.Version = 1;
483
484 }
485
486 }
487 }
488 }
489
490 if (pDevice->bUpdateBBVGA) {
491 // Moniter if RSSI is too strong.
492 pBSSList->byRSSIStatCnt = 0;
493 RFvRSSITodBm(pDevice, (BYTE)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
494 pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
495 pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
496 for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
497 pBSSList->ldBmAverage[ii] = 0;
498 }
499
500 pBSSList->uIELength = uIELength;
501 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
502 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
503 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
504
505 return TRUE;
506 }
507
508
509 /*+
510 *
511 * Routine Description:
512 * Update BSS set in known BSS list
513 *
514 * Return Value:
515 * TRUE if success.
516 *
517 -*/
518 // TODO: input structure modify
519
BSSbUpdateToBSSList(void * hDeviceContext,QWORD qwTimestamp,WORD wBeaconInterval,WORD wCapInfo,BYTE byCurrChannel,BOOL bChannelHit,PWLAN_IE_SSID pSSID,PWLAN_IE_SUPP_RATES pSuppRates,PWLAN_IE_SUPP_RATES pExtSuppRates,PERPObject psERP,PWLAN_IE_RSN pRSN,PWLAN_IE_RSN_EXT pRSNWPA,PWLAN_IE_COUNTRY pIE_Country,PWLAN_IE_QUIET pIE_Quiet,PKnownBSS pBSSList,unsigned int uIELength,PBYTE pbyIEs,void * pRxPacketContext)520 BOOL BSSbUpdateToBSSList(void *hDeviceContext,
521 QWORD qwTimestamp,
522 WORD wBeaconInterval,
523 WORD wCapInfo,
524 BYTE byCurrChannel,
525 BOOL bChannelHit,
526 PWLAN_IE_SSID pSSID,
527 PWLAN_IE_SUPP_RATES pSuppRates,
528 PWLAN_IE_SUPP_RATES pExtSuppRates,
529 PERPObject psERP,
530 PWLAN_IE_RSN pRSN,
531 PWLAN_IE_RSN_EXT pRSNWPA,
532 PWLAN_IE_COUNTRY pIE_Country,
533 PWLAN_IE_QUIET pIE_Quiet,
534 PKnownBSS pBSSList,
535 unsigned int uIELength,
536 PBYTE pbyIEs,
537 void *pRxPacketContext)
538 {
539 int ii, jj;
540 PSDevice pDevice = (PSDevice)hDeviceContext;
541 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
542 PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
543 signed long ldBm, ldBmSum;
544 BOOL bParsingQuiet = FALSE;
545
546 if (pBSSList == NULL)
547 return FALSE;
548
549
550 HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
551 LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
552 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
553 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
554 pBSSList->uClearCount = 0;
555 pBSSList->uChannel = byCurrChannel;
556
557 if (pSSID->len > WLAN_SSID_MAXLEN)
558 pSSID->len = WLAN_SSID_MAXLEN;
559
560 if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
561 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
562 memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN);
563
564 if (pExtSuppRates != NULL) {
565 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN);
566 } else {
567 memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
568 }
569 pBSSList->sERP.byERP = psERP->byERP;
570 pBSSList->sERP.bERPExist = psERP->bERPExist;
571
572 // Check if BSS is 802.11a/b/g
573 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
574 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
575 } else {
576 if (pBSSList->sERP.bERPExist == TRUE) {
577 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
578 } else {
579 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
580 }
581 }
582
583 pBSSList->byRxRate = pRxPacket->byRxRate;
584 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
585 if(bChannelHit)
586 pBSSList->uRSSI = pRxPacket->uRSSI;
587 pBSSList->bySQ = pRxPacket->bySQ;
588
589 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
590 (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
591 // assoc with BSS
592 if (pBSSList == pMgmt->pCurrBSS) {
593 bParsingQuiet = TRUE;
594 }
595 }
596
597 WPA_ClearRSN(pBSSList); //mike update
598
599 if (pRSNWPA != NULL) {
600 unsigned int uLen = pRSNWPA->len + 2;
601 if (uLen <= (uIELength -
602 (unsigned int) (ULONG_PTR) ((PBYTE) pRSNWPA - pbyIEs))) {
603 pBSSList->wWPALen = uLen;
604 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
605 WPA_ParseRSN(pBSSList, pRSNWPA);
606 }
607 }
608
609 WPA2_ClearRSN(pBSSList); //mike update
610
611 if (pRSN != NULL) {
612 unsigned int uLen = pRSN->len + 2;
613 if (uLen <= (uIELength -
614 (unsigned int) (ULONG_PTR) ((PBYTE) pRSN - pbyIEs))) {
615 pBSSList->wRSNLen = uLen;
616 memcpy(pBSSList->byRSNIE, pRSN, uLen);
617 WPA2vParseRSN(pBSSList, pRSN);
618 }
619 }
620
621 if (pRxPacket->uRSSI != 0) {
622 RFvRSSITodBm(pDevice, (BYTE)(pRxPacket->uRSSI), &ldBm);
623 // Moniter if RSSI is too strong.
