xref: /qemu/linux-user/elfload.c (revision df6fe2abf2e990f767ce755d426bc439c7bba336)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "user/page-protection.h"
12 #include "exec/page-protection.h"
13 #include "exec/mmap-lock.h"
14 #include "exec/translation-block.h"
15 #include "exec/tswap.h"
16 #include "user/guest-base.h"
17 #include "user-internals.h"
18 #include "signal-common.h"
19 #include "loader.h"
20 #include "user-mmap.h"
21 #include "disas/disas.h"
22 #include "qemu/bitops.h"
23 #include "qemu/path.h"
24 #include "qemu/queue.h"
25 #include "qemu/guest-random.h"
26 #include "qemu/units.h"
27 #include "qemu/selfmap.h"
28 #include "qemu/lockable.h"
29 #include "qapi/error.h"
30 #include "qemu/error-report.h"
31 #include "target_signal.h"
32 #include "tcg/debuginfo.h"
33 
34 #ifdef TARGET_ARM
35 #include "target/arm/cpu-features.h"
36 #endif
37 
38 #ifdef _ARCH_PPC64
39 #undef ARCH_DLINFO
40 #undef ELF_PLATFORM
41 #undef ELF_HWCAP
42 #undef ELF_HWCAP2
43 #undef ELF_CLASS
44 #undef ELF_DATA
45 #undef ELF_ARCH
46 #endif
47 
48 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
49 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
50 #endif
51 
52 typedef struct {
53     const uint8_t *image;
54     const uint32_t *relocs;
55     unsigned image_size;
56     unsigned reloc_count;
57     unsigned sigreturn_ofs;
58     unsigned rt_sigreturn_ofs;
59 } VdsoImageInfo;
60 
61 #define ELF_OSABI   ELFOSABI_SYSV
62 
63 /* from personality.h */
64 
65 /*
66  * Flags for bug emulation.
67  *
68  * These occupy the top three bytes.
69  */
70 enum {
71     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
72     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
73                                            descriptors (signal handling) */
74     MMAP_PAGE_ZERO =    0x0100000,
75     ADDR_COMPAT_LAYOUT = 0x0200000,
76     READ_IMPLIES_EXEC = 0x0400000,
77     ADDR_LIMIT_32BIT =  0x0800000,
78     SHORT_INODE =       0x1000000,
79     WHOLE_SECONDS =     0x2000000,
80     STICKY_TIMEOUTS =   0x4000000,
81     ADDR_LIMIT_3GB =    0x8000000,
82 };
83 
84 /*
85  * Personality types.
86  *
87  * These go in the low byte.  Avoid using the top bit, it will
88  * conflict with error returns.
89  */
90 enum {
91     PER_LINUX =         0x0000,
92     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
93     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
94     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
95     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
96     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
97     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
98     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
99     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
100     PER_BSD =           0x0006,
101     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
102     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
103     PER_LINUX32 =       0x0008,
104     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
105     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
106     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
107     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
108     PER_RISCOS =        0x000c,
109     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
110     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
111     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
112     PER_HPUX =          0x0010,
113     PER_MASK =          0x00ff,
114 };
115 
116 /*
117  * Return the base personality without flags.
118  */
119 #define personality(pers)       (pers & PER_MASK)
120 
121 int info_is_fdpic(struct image_info *info)
122 {
123     return info->personality == PER_LINUX_FDPIC;
124 }
125 
126 /* this flag is uneffective under linux too, should be deleted */
127 #ifndef MAP_DENYWRITE
128 #define MAP_DENYWRITE 0
129 #endif
130 
131 /* should probably go in elf.h */
132 #ifndef ELIBBAD
133 #define ELIBBAD 80
134 #endif
135 
136 #if TARGET_BIG_ENDIAN
137 #define ELF_DATA        ELFDATA2MSB
138 #else
139 #define ELF_DATA        ELFDATA2LSB
140 #endif
141 
142 #ifdef TARGET_ABI_MIPSN32
143 typedef abi_ullong      target_elf_greg_t;
144 #define tswapreg(ptr)   tswap64(ptr)
145 #else
146 typedef abi_ulong       target_elf_greg_t;
147 #define tswapreg(ptr)   tswapal(ptr)
148 #endif
149 
150 #ifdef USE_UID16
151 typedef abi_ushort      target_uid_t;
152 typedef abi_ushort      target_gid_t;
153 #else
154 typedef abi_uint        target_uid_t;
155 typedef abi_uint        target_gid_t;
156 #endif
157 typedef abi_int         target_pid_t;
158 
159 #ifdef TARGET_I386
160 
161 #define ELF_HWCAP get_elf_hwcap()
162 
163 static uint32_t get_elf_hwcap(void)
164 {
165     X86CPU *cpu = X86_CPU(thread_cpu);
166 
167     return cpu->env.features[FEAT_1_EDX];
168 }
169 
170 #ifdef TARGET_X86_64
171 #define ELF_CLASS      ELFCLASS64
172 #define ELF_ARCH       EM_X86_64
173 
174 #define ELF_PLATFORM   "x86_64"
175 
176 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
177 {
178     regs->rax = 0;
179     regs->rsp = infop->start_stack;
180     regs->rip = infop->entry;
181 }
182 
183 #define ELF_NREG    27
184 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
185 
186 /*
187  * Note that ELF_NREG should be 29 as there should be place for
188  * TRAPNO and ERR "registers" as well but linux doesn't dump
189  * those.
190  *
191  * See linux kernel: arch/x86/include/asm/elf.h
192  */
193 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
194 {
195     (*regs)[0] = tswapreg(env->regs[15]);
196     (*regs)[1] = tswapreg(env->regs[14]);
197     (*regs)[2] = tswapreg(env->regs[13]);
198     (*regs)[3] = tswapreg(env->regs[12]);
199     (*regs)[4] = tswapreg(env->regs[R_EBP]);
200     (*regs)[5] = tswapreg(env->regs[R_EBX]);
201     (*regs)[6] = tswapreg(env->regs[11]);
202     (*regs)[7] = tswapreg(env->regs[10]);
203     (*regs)[8] = tswapreg(env->regs[9]);
204     (*regs)[9] = tswapreg(env->regs[8]);
205     (*regs)[10] = tswapreg(env->regs[R_EAX]);
206     (*regs)[11] = tswapreg(env->regs[R_ECX]);
207     (*regs)[12] = tswapreg(env->regs[R_EDX]);
208     (*regs)[13] = tswapreg(env->regs[R_ESI]);
209     (*regs)[14] = tswapreg(env->regs[R_EDI]);
210     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
211     (*regs)[16] = tswapreg(env->eip);
212     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
213     (*regs)[18] = tswapreg(env->eflags);
214     (*regs)[19] = tswapreg(env->regs[R_ESP]);
215     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
216     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
217     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
218     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
219     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
220     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
221     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
222 }
223 
224 #if ULONG_MAX > UINT32_MAX
225 #define INIT_GUEST_COMMPAGE
226 static bool init_guest_commpage(void)
227 {
228     /*
229      * The vsyscall page is at a high negative address aka kernel space,
230      * which means that we cannot actually allocate it with target_mmap.
231      * We still should be able to use page_set_flags, unless the user
232      * has specified -R reserved_va, which would trigger an assert().
233      */
234     if (reserved_va != 0 &&
235         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
236         error_report("Cannot allocate vsyscall page");
237         exit(EXIT_FAILURE);
238     }
239     page_set_flags(TARGET_VSYSCALL_PAGE,
240                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
241                    PAGE_EXEC | PAGE_VALID);
242     return true;
243 }
244 #endif
245 #else
246 
247 /*
248  * This is used to ensure we don't load something for the wrong architecture.
249  */
250 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
251 
252 /*
253  * These are used to set parameters in the core dumps.
254  */
255 #define ELF_CLASS       ELFCLASS32
256 #define ELF_ARCH        EM_386
257 
258 #define ELF_PLATFORM get_elf_platform()
259 #define EXSTACK_DEFAULT true
260 
261 static const char *get_elf_platform(void)
262 {
263     static char elf_platform[] = "i386";
264     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
265     if (family > 6) {
266         family = 6;
267     }
268     if (family >= 3) {
269         elf_platform[1] = '0' + family;
270     }
271     return elf_platform;
272 }
273 
274 static inline void init_thread(struct target_pt_regs *regs,
275                                struct image_info *infop)
276 {
277     regs->esp = infop->start_stack;
278     regs->eip = infop->entry;
279 
280     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
281        starts %edx contains a pointer to a function which might be
282        registered using `atexit'.  This provides a mean for the
283        dynamic linker to call DT_FINI functions for shared libraries
284        that have been loaded before the code runs.
285 
286        A value of 0 tells we have no such handler.  */
287     regs->edx = 0;
288 }
289 
290 #define ELF_NREG    17
291 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
292 
293 /*
294  * Note that ELF_NREG should be 19 as there should be place for
295  * TRAPNO and ERR "registers" as well but linux doesn't dump
296  * those.
297  *
298  * See linux kernel: arch/x86/include/asm/elf.h
299  */
300 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
301 {
302     (*regs)[0] = tswapreg(env->regs[R_EBX]);
303     (*regs)[1] = tswapreg(env->regs[R_ECX]);
304     (*regs)[2] = tswapreg(env->regs[R_EDX]);
305     (*regs)[3] = tswapreg(env->regs[R_ESI]);
306     (*regs)[4] = tswapreg(env->regs[R_EDI]);
307     (*regs)[5] = tswapreg(env->regs[R_EBP]);
308     (*regs)[6] = tswapreg(env->regs[R_EAX]);
309     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
310     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
311     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
312     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
313     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
314     (*regs)[12] = tswapreg(env->eip);
315     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
316     (*regs)[14] = tswapreg(env->eflags);
317     (*regs)[15] = tswapreg(env->regs[R_ESP]);
318     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
319 }
320 
321 /*
322  * i386 is the only target which supplies AT_SYSINFO for the vdso.
323  * All others only supply AT_SYSINFO_EHDR.
324  */
325 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
326 #define ARCH_DLINFO                                     \
327     do {                                                \
328         if (vdso_info) {                                \
329             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
330         }                                               \
331     } while (0)
332 
333 #endif /* TARGET_X86_64 */
334 
335 #define VDSO_HEADER "vdso.c.inc"
336 
337 #define USE_ELF_CORE_DUMP
338 #define ELF_EXEC_PAGESIZE       4096
339 
340 #endif /* TARGET_I386 */
341 
342 #ifdef TARGET_ARM
343 
344 #ifndef TARGET_AARCH64
345 /* 32 bit ARM definitions */
346 
347 #define ELF_ARCH        EM_ARM
348 #define ELF_CLASS       ELFCLASS32
349 #define EXSTACK_DEFAULT true
350 
351 static inline void init_thread(struct target_pt_regs *regs,
352                                struct image_info *infop)
353 {
354     abi_long stack = infop->start_stack;
355     memset(regs, 0, sizeof(*regs));
356 
357     regs->uregs[16] = ARM_CPU_MODE_USR;
358     if (infop->entry & 1) {
359         regs->uregs[16] |= CPSR_T;
360     }
361     regs->uregs[15] = infop->entry & 0xfffffffe;
362     regs->uregs[13] = infop->start_stack;
363     /* FIXME - what to for failure of get_user()? */
364     get_user_ual(regs->uregs[2], stack + 8); /* envp */
365     get_user_ual(regs->uregs[1], stack + 4); /* envp */
366     /* XXX: it seems that r0 is zeroed after ! */
367     regs->uregs[0] = 0;
368     /* For uClinux PIC binaries.  */
369     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
370     regs->uregs[10] = infop->start_data;
371 
372     /* Support ARM FDPIC.  */
373     if (info_is_fdpic(infop)) {
374         /* As described in the ABI document, r7 points to the loadmap info
375          * prepared by the kernel. If an interpreter is needed, r8 points
376          * to the interpreter loadmap and r9 points to the interpreter
377          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
378          * r9 points to the main program PT_DYNAMIC info.
379          */
380         regs->uregs[7] = infop->loadmap_addr;
381         if (infop->interpreter_loadmap_addr) {
382             /* Executable is dynamically loaded.  */
383             regs->uregs[8] = infop->interpreter_loadmap_addr;
384             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
385         } else {
386             regs->uregs[8] = 0;
387             regs->uregs[9] = infop->pt_dynamic_addr;
388         }
389     }
390 }
391 
392 #define ELF_NREG    18
393 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
394 
395 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
396 {
397     (*regs)[0] = tswapreg(env->regs[0]);
398     (*regs)[1] = tswapreg(env->regs[1]);
399     (*regs)[2] = tswapreg(env->regs[2]);
400     (*regs)[3] = tswapreg(env->regs[3]);
401     (*regs)[4] = tswapreg(env->regs[4]);
402     (*regs)[5] = tswapreg(env->regs[5]);
403     (*regs)[6] = tswapreg(env->regs[6]);
404     (*regs)[7] = tswapreg(env->regs[7]);
405     (*regs)[8] = tswapreg(env->regs[8]);
406     (*regs)[9] = tswapreg(env->regs[9]);
407     (*regs)[10] = tswapreg(env->regs[10]);
408     (*regs)[11] = tswapreg(env->regs[11]);
409     (*regs)[12] = tswapreg(env->regs[12]);
410     (*regs)[13] = tswapreg(env->regs[13]);
411     (*regs)[14] = tswapreg(env->regs[14]);
412     (*regs)[15] = tswapreg(env->regs[15]);
413 
414     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
415     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
416 }
417 
418 #define USE_ELF_CORE_DUMP
419 #define ELF_EXEC_PAGESIZE       4096
420 
421 enum
422 {
423     ARM_HWCAP_ARM_SWP       = 1 << 0,
424     ARM_HWCAP_ARM_HALF      = 1 << 1,
425     ARM_HWCAP_ARM_THUMB     = 1 << 2,
426     ARM_HWCAP_ARM_26BIT     = 1 << 3,
427     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
428     ARM_HWCAP_ARM_FPA       = 1 << 5,
429     ARM_HWCAP_ARM_VFP       = 1 << 6,
430     ARM_HWCAP_ARM_EDSP      = 1 << 7,
431     ARM_HWCAP_ARM_JAVA      = 1 << 8,
432     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
433     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
434     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
435     ARM_HWCAP_ARM_NEON      = 1 << 12,
436     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
437     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
438     ARM_HWCAP_ARM_TLS       = 1 << 15,
439     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
440     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
441     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
442     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
443     ARM_HWCAP_ARM_LPAE      = 1 << 20,
444     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
445     ARM_HWCAP_ARM_FPHP      = 1 << 22,
446     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
447     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
448     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
449     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
450     ARM_HWCAP_ARM_I8MM      = 1 << 27,
451 };
452 
453 enum {
454     ARM_HWCAP2_ARM_AES      = 1 << 0,
455     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
456     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
457     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
458     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
459     ARM_HWCAP2_ARM_SB       = 1 << 5,
460     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
461 };
462 
463 /* The commpage only exists for 32 bit kernels */
464 
465 #define HI_COMMPAGE (intptr_t)0xffff0f00u
466 
467 static bool init_guest_commpage(void)
468 {
469     ARMCPU *cpu = ARM_CPU(thread_cpu);
470     int host_page_size = qemu_real_host_page_size();
471     abi_ptr commpage;
472     void *want;
473     void *addr;
474 
475     /*
476      * M-profile allocates maximum of 2GB address space, so can never
477      * allocate the commpage.  Skip it.
478      */
479     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
480         return true;
481     }
482 
483     commpage = HI_COMMPAGE & -host_page_size;
484     want = g2h_untagged(commpage);
485     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
486                 MAP_ANONYMOUS | MAP_PRIVATE |
487                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
488                 -1, 0);
489 
490     if (addr == MAP_FAILED) {
491         perror("Allocating guest commpage");
492         exit(EXIT_FAILURE);
493     }
494     if (addr != want) {
495         return false;
496     }
497 
498     /* Set kernel helper versions; rest of page is 0.  */
499     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
500 
501     if (mprotect(addr, host_page_size, PROT_READ)) {
502         perror("Protecting guest commpage");
503         exit(EXIT_FAILURE);
504     }
505 
506     page_set_flags(commpage, commpage | (host_page_size - 1),
507                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
508     return true;
509 }
510 
511 #define ELF_HWCAP get_elf_hwcap()
512 #define ELF_HWCAP2 get_elf_hwcap2()
513 
514 uint32_t get_elf_hwcap(void)
515 {
516     ARMCPU *cpu = ARM_CPU(thread_cpu);
517     uint32_t hwcaps = 0;
518 
519     hwcaps |= ARM_HWCAP_ARM_SWP;
520     hwcaps |= ARM_HWCAP_ARM_HALF;
521     hwcaps |= ARM_HWCAP_ARM_THUMB;
522     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
523 
524     /* probe for the extra features */
525 #define GET_FEATURE(feat, hwcap) \
526     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
527 
528 #define GET_FEATURE_ID(feat, hwcap) \
529     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
530 
531     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
532     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
533     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
534     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
535     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
536     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
537     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
538     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
539     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
540     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
541 
542     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
543         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
544         hwcaps |= ARM_HWCAP_ARM_VFPv3;
545         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
546             hwcaps |= ARM_HWCAP_ARM_VFPD32;
547         } else {
548             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
549         }
550     }
551     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
552     /*
553      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
554      * isar_feature function for both. The kernel reports them as two hwcaps.
