1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4
5 /*
6 * Copyright 1992, Linus Torvalds.
7 *
8 * Note: inlines with more than a single statement should be marked
9 * __always_inline to avoid problems with older gcc's inlining heuristics.
10 */
11
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28
29 #define BIT_64(n) (U64_C(1) << (n))
30
31 /*
32 * These have to be done with inline assembly: that way the bit-setting
33 * is guaranteed to be atomic. All bit operations return 0 if the bit
34 * was cleared before the operation and != 0 if it was not.
35 *
36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 */
38
39 #define RLONG_ADDR(x) "m" (*(volatile long *) (x))
40 #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x))
41
42 #define ADDR RLONG_ADDR(addr)
43
44 /*
45 * We do the locked ops that don't return the old value as
46 * a mask operation on a byte.
47 */
48 #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3))
49 #define CONST_MASK(nr) (1 << ((nr) & 7))
50
51 static __always_inline void
arch_set_bit(long nr,volatile unsigned long * addr)52 arch_set_bit(long nr, volatile unsigned long *addr)
53 {
54 if (__builtin_constant_p(nr)) {
55 asm_inline volatile(LOCK_PREFIX "orb %b1,%0"
56 : CONST_MASK_ADDR(nr, addr)
57 : "iq" (CONST_MASK(nr))
58 : "memory");
59 } else {
60 asm_inline volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
61 : : RLONG_ADDR(addr), "Ir" (nr) : "memory");
62 }
63 }
64
65 static __always_inline void
arch___set_bit(unsigned long nr,volatile unsigned long * addr)66 arch___set_bit(unsigned long nr, volatile unsigned long *addr)
67 {
68 asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
69 }
70
71 static __always_inline void
arch_clear_bit(long nr,volatile unsigned long * addr)72 arch_clear_bit(long nr, volatile unsigned long *addr)
73 {
74 if (__builtin_constant_p(nr)) {
75 asm_inline volatile(LOCK_PREFIX "andb %b1,%0"
76 : CONST_MASK_ADDR(nr, addr)
77 : "iq" (~CONST_MASK(nr)));
78 } else {
79 asm_inline volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
80 : : RLONG_ADDR(addr), "Ir" (nr) : "memory");
81 }
82 }
83
84 static __always_inline void
arch_clear_bit_unlock(long nr,volatile unsigned long * addr)85 arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
86 {
87 barrier();
88 arch_clear_bit(nr, addr);
89 }
90
91 static __always_inline void
arch___clear_bit(unsigned long nr,volatile unsigned long * addr)92 arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
93 {
94 asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
95 }
96
arch_xor_unlock_is_negative_byte(unsigned long mask,volatile unsigned long * addr)97 static __always_inline bool arch_xor_unlock_is_negative_byte(unsigned long mask,
98 volatile unsigned long *addr)
99 {
100 bool negative;
101 asm_inline volatile(LOCK_PREFIX "xorb %2,%1"
102 CC_SET(s)
103 : CC_OUT(s) (negative), WBYTE_ADDR(addr)
104 : "iq" ((char)mask) : "memory");
105 return negative;
106 }
107 #define arch_xor_unlock_is_negative_byte arch_xor_unlock_is_negative_byte
108
109 static __always_inline void
arch___clear_bit_unlock(long nr,volatile unsigned long * addr)110 arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
111 {
112 arch___clear_bit(nr, addr);
113 }
114
115 static __always_inline void
arch___change_bit(unsigned long nr,volatile unsigned long * addr)116 arch___change_bit(unsigned long nr, volatile unsigned long *addr)
117 {
118 asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
119 }
120
121 static __always_inline void
arch_change_bit(long nr,volatile unsigned long * addr)122 arch_change_bit(long nr, volatile unsigned long *addr)
123 {
124 if (__builtin_constant_p(nr)) {
125 asm_inline volatile(LOCK_PREFIX "xorb %b1,%0"
126 : CONST_MASK_ADDR(nr, addr)
127 : "iq" (CONST_MASK(nr)));
128 } else {
129 asm_inline volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
130 : : RLONG_ADDR(addr), "Ir" (nr) : "memory");
131 }
132 }
133
134 static __always_inline bool
arch_test_and_set_bit(long nr,volatile unsigned long * addr)135 arch_test_and_set_bit(long nr, volatile unsigned long *addr)
136 {
137 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
138 }
139
140 static __always_inline bool
arch_test_and_set_bit_lock(long nr,volatile unsigned long * addr)141 arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
142 {
143 return arch_test_and_set_bit(nr, addr);
144 }
145
146 static __always_inline bool
arch___test_and_set_bit(unsigned long nr,volatile unsigned long * addr)147 arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
148 {
149 bool oldbit;
150
151 asm(__ASM_SIZE(bts) " %2,%1"
152 CC_SET(c)
153 : CC_OUT(c) (oldbit)
154 : ADDR, "Ir" (nr) : "memory");
155 return oldbit;
156 }
157
158 static __always_inline bool
arch_test_and_clear_bit(long nr,volatile unsigned long * addr)159 arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
160 {
161 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
162 }
163
164 /*
165 * Note: the operation is performed atomically with respect to
166 * the local CPU, but not other CPUs. Portable code should not
167 * rely on this behaviour.