624 pBSSList->byRSSIStatCnt++;
625 pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
626 pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
627 ldBmSum = 0;
628 for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
629 if (pBSSList->ldBmAverage[ii] != 0) {
630 pBSSList->ldBmMAX =
631 max(pBSSList->ldBmAverage[ii], ldBm);
632 ldBmSum +=
633 pBSSList->ldBmAverage[ii];
634 jj++;
635 }
636 }
637 pBSSList->ldBmAverRange = ldBmSum /jj;
638 }
639
640 pBSSList->uIELength = uIELength;
641 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
642 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
643 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
644
645 return TRUE;
646 }
647
648
649
650
651
652 /*+
653 *
654 * Routine Description:
655 * Search Node DB table to find the index of matched DstAddr
656 *
657 * Return Value:
658 * None
659 *
660 -*/
661
BSSbIsSTAInNodeDB(void * hDeviceContext,PBYTE abyDstAddr,unsigned int * puNodeIndex)662 BOOL BSSbIsSTAInNodeDB(void *hDeviceContext,
663 PBYTE abyDstAddr,
664 unsigned int *puNodeIndex)
665 {
666 PSDevice pDevice = (PSDevice)hDeviceContext;
667 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
668 unsigned int ii;
669
670 // Index = 0 reserved for AP Node
671 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
672 if (pMgmt->sNodeDBTable[ii].bActive) {
673 if (!compare_ether_addr(abyDstAddr,
674 pMgmt->sNodeDBTable[ii].abyMACAddr)) {
675 *puNodeIndex = ii;
676 return TRUE;
677 }
678 }
679 }
680
681 return FALSE;
682 };
683
684
685
686 /*+
687 *
688 * Routine Description:
689 * Find an empty node and allocated; if no empty found,
690 * instand used of most inactive one.
691 *
692 * Return Value:
693 * None
694 *
695 -*/
BSSvCreateOneNode(void * hDeviceContext,unsigned int * puNodeIndex)696 void BSSvCreateOneNode(void *hDeviceContext, unsigned int *puNodeIndex)
697 {
698
699 PSDevice pDevice = (PSDevice)hDeviceContext;
700 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
701 unsigned int ii;
702 unsigned int BigestCount = 0;
703 unsigned int SelectIndex;
704 struct sk_buff *skb;
705 // Index = 0 reserved for AP Node (In STA mode)
706 // Index = 0 reserved for Broadcast/MultiCast (In AP mode)
707 SelectIndex = 1;
708 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
709 if (pMgmt->sNodeDBTable[ii].bActive) {
710 if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
711 BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
712 SelectIndex = ii;
713 }
714 }
715 else {
716 break;
717 }
718 }
719
720 // if not found replace uInActiveCount is largest one.