555      */
556     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
557     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
558     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
559     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
560     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
561     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
562 
563     return hwcaps;
564 }
565 
566 uint64_t get_elf_hwcap2(void)
567 {
568     ARMCPU *cpu = ARM_CPU(thread_cpu);
569     uint64_t hwcaps = 0;
570 
571     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
572     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
573     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
574     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
575     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
576     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
577     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
578     return hwcaps;
579 }
580 
581 const char *elf_hwcap_str(uint32_t bit)
582 {
583     static const char *hwcap_str[] = {
584     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
585     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
586     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
587     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
588     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
589     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
590     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
591     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
592     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
593     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
594     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
595     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
596     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
597     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
598     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
599     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
600     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
601     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
602     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
603     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
604     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
605     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
606     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
607     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
608     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
609     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
610     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
611     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
612     };
613 
614     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
615 }
616 
617 const char *elf_hwcap2_str(uint32_t bit)
618 {
619     static const char *hwcap_str[] = {
620     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
621     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
622     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
623     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
624     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
625     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
626     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
627     };
628 
629     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
630 }
631 
632 #undef GET_FEATURE
633 #undef GET_FEATURE_ID
634 
635 #define ELF_PLATFORM get_elf_platform()
636 
637 static const char *get_elf_platform(void)
638 {
639     CPUARMState *env = cpu_env(thread_cpu);
640 
641 #if TARGET_BIG_ENDIAN
642 # define END  "b"
643 #else
644 # define END  "l"
645 #endif
646 
647     if (arm_feature(env, ARM_FEATURE_V8)) {
648         return "v8" END;
649     } else if (arm_feature(env, ARM_FEATURE_V7)) {
650         if (arm_feature(env, ARM_FEATURE_M)) {
651             return "v7m" END;
652         } else {
653             return "v7" END;
654         }
655     } else if (arm_feature(env, ARM_FEATURE_V6)) {
656         return "v6" END;
657     } else if (arm_feature(env, ARM_FEATURE_V5)) {
658         return "v5" END;
659     } else {
660         return "v4" END;
661     }
662 
663 #undef END
664 }
665 
666 #if TARGET_BIG_ENDIAN
667 #include "elf.h"
668 #include "vdso-be8.c.inc"
669 #include "vdso-be32.c.inc"
670 
671 static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags)
672 {
673     return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4
674             && (elf_flags & EF_ARM_BE8)
675             ? &vdso_be8_image_info
676             : &vdso_be32_image_info);
677 }
678 #define vdso_image_info vdso_image_info
679 #else
680 # define VDSO_HEADER  "vdso-le.c.inc"
681 #endif
682 
683 #else
684 /* 64 bit ARM definitions */
685 
686 #define ELF_ARCH        EM_AARCH64
687 #define ELF_CLASS       ELFCLASS64
688 #if TARGET_BIG_ENDIAN
689 # define ELF_PLATFORM    "aarch64_be"
690 #else
691 # define ELF_PLATFORM    "aarch64"
692 #endif
693 
694 static inline void init_thread(struct target_pt_regs *regs,
695                                struct image_info *infop)
696 {
697     abi_long stack = infop->start_stack;
698     memset(regs, 0, sizeof(*regs));
699 
700     regs->pc = infop->entry & ~0x3ULL;
701     regs->sp = stack;
702 }
703 
704 #define ELF_NREG    34
705 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
706 
707 static void elf_core_copy_regs(target_elf_gregset_t *regs,
708                                const CPUARMState *env)
709 {
710     int i;
711 
712     for (i = 0; i < 32; i++) {
713         (*regs)[i] = tswapreg(env->xregs[i]);
714     }
715     (*regs)[32] = tswapreg(env->pc);
716     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
717 }
718 
719 #define USE_ELF_CORE_DUMP
720 #define ELF_EXEC_PAGESIZE       4096
721 
722 enum {
723     ARM_HWCAP_A64_FP            = 1 << 0,
724     ARM_HWCAP_A64_ASIMD         = 1 << 1,
725     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
726     ARM_HWCAP_A64_AES           = 1 << 3,
727     ARM_HWCAP_A64_PMULL         = 1 << 4,
728     ARM_HWCAP_A64_SHA1          = 1 << 5,
729     ARM_HWCAP_A64_SHA2          = 1 << 6,
730     ARM_HWCAP_A64_CRC32         = 1 << 7,
731     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
732     ARM_HWCAP_A64_FPHP          = 1 << 9,
733     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
734     ARM_HWCAP_A64_CPUID         = 1 << 11,
735     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
736     ARM_HWCAP_A64_JSCVT         = 1 << 13,
737     ARM_HWCAP_A64_FCMA          = 1 << 14,
738     ARM_HWCAP_A64_LRCPC         = 1 << 15,
739     ARM_HWCAP_A64_DCPOP         = 1 << 16,
740     ARM_HWCAP_A64_SHA3          = 1 << 17,
741     ARM_HWCAP_A64_SM3           = 1 << 18,
742     ARM_HWCAP_A64_SM4           = 1 << 19,
743     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
744     ARM_HWCAP_A64_SHA512        = 1 << 21,
745     ARM_HWCAP_A64_SVE           = 1 << 22,
746     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
747     ARM_HWCAP_A64_DIT           = 1 << 24,
748     ARM_HWCAP_A64_USCAT         = 1 << 25,
749     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
750     ARM_HWCAP_A64_FLAGM         = 1 << 27,
751     ARM_HWCAP_A64_SSBS          = 1 << 28,
752     ARM_HWCAP_A64_SB            = 1 << 29,
753     ARM_HWCAP_A64_PACA          = 1 << 30,
754     ARM_HWCAP_A64_PACG          = 1ULL << 31,
755     ARM_HWCAP_A64_GCS           = 1ULL << 32,
756     ARM_HWCAP_A64_CMPBR         = 1ULL << 33,
757     ARM_HWCAP_A64_FPRCVT        = 1ULL << 34,
758     ARM_HWCAP_A64_F8MM8         = 1ULL << 35,
759     ARM_HWCAP_A64_F8MM4         = 1ULL << 36,
760     ARM_HWCAP_A64_SVE_F16MM     = 1ULL << 37,
761     ARM_HWCAP_A64_SVE_ELTPERM   = 1ULL << 38,
762     ARM_HWCAP_A64_SVE_AES2      = 1ULL << 39,
763     ARM_HWCAP_A64_SVE_BFSCALE   = 1ULL << 40,
764     ARM_HWCAP_A64_SVE2P2        = 1ULL << 41,
765     ARM_HWCAP_A64_SME2P2        = 1ULL << 42,
766     ARM_HWCAP_A64_SME_SBITPERM  = 1ULL << 43,
767     ARM_HWCAP_A64_SME_AES       = 1ULL << 44,
768     ARM_HWCAP_A64_SME_SFEXPA    = 1ULL << 45,
769     ARM_HWCAP_A64_SME_STMOP     = 1ULL << 46,
770     ARM_HWCAP_A64_SME_SMOP4     = 1ULL << 47,
771 
772     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
773     ARM_HWCAP2_A64_SVE2         = 1 << 1,
774     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
775     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
776     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
777     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
778     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
779     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
780     ARM_HWCAP2_A64_FRINT        = 1 << 8,
781     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
782     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
783     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
784     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
785     ARM_HWCAP2_A64_I8MM         = 1 << 13,
786     ARM_HWCAP2_A64_BF16         = 1 << 14,
787     ARM_HWCAP2_A64_DGH          = 1 << 15,
788     ARM_HWCAP2_A64_RNG          = 1 << 16,
789     ARM_HWCAP2_A64_BTI          = 1 << 17,
790     ARM_HWCAP2_A64_MTE          = 1 << 18,
791     ARM_HWCAP2_A64_ECV          = 1 << 19,
792     ARM_HWCAP2_A64_AFP          = 1 << 20,
793     ARM_HWCAP2_A64_RPRES        = 1 << 21,
794     ARM_HWCAP2_A64_MTE3         = 1 << 22,
795     ARM_HWCAP2_A64_SME          = 1 << 23,
796     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
797     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
798     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
799     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
800     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
801     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
802     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
803     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
804     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
805     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
806     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
807     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
808     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
809     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
810     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
811     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
812     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
813     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
814     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
815     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
816     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
817     ARM_HWCAP2_A64_SVE_B16B16   = 1ULL << 45,
818     ARM_HWCAP2_A64_LRCPC3       = 1ULL << 46,
819     ARM_HWCAP2_A64_LSE128       = 1ULL << 47,
820     ARM_HWCAP2_A64_FPMR         = 1ULL << 48,
821     ARM_HWCAP2_A64_LUT          = 1ULL << 49,
822     ARM_HWCAP2_A64_FAMINMAX     = 1ULL << 50,
823     ARM_HWCAP2_A64_F8CVT        = 1ULL << 51,
824     ARM_HWCAP2_A64_F8FMA        = 1ULL << 52,
825     ARM_HWCAP2_A64_F8DP4        = 1ULL << 53,
826     ARM_HWCAP2_A64_F8DP2        = 1ULL << 54,
827     ARM_HWCAP2_A64_F8E4M3       = 1ULL << 55,
828     ARM_HWCAP2_A64_F8E5M2       = 1ULL << 56,
829     ARM_HWCAP2_A64_SME_LUTV2    = 1ULL << 57,
830     ARM_HWCAP2_A64_SME_F8F16    = 1ULL << 58,
831     ARM_HWCAP2_A64_SME_F8F32    = 1ULL << 59,
832     ARM_HWCAP2_A64_SME_SF8FMA   = 1ULL << 60,
833     ARM_HWCAP2_A64_SME_SF8DP4   = 1ULL << 61,
834     ARM_HWCAP2_A64_SME_SF8DP2   = 1ULL << 62,
835     ARM_HWCAP2_A64_POE          = 1ULL << 63,
836 };
837 
838 #define ELF_HWCAP   get_elf_hwcap()
839 #define ELF_HWCAP2  get_elf_hwcap2()
840 
841 #define GET_FEATURE_ID(feat, hwcap) \
842     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
843 
844 uint32_t get_elf_hwcap(void)
845 {
846     ARMCPU *cpu = ARM_CPU(thread_cpu);
847     uint32_t hwcaps = 0;
848 
849     hwcaps |= ARM_HWCAP_A64_FP;
850     hwcaps |= ARM_HWCAP_A64_ASIMD;
851     hwcaps |= ARM_HWCAP_A64_CPUID;
852 
853     /* probe for the extra features */
854 
855     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
856     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
857     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
858     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
859     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
860     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
861     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
862     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
863     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
864     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
865     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
866     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
867     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
868     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
869     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
870     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
871     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
872     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
873     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
874     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
875     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
876     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
877     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
878     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
879     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
880 
881     return hwcaps;
882 }
883 
884 uint64_t get_elf_hwcap2(void)
885 {
886     ARMCPU *cpu = ARM_CPU(thread_cpu);
887     uint64_t hwcaps = 0;
888 
889     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
890     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
891     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
892     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
893     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
894     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
895     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
896     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
897     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
898     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
899     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
900     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
901     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
902     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
903     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
904     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
905     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
906     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
907     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
908     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
909                               ARM_HWCAP2_A64_SME_F32F32 |
910                               ARM_HWCAP2_A64_SME_B16F32 |
911                               ARM_HWCAP2_A64_SME_F16F32 |
912                               ARM_HWCAP2_A64_SME_I8I32));
913     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
914     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
915     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
916     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
917     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
918     GET_FEATURE_ID(aa64_sve2p1, ARM_HWCAP2_A64_SVE2P1);
919     GET_FEATURE_ID(aa64_sme2, (ARM_HWCAP2_A64_SME2 |
920                                ARM_HWCAP2_A64_SME_I16I32 |
921                                ARM_HWCAP2_A64_SME_BI32I32));
922     GET_FEATURE_ID(aa64_sme2p1, ARM_HWCAP2_A64_SME2P1);
923     GET_FEATURE_ID(aa64_sme_b16b16, ARM_HWCAP2_A64_SME_B16B16);
924     GET_FEATURE_ID(aa64_sme_f16f16, ARM_HWCAP2_A64_SME_F16F16);
925     GET_FEATURE_ID(aa64_sve_b16b16, ARM_HWCAP2_A64_SVE_B16B16);
926 
927     return hwcaps;
928 }
929 
930 const char *elf_hwcap_str(uint32_t bit)
931 {
932     static const char * const hwcap_str[] = {
933     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
934     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
935     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
936     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
937     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
938     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
939     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
940     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
941     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
942     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
943     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
944     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
945     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
946     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
947     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
948     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
949     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
950     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
951     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
952     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
953     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
954     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
955     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
956     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
957     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
958     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
959     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
960     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
961     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
962     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
963     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
964     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
965     [__builtin_ctzll(ARM_HWCAP_A64_GCS   )] = "gcs",
966     [__builtin_ctzll(ARM_HWCAP_A64_CMPBR )] = "cmpbr",
967     [__builtin_ctzll(ARM_HWCAP_A64_FPRCVT)] = "fprcvt",
968     [__builtin_ctzll(ARM_HWCAP_A64_F8MM8 )] = "f8mm8",
969     [__builtin_ctzll(ARM_HWCAP_A64_F8MM4 )] = "f8mm4",
970     [__builtin_ctzll(ARM_HWCAP_A64_SVE_F16MM)] = "svef16mm",
971     [__builtin_ctzll(ARM_HWCAP_A64_SVE_ELTPERM)] = "sveeltperm",
972     [__builtin_ctzll(ARM_HWCAP_A64_SVE_AES2)] = "sveaes2",
973     [__builtin_ctzll(ARM_HWCAP_A64_SVE_BFSCALE)] = "svebfscale",
974     [__builtin_ctzll(ARM_HWCAP_A64_SVE2P2)] = "sve2p2",
975     [__builtin_ctzll(ARM_HWCAP_A64_SME2P2)] = "sme2p2",
976     [__builtin_ctzll(ARM_HWCAP_A64_SME_SBITPERM)] = "smesbitperm",
977     [__builtin_ctzll(ARM_HWCAP_A64_SME_AES)] = "smeaes",
978     [__builtin_ctzll(ARM_HWCAP_A64_SME_SFEXPA)] = "smesfexpa",
979     [__builtin_ctzll(ARM_HWCAP_A64_SME_STMOP)] = "smestmop",
980     [__builtin_ctzll(ARM_HWCAP_A64_SME_SMOP4)] = "smesmop4",
981     };
982 
983     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
984 }
985 
986 const char *elf_hwcap2_str(uint32_t bit)
987 {
988     static const char * const hwcap_str[] = {
989     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
990     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
991     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
992     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
993     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
994     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
995     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
996     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
997     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
998     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
999     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
1000     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
1001     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
1002     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
1003     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
1004     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
1005     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
1006     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
1007     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
1008     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
1009     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
1010     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
1011     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
1012     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
1013     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
1014     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
1015     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
1016     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
1017     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
1018     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
1019     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
1020     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
1021     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
1022     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
1023     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
1024     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
1025     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
1026     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
1027     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
1028     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
1029     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
1030     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
1031     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
1032     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
1033     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
1034     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_B16B16 )] = "sveb16b16",
1035     [__builtin_ctzll(ARM_HWCAP2_A64_LRCPC3     )] = "lrcpc3",
1036     [__builtin_ctzll(ARM_HWCAP2_A64_LSE128     )] = "lse128",
1037     [__builtin_ctzll(ARM_HWCAP2_A64_FPMR       )] = "fpmr",
1038     [__builtin_ctzll(ARM_HWCAP2_A64_LUT        )] = "lut",
1039     [__builtin_ctzll(ARM_HWCAP2_A64_FAMINMAX   )] = "faminmax",
1040     [__builtin_ctzll(ARM_HWCAP2_A64_F8CVT      )] = "f8cvt",
1041     [__builtin_ctzll(ARM_HWCAP2_A64_F8FMA      )] = "f8fma",
1042     [__builtin_ctzll(ARM_HWCAP2_A64_F8DP4      )] = "f8dp4",
1043     [__builtin_ctzll(ARM_HWCAP2_A64_F8DP2      )] = "f8dp2",
1044     [__builtin_ctzll(ARM_HWCAP2_A64_F8E4M3     )] = "f8e4m3",
1045     [__builtin_ctzll(ARM_HWCAP2_A64_F8E5M2     )] = "f8e5m2",
1046     [__builtin_ctzll(ARM_HWCAP2_A64_SME_LUTV2  )] = "smelutv2",
1047     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F8F16  )] = "smef8f16",
1048     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F8F32  )] = "smef8f32",
1049     [__builtin_ctzll(ARM_HWCAP2_A64_SME_SF8DP4 )] = "smesf8dp4",
1050     [__builtin_ctzll(ARM_HWCAP2_A64_SME_SF8DP2 )] = "smesf8dp2",
1051     [__builtin_ctzll(ARM_HWCAP2_A64_POE        )] = "poe",
1052     };
1053 
1054     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1055 }
1056 
1057 #undef GET_FEATURE_ID
1058 
1059 #if TARGET_BIG_ENDIAN
1060 # define VDSO_HEADER  "vdso-be.c.inc"
1061 #else
1062 # define VDSO_HEADER  "vdso-le.c.inc"
1063 #endif
1064 
1065 #endif /* not TARGET_AARCH64 */
1066 
1067 #endif /* TARGET_ARM */
1068 
1069 #ifdef TARGET_SPARC
1070 
1071 #ifndef TARGET_SPARC64
1072 # define ELF_CLASS  ELFCLASS32
1073 # define ELF_ARCH   EM_SPARC
1074 #elif defined(TARGET_ABI32)
1075 # define ELF_CLASS  ELFCLASS32
1076 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
1077 #else
1078 # define ELF_CLASS  ELFCLASS64
1079 # define ELF_ARCH   EM_SPARCV9
1080 #endif
1081 
1082 #include "elf.h"
1083 
1084 #define ELF_HWCAP get_elf_hwcap()
1085 
1086 static uint32_t get_elf_hwcap(void)
1087 {
1088     /* There are not many sparc32 hwcap bits -- we have all of them. */
1089     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
1090                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
1091 
1092 #ifdef TARGET_SPARC64
1093     CPUSPARCState *env = cpu_env(thread_cpu);
1094     uint32_t features = env->def.features;
1095 
1096     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
1097     /* 32x32 multiply and divide are efficient. */
1098     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1099     /* We don't have an internal feature bit for this. */
1100     r |= HWCAP_SPARC_POPC;
1101     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1102     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1103     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1104     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1105     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1106     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
1107 #endif
1108 
1109     return r;
1110 }
1111 
1112 static inline void init_thread(struct target_pt_regs *regs,
1113                                struct image_info *infop)
1114 {
1115     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1116     regs->pc = infop->entry;
1117     regs->npc = regs->pc + 4;
1118     regs->y = 0;
1119     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1120                         - TARGET_STACK_BIAS);
1121 }
1122 #endif /* TARGET_SPARC */
1123 
1124 #ifdef TARGET_PPC
1125 
1126 #define ELF_MACHINE    PPC_ELF_MACHINE
1127 
1128 #if defined(TARGET_PPC64)
1129 
1130 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1131 
1132 #define ELF_CLASS       ELFCLASS64
1133 
1134 #else
1135 
1136 #define ELF_CLASS       ELFCLASS32
1137 #define EXSTACK_DEFAULT true
1138 
1139 #endif
1140 
1141 #define ELF_ARCH        EM_PPC
1142 
1143 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1144    See arch/powerpc/include/asm/cputable.h.  */
1145 enum {
1146     QEMU_PPC_FEATURE_32 = 0x80000000,
1147     QEMU_PPC_FEATURE_64 = 0x40000000,
1148     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1149     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1150     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1151     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1152     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1153     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1154     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1155     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1156     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1157     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1158     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1159     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1160     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1161     QEMU_PPC_FEATURE_CELL = 0x00010000,
1162     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1163     QEMU_PPC_FEATURE_SMT = 0x00004000,
1164     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1165     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1166     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1167     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1168     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1169     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1170     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1171     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1172 
1173     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1174     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1175 
1176     /* Feature definitions in AT_HWCAP2.  */
1177     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1178     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1179     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1180     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1181     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1182     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1183     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1184     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1185     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1186     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1187     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1188     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1189     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1190     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1191     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1192 };
1193 
1194 #define ELF_HWCAP get_elf_hwcap()
1195 
1196 static uint32_t get_elf_hwcap(void)
1197 {
1198     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1199     uint32_t features = 0;
1200 
1201     /* We don't have to be terribly complete here; the high points are
1202        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1203 #define GET_FEATURE(flag, feature)                                      \
1204     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1205 #define GET_FEATURE2(flags, feature) \
1206     do { \
1207         if ((cpu->env.insns_flags2 & flags) == flags) { \
1208             features |= feature; \
1209         } \
1210     } while (0)
1211     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1212     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1213     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1214     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1215     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1216     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1217     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1218     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1219     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1220     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1221     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1222                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1223                   QEMU_PPC_FEATURE_ARCH_2_06);
1224 #undef GET_FEATURE
1225 #undef GET_FEATURE2
1226 
1227     return features;
1228 }
1229 
1230 #define ELF_HWCAP2 get_elf_hwcap2()
1231 
1232 static uint32_t get_elf_hwcap2(void)
1233 {
1234     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1235     uint32_t features = 0;
1236 
1237 #define GET_FEATURE(flag, feature)                                      \
1238     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1239 #define GET_FEATURE2(flag, feature)                                      \
1240     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1241 
1242     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1243     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1244     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1245                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1246                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1247     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1248                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1249     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1250                  QEMU_PPC_FEATURE2_MMA);
1251 
1252 #undef GET_FEATURE
1253 #undef GET_FEATURE2
1254 
1255     return features;
1256 }
1257 
1258 /*
1259  * The requirements here are:
1260  * - keep the final alignment of sp (sp & 0xf)
1261  * - make sure the 32-bit value at the first 16 byte aligned position of
1262  *   AUXV is greater than 16 for glibc compatibility.