168 * KVM relies on this behaviour on x86 for modifying memory that is also
169 * accessed from a hypervisor on the same CPU if running in a VM: don't change
170 * this without also updating arch/x86/kernel/kvm.c
171 */
172 static __always_inline bool
arch___test_and_clear_bit(unsigned long nr,volatile unsigned long * addr)173 arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
174 {
175 bool oldbit;
176
177 asm volatile(__ASM_SIZE(btr) " %2,%1"
178 CC_SET(c)
179 : CC_OUT(c) (oldbit)
180 : ADDR, "Ir" (nr) : "memory");
181 return oldbit;
182 }
183
184 static __always_inline bool
arch___test_and_change_bit(unsigned long nr,volatile unsigned long * addr)185 arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
186 {
187 bool oldbit;
188
189 asm volatile(__ASM_SIZE(btc) " %2,%1"
190 CC_SET(c)
191 : CC_OUT(c) (oldbit)
192 : ADDR, "Ir" (nr) : "memory");
193
194 return oldbit;
195 }
196
197 static __always_inline bool
arch_test_and_change_bit(long nr,volatile unsigned long * addr)198 arch_test_and_change_bit(long nr, volatile unsigned long *addr)
199 {
200 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
201 }
202
constant_test_bit(long nr,const volatile unsigned long * addr)203 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
204 {
205 return ((1UL << (nr & (BITS_PER_LONG-1))) &
206 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
207 }
208
constant_test_bit_acquire(long nr,const volatile unsigned long * addr)209 static __always_inline bool constant_test_bit_acquire(long nr, const volatile unsigned long *addr)
210 {
211 bool oldbit;
212
213 asm volatile("testb %2,%1"
214 CC_SET(nz)
215 : CC_OUT(nz) (oldbit)
216 : "m" (((unsigned char *)addr)[nr >> 3]),
217 "i" (1 << (nr & 7))
218 :"memory");
219
220 return oldbit;
221 }
222
variable_test_bit(long nr,volatile const unsigned long * addr)223 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
224 {
225 bool oldbit;
226
227 asm volatile(__ASM_SIZE(bt) " %2,%1"
228 CC_SET(c)
229 : CC_OUT(c) (oldbit)
230 : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
231
232 return oldbit;
233 }
234
235 static __always_inline bool
arch_test_bit(unsigned long nr,const volatile unsigned long * addr)236 arch_test_bit(unsigned long nr, const volatile unsigned long *addr)
237 {
238 return __builtin_constant_p(nr) ? constant_test_bit(nr, addr) :
239 variable_test_bit(nr, addr);
240 }
241
242 static __always_inline bool
arch_test_bit_acquire(unsigned long nr,const volatile unsigned long * addr)243 arch_test_bit_acquire(unsigned long nr, const volatile unsigned long *addr)
244 {
245 return __builtin_constant_p(nr) ? constant_test_bit_acquire(nr, addr) :
246 variable_test_bit(nr, addr);
247 }
248
variable__ffs(unsigned long word)249 static __always_inline unsigned long variable__ffs(unsigned long word)
250 {
251 asm("tzcnt %1,%0"
252 : "=r" (word)
253 : ASM_INPUT_RM (word));
254 return word;
255 }
256
257 /**
258 * __ffs - find first set bit in word
259 * @word: The word to search
260 *
261 * Undefined if no bit exists, so code should check against 0 first.
262 */
263 #define __ffs(word) \
264 (__builtin_constant_p(word) ? \
265 (unsigned long)__builtin_ctzl(word) : \
266 variable__ffs(word))
267
variable_ffz(unsigned long word)268 static __always_inline unsigned long variable_ffz(unsigned long word)
269 {
270 return variable__ffs(~word);
271 }
272
273 /**
274 * ffz - find first zero bit in word
275 * @word: The word to search
276 *
277 * Undefined if no zero exists, so code should check against ~0UL first.
278 */
279 #define ffz(word) \
280 (__builtin_constant_p(word) ? \
281 (unsigned long)__builtin_ctzl(~word) : \
282 variable_ffz(word))
283
284 /*
285 * __fls: find last set bit in word
286 * @word: The word to search
287 *
288 * Undefined if no set bit exists, so code should check against 0 first.