721 if ( ii == (MAX_NODE_NUM + 1)) {
722 *puNodeIndex = SelectIndex;
723 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
724 // clear ps buffer
725 if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
726 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
727 dev_kfree_skb(skb);
728 }
729 }
730 else {
731 *puNodeIndex = ii;
732 }
733
734 memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
735 pMgmt->sNodeDBTable[*puNodeIndex].bActive = TRUE;
736 pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
737 // for AP mode PS queue
738 skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
739 pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
740 pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
741 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
742 };
743
744
745
746 /*+
747 *
748 * Routine Description:
749 * Remove Node by NodeIndex
750 *
751 *
752 * Return Value:
753 * None
754 *
755 -*/
756
BSSvRemoveOneNode(void * hDeviceContext,unsigned int uNodeIndex)757 void BSSvRemoveOneNode(void *hDeviceContext, unsigned int uNodeIndex)
758 {
759
760 PSDevice pDevice = (PSDevice)hDeviceContext;
761 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
762 BYTE byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
763 struct sk_buff *skb;
764
765
766 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
767 dev_kfree_skb(skb);
768 // clear context
769 memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
770 // clear tx bit map
771 pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
772 };
773 /*+
774 *
775 * Routine Description:
776 * Update AP Node content in Index 0 of KnownNodeDB
777 *
778 *
779 * Return Value:
780 * None
781 *
782 -*/
783
BSSvUpdateAPNode(void * hDeviceContext,PWORD pwCapInfo,PWLAN_IE_SUPP_RATES pSuppRates,PWLAN_IE_SUPP_RATES pExtSuppRates)784 void BSSvUpdateAPNode(void *hDeviceContext,
785 PWORD pwCapInfo,
786 PWLAN_IE_SUPP_RATES pSuppRates,
787 PWLAN_IE_SUPP_RATES pExtSuppRates)
788 {
789 PSDevice pDevice = (PSDevice)hDeviceContext;
790 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
791 unsigned int uRateLen = WLAN_RATES_MAXLEN;
792
793 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
794
795 pMgmt->sNodeDBTable[0].bActive = TRUE;
796 if (pDevice->byBBType == BB_TYPE_11B) {
797 uRateLen = WLAN_RATES_MAXLEN_11B;
798 }
799 pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
800 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
801 uRateLen);
802 pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
803 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
804 uRateLen);
805 RATEvParseMaxRate((void *) pDevice,
806 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
807 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
808 TRUE,
809 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
810 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
811 &(pMgmt->sNodeDBTable[0].wSuppRate),
812 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
813 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
814 );
815 memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID, WLAN_ADDR_LEN);
816 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
817 pMgmt->sNodeDBTable[0].bShortPreamble = WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
818 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
819 // Auto rate fallback function initiation.
820 // RATEbInit(pDevice);
821 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
822
823 };
824
825 /*+
826 *
827 * Routine Description:
828 * Add Multicast Node content in Index 0 of KnownNodeDB
829 *
830 *
831 * Return Value:
832 * None
833 *
834 -*/
835
BSSvAddMulticastNode(void * hDeviceContext)836 void BSSvAddMulticastNode(void *hDeviceContext)
837 {
838 PSDevice pDevice = (PSDevice)hDeviceContext;
839 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
840
841 if (!pDevice->bEnableHostWEP)
842 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
843 memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
844 pMgmt->sNodeDBTable[0].bActive = TRUE;
845 pMgmt->sNodeDBTable[0].bPSEnable = FALSE;
846 skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
847 RATEvParseMaxRate((void *) pDevice,
848 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrSuppRates,
849 (PWLAN_IE_SUPP_RATES)pMgmt->abyCurrExtSuppRates,
850 TRUE,
851 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
852 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
853 &(pMgmt->sNodeDBTable[0].wSuppRate),
854 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
855 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
856 );
857 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
858 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
859
860 };
861
862 /*+
863 *
864 * Routine Description:
865 *
866 *