1263  *   AT_IGNOREPPC is used for that.
1264  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1265  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1266  */
1267 #define DLINFO_ARCH_ITEMS       5
1268 #define ARCH_DLINFO                                     \
1269     do {                                                \
1270         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1271         /*                                              \
1272          * Handle glibc compatibility: these magic entries must \
1273          * be at the lowest addresses in the final auxv.        \
1274          */                                             \
1275         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1276         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1277         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1278         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1279         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1280     } while (0)
1281 
1282 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1283 {
1284     _regs->gpr[1] = infop->start_stack;
1285 #if defined(TARGET_PPC64)
1286     if (get_ppc64_abi(infop) < 2) {
1287         uint64_t val;
1288         get_user_u64(val, infop->entry + 8);
1289         _regs->gpr[2] = val + infop->load_bias;
1290         get_user_u64(val, infop->entry);
1291         infop->entry = val + infop->load_bias;
1292     } else {
1293         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1294     }
1295 #endif
1296     _regs->nip = infop->entry;
1297 }
1298 
1299 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1300 #define ELF_NREG 48
1301 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1302 
1303 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1304 {
1305     int i;
1306     target_ulong ccr = 0;
1307 
1308     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1309         (*regs)[i] = tswapreg(env->gpr[i]);
1310     }
1311 
1312     (*regs)[32] = tswapreg(env->nip);
1313     (*regs)[33] = tswapreg(env->msr);
1314     (*regs)[35] = tswapreg(env->ctr);
1315     (*regs)[36] = tswapreg(env->lr);
1316     (*regs)[37] = tswapreg(cpu_read_xer(env));
1317 
1318     ccr = ppc_get_cr(env);
1319     (*regs)[38] = tswapreg(ccr);
1320 }
1321 
1322 #define USE_ELF_CORE_DUMP
1323 #define ELF_EXEC_PAGESIZE       4096
1324 
1325 #ifndef TARGET_PPC64
1326 # define VDSO_HEADER  "vdso-32.c.inc"
1327 #elif TARGET_BIG_ENDIAN
1328 # define VDSO_HEADER  "vdso-64.c.inc"
1329 #else
1330 # define VDSO_HEADER  "vdso-64le.c.inc"
1331 #endif
1332 
1333 #endif
1334 
1335 #ifdef TARGET_LOONGARCH64
1336 
1337 #define ELF_CLASS   ELFCLASS64
1338 #define ELF_ARCH    EM_LOONGARCH
1339 #define EXSTACK_DEFAULT true
1340 
1341 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1342 
1343 #define VDSO_HEADER "vdso.c.inc"
1344 
1345 static inline void init_thread(struct target_pt_regs *regs,
1346                                struct image_info *infop)
1347 {
1348     /*Set crmd PG,DA = 1,0 */
1349     regs->csr.crmd = 2 << 3;
1350     regs->csr.era = infop->entry;
1351     regs->regs[3] = infop->start_stack;
1352 }
1353 
1354 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1355 #define ELF_NREG 45
1356 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1357 
1358 enum {
1359     TARGET_EF_R0 = 0,
1360     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1361     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1362 };
1363 
1364 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1365                                const CPULoongArchState *env)
1366 {
1367     int i;
1368 
1369     (*regs)[TARGET_EF_R0] = 0;
1370 
1371     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1372         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1373     }
1374 
1375     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1376     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1377 }
1378 
1379 #define USE_ELF_CORE_DUMP
1380 #define ELF_EXEC_PAGESIZE        4096
1381 
1382 #define ELF_HWCAP get_elf_hwcap()
1383 
1384 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1385 enum {
1386     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1387     HWCAP_LOONGARCH_LAM      = (1 << 1),
1388     HWCAP_LOONGARCH_UAL      = (1 << 2),
1389     HWCAP_LOONGARCH_FPU      = (1 << 3),
1390     HWCAP_LOONGARCH_LSX      = (1 << 4),
1391     HWCAP_LOONGARCH_LASX     = (1 << 5),
1392     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1393     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1394     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1395     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1396     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1397     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1398     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1399 };
1400 
1401 static uint32_t get_elf_hwcap(void)
1402 {
1403     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1404     uint32_t hwcaps = 0;
1405 
1406     hwcaps |= HWCAP_LOONGARCH_CRC32;
1407 
1408     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1409         hwcaps |= HWCAP_LOONGARCH_UAL;
1410     }
1411 
1412     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1413         hwcaps |= HWCAP_LOONGARCH_FPU;
1414     }
1415 
1416     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1417         hwcaps |= HWCAP_LOONGARCH_LAM;
1418     }
1419 
1420     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1421         hwcaps |= HWCAP_LOONGARCH_LSX;
1422     }
1423 
1424     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1425         hwcaps |= HWCAP_LOONGARCH_LASX;
1426     }
1427 
1428     return hwcaps;
1429 }
1430 
1431 #define ELF_PLATFORM "loongarch"
1432 
1433 #endif /* TARGET_LOONGARCH64 */
1434 
1435 #ifdef TARGET_MIPS
1436 
1437 #ifdef TARGET_MIPS64
1438 #define ELF_CLASS   ELFCLASS64
1439 #else
1440 #define ELF_CLASS   ELFCLASS32
1441 #endif
1442 #define ELF_ARCH    EM_MIPS
1443 #define EXSTACK_DEFAULT true
1444 
1445 #ifdef TARGET_ABI_MIPSN32
1446 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1447 #else
1448 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1449 #endif
1450 
1451 #define ELF_BASE_PLATFORM get_elf_base_platform()
1452 
1453 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1454     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1455     { return _base_platform; } } while (0)
1456 
1457 static const char *get_elf_base_platform(void)
1458 {
1459     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1460 
1461     /* 64 bit ISAs goes first */
1462     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1463     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1464     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1465     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1466     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1467     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1468     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1469 
1470     /* 32 bit ISAs */
1471     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1472     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1473     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1474     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1475     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1476 
1477     /* Fallback */
1478     return "mips";
1479 }
1480 #undef MATCH_PLATFORM_INSN
1481 
1482 static inline void init_thread(struct target_pt_regs *regs,
1483                                struct image_info *infop)
1484 {
1485     regs->cp0_status = 2 << CP0St_KSU;
1486     regs->cp0_epc = infop->entry;
1487     regs->regs[29] = infop->start_stack;
1488 }
1489 
1490 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1491 #define ELF_NREG 45
1492 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1493 
1494 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1495 enum {
1496 #ifdef TARGET_MIPS64
1497     TARGET_EF_R0 = 0,
1498 #else
1499     TARGET_EF_R0 = 6,
1500 #endif
1501     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1502     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1503     TARGET_EF_LO = TARGET_EF_R0 + 32,
1504     TARGET_EF_HI = TARGET_EF_R0 + 33,
1505     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1506     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1507     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1508     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1509 };
1510 
1511 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1512 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1513 {
1514     int i;
1515 
1516     for (i = 0; i < TARGET_EF_R0; i++) {
1517         (*regs)[i] = 0;
1518     }
1519     (*regs)[TARGET_EF_R0] = 0;
1520 
1521     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1522         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1523     }
1524 
1525     (*regs)[TARGET_EF_R26] = 0;
1526     (*regs)[TARGET_EF_R27] = 0;
1527     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1528     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1529     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1530     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1531     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1532     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1533 }
1534 
1535 #define USE_ELF_CORE_DUMP
1536 #define ELF_EXEC_PAGESIZE        4096
1537 
1538 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1539 enum {
1540     HWCAP_MIPS_R6           = (1 << 0),
1541     HWCAP_MIPS_MSA          = (1 << 1),
1542     HWCAP_MIPS_CRC32        = (1 << 2),
1543     HWCAP_MIPS_MIPS16       = (1 << 3),
1544     HWCAP_MIPS_MDMX         = (1 << 4),
1545     HWCAP_MIPS_MIPS3D       = (1 << 5),
1546     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1547     HWCAP_MIPS_DSP          = (1 << 7),
1548     HWCAP_MIPS_DSP2         = (1 << 8),
1549     HWCAP_MIPS_DSP3         = (1 << 9),
1550     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1551     HWCAP_LOONGSON_MMI      = (1 << 11),
1552     HWCAP_LOONGSON_EXT      = (1 << 12),
1553     HWCAP_LOONGSON_EXT2     = (1 << 13),
1554     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1555 };
1556 
1557 #define ELF_HWCAP get_elf_hwcap()
1558 
1559 #define GET_FEATURE_INSN(_flag, _hwcap) \
1560     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1561 
1562 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1563     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1564 
1565 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1566     do { \
1567         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1568             hwcaps |= _hwcap; \
1569         } \
1570     } while (0)
1571 
1572 static uint32_t get_elf_hwcap(void)
1573 {
1574     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1575     uint32_t hwcaps = 0;
1576 
1577     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1578                         2, HWCAP_MIPS_R6);
1579     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1580     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1581     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1582 
1583     return hwcaps;
1584 }
1585 
1586 #undef GET_FEATURE_REG_EQU
1587 #undef GET_FEATURE_REG_SET
1588 #undef GET_FEATURE_INSN
1589 
1590 #endif /* TARGET_MIPS */
1591 
1592 #ifdef TARGET_MICROBLAZE
1593 
1594 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1595 
1596 #define ELF_CLASS   ELFCLASS32
1597 #define ELF_ARCH    EM_MICROBLAZE
1598 
1599 static inline void init_thread(struct target_pt_regs *regs,
1600                                struct image_info *infop)
1601 {
1602     regs->pc = infop->entry;
1603     regs->r1 = infop->start_stack;
1604 
1605 }
1606 
1607 #define ELF_EXEC_PAGESIZE        4096
1608 
1609 #define USE_ELF_CORE_DUMP
1610 #define ELF_NREG 38
1611 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1612 
1613 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1614 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1615 {
1616     int i, pos = 0;
1617 
1618     for (i = 0; i < 32; i++) {
1619         (*regs)[pos++] = tswapreg(env->regs[i]);
1620     }
1621 
1622     (*regs)[pos++] = tswapreg(env->pc);
1623     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1624     (*regs)[pos++] = 0;
1625     (*regs)[pos++] = tswapreg(env->ear);
1626     (*regs)[pos++] = 0;
1627     (*regs)[pos++] = tswapreg(env->esr);
1628 }
1629 
1630 #endif /* TARGET_MICROBLAZE */
1631 
1632 #ifdef TARGET_OPENRISC
1633 
1634 #define ELF_ARCH EM_OPENRISC
1635 #define ELF_CLASS ELFCLASS32
1636 #define ELF_DATA  ELFDATA2MSB
1637 
1638 static inline void init_thread(struct target_pt_regs *regs,
1639                                struct image_info *infop)
1640 {
1641     regs->pc = infop->entry;
1642     regs->gpr[1] = infop->start_stack;
1643 }
1644 
1645 #define USE_ELF_CORE_DUMP
1646 #define ELF_EXEC_PAGESIZE 8192
1647 
1648 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1649 #define ELF_NREG 34 /* gprs and pc, sr */
1650 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1651 
1652 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1653                                const CPUOpenRISCState *env)
1654 {
1655     int i;
1656 
1657     for (i = 0; i < 32; i++) {
1658         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1659     }
1660     (*regs)[32] = tswapreg(env->pc);
1661     (*regs)[33] = tswapreg(cpu_get_sr(env));
1662 }
1663 #define ELF_HWCAP 0
1664 #define ELF_PLATFORM NULL
1665 
1666 #endif /* TARGET_OPENRISC */
1667 
1668 #ifdef TARGET_SH4
1669 
1670 #define ELF_CLASS ELFCLASS32
1671 #define ELF_ARCH  EM_SH
1672 
1673 static inline void init_thread(struct target_pt_regs *regs,
1674                                struct image_info *infop)
1675 {
1676     /* Check other registers XXXXX */
1677     regs->pc = infop->entry;
1678     regs->regs[15] = infop->start_stack;
1679 }
1680 
1681 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1682 #define ELF_NREG 23
1683 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1684 
1685 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1686 enum {
1687     TARGET_REG_PC = 16,
1688     TARGET_REG_PR = 17,
1689     TARGET_REG_SR = 18,
1690     TARGET_REG_GBR = 19,
1691     TARGET_REG_MACH = 20,
1692     TARGET_REG_MACL = 21,
1693     TARGET_REG_SYSCALL = 22
1694 };
1695 
1696 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1697                                       const CPUSH4State *env)
1698 {
1699     int i;
1700 
1701     for (i = 0; i < 16; i++) {
1702         (*regs)[i] = tswapreg(env->gregs[i]);
1703     }
1704 
1705     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1706     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1707     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1708     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1709     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1710     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1711     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1712 }
1713 
1714 #define USE_ELF_CORE_DUMP
1715 #define ELF_EXEC_PAGESIZE        4096
1716 
1717 enum {
1718     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1719     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1720     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1721     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1722     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1723     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1724     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1725     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1726     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1727     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1728 };
1729 
1730 #define ELF_HWCAP get_elf_hwcap()
1731 
1732 static uint32_t get_elf_hwcap(void)
1733 {
1734     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1735     uint32_t hwcap = 0;
1736 
1737     hwcap |= SH_CPU_HAS_FPU;
1738 
1739     if (cpu->env.features & SH_FEATURE_SH4A) {
1740         hwcap |= SH_CPU_HAS_LLSC;
1741     }
1742 
1743     return hwcap;
1744 }
1745 
1746 #endif
1747 
1748 #ifdef TARGET_M68K
1749 
1750 #define ELF_CLASS       ELFCLASS32
1751 #define ELF_ARCH        EM_68K
1752 
1753 /* ??? Does this need to do anything?
