/* * Memory region management for Tiny Code Generator for QEMU * * Copyright (c) 2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #if !defined(CONFIG_USER_ONLY) #include "hw/boards.h" #endif #include "tcg-internal.h" struct tcg_region_tree { QemuMutex lock; GTree *tree; /* padding to avoid false sharing is computed at run-time */ }; /* * We divide code_gen_buffer into equally-sized "regions" that TCG threads * dynamically allocate from as demand dictates. Given appropriate region * sizing, this minimizes flushes even when some TCG threads generate a lot * more code than others. */ struct tcg_region_state { QemuMutex lock; /* fields set at init time */ void *start; void *start_aligned; void *end; size_t n; size_t size; /* size of one region */ size_t stride; /* .size + guard size */ /* fields protected by the lock */ size_t current; /* current region index */ size_t agg_size_full; /* aggregate size of full regions */ }; static struct tcg_region_state region; /* * This is an array of struct tcg_region_tree's, with padding. * We use void * to simplify the computation of region_trees[i]; each * struct is found every tree_size bytes. */ static void *region_trees; static size_t tree_size; /* compare a pointer @ptr and a tb_tc @s */ static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) { if (ptr >= s->ptr + s->size) { return 1; } else if (ptr < s->ptr) { return -1; } return 0; } static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) { const struct tb_tc *a = ap; const struct tb_tc *b = bp; /* * When both sizes are set, we know this isn't a lookup. * This is the most likely case: every TB must be inserted; lookups * are a lot less frequent. */ if (likely(a->size && b->size)) { if (a->ptr > b->ptr) { return 1; } else if (a->ptr < b->ptr) { return -1; } /* a->ptr == b->ptr should happen only on deletions */ g_assert(a->size == b->size); return 0; } /* * All lookups have either .size field set to 0. * From the glib sources we see that @ap is always the lookup key. However * the docs provide no guarantee, so we just mark this case as likely. */ if (likely(a->size == 0)) { return ptr_cmp_tb_tc(a->ptr, b); } return ptr_cmp_tb_tc(b->ptr, a); } static void tcg_region_trees_init(void) { size_t i; tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); for (i = 0; i < region.n; i++) { struct tcg_region_tree *rt = region_trees + i * tree_size; qemu_mutex_init(&rt->lock); rt->tree = g_tree_new(tb_tc_cmp); } } static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p) { size_t region_idx; /* * Like tcg_splitwx_to_rw, with no assert. The pc may come from * a signal handler over which the caller has no control. */ if (!in_code_gen_buffer(p)) { p -= tcg_splitwx_diff; if (!in_code_gen_buffer(p)) { return NULL; } } if (p < region.start_aligned) { region_idx = 0; } else { ptrdiff_t offset = p - region.start_aligned; if (offset > region.stride * (region.n - 1)) { region_idx = region.n - 1; } else { region_idx = offset / region.stride; } } return region_trees + region_idx * tree_size; } void tcg_tb_insert(TranslationBlock *tb) { struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); g_assert(rt != NULL); qemu_mutex_lock(&rt->lock); g_tree_insert(rt->tree, &tb->tc, tb); qemu_mutex_unlock(&rt->lock); } void tcg_tb_remove(TranslationBlock *tb) { struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); g_assert(rt != NULL); qemu_mutex_lock(&rt->lock); g_tree_remove(rt->tree, &tb->tc); qemu_mutex_unlock(&rt->lock); } /* * Find the TB 'tb' such that * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size * Return NULL if not found. */ TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) { struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); TranslationBlock *tb; struct tb_tc s = { .ptr = (void *)tc_ptr }; if (rt == NULL) { return NULL; } qemu_mutex_lock(&rt->lock); tb = g_tree_lookup(rt->tree, &s); qemu_mutex_unlock(&rt->lock); return tb; } static void tcg_region_tree_lock_all(void) { size_t i; for (i = 0; i < region.n; i++) { struct tcg_region_tree *rt = region_trees + i * tree_size; qemu_mutex_lock(&rt->lock); } } static void tcg_region_tree_unlock_all(void) { size_t i; for (i = 0; i < region.n; i++) { struct tcg_region_tree *rt = region_trees + i * tree_size; qemu_mutex_unlock(&rt->lock); } } void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) { size_t i; tcg_region_tree_lock_all(); for (i = 0; i < region.n; i++) { struct tcg_region_tree *rt = region_trees + i * tree_size; g_tree_foreach(rt->tree, func, user_data); } tcg_region_tree_unlock_all(); } size_t