867 * Second call back function to update Node DB info & AP link status
868 *
869 *
870 * Return Value:
871 * none.
872 *
873 -*/
874
BSSvSecondCallBack(void * hDeviceContext)875 void BSSvSecondCallBack(void *hDeviceContext)
876 {
877 PSDevice pDevice = (PSDevice)hDeviceContext;
878 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
879 unsigned int ii;
880 PWLAN_IE_SSID pItemSSID, pCurrSSID;
881 unsigned int uSleepySTACnt = 0;
882 unsigned int uNonShortSlotSTACnt = 0;
883 unsigned int uLongPreambleSTACnt = 0;
884 viawget_wpa_header *wpahdr;
885
886 spin_lock_irq(&pDevice->lock);
887
888 pDevice->uAssocCount = 0;
889
890 //Power Saving Mode Tx Burst
891 if ( pDevice->bEnablePSMode == TRUE ) {
892 pDevice->ulPSModeWaitTx++;
893 if ( pDevice->ulPSModeWaitTx >= 2 ) {
894 pDevice->ulPSModeWaitTx = 0;
895 pDevice->bPSModeTxBurst = FALSE;
896 }
897 }
898
899 pDevice->byERPFlag &=
900 ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
901
902 if (pDevice->wUseProtectCntDown > 0) {
903 pDevice->wUseProtectCntDown --;
904 }
905 else {
906 // disable protect mode
907 pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
908 }
909
910 if(pDevice->byReAssocCount > 0) {
911 pDevice->byReAssocCount++;
912 if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != TRUE)) { //10 sec timeout
913 printk("Re-association timeout!!!\n");
914 pDevice->byReAssocCount = 0;
915 #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
916 // if(pDevice->bWPASuppWextEnabled == TRUE)
917 {
918 union iwreq_data wrqu;
919 memset(&wrqu, 0, sizeof (wrqu));
920 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
921 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
922 wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
923 }
924 #endif
925 }
926 else if(pDevice->bLinkPass == TRUE)
927 pDevice->byReAssocCount = 0;
928 }
929
930 if((pMgmt->eCurrState!=WMAC_STATE_ASSOC) &&
931 (pMgmt->eLastState==WMAC_STATE_ASSOC))
932 {
933 union iwreq_data wrqu;
934 memset(&wrqu, 0, sizeof(wrqu));
935 wrqu.data.flags = RT_DISCONNECTED_EVENT_FLAG;
936 wireless_send_event(pDevice->dev, IWEVCUSTOM, &wrqu, NULL);
937 }
938 pMgmt->eLastState = pMgmt->eCurrState ;
939
940 s_uCalculateLinkQual((void *)pDevice);
941
942 for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
943
944 if (pMgmt->sNodeDBTable[ii].bActive) {
945 // Increase in-activity counter
946 pMgmt->sNodeDBTable[ii].uInActiveCount++;
947
948 if (ii > 0) {
949 if (pMgmt->sNodeDBTable[ii].uInActiveCount > MAX_INACTIVE_COUNT) {
950 BSSvRemoveOneNode(pDevice, ii);
951 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
952 "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
953 continue;
954 }
955
956 if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
957
958 pDevice->uAssocCount++;
959
960 // check if Non ERP exist
961 if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
962 if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
963 pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
964 uLongPreambleSTACnt ++;
965 }
966 if (!pMgmt->sNodeDBTable[ii].bERPExist) {
967 pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
968 pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
969 }
970 if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
971 uNonShortSlotSTACnt++;
972 }
973 }
974
975 // check if any STA in PS mode
976 if (pMgmt->sNodeDBTable[ii].bPSEnable)
977 uSleepySTACnt++;
978
979
980 }
981
982 // Rate fallback check
983 if (!pDevice->bFixRate) {
984 if (ii > 0) {
985 // ii = 0 for multicast node (AP & Adhoc)
986 RATEvTxRateFallBack((void *)pDevice,
987 &(pMgmt->sNodeDBTable[ii]));
988 }
989 else {
990 // ii = 0 reserved for unicast AP node (Infra STA)
991 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
992 RATEvTxRateFallBack((void *)pDevice,
993 &(pMgmt->sNodeDBTable[ii]));
994 }
995
996 }
997
998 // check if pending PS queue
999 if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
1000 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
1001 ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
1002 if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
1003 BSSvRemoveOneNode(pDevice, ii);
1004 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
1005 continue;
1006 }
1007 }
1008 }
1009
1010 }
1011
1012
1013 if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
1014
1015 // on/off protect mode
1016 if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
1017 if (!pDevice->bProtectMode) {
1018 MACvEnableProtectMD(pDevice);
1019 pDevice->bProtectMode = TRUE;
1020 }
1021 }
1022 else {
1023 if (pDevice->bProtectMode) {
1024 MACvDisableProtectMD(pDevice);
1025 pDevice->bProtectMode = FALSE;
1026 }
1027 }
1028 // on/off short slot time
1029
1030 if (uNonShortSlotSTACnt > 0) {
1031 if (pDevice->bShortSlotTime) {
1032 pDevice->bShortSlotTime = FALSE;