1754    #define ELF_PLAT_INIT(_r) */
1755 
1756 static inline void init_thread(struct target_pt_regs *regs,
1757                                struct image_info *infop)
1758 {
1759     regs->usp = infop->start_stack;
1760     regs->sr = 0;
1761     regs->pc = infop->entry;
1762 }
1763 
1764 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1765 #define ELF_NREG 20
1766 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1767 
1768 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1769 {
1770     (*regs)[0] = tswapreg(env->dregs[1]);
1771     (*regs)[1] = tswapreg(env->dregs[2]);
1772     (*regs)[2] = tswapreg(env->dregs[3]);
1773     (*regs)[3] = tswapreg(env->dregs[4]);
1774     (*regs)[4] = tswapreg(env->dregs[5]);
1775     (*regs)[5] = tswapreg(env->dregs[6]);
1776     (*regs)[6] = tswapreg(env->dregs[7]);
1777     (*regs)[7] = tswapreg(env->aregs[0]);
1778     (*regs)[8] = tswapreg(env->aregs[1]);
1779     (*regs)[9] = tswapreg(env->aregs[2]);
1780     (*regs)[10] = tswapreg(env->aregs[3]);
1781     (*regs)[11] = tswapreg(env->aregs[4]);
1782     (*regs)[12] = tswapreg(env->aregs[5]);
1783     (*regs)[13] = tswapreg(env->aregs[6]);
1784     (*regs)[14] = tswapreg(env->dregs[0]);
1785     (*regs)[15] = tswapreg(env->aregs[7]);
1786     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1787     (*regs)[17] = tswapreg(env->sr);
1788     (*regs)[18] = tswapreg(env->pc);
1789     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1790 }
1791 
1792 #define USE_ELF_CORE_DUMP
1793 #define ELF_EXEC_PAGESIZE       8192
1794 
1795 #endif
1796 
1797 #ifdef TARGET_ALPHA
1798 
1799 #define ELF_CLASS      ELFCLASS64
1800 #define ELF_ARCH       EM_ALPHA
1801 
1802 static inline void init_thread(struct target_pt_regs *regs,
1803                                struct image_info *infop)
1804 {
1805     regs->pc = infop->entry;
1806     regs->ps = 8;
1807     regs->usp = infop->start_stack;
1808 }
1809 
1810 #define ELF_EXEC_PAGESIZE        8192
1811 
1812 #endif /* TARGET_ALPHA */
1813 
1814 #ifdef TARGET_S390X
1815 
1816 #define ELF_CLASS	ELFCLASS64
1817 #define ELF_DATA	ELFDATA2MSB
1818 #define ELF_ARCH	EM_S390
1819 
1820 #include "elf.h"
1821 
1822 #define ELF_HWCAP get_elf_hwcap()
1823 
1824 #define GET_FEATURE(_feat, _hwcap) \
1825     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1826 
1827 uint32_t get_elf_hwcap(void)
1828 {
1829     /*
1830      * Let's assume we always have esan3 and zarch.
1831      * 31-bit processes can use 64-bit registers (high gprs).
1832      */
1833     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1834 
1835     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1836     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1837     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1838     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1839     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1840         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1841         hwcap |= HWCAP_S390_ETF3EH;
1842     }
1843     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1844     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1845     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1846 
1847     return hwcap;
1848 }
1849 
1850 const char *elf_hwcap_str(uint32_t bit)
1851 {
1852     static const char *hwcap_str[] = {
1853         [HWCAP_S390_NR_ESAN3]     = "esan3",
1854         [HWCAP_S390_NR_ZARCH]     = "zarch",
1855         [HWCAP_S390_NR_STFLE]     = "stfle",
1856         [HWCAP_S390_NR_MSA]       = "msa",
1857         [HWCAP_S390_NR_LDISP]     = "ldisp",
1858         [HWCAP_S390_NR_EIMM]      = "eimm",
1859         [HWCAP_S390_NR_DFP]       = "dfp",
1860         [HWCAP_S390_NR_HPAGE]     = "edat",
1861         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1862         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1863         [HWCAP_S390_NR_TE]        = "te",
1864         [HWCAP_S390_NR_VXRS]      = "vx",
1865         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1866         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1867         [HWCAP_S390_NR_GS]        = "gs",
1868         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1869         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1870         [HWCAP_S390_NR_SORT]      = "sort",
1871         [HWCAP_S390_NR_DFLT]      = "dflt",
1872         [HWCAP_S390_NR_NNPA]      = "nnpa",
1873         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1874         [HWCAP_S390_NR_SIE]       = "sie",
1875     };
1876 
1877     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1878 }
1879 
1880 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1881 {
1882     regs->psw.addr = infop->entry;
1883     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1884                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1885                      PSW_MASK_32;
1886     regs->gprs[15] = infop->start_stack;
1887 }
1888 
1889 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1890 #define ELF_NREG 27
1891 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1892 
1893 enum {
1894     TARGET_REG_PSWM = 0,
1895     TARGET_REG_PSWA = 1,
1896     TARGET_REG_GPRS = 2,
1897     TARGET_REG_ARS = 18,
1898     TARGET_REG_ORIG_R2 = 26,
1899 };
1900 
1901 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1902                                const CPUS390XState *env)
1903 {
1904     int i;
1905     uint32_t *aregs;
1906 
1907     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1908     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1909     for (i = 0; i < 16; i++) {
1910         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1911     }
1912     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1913     for (i = 0; i < 16; i++) {
1914         aregs[i] = tswap32(env->aregs[i]);
1915     }
1916     (*regs)[TARGET_REG_ORIG_R2] = 0;
1917 }
1918 
1919 #define USE_ELF_CORE_DUMP
1920 #define ELF_EXEC_PAGESIZE 4096
1921 
1922 #define VDSO_HEADER "vdso.c.inc"
1923 
1924 #endif /* TARGET_S390X */
1925 
1926 #ifdef TARGET_RISCV
1927 
1928 #define ELF_ARCH  EM_RISCV
1929 
1930 #ifdef TARGET_RISCV32
1931 #define ELF_CLASS ELFCLASS32
1932 #define VDSO_HEADER "vdso-32.c.inc"
1933 #else
1934 #define ELF_CLASS ELFCLASS64
1935 #define VDSO_HEADER "vdso-64.c.inc"
1936 #endif
1937 
1938 #define ELF_HWCAP get_elf_hwcap()
1939 
1940 static uint32_t get_elf_hwcap(void)
1941 {
1942 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1943     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1944     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1945                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1946                     | MISA_BIT('V');
1947 
1948     return cpu->env.misa_ext & mask;
1949 #undef MISA_BIT
1950 }
1951 
1952 static inline void init_thread(struct target_pt_regs *regs,
1953                                struct image_info *infop)
1954 {
1955     regs->sepc = infop->entry;
1956     regs->sp = infop->start_stack;
1957 }
1958 
1959 #define ELF_EXEC_PAGESIZE 4096
1960 
1961 #endif /* TARGET_RISCV */
1962 
1963 #ifdef TARGET_HPPA
1964 
1965 #define ELF_CLASS       ELFCLASS32
1966 #define ELF_ARCH        EM_PARISC
1967 #define ELF_PLATFORM    "PARISC"
1968 #define STACK_GROWS_DOWN 0
1969 #define STACK_ALIGNMENT  64
1970 
1971 #define VDSO_HEADER "vdso.c.inc"
1972 
1973 static inline void init_thread(struct target_pt_regs *regs,
1974                                struct image_info *infop)
1975 {
1976     regs->iaoq[0] = infop->entry | PRIV_USER;
1977     regs->iaoq[1] = regs->iaoq[0] + 4;
1978     regs->gr[23] = 0;
1979     regs->gr[24] = infop->argv;
1980     regs->gr[25] = infop->argc;
1981     /* The top-of-stack contains a linkage buffer.  */
1982     regs->gr[30] = infop->start_stack + 64;
1983     regs->gr[31] = infop->entry;
1984 }
1985 
1986 #define LO_COMMPAGE  0
1987 
1988 static bool init_guest_commpage(void)
1989 {
1990     /* If reserved_va, then we have already mapped 0 page on the host. */
1991     if (!reserved_va) {
1992         void *want, *addr;
1993 
1994         want = g2h_untagged(LO_COMMPAGE);
1995         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1996                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1997         if (addr == MAP_FAILED) {
1998             perror("Allocating guest commpage");
1999             exit(EXIT_FAILURE);
2000         }
2001         if (addr != want) {
2002             return false;
2003         }
2004     }
2005 
2006     /*
2007      * On Linux, page zero is normally marked execute only + gateway.
2008      * Normal read or write is supposed to fail (thus PROT_NONE above),
2009      * but specific offsets have kernel code mapped to raise permissions
2010      * and implement syscalls.  Here, simply mark the page executable.
2011      * Special case the entry points during translation (see do_page_zero).
2012      */
2013     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
2014                    PAGE_EXEC | PAGE_VALID);
2015     return true;
2016 }
2017 
2018 #endif /* TARGET_HPPA */
2019 
2020 #ifdef TARGET_XTENSA
2021 
2022 #define ELF_CLASS       ELFCLASS32
2023 #define ELF_ARCH        EM_XTENSA
2024 
2025 static inline void init_thread(struct target_pt_regs *regs,
2026                                struct image_info *infop)
2027 {
2028     regs->windowbase = 0;
2029     regs->windowstart = 1;
2030     regs->areg[1] = infop->start_stack;
2031     regs->pc = infop->entry;
2032     if (info_is_fdpic(infop)) {
2033         regs->areg[4] = infop->loadmap_addr;
2034         regs->areg[5] = infop->interpreter_loadmap_addr;
2035         if (infop->interpreter_loadmap_addr) {
2036             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
2037         } else {
2038             regs->areg[6] = infop->pt_dynamic_addr;
2039         }
2040     }
2041 }
2042 
2043 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
2044 #define ELF_NREG 128
2045 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
2046 
2047 enum {
2048     TARGET_REG_PC,
2049     TARGET_REG_PS,
2050     TARGET_REG_LBEG,
2051     TARGET_REG_LEND,
2052     TARGET_REG_LCOUNT,
2053     TARGET_REG_SAR,
2054     TARGET_REG_WINDOWSTART,
2055     TARGET_REG_WINDOWBASE,
2056     TARGET_REG_THREADPTR,
2057     TARGET_REG_AR0 = 64,
2058 };
2059 
2060 static void elf_core_copy_regs(target_elf_gregset_t *regs,
2061                                const CPUXtensaState *env)
2062 {
2063     unsigned i;
2064 
2065     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
2066     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
2067     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
2068     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
2069     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
2070     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
2071     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
2072     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
2073     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
2074     xtensa_sync_phys_from_window((CPUXtensaState *)env);
2075     for (i = 0; i < env->config->nareg; ++i) {
2076         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
2077     }
2078 }
2079 
2080 #define USE_ELF_CORE_DUMP
2081 #define ELF_EXEC_PAGESIZE       4096
2082 
2083 #endif /* TARGET_XTENSA */
2084 
2085 #ifdef TARGET_HEXAGON
2086 
2087 #define ELF_CLASS       ELFCLASS32
2088 #define ELF_ARCH        EM_HEXAGON
2089 
2090 static inline void init_thread(struct target_pt_regs *regs,
2091                                struct image_info *infop)
2092 {
2093     regs->sepc = infop->entry;
2094     regs->sp = infop->start_stack;
2095 }
2096 
2097 #endif /* TARGET_HEXAGON */
2098 
2099 #ifndef ELF_BASE_PLATFORM
2100 #define ELF_BASE_PLATFORM (NULL)
2101 #endif
2102 
2103 #ifndef ELF_PLATFORM
2104 #define ELF_PLATFORM (NULL)
2105 #endif
2106 
2107 #ifndef ELF_MACHINE
2108 #define ELF_MACHINE ELF_ARCH
2109 #endif
2110 
2111 #ifndef elf_check_arch
2112 #define elf_check_arch(x) ((x) == ELF_ARCH)
2113 #endif
2114 
2115 #ifndef elf_check_abi
2116 #define elf_check_abi(x) (1)
2117 #endif
2118 
2119 #ifndef ELF_HWCAP
2120 #define ELF_HWCAP 0
2121 #endif
2122 
2123 #ifndef STACK_GROWS_DOWN
2124 #define STACK_GROWS_DOWN 1
2125 #endif
2126 
2127 #ifndef STACK_ALIGNMENT
2128 #define STACK_ALIGNMENT 16
2129 #endif
2130 
2131 #ifdef TARGET_ABI32
2132 #undef ELF_CLASS
2133 #define ELF_CLASS ELFCLASS32
2134 #undef bswaptls
2135 #define bswaptls(ptr) bswap32s(ptr)
2136 #endif
2137 
2138 #ifndef EXSTACK_DEFAULT
2139 #define EXSTACK_DEFAULT false
2140 #endif
2141 
2142 #include "elf.h"
2143 
2144 /* We must delay the following stanzas until after "elf.h". */
2145 #if defined(TARGET_AARCH64)
2146 
2147 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2148                                     const uint32_t *data,
2149                                     struct image_info *info,
2150                                     Error **errp)
2151 {
2152     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2153         if (pr_datasz != sizeof(uint32_t)) {
2154             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2155             return false;
2156         }
2157         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2158         info->note_flags = *data;
2159     }
2160     return true;
2161 }
2162 #define ARCH_USE_GNU_PROPERTY 1
2163 
2164 #else
2165 
2166 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2167                                     const uint32_t *data,
2168                                     struct image_info *info,
2169                                     Error **errp)
2170 {
2171     g_assert_not_reached();
2172 }
2173 #define ARCH_USE_GNU_PROPERTY 0
2174 
2175 #endif
2176 
2177 struct exec
2178 {
2179     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2180     unsigned int a_text;   /* length of text, in bytes */
2181     unsigned int a_data;   /* length of data, in bytes */
2182     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2183     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2184     unsigned int a_entry;  /* start address */
2185     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2186     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2187 };
2188 
2189 
2190 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2191 #define OMAGIC 0407
2192 #define NMAGIC 0410
2193 #define ZMAGIC 0413
2194 #define QMAGIC 0314
2195 
2196 #define DLINFO_ITEMS 16
2197 
2198 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2199 {
2200     memcpy(to, from, n);
2201 }
2202 
2203 static void bswap_ehdr(struct elfhdr *ehdr)
2204 {
2205     if (!target_needs_bswap()) {
2206         return;
2207     }
2208 
2209     bswap16s(&ehdr->e_type);            /* Object file type */
2210     bswap16s(&ehdr->e_machine);         /* Architecture */
2211     bswap32s(&ehdr->e_version);         /* Object file version */
2212     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2213     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2214     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2215     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2216     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2217     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2218     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2219     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2220     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2221     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2222 }
2223 
2224 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2225 {
2226     if (!target_needs_bswap()) {
2227         return;
2228     }
2229 
2230     for (int i = 0; i < phnum; ++i, ++phdr) {
2231         bswap32s(&phdr->p_type);        /* Segment type */
2232         bswap32s(&phdr->p_flags);       /* Segment flags */
2233         bswaptls(&phdr->p_offset);      /* Segment file offset */
2234         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2235         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2236         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2237         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2238         bswaptls(&phdr->p_align);       /* Segment alignment */
2239     }
2240 }
2241 
2242 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2243 {
2244     if (!target_needs_bswap()) {
2245         return;
2246     }
2247 
2248     for (int i = 0; i < shnum; ++i, ++shdr) {
2249         bswap32s(&shdr->sh_name);
2250         bswap32s(&shdr->sh_type);
2251         bswaptls(&shdr->sh_flags);
2252         bswaptls(&shdr->sh_addr);
2253         bswaptls(&shdr->sh_offset);
2254         bswaptls(&shdr->sh_size);
2255         bswap32s(&shdr->sh_link);
2256         bswap32s(&shdr->sh_info);
2257         bswaptls(&shdr->sh_addralign);
2258         bswaptls(&shdr->sh_entsize);
2259     }
2260 }
2261 
2262 static void bswap_sym(struct elf_sym *sym)
2263 {
2264     if (!target_needs_bswap()) {
2265         return;
2266     }
2267 
2268     bswap32s(&sym->st_name);
2269     bswaptls(&sym->st_value);
2270     bswaptls(&sym->st_size);
2271     bswap16s(&sym->st_shndx);
2272 }
2273 
2274 #ifdef TARGET_MIPS
2275 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2276 {
2277     if (!target_needs_bswap()) {
2278         return;
2279     }
2280 
2281     bswap16s(&abiflags->version);
2282     bswap32s(&abiflags->ases);
2283     bswap32s(&abiflags->isa_ext);
2284     bswap32s(&abiflags->flags1);
2285     bswap32s(&abiflags->flags2);
2286 }
2287 #endif
2288 
2289 #ifdef USE_ELF_CORE_DUMP
2290 static int elf_core_dump(int, const CPUArchState *);
2291 #endif /* USE_ELF_CORE_DUMP */
2292 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2293                          abi_ulong load_bias);
2294 
2295 /* Verify the portions of EHDR within E_IDENT for the target.
