xref: /linux/block/blk.h (revision 2988dfed8a5dc752921a5790b81c06e781af51ce)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4 
5 #include <linux/bio-integrity.h>
6 #include <linux/blk-crypto.h>
7 #include <linux/lockdep.h>
8 #include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
9 #include <linux/sched/sysctl.h>
10 #include <linux/timekeeping.h>
11 #include <xen/xen.h>
12 #include "blk-crypto-internal.h"
13 
14 struct elevator_type;
15 struct elevator_tags;
16 
17 /*
18  * Default upper limit for the software max_sectors limit used for regular I/Os.
19  * This can be increased through sysfs.
20  *
21  * This should not be confused with the max_hw_sector limit that is entirely
22  * controlled by the block device driver, usually based on hardware limits.
23  */
24 #define BLK_DEF_MAX_SECTORS_CAP	(SZ_4M >> SECTOR_SHIFT)
25 
26 #define	BLK_DEV_MAX_SECTORS	(LLONG_MAX >> 9)
27 #define	BLK_MIN_SEGMENT_SIZE	4096
28 
29 /* Max future timer expiry for timeouts */
30 #define BLK_MAX_TIMEOUT		(5 * HZ)
31 
32 extern struct dentry *blk_debugfs_root;
33 
34 struct blk_flush_queue {
35 	spinlock_t		mq_flush_lock;
36 	unsigned int		flush_pending_idx:1;
37 	unsigned int		flush_running_idx:1;
38 	blk_status_t 		rq_status;
39 	unsigned long		flush_pending_since;
40 	struct list_head	flush_queue[2];
41 	unsigned long		flush_data_in_flight;
42 	struct request		*flush_rq;
43 };
44 
45 bool is_flush_rq(struct request *req);
46 
47 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
48 					      gfp_t flags);
49 void blk_free_flush_queue(struct blk_flush_queue *q);
50 
51 bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
52 bool blk_queue_start_drain(struct request_queue *q);
53 bool __blk_freeze_queue_start(struct request_queue *q,
54 			      struct task_struct *owner);
55 int __bio_queue_enter(struct request_queue *q, struct bio *bio);
56 void submit_bio_noacct_nocheck(struct bio *bio);
57 void bio_await_chain(struct bio *bio);
58 
blk_try_enter_queue(struct request_queue * q,bool pm)59 static inline bool blk_try_enter_queue(struct request_queue *q, bool pm)
60 {
61 	rcu_read_lock();
62 	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
63 		goto fail;
64 
65 	/*
66 	 * The code that increments the pm_only counter must ensure that the
67 	 * counter is globally visible before the queue is unfrozen.
68 	 */
69 	if (blk_queue_pm_only(q) &&
70 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
71 		goto fail_put;
72 
73 	rcu_read_unlock();
74 	return true;
75 
76 fail_put:
77 	blk_queue_exit(q);
78 fail:
79 	rcu_read_unlock();
80 	return false;
81 }
82 
bio_queue_enter(struct bio * bio)83 static inline int bio_queue_enter(struct bio *bio)
84 {
85 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
86 
87 	if (blk_try_enter_queue(q, false)) {
88 		rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
89 		rwsem_release(&q->io_lockdep_map, _RET_IP_);
90 		return 0;
91 	}
92 	return __bio_queue_enter(q, bio);
93 }
94 
blk_wait_io(struct completion * done)95 static inline void blk_wait_io(struct completion *done)
96 {
97 	/* Prevent hang_check timer from firing at us during very long I/O */
98 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
99 
100 	if (timeout)
101 		while (!wait_for_completion_io_timeout(done, timeout))
102 			;
103 	else
104 		wait_for_completion_io(done);
105 }
106 
107 struct block_device *blkdev_get_no_open(dev_t dev, bool autoload);
108 void blkdev_put_no_open(struct block_device *bdev);
109 
110 #define BIO_INLINE_VECS 4
111 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
112 		gfp_t gfp_mask);
113 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
114 
115 bool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
116 		struct page *page, unsigned len, unsigned offset);
117 
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)118 static inline bool biovec_phys_mergeable(struct request_queue *q,
119 		struct bio_vec *vec1, struct bio_vec *vec2)
120 {
121 	unsigned long mask = queue_segment_boundary(q);
122 	phys_addr_t addr1 = bvec_phys(vec1);
123 	phys_addr_t addr2 = bvec_phys(vec2);
124 
125 	/*
126 	 * Merging adjacent physical pages may not work correctly under KMSAN
127 	 * if their metadata pages aren't adjacent. Just disable merging.