1033 BBvSetShortSlotTime(pDevice);
1034 vUpdateIFS((void *)pDevice);
1035 }
1036 }
1037 else {
1038 if (!pDevice->bShortSlotTime) {
1039 pDevice->bShortSlotTime = TRUE;
1040 BBvSetShortSlotTime(pDevice);
1041 vUpdateIFS((void *)pDevice);
1042 }
1043 }
1044
1045 // on/off barker long preamble mode
1046
1047 if (uLongPreambleSTACnt > 0) {
1048 if (!pDevice->bBarkerPreambleMd) {
1049 MACvEnableBarkerPreambleMd(pDevice);
1050 pDevice->bBarkerPreambleMd = TRUE;
1051 }
1052 }
1053 else {
1054 if (pDevice->bBarkerPreambleMd) {
1055 MACvDisableBarkerPreambleMd(pDevice);
1056 pDevice->bBarkerPreambleMd = FALSE;
1057 }
1058 }
1059
1060 }
1061
1062
1063 // Check if any STA in PS mode, enable DTIM multicast deliver
1064 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
1065 if (uSleepySTACnt > 0)
1066 pMgmt->sNodeDBTable[0].bPSEnable = TRUE;
1067 else
1068 pMgmt->sNodeDBTable[0].bPSEnable = FALSE;
1069 }
1070
1071 pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
1072 pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
1073
1074 if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
1075 (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
1076
1077 if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
1078
1079 if (pDevice->bUpdateBBVGA) {
1080 /* s_vCheckSensitivity((void *) pDevice); */
1081 s_vCheckPreEDThreshold((void *) pDevice);
1082 }
1083
1084 if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
1085 (pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
1086 pDevice->byBBVGANew = pDevice->abyBBVGA[0];
1087 bScheduleCommand((void *) pDevice,
1088 WLAN_CMD_CHANGE_BBSENSITIVITY,
1089 NULL);
1090 }
1091
1092 if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
1093 pMgmt->sNodeDBTable[0].bActive = FALSE;
1094 pMgmt->eCurrMode = WMAC_MODE_STANDBY;
1095 pMgmt->eCurrState = WMAC_STATE_IDLE;
1096 netif_stop_queue(pDevice->dev);
1097 pDevice->bLinkPass = FALSE;
1098 ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
1099 pDevice->bRoaming = TRUE;
1100 pDevice->bIsRoaming = FALSE;
1101
1102 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1103 /* let wpa supplicant know AP may disconnect */
1104 if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
1105 wpahdr = (viawget_wpa_header *)pDevice->skb->data;
1106 wpahdr->type = VIAWGET_DISASSOC_MSG;
1107 wpahdr->resp_ie_len = 0;
1108 wpahdr->req_ie_len = 0;
1109 skb_put(pDevice->skb, sizeof(viawget_wpa_header));
1110 pDevice->skb->dev = pDevice->wpadev;
1111 skb_reset_mac_header(pDevice->skb);
1112 pDevice->skb->pkt_type = PACKET_HOST;
1113 pDevice->skb->protocol = htons(ETH_P_802_2);
1114 memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
1115 netif_rx(pDevice->skb);
1116 pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1117 }
1118 #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
1119 {
1120 union iwreq_data wrqu;
1121 memset(&wrqu, 0, sizeof (wrqu));
1122 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1123 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
1124 wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
1125 }
1126 #endif
1127 }
1128 }
1129 else if (pItemSSID->len != 0) {
1130 //Davidwang
1131 if ((pDevice->bEnableRoaming == TRUE)&&(!(pMgmt->Cisco_cckm))) {
1132 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
1133 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
1134 if ((pDevice->bRoaming == TRUE)&&(pDevice->bIsRoaming == TRUE)){
1135 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
1136 BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1137 bScheduleCommand((void *) pDevice,
1138 WLAN_CMD_BSSID_SCAN,
1139 pMgmt->abyDesireSSID);
1140 bScheduleCommand((void *) pDevice,
1141 WLAN_CMD_SSID,
1142 pMgmt->abyDesireSSID);
1143 pDevice->uAutoReConnectTime = 0;
1144 pDevice->uIsroamingTime = 0;
1145 pDevice->bRoaming = FALSE;
1146
1147 wpahdr = (viawget_wpa_header *)pDevice->skb->data;
1148 wpahdr->type = VIAWGET_CCKM_ROAM_MSG;
1149 wpahdr->resp_ie_len = 0;
1150 wpahdr->req_ie_len = 0;
1151 skb_put(pDevice->skb, sizeof(viawget_wpa_header));
1152 pDevice->skb->dev = pDevice->wpadev;
1153 skb_reset_mac_header(pDevice->skb);
1154 pDevice->skb->pkt_type = PACKET_HOST;
1155 pDevice->skb->protocol = htons(ETH_P_802_2);
1156 memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
1157 netif_rx(pDevice->skb);
1158 pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1159
1160 }
1161 else if ((pDevice->bRoaming == FALSE)&&(pDevice->bIsRoaming == TRUE)) {
1162 pDevice->uIsroamingTime++;
1163 if (pDevice->uIsroamingTime >= 20)
1164 pDevice->bIsRoaming = FALSE;
1165 }
1166
1167 }
1168 else {
1169 if (pDevice->uAutoReConnectTime < 10) {
1170 pDevice->uAutoReConnectTime++;
1171 #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
1172 //network manager support need not do Roaming scan???