2296    This can be performed before bswapping the entire header.  */
2297 static bool elf_check_ident(struct elfhdr *ehdr)
2298 {
2299     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2300             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2301             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2302             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2303             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2304             && ehdr->e_ident[EI_DATA] == ELF_DATA
2305             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2306 }
2307 
2308 /* Verify the portions of EHDR outside of E_IDENT for the target.
2309    This has to wait until after bswapping the header.  */
2310 static bool elf_check_ehdr(struct elfhdr *ehdr)
2311 {
2312     return (elf_check_arch(ehdr->e_machine)
2313             && elf_check_abi(ehdr->e_flags)
2314             && ehdr->e_ehsize == sizeof(struct elfhdr)
2315             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2316             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2317 }
2318 
2319 /*
2320  * 'copy_elf_strings()' copies argument/envelope strings from user
2321  * memory to free pages in kernel mem. These are in a format ready
2322  * to be put directly into the top of new user memory.
2323  *
2324  */
2325 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2326                                   abi_ulong p, abi_ulong stack_limit)
2327 {
2328     char *tmp;
2329     int len, i;
2330     abi_ulong top = p;
2331 
2332     if (!p) {
2333         return 0;       /* bullet-proofing */
2334     }
2335 
2336     if (STACK_GROWS_DOWN) {
2337         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2338         for (i = argc - 1; i >= 0; --i) {
2339             tmp = argv[i];
2340             if (!tmp) {
2341                 fprintf(stderr, "VFS: argc is wrong");
2342                 exit(-1);
2343             }
2344             len = strlen(tmp) + 1;
2345             tmp += len;
2346 
2347             if (len > (p - stack_limit)) {
2348                 return 0;
2349             }
2350             while (len) {
2351                 int bytes_to_copy = (len > offset) ? offset : len;
2352                 tmp -= bytes_to_copy;
2353                 p -= bytes_to_copy;
2354                 offset -= bytes_to_copy;
2355                 len -= bytes_to_copy;
2356 
2357                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2358 
2359                 if (offset == 0) {
2360                     memcpy_to_target(p, scratch, top - p);
2361                     top = p;
2362                     offset = TARGET_PAGE_SIZE;
2363                 }
2364             }
2365         }
2366         if (p != top) {
2367             memcpy_to_target(p, scratch + offset, top - p);
2368         }
2369     } else {
2370         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2371         for (i = 0; i < argc; ++i) {
2372             tmp = argv[i];
2373             if (!tmp) {
2374                 fprintf(stderr, "VFS: argc is wrong");
2375                 exit(-1);
2376             }
2377             len = strlen(tmp) + 1;
2378             if (len > (stack_limit - p)) {
2379                 return 0;
2380             }
2381             while (len) {
2382                 int bytes_to_copy = (len > remaining) ? remaining : len;
2383 
2384                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2385 
2386                 tmp += bytes_to_copy;
2387                 remaining -= bytes_to_copy;
2388                 p += bytes_to_copy;
2389                 len -= bytes_to_copy;
2390 
2391                 if (remaining == 0) {
2392                     memcpy_to_target(top, scratch, p - top);
2393                     top = p;
2394                     remaining = TARGET_PAGE_SIZE;
2395                 }
2396             }
2397         }
2398         if (p != top) {
2399             memcpy_to_target(top, scratch, p - top);
2400         }
2401     }
2402 
2403     return p;
2404 }
2405 
2406 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2407  * argument/environment space. Newer kernels (>2.6.33) allow more,
2408  * dependent on stack size, but guarantee at least 32 pages for
2409  * backwards compatibility.
2410  */
2411 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2412 
2413 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2414                                  struct image_info *info)
2415 {
2416     abi_ulong size, error, guard;
2417     int prot;
2418 
2419     size = guest_stack_size;
2420     if (size < STACK_LOWER_LIMIT) {
2421         size = STACK_LOWER_LIMIT;
2422     }
2423 
2424     if (STACK_GROWS_DOWN) {
2425         guard = TARGET_PAGE_SIZE;
2426         if (guard < qemu_real_host_page_size()) {
2427             guard = qemu_real_host_page_size();
2428         }
2429     } else {
2430         /* no guard page for hppa target where stack grows upwards. */
2431         guard = 0;
2432     }
2433 
2434     prot = PROT_READ | PROT_WRITE;
2435     if (info->exec_stack) {
2436         prot |= PROT_EXEC;
2437     }
2438     error = target_mmap(0, size + guard, prot,
2439                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2440     if (error == -1) {
2441         perror("mmap stack");
2442         exit(-1);
2443     }
2444 
2445     /* We reserve one extra page at the top of the stack as guard.  */
2446     if (STACK_GROWS_DOWN) {
2447         target_mprotect(error, guard, PROT_NONE);
2448         info->stack_limit = error + guard;
2449         return info->stack_limit + size - sizeof(void *);
2450     } else {
2451         info->stack_limit = error + size;
2452         return error;
2453     }
2454 }
2455 
2456 /**
2457  * zero_bss:
2458  *
2459  * Map and zero the bss.  We need to explicitly zero any fractional pages
2460  * after the data section (i.e. bss).  Return false on mapping failure.
2461  */
2462 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2463                      int prot, Error **errp)
2464 {
2465     abi_ulong align_bss;
2466 
2467     /* We only expect writable bss; the code segment shouldn't need this. */
2468     if (!(prot & PROT_WRITE)) {
2469         error_setg(errp, "PT_LOAD with non-writable bss");
2470         return false;
2471     }
2472 
2473     align_bss = TARGET_PAGE_ALIGN(start_bss);
2474     end_bss = TARGET_PAGE_ALIGN(end_bss);
2475 
2476     if (start_bss < align_bss) {
2477         int flags = page_get_flags(start_bss);
2478 
2479         if (!(flags & PAGE_RWX)) {
2480             /*
2481              * The whole address space of the executable was reserved
2482              * at the start, therefore all pages will be VALID.
2483              * But assuming there are no PROT_NONE PT_LOAD segments,
2484              * a PROT_NONE page means no data all bss, and we can
2485              * simply extend the new anon mapping back to the start
2486              * of the page of bss.
2487              */
2488             align_bss -= TARGET_PAGE_SIZE;
2489         } else {
2490             /*
2491              * The start of the bss shares a page with something.
2492              * The only thing that we expect is the data section,
2493              * which would already be marked writable.
2494              * Overlapping the RX code segment seems malformed.
2495              */
2496             if (!(flags & PAGE_WRITE)) {
2497                 error_setg(errp, "PT_LOAD with bss overlapping "
2498                            "non-writable page");
2499                 return false;
2500             }
2501 
2502             /* The page is already mapped and writable. */
2503             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2504         }
2505     }
2506 
2507     if (align_bss < end_bss &&
2508         target_mmap(align_bss, end_bss - align_bss, prot,
2509                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2510         error_setg_errno(errp, errno, "Error mapping bss");
2511         return false;
2512     }
2513     return true;
2514 }
2515 
2516 #if defined(TARGET_ARM)
2517 static int elf_is_fdpic(struct elfhdr *exec)
2518 {
2519     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2520 }
2521 #elif defined(TARGET_XTENSA)
2522 static int elf_is_fdpic(struct elfhdr *exec)
2523 {
2524     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2525 }
2526 #else
2527 /* Default implementation, always false.  */
2528 static int elf_is_fdpic(struct elfhdr *exec)
2529 {
2530     return 0;
2531 }
2532 #endif
2533 
2534 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2535 {
2536     uint16_t n;
2537     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2538 
2539     /* elf32_fdpic_loadseg */
2540     n = info->nsegs;
2541     while (n--) {
2542         sp -= 12;
2543         put_user_u32(loadsegs[n].addr, sp+0);
2544         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2545         put_user_u32(loadsegs[n].p_memsz, sp+8);
2546     }
2547 
2548     /* elf32_fdpic_loadmap */
2549     sp -= 4;
2550     put_user_u16(0, sp+0); /* version */
2551     put_user_u16(info->nsegs, sp+2); /* nsegs */
2552 
2553     info->personality = PER_LINUX_FDPIC;
2554     info->loadmap_addr = sp;
2555 
2556     return sp;
2557 }
2558 
2559 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2560                                    struct elfhdr *exec,
2561                                    struct image_info *info,
2562                                    struct image_info *interp_info,
2563                                    struct image_info *vdso_info)
2564 {
2565     abi_ulong sp;
2566     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2567     int size;
2568     int i;
2569     abi_ulong u_rand_bytes;
2570     uint8_t k_rand_bytes[16];
2571     abi_ulong u_platform, u_base_platform;
2572     const char *k_platform, *k_base_platform;
2573     const int n = sizeof(elf_addr_t);
2574 
2575     sp = p;
2576 
2577     /* Needs to be before we load the env/argc/... */
2578     if (elf_is_fdpic(exec)) {
2579         /* Need 4 byte alignment for these structs */
2580         sp &= ~3;
2581         sp = loader_build_fdpic_loadmap(info, sp);
2582         info->other_info = interp_info;
2583         if (interp_info) {
2584             interp_info->other_info = info;
2585             sp = loader_build_fdpic_loadmap(interp_info, sp);
2586             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2587             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2588         } else {
2589             info->interpreter_loadmap_addr = 0;
2590             info->interpreter_pt_dynamic_addr = 0;
2591         }
2592     }
2593 
2594     u_base_platform = 0;
2595     k_base_platform = ELF_BASE_PLATFORM;
2596     if (k_base_platform) {
2597         size_t len = strlen(k_base_platform) + 1;
2598         if (STACK_GROWS_DOWN) {
2599             sp -= (len + n - 1) & ~(n - 1);
2600             u_base_platform = sp;
2601             /* FIXME - check return value of memcpy_to_target() for failure */
2602             memcpy_to_target(sp, k_base_platform, len);
2603         } else {
2604             memcpy_to_target(sp, k_base_platform, len);
2605             u_base_platform = sp;
2606             sp += len + 1;
2607         }
2608     }
2609 
2610     u_platform = 0;
2611     k_platform = ELF_PLATFORM;
2612     if (k_platform) {
2613         size_t len = strlen(k_platform) + 1;
2614         if (STACK_GROWS_DOWN) {
2615             sp -= (len + n - 1) & ~(n - 1);
2616             u_platform = sp;
2617             /* FIXME - check return value of memcpy_to_target() for failure */
2618             memcpy_to_target(sp, k_platform, len);
2619         } else {
2620             memcpy_to_target(sp, k_platform, len);
2621             u_platform = sp;
2622             sp += len + 1;
2623         }
2624     }
2625 
2626     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2627      * the argv and envp pointers.
2628      */
2629     if (STACK_GROWS_DOWN) {
2630         sp = QEMU_ALIGN_DOWN(sp, 16);
2631     } else {
2632         sp = QEMU_ALIGN_UP(sp, 16);
2633     }
2634 
2635     /*
2636      * Generate 16 random bytes for userspace PRNG seeding.
2637      */
2638     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2639     if (STACK_GROWS_DOWN) {
2640         sp -= 16;
2641         u_rand_bytes = sp;
2642         /* FIXME - check return value of memcpy_to_target() for failure */
2643         memcpy_to_target(sp, k_rand_bytes, 16);
2644     } else {
2645         memcpy_to_target(sp, k_rand_bytes, 16);
2646         u_rand_bytes = sp;
2647         sp += 16;
2648     }
2649 
2650     size = (DLINFO_ITEMS + 1) * 2;
2651     if (k_base_platform) {
2652         size += 2;
2653     }
2654     if (k_platform) {
2655         size += 2;
2656     }
2657     if (vdso_info) {
2658         size += 2;
2659     }
2660 #ifdef DLINFO_ARCH_ITEMS
2661     size += DLINFO_ARCH_ITEMS * 2;
2662 #endif
2663 #ifdef ELF_HWCAP2
2664     size += 2;
2665 #endif
2666     info->auxv_len = size * n;
2667 
2668     size += envc + argc + 2;
2669     size += 1;  /* argc itself */
2670     size *= n;
2671 
2672     /* Allocate space and finalize stack alignment for entry now.  */
2673     if (STACK_GROWS_DOWN) {
2674         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2675         sp = u_argc;
2676     } else {
2677         u_argc = sp;
2678         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2679     }
2680 
2681     u_argv = u_argc + n;
2682     u_envp = u_argv + (argc + 1) * n;
2683     u_auxv = u_envp + (envc + 1) * n;
2684     info->saved_auxv = u_auxv;
2685     info->argc = argc;
2686     info->envc = envc;
2687     info->argv = u_argv;
2688     info->envp = u_envp;
2689 
2690     /* This is correct because Linux defines
2691      * elf_addr_t as Elf32_Off / Elf64_Off
2692      */
2693 #define NEW_AUX_ENT(id, val) do {               \
2694         put_user_ual(id, u_auxv);  u_auxv += n; \
2695         put_user_ual(val, u_auxv); u_auxv += n; \
2696     } while(0)
2697 
2698 #ifdef ARCH_DLINFO
2699     /*
2700      * ARCH_DLINFO must come first so platform specific code can enforce
2701      * special alignment requirements on the AUXV if necessary (eg. PPC).
2702      */
2703     ARCH_DLINFO;
2704 #endif
2705     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2706      * on info->auxv_len will trigger.
2707      */
2708     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2709     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2710     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2711     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2712     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2713     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2714     NEW_AUX_ENT(AT_ENTRY, info->entry);
2715     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2716     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2717     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2718     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2719     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2720     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2721     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2722     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2723     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2724 
2725 #ifdef ELF_HWCAP2
2726     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2727 #endif
2728 
2729     if (u_base_platform) {
2730         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2731     }
2732     if (u_platform) {
2733         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2734     }
2735     if (vdso_info) {
2736         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2737     }
2738     NEW_AUX_ENT (AT_NULL, 0);
2739 #undef NEW_AUX_ENT
2740 
2741     /* Check that our initial calculation of the auxv length matches how much
2742      * we actually put into it.
2743      */
2744     assert(info->auxv_len == u_auxv - info->saved_auxv);
2745 
2746     put_user_ual(argc, u_argc);
2747 
2748     p = info->arg_strings;
2749     for (i = 0; i < argc; ++i) {
2750         put_user_ual(p, u_argv);
2751         u_argv += n;
2752         p += target_strlen(p) + 1;
2753     }
2754     put_user_ual(0, u_argv);
2755 
2756     p = info->env_strings;
2757     for (i = 0; i < envc; ++i) {
2758         put_user_ual(p, u_envp);
2759         u_envp += n;
2760         p += target_strlen(p) + 1;
2761     }
2762     put_user_ual(0, u_envp);
2763 
2764     return sp;
2765 }
2766 
2767 #if defined(HI_COMMPAGE)
2768 #define LO_COMMPAGE -1
2769 #elif defined(LO_COMMPAGE)
2770 #define HI_COMMPAGE 0
2771 #else
2772 #define HI_COMMPAGE 0
2773 #define LO_COMMPAGE -1
2774 #ifndef INIT_GUEST_COMMPAGE
2775 #define init_guest_commpage() true
2776 #endif
2777 #endif
2778 
2779 /**
2780  * pgb_try_mmap:
2781  * @addr: host start address
2782  * @addr_last: host last address
2783  * @keep: do not unmap the probe region
2784  *
2785  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2786  * return 0 if it is not available to map, and -1 on mmap error.
2787  * If @keep, the region is left mapped on success, otherwise unmapped.
2788  */
2789 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2790 {
2791     size_t size = addr_last - addr + 1;
2792     void *p = mmap((void *)addr, size, PROT_NONE,
2793                    MAP_ANONYMOUS | MAP_PRIVATE |
2794                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2795     int ret;
2796 
2797     if (p == MAP_FAILED) {
2798         return errno == EEXIST ? 0 : -1;
2799     }
2800     ret = p == (void *)addr;
2801     if (!keep || !ret) {
2802         munmap(p, size);
2803     }
2804     return ret;
2805 }
2806 
2807 /**
2808  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2809  * @addr: host address
2810  * @addr_last: host last address
2811  * @brk: host brk
2812  *
2813  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2814  */
2815 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2816                                  uintptr_t brk, bool keep)
2817 {
2818     uintptr_t brk_last = brk + 16 * MiB - 1;
2819 
2820     /* Do not map anything close to the host brk. */
2821     if (addr <= brk_last && brk <= addr_last) {
2822         return 0;
2823     }
2824     return pgb_try_mmap(addr, addr_last, keep);
2825 }
2826 
2827 /**
2828  * pgb_try_mmap_set:
2829  * @ga: set of guest addrs
2830  * @base: guest_base
2831  * @brk: host brk
2832  *
2833  * Return true if all @ga can be mapped by the host at @base.
2834  * On success, retain the mapping at index 0 for reserved_va.
2835  */
2836 
2837 typedef struct PGBAddrs {
2838     uintptr_t bounds[3][2]; /* start/last pairs */
2839     int nbounds;
2840 } PGBAddrs;
2841 
2842 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2843 {
2844     for (int i = ga->nbounds - 1; i >= 0; --i) {
2845         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2846                                   ga->bounds[i][1] + base,
2847                                   brk, i == 0 && reserved_va) <= 0) {
2848             return false;
2849         }
2850     }
2851     return true;
2852 }
2853 
2854 /**
2855  * pgb_addr_set:
2856  * @ga: output set of guest addrs
2857  * @guest_loaddr: guest image low address
2858  * @guest_loaddr: guest image high address
2859  * @identity: create for identity mapping
2860  *
2861  * Fill in @ga with the image, COMMPAGE and NULL page.