128 	 */
129 	if (IS_ENABLED(CONFIG_KMSAN))
130 		return false;
131 
132 	if (addr1 + vec1->bv_len != addr2)
133 		return false;
134 	if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
135 		return false;
136 	if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
137 		return false;
138 	return true;
139 }
140 
__bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)141 static inline bool __bvec_gap_to_prev(const struct queue_limits *lim,
142 		struct bio_vec *bprv, unsigned int offset)
143 {
144 	return (offset & lim->virt_boundary_mask) ||
145 		((bprv->bv_offset + bprv->bv_len) & lim->virt_boundary_mask);
146 }
147 
148 /*
149  * Check if adding a bio_vec after bprv with offset would create a gap in
150  * the SG list. Most drivers don't care about this, but some do.
151  */
bvec_gap_to_prev(const struct queue_limits * lim,struct bio_vec * bprv,unsigned int offset)152 static inline bool bvec_gap_to_prev(const struct queue_limits *lim,
153 		struct bio_vec *bprv, unsigned int offset)
154 {
155 	if (!lim->virt_boundary_mask)
156 		return false;
157 	return __bvec_gap_to_prev(lim, bprv, offset);
158 }
159 
rq_mergeable(struct request * rq)160 static inline bool rq_mergeable(struct request *rq)
161 {
162 	if (blk_rq_is_passthrough(rq))
163 		return false;
164 
165 	if (req_op(rq) == REQ_OP_FLUSH)
166 		return false;
167 
168 	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
169 		return false;
170 
171 	if (req_op(rq) == REQ_OP_ZONE_APPEND)
172 		return false;
173 
174 	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
175 		return false;
176 	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
177 		return false;
178 
179 	return true;
180 }
181 
182 /*
183  * There are two different ways to handle DISCARD merges:
184  *  1) If max_discard_segments > 1, the driver treats every bio as a range and
185  *     send the bios to controller together. The ranges don't need to be
186  *     contiguous.
187  *  2) Otherwise, the request will be normal read/write requests.  The ranges
188  *     need to be contiguous.
189  */
blk_discard_mergable(struct request * req)190 static inline bool blk_discard_mergable(struct request *req)
191 {
192 	if (req_op(req) == REQ_OP_DISCARD &&
193 	    queue_max_discard_segments(req->q) > 1)
194 		return true;
195 	return false;
196 }
197 
blk_rq_get_max_segments(struct request * rq)198 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
199 {
200 	if (req_op(rq) == REQ_OP_DISCARD)
201 		return queue_max_discard_segments(rq->q);
202 	return queue_max_segments(rq->q);
203 }
204 
blk_queue_get_max_sectors(struct request * rq)205 static inline unsigned int blk_queue_get_max_sectors(struct request *rq)
206 {
207 	struct request_queue *q = rq->q;
208 	enum req_op op = req_op(rq);
209 
210 	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
211 		return min(q->limits.max_discard_sectors,
212 			   UINT_MAX >> SECTOR_SHIFT);
213 
214 	if (unlikely(op == REQ_OP_WRITE_ZEROES))
215 		return q->limits.max_write_zeroes_sectors;
216 
217 	if (rq->cmd_flags & REQ_ATOMIC)
218 		return q->limits.atomic_write_max_sectors;
219 
220 	return q->limits.max_sectors;
221 }
222 
223 #ifdef CONFIG_BLK_DEV_INTEGRITY
224 void blk_flush_integrity(void);
225 void bio_integrity_free(struct bio *bio);
226 
227 /*
228  * Integrity payloads can either be owned by the submitter, in which case
229  * bio_uninit will free them, or owned and generated by the block layer,
230  * in which case we'll verify them here (for reads) and free them before
231  * the bio is handed back to the submitted.
232  */
233 bool __bio_integrity_endio(struct bio *bio);
bio_integrity_endio(struct bio * bio)234 static inline bool bio_integrity_endio(struct bio *bio)
235 {
236 	struct bio_integrity_payload *bip = bio_integrity(bio);
237 
238 	if (bip && (bip->bip_flags & BIP_BLOCK_INTEGRITY))
239 		return __bio_integrity_endio(bio);
240 	return true;
241 }
242 
243 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
244 		struct request *);
245 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
246 		struct bio *);
247 
integrity_req_gap_back_merge(struct request * req,struct bio * next)248 static inline bool integrity_req_gap_back_merge(struct request *req,
249 		struct bio *next)
250 {
251 	struct bio_integrity_payload *bip = bio_integrity(req->bio);
252 	struct bio_integrity_payload *bip_next = bio_integrity(next);
253 
254 	return bvec_gap_to_prev(&req->q->limits,
255 				&bip->bip_vec[bip->bip_vcnt - 1],
256 				bip_next->bip_vec[0].bv_offset);
257 }
258 
integrity_req_gap_front_merge(struct request * req,struct bio * bio)259 static inline bool integrity_req_gap_front_merge(struct request *req,
260 		struct bio *bio)
261 {
262 	struct bio_integrity_payload *bip = bio_integrity(bio);
263 	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
264 
265 	return bvec_gap_to_prev(&req->q->limits,
266 				&bip->bip_vec[bip->bip_vcnt - 1],
267 				bip_next->bip_vec[0].bv_offset);
268 }
269 
270 extern const struct attribute_group blk_integrity_attr_group;
271 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)272 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
273 		struct request *r1, struct request *r2)
274 {
275 	return true;
276 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)277 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
278 		struct request *r, struct bio *b)
279 {
280 	return true;
281 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)282 static inline bool integrity_req_gap_back_merge(struct request *req,
283 		struct bio *next)
284 {
285 	return false;
286 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)287 static inline bool integrity_req_gap_front_merge(struct request *req,
288 		struct bio *bio)
289 {
290 	return false;
291 }
292 
blk_flush_integrity(void)293 static inline void blk_flush_integrity(void)
294 {
295 }
bio_integrity_endio(struct bio * bio)296 static inline bool bio_integrity_endio(struct bio *bio)
297 {
298 	return true;
299 }
bio_integrity_free(struct bio * bio)300 static inline void bio_integrity_free(struct bio *bio)
301 {
302 }
303 #endif /* CONFIG_BLK_DEV_INTEGRITY */
304 
305 unsigned long blk_rq_timeout(unsigned long timeout);
306 void blk_add_timer(struct request *req);
307 
308 enum bio_merge_status {
309 	BIO_MERGE_OK,
310 	BIO_MERGE_NONE,
311 	BIO_MERGE_FAILED,
312 };
313 
314 enum bio_merge_status bio_attempt_back_merge(struct request *req,
315 		struct bio *bio, unsigned int nr_segs);
316 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
317 		unsigned int nr_segs);
318 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
319 			struct bio *bio, unsigned int nr_segs);
320 
321 /*
322  * Plug flush limits
323  */
324 #define BLK_MAX_REQUEST_COUNT	32
325 #define BLK_PLUG_FLUSH_SIZE	(128 * 1024)
326 
327 /*
328  * Internal elevator interface
329  */
330 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
331 
332 bool blk_insert_flush(struct request *rq);
333 
334 void elv_update_nr_hw_queues(struct request_queue *q, struct elevator_type *e,
335 		struct elevator_tags *t);
336 void elevator_set_default(struct request_queue *q);
337 void elevator_set_none(struct request_queue *q);
338 
339 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
340 		char *buf);
341 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
342 		char *buf);
343 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
344 		char *buf);
345 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
346 		char *buf);
347 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
348 		const char *buf, size_t count);
349 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
350 ssize_t part_timeout_store(struct device *, struct device_attribute *,
351 				const char *, size_t);
352 
353 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
354 		unsigned *nsegs);
355 struct bio *bio_split_write_zeroes(struct bio *bio,
356 		const struct queue_limits *lim, unsigned *nsegs);
357 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
358 		unsigned *nr_segs);
359 struct bio *bio_split_zone_append(struct bio *bio,
360 		const struct queue_limits *lim, unsigned *nr_segs);
361 
362 /*
363  * All drivers must accept single-segments bios that are smaller than PAGE_SIZE.
364  *
365  * This is a quick and dirty check that relies on the fact that bi_io_vec[0] is
366  * always valid if a bio has data.  The check might lead to occasional false
367  * positives when bios are cloned, but compared to the performance impact of
368  * cloned bios themselves the loop below doesn't matter anyway.
369  */
bio_may_need_split(struct bio * bio,const struct queue_limits * lim)370 static inline bool bio_may_need_split(struct bio *bio,
371 		const struct queue_limits *lim)
372 {
373 	if (lim->chunk_sectors)
374 		return true;
375 	if (bio->bi_vcnt != 1)
376 		return true;
377 	return bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset >
378 		lim->min_segment_size;
379 }
380 
381 /**
382  * __bio_split_to_limits - split a bio to fit the queue limits
383  * @bio:     bio to be split
384  * @lim:     queue limits to split based on
385  * @nr_segs: returns the number of segments in the returned bio
386  *
387  * Check if @bio needs splitting based on the queue limits, and if so split off
388  * a bio fitting the limits from the beginning of @bio and return it.  @bio is
389  * shortened to the remainder and re-submitted.
390  *
391  * The split bio is allocated from @q->bio_split, which is provided by the
392  * block layer.
393  */
__bio_split_to_limits(struct bio * bio,const struct queue_limits * lim,unsigned int * nr_segs)394 static inline struct bio *__bio_split_to_limits(struct bio *bio,
395 		const struct queue_limits *lim, unsigned int *nr_segs)
396 {
397 	switch (bio_op(bio)) {
398 	case REQ_OP_READ:
399 	case REQ_OP_WRITE:
400 		if (bio_may_need_split(bio, lim))
401 			return bio_split_rw(bio, lim, nr_segs);
402 		*nr_segs = 1;
403 		return bio;
404 	case REQ_OP_ZONE_APPEND:
405 		return bio_split_zone_append(bio, lim, nr_segs);
406 	case REQ_OP_DISCARD:
407 	case REQ_OP_SECURE_ERASE:
408 		return bio_split_discard(bio, lim, nr_segs);
409 	case REQ_OP_WRITE_ZEROES:
410 		return bio_split_write_zeroes(bio, lim, nr_segs);
411 	default:
412 		/* other operations can't be split */
413 		*nr_segs = 0;
414 		return bio;
415 	}
416 }
417 
418 /**
419  * get_max_segment_size() - maximum number of bytes to add as a single segment
420  * @lim: Request queue limits.
421  * @paddr: address of the range to add
422  * @len: maximum length available to add at @paddr
423  *
424  * Returns the maximum number of bytes of the range starting at @paddr that can
425  * be added to a single segment.
426  */
get_max_segment_size(const struct queue_limits * lim,phys_addr_t paddr,unsigned int len)427 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
428 		phys_addr_t paddr, unsigned int len)
429 {
430 	/*
431 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
432 	 * after having calculated the minimum.
433 	 */
434 	return min_t(unsigned long, len,
435 		min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
436 		    (unsigned long)lim->max_segment_size - 1) + 1);
437 }
438 
439 int ll_back_merge_fn(struct request *req, struct bio *bio,
440 		unsigned int nr_segs);
441 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
442 				struct request *next);
443 unsigned int blk_recalc_rq_segments(struct request *rq);
444 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
445 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
446 
447 int blk_set_default_limits(struct queue_limits *lim);
448 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
449 		struct queue_limits *lim);
450 int blk_dev_init(void);
451 
452 void update_io_ticks(struct block_device *part, unsigned long now, bool end);
453 
req_set_nomerge(struct request_queue * q,struct request * req)454 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
455 {
456 	req->cmd_flags |= REQ_NOMERGE;
457 	if (req == q->last_merge)
458 		q->last_merge = NULL;
459 }
460 
461 /*
462  * Internal io_context interface
463  */
464 struct io_cq *ioc_find_get_icq(struct request_queue *q);
465 struct io_cq *ioc_lookup_icq(struct request_queue *q);
466 #ifdef CONFIG_BLK_ICQ
467 void ioc_clear_queue(struct request_queue *q);
468 #else
ioc_clear_queue(struct request_queue * q)469 static inline void ioc_clear_queue(struct request_queue *q)
470 {
471 }
472 #endif /* CONFIG_BLK_ICQ */
473 
474 #ifdef CONFIG_BLK_DEV_ZONED
475 void disk_init_zone_resources(struct gendisk *disk);
476 void disk_free_zone_resources(struct gendisk *disk);
bio_zone_write_plugging(struct bio * bio)477 static inline bool bio_zone_write_plugging(struct bio *bio)