tcg_nb_tbs(void) { size_t nb_tbs = 0; size_t i; tcg_region_tree_lock_all(); for (i = 0; i < region.n; i++) { struct tcg_region_tree *rt = region_trees + i * tree_size; nb_tbs += g_tree_nnodes(rt->tree); } tcg_region_tree_unlock_all(); return nb_tbs; } static gboolean tcg_region_tree_traverse(gpointer k, gpointer v, gpointer data) { TranslationBlock *tb = v; tb_destroy(tb); return FALSE; } static void tcg_region_tree_reset_all(void) { size_t i; tcg_region_tree_lock_all(); for (i = 0; i < region.n; i++) { struct tcg_region_tree *rt = region_trees + i * tree_size; g_tree_foreach(rt->tree, tcg_region_tree_traverse, NULL); /* Increment the refcount first so that destroy acts as a reset */ g_tree_ref(rt->tree); g_tree_destroy(rt->tree); } tcg_region_tree_unlock_all(); } static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) { void *start, *end; start = region.start_aligned + curr_region * region.stride; end = start + region.size; if (curr_region == 0) { start = region.start; } if (curr_region == region.n - 1) { end = region.end; } *pstart = start; *pend = end; } static void tcg_region_assign(TCGContext *s, size_t curr_region) { void *start, *end; tcg_region_bounds(curr_region, &start, &end); s->code_gen_buffer = start; s->code_gen_ptr = start; s->code_gen_buffer_size = end - start; s->code_gen_highwater = end - TCG_HIGHWATER; } static bool tcg_region_alloc__locked(TCGContext *s) { if (region.current == region.n) { return true; } tcg_region_assign(s, region.current); region.current++; return false; } /* * Request a new region once the one in use has filled up. * Returns true on error. */ bool tcg_region_alloc(TCGContext *s) { bool err; /* read the region size now; alloc__locked will overwrite it on success */ size_t size_full = s->code_gen_buffer_size; qemu_mutex_lock(®ion.lock); err = tcg_region_alloc__locked(s); if (!err) { region.agg_size_full += size_full - TCG_HIGHWATER; } qemu_mutex_unlock(®ion.lock); return err; } /* * Perform a context's first region allocation. * This function does _not_ increment region.agg_size_full. */ static void tcg_region_initial_alloc__locked(TCGContext *s) { bool err = tcg_region_alloc__locked(s); g_assert(!err); } void tcg_region_initial_alloc(TCGContext *s) { qemu_mutex_lock(®ion.lock); tcg_region_initial_alloc__locked(s); qemu_mutex_unlock(®ion.lock); } /* Call from a safe-work context */ void tcg_region_reset_all(void) { unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); unsigned int i; qemu_mutex_lock(®ion.lock); region.current = 0; region.agg_size_full = 0; for (i = 0; i < n_ctxs; i++) { TCGContext *s = qatomic_read(&tcg_ctxs[i]); tcg_region_initial_alloc__locked(s); } qemu_mutex_unlock(®ion.lock); tcg_region_tree_reset_all(); } #ifdef CONFIG_USER_ONLY static size_t tcg_n_regions(void) { return 1; } #else /* * It is likely that some vCPUs will translate more code than others, so we * first try to set more regions than max_cpus, with those regions being of * reasonable size. If that's not possible we make do by evenly dividing * the code_gen_buffer among the vCPUs. */ static size_t tcg_n_regions(void) { size_t i; /* Use a single region if all we have is one vCPU thread */ #if !defined(CONFIG_USER_ONLY) MachineState *ms = MACHINE(qdev_get_machine()); unsigned int max_cpus = ms->smp.max_cpus; #endif if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { return 1; } /* Try to have more regions than max_cpus, with each region being >= 2 MB */ for (i = 8; i > 0; i--) { size_t regions_per_thread = i; size_t region_size; region_size = tcg_init_ctx.code_gen_buffer_size; region_size /= max_cpus * regions_per_thread; if (region_size >= 2 * 1024u * 1024) { return max_cpus * regions_per_thread; } } /* If we can't, then just allocate one region per vCPU thread */ return max_cpus; } #endif /* * Initializes region partitioning. * * Called at init time from the parent thread (i.e. the one calling * tcg_context_init), after the target's TCG globals have been set. * * Region partitioning works by splitting code_gen_buffer into separate regions, * and then assigning regions to TCG threads so that the threads can translate * code in parallel without synchronization. * * In softmmu the number of TCG threads is bounded by max_cpus, so we use at * least max_cpus regions in MTTCG. In !MTTCG we use a single region. * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) * must have been parsed before calling this function, since it calls * qemu_tcg_mttcg_enabled(). * * In