2862  */
2863 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2864                          abi_ulong guest_hiaddr, bool try_identity)
2865 {
2866     int n;
2867 
2868     /*
2869      * With a low commpage, or a guest mapped very low,
2870      * we may not be able to use the identity map.
2871      */
2872     if (try_identity) {
2873         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2874             return false;
2875         }
2876         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2877             return false;
2878         }
2879     }
2880 
2881     memset(ga, 0, sizeof(*ga));
2882     n = 0;
2883 
2884     if (reserved_va) {
2885         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2886         ga->bounds[n][1] = reserved_va;
2887         n++;
2888         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2889     } else {
2890         /* Add any LO_COMMPAGE or NULL page. */
2891         if (LO_COMMPAGE != -1) {
2892             ga->bounds[n][0] = 0;
2893             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2894             n++;
2895         } else if (!try_identity) {
2896             ga->bounds[n][0] = 0;
2897             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2898             n++;
2899         }
2900 
2901         /* Add the guest image for ET_EXEC. */
2902         if (guest_loaddr) {
2903             ga->bounds[n][0] = guest_loaddr;
2904             ga->bounds[n][1] = guest_hiaddr;
2905             n++;
2906         }
2907     }
2908 
2909     /*
2910      * Temporarily disable
2911      *   "comparison is always false due to limited range of data type"
2912      * due to comparison between unsigned and (possible) 0.
2913      */
2914 #pragma GCC diagnostic push
2915 #pragma GCC diagnostic ignored "-Wtype-limits"
2916 
2917     /* Add any HI_COMMPAGE not covered by reserved_va. */
2918     if (reserved_va < HI_COMMPAGE) {
2919         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2920         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2921         n++;
2922     }
2923 
2924 #pragma GCC diagnostic pop
2925 
2926     ga->nbounds = n;
2927     return true;
2928 }
2929 
2930 static void pgb_fail_in_use(const char *image_name)
2931 {
2932     error_report("%s: requires virtual address space that is in use "
2933                  "(omit the -B option or choose a different value)",
2934                  image_name);
2935     exit(EXIT_FAILURE);
2936 }
2937 
2938 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2939                       uintptr_t guest_hiaddr, uintptr_t align)
2940 {
2941     PGBAddrs ga;
2942     uintptr_t brk = (uintptr_t)sbrk(0);
2943 
2944     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2945         fprintf(stderr, "Requested guest base %p does not satisfy "
2946                 "host minimum alignment (0x%" PRIxPTR ")\n",
2947                 (void *)guest_base, align);
2948         exit(EXIT_FAILURE);
2949     }
2950 
2951     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2952         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2953         pgb_fail_in_use(image_name);
2954     }
2955 }
2956 
2957 /**
2958  * pgb_find_fallback:
2959  *
2960  * This is a fallback method for finding holes in the host address space
2961  * if we don't have the benefit of being able to access /proc/self/map.
2962  * It can potentially take a very long time as we can only dumbly iterate
2963  * up the host address space seeing if the allocation would work.
2964  */
2965 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2966                                    uintptr_t brk)
2967 {
2968     /* TODO: come up with a better estimate of how much to skip. */
2969     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2970 
2971     for (uintptr_t base = skip; ; base += skip) {
2972         base = ROUND_UP(base, align);
2973         if (pgb_try_mmap_set(ga, base, brk)) {
2974             return base;
2975         }
2976         if (base >= -skip) {
2977             return -1;
2978         }
2979     }
2980 }
2981 
2982 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2983                                IntervalTreeRoot *root)
2984 {
2985     for (int i = ga->nbounds - 1; i >= 0; --i) {
2986         uintptr_t s = base + ga->bounds[i][0];
2987         uintptr_t l = base + ga->bounds[i][1];
2988         IntervalTreeNode *n;
2989 
2990         if (l < s) {
2991             /* Wraparound. Skip to advance S to mmap_min_addr. */
2992             return mmap_min_addr - s;
2993         }
2994 
2995         n = interval_tree_iter_first(root, s, l);
2996         if (n != NULL) {
2997             /* Conflict.  Skip to advance S to LAST + 1. */
2998             return n->last - s + 1;
2999         }
3000     }
3001     return 0;  /* success */
3002 }
3003 
3004 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
3005                                 uintptr_t align, uintptr_t brk)
3006 {
3007     uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB;
3008     uintptr_t base, skip;
3009 
3010     while (true) {
3011         base = ROUND_UP(last, align);
3012         if (base < last) {
3013             return -1;
3014         }
3015 
3016         skip = pgb_try_itree(ga, base, root);
3017         if (skip == 0) {
3018             break;
3019         }
3020 
3021         last = base + skip;
3022         if (last < base) {
3023             return -1;
3024         }
3025     }
3026 
3027     /*
3028      * We've chosen 'base' based on holes in the interval tree,
3029      * but we don't yet know if it is a valid host address.
3030      * Because it is the first matching hole, if the host addresses
3031      * are invalid we know there are no further matches.
3032      */
3033     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
3034 }
3035 
3036 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
3037                         uintptr_t guest_hiaddr, uintptr_t align)
3038 {
3039     IntervalTreeRoot *root;
3040     uintptr_t brk, ret;
3041     PGBAddrs ga;
3042 
3043     /* Try the identity map first. */
3044     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
3045         brk = (uintptr_t)sbrk(0);
3046         if (pgb_try_mmap_set(&ga, 0, brk)) {
3047             guest_base = 0;
3048             return;
3049         }
3050     }
3051 
3052     /*
3053      * Rebuild the address set for non-identity map.
3054      * This differs in the mapping of the guest NULL page.
3055      */
3056     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
3057 
3058     root = read_self_maps();
3059 
3060     /* Read brk after we've read the maps, which will malloc. */
3061     brk = (uintptr_t)sbrk(0);
3062 
3063     if (!root) {
3064         ret = pgb_find_fallback(&ga, align, brk);
3065     } else {
3066         /*
3067          * Reserve the area close to the host brk.
3068          * This will be freed with the rest of the tree.
3069          */
3070         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
3071         b->start = brk;
3072         b->last = brk + 16 * MiB - 1;
3073         interval_tree_insert(b, root);
3074 
3075         ret = pgb_find_itree(&ga, root, align, brk);
3076         free_self_maps(root);
3077     }
3078 
3079     if (ret == -1) {
3080         int w = TARGET_LONG_BITS / 4;
3081 
3082         error_report("%s: Unable to find a guest_base to satisfy all "
3083                      "guest address mapping requirements", image_name);
3084 
3085         for (int i = 0; i < ga.nbounds; ++i) {
3086             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
3087                          w, (uint64_t)ga.bounds[i][0],
3088                          w, (uint64_t)ga.bounds[i][1]);
3089         }
3090         exit(EXIT_FAILURE);
3091     }
3092     guest_base = ret;
3093 }
3094 
3095 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3096                       abi_ulong guest_hiaddr)
3097 {
3098     /* In order to use host shmat, we must be able to honor SHMLBA.  */
3099     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3100 
3101     /* Sanity check the guest binary. */
3102     if (reserved_va) {
3103         if (guest_hiaddr > reserved_va) {
3104             error_report("%s: requires more than reserved virtual "
3105                          "address space (0x%" PRIx64 " > 0x%lx)",
3106                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3107             exit(EXIT_FAILURE);
3108         }
3109     } else {
3110         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3111             error_report("%s: requires more virtual address space "
3112                          "than the host can provide (0x%" PRIx64 ")",
3113                          image_name, (uint64_t)guest_hiaddr + 1);
3114             exit(EXIT_FAILURE);
3115         }
3116     }
3117 
3118     if (have_guest_base) {
3119         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3120     } else {
3121         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3122     }
3123 
3124     /* Reserve and initialize the commpage. */
3125     if (!init_guest_commpage()) {
3126         /* We have already probed for the commpage being free. */
3127         g_assert_not_reached();
3128     }
3129 
3130     assert(QEMU_IS_ALIGNED(guest_base, align));
3131     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3132                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3133 }
3134 
3135 enum {
3136     /* The string "GNU\0" as a magic number. */
3137     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3138     NOTE_DATA_SZ = 1 * KiB,
3139     NOTE_NAME_SZ = 4,
3140     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3141 };
3142 
3143 /*
3144  * Process a single gnu_property entry.
3145  * Return false for error.
3146  */
3147 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3148                                struct image_info *info, bool have_prev_type,
3149                                uint32_t *prev_type, Error **errp)
3150 {
3151     uint32_t pr_type, pr_datasz, step;
3152 
3153     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3154         goto error_data;
3155     }
3156     datasz -= *off;
3157     data += *off / sizeof(uint32_t);
3158 
3159     if (datasz < 2 * sizeof(uint32_t)) {
3160         goto error_data;
3161     }
3162     pr_type = data[0];
3163     pr_datasz = data[1];
3164     data += 2;
3165     datasz -= 2 * sizeof(uint32_t);
3166     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3167     if (step > datasz) {
3168         goto error_data;
3169     }
3170 
3171     /* Properties are supposed to be unique and sorted on pr_type. */
3172     if (have_prev_type && pr_type <= *prev_type) {
3173         if (pr_type == *prev_type) {
3174             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3175         } else {
3176             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3177         }
3178         return false;
3179     }
3180     *prev_type = pr_type;
3181 
3182     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3183         return false;
3184     }
3185 
3186     *off += 2 * sizeof(uint32_t) + step;
3187     return true;
3188 
3189  error_data:
3190     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3191     return false;
3192 }
3193 
3194 /* Process NT_GNU_PROPERTY_TYPE_0. */
3195 static bool parse_elf_properties(const ImageSource *src,
3196                                  struct image_info *info,
3197                                  const struct elf_phdr *phdr,
3198                                  Error **errp)
3199 {
3200     union {
3201         struct elf_note nhdr;
3202         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3203     } note;
3204 
3205     int n, off, datasz;
3206     bool have_prev_type;
3207     uint32_t prev_type;
3208 
3209     /* Unless the arch requires properties, ignore them. */
3210     if (!ARCH_USE_GNU_PROPERTY) {
3211         return true;
3212     }
3213 
3214     /* If the properties are crazy large, that's too bad. */
3215     n = phdr->p_filesz;
3216     if (n > sizeof(note)) {
3217         error_setg(errp, "PT_GNU_PROPERTY too large");
3218         return false;
3219     }
3220     if (n < sizeof(note.nhdr)) {
3221         error_setg(errp, "PT_GNU_PROPERTY too small");
3222         return false;
3223     }
3224 
3225     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3226         return false;
3227     }
3228 
3229     /*
3230      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
3231      * Swap most of them now, beyond the header and namesz.
3232      */
3233     if (target_needs_bswap()) {
3234         for (int i = 4; i < n / 4; i++) {
3235             bswap32s(note.data + i);
3236         }
3237     }
3238 
3239     /*
3240      * Note that nhdr is 3 words, and that the "name" described by namesz
3241      * immediately follows nhdr and is thus at the 4th word.  Further, all
3242      * of the inputs to the kernel's round_up are multiples of 4.
3243      */
3244     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
3245         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
3246         note.data[3] != GNU0_MAGIC) {
3247         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3248         return false;
3249     }
3250     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3251 
3252     datasz = tswap32(note.nhdr.n_descsz) + off;
3253     if (datasz > n) {
3254         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3255         return false;
3256     }
3257 
3258     have_prev_type = false;
3259     prev_type = 0;
3260     while (1) {
3261         if (off == datasz) {
3262             return true;  /* end, exit ok */
3263         }
3264         if (!parse_elf_property(note.data, &off, datasz, info,
3265                                 have_prev_type, &prev_type, errp)) {
3266             return false;
3267         }
3268         have_prev_type = true;
3269     }
3270 }
3271 
3272 /**
3273  * load_elf_image: Load an ELF image into the address space.
3274  * @image_name: the filename of the image, to use in error messages.
3275  * @src: the ImageSource from which to read.
3276  * @info: info collected from the loaded image.
3277  * @ehdr: the ELF header, not yet bswapped.
3278  * @pinterp_name: record any PT_INTERP string found.
3279  *
3280  * On return: @info values will be filled in, as necessary or available.
3281  */
3282 
3283 static void load_elf_image(const char *image_name, const ImageSource *src,
3284                            struct image_info *info, struct elfhdr *ehdr,
3285                            char **pinterp_name)
3286 {
3287     g_autofree struct elf_phdr *phdr = NULL;
3288     abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align;
3289     size_t reserve_size, align_size;
3290     int i, prot_exec;
3291     Error *err = NULL;
3292 
3293     /*
3294      * First of all, some simple consistency checks.
3295      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3296      * for later use by load_elf_binary and create_elf_tables.
3297      */
3298     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3299         goto exit_errmsg;
3300     }
3301     if (!elf_check_ident(ehdr)) {
3302         error_setg(&err, "Invalid ELF image for this architecture");
3303         goto exit_errmsg;
3304     }
3305     bswap_ehdr(ehdr);
3306     if (!elf_check_ehdr(ehdr)) {
3307         error_setg(&err, "Invalid ELF image for this architecture");
3308         goto exit_errmsg;
3309     }
3310 
3311     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3312                              ehdr->e_phnum * sizeof(struct elf_phdr),
3313                              src, &err);
3314     if (phdr == NULL) {
3315         goto exit_errmsg;
3316     }
3317     bswap_phdr(phdr, ehdr->e_phnum);
3318 
3319     info->nsegs = 0;
3320     info->pt_dynamic_addr = 0;
3321 
3322     mmap_lock();
3323 
3324     /*
3325      * Find the maximum size of the image and allocate an appropriate
3326      * amount of memory to handle that.  Locate the interpreter, if any.
3327      */
3328     loaddr = -1, hiaddr = 0;
3329     align = 0;
3330     info->exec_stack = EXSTACK_DEFAULT;
3331     for (i = 0; i < ehdr->e_phnum; ++i) {
3332         struct elf_phdr *eppnt = phdr + i;
3333         if (eppnt->p_type == PT_LOAD) {
3334             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3335             if (a < loaddr) {
3336                 loaddr = a;
3337             }
3338             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3339             if (a > hiaddr) {
3340                 hiaddr = a;
3341             }
3342             ++info->nsegs;
3343             align |= eppnt->p_align;
3344         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3345             g_autofree char *interp_name = NULL;
3346 
3347             if (*pinterp_name) {
3348                 error_setg(&err, "Multiple PT_INTERP entries");
3349                 goto exit_errmsg;
3350             }
3351 
3352             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3353                                             src, &err);
3354             if (interp_name == NULL) {
3355                 goto exit_errmsg;
3356             }
3357             if (interp_name[eppnt->p_filesz - 1] != 0) {
3358                 error_setg(&err, "Invalid PT_INTERP entry");
3359                 goto exit_errmsg;
3360             }
3361             *pinterp_name = g_steal_pointer(&interp_name);
3362         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3363             if (!parse_elf_properties(src, info, eppnt, &err)) {
3364                 goto exit_errmsg;
3365             }
3366         } else if (eppnt->p_type == PT_GNU_STACK) {
3367             info->exec_stack = eppnt->p_flags & PF_X;
3368         }
3369     }
3370 
3371     load_addr = loaddr;
3372 
3373     align = pow2ceil(align);
3374 
3375     if (pinterp_name != NULL) {
3376         if (ehdr->e_type == ET_EXEC) {
3377             /*
3378              * Make sure that the low address does not conflict with
3379              * MMAP_MIN_ADDR or the QEMU application itself.
3380              */
3381             probe_guest_base(image_name, loaddr, hiaddr);
3382         } else {
3383             /*
3384              * The binary is dynamic, but we still need to
3385              * select guest_base.  In this case we pass a size.
3386              */
3387             probe_guest_base(image_name, 0, hiaddr - loaddr);
3388 
3389             /*
3390              * Avoid collision with the loader by providing a different
3391              * default load address.
3392              */
3393             load_addr += elf_et_dyn_base;
3394 
3395             /*
3396              * TODO: Better support for mmap alignment is desirable.
3397              * Since we do not have complete control over the guest
3398              * address space, we prefer the kernel to choose some address
3399              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3400              */
3401             if (align) {
3402                 load_addr &= -align;
3403             }
3404         }
3405     }
3406 
3407     /*
3408      * Reserve address space for all of this.
3409      *
3410      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3411      * exactly the address range that is required.  Without reserved_va,
3412      * the guest address space is not isolated.  We have attempted to avoid
3413      * conflict with the host program itself via probe_guest_base, but using
3414      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3415      *
3416      * Otherwise this is ET_DYN, and we are searching for a location
3417      * that can hold the memory space required.  If the image is
3418      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3419      * honor that address if it happens to be free.
3420      *
3421      * In both cases, we will overwrite pages in this range with mappings
3422      * from the executable.