1173 if(pDevice->bWPASuppWextEnabled ==TRUE)
1174 pDevice->uAutoReConnectTime = 0;
1175 #endif
1176 }
1177 else {
1178 //mike use old encryption status for wpa reauthen
1179 if(pDevice->bWPADEVUp)
1180 pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
1181
1182 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
1183 BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1184 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1185 bScheduleCommand((void *) pDevice,
1186 WLAN_CMD_BSSID_SCAN,
1187 pMgmt->abyDesireSSID);
1188 bScheduleCommand((void *) pDevice,
1189 WLAN_CMD_SSID,
1190 pMgmt->abyDesireSSID);
1191 pDevice->uAutoReConnectTime = 0;
1192 }
1193 }
1194 }
1195 }
1196
1197 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
1198 // if adhoc started which essid is NULL string, rescaning.
1199 if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
1200 if (pDevice->uAutoReConnectTime < 10) {
1201 pDevice->uAutoReConnectTime++;
1202 }
1203 else {
1204 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scaning ...\n");
1205 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1206 bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
1207 bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
1208 pDevice->uAutoReConnectTime = 0;
1209 };
1210 }
1211 if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
1212
1213 if (pDevice->bUpdateBBVGA) {
1214 /* s_vCheckSensitivity((void *) pDevice); */
1215 s_vCheckPreEDThreshold((void *) pDevice);
1216 }
1217 if (pMgmt->sNodeDBTable[0].uInActiveCount >=ADHOC_LOST_BEACON_COUNT) {
1218 DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1219 pMgmt->sNodeDBTable[0].uInActiveCount = 0;
1220 pMgmt->eCurrState = WMAC_STATE_STARTED;
1221 netif_stop_queue(pDevice->dev);
1222 pDevice->bLinkPass = FALSE;
1223 ControlvMaskByte(pDevice,MESSAGE_REQUEST_MACREG,MAC_REG_PAPEDELAY,LEDSTS_STS,LEDSTS_SLOW);
1224 }
1225 }
1226 }
1227
1228 if (pDevice->bLinkPass == TRUE) {
1229 if (netif_queue_stopped(pDevice->dev))
1230 netif_wake_queue(pDevice->dev);
1231 }
1232
1233 spin_unlock_irq(&pDevice->lock);
1234
1235 pMgmt->sTimerSecondCallback.expires = RUN_AT(HZ);
1236 add_timer(&pMgmt->sTimerSecondCallback);
1237 }
1238
1239 /*+
1240 *
1241 * Routine Description:
1242 *
1243 *
1244 * Update Tx attemps, Tx failure counter in Node DB
1245 *
1246 *
1247 * Return Value:
1248 * none.
1249 *
1250 -*/
1251
BSSvUpdateNodeTxCounter(void * hDeviceContext,PSStatCounter pStatistic,BYTE byTSR,BYTE byPktNO)1252 void BSSvUpdateNodeTxCounter(void *hDeviceContext,
1253 PSStatCounter pStatistic,
1254 BYTE byTSR,
1255 BYTE byPktNO)
1256 {
1257 PSDevice pDevice = (PSDevice)hDeviceContext;
1258 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1259 unsigned int uNodeIndex = 0;
1260 BYTE byTxRetry;
1261 WORD wRate;
1262 WORD wFallBackRate = RATE_1M;
1263 BYTE byFallBack;
1264 unsigned int ii;
1265 PBYTE pbyDestAddr;
1266 BYTE byPktNum;
1267 WORD wFIFOCtl;
1268
1269 byPktNum = (byPktNO & 0x0F) >> 4;
1270 byTxRetry = (byTSR & 0xF0) >> 4;
1271 wRate = (WORD) (byPktNO & 0xF0) >> 4;
1272 wFIFOCtl = pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl;
1273 pbyDestAddr = (PBYTE) &( pStatistic->abyTxPktInfo[byPktNum].abyDestAddr[0]);
1274
1275 if (wFIFOCtl & FIFOCTL_AUTO_FB_0) {
1276 byFallBack = AUTO_FB_0;
1277 } else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) {
1278 byFallBack = AUTO_FB_1;
1279 } else {
1280 byFallBack = AUTO_FB_NONE;
1281 }
1282
1283 // Only Unicast using support rates
1284 if (wFIFOCtl & FIFOCTL_NEEDACK) {
1285 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1286 pMgmt->sNodeDBTable[0].uTxAttempts += 1;
1287 if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1288 // transmit success, TxAttempts at least plus one
1289 pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