user-mode we use a single region. Having multiple regions in user-mode * is not supported, because the number of vCPU threads (recall that each thread * spawned by the guest corresponds to a vCPU thread) is only bounded by the * OS, and usually this number is huge (tens of thousands is not uncommon). * Thus, given this large bound on the number of vCPU threads and the fact * that code_gen_buffer is allocated at compile-time, we cannot guarantee * that the availability of at least one region per vCPU thread. * * However, this user-mode limitation is unlikely to be a significant problem * in practice. Multi-threaded guests share most if not all of their translated * code, which makes parallel code generation less appealing than in softmmu. */ void tcg_region_init(void) { void *buf = tcg_init_ctx.code_gen_buffer; void *aligned; size_t size = tcg_init_ctx.code_gen_buffer_size; size_t page_size = qemu_real_host_page_size; size_t region_size; size_t n_regions; size_t i; n_regions = tcg_n_regions(); /* The first region will be 'aligned - buf' bytes larger than the others */ aligned = QEMU_ALIGN_PTR_UP(buf, page_size); g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); /* * Make region_size a multiple of page_size, using aligned as the start. * As a result of this we might end up with a few extra pages at the end of * the buffer; we will assign those to the last region. */ region_size = (size - (aligned - buf)) / n_regions; region_size = QEMU_ALIGN_DOWN(region_size, page_size); /* A region must have at least 2 pages; one code, one guard */ g_assert(region_size >= 2 * page_size); /* init the region struct */ qemu_mutex_init(®ion.lock); region.n = n_regions; region.size = region_size - page_size; region.stride = region_size; region.start = buf; region.start_aligned = aligned; /* page-align the end, since its last page will be a guard page */ region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); /* account for that last guard page */ region.end -= page_size; /* * Set guard pages in the rw buffer, as that's the one into which * buffer overruns could occur. Do not set guard pages in the rx * buffer -- let that one use hugepages throughout. */ for (i = 0; i < region.n; i++) { void *start, *end; tcg_region_bounds(i, &start, &end); /* * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect * rejects a permission change from RWX -> NONE. Guard pages are * nice for bug detection but are not essential; ignore any failure. */ (void)qemu_mprotect_none(end, page_size); } tcg_region_trees_init(); /* * Leave the initial context initialized to the first region. * This will be the context into which we generate the prologue. * It is also the only context for CONFIG_USER_ONLY. */ tcg_region_initial_alloc__locked(&tcg_init_ctx); } void tcg_region_prologue_set(TCGContext *s) { /* Deduct the prologue from the first region. */ g_assert(region.start == s->code_gen_buffer); region.start = s->code_ptr; /* Recompute boundaries of the first region. */ tcg_region_assign(s, 0); /* Register the balance of the buffer with gdb. */ tcg_register_jit(tcg_splitwx_to_rx(region.start), region.end - region.start); } /* * Returns the size (in bytes) of all translated code (i.e. from all regions) * currently in the cache. * See also: tcg_code_capacity() * Do not confuse with tcg_current_code_size(); that one applies to a single * TCG context. */ size_t tcg_code_size(void) { unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); unsigned int i; size_t total; qemu_mutex_lock(®ion.lock); total = region.agg_size_full; for (i = 0; i < n_ctxs; i++) { const TCGContext *s = qatomic_read(&tcg_ctxs[i]); size_t size; size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer; g_assert(size <= s->code_gen_buffer_size); total += size; } qemu_mutex_unlock(®ion.lock); return total; } /* * Returns the code capacity (in bytes) of the entire cache, i.e. including all * regions. * See also: tcg_code_size() */ size_t tcg_code_capacity(void) { size_t guard_size, capacity; /* no need for synchronization; these variables are set at init time */ guard_size = region.stride - region.size; capacity = region.end + guard_size - region.start; capacity -= region.n * (guard_size + TCG_HIGHWATER); return capacity; } size_t tcg_tb_phys_invalidate_count(void) { unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); unsigned int i; size_t total = 0; for (i = 0; i < n_ctxs; i++) { const TCGContext *s = qatomic_read(&tcg_ctxs[i]); total += qatomic_read(&s->tb_phys_invalidate_count); } return total; }