289 */
__fls(unsigned long word)290 static __always_inline unsigned long __fls(unsigned long word)
291 {
292 if (__builtin_constant_p(word))
293 return BITS_PER_LONG - 1 - __builtin_clzl(word);
294
295 asm("bsr %1,%0"
296 : "=r" (word)
297 : ASM_INPUT_RM (word));
298 return word;
299 }
300
301 #undef ADDR
302
303 #ifdef __KERNEL__
variable_ffs(int x)304 static __always_inline int variable_ffs(int x)
305 {
306 int r;
307
308 #ifdef CONFIG_X86_64
309 /*
310 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
311 * dest reg is undefined if x==0, but their CPU architect says its
312 * value is written to set it to the same as before, except that the
313 * top 32 bits will be cleared.
314 *
315 * We cannot do this on 32 bits because at the very least some
316 * 486 CPUs did not behave this way.
317 */
318 asm("bsfl %1,%0"
319 : "=r" (r)
320 : ASM_INPUT_RM (x), "0" (-1));
321 #elif defined(CONFIG_X86_CMOV)
322 asm("bsfl %1,%0\n\t"
323 "cmovzl %2,%0"
324 : "=&r" (r) : "rm" (x), "r" (-1));
325 #else
326 asm("bsfl %1,%0\n\t"
327 "jnz 1f\n\t"
328 "movl $-1,%0\n"
329 "1:" : "=r" (r) : "rm" (x));
330 #endif
331 return r + 1;
332 }
333
334 /**
335 * ffs - find first set bit in word
336 * @x: the word to search
337 *
338 * This is defined the same way as the libc and compiler builtin ffs
339 * routines, therefore differs in spirit from the other bitops.
340 *
341 * ffs(value) returns 0 if value is 0 or the position of the first
342 * set bit if value is nonzero. The first (least significant) bit
343 * is at position 1.
344 */
345 #define ffs(x) (__builtin_constant_p(x) ? __builtin_ffs(x) : variable_ffs(x))
346
347 /**
348 * fls - find last set bit in word
349 * @x: the word to search
350 *
351 * This is defined in a similar way as the libc and compiler builtin
352 * ffs, but returns the position of the most significant set bit.
353 *
354 * fls(value) returns 0 if value is 0 or the position of the last
355 * set bit if value is nonzero. The last (most significant) bit is
356 * at position 32.
357 */
fls(unsigned int x)358 static __always_inline int fls(unsigned int x)
359 {
360 int r;
361
362 if (__builtin_constant_p(x))
363 return x ? 32 - __builtin_clz(x) : 0;
364
365 #ifdef CONFIG_X86_64
366 /*
367 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
368 * dest reg is undefined if x==0, but their CPU architect says its
369 * value is written to set it to the same as before, except that the
370 * top 32 bits will be cleared.
371 *
372 * We cannot do this on 32 bits because at the very least some
373 * 486 CPUs did not behave this way.
374 */
375 asm("bsrl %1,%0"
376 : "=r" (r)
377 : ASM_INPUT_RM (x), "0" (-1));
378 #elif defined(CONFIG_X86_CMOV)
379 asm("bsrl %1,%0\n\t"
380 "cmovzl %2,%0"
381 : "=&r" (r) : "rm" (x), "rm" (-1));
382 #else
383 asm("bsrl %1,%0\n\t"
384 "jnz 1f\n\t"
385 "movl $-1,%0\n"
386 "1:" : "=r" (r) : "rm" (x));
387 #endif
388 return r + 1;
389 }
390
391 /**
392 * fls64 - find last set bit in a 64-bit word
393 * @x: the word to search
394 *
395 * This is defined in a similar way as the libc and compiler builtin
396 * ffsll, but returns the position of the most significant set bit.
397 *
398 * fls64(value) returns 0 if value is 0 or the position of the last
399 * set bit if value is nonzero. The last (most significant) bit is
400 * at position 64.
401 */
402 #ifdef CONFIG_X86_64
fls64(__u64 x)403 static __always_inline int fls64(__u64 x)
404 {
405 int bitpos = -1;
406
407 if (__builtin_constant_p(x))
408 return x ? 64 - __builtin_clzll(x) : 0;
409 /*
410 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
411 * dest reg is undefined if x==0, but their CPU architect says its
412 * value is written to set it to the same as before.
413 */
414 asm("bsrq %1,%q0"
415 : "+r" (bitpos)
416 : ASM_INPUT_RM (x));
417 return bitpos + 1;
418 }
419 #else
420 #include <asm-generic/bitops/fls64.h>
421 #endif
422
423 #include <asm-generic/bitops/sched.h>
424
425 #include <asm/arch_hweight.h>
426
427 #include <asm-generic/bitops/const_hweight.h>
428
429 #include <asm-generic/bitops/instrumented-atomic.h>
430 #include <asm-generic/bitops/instrumented-non-atomic.h>
431 #include <asm-generic/bitops/instrumented-lock.h>
432
433 #include <asm-generic/bitops/le.h>
434
435 #include <asm-generic/bitops/ext2-atomic-setbit.h>
436
437 #endif /* __KERNEL__ */
438 #endif /* _ASM_X86_BITOPS_H */
439