1290 if ( (byFallBack == AUTO_FB_NONE) ||
1291 (wRate < RATE_18M) ) {
1292 wFallBackRate = wRate;
1293 } else if (byFallBack == AUTO_FB_0) {
1294 if (byTxRetry < 5)
1295 wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1296 else
1297 wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1298 } else if (byFallBack == AUTO_FB_1) {
1299 if (byTxRetry < 5)
1300 wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1301 else
1302 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1303 }
1304 pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
1305 } else {
1306 pMgmt->sNodeDBTable[0].uTxFailures ++;
1307 }
1308 pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
1309 if (byTxRetry != 0) {
1310 pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
1311 if ( (byFallBack == AUTO_FB_NONE) ||
1312 (wRate < RATE_18M) ) {
1313 pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
1314 } else if (byFallBack == AUTO_FB_0) {
1315 for (ii = 0; ii < byTxRetry; ii++) {
1316 if (ii < 5)
1317 wFallBackRate =
1318 awHWRetry0[wRate-RATE_18M][ii];
1319 else
1320 wFallBackRate =
1321 awHWRetry0[wRate-RATE_18M][4];
1322 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1323 }
1324 } else if (byFallBack == AUTO_FB_1) {
1325 for (ii = 0; ii < byTxRetry; ii++) {
1326 if (ii < 5)
1327 wFallBackRate =
1328 awHWRetry1[wRate-RATE_18M][ii];
1329 else
1330 wFallBackRate =
1331 awHWRetry1[wRate-RATE_18M][4];
1332 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1333 }
1334 }
1335 }
1336 }
1337
1338 if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
1339 (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
1340
1341 if (BSSbIsSTAInNodeDB((void *) pDevice,
1342 pbyDestAddr,
1343 &uNodeIndex)) {
1344 pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
1345 if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1346 // transmit success, TxAttempts at least plus one
1347 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
1348 if ( (byFallBack == AUTO_FB_NONE) ||
1349 (wRate < RATE_18M) ) {
1350 wFallBackRate = wRate;
1351 } else if (byFallBack == AUTO_FB_0) {
1352 if (byTxRetry < 5)
1353 wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1354 else
1355 wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1356 } else if (byFallBack == AUTO_FB_1) {
1357 if (byTxRetry < 5)
1358 wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1359 else
1360 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1361 }
1362 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
1363 } else {
1364 pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
1365 }
1366 pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
1367 if (byTxRetry != 0) {
1368 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
1369 if ( (byFallBack == AUTO_FB_NONE) ||
1370 (wRate < RATE_18M) ) {
1371 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
1372 } else if (byFallBack == AUTO_FB_0) {
1373 for (ii = 0; ii < byTxRetry; ii++) {
1374 if (ii < 5)
1375 wFallBackRate =
1376 awHWRetry0[wRate-RATE_18M][ii];
1377 else
1378 wFallBackRate =
1379 awHWRetry0[wRate-RATE_18M][4];
1380 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1381 }
1382 } else if (byFallBack == AUTO_FB_1) {
1383 for (ii = 0; ii < byTxRetry; ii++) {
1384 if (ii < 5)
1385 wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
1386 else
1387 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1388 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1389 }
1390 }
1391 }
1392 }
1393 }
1394 }
1395 }
1396
1397 /*+
1398 *
1399 * Routine Description:
1400 * Clear Nodes & skb in DB Table
1401 *
1402 *
1403 * Parameters:
1404 * In:
1405 * hDeviceContext - The adapter context.
1406 * uStartIndex - starting index
1407 * Out:
1408 * none
1409 *
1410 * Return Value:
1411 * None.