3423      */
3424     reserve_size = (size_t)hiaddr - loaddr + 1;
3425     align_size = reserve_size;
3426 
3427     if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) {
3428         align_size += align - 1;
3429     }
3430 
3431     load_addr = target_mmap(load_addr, align_size, PROT_NONE,
3432                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3433                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3434                             -1, 0);
3435     if (load_addr == -1) {
3436         goto exit_mmap;
3437     }
3438 
3439     if (align_size != reserve_size) {
3440         abi_ulong align_addr = ROUND_UP(load_addr, align);
3441         abi_ulong align_end = TARGET_PAGE_ALIGN(align_addr + reserve_size);
3442         abi_ulong load_end = TARGET_PAGE_ALIGN(load_addr + align_size);
3443 
3444         if (align_addr != load_addr) {
3445             target_munmap(load_addr, align_addr - load_addr);
3446         }
3447         if (align_end != load_end) {
3448             target_munmap(align_end, load_end - align_end);
3449         }
3450         load_addr = align_addr;
3451     }
3452 
3453     load_bias = load_addr - loaddr;
3454 
3455     if (elf_is_fdpic(ehdr)) {
3456         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3457             g_malloc(sizeof(*loadsegs) * info->nsegs);
3458 
3459         for (i = 0; i < ehdr->e_phnum; ++i) {
3460             switch (phdr[i].p_type) {
3461             case PT_DYNAMIC:
3462                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3463                 break;
3464             case PT_LOAD:
3465                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3466                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3467                 loadsegs->p_memsz = phdr[i].p_memsz;
3468                 ++loadsegs;
3469                 break;
3470             }
3471         }
3472     }
3473 
3474     info->load_bias = load_bias;
3475     info->code_offset = load_bias;
3476     info->data_offset = load_bias;
3477     info->load_addr = load_addr;
3478     info->entry = ehdr->e_entry + load_bias;
3479     info->start_code = -1;
3480     info->end_code = 0;
3481     info->start_data = -1;
3482     info->end_data = 0;
3483     /* Usual start for brk is after all sections of the main executable. */
3484     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3485     info->elf_flags = ehdr->e_flags;
3486 
3487     prot_exec = PROT_EXEC;
3488 #ifdef TARGET_AARCH64
3489     /*
3490      * If the BTI feature is present, this indicates that the executable
3491      * pages of the startup binary should be mapped with PROT_BTI, so that
3492      * branch targets are enforced.
3493      *
3494      * The startup binary is either the interpreter or the static executable.
3495      * The interpreter is responsible for all pages of a dynamic executable.
3496      *
3497      * Elf notes are backward compatible to older cpus.
3498      * Do not enable BTI unless it is supported.
3499      */
3500     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3501         && (pinterp_name == NULL || *pinterp_name == 0)
3502         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3503         prot_exec |= TARGET_PROT_BTI;
3504     }
3505 #endif
3506 
3507     for (i = 0; i < ehdr->e_phnum; i++) {
3508         struct elf_phdr *eppnt = phdr + i;
3509         if (eppnt->p_type == PT_LOAD) {
3510             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3511             int elf_prot = 0;
3512 
3513             if (eppnt->p_flags & PF_R) {
3514                 elf_prot |= PROT_READ;
3515             }
3516             if (eppnt->p_flags & PF_W) {
3517                 elf_prot |= PROT_WRITE;
3518             }
3519             if (eppnt->p_flags & PF_X) {
3520                 elf_prot |= prot_exec;
3521             }
3522 
3523             vaddr = load_bias + eppnt->p_vaddr;
3524             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3525             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3526 
3527             vaddr_ef = vaddr + eppnt->p_filesz;
3528             vaddr_em = vaddr + eppnt->p_memsz;
3529 
3530             /*
3531              * Some segments may be completely empty, with a non-zero p_memsz
3532              * but no backing file segment.
3533              */
3534             if (eppnt->p_filesz != 0) {
3535                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3536                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3537                                     src, eppnt->p_offset - vaddr_po);
3538                 if (error == -1) {
3539                     goto exit_mmap;
3540                 }
3541             }
3542 
3543             /* If the load segment requests extra zeros (e.g. bss), map it. */
3544             if (vaddr_ef < vaddr_em &&
3545                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3546                 goto exit_errmsg;
3547             }
3548 
3549             /* Find the full program boundaries.  */
3550             if (elf_prot & PROT_EXEC) {
3551                 if (vaddr < info->start_code) {
3552                     info->start_code = vaddr;
3553                 }
3554                 if (vaddr_ef > info->end_code) {
3555                     info->end_code = vaddr_ef;
3556                 }
3557             }
3558             if (elf_prot & PROT_WRITE) {
3559                 if (vaddr < info->start_data) {
3560                     info->start_data = vaddr;
3561                 }
3562                 if (vaddr_ef > info->end_data) {
3563                     info->end_data = vaddr_ef;
3564                 }
3565             }
3566 #ifdef TARGET_MIPS
3567         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3568             Mips_elf_abiflags_v0 abiflags;
3569 
3570             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3571                              src, &err)) {
3572                 goto exit_errmsg;
3573             }
3574             bswap_mips_abiflags(&abiflags);
3575             info->fp_abi = abiflags.fp_abi;
3576 #endif
3577         }
3578     }
3579 
3580     if (info->end_data == 0) {
3581         info->start_data = info->end_code;
3582         info->end_data = info->end_code;
3583     }
3584 
3585     if (qemu_log_enabled()) {
3586         load_symbols(ehdr, src, load_bias);
3587     }
3588 
3589     debuginfo_report_elf(image_name, src->fd, load_bias);
3590 
3591     mmap_unlock();
3592 
3593     close(src->fd);
3594     return;
3595 
3596  exit_mmap:
3597     error_setg_errno(&err, errno, "Error mapping file");
3598     goto exit_errmsg;
3599  exit_errmsg:
3600     error_reportf_err(err, "%s: ", image_name);
3601     exit(-1);
3602 }
3603 
3604 static void load_elf_interp(const char *filename, struct image_info *info,
3605                             char bprm_buf[BPRM_BUF_SIZE])
3606 {
3607     struct elfhdr ehdr;
3608     ImageSource src;
3609     int fd, retval;
3610     Error *err = NULL;
3611 
3612     fd = open(path(filename), O_RDONLY);
3613     if (fd < 0) {
3614         error_setg_file_open(&err, errno, filename);
3615         error_report_err(err);
3616         exit(-1);
3617     }
3618 
3619     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3620     if (retval < 0) {
3621         error_setg_errno(&err, errno, "Error reading file header");
3622         error_reportf_err(err, "%s: ", filename);
3623         exit(-1);
3624     }
3625 
3626     src.fd = fd;
3627     src.cache = bprm_buf;
3628     src.cache_size = retval;
3629 
3630     load_elf_image(filename, &src, info, &ehdr, NULL);
3631 }
3632 
3633 #ifndef vdso_image_info
3634 #ifdef VDSO_HEADER
3635 #include VDSO_HEADER
3636 #define  vdso_image_info(flags)  &vdso_image_info
3637 #else
3638 #define  vdso_image_info(flags)  NULL
3639 #endif /* VDSO_HEADER */
3640 #endif /* vdso_image_info */
3641 
3642 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3643 {
3644     ImageSource src;
3645     struct elfhdr ehdr;
3646     abi_ulong load_bias, load_addr;
3647 
3648     src.fd = -1;
3649     src.cache = vdso->image;
3650     src.cache_size = vdso->image_size;
3651 
3652     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3653     load_addr = info->load_addr;
3654     load_bias = info->load_bias;
3655 
3656     /*
3657      * We need to relocate the VDSO image.  The one built into the kernel
3658      * is built for a fixed address.  The one built for QEMU is not, since
3659      * that requires close control of the guest address space.
3660      * We pre-processed the image to locate all of the addresses that need
3661      * to be updated.
3662      */
3663     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3664         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3665         *addr = tswapal(tswapal(*addr) + load_bias);
3666     }
3667 
3668     /* Install signal trampolines, if present. */
3669     if (vdso->sigreturn_ofs) {
3670         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3671     }
3672     if (vdso->rt_sigreturn_ofs) {
3673         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3674     }
3675 
3676     /* Remove write from VDSO segment. */
3677     target_mprotect(info->start_data, info->end_data - info->start_data,
3678                     PROT_READ | PROT_EXEC);
3679 }
3680 
3681 static int symfind(const void *s0, const void *s1)
3682 {
3683     struct elf_sym *sym = (struct elf_sym *)s1;
3684     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3685     int result = 0;
3686 
3687     if (addr < sym->st_value) {
3688         result = -1;
3689     } else if (addr >= sym->st_value + sym->st_size) {
3690         result = 1;
3691     }
3692     return result;
3693 }
3694 
3695 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3696 {
3697 #if ELF_CLASS == ELFCLASS32
3698     struct elf_sym *syms = s->disas_symtab.elf32;
3699 #else
3700     struct elf_sym *syms = s->disas_symtab.elf64;
3701 #endif
3702 
3703     // binary search
3704     struct elf_sym *sym;
3705 
3706     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3707     if (sym != NULL) {
3708         return s->disas_strtab + sym->st_name;
3709     }
3710 
3711     return "";
3712 }
3713 
3714 /* FIXME: This should use elf_ops.h.inc  */
3715 static int symcmp(const void *s0, const void *s1)
3716 {
3717     struct elf_sym *sym0 = (struct elf_sym *)s0;
3718     struct elf_sym *sym1 = (struct elf_sym *)s1;
3719     return (sym0->st_value < sym1->st_value)
3720         ? -1
3721         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3722 }
3723 
3724 /* Best attempt to load symbols from this ELF object. */
3725 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3726                          abi_ulong load_bias)
3727 {
3728     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3729     g_autofree struct elf_shdr *shdr = NULL;
3730     char *strings = NULL;
3731     struct elf_sym *syms = NULL;
3732     struct elf_sym *new_syms;
3733     uint64_t segsz;
3734 
3735     shnum = hdr->e_shnum;
3736     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3737                              src, NULL);
3738     if (shdr == NULL) {
3739         return;
3740     }
3741 
3742     bswap_shdr(shdr, shnum);
3743     for (i = 0; i < shnum; ++i) {
3744         if (shdr[i].sh_type == SHT_SYMTAB) {
3745             sym_idx = i;
3746             str_idx = shdr[i].sh_link;
3747             goto found;
3748         }
3749     }
3750 
3751     /* There will be no symbol table if the file was stripped.  */
3752     return;
3753 
3754  found:
3755     /* Now know where the strtab and symtab are.  Snarf them.  */
3756 
3757     segsz = shdr[str_idx].sh_size;
3758     strings = g_try_malloc(segsz);
3759     if (!strings) {
3760         goto give_up;
3761     }
3762     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3763         goto give_up;
3764     }
3765 
3766     segsz = shdr[sym_idx].sh_size;
3767     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3768         /*
3769          * Implausibly large symbol table: give up rather than ploughing
3770          * on with the number of symbols calculation overflowing.
3771          */
3772         goto give_up;
3773     }
3774     nsyms = segsz / sizeof(struct elf_sym);
3775     syms = g_try_malloc(segsz);
3776     if (!syms) {
3777         goto give_up;
3778     }
3779     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3780         goto give_up;
3781     }
3782 
3783     for (i = 0; i < nsyms; ) {
3784         bswap_sym(syms + i);
3785         /* Throw away entries which we do not need.  */
3786         if (syms[i].st_shndx == SHN_UNDEF
3787             || syms[i].st_shndx >= SHN_LORESERVE
3788             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3789             if (i < --nsyms) {
3790                 syms[i] = syms[nsyms];
3791             }
3792         } else {
3793 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3794             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3795             syms[i].st_value &= ~(target_ulong)1;
3796 #endif
3797             syms[i].st_value += load_bias;
3798             i++;
3799         }
3800     }
3801 
3802     /* No "useful" symbol.  */
3803     if (nsyms == 0) {
3804         goto give_up;
3805     }
3806 
3807     /*
3808      * Attempt to free the storage associated with the local symbols
3809      * that we threw away.  Whether or not this has any effect on the
3810      * memory allocation depends on the malloc implementation and how
3811      * many symbols we managed to discard.
3812      */
3813     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3814     if (new_syms == NULL) {
3815         goto give_up;
3816     }
3817     syms = new_syms;
3818 
3819     qsort(syms, nsyms, sizeof(*syms), symcmp);
3820 
3821     {
3822         struct syminfo *s = g_new(struct syminfo, 1);
3823 
3824         s->disas_strtab = strings;
3825         s->disas_num_syms = nsyms;
3826 #if ELF_CLASS == ELFCLASS32
3827         s->disas_symtab.elf32 = syms;
3828 #else
3829         s->disas_symtab.elf64 = syms;
3830 #endif
3831         s->lookup_symbol = lookup_symbolxx;
3832         s->next = syminfos;
3833         syminfos = s;
3834     }
3835     return;
3836 
3837  give_up:
3838     g_free(strings);
3839     g_free(syms);
3840 }
3841 
3842 uint32_t get_elf_eflags(int fd)
3843 {
3844     struct elfhdr ehdr;
3845     off_t offset;
3846     int ret;
3847 
3848     /* Read ELF header */
3849     offset = lseek(fd, 0, SEEK_SET);
3850     if (offset == (off_t) -1) {
3851         return 0;
3852     }
3853     ret = read(fd, &ehdr, sizeof(ehdr));
3854     if (ret < sizeof(ehdr)) {
3855         return 0;
3856     }
3857     offset = lseek(fd, offset, SEEK_SET);
3858     if (offset == (off_t) -1) {
3859         return 0;
3860     }
3861 
3862     /* Check ELF signature */
3863     if (!elf_check_ident(&ehdr)) {
3864         return 0;
3865     }
3866 
3867     /* check header */
3868     bswap_ehdr(&ehdr);
3869     if (!elf_check_ehdr(&ehdr)) {
3870         return 0;
3871     }
3872 
3873     /* return architecture id */
3874     return ehdr.e_flags;
3875 }
3876 
3877 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3878 {
3879     /*
3880      * We need a copy of the elf header for passing to create_elf_tables.
3881      * We will have overwritten the original when we re-use bprm->buf
3882      * while loading the interpreter.  Allocate the storage for this now
3883      * and let elf_load_image do any swapping that may be required.
3884      */
3885     struct elfhdr ehdr;
3886     struct image_info interp_info, vdso_info;
3887     char *elf_interpreter = NULL;
3888     char *scratch;
3889 
3890     memset(&interp_info, 0, sizeof(interp_info));
3891 #ifdef TARGET_MIPS
3892     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3893 #endif
3894 
3895     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3896 
3897     /* Do this so that we can load the interpreter, if need be.  We will
3898        change some of these later */
3899     bprm->p = setup_arg_pages(bprm, info);
3900 
3901     scratch = g_new0(char, TARGET_PAGE_SIZE);
3902     if (STACK_GROWS_DOWN) {
3903         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3904                                    bprm->p, info->stack_limit);
3905         info->file_string = bprm->p;
3906         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3907                                    bprm->p, info->stack_limit);
3908         info->env_strings = bprm->p;
3909         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3910                                    bprm->p, info->stack_limit);
3911         info->arg_strings = bprm->p;
3912     } else {
3913         info->arg_strings = bprm->p;
3914         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3915                                    bprm->p, info->stack_limit);
3916         info->env_strings = bprm->p;
3917         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3918                                    bprm->p, info->stack_limit);
3919         info->file_string = bprm->p;
3920         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3921                                    bprm->p, info->stack_limit);
3922     }
3923 
3924     g_free(scratch);
3925 
3926     if (!bprm->p) {
3927         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3928         exit(-1);
3929     }
3930 
3931     if (elf_interpreter) {
3932         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3933 
3934         /*
3935          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3936          * with the mappings the interpreter can be loaded above but
3937          * near the main executable, which can leave very little room
3938          * for the heap.
3939          * If the current brk has less than 16MB, use the end of the
3940          * interpreter.
3941          */
3942         if (interp_info.brk > info->brk &&
3943             interp_info.load_bias - info->brk < 16 * MiB)  {
3944             info->brk = interp_info.brk;
3945         }
3946 
3947         /* If the program interpreter is one of these two, then assume
3948            an iBCS2 image.  Otherwise assume a native linux image.  */
3949 
3950         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3951             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3952             info->personality = PER_SVR4;
3953 
3954             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3955                and some applications "depend" upon this behavior.  Since
3956                we do not have the power to recompile these, we emulate
3957                the SVr4 behavior.  Sigh.  */
3958             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3959                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3960                         -1, 0);
3961         }
3962 #ifdef TARGET_MIPS
3963         info->interp_fp_abi = interp_info.fp_abi;
3964 #endif
3965     }
3966 
3967     /*
3968      * Load a vdso if available, which will amongst other things contain the
3969      * signal trampolines.  Otherwise, allocate a separate page for them.
3970      */
3971     const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags);
3972     if (vdso) {
3973         load_elf_vdso(&vdso_info, vdso);
3974         info->vdso = vdso_info.load_bias;
3975     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3976         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3977                                           PROT_READ | PROT_WRITE,
3978                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3979         if (tramp_page == -1) {
3980             return -errno;
3981         }
3982 
3983         setup_sigtramp(tramp_page);
3984         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3985     }
3986 
3987     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3988                                 elf_interpreter ? &interp_info : NULL,
3989                                 vdso ? &vdso_info : NULL);
3990     info->start_stack = bprm->p;
3991 
3992     /* If we have an interpreter, set that as the program's entry point.
3993        Copy the load_bias as well, to help PPC64 interpret the entry
3994        point as a function descriptor.  Do this after creating elf tables
3995        so that we copy the original program entry point into the AUXV.  */
3996     if (elf_interpreter) {
3997         info->load_bias = interp_info.load_bias;
3998         info->entry = interp_info.entry;
3999         g_free(elf_interpreter);
4000     }
4001 
4002 #ifdef USE_ELF_CORE_DUMP
4003     bprm->core_dump = &elf_core_dump;
4004 #endif
4005 
4006     return 0;
4007 }
4008 
4009 #ifdef USE_ELF_CORE_DUMP
4010 
4011 /*
4012  * Definitions to generate Intel SVR4-like core files.
4013  * These mostly have the same names as the SVR4 types with "target_elf_"
4014  * tacked on the front to prevent clashes with linux definitions,
4015  * and the typedef forms have been avoided.  This is mostly like
4016  * the SVR4 structure, but more Linuxy, with things that Linux does
4017  * not support and which gdb doesn't really use excluded.
