/* * Test some fused multiply add corner cases. * * SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) /* * Perform one "n * m + a" operation using the vfmadd insn and return * the result; on return *mxcsr_p is set to the bottom 6 bits of MXCSR * (the Flag bits). If ftz is true then we set MXCSR.FTZ while doing * the operation. * We print the operation and its results to stdout. */ static uint64_t do_fmadd(uint64_t n, uint64_t m, uint64_t a, bool ftz, uint32_t *mxcsr_p) { uint64_t r; uint32_t mxcsr = 0; uint32_t ftz_bit = ftz ? (1 << 15) : 0; uint32_t saved_mxcsr = 0; asm volatile("stmxcsr %[saved_mxcsr]\n" "stmxcsr %[mxcsr]\n" "andl $0xffff7fc0, %[mxcsr]\n" "orl %[ftz_bit], %[mxcsr]\n" "ldmxcsr %[mxcsr]\n" "movq %[a], %%xmm0\n" "movq %[m], %%xmm1\n" "movq %[n], %%xmm2\n" /* xmm0 = xmm0 + xmm2 * xmm1 */ "vfmadd231sd %%xmm1, %%xmm2, %%xmm0\n" "movq %%xmm0, %[r]\n" "stmxcsr %[mxcsr]\n" "ldmxcsr %[saved_mxcsr]\n" : [r] "=r" (r), [mxcsr] "=m" (mxcsr), [saved_mxcsr] "=m" (saved_mxcsr) : [n] "r" (n), [m] "r" (m), [a] "r" (a), [ftz_bit] "r" (ftz_bit) : "xmm0", "xmm1", "xmm2"); *mxcsr_p = mxcsr & 0x3f; printf("vfmadd132sd 0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 " = 0x%" PRIx64 " MXCSR flags 0x%" PRIx32 "\n", n, m, a, r, *mxcsr_p); return r; } typedef struct testdata { /* Input n, m, a */ uint64_t n; uint64_t m; uint64_t a; bool ftz; /* Expected result */ uint64_t expected_r; /* Expected low 6 bits of MXCSR (the Flag bits) */ uint32_t expected_mxcsr; } testdata; static testdata tests[] = { { 0, 0x7ff0000000000000, 0x7ff000000000aaaa, false, /* 0 * Inf + SNaN */ 0x7ff800000000aaaa, 1 }, /* Should be QNaN and does raise Invalid */ { 0, 0x7ff0000000000000, 0x7ff800000000aaaa, false, /* 0 * Inf + QNaN */ 0x7ff800000000aaaa, 0 }, /* Should be QNaN and does *not* raise Invalid */ /* * These inputs give a result which is tiny before rounding but which * becomes non-tiny after rounding. x86 is a "detect tininess after * rounding" architecture, so it should give a non-denormal result and * not set the Underflow flag (only the Precision flag for an inexact * result). */ { 0x3fdfffffffffffff, 0x001fffffffffffff, 0x801fffffffffffff, false, 0x8010000000000000, 0x20 }, /* * Flushing of denormal outputs to zero should also happen after * rounding, so setting FTZ should not affect the result or the flags. * QEMU currently does not emulate this correctly because we do the * flush-to-zero check before rounding, so we incorrectly produce a * zero result and set Underflow as well as Precision. */ #ifdef ENABLE_FAILING_TESTS { 0x3fdfffffffffffff, 0x001fffffffffffff, 0x801fffffffffffff, true, 0x8010000000000000, 0x20 }, /* Enabling FTZ shouldn't change flags */ #endif }; int main(void) { bool passed = true; for (int i = 0; i < ARRAY_SIZE(tests); i++) { uint32_t mxcsr; uint64_t r = do_fmadd(tests[i].n, tests[i].m, tests[i].a, tests[i].ftz, &mxcsr); if (r != tests[i].expected_r) { printf("expected result 0x%" PRIx64 "\n", tests[i].expected_r); passed = false; } if (mxcsr != tests[i].expected_mxcsr) { printf("expected MXCSR flags 0x%x\n", tests[i].expected_mxcsr); passed = false; } } return passed ? 0 : 1; }