1412 *
1413 -*/
1414
BSSvClearNodeDBTable(void * hDeviceContext,unsigned int uStartIndex)1415 void BSSvClearNodeDBTable(void *hDeviceContext,
1416 unsigned int uStartIndex)
1417 {
1418 PSDevice pDevice = (PSDevice)hDeviceContext;
1419 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1420 struct sk_buff *skb;
1421 unsigned int ii;
1422
1423 for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
1424 if (pMgmt->sNodeDBTable[ii].bActive) {
1425 // check if sTxPSQueue has been initial
1426 if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
1427 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){
1428 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
1429 dev_kfree_skb(skb);
1430 }
1431 }
1432 memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
1433 }
1434 }
1435 };
1436
s_vCheckSensitivity(void * hDeviceContext)1437 void s_vCheckSensitivity(void *hDeviceContext)
1438 {
1439 PSDevice pDevice = (PSDevice)hDeviceContext;
1440 PKnownBSS pBSSList = NULL;
1441 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1442 int ii;
1443
1444 if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1445 ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1446 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1447 if (pBSSList != NULL) {
1448 /* Update BB register if RSSI is too strong */
1449 signed long LocalldBmAverage = 0;
1450 signed long uNumofdBm = 0;
1451 for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
1452 if (pBSSList->ldBmAverage[ii] != 0) {
1453 uNumofdBm ++;
1454 LocalldBmAverage += pBSSList->ldBmAverage[ii];
1455 }
1456 }
1457 if (uNumofdBm > 0) {
1458 LocalldBmAverage = LocalldBmAverage/uNumofdBm;
1459 for (ii=0;ii<BB_VGA_LEVEL;ii++) {
1460 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
1461 if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
1462 pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
1463 break;
1464 }
1465 }
1466 if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
1467 pDevice->uBBVGADiffCount++;
1468 if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
1469 bScheduleCommand((void *) pDevice,
1470 WLAN_CMD_CHANGE_BBSENSITIVITY,
1471 NULL);
1472 } else {
1473 pDevice->uBBVGADiffCount = 0;
1474 }
1475 }
1476 }
1477 }
1478 }
1479
s_uCalculateLinkQual(void * hDeviceContext)1480 void s_uCalculateLinkQual(void *hDeviceContext)
1481 {
1482 PSDevice pDevice = (PSDevice)hDeviceContext;
1483 unsigned long TxOkRatio, TxCnt;
1484 unsigned long RxOkRatio, RxCnt;
1485 unsigned long RssiRatio;
1486 long ldBm;
1487
1488 TxCnt = pDevice->scStatistic.TxNoRetryOkCount +
1489 pDevice->scStatistic.TxRetryOkCount +
1490 pDevice->scStatistic.TxFailCount;
1491 RxCnt = pDevice->scStatistic.RxFcsErrCnt +
1492 pDevice->scStatistic.RxOkCnt;
1493 TxOkRatio = (TxCnt < 6) ? 4000:((pDevice->scStatistic.TxNoRetryOkCount * 4000) / TxCnt);
1494 RxOkRatio = (RxCnt < 6) ? 2000:((pDevice->scStatistic.RxOkCnt * 2000) / RxCnt);
1495 //decide link quality
1496 if(pDevice->bLinkPass !=TRUE)
1497 {
1498 pDevice->scStatistic.LinkQuality = 0;
1499 pDevice->scStatistic.SignalStren = 0;
1500 }
1501 else
1502 {
1503 RFvRSSITodBm(pDevice, (BYTE)(pDevice->uCurrRSSI), &ldBm);
1504 if(-ldBm < 50) {
1505 RssiRatio = 4000;
1506 }
1507 else if(-ldBm > 90) {
1508 RssiRatio = 0;
1509 }
1510 else {
1511 RssiRatio = (40-(-ldBm-50))*4000/40;
1512 }
1513 pDevice->scStatistic.SignalStren = RssiRatio/40;
1514 pDevice->scStatistic.LinkQuality = (RssiRatio+TxOkRatio+RxOkRatio)/100;
1515 }
1516 pDevice->scStatistic.RxFcsErrCnt = 0;
1517 pDevice->scStatistic.RxOkCnt = 0;
1518 pDevice->scStatistic.TxFailCount = 0;
1519 pDevice->scStatistic.TxNoRetryOkCount = 0;
1520 pDevice->scStatistic.TxRetryOkCount = 0;
1521 }
1522
BSSvClearAnyBSSJoinRecord(void * hDeviceContext)1523 void BSSvClearAnyBSSJoinRecord(void *hDeviceContext)
1524 {
1525 PSDevice pDevice = (PSDevice)hDeviceContext;
1526 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1527 unsigned int ii;
1528
1529 for (ii = 0; ii < MAX_BSS_NUM; ii++)
1530 pMgmt->sBSSList[ii].bSelected = FALSE;
1531 }
1532
s_vCheckPreEDThreshold(void * hDeviceContext)1533 void s_vCheckPreEDThreshold(void *hDeviceContext)
1534 {
1535 PSDevice pDevice = (PSDevice)hDeviceContext;
1536 PKnownBSS pBSSList = NULL;
1537 PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1538
1539 if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1540 ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1541 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1542 if (pBSSList != NULL) {
1543 pDevice->byBBPreEDRSSI = (BYTE) (~(pBSSList->ldBmAverRange) + 1);
1544 BBvUpdatePreEDThreshold(pDevice, FALSE);
1545 }
1546 }
1547 }
1548
1549