478 {
479 	return bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
480 }
blk_req_bio_is_zone_append(struct request * rq,struct bio * bio)481 static inline bool blk_req_bio_is_zone_append(struct request *rq,
482 					      struct bio *bio)
483 {
484 	return req_op(rq) == REQ_OP_ZONE_APPEND ||
485 	       bio_flagged(bio, BIO_EMULATES_ZONE_APPEND);
486 }
487 void blk_zone_write_plug_bio_merged(struct bio *bio);
488 void blk_zone_write_plug_init_request(struct request *rq);
489 void blk_zone_append_update_request_bio(struct request *rq, struct bio *bio);
490 void blk_zone_write_plug_bio_endio(struct bio *bio);
blk_zone_bio_endio(struct bio * bio)491 static inline void blk_zone_bio_endio(struct bio *bio)
492 {
493 	/*
494 	 * For write BIOs to zoned devices, signal the completion of the BIO so
495 	 * that the next write BIO can be submitted by zone write plugging.
496 	 */
497 	if (bio_zone_write_plugging(bio))
498 		blk_zone_write_plug_bio_endio(bio);
499 }
500 
501 void blk_zone_write_plug_finish_request(struct request *rq);
blk_zone_finish_request(struct request * rq)502 static inline void blk_zone_finish_request(struct request *rq)
503 {
504 	if (rq->rq_flags & RQF_ZONE_WRITE_PLUGGING)
505 		blk_zone_write_plug_finish_request(rq);
506 }
507 int blkdev_report_zones_ioctl(struct block_device *bdev, unsigned int cmd,
508 		unsigned long arg);
509 int blkdev_zone_mgmt_ioctl(struct block_device *bdev, blk_mode_t mode,
510 		unsigned int cmd, unsigned long arg);
511 #else /* CONFIG_BLK_DEV_ZONED */
disk_init_zone_resources(struct gendisk * disk)512 static inline void disk_init_zone_resources(struct gendisk *disk)
513 {
514 }
disk_free_zone_resources(struct gendisk * disk)515 static inline void disk_free_zone_resources(struct gendisk *disk)
516 {
517 }
bio_zone_write_plugging(struct bio * bio)518 static inline bool bio_zone_write_plugging(struct bio *bio)
519 {
520 	return false;
521 }
blk_req_bio_is_zone_append(struct request * req,struct bio * bio)522 static inline bool blk_req_bio_is_zone_append(struct request *req,
523 					      struct bio *bio)
524 {
525 	return false;
526 }
blk_zone_write_plug_bio_merged(struct bio * bio)527 static inline void blk_zone_write_plug_bio_merged(struct bio *bio)
528 {
529 }
blk_zone_write_plug_init_request(struct request * rq)530 static inline void blk_zone_write_plug_init_request(struct request *rq)
531 {
532 }
blk_zone_append_update_request_bio(struct request * rq,struct bio * bio)533 static inline void blk_zone_append_update_request_bio(struct request *rq,
534 						      struct bio *bio)
535 {
536 }
blk_zone_bio_endio(struct bio * bio)537 static inline void blk_zone_bio_endio(struct bio *bio)
538 {
539 }
blk_zone_finish_request(struct request * rq)540 static inline void blk_zone_finish_request(struct request *rq)
541 {
542 }
blkdev_report_zones_ioctl(struct block_device * bdev,unsigned int cmd,unsigned long arg)543 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
544 		unsigned int cmd, unsigned long arg)
545 {
546 	return -ENOTTY;
547 }
blkdev_zone_mgmt_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)548 static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev,
549 		blk_mode_t mode, unsigned int cmd, unsigned long arg)
550 {
551 	return -ENOTTY;
552 }
553 #endif /* CONFIG_BLK_DEV_ZONED */
554 
555 struct block_device *bdev_alloc(struct gendisk *disk, u8 partno);
556 void bdev_add(struct block_device *bdev, dev_t dev);
557 void bdev_unhash(struct block_device *bdev);
558 void bdev_drop(struct block_device *bdev);
559 
560 int blk_alloc_ext_minor(void);
561 void blk_free_ext_minor(unsigned int minor);
562 #define ADDPART_FLAG_NONE	0
563 #define ADDPART_FLAG_RAID	1
564 #define ADDPART_FLAG_WHOLEDISK	2
565 #define ADDPART_FLAG_READONLY	4
566 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
567 		sector_t length);
568 int bdev_del_partition(struct gendisk *disk, int partno);
569 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
570 		sector_t length);
571 void drop_partition(struct block_device *part);
572 
573 void bdev_set_nr_sectors(struct block_device *bdev, sector_t sectors);
574 
575 struct gendisk *__alloc_disk_node(struct request_queue *q, int node_id,
576 		struct lock_class_key *lkclass);
577 
578 /*
579  * Clean up a page appropriately, where the page may be pinned, may have a
580  * ref taken on it or neither.
581  */
bio_release_page(struct bio * bio,struct page * page)582 static inline void bio_release_page(struct bio *bio, struct page *page)
583 {
584 	if (bio_flagged(bio, BIO_PAGE_PINNED))
585 		unpin_user_page(page);
586 }
587 
588 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id);
589 
590 int disk_scan_partitions(struct gendisk *disk, blk_mode_t mode);
591 
592 int disk_alloc_events(struct gendisk *disk);
593 void disk_add_events(struct gendisk *disk);
594 void disk_del_events(struct gendisk *disk);
595 void disk_release_events(struct gendisk *disk);
596 void disk_block_events(struct gendisk *disk);
597 void disk_unblock_events(struct gendisk *disk);
598 void disk_flush_events(struct gendisk *disk, unsigned int mask);
599 extern struct device_attribute dev_attr_events;
600 extern struct device_attribute dev_attr_events_async;
601 extern struct device_attribute dev_attr_events_poll_msecs;
602 
603 extern struct attribute_group blk_trace_attr_group;
604 
605 blk_mode_t file_to_blk_mode(struct file *file);
606 int truncate_bdev_range(struct block_device *bdev, blk_mode_t mode,
607 		loff_t lstart, loff_t lend);
608 long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
609 int blkdev_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags);
610 long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg);
611 
612 extern const struct address_space_operations def_blk_aops;
613 
614 int disk_register_independent_access_ranges(struct gendisk *disk);
615 void disk_unregister_independent_access_ranges(struct gendisk *disk);
616 
617 #ifdef CONFIG_FAIL_MAKE_REQUEST
618 bool should_fail_request(struct block_device *part, unsigned int bytes);
619 #else /* CONFIG_FAIL_MAKE_REQUEST */
should_fail_request(struct block_device * part,unsigned int bytes)620 static inline bool should_fail_request(struct block_device *part,
621 					unsigned int bytes)
622 {
623 	return false;
624 }
625 #endif /* CONFIG_FAIL_MAKE_REQUEST */
626 
627 /*
628  * Optimized request reference counting. Ideally we'd make timeouts be more
629  * clever, as that's the only reason we need references at all... But until
630  * this happens, this is faster than using refcount_t. Also see:
631  *
632  * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count")
633  */
634 #define req_ref_zero_or_close_to_overflow(req)	\
635 	((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u)
636 
req_ref_inc_not_zero(struct request * req)637 static inline bool req_ref_inc_not_zero(struct request *req)
638 {
639 	return atomic_inc_not_zero(&req->ref);
640 }
641 
req_ref_put_and_test(struct request * req)642 static inline bool req_ref_put_and_test(struct request *req)
643 {
644 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
645 	return atomic_dec_and_test(&req->ref);
646 }
647 
req_ref_set(struct request * req,int value)648 static inline void req_ref_set(struct request *req, int value)
649 {
650 	atomic_set(&req->ref, value);
651 }
652 
req_ref_read(struct request * req)653 static inline int req_ref_read(struct request *req)
654 {
655 	return atomic_read(&req->ref);
656 }
657 
blk_time_get_ns(void)658 static inline u64 blk_time_get_ns(void)
659 {
660 	struct blk_plug *plug = current->plug;
661 
662 	if (!plug || !in_task())
663 		return ktime_get_ns();
664 
665 	/*
666 	 * 0 could very well be a valid time, but rather than flag "this is
667 	 * a valid timestamp" separately, just accept that we'll do an extra
668 	 * ktime_get_ns() if we just happen to get 0 as the current time.
669 	 */
670 	if (!plug->cur_ktime) {
671 		plug->cur_ktime = ktime_get_ns();
672 		current->flags |= PF_BLOCK_TS;
673 	}
674 	return plug->cur_ktime;
675 }
676 
blk_time_get(void)677 static inline ktime_t blk_time_get(void)
678 {
679 	return ns_to_ktime(blk_time_get_ns());
680 }
681 
682 /*
683  * From most significant bit:
684  * 1 bit: reserved for other usage, see below
685  * 12 bits: original size of bio
686  * 51 bits: issue time of bio
687  */
688 #define BIO_ISSUE_RES_BITS      1
689 #define BIO_ISSUE_SIZE_BITS     12
690 #define BIO_ISSUE_RES_SHIFT     (64 - BIO_ISSUE_RES_BITS)
691 #define BIO_ISSUE_SIZE_SHIFT    (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
692 #define BIO_ISSUE_TIME_MASK     ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
693 #define BIO_ISSUE_SIZE_MASK     \
694 	(((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
695 #define BIO_ISSUE_RES_MASK      (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
696 
697 /* Reserved bit for blk-throtl */
698 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
699 
__bio_issue_time(u64 time)700 static inline u64 __bio_issue_time(u64 time)
701 {
702 	return time & BIO_ISSUE_TIME_MASK;
703 }
704 
bio_issue_time(struct bio_issue * issue)705 static inline u64 bio_issue_time(struct bio_issue *issue)
706 {
707 	return __bio_issue_time(issue->value);
708 }
709 
bio_issue_size(struct bio_issue * issue)710 static inline sector_t bio_issue_size(struct bio_issue *issue)
711 {
712 	return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
713 }
714 
bio_issue_init(struct bio_issue * issue,sector_t size)715 static inline void bio_issue_init(struct bio_issue *issue,
716 				       sector_t size)
717 {
718 	size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
719 	issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
720 			(blk_time_get_ns() & BIO_ISSUE_TIME_MASK) |
721 			((u64)size << BIO_ISSUE_SIZE_SHIFT));
722 }
723 
724 void bdev_release(struct file *bdev_file);
725 int bdev_open(struct block_device *bdev, blk_mode_t mode, void *holder,
726 	      const struct blk_holder_ops *hops, struct file *bdev_file);
727 int bdev_permission(dev_t dev, blk_mode_t mode, void *holder);
728 
729 void blk_integrity_generate(struct bio *bio);
730 void blk_integrity_verify_iter(struct bio *bio, struct bvec_iter *saved_iter);
731 void blk_integrity_prepare(struct request *rq);
732 void blk_integrity_complete(struct request *rq, unsigned int nr_bytes);
733 
734 #ifdef CONFIG_LOCKDEP
blk_freeze_acquire_lock(struct request_queue * q)735 static inline void blk_freeze_acquire_lock(struct request_queue *q)
736 {
737 	if (!q->mq_freeze_disk_dead)
738 		rwsem_acquire(&q->io_lockdep_map, 0, 1, _RET_IP_);
739 	if (!q->mq_freeze_queue_dying)
740 		rwsem_acquire(&q->q_lockdep_map, 0, 1, _RET_IP_);
741 }
742 
blk_unfreeze_release_lock(struct request_queue * q)743 static inline void blk_unfreeze_release_lock(struct request_queue *q)
744 {
745 	if (!q->mq_freeze_queue_dying)
746 		rwsem_release(&q->q_lockdep_map, _RET_IP_);
747 	if (!q->mq_freeze_disk_dead)
748 		rwsem_release(&q->io_lockdep_map, _RET_IP_);
749 }
750 #else
blk_freeze_acquire_lock(struct request_queue * q)751 static inline void blk_freeze_acquire_lock(struct request_queue *q)
752 {
753 }
blk_unfreeze_release_lock(struct request_queue * q)754 static inline void blk_unfreeze_release_lock(struct request_queue *q)
755 {
756 }
757 #endif
758 
759 #endif /* BLK_INTERNAL_H */
760