4018  *
4019  * Fields we don't dump (their contents is zero) in linux-user qemu
4020  * are marked with XXX.
4021  *
4022  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
4023  *
4024  * Porting ELF coredump for target is (quite) simple process.  First you
4025  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
4026  * the target resides):
4027  *
4028  * #define USE_ELF_CORE_DUMP
4029  *
4030  * Next you define type of register set used for dumping.  ELF specification
4031  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
4032  *
4033  * typedef <target_regtype> target_elf_greg_t;
4034  * #define ELF_NREG <number of registers>
4035  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
4036  *
4037  * Last step is to implement target specific function that copies registers
4038  * from given cpu into just specified register set.  Prototype is:
4039  *
4040  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
4041  *                                const CPUArchState *env);
4042  *
4043  * Parameters:
4044  *     regs - copy register values into here (allocated and zeroed by caller)
4045  *     env - copy registers from here
4046  *
4047  * Example for ARM target is provided in this file.
4048  */
4049 
4050 struct target_elf_siginfo {
4051     abi_int    si_signo; /* signal number */
4052     abi_int    si_code;  /* extra code */
4053     abi_int    si_errno; /* errno */
4054 };
4055 
4056 struct target_elf_prstatus {
4057     struct target_elf_siginfo pr_info;      /* Info associated with signal */
4058     abi_short          pr_cursig;    /* Current signal */
4059     abi_ulong          pr_sigpend;   /* XXX */
4060     abi_ulong          pr_sighold;   /* XXX */
4061     target_pid_t       pr_pid;
4062     target_pid_t       pr_ppid;
4063     target_pid_t       pr_pgrp;
4064     target_pid_t       pr_sid;
4065     struct target_timeval pr_utime;  /* XXX User time */
4066     struct target_timeval pr_stime;  /* XXX System time */
4067     struct target_timeval pr_cutime; /* XXX Cumulative user time */
4068     struct target_timeval pr_cstime; /* XXX Cumulative system time */
4069     target_elf_gregset_t      pr_reg;       /* GP registers */
4070     abi_int            pr_fpvalid;   /* XXX */
4071 };
4072 
4073 #define ELF_PRARGSZ     (80) /* Number of chars for args */
4074 
4075 struct target_elf_prpsinfo {
4076     char         pr_state;       /* numeric process state */
4077     char         pr_sname;       /* char for pr_state */
4078     char         pr_zomb;        /* zombie */
4079     char         pr_nice;        /* nice val */
4080     abi_ulong    pr_flag;        /* flags */
4081     target_uid_t pr_uid;
4082     target_gid_t pr_gid;
4083     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
4084     /* Lots missing */
4085     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
4086     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
4087 };
4088 
4089 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
4090 {
4091     if (!target_needs_bswap()) {
4092         return;
4093     }
4094 
4095     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
4096     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
4097     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
4098     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
4099     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
4100     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
4101     prstatus->pr_pid = tswap32(prstatus->pr_pid);
4102     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
4103     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
4104     prstatus->pr_sid = tswap32(prstatus->pr_sid);
4105     /* cpu times are not filled, so we skip them */
4106     /* regs should be in correct format already */
4107     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
4108 }
4109 
4110 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
4111 {
4112     if (!target_needs_bswap()) {
4113         return;
4114     }
4115 
4116     psinfo->pr_flag = tswapal(psinfo->pr_flag);
4117     psinfo->pr_uid = tswap16(psinfo->pr_uid);
4118     psinfo->pr_gid = tswap16(psinfo->pr_gid);
4119     psinfo->pr_pid = tswap32(psinfo->pr_pid);
4120     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
4121     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4122     psinfo->pr_sid = tswap32(psinfo->pr_sid);
4123 }
4124 
4125 static void bswap_note(struct elf_note *en)
4126 {
4127     if (!target_needs_bswap()) {
4128         return;
4129     }
4130 
4131     bswap32s(&en->n_namesz);
4132     bswap32s(&en->n_descsz);
4133     bswap32s(&en->n_type);
4134 }
4135 
4136 /*
4137  * Calculate file (dump) size of given memory region.
4138  */
4139 static size_t vma_dump_size(vaddr start, vaddr end, int flags)
4140 {
4141     /* The area must be readable. */
4142     if (!(flags & PAGE_READ)) {
4143         return 0;
4144     }
4145 
4146     /*
4147      * Usually we don't dump executable pages as they contain
4148      * non-writable code that debugger can read directly from
4149      * target library etc. If there is no elf header, we dump it.
4150      */
4151     if (!(flags & PAGE_WRITE_ORG) &&
4152         (flags & PAGE_EXEC) &&
4153         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4154         return 0;
4155     }
4156 
4157     return end - start;
4158 }
4159 
4160 static size_t size_note(const char *name, size_t datasz)
4161 {
4162     size_t namesz = strlen(name) + 1;
4163 
4164     namesz = ROUND_UP(namesz, 4);
4165     datasz = ROUND_UP(datasz, 4);
4166 
4167     return sizeof(struct elf_note) + namesz + datasz;
4168 }
4169 
4170 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4171 {
4172     void *ptr = *pptr;
4173     struct elf_note *n = ptr;
4174     size_t namesz = strlen(name) + 1;
4175 
4176     n->n_namesz = namesz;
4177     n->n_descsz = datasz;
4178     n->n_type = type;
4179     bswap_note(n);
4180 
4181     ptr += sizeof(*n);
4182     memcpy(ptr, name, namesz);
4183 
4184     namesz = ROUND_UP(namesz, 4);
4185     datasz = ROUND_UP(datasz, 4);
4186 
4187     *pptr = ptr + namesz + datasz;
4188     return ptr + namesz;
4189 }
4190 
4191 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4192                             uint32_t flags)
4193 {
4194     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4195 
4196     elf->e_ident[EI_CLASS] = ELF_CLASS;
4197     elf->e_ident[EI_DATA] = ELF_DATA;
4198     elf->e_ident[EI_VERSION] = EV_CURRENT;
4199     elf->e_ident[EI_OSABI] = ELF_OSABI;
4200 
4201     elf->e_type = ET_CORE;
4202     elf->e_machine = machine;
4203     elf->e_version = EV_CURRENT;
4204     elf->e_phoff = sizeof(struct elfhdr);
4205     elf->e_flags = flags;
4206     elf->e_ehsize = sizeof(struct elfhdr);
4207     elf->e_phentsize = sizeof(struct elf_phdr);
4208     elf->e_phnum = segs;
4209 
4210     bswap_ehdr(elf);
4211 }
4212 
4213 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4214 {
4215     phdr->p_type = PT_NOTE;
4216     phdr->p_offset = offset;
4217     phdr->p_filesz = sz;
4218 
4219     bswap_phdr(phdr, 1);
4220 }
4221 
4222 static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
4223 {
4224     /*
4225      * Because note memory is only aligned to 4, and target_elf_prstatus
4226      * may well have higher alignment requirements, fill locally and
4227      * memcpy to the destination afterward.
4228      */
4229     struct target_elf_prstatus prstatus = {
4230         .pr_info.si_signo = signr,
4231         .pr_cursig = signr,
4232         .pr_pid = get_task_state(cpu)->ts_tid,
4233         .pr_ppid = getppid(),
4234         .pr_pgrp = getpgrp(),
4235         .pr_sid = getsid(0),
4236     };
4237 
4238     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4239     bswap_prstatus(&prstatus);
4240     memcpy(data, &prstatus, sizeof(prstatus));
4241 }
4242 
4243 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4244 {
4245     /*
4246      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4247      * may well have higher alignment requirements, fill locally and
4248      * memcpy to the destination afterward.
4249      */
4250     struct target_elf_prpsinfo psinfo = {
4251         .pr_pid = getpid(),
4252         .pr_ppid = getppid(),
4253         .pr_pgrp = getpgrp(),
4254         .pr_sid = getsid(0),
4255         .pr_uid = getuid(),
4256         .pr_gid = getgid(),
4257     };
4258     char *base_filename;
4259     size_t len;
4260 
4261     len = ts->info->env_strings - ts->info->arg_strings;
4262     len = MIN(len, ELF_PRARGSZ);
4263     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4264     for (size_t i = 0; i < len; i++) {
4265         if (psinfo.pr_psargs[i] == 0) {
4266             psinfo.pr_psargs[i] = ' ';
4267         }
4268     }
4269 
4270     base_filename = g_path_get_basename(ts->bprm->filename);
4271     /*
4272      * Using strncpy here is fine: at max-length,
4273      * this field is not NUL-terminated.
4274      */
4275     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4276     g_free(base_filename);
4277 
4278     bswap_psinfo(&psinfo);
4279     memcpy(data, &psinfo, sizeof(psinfo));
4280 }
4281 
4282 static void fill_auxv_note(void *data, const TaskState *ts)
4283 {
4284     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4285 }
4286 
4287 /*
4288  * Constructs name of coredump file.  We have following convention
4289  * for the name:
4290  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4291  *
4292  * Returns the filename
4293  */
4294 static char *core_dump_filename(const TaskState *ts)
4295 {
4296     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4297     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4298     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4299 
4300     return g_strdup_printf("qemu_%s_%s_%d.core",
4301                            base_filename, nowstr, (int)getpid());
4302 }
4303 
4304 static int dump_write(int fd, const void *ptr, size_t size)
4305 {
4306     const char *bufp = (const char *)ptr;
4307     ssize_t bytes_written, bytes_left;
4308 
4309     bytes_written = 0;
4310     bytes_left = size;
4311 
4312     /*
4313      * In normal conditions, single write(2) should do but
4314      * in case of socket etc. this mechanism is more portable.
4315      */
4316     do {
4317         bytes_written = write(fd, bufp, bytes_left);
4318         if (bytes_written < 0) {
4319             if (errno == EINTR)
4320                 continue;
4321             return (-1);
4322         } else if (bytes_written == 0) { /* eof */
4323             return (-1);
4324         }
4325         bufp += bytes_written;
4326         bytes_left -= bytes_written;
4327     } while (bytes_left > 0);
4328 
4329     return (0);
4330 }
4331 
4332 static int wmr_page_unprotect_regions(void *opaque, vaddr start,
4333                                       vaddr end, int flags)
4334 {
4335     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4336         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4337 
4338         while (1) {
4339             page_unprotect(NULL, start, 0);
4340             if (end - start <= step) {
4341                 break;
4342             }
4343             start += step;
4344         }
4345     }
4346     return 0;
4347 }
4348 
4349 typedef struct {
4350     unsigned count;
4351     size_t size;
4352 } CountAndSizeRegions;
4353 
4354 static int wmr_count_and_size_regions(void *opaque, vaddr start,
4355                                       vaddr end, int flags)
4356 {
4357     CountAndSizeRegions *css = opaque;
4358 
4359     css->count++;
4360     css->size += vma_dump_size(start, end, flags);
4361     return 0;
4362 }
4363 
4364 typedef struct {
4365     struct elf_phdr *phdr;
4366     off_t offset;
4367 } FillRegionPhdr;
4368 
4369 static int wmr_fill_region_phdr(void *opaque, vaddr start,
4370                                 vaddr end, int flags)
4371 {
4372     FillRegionPhdr *d = opaque;
4373     struct elf_phdr *phdr = d->phdr;
4374 
4375     phdr->p_type = PT_LOAD;
4376     phdr->p_vaddr = start;
4377     phdr->p_paddr = 0;
4378     phdr->p_filesz = vma_dump_size(start, end, flags);
4379     phdr->p_offset = d->offset;
4380     d->offset += phdr->p_filesz;
4381     phdr->p_memsz = end - start;
4382     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4383                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4384                   | (flags & PAGE_EXEC ? PF_X : 0);
4385     phdr->p_align = ELF_EXEC_PAGESIZE;
4386 
4387     bswap_phdr(phdr, 1);
4388     d->phdr = phdr + 1;
4389     return 0;
4390 }
4391 
4392 static int wmr_write_region(void *opaque, vaddr start,
4393                             vaddr end, int flags)
4394 {
4395     int fd = *(int *)opaque;
4396     size_t size = vma_dump_size(start, end, flags);
4397 
4398     if (!size) {
4399         return 0;
4400     }
4401     return dump_write(fd, g2h_untagged(start), size);
4402 }
4403 
4404 /*
4405  * Write out ELF coredump.
4406  *
4407  * See documentation of ELF object file format in:
4408  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4409  *
4410  * Coredump format in linux is following:
4411  *
4412  * 0   +----------------------+         \
4413  *     | ELF header           | ET_CORE  |
4414  *     +----------------------+          |
4415  *     | ELF program headers  |          |--- headers
4416  *     | - NOTE section       |          |
4417  *     | - PT_LOAD sections   |          |
4418  *     +----------------------+         /
4419  *     | NOTEs:               |
4420  *     | - NT_PRSTATUS        |
4421  *     | - NT_PRSINFO         |
4422  *     | - NT_AUXV            |
4423  *     +----------------------+ <-- aligned to target page
4424  *     | Process memory dump  |
4425  *     :                      :
4426  *     .                      .
4427  *     :                      :
4428  *     |                      |
4429  *     +----------------------+
4430  *
4431  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4432  * NT_PRSINFO  -> struct elf_prpsinfo
4433  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4434  *
4435  * Format follows System V format as close as possible.  Current
4436  * version limitations are as follows:
4437  *     - no floating point registers are dumped
4438  *
4439  * Function returns 0 in case of success, negative errno otherwise.
4440  *
4441  * TODO: make this work also during runtime: it should be
4442  * possible to force coredump from running process and then
4443  * continue processing.  For example qemu could set up SIGUSR2
4444  * handler (provided that target process haven't registered
4445  * handler for that) that does the dump when signal is received.
4446  */
4447 static int elf_core_dump(int signr, const CPUArchState *env)
4448 {
4449     const CPUState *cpu = env_cpu_const(env);
4450     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4451     struct rlimit dumpsize;
4452     CountAndSizeRegions css;
4453     off_t offset, note_offset, data_offset;
4454     size_t note_size;
4455     int cpus, ret;
4456     int fd = -1;
4457     CPUState *cpu_iter;
4458 
4459     if (prctl(PR_GET_DUMPABLE) == 0) {
4460         return 0;
4461     }
4462 
4463     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4464         return 0;
4465     }
4466 
4467     cpu_list_lock();
4468     mmap_lock();
4469 
4470     /* By unprotecting, we merge vmas that might be split. */
4471     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4472 
4473     /*
4474      * Walk through target process memory mappings and
4475      * set up structure containing this information.
4476      */
4477     memset(&css, 0, sizeof(css));
4478     walk_memory_regions(&css, wmr_count_and_size_regions);
4479 
4480     cpus = 0;
4481     CPU_FOREACH(cpu_iter) {
4482         cpus++;
4483     }
4484 
4485     offset = sizeof(struct elfhdr);
4486     offset += (css.count + 1) * sizeof(struct elf_phdr);
4487     note_offset = offset;
4488 
4489     offset += size_note("CORE", ts->info->auxv_len);
4490     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4491     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4492     note_size = offset - note_offset;
4493     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4494 
4495     /* Do not dump if the corefile size exceeds the limit. */
4496     if (dumpsize.rlim_cur != RLIM_INFINITY
4497         && dumpsize.rlim_cur < data_offset + css.size) {
4498         errno = 0;
4499         goto out;
4500     }
4501 
4502     {
4503         g_autofree char *corefile = core_dump_filename(ts);
4504         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4505                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4506     }
4507     if (fd < 0) {
4508         goto out;
4509     }
4510 
4511     /*
4512      * There is a fair amount of alignment padding within the notes
4513      * as well as preceeding the process memory.  Allocate a zeroed
4514      * block to hold it all.  Write all of the headers directly into
4515      * this buffer and then write it out as a block.
4516      */
4517     {
4518         g_autofree void *header = g_malloc0(data_offset);
4519         FillRegionPhdr frp;
4520         void *hptr, *dptr;
4521 
4522         /* Create elf file header. */
4523         hptr = header;
4524         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4525         hptr += sizeof(struct elfhdr);
4526 
4527         /* Create elf program headers. */
4528         fill_elf_note_phdr(hptr, note_size, note_offset);
4529         hptr += sizeof(struct elf_phdr);
4530 
4531         frp.phdr = hptr;
4532         frp.offset = data_offset;
4533         walk_memory_regions(&frp, wmr_fill_region_phdr);
4534         hptr = frp.phdr;
4535 
4536         /* Create the notes. */
4537         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4538         fill_auxv_note(dptr, ts);
4539 
4540         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4541                          sizeof(struct target_elf_prpsinfo));
4542         fill_prpsinfo_note(dptr, ts);
4543 
4544         CPU_FOREACH(cpu_iter) {
4545             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4546                              sizeof(struct target_elf_prstatus));
4547             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
4548         }
4549 
4550         if (dump_write(fd, header, data_offset) < 0) {
4551             goto out;
4552         }
4553     }
4554 
4555     /*
4556      * Finally write process memory into the corefile as well.
4557      */
4558     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4559         goto out;
4560     }
4561     errno = 0;
4562 
4563  out:
4564     ret = -errno;
4565     mmap_unlock();
4566     cpu_list_unlock();
4567     if (fd >= 0) {
4568         close(fd);
4569     }
4570     return ret;
4571 }
4572 #endif /* USE_ELF_CORE_DUMP */
4573 
4574 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4575 {
4576     init_thread(regs, infop);
